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Abstract

This thesis presents a survey of the Invariant Basis Number (IBN) property within
the context of Leavitt Path Algebras (LPAs), which lie at the intersection of ring
theory, graph theory, and noncommutative algebra. Originating from W.G. Leav-
itt’s work on rings lacking the IBN property, LPAs are constructed from directed
graphs and exhibit rich structural properties linked to their underlying graphs.
The primary focus is investigating the conditions under which an LPA possesses
the IBN property. We explore the fundamental structure, definitions, and key ex-
amples of LPAs, contrasting them with related concepts like Cohn path algebras.
Utilizing monoid-theoretic techniques (specifically the graph monoid ME and its
group completion) and matrix-based formulations derived from the graph’s in-
cidence matrix (following the work of T.G. Nam and N.T. Phuc), we establish
explicit criteria for determining if Lk(E) satisfies IBN property. These criteria are
then applied to analyze the IBN property for LPAs associated with specific graph
constructions arising from finite groups. We examine Cayley graphs, demonstrat-
ing that their LPAs have IBN if and only if the generating set for the group
contains a single element. Furthermore, we investigate the power graphs of cyclic
groups of prime power order (Zpm). This work aims to provide a self-contained
exploration of the IBN property for Leavitt path algebras, combining theoretical
developments with concrete examples and graphical constructions, primarily based
on the findings presented in Nam and Phuc (2019) [9].
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1 Introduction
The study of Leavitt path algebras lies at a fascinating intersection of ring theory,
graph theory, and noncommutative algebra. Originating from the groundbreaking
work of W.G. Leavitt in the 1960s, these algebras provide concrete examples of
rings without the Invariant Basis Number (IBN) property—an essential concept in
module theory. Constructed from directed graphs, Leavitt path algebras exhibit
a rich blend of algebraic and combinatorial structure, offering insights into both
abstract algebra and the underlying graph-theoretic data.

Leavitt path algebras have attracted increasing interest in recent years due to
their connections with symbolic dynamics, C*-algebras, and K-theory, and because
they often serve as test cases or counterexamples in ring-theoretic contexts. Their
construction involves real and ghost edges, and is governed by Cuntz–Krieger
relations, which make these algebras particularly amenable to analysis through
graphical techniques.

This thesis investigates the fundamental structure of Leavitt path algebras,
including their universal properties, examples, and algebraic behavior. A signif-
icant focus is placed on the Invariant Basis Number property, with an emphasis
on how certain graph-theoretic configurations lead to the failure or preservation of
this property. In particular, we study how algebraic constructions such as Cohn
path algebras and graphs arising from finite groups influence IBN behavior. Ad-
ditionally, the thesis explores how monoid-theoretic techniques and matrix-based
formulations can be used to analyze and classify these algebras.

By combining concrete examples, theoretical developments, and graphical con-
structions, this work aims to provide a self-contained exploration of Leavitt path
algebras and their role in understanding deeper questions in noncommutative al-
gebra. This thesis is primarily based on a paper by TG Nam [9].
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2 Motivations and definitions
This chapter contains the basic definitions required for Leavitt path algebras. Also
it includes the motivation behind the construction of such algebras.

2.1 The Leavitt algebras
Students are typically introduced to rings through fundamental examples such as
fields, polynomial ring over a field and the set of integers, matrix rings over fields.
A shared feature among these rings is the Invariant Basis Number (IBN) property.

Definition 2.1.1. IBN: A ring R has the Invariant Basis Number property if, for
any positive integers m and n, the isomorphism of free left R-modules Rm ∼= Rn

implies that m = n.

A ring has the IBN property (or is IBN) if every pair of bases of a finitely
generated free left R-module contain the same number of elements. Many familiar
types of rings, such as noetherian and commutative rings, satisfy this property.
This includes the standard examples typically introduced to students, like the
field of real numbers, which has IBN property as it is a field.

Lemma 2.1.2. A ring A is IBN if

1. A is commutative.

2. A is local.

3. A 6= 0 and is noetherian.

Proof. 1. Suppose Am ∼= An for some positive integers m and n. Let p be
a maximal ideal of A, then the quotient A/p = k is a field. Since tensor
product distributes over direct sums, we have:

km ∼= (A/p)m ∼= (A/p)n ∼= kn

Therefore, as isomorphic vector spaces over a field must have equal dimen-
sions, we conclude m = n.

2. Let Am ∼= An. If A is a local ring with maximal ideal p, then A/p is a division
ring D. Since division rings have the IBN, applying the same reasoning as 1
gives Dm ∼= Dn, and thus m = n.
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3. Assume without loss of generality that m ≥ n and that there is an isomor-
phism f : An → Am. Consider the natural projection map π : Am → An.
Then f ◦ π : Am → Am is a surjective A-module endomorphism. As A is
noetherian, this implies f ◦ π is also injective, and hence an isomorphism.
Therefore, ker(f ◦ π) = {0}, which gives ker(π) = {0}, so m ≤ n, which
implies m = n.

Unfortunately since during the early development of this subject, such rings
are introduced, it leaves a wrong impression that all the rings have IBN property.
An example of such a non-IBN ring.

Let K be a field, and let K(N) represent the infinite direct sum

K(N) = K⊕K⊕ · · · ⊕K⊕ · · ·

Then taking R = EndK(K(N)) we find

R2 ∼= EndK(K(N))⊕ EndK(K(N)) ∼= Hom(K(N),K(N))⊕ Hom(K(N),K(N))

∼= Hom(KN,KN ⊕KN) ∼= Hom(KN,K⊕K⊕ · · · ⊕K⊕ · · · ⊕K⊕K⊕ · · · ⊕K⊕ · · · )
∼= Hom(KN,KN) ∼= R

So, R2 ∼= R. And in fact using the same technique we can see that Rm ∼= Rn

for all n,m ∈ Z+.

Notation 2.1.3. For a ring R without IBN, let m be the smallest natural number
such that Rm ∼= Rl for some l > m. Then, for this m, let n > m be the smallest
natural number so that Rm ∼= Rn. Then, R is said to have a module type (m,n).

Example 2.1.4. EndR(F(N)) has module type (1, 2).

2.2 Rings of type (1,n) without Invariant Basis Number
The structure of rings without IBN can be quite complex, but for rings of type
(1, n), where n > 1, the analysis of their structure is relatively straightforward.

Let R be a ring without the IBN property of type (1, n), with n > 1. Then
R ∼= Rn. This implies the existence of isomorphisms of free modules

ψ ∈ Hom(Rn, R) and ϕ ∈ Hom(R,Rn)

such that
ψ ◦ ϕ = IdRn and ϕ ◦ ψ = IdR

3



Then by using the matrix representation of a homomorphism for a unital ring,
we get n× 1 and 1× n vectors over R

y1
y2
...
yn

 and
(
x1 x2 · · · xn

)

such that
y1
y2
...
yn

 .
(
x1 x2 · · · xn

)
=


1R 0 · · · 0
0 1R · · · 0
... ... . . . ...
0 0 · · · 1R

 and
(
x1 x2 · · · xn

)
.


y1
y2
...
yn

 = (1R)

i.e. R ∼= Rn if and only if there are 2n elements of R such that

yixi = δij1R (for all 1 ≤ i, j ≤ n) and
n∑

i=1

xiyi = 1R

This actually characterises all the algebras of type (1, n). Let k be a field, and
let

S = k〈X1, . . . , Xn, Y1, . . . , Yn〉

Let T be the free associative k-algebra in 2n variables that do not commute. Let
J denote the ideal of T generated by the relations.

J = 〈
n∑

i=1

XiYi − 1, YiXj − δij1 : 1 ≤ i, j ≤ n〉

and let
A = T/J

Thus, {xi = Xi, yj = Yj | i, j = 1, 2, . . . , n} functions as intended in the construc-
tion, ensuring that A ∼= An as left A-modules.

For the ring R = Endk(F(N)) of type (1, 2), we can easily to identify a set of 4
elements, namely {x1, x2, y1, y2}, in R that exhibit this behavior.
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Leavitt proved the following groundbreaking and fundamental result.
Theorem 2.2.1. For any positive integers n > m and a field k, there is a unique
unital k-algebra Lk(m,n), up to k-algebra isomorphism, such that:

1. Lk(m,n) has module type (m,n), and

2. for every k-algebra A with identity with module type (m,n), a unit-preserving
k-algebra homomorphism ϕ : Lk(m,n) → A exists, which satisfies certain
compatibility requirements.

Definition 2.2.2. Let k be a field and n > 1 be an integer. The Leavitt k-algebra
of type (1, n), denoted by Lk(1, n), is the quotient of the k-algebra

k〈X1, . . . , Xn, Y1, . . . , Yn〉/〈
n∑

i=1

XiYi − 1, YiXj − δij1 | 1 ≤ i ≤ n and 1 ≤ j ≤ n〉

.

2.3 Directed graph
Definition 2.3.1. A directed graph E = (E0, E1, r, s) is defined by two sets, E0

and E1, along with two functions r, s : E1 → E0. The elements of E0 are referred
to as vertices, while the elements of E1 are called edges. The function r maps
each edge to its target vertex, and s maps it to its source vertex. Throughout this
thesis, the term ‘a graph’ will refer to a directed graph unless otherwise specified.

The next diagram is an example of a directed graph. The direction of the arrow
signifies the direction of the edge.

z1

z2

z5

z6

z7

z3

z4

d

a

e

f

b

d

Figure 1: a directed graph
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In this graph
E0 = {z1, z2, z3, z4, z5, z6, z7}

E1 = {a, b, c, d, e, f}
And some relations like

r(a) = x2, s(c) = x7, s(a) = x1, r(d) = x7

Definition 2.3.2. 1. Sink: A vertex v is termed a sink if no edges originate
from it, meaning

s−1(v) = ∅
The collection of all sink vertices is represented as Sink(E).

2. Source: A vertex v is called a source if no edges terminate at it, i.e.

r−1(v) = ∅

The collection of source vertices is denoted by Source(E).

3. Isolated vertex: A vertex that is both a sink and a source is called isolated.

4. Infinite emitter: A vertex v is an infinite emitter if an infinite number of
edges emanate from it, i.e.

|s−1(v)| = ∞
The collection of vertices that are infinite emitters is denoted by Inf(E).

5. Regular vertex: A vertex v is considered regular if it is neither a sink nor
an infinite emitter, i.e.

0 < |s−1(v)| <∞
Reg(E) is the set of regular vertices.

6. Singular vertex: A vertex that is not regular is referred to as a singular
vertex.

The following notation means that n edges going from the vertex x to the
vertex y.

x y
(n)

Figure 2: n edges between vertices
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For the following graph, we can see the different terms we just defined.

v1

v2

v4

v3

v5

g

f

h

e

(N)

Figure 3: a directed graph

In this graph
E0 = {v1, v2, v3, v4, v5}

E1 = {e, f, g, h, (all the infinite edges from v4 to v5)}
Sink(E) = {v3, v4}

Source(E) = ϕ

Inf(E) = {v4}

Reg(E) = {v1, v2}

Singular vertex = {v3, v4, v5}

Definition 2.3.3. A path in a graph E is a sequence of edges, denoted p =
e1e2 . . . en, where each edge ei is connected to the next through the relationship
r(ei) = s(ei+1) for all i = 1, 2, . . . , n− 1.

1. The path p originates at the vertex s(p) = s(e1) and terminates at r(p) :=
r(en).

2. The length of the path p is denoted by |p| := n, the number of edges in the
path.

3. p0 = {s(ei), r(ei) | i = 1, 2, . . . , n} is the set of vertices associated with the
path p.

4. A path p is considered closed if it originates and ends at the same vertex,
i.e., s(p) = r(p). If this closed path does not revisit any vertex except for
the starting point, it is called a cycle.

7



A cycle f is classified as a source cycle if for every vertex v ∈ f 0, the condition
|r−1(v)| = 1 holds true.

A graph without any cycles is called acyclic.

For m ≥ 2, let Em be the collection of all paths of the graph of length m. Let
Path(E) denote all the paths in the graph. Then

Path(E) =
∪
n≥0

En

For a path e1e2 . . . en,

r(e1e2 . . . en) = en and s(e1e2 . . . en) = e1

8



3 Leavitt Path Algebras
3.1 Formation of Leavitt Path Algebra
Now that we have established all the necessary definitions and notations, we have
the necessary definitions to define Leavitt Path Algebras.

Definition 3.1.1. (Leavitt Path Algebras) Let E be an arbitrary directed
graph and k any field. We define a set

(E1)∗ = {e∗ | e ∈ E1}

The Leavitt path algebra of E with coefficients in k, denoted by Lk(E) is the free
associative k-algebra generated by the set E0 ∪ E1 ∪ (E1)∗ constrained by the
relations:

(V ) vv′ = δvv′v for all v ∈ E0

(E1) s(e)e = e = er(e) for all e ∈ E1

(E2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1

(CK1) e∗e′ = δee′r(e) for all e, e′ ∈ E1

(CK2) v =
∑

{e∈E1|s(e)=v}

ee∗ for all v ∈Reg(E)

In essence, Lk(E) can be described as the free associative k-algebra built from
the set of generators E0 ∪ E1 ∪ (E1)∗, where the construction is constrained by
the five defining relations previously established, which encode the combinatorial
structure of the graph E into the algebra.

For the remainder of the thesis, k will denote a field and E a directed
graph, unless otherwise stated.

Leavitt path algebra defined in this way may seem complex at first. So here
are some ground rules that can make this construction easier to understand.

1. By ghost edges, we mean the set (E1)∗, while real edges mean the set of
edges in E1. Essentially the edges in (E1)

∗ are the same edges in E1 but
their direction is reversed.

u v

e

e∗

Figure 4: real edge and ghost edge

9



2. The vertices are orthogonally idempotent, i.e., if u and v are distinct vertices,
then uv = 0. And for any vertex v in E0, v2 = v.

3. The multiplication of a vertex and an edge is nonzero and results in an edge
only if the vertex is either the source or the target of the edge. The main
For example, the previous Fig 4,

ue = e = ev

This same rule applies for a ghost edge as well.

ve∗ = e∗ = e∗u

And the multiplication of an edge with a vertex that is not its starting or
ending vertex give zero since if e is an edge and v is a vertex such that is
neither its starting nor ending point, i.e. r(e) 6= v and s(e) 6= v, then

ev = (er(e))v = e(r(e)v) = e0 = 0 and ve = v(s(e)e) = (vs(e))e = 0e = 0

4. The multiplication of a ghost edge with its real edge with having the ghost
edge on the left yields the range of e, i.e. in Fig 4

e∗e = v

However the multiplication of them with the real edge on the left does not
simplify, it remains as it is. And the multiplication of a ghost edge e∗ (of a
real edge e) with another real edge f yields 0, that is,

e∗f = 0

For example in

u v w
h

h∗

f

f ∗

g

g∗

Figure 5: a directed graph
we have

f ∗f = w and f ∗g = 0

5. The final rule is relatively straightforward. For example in Fig 5, we have
for the regular vertex v,

v = f ∗f + g∗g

10



The following is an example of the properties. Consider the graph E

v1

v2

v4

v3

v5

g

f

h

e

(N)

Figure 6: a directed graph

Then the graph with the ghost edges is

v1

v2

v4

v3

v5

g

f

h

g∗

f ∗

h∗

ee∗

(N)

(N)

Figure 7: graph with the ghost edges drawn
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Here we see some relations as

g∗g = v3, g
∗f = 0, f ∗f = v2

v1 = ee∗ + hh∗ + ff ∗ and v2 = gg∗

v21 = v, v2v3 = 0

gv3 = g, v1f = f, v1h = h, f ∗v1 = f ∗

But here we see that ee∗ remains the same, we cannot simplify it any further.

Theorem 3.1.2. (Universal Property of Lk(E)) Let A be a k-algebra that
includes a set of pairwise idempotents {xv | v ∈ E0}, along with two families of
elements {xe | e ∈ E1} and {be | e ∈ E1} that satisfy the following conditions:

1. xs(e)xe = xexr(e) = xe and xr(e)ye = yexs(e) = ye for all e ∈ E1.

2. yfxe = δefxr(e) for all e, f ∈ E1.

3. For every regular vertex v, xv =
∑

{ e ∈ E1 | s(e) = v}xeye.

Then, there exists a unique k-algebra isomorphism ψ : Lk(E) → A such that
ψ(v) = xv, ψ(e) = xe, and ψ(e∗) = ye for all e ∈ E1 and v ∈ E0.

3.2 Properties of Leavitt Path Algebra
Definition 3.2.1. An associative ring R is said to have a collection of local units
F if F consists of idempotent elements in R with the property that, for any finite
set of elements r1, . . . , rn ∈ R, there is an element f ∈ F such that frif = ri for
all 1 ≤ i ≤ n. In other words, a set of idempotents F ⊆ R serves as a set of local
units for R if every finite subset of R can be embedded in a (unital) subring of the
form fRf for some f ∈ F .

An associative ring R is said to possess enough idempotents if there is a collec-
tion of nonzero orthogonal idempotents E in R, such that the set F of finite sums
of distinct elements from E forms a set of local units for R.

Lemma 3.2.2 ([2], Lemma 1.2.12). Let x, y, z, w be elements of Path(E). Then
for Lk(E), the following hold:

1. The product of monomials is computed as:

(xy∗)(zw∗) =


xpw∗, if z = yp for some p ∈ Path(E),
xq∗w∗, if y = zq for some q ∈ Path(E),
0, otherwise.

12



2. The algebra Lk(E) is spanned as a k-vector space by the set of monomials of
the form:

{xy∗ | x, y ∈ Path(E) such that r(x) = r(y)}.
That is, every element a ∈ Lk(E) can be written as:

a =
n∑

i=1

kixiy
∗
i .

However, this set does not form a basis, as the representation of elements is
not unique, except in simpler cases.

3. Lk(E) has a unit element if and only if E0 is finite. Then the unit element
is:

1Lk(E) =
∑
v∈E0

v.

This is evident because multiplying any vertex v by
∑

v∈E0 v results in only
v2 = v, with all other vertex products cancelling out. Similarly, for any edge
e, the identity holds since e = er(e).

4. Lk(E) is a ring with enough idempotents, and hence it is a ring having local
units. Therefore, a graph with infinitely many vertices will have local units.

3.3 Some examples of Leavitt Path Algebras
Here we will see that Leavitt path algebras are not some foreign objects. They can
give rise to very exotic algebras and at the same time, can give rise to well known
rings like matrix rings and k[x, x−1].
Definition 3.3.1. The n-rose petal, denoted by Rn, is a graph consisting of one
vertex and n loops attached to that vertex.

v

e3
e2

e1

en

Figure 8: Rn
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We will be particularly working here with the 1-petal rose R1.

v e

Figure 9: R1

The graph An consists of n vertices with n− 1 edges joining every vertex to its
subsequent vertex.

x1 x2 x3 xn−1 xnf1 f2 fn−1

Figure 10: An

Theorem 3.3.2.
Lk(Rn) ∼= Lk(1, n)

Proof. From the characterisation of Leavitt algebras having type (1, n), we know
that there exist elements from the algebra, x1, . . . , xn and y1 . . . , yn such that

n∑
i=1

xiyi = 1R and yixi = δij1R (for all 1 ≤ i, j ≤ n)

Then map the elements from Lk(1, n) to elements of Lk(Rn) as

xi → ei

yi → e∗i

Then these elements behave similarly in their respective sets since v is a regular
vertex, and also v acts as the identity element of Lk(Rn) we have

v = e1e
∗
1 + e2e

∗
2 + · · ·+ ene

∗
n

and
e∗i ej = δijv

just like xi and yi.

14



Definition 3.3.3. The algebra of Laurent polynomials over k, generated by x and
y with the commutation relation xy = yx = 1, is denoted by k[x, y] or k[x, x−1].

Theorem 3.3.4.
Lk(R1) ∼= k[x, x−1]

Proof. Just like in the previous theorem, we map the elements as

x→ e

x−1 → e∗

Then we have the relations ee∗ = v = 1Lk(R1) by (CK2) and e∗e = v = 1Lk(R1) by
(CK1)

Now the next theorem shows that not all Leavitt path algebras are exotic, some
of them are well known and well known matrix rings Mn(k).

Theorem 3.3.5.
Lk(An) ∼= Mn(k)

Proof. Consider the set {fi,j | i, j = 1, 2, . . . , n}, where each fi,j represents an n×n
matrix that has 1 in the (i, j)th position and 0 else. These matrix units obey the
following relation:

fi,jfk,l = δj,kfi,l

Then map the elements from Lk(An) to Mn(k) as

vi 7→ fi,i

ei 7→ fi,i+1

e∗i 7→ fi+1,i

i.e. we are mapping the vertices to the diagonal matrix unit elements, the real
edges to the upper diagonal and the ghost edges to the lower diagonal. Then we
see that the behaviour of these elements is alike.

1. (V) vivj = δi,jvi ≡ fi,ifj,j = δi, jfi,j = δi,jfi,i

2. (E1) s(ei)ei = ei = eir(ei) ≡ viei = ei = eivi+1 ≡ fi,ifi,i+1 = fi,i+1 =
fi,i+1fi+1,i

3. (E2) r(ei)e∗i = e∗i = e∗i s(ei) ≡ vi+1e
∗
i = e∗i = e∗i vi ≡ fi+1,i+1fi+1,i = fi+1,i =

fi+1,ifi,i

4. (CK1) e∗i ej = δi,jr(ei) ≡ e∗i ej = δvi+1 ≡ fi+1,ifj, j + 1 = δi,jfi+1,j+1 =
δi,jfi+1,i+1

15



5. (CK2) eie∗i = vi ≡ fi,i+1fi+1,i = fi,i

This theorem also shows that not all Leavitt path algebras are of non-IBN
type, some of them give rise to IBN rings too.
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4 Making new graphs from existing graphs
In this chapter we try to construct new graphs from existing graphs and study the
behavior of the new graph in relation to the original one.

4.1 E(v0, n) and E(e0, n)

Definition 4.1.1. Let n be a natural number, and let v0 ∈ E0. Define the graph
E(v0, n) as:

E(v0, n)
0 = E0 ∪ {v1, v2, . . . , vn}

E(v0, n)
1 = E1 ∪ {e1, e2, . . . , en}

The functions rE(v0,n) and sE(v0,n) are defined to be the same as rE and sE, respec-
tively. Furthermore, for i = 1, . . . , n, we define:

rE(v0,n)(ei) = vi−1 and sE(v0,n)(ei) = vi

Definition 4.1.2. Let e0 ∈ E1 be an edge, and let n ∈ N. Define the graph
E(e0, n) as:

E(e0, n)
0 = E0 ∪ {v1, v2, . . . , vn}

E(e0, n)
1 = (E1 \ {e0}) ∪ {e1, e2, . . . , en+1}

The functions rE(e0,n) and sE(e0,n) are the same as rE and sE, respectively. Addi-
tionally, we define:

rE(e0,n)(e1) = rE(e0) and sE(e0,n)(en+1) = sE(e0)

sE(e0,n)(ei) = vi for i = 1, . . . , n

rE(e0,n)(ei) = vi−1 for i = 2, . . . , n+ 1

Example 4.1.3. Consider

w

v0 v

v′

x

e
e0

e′

f

g

Figure 11: graph E
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Then E(v0, 2) would be the graph

w

v0 v

v′

x

v1

v2

e
e0

e′

f

e1

e2

g

Figure 12: graph E(v0, 2)

And E(e0, 3) would be the graph

w

v0 v

v′

x

v1

v2 v3

e e′

f

e1

e2

e3

e4

g

Figure 13: graph E(e0, 3)

Note: In layman’s terms, to construct the graph E(v0, n) from E, we adjoin a
path of length n to the vertex v0 with the edge connecting this path to v0 being
named e1 which continues down the path. And to construct the graph E(en, n)
from E, we again adjoin a path having length n, similarly as E(v0, n), to the range
of e0, with the exception that we also join the end vertex of this path to the source
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of e0, and then we delete the edge e0. So in essence, we are replacing the edge e0
by a path of length n.

Definition 4.1.4. An exit for a path p = e1e2 . . . en is an edge f if there exists
some ei within the path such that s(f) = s(ei), but f 6= ei.

A graph E is called a no exit graph if there are no exits present in any cycle
of E.

An example of an exit f in a cycle c = e1e2e3e4e5 would be

u1 u2

u3u4

u5

e1

e2

e3

e4

f

Definition 4.1.5. A trail in E is defined as:

1. A finite sequence of edges τ = e1e2 . . . en (where n may be zero) such that
the range of the last edge, r(t) = r(en), is a sink. In other words, there are
no edges leaving r(en), i.e., s−1(r(en)) = ∅.

2. An infinite sequence of edges τ = e1e2 . . . en . . . in which the range of one
edge is the same as the source of the next, i.e., r(en) = s(en+1) for all n ∈ N.

Definition 4.1.6. An infinite trail τ = e1e2 . . . in E is called periodic, if there are
natural numbers p, q so that en+q = en for all n ≥ p. For example
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u1 u2

u3u4

u5

e2

e3

e4

e5

e1
e6

e8

e9 e7

...

...

· · · · · ·

In this scenario, we observe that q = 4 and p = 2. It’s evident that the path
ρ = ej . . . ej+k−1 forms a closed cycle.

By selecting p, q so that p+ q is minimized, and defining the paths

α = e1e2 . . . ej−1

λ = ej . . . ej+k−1

we call the pair (α, λ) the seed of τ . Then λ represents a closed path and is referred
to as the period of τ .

A trail τ is considered periodic if its period is a closed path without exits,
meaning λ is a cycle that does not contain any exits. This type of trail is known
as an infinite discrete essentially aperiodic trail.

Such a trail can be described by the seed (α, λα), indicating that the cycle λα
begins and terminates at the vertex r(α). The path α is then referred to as a
distinguished path.

Definition 4.1.7. A Cuntz-Krieger E-family in F is a collection of elements of a
k-algebra in the graph F that follow the five properties that define a Leavitt Path
Algebra.

Let A be a k-algebra with a Cuntz-Krieger E-family. By the Universal Homo-
morphism Property of Lk(E), there exists a unique k-algebra homomorphism from
Lk(E) to A that sends the generators of Lk(E) to their corresponding elements in
A. Such a family is also called CK E-family in F .

Definition 4.1.8. For paths γ and δ in Path (E), we say that γ ≤ δ if δ = γγ′

for some path γ′.

Definition 4.1.9. y ∈ Lk(E) is called normal if yy∗ = y∗y.
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Lemma 4.1.10 ([8], Lemma 4.3). A cycle γ has no exits if and only if γγ∗ = s(γ).

Proposition 4.1.11 ([8], Proposition 4.5). Let γ, δ ∈ Path(E) with r(γ) = r(δ).
The generator γδ∗ is normal in Lk(E) if and only if one of the following conditions
holds:

1. γ = δ

2. δ ≤ γ and δ is a distinguished path, i.e., γ = δλδ where λδ is a cycle without
exits.

3. γ ≤ δ and γ is a distinguished path, i.e., δ = γλγ where λγ is a cycle without
exits.

Proof. Let x = γδ∗ be an element such that it satisfies property

(1) If γ = δ then clearly x is normal since

xx∗ = γδ∗(γδ∗)∗ = γγ∗(γγ∗)∗ = γγ∗γγ∗ = (γγ∗)∗γγ∗ = x∗x

(2) If δ ≤ γ, it follows that γ = δλ, where λ represents a cycle without exits.
According to Lemma 4.1.10, we have the relation λλ∗ = s(λ) = r(δ). So

xx∗ = γδ∗(γδ∗)∗ = γδ∗δγ∗ = δλδ∗δλ∗δ∗ = δλr(δ)λ∗δ∗

= δλs(λ)λ∗δ∗ = δλλ∗δ∗ = δs(λ)δ∗ = δδ∗

and
x∗x = (γδ∗)∗γδ∗ = δγ∗γδ∗ = δr(γ)δ∗ = δδ∗

Hence xx∗ = x∗x.

(3) Can be done in similar way to (2).

Conversely, assume that 0 6= x = γδ∗ is normal element of Lk(E). Since x 6= 0 we
have that r(γ) = r(δ) and also we have xx∗ = x∗x, we get that

xx∗ = x∗x

⇒γδ∗(γδ∗)∗ = (γδ∗)∗γδ∗

⇒γδ∗δγ∗ = δγ∗γδ∗

⇒γr(δ)γ∗ = δr(γ)δ∗

⇒γγ∗ = δδ∗ (since r(γ) = r(δ))
⇒s(γ) = s(δ)
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Now we see that

(xx∗)2 = xx∗xx∗

= γδ∗(γδ∗)∗γδ∗(γδ∗)∗

= γδ∗δγ∗γδ∗δγ∗

= γ(δ∗δ)(γ∗γ)(δ∗δ)γ∗

= γr(δ)r(γ)r(δ)γ∗

= γγ∗ (since r(γ) = r(δ))
6= 0

Thus
0 6= (xx∗)2 = xx∗xx∗ = x∗x2x∗

⇒ x2 6= 0

⇒ (γδ∗)(γδ∗) 6= 0

Then by the way that the elements of the algebra look, we must have

δ ≤ γ or γ ≤ δ

Assuming δ ≤ γ and using the facts discussed, we have γ = δλ where λ is a closed
path. If λ has an exit, then by Lemma 4.1.10 we get

λλ∗ 6= s(λ) = r(δ)

and so
xx∗ = γδ∗δγ∗ = γγ∗ = δλλ∗δ∗ 6= δδ∗ = x∗x,

which leads to a contradiction. Therefore, λ must be a cycle without exits. Simi-
larly, if we assume γ ≤ δ, we obtain condition (3).

Lemma 4.1.12 ([10], proposition 3.4). Lk(E) is such that the elements of the set
{v, e, e∗ | v ∈ E0, e ∈ E0} are all non zero. Moreover

Lk(E) = spank{(γδ∗) : γ, δ ∈ Path(E) and r(γ) = r(δ)}

and rv 6= 0 for all v ∈ E0 and for all r ∈ k \ {0}.

Definition 4.1.13. Let GE
M be the set of all normal generators of the form αβ∗

for some paths α, β ∈ Lk(E).
The subalgebra Mk(E) = 〈GE

M〉 generated by all the elements of GE
M is called

the commutative core of Lk(E).
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Definition 4.1.14. Define a set

G∆
E = {µµ∗ | µ ∈ Path(E)}

This set G∆
E is termed the standard diagonal generator set and the k-algebra gen-

erated by G∆
E , i.e., 〈G∆

E〉 is termed the diagonal algebra associated with E and is
denoted by ∆(E).

Note: By proposition 4.1.11 (1), every element of the form µµ∗ for some path
µ is normal, hence µµ∗ ∈Mk(E). Thus, ∆(E) ⊆Mk(E).

Proposition 4.1.15 ([8], Proposition 4.5). The commutative core of Lk(E) is
commutative.

Proposition 4.1.16 ([8], Remark 4.7). Consider a distinguished path α. Let λα
be the cycle without exits starting and terminating at r(α). Define the element
ωα := αλαα

∗. Then the k-algebra generated by ωα, denoted 〈ωα〉, satisfies 〈ωα〉 ∼=
k[x, x−1].

Proof. By proposition 4.1.11 we see that ωα = αλαα
∗ is of the form α(λαα

∗),
hence ωα ∈ GE

M , and thus, the k-algebra generated by ωα, 〈ωα〉 ⊆ Mk(E). And
this algebra is unital with unit αα∗. And also ωα is invertible since

ω∗
αωα = (αλαα

∗)∗αλαα
∗ = αλ∗αα

∗αλαα
∗ = αλ∗αλαα

∗ = αα∗

and
ωαω

∗
α = αλαα

∗(αλαα
∗)∗ = αλαα

∗αλ∗αα
∗ = αλαλ

∗
αα

∗ = αα∗

Then the powers of ωα can be defined, i.e., (ωα)
n for n ∈ Z as

if n < 0 then ωn
α = (ω∗

α)
−n

and
ω0
α = αα∗.

After this we define the homomorphism ϕ : 〈ωα〉 → k[x, x−1] as

ϕ(ωα) = x

ϕ(ω∗
α) = x−1

ϕ(αα∗) = 1

Then this homomorphism becomes an isomorphism.

Following is a theorem from Leavitt Path Algebra Book [2], with restriction of
the arbitrary ring R to a field k.
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Theorem 4.1.17 ([2], Theorem 2.2.11). For any non-zero element a ∈ Lk(E),
there exist paths ν, µ ∈ Path(E) such that one of the following holds:

1. There exists a non-zero scalar r ∈ k \ {0} and a vertex v ∈ E0 such that
0 6= µ∗av = rv.

2. There exists a cycle λ without exits such that 0 6= µ∗av = p(λ), where p(x)
is a non-zero polynomial in k[x, x−1].

Theorem 4.1.18 ([8], Theorem 5.2). (Generalised Uniqueness Theorem for Leavitt
Path Algebras) Suppose there is a ring homomorphism ϕ : Lk(E) → A, where
Lk(E) is the Leavitt path algebra associated with E, and A is some k-algebra.
Then, TFAE:

(i) ϕ is injective.

(ii) The restriction of ϕ to Mk(E), the subalgebra of Lk(E) generated by the set
of matrices corresponding to paths in E, is also injective.

(iii) Both of the following conditions are satisfied:

(a) For each vertex v ∈ E0 and each non-zero scalar r ∈ k, we have
ϕ(rv) 6= 0, which ensures that ϕ maps non-zero scalar multiples of
vertices in E to non-zero elements of A.

(b) For each distinguished path α ∈ Path(E), the k-algebra generated by
ϕ(ωα), where ωα = αλαα

∗ and λα is a cycle without exits, is isomorphic
to the Laurent polynomial algebra k[x, x−1].

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii) We will prove (a) first. Let r ∈ k\{0} and v ∈ E0 be arbitrary. Then

rv = rvv∗ ∈ ∆(E) ⊆ Mk(E). By lemma 4.1.12 rv 6= 0 and since ϕ is injective
when restricted to Mk(E), we get ϕ(rvv∗) 6= 0 ⇒ ϕ(rv) 6= 0.

Now we will prove (b). We know that for all distinguished paths α, ωα = αλαα
∗

and for all j ∈ Z we have ωi
α ∈Mk(E) by proposition 4.1.11. And since restriction

of ϕ to Mk(E) is injective, ϕ(ωj
α) 6= 0. Then we have a natural k-homomorphism

〈ωα〉 ∼= 〈ϕ(ωα)〉. And from proposition 4.1.16 we have 〈ωα〉 ∼= k[x, x−1]. Thus

〈ϕ(ωα)〉 ∼= k[x, x−1].

(iii)⇒(i) Suppose, if possible, ϕ be not injective. Then there exits 0 6= a ∈
Lk(E) such that a ∈ kerϕ. Then by theorem 4.1.17, there exist path µ, ν in
Path(E) such that there are two possibilities.

If 0 6= µ∗aν = rv for some r ∈ k\{0} and v ∈ E0, we would have that ϕ(rv) 6= 0
by condition (a). However, since a ∈ kerϕ, we also have ϕ(a) = 0. This leads to
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the contradiction that ϕ(rv) = ϕ(µ∗aν) = 0, implying rv ∈ kerϕ, which violates
condition (a).

Consequently, the only scenario left to analyze is when 0 6= µ∗aν = p(λ), for
some cycle λ without exits and a non-zero polynomial p(x) ∈ k[x, x−1]. Given that
a ∈ kerϕ, we must have p(λ) ∈ kerϕ, which leads to ϕ(p(λ)) = 0.

Choose a vertex v ∈ λ0 belonging to the cycle λ. Since λ possesses no exits, v
qualifies as a distinguished vertex, and λ coincides with λv. Hypothesis (b) then
guarantees the existence of a k-algebra homomorphism

g : 〈ϕ(λ)〉 → k[x, x−1].

From ϕ(p(λ)) = 0, it follows that g(ϕ(p(λ))) = 0. Let us express the polynomial
as p(x) = r−mx

−m + · · ·+ rnx
n, where m,n ∈ N. We can then compute:

0 = g(ϕ(p(λ))) = g
(
ϕ(r−mλ

−m + · · ·+ rnλ
n)
)
= g(ϕ(r−mv)ϕ(λ

∗)m + · · ·

+ϕ(rnv)ϕ(λ)
n)

= g(ϕ(r−mv))x
−m + · · ·+ g(ϕ(rnv))x

n.

Because the powers of x are linearly independent in k[x, x−1], this result implies
g(ϕ(riv)) = 0 for every index i in the range {−m, · · · , n}. This, in turn, necessi-
tates ϕ(riv) = 0 for all such i, thereby contradicting assumption (a).

4.2 LPA of E(v0, n) and E(e0, n)

The following theorem links the newly constructed graphs E(v0, n) and E(e0, n)
and their LPAs.
Theorem 4.2.1. Let e0 be an edge, and let n ∈ N. Define v0 = rE(e0). Then

Lk(E(e0, n)) ∼= Lk(E(v0, n))

Proof. We will construct a homomorphism from Lk(E(v0, n)) to Lk(E(e0, n)) using
the universal property of Leavitt Path Algebra.

For v0 ∈ E(v0, n)
0 and for e ∈ E(v0, n)

1 define respectively

Qv = v

Te =

{
e, if e 6= e0

en+1en . . . e1, if e = e0.

T ∗
e = Te∗

Note here that Qv and Te are elements in E(e0, n).
Our aim is to show that {Qv, Te, T

∗
e } is a CK E(v0, n)-family in E(e0, n). We

show the properties step by step.
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1. (V) Clearly for any v, v′ ∈ E(v0, n)
0, we have

QvQ
′
v = vv′ = δvv′v = δQvQ′

v
Qv

2. (E1) Let e ∈ E(v0, n)
1. If e 6= e0 then we see that sE(v0,n)(e) = sE(e) =

sE(e0,n)(e) and rE(v0,n)(e) = rE(e) = rE(e0,n)(e). So we have

QsE(v0,n)(e)Te = sE(v0,n)(e)e = erE(v0,n)(e) = TeQsE(v0,n)(e)

and if e = e0 then Te = Te0 = en+1en . . . e1. And so sE(v0,n)(e0) = sE(e0) =
sE(e0,n)(en+1). Thus

QsE(v0,n)(e0)Te0 = sE(v0,n)(e0)en+1en . . . e1

= sE(e0,n)(en+1)en+1en . . . e1

= (sE(e0,n)(en+1)en+1)en . . . e1

= (en+1rE(e0,n)(en+1))en . . . e1

= en+1vnen . . . e1

= en+1(vnen)en−1 . . . e1

= en+1(envn−1)en−1 . . . e1
...

= en+1en . . . v1e1(= en+1en . . . e1 = Te0)

= en+1en . . . e1rE(e0,n)(e1)

= en+1en . . . e1rE(e0)

= en+1en . . . e1rE(v0,n)(e0)

= Te0QrE(v0,n)(e0)

3. (E2) Let e ∈ E(v0, n)
1. If e 6= e0 then we see that sE(v0,n)(e

∗) = sE(e
∗) =

sE(e0,n)(e
∗) and rE(v0,n)(e

∗) = rE(e
∗) = rE(e0,n)(e

∗). So we have

QrE(v0,n)(e
∗)T

∗
e = rE(v0,n)(e

∗)e∗ = e∗sE(v0,n)(e
∗) = T ∗

eQsE(v0,n)(e
∗)

and if e = e0 then T ∗
e = T ∗

e0
= (en+1en . . . e1)

∗ = e∗1e
∗
2 . . . e

∗
n+1. And so
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rE(v0,n)(e
∗
0) = rE(e

∗
0) = rE(e0,n)(e

∗
1). Thus

QrE(v0,n)(e
∗
0)
T ∗
e0

= rE(v0,n)(e
∗
0)e

∗
1e

∗
2 . . . e

∗
n+1

= rE(e0,n)(e
∗
1)e

∗
1e

∗
2 . . . e

∗
n+1

= (rE(e0,n)(e
∗
1)e

∗
1)e

∗
2 . . . e

∗
n+1

= (e∗1sE(e0,n)(e
∗
1))e

∗
2 . . . e

∗
n+1

= e∗1v2e
∗
2 . . . e

∗
n+1

= e∗1(v2e
∗
2)e

∗
3 . . . e

∗
n+1

= e∗1(e
∗
2vn−1)e

∗
2 . . . e

∗
n+1

...
= e∗1e

∗
2 . . . vn+1e

∗
n+1(= e∗1e

∗
2 . . . e

∗
n+1 = T ∗

e0
)

= e∗1e
∗
2 . . . e

∗
n+1sE(e0,n)(e

∗
n+1)

= e∗1e
∗
2 . . . e

∗
n+1sE(e

∗
0)

= e∗1e
∗
2 . . . e

∗
n+1sE(v0,n)(e

∗
0)

= T ∗
e0
QsE(v0,n)(e

∗
0)

4. (CK1) Let f, e ∈ E(v0, n)
1. Suppose 6= e. Then

T ∗
e Tf =


e∗f, if e 6= e0 and f 6= e0

e∗1e
∗
2 . . . e

∗
n+1f, if e = e0

e∗en+1en . . . e1, if f = e0.

=


0, if e 6= e0 and f 6= e0

e∗1e
∗
2 . . . e

∗
n+1f, if e = e0

e∗en+1en . . . e1, if f = e0.

Now for any edge g ∈ E(v0, n)
1, g 6= en+1, hence e∗n+1f = 0 and e∗en+1 = 0.

So we get
T ∗
e T

∗
f = 0 when e 6= f
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Now let e be an edge in E, then

T ∗
e Te =

{
e∗e, if e 6= e0

e∗1e
∗
2 . . . e

∗
n+1en+1en . . . e1, if e = e0

=

{
rE(e0,n)(e), if e 6= e0

e∗1e
∗
2 . . . e

∗
nrE(e0,n)(en+1)en . . . e1, if e = e0

=

{
rE(e0,n)(e), if e 6= e0

e∗1e
∗
2 . . . e

∗
nvnen . . . e1, if e = e0

=

{
rE(e0,n)(e), if e 6= e0

e∗1e
∗
2 . . . e

∗
nen . . . e1, if e = e0

...

=

{
rE(e0,n)(e), if e 6= e0

e∗1e1, if e = e0

=

{
rE(e0,n)(e), if e 6= e0

rE(e0,n)(e1), if e = e0

= rE(v0,n)(e)

= QrE(v0,n)(e)

5. (CK2) Let v ∈ E(v0, n)
0 be a regular vertex. Then we observe that in

E(e0, n), v is also a regular vertex. We break it into cases according to
whether v = vi for i = 1, 2, . . . n or not.
Case 1: v = vi for some i = 1, 2, . . . , n.
Then s−1

E(e0,n)
(vi) = {ei} = s−1

E(v0,n)
. So from CK2 of Lk(E) we have

Qv = Qvi = vi = eie
∗
i = TeiT

∗
ei

Case 2: v 6= vi for any 1 ≤ i ≤ n.
This can further be broken down into two subcases:

Subcase 1: en+1 /∈ s−1
E(e0,n)

(v)

Since v 6= vi for i = 1, 2, . . . , n and v 6= sE(e0), we have s−1
E(v0,n)

(v) ∩
{e0, e1 . . . , en} = ∅ and s−1

E(e0,n)
(v) ∩ {e1, e2 . . . , en+1} = ∅, i.e. none of the

edges e0, e1, . . . , en, en+1 have no interaction with the vertex v in their ap-
propriate graphs. Thus,

s−1
E(v0,n)

(v) = s−1
E (v) = s−1

E(e0,n)
(v)
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Hence
Qv = v =

∑
e∈s−1

E (v)

ee∗ =
∑

e∈s−1
E(v0,n)

(v)

ee∗ =
∑

e∈s−1
E(v0,n)

(v)

TeT
∗
e

Subcase 2: en+1 ∈ s−1
E(e0,n)

(v)

Then we see that sE(e0,n)(en+1) = sE(v0,n)(e0) = sE(e0), so e0 ∈ s−1
E(v0,n)

. We
also see that eie∗i = vi for all i = 1, 2, . . . , n.
Thus

Qv = v =
∑

e∈s−1
E(e0,n)

(v)

ee∗

=

 ∑
e∈s−1

E(e0,n)
(v)\{en+1}

ee∗

+ en+1e
∗
n+1

=

 ∑
e∈s−1

E (v)\{e0}

ee∗

+ en+1vne
∗
n+1

=

 ∑
e∈s−1

E (v)\{e0}

ee∗

+ en+1ene
∗
ne

∗
n+1

...

=

 ∑
e∈s−1

E (v)\{e0}

ee∗

+ en+1en . . . e1e1 ∗ . . . e∗ne∗n+1

=

 ∑
e∈s−1

E (v)\{e0}

TeT
∗
e

+ Te0T
∗
e0

=
∑

e∈s−1
E(v0,n)

(v)

TeT
∗
e

This shows that {Qv, Te, T
∗
e |v ∈ E(v0, n)

0, e ∈ E(v0, n)
1} is a Cuntz-Kreiger

E(v0, n) family in E(e0, n) since Qv, Te and T ∗
e are elements in Lk(E(e0, n)). Then

by the universal property of Leavitt Path Algebra, there exists a k-homomorphism
ψ : Lk(E(v0, n)) → Lk(E(e0, n))

ψ(v) = Qv
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ψ(e) = Te

ψ(e∗) = T ∗
e ,for all v ∈ E(v0, n)

0 and e ∈ E(v0, n)
1

To show that this map is indeed a homomorphism, it suffices to show that the sole
generator of Lk(E(e0, n)) not present in

{Qv, Te, T
∗
e | v ∈ E(v0, n)

0, e ∈ E(v0, n)
1}

i.e. en+1, can be constructed using these elements. We see that

Te0T
∗
e1
T ∗
e2
. . . T ∗

en = en+1en . . . e1e
∗
1e

∗
2 . . . e

∗
n

= en+1en . . . e2v1e
∗
2e

∗
2 . . . e

∗
n

= en+1en . . . e2rE(e0,n)(e2)e
∗
2e

∗
2 . . . e

∗
n

= en+1en . . . e2e
∗
2 . . . e

∗
n

...
= en+1e1e

∗
1

= en+1vn

= en+1rE(e0,n)(en+1)

= en+1

Hence, en+1 ∈ ψ(Lk(E(v0, n))), and this proves that ψ is indeed surjective.

Now we will prove the injectivity of this map.
Consider α, a distinguished path within E(v0, n), and define the element ωα =

αλαα
∗. Here, λα represents a cycle without exits based at the vertex rE(v0,n)(α).

Let the decomposition of this cycle be λα = f1f2 . . . fm. Assume that for every
edge fi (i = 1, 2, . . . ,m), the condition sE(v0,n)(fi) 6= sE(v0,n)(e0) holds. This
ensures that each fi remains unchanged in the graph E(e0, n) and is distinct from
e0. Consequently, ψ(λα) = λα constitutes a cycle without exits within E(e0, n).
Applying Proposition 4.1.16, we deduce that the ∗-k-algebra 〈ψ(ωα)〉, which is
generated by ψ(ωα), is ∗-isomorphic to k[x, x−1].

Alternatively, suppose there exists some index i ∈ {1, 2, . . . ,m} such that
sE(v0,n)(fi) = sE(v0,n)(e0). Because λα = f1f2 . . . fm is specifically a cycle without
exits, this condition necessitates that fi = e0. The cycle thus takes the form:

λα = f1f2 . . . fi−1e0fi+1 . . . fm

Applying the map ψ yields:

ψ(λα) = ψ(f1f2 . . . fi−1e0fi+1 . . . fm) = f1f2 . . . fi−1en+1en . . . e1fi+1 . . . fm

30



This resulting path is also a cycle without exits in E(e0, n), owing to the fact that
the newly introduced edges e1, e2, . . . , en+1 lack any exits. Therefore, invoking
Proposition 4.1.16 once more, we find that 〈ψ(ωα)〉 is isomorphic to k[x, x−1].

Furthermore, let us consider an arbitrary vertex v ∈ E(v0, n)
0 and any non-zero

scalar r ∈ k \ {0}. We observe that

ψ(rv) = rQv = rv 6= 0 (from lemma 4.1.12)

Invoking the Generalised Uniqueness Theorem 4.1.18, this observation allows us
to conclude that the map ψ must be injective. Consequently, ψ is established as a
bijection, leading to the isomorphism:

Lk(E(e0, n)) ∼= Lk(E(v0, n)).
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5 IBN property for Leavitt Path Algebras through
matrices

5.1 Group completion of a monoid
Definition 5.1.1. An abelian monoid is a set M with a binary operation ‘+′ that
is associative, has an identity element 0 and is abelian wrt this operation.

A monoid map from a monoidM to another monoidN is a function f :M → N
such that

f(0) = 0 and f(m+m′) = f(m) + f(m′)

Example 5.1.2. N = {0, 1, 2, . . .} is a classical example of an abelian monoid.

The group completion of an abelian monoid M is an abelian group M−1M
together with a monoid map

[ ] :M →M−1M

such that if there is a monoid map α :M → A for some abelian group A then there
is an unique group homomorphism α : M → A such that the following diagram
commutes

M A

M−1M

α

[ ]
α

i.e.
α(m) = α([m])

Example 5.1.3. The group completion of N is Z.

It is a known property that any abelian monoid M possesses a group comple-
tion. An alternative viewpoint for constructing this completion involves initially
forming the free abelian group F (M), which utilizes a basis comprising elements
[m] for every m ∈ M . Subsequently, attention is turned to the subgroup R(M),
defined as the subgroup generated by all relations taking the form [m+n]−[m]−[n].
In terms of this construction, the group completion of the monoid M is then iden-
tified as

F (M)

R(M)

Proposition 5.1.4 ([12], Proposition 1.1). Let M be an abelian monoid, then
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1. Every element of M−1M is of the form [m]− [n] for some m,n ∈M .

2. If m,n ∈M then [m] = [n] if and only if m+ p = n+ p for some p ∈M .

Definition 5.1.5. For a ring A, define V(A) to be the set of isomorphism classes
[P ] of finitely generated projective right A-modules. This set becomes an abelian
monoid under the operation:

[P ] + [Q] = [P ⊕Q]

for all [P ], [Q] ∈ V(A).

Lemma 5.1.6. The following are equivalent for any ring A:

1. A has IBN property;

2. For all m,n ∈ N, the identity m[A] = n[A] in V(A) implies m = n;

3. If X ∈ Mm×n(A) and Y ∈ Mn×m(A) satisfy XY = Im and Y X = In, then
m = n.

5.2 IBN property and Leavitt Path Algebras
Definition 5.2.1 (Incidence Matrix). The n × n matrix, AE = (aij) in Mn(Z)
with

aij = number of edges from vertex vi to vertex vj
is called the Incidence Matrix of the graph E.

Example 5.2.2. Consider the graph

v1

v2 v3

v4v4
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Then the matrix of incidence for this graph would be
0 1 0 0 0
1 0 1 1 0
0 1 1 0 0
0 0 2 0 0
0 0 0 0 0


We construct a monoid of isomorphism classes of finitely generated projective

modules of Leavitt Path Algebras as given by Ara, Moreno and Pardo in [7].
For a directed graph E let T be the free abelian monoid generated by generators
{v | v ∈ E0}.

We begin by defining a key relation, commonly referred to as relation (∗),
which plays a fundamental role in the construction of the monoid associated with
a graph E. For every regular vertex v ∈ E0 we impose the following relation:

v =
∑

e∈s−1(v)

r(e) (*)

This equation intuitively expresses the idea that the vertex v can be “decomposed”
into the collection of range vertices of all edges that emerge from it.

Let T denote the free abelian monoid generated by the vertices in E0, and let
∼E denote the congruence relation on T that is generated by all such (M)-type
relations corresponding to regular vertices in the graph.

Using this congruence relation, we define the graph monoid ME as the quo-
tient:

ME = T/ ∼E

That is, ME is obtained by identifying elements of the free monoid T according to
the equivalence classes induced by the (M) relations.

An element in ME is denoted by [x], where x ∈ T represents a formal sum
of vertices in E0. This notation reflects the class of x modulo the relation ∼E,
capturing the essential behavior of how vertices relate through their outgoing edges
in the structure of the graph.
Theorem 5.2.3 ([7], Theorem 3.5). Consider the mapping defined by the rule

[v] 7→ [vLk(E)].

This correspondence gives rise to an isomorphism of abelian monoids, establishing
that ME

∼= V(Lk(E)).
A particular consequence of this isomorphism is the identification[∑

v∈E0

v

]
7→ [Lk(E)].
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Thus from Theorem 5.2.3 and Lemma 5.1.6 we get the corollary.

Corollary 5.2.4. The following conditions are equivalent:

1. Lk(E) has IBN property.

2. For m,n ∈ Z+,

if m
[∑
v∈E0

v

]
= n

[∑
v∈E0

v

]
in ME, then m = n.

Now we fix some notations. Throughout the remainder of this chapter we
assume that E is a always a row finite graph and the set of vertices of E is

{vi | 1 ≤ i ≤ h}

and the set of regular vertices is

{vi | i = 1, 2, . . . , z} with z ≤ h.

For i = 1, 2, . . . , z we define a function

Mi : T → T

It acts on an element x = n1v1 + n2v2 + . . . nhvh of T by applying the relation M
on it. An example with make it easier to see.

Example 5.2.5. Consider the graph

v1

v2

v3

e1

e2
e3

Then relation (∗) is
v1 = v2 + 2v3
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Suppose
x = 2v1 + 3v2 + 4v3 ∈ T

Then

M1(x) =M1(2v1 + 3v2 + 4v3)

=M1(v1 + v1 + 3v2 + 4v3)

= v1 + (v2 + 2v3) + 3v2 + 4v3

= v1 + 4v2 + 6v3

Thus it is clear from the example that the effect of Mi on vj for x = n1v1 +
n2v2 + . . . nhvh is as follows

1. If vj is a regular vertex, then

(a) subtract 1 from coefficient of vj, i.e. replace nj by nj − 1 if nj > 0,
otherwise do nothing

(b) add aij to the coefficient of vj for each 1 ≤ i ≤ h

The final term vj will be

(nj − 1 +
h∑

i=1

aij)vj

2. If vj is not a regular vertex, then

(a) add aij to the coefficient of vj for each 1 ≤ i ≤ h

The final term vj will be

(nj +
h∑

i=1

aij)vj

Let σ be a finite sequence from {1, 2, . . . , z}. Then for any y ∈ T , let Γσ(y) ∈ T
be the element that we get when we apply Mi’s to y in the order specified by σ.

Lemma 5.2.6 (Confluence Lemma, [7], Lemma 4.3). Given any two elements
x, y ∈ T , the equality [x] = [y] holds within the monoid ME precisely when sequences
σ and σ′, composed of elements from {1, 2, . . . , z}, can be found such that the
condition Γσ(x) = Γ′

σ(y) is satisfied in T .
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We are now equipped to state the principal result of this chapter — a complete
characterization of when the Leavitt Path Algebra of a graph satisfies the IBN
property, expressed explicitly through matrix-theoretic conditions. This theorem
bridges the structural aspects of the graph with the algebraic behavior of its as-
sociated LPA, offering a precise and computable criterion for the IBN property to
hold.
Theorem 5.2.7. Let E be a finite graph with vertices

{vi | 1 ≤ i ≤ h}

where the regular vertices are v1, . . . , vz. Define

JE =

(
Iz 0
0 0

)
∈Mh(N) and b = [1 . . . 1]t ∈Mh×1(N),

and let [At
E−JE b] denote the matrix obtained by adding the column b to At

E−JE.
For any field K, the Leavitt path algebra LK(E) has the Invariant Basis Number
property if and only if

rk(At
E − JE) < rk([At

E − JE b]).

Proof. (⇐) Let rk(At
E − JE) < rk([At

E − JE b]). We want to show that Lk(E)
has IBN property.

To show this, assume that

Lk(E)
m ∼= Lk(E)

n

for some integers m,n, then we need to show that m = n.

Let X :=
∑h

i=1 vi. Then by Corollary 5.2.4, it is clear that it is sufficient to
prove that

m[X] = n[X] ⇒ m = n

Since m[X] = n[X] in ME, by Confluence Lemma, there are two sequences σ =
(j1, . . . , jp) and σ′ = (j′1, . . . , j

′
p′) of indices of regular vertices (1 ≤ jr, j

′
s ≤ z) such

that applying the corresponding substitution rules Mj leads to the same element
in the free monoid T :

Λσ(mX) = Λσ′(nX) = γ ∈ T

Let kj be the number of timesMj appears in σ and k′j be the number of times that
Mj appears in σ′. Then we calculate the term Λσ(mX). As we have seen already
the effect of applying one Mj on a term vi, doing it k many times will replicate
that effect k times. We find that

coeff(vi,Λσ(mX)) =

{
m− ki +

∑z
j=1 ajikj if i = 1, 2, . . . , z

m+
∑z

j=1 ajikj if i = z + 1, . . . , h
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and similarly

coeff(vi,Λσ′(nX)) =

{
n+

∑z
j=1 ajik

′
j − k′i if i = 1, 2, . . . , z

n+
∑z

j=1 ajik
′
j if i = z + 1, . . . , h

Thus we get the final calculation as

γ = Λσ′

(
m

h∑
i=1

vi

)
= ((m− k1) + a11k1 + a21k2 + · · ·+ az1kz) v1

+ ((m− k2) + a12k1 + a22k2 + · · ·+ az2kz) v2
...

+ ((m− kz) + a1zk1 + a2zk2 + · · ·+ azzkz) vz

+
(
m+ a1(z+1)k1 + a2(z+1)k2 + · · ·+ az(z+1)kz

)
vz+1

...
+ (m+ a1hk1 + a2hk2 + · · ·+ azhkz) vh.

and

γ = Λσ′

(
n

h∑
i=1

vi

)
= ((n− k′1) + a11k

′
1 + a21k

′
2 + · · ·+ az1k

′
z) v1

+ ((n− k′2) + a12k
′
1 + a22k

′
2 + · · ·+ az2k

′
z) v2

...
+ ((n− k′z) + a1zk

′
1 + a2zk

′
2 + · · ·+ azzk

′
z) vz

+
(
n+ a1(z+1)k

′
1 + a2(z+1)k

′
2 + · · ·+ az(z+1)k

′
z

)
vz+1

...
+ (n+ a1hk

′
1 + a2hk

′
2 + · · ·+ azhk

′
z) vh.

We now equate the coefficients of the terms vj to get
• Case 1: 1 ≤ i ≤ z (Regular vertex vi)

m− ki +
z∑

j=1

ajikj = n− k′i +
z∑

j=1

ajik
′
j

⇒
z∑

j=1

aji(k
′
j − kj)− (k′i − ki) = m− n
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Let mj = k′j − kj. Then

z∑
j=1

ajimj −mi = m− n

⇒
z∑

j=1

aji(mj − δij) = m− n

• Case 2: z < i ≤ h (Sink vi)

m+
z∑

j=1

ajikj = n+
z∑

j=1

ajik
′
j

⇒
z∑

j=1

aji(k
′
j − kj) = m− n

Let mj = k′j − kj. Then
z∑

j=1

ajimj = m− n

⇒
z∑

j=1

ajimj = m− n

Combining these two we get

m− n = (a11 − 1)m1 + a21m2 + · · ·+ az1mz,

m− n = a12m1 + (a22 − 1)m2 + · · ·+ az2mz,
...

m− n = a1zm1 + a2zm2 + · · ·+ (azz − 1)mz,

m− n = a1(z+1)m1 + a2(z+1)m2 + · · ·+ az(z+1)mz,
...

m− n = a1hm1 + a2hm2 + · · ·+ azhmz.

which is equivalent to the system

(At
E − JE)x = (m− n)b
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with a solution

x =



m1
...
mz

0
...
0


∈ Zh

This gives us
rk(At

E − JE) = rk([At
E − JE (m− n)b])

by Rouché-Capelli theorem.
If m 6= n then m− n 6= 0, thus

rk([At
E − JE (m− n)b]) = rk([At

E − JE b])

and hence
rk(At

E − JE) = rk([At
E − JE b])

which contradicts our assumption. Thus we must have m = n.

(⇒) Let rk(At
E − JE) = rk([At

E − JE b]). We will show that Lk(E) does not
have the IBN property. To do so we need to find distinct integers m and n such
that

m[
h∑

i=1

vi] = n[
h∑

i=1

vi]

Now, just as the last half of the proof, we can proceed and get distinct integers n
and m such that

m− n = (a11 − 1)m1 + a21m2 + · · ·+ az1mz,

m− n = a12m1 + (a22 − 1)m2 + · · ·+ az2mz,
...

m− n = a1zm1 + a2zm2 + · · ·+ (azz − 1)mz,

m− n = a1(z+1)m1 + a2(z+1)m2 + · · ·+ az(z+1)mz,
...

m− n = a1hm1 + a2hm2 + · · ·+ azhmz.

where mj = k′j − kj for all 1 ≤ j ≤ z. Then we can write them as

(At
E − JE)x = (m− n)b
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where

x =



m1
...
mz

0
...
0


∈ Zh

We construct the integers m and n as follows:

1. By using rk(At
E−JE) = rk([At

E−JE b]) =: r ≤ z, we can reduce the matrix
[At

E − JE b] to its row echelon form and it will be of the form

0 · · · 0 a1j1 · · · a1(j2−1) 0 a1(j2+1) · · · a1(jr−1 0 · · · b1
0 · · · 0 0 · · · 0 a2j2 a2(j2+1) · · · a2jr−1 0 · · · b2
... . . . ... ... . . . ... ... ... . . . ... ... . . . ...
0 · · · 0 0 · · · 0 0 0 · · · 0 arjr · · · br
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0
... . . . ... ... . . . ... ... ... . . . ... ... . . . ...
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 · · · 0


and here j1 < j2 < · · · < jr, a1j1 , a2j2 , · · · , arjr 6= 0 and b′is are not all zero.

2. We choose mj, n and m with the rule:

mj =

{
bj |a1j1a2j2 ···arjr |

aiji
, if j = ji(1 ≤ i ≤ r)

0, otherwise.

n = max{|mj||j = 1, . . . , h} and m = |a1j1a2j2 · · · arjr |+ n

3. And kj and k′j (1 ≤ j ≤ t) are given by:

(k′j, kj) =


(0, 0), if mj = 0

(mj, 0), if mj > 0

(0,−mj), if mj < 0.

After this, calculations show that these are the m and n we need and these integers
indeed solve the system of equations.

Now let us see some examples where we use this theorem.
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Example 5.2.8. Consider E to be the graph

w1

w2

w3

w4

f1

f5
f2

f3

f4

f6

Then

AE =


0 1 1 0
0 0 1 2
0 0 1 0
0 0 0 0


There are 3 regular vertices {v1, v2, v3}, hence

JE =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


and thus

At
E − JE =


−1 0 0 0
1 −1 0 0
1 1 0 0
0 2 0 0

 which has echelon form


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Also

[At
E − JE b] =


−1 0 0 0 1
1 −1 0 0 1
1 1 0 0 1
0 2 0 0 1

which has echelon form


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 0


So

rk(At
E − JE) = 2 < 3 = rk([At

E − JE b])
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Therefore Lk(E) has IBN property.

Example 5.2.9. Consider the graph E as follows

v1

v2

v3

e1

e2

e3

e4

e4

Then

AE =

2 1 1
0 1 0
0 0 0


There are 2 regular vertices {v1, v2}, hence

JE =

1 0 0
0 1 0
0 0 0


and thus

At
E − JE =

1 0 0
1 0 0
1 0 0

 which has echelon form

1 0 0
0 0 0
0 0 0


Also

[At
E − JE b] =

1 0 0 1
1 0 0 1
1 0 0 1

 which has echelon form

1 0 1
0 0 0
0 0 0


So

rk(At
E − JE) = 1 = rk([At

E − JE b])

Therefore Lk(E) is non-IBN.
To calculate m and n we follow the construction in the theorem.
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We see that j1 = 1, a11 = 1, b1 = 1, so

m1 =
b1|a11|
a11

= 1

n = max{m1} = 1 and m = |a11|+ n = 2

Thus we get Lk(E) ∼= Lk(E)
2.

5.3 Cohn Path Algebra
Definition 5.3.1. We define the set (E1)∗ = {e∗ | e ∈ E1} to consist of formal
symbols corresponding to the edges of E. The Cohn path algebra of E over the field
k, denoted by Ck(E), is the free associative k-algebra generated by the disjoint
union of the sets E0, E1, and (E1)∗, subject to the following relations:

• (V) For all v, w ∈ E0, vw = δv,wv.

• (E1) For all e ∈ E1, s(e)e = e = er(e).

• (E2) For all e ∈ E1, r(e)e∗ = e∗ = e∗s(e).

• (CK1) For all e, f ∈ E1, e∗f = δe,fr(e).

These relations mirror those used during the construction of Leavitt path algebras,
except that the Cohn path algebra does not impose the relation (CK2), which is
essential for defining Lk(E). Thus, Ck(E) can be realised as a natural intermediate
construction capturing partial structure of Lk(E) without enforcing full Cuntz-
Krieger conditions.

Proposition 5.3.2. Let Ck(E) be the Cohn path algebra of the graph E and let

I = 〈{v −
∑

s(e)=v

ee∗|v ∈ Reg(E)}〉

then
Ck(E)/I ∼= Lk(E)

Unlike Leavitt path algebras, the set {xy∗|y, y ∈ Path(E) for which r(µ)=r(λ)}
actually forms a basis of the Cohn path algebras.

Proposition 5.3.3. As a k-vector space

B = {λµ∗|λµ ∈ Path(E), r(λ) = r(µ)}

is a basis of Ck(E).
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Proof. Consider A to be the K-vector space with basis B. We define a bilinear
product on A as follows:

(λ1v
∗
1)(λ2v

∗
2) =


λ1λ

′
2v

∗
2 if λ2 = v1λ

′
2 for some λ′2 ∈ Path(E),

λ1(v
′
1)

∗v∗2 if v1 = λ2v
′
1 for some v′1 ∈ Path(E),

0 otherwise.

To show that this defines an associative K-algebra structure on A, it suffices
to verify the associativity condition, that is, to show x = y, where

x = (λ1v
∗
1)((λ2v

∗
2)(λ3v

∗
3)) and y = ((λ1v

∗
1)(λ2v

∗
2))(λ3v

∗
3).

After carrying out the multiplications step by step using the defining relations of
the algebra, we find that:

x = y =



λ1λ
′
2λ

′
3v

∗
3 if λ3 = v2λ

′
3 and λ2 = v1λ

′
2,

λ1λ2λ
′
3v

∗
3 if λ3 = v2λ

′′
3λ

′
3 and v1 = λ2λ

′
2,

λ1(v
′
1)

∗λ′3v
∗
3 if λ3 = v2λ

′
3 and v1 = λ2λ

′
2v

′
1,

λ1λ
′
2(v

′
2)

∗v∗3 if v2 = λ3v
′
2 and λ2 = v1λ

′
2,

λ1(v
′
1)

∗(v′2)
∗v∗3 if v2 = λ3v

′
2 and v1 = λ2λ

′
2v

′
1,

0 otherwise.
This proves what we wanted.

5.4 Relation of Cohn path algebra with Leavitt path alge-
bra

Definition 5.4.1. Let X ⊆ Reg(E). For v ∈ Reg(E), define qv = v−
∑

e∈s−1(v) ee∗.
Then take

I∗ = ideal of Ck(E) generated by {qv|v ∈ Reg(E)}
Then the Cohn Path Algebra of E relative to X, denoted by CX

k (E) is

Ck(E)/I

Theorem 5.4.2. (Universal property of Cohn path algebra) Suppose E
is a graph, X is a subset of Reg(E), and A is a k-algebra that contains a set
of pairwise orthogonal idempotents {xv | v ∈ E0} and two sets {xe | e ∈ E1},
{ye | e ∈ E1} satisfying the following:

(i) xs(e)xe = xexr(e) = xe and xr(e)ye = yexs(e) = ye for all e ∈ E1,
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(ii) yfxe = δefxr(e) for all e, f ∈ E1, and

(iii) xv =
∑

{e∈E1|s(e)=v} xeye for every vertex v ∈ X.
Using the relations that define the relative Cohn path algebra, there is a unique

k-algebra homomorphism φ : CX
k (E) → A such that φ(v) = xv, φ(e) = xe, and

φ(e∗) = ye for all v ∈ E0 and e ∈ E1.
We also see that

C
Reg(E)
k (E) ∼= Lk(E) and Ck(E) ∼= Cϕ

k (E)

A significant advantage offered by Cohn path algebras is the ability to trans-
form a given graph E into a modified graph whose associated Leavitt path algebra
is isomorphic to that of the original. Leveraging this property, we will now present
the methodology for constructing a new graph, designated E(X), based on an
initial graph E.
Definition 5.4.3. Let X be subset of Reg(E). Take Y = Reg(E) \X. Let

Y ′ = {v′|v ∈ Y }
For v ∈ Y and e ∈ r−1(v) we take a symbol e′.

Then E(X) is the graph with
E(X)0 = E0 t Y ′

E(X)1 = E1 t {e′|r(e) ∈ Y }
For e ∈ E1, the relations amongst the edges and the vertices do not change in
E(X). For e′ ∈ E(X)1, set sE(X)(e

′) = sE(e) and eE(X)(e
′) = rE(e)

′.
What this construction essentially does is the following: for a given graph E,

consider the set of regular vertices that are not in X, denoted by Reg(E) \X. For
each vertex v in this set, we introduce a new vertex v′ into the graph. Then, for
every edge e in E with range r(e) = v and source s(e) = u, we add a new edge
from u to v′. In other words, we duplicate the incoming edges of v, redirecting
them to a new copy v′, while leaving the original structure of the graph intact.
This modification is best understood through an example, which we now present.

u vf e

Figure 14: a graph
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Then we see that Reg(E) = {u, v}.

First take X = ϕ, then we have to add new vertices corresponding to
Reg(E) \X = {u, v}. Then there are two edges going into v, viz. e and f . Thus
we make new edges e′ and f ′ from v and u respectively. There is no edge going
into u, hence we do not draw any edge to u′. Finally we see that the result is

u v

v′u′

f

f ′ e′

e

Figure 15: E(X) when X = ϕ

Next, take X = {u}, then we have to add new vertices corresponding to
Reg(E) \X = {v}. Then there are two edges going into v, viz. e and f . Thus we
make new edges e′ and f ′ from v and u respectively. Then we get

u v

v′

f

f ′ e′

e

Figure 16: E(X) when X = {u}
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Finally, take X = {u, v}, then Reg(E)\X = ϕ. Hence we add no new vertices,
and the graph remains the same.

u vf e

Figure 17: E(X) when X = {u, v}

Building upon the prior observation that every Leavitt path algebra admits
a realization as a relative Cohn path algebra, concretely via the isomorphism
Lk(E) ∼= C

Reg(E)
k (E), the forthcoming theorem demonstrates the converse. Specif-

ically, it shows that any given relative Cohn path algebra can indeed be expressed
as the Leavitt path algebra corresponding to an appropriately constructed graph.

Theorem 5.4.4 ([2], Theorem 1.5.18). Let X ⊆ Reg(E), and let E(X) be the
graph as defined above, then

CX
k (E) ∼= Lk(E(X))

5.5 Cohn Path Algebra has IBN Property
Gene Abrams and Müge Kanuni prove in the paper [4] that Cohn path algebras
have IBN property. Here is another proof of the same with a matrix theoretic
approach.

Theorem 5.5.1. For a graph E, the Cohn Path Algebra Ck(E) has IBN property.

Proof. From theorem 5.4.4, we see that when X = ∅ then Lk(E(X)) ∼= Ck(E).
We make the following observations about the new graph E(X):

1. There are h+ z vertices in E(X). Label them as
{v1, v2, . . . , vz, vz+1, . . . , vh, v

′
1, v

′
2 . . . , v

′
z}, where v1, . . . , vz are the regular ver-

tices in E (we maintain this ordering).

2. The newly added vertices v′i have no vertices emerging from them, i.e. they
are sinks.
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3. The number of edges going into a new vertex v′i is same as the number of
edges that go into the vertex vi.

We see that

AE =



a11 a12 · · · a1z a1(z+1) · · · a1h
a21 a22 · · · a2z a2(z+1) · · · a2h
... ... . . . ... ... . . . ...
az1 az2 · · · azz az(z+1) · · · azh
0 0 · · · 0 0 0 0
... ... . . . ... ... . . . ...
0 0 0 0 0 · · · 0


(h×h)

Then keeping the observations in mind, we see that

AE(X)



a11 · · · a1z a1(z+1) · · · a1h a11 · · · a1z
a21 · · · a2z a2(z+1) · · · a2h a21 · · · a2z
... . . . ... ... . . . ... ... . . . ...
az1 · · · azz az(z+1) · · · azh az1 · · · azz
0 · · · 0 0 · · · 0 0 · · · 0
... . . . ... ... . . . ... ... . . . ...
0 · · · 0 0 · · · 0 0 · · · 0


((h+z))×(h+z))

And now

[At
E − JE b] =



a11 − 1 a21 · · · az1 0 · · · 0 1
a12 a22 − 1 · · · az2 0 · · · 0 1
... ... . . . ... ... . . . ... ...
a1z a2z · · · azz − 1 0 · · · 0 1

a1(z+1) a2(z+1) · · · az(z+1) 0 · · · 0 1
... ... . . . ... ... . . . ... ...
a1h a2h · · · azh 0 · · · 0 1
a11 a21 · · · az1 0 · · · 0 1
... ... . . . ... ... . . . ... ...
a1z a2z · · · azz 0 · · · 0 1


To simplify this, for each i = 1, . . . , z, we subtract row i from row h+ i in this

matrix which is equivalent to:
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

a11 − 1 a21 · · · az1 0 · · · 0 1
a12 a22 − 1 · · · az2 0 · · · 0 1
... ... . . . ... ... . . . ... ...
a1z a2z · · · azz − 1 0 · · · 0 1

a1(z+1) a2(z+1) · · · az(z+1) 0 · · · 0 1
... ... . . . ... ... . . . ... ...
a1h a2h · · · azh 0 · · · 0 1
1 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0
... ... . . . ... ... . . . ... ...
0 0 · · · 1 0 · · · 0 0


Next we use the identity matrix in the lower left portion of the matrix to cancel

out other rows and get the equivalent matrix:

0 0 · · · 0 0 · · · 0 1
0 0 · · · 0 0 · · · 0 1
... ... . . . ... ... . . . ... ...
0 0 · · · 0 0 · · · 0 1
0 0 · · · 0 0 · · · 0 1
... ... . . . ... ... . . . ... ...
0 0 · · · 0 0 · · · 0 1
1 0 · · · 0 0 · · · 0 0
0 1 · · · 0 0 · · · 0 0
... ... . . . ... ... . . . ... ...
0 0 · · · 1 0 · · · 0 0


Thus we find that

rk(At
E − JE) = z < z + 1 = rk([At

E − JE b])

And by theorem 5.2.7 we conclude that Lk(E(X)) has invariant basis property
and in turn Ck(E) has invariant basis property.
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6 The IBN property for graphs constructed from
finite groups

The present chapter is devoted to examining the structure of Leavitt Path Algebras
corresponding to certain graphs that are derived from finite groups.

First we take a look at Cayley graph of finite groups.

6.1 Cayley graph
Definition 6.1.1 (Cayley graph). Let G be a finite group and S be a generating
set for G. The Cayley graph of G with respect to S, denoted by EG,S has the
following properties:

1. E0
G,S = {vg | g ∈ G}

2. There is an edge from a vertex vg to vh if there is an element s ∈ S such
that h = gs.

Some examples will make the Cayley graph more clear.

Example 6.1.2. Let G = Zn where n ≥ 2. We know that the singleton set {1}
can generate Zn. We take S = {1, j} where j is a fixed integer j = 0, 1, . . . , n− 1.
Then the Cayley graph we obtain from this group is denoted by Cj

n.
It has n vertices, viz., {v0, v1, . . . , vn−1} and 2n edges {e0, e1, . . . , en−1, f0, f1, . . . ,

fn−1} when j 6= 1, and n edges {e0, e1, . . . , en−1} when j = 1. The rules for the
edges are

s(ei) = vi , s(fi) = vi , r(ei) = vi+1, r(fi) = vi+j

Following are the graphs C0
4 , C

1
4 , C

2
4 , C

3
4 .

v1v0

v2v3

e0

e1

e2

e3

f0 f1

f2f3

Figure 18: C0
4

v1v0

v2v3

e0

e1

e2

e3

Figure 19: C1
4
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v1v0

v2v3

e0

e1

e2

e3
f0

f2f1

f3

Figure 20: C2
4

v1v0

v2v3

e0

e1

e2

e3f0 f2

f1

f3

Figure 21: C3
4

Definition 6.1.3. A subset H of a graph E called hereditary if for all v ∈ H and
w ∈ E0, v ≥ w implies that w ∈ H.

In other words, a subset of E0 is said to be hereditary if whenever a vertex v
is in H then any vertex w reachable from v via a path must also be in H.

Example 6.1.4. Some examples of hereditary subsets are:

1. the empty set ∅ is always hereditary.

2. the set of all vertices E0 is always hereditary.

3. consider the graph

w1 w2 w3f1 f2

Then the sets {v3}, {v2, v3}, {v1, v2, v3} are hereditary but the set {v1} is not
hereditary since v2 can be reached by v1 but v2 /∈ {v1}.

Definition 6.1.5. A subset H of E0 is said to be saturated if whenever for any
v ∈ E0, s−1(v) 6= ∅ and {r(e)|s(e) = v} ⊆ H, then v ∈ H.

In other words a subset H is said to be saturated if for every vertex v in the
graph with the property that every edge coming out of v goes to a vertex within
H, then v must be in H.

Example 6.1.6. Some examples of saturated subsets are:

1. the empty set ∅ is always saturated.

2. the set of all vertices E0 is always saturated.
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3. consider the graph

w1 w2 w3f1 f2

Then the subsets {v1}, {v1, v2}, {v1, v2, v3} are saturated but {v3} is not sat-
urated since all edges coming out of v2 land into some vertex in {v3} but
v2 /∈ {v3}.

6.2 Properties of Cayley graphs
Definition 6.2.1. A unital k-algebra A is said to be purely infinite simple if

1. A is not a division ring

2. for every non zero element x ∈ A, there exist p and q in A such that pxq = 1A

Definition 6.2.2. An algebra A is said to be simple if it does not have any non-
trivial two sided ideal.

Example 6.2.3. For any field F the algebra Mn(F) is a simple algebra.

The following is an interesting fact that was proved by Artin and Wedderburn
that essentially characterizes all finite dimensional simple algebras over a field.

Theorem 6.2.4 ([11], Theorem 7.1.1). Let F be a field and B a finite-dimensional
F-algebra. Then B is simple if and only if B ' Mn(D) where n ≥ 1 and D is a
finite-dimensional division F-algebra.

For more insight into simple algebra refer to chapter 7 of [11].

For the next theorem we will state two theorems from the cited sources.

Theorem 6.2.5 ([5], Theorem 3.11). Suppose E represents a row-finite graph.
The associated Leavitt path algebra Lk(E) qualifies as simple precisely when the
graph E adheres to the following two stipulations:

1. Within the vertex set E0, the only subsets that are simultaneously hereditary
and saturated are the empty set ∅ and E0 itself; and

2. An exit is present for every cycle contained within E.

Theorem 6.2.6 ([6], Theorem 11). A graph E gives rise to a purely infinite
simple Leavitt path algebra Lk(E) iff the graph E adheres to the following set of
characteristics:
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1. The only subsets of E0 that are both hereditary and saturated are the empty
set ∅ and the entire set E0.

2. Within E, every cycle must possess an exit.

3. Each vertex in E has a path connecting it to some cycle.

We denote an arbitrary finite group by G and S ⊆ G such that 〈S〉.

Theorem 6.2.7. The following conditions are equivalent:

1. Lk(EG,S) is purely infinitely simple

2. Lk(EG,S) is simple

3. |S| ≥ 2.

Proof. (1) ⇒ (2): Let Lk(EG,S) be purely infinite simple. Let I be a non-trivial
two sided ideal of Lk(EG,S). Let 0 6= x ∈ I. Then by the definition of purely
infinite simple, there are a and b in E such that

axb = 1

As I is a two sided ideal, axb = 1 ∈ I ⇒ I = Lk(EG,S). And this is a contradiction
since we assumed that I is non-trivial, hence Lk(EG,S) is simple.

(2) ⇒ (3): Let Lk(EG,S) be simple. Let, if possible, |S| = 1, i.e., S = {g}.
Then G is cyclic with generator g. Let |G| = n. Then

G = {gi | i = 1, 2, . . . n}

and hence E0
G,S = {vgi | i = 1, 2, . . . n} and an edge is present from vgi to vgi+1 and

when n ≥ 2 the graph EG,S is of the form:

vg vg2

vg3vgn

and when n = 1 then we have:
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vg

Thus we see that in either case none of the cycles have any exit, hence by
theorem 6.2.5 Lk(EG,S) is not simple, a contradiction.

(3) ⇒ (1): Let |S| ≥ 2, so assume that S = {s1, s2, . . . , sk} with k ≥ 2. Let
H be a non-empty saturated and hereditary subset of E0

G,S. We first prove that
H = E0

G,S.
Let vh ∈ H. Since G is a group and S is a generating set for G, we have

h−1 = si1si2 · · · sim

where 1 ≤ ij ≤ k, sij are not necessarily distinct and m is some positive integer.
So

1G = hsi1si2 · · · sim
We now show that v1G ∈ H. We show that there is a path from vh to v1G . We
verify the steps one by one using the definition of the graph EG,S

there is an edge e1 from h to hsi1
there is an edge e2 from hsi1 to hsi1si2

...
there is an edge em−1 from hsi1si2 · · · sim−1 to hsi1si2 · · · sim

Thus there is a path e1e2 · · · em−1 from vh to vhsi1si2 ···sim = v1G . And since vh ∈ H
which is hereditary, thus v1G ∈ H.

Now let vg be an arbitrary vertex of EG,S. We show that vg ∈ H. Since
1G.g = g and g = si1si2 · · · sim for some positive integer m, by the same argument
as above there is a path joining v1G to vg. And since v ∈ H and H is hereditary,
vg ∈ H. Thus H = LG,S.

From these points we see that any vertex vg we consider there is a path joining
v1G to vg and there is a path joining vg to v1G , hence there is always a cycle based
at vg.

And for every vertex vg, there is exactly one edge going from vg to vggi for all
1 ≤ i ≤ k, and these are vertices vggi are pairwise distinct. Thus we find that
every cycle in EG,S has an exit. So we can invoke theorem 6.2.6 and we obtain
that Lk(EG,S) is purely infinite simple.

Subsequently, we shall present the criteria that determine when the LPA asso-
ciated with the Cayley graph of a finite group satisfies the IBN Property.
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Theorem 6.2.8. The following conditions are equivalent:

1. Lk(EG,S) has IBN property

2. G is cyclic, i.e, S has only one element

3. EG,S consists of a single cycle with |G| vertices.

Proof. (1) ⇒ (2): Let Lk(EG,S) have IBN property. Let, if possible, S have more
than one element, i.e., S = {s1, s2, . . . , sk} where k ≥ 2. Then for each i = 1, . . . , k,
since G is a finite group, we notice that

Ggi := {ggi|g ∈ G} = G

By the construction of EG,S we see that there is exactly one edge from vg to vggi
for each 1 ≤ i ≤ k. Also a vertex vg only emits edges to vggi for 1 ≤ i ≤ k and no
more. This means that

[vg] = [vgg1 ] + [vgg2 ] + · · ·+ [vggk ] in MEG,S

and thus

[
∑
g∈G

vg] = [
∑
g∈G

vgg1 ] + [
∑
g∈G

vgg2 ] + · · ·+ [
∑
g∈G

vggk ] in MEG,S
.

Also, for each 1 ≤ i ≤ k, using Ggi = G we also have that

[
∑
g∈G

vg] = [
∑
g∈G

vggi ] in MEG,S

And from these observations we get that

[
∑
g∈G

vg] =
k∑

i=1

∑
g∈G

vggi = k[
∑
g∈G

vg] in MEG,S

which gives us that Lk(EG,S) does not have IBN property by corollary 5.2.4, which
is a contradiction.

(2) ⇒ (3): Let |S| = 1 then by the construction given in theorem 6.2.7, we
immediately see that EG,S is a graph with only one cycle with |G| vertices.

(3) ⇒ (1): Let EG,S be a graph with only one cycle with |G| = n vertices. We
make cases, first we tackle the easy case when n = 1. Then EG,S is the graph:

vg
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Then Lk(EG,S) ∼= k[x, x−1] by theorem 3.3.4, and it has IBN property.
Now let n ≥ 2. Then the graph is of the form:

v1 v2

v3vn

We notice that every vertex of this graph is a regular vertex. So

AE =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


And thus

[At
E − JE b] =



−1 0 0 · · · 0 1 1
1 −1 0 · · · 0 0 1
0 1 −1 · · · 0 0 1
... ... ... . . . ... ... ...
0 0 0 · · · −1 0 1
0 0 0 · · · 1 −1 1


Now to convert it to its Echelon form, we first add first row to the second row and
get 

−1 0 0 · · · 0 1 1
0 −1 0 · · · 0 1 2
0 1 −1 · · · 0 0 1
... ... ... . . . ... ... ...
0 0 0 · · · −1 0 1
0 0 0 · · · 1 −1 1


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Then add second row to the third row and get

−1 0 0 · · · 0 1 1
0 −1 0 · · · 0 1 2
0 0 −1 · · · 0 1 3
... ... ... . . . ... ... ...
0 0 0 · · · −1 0 1
0 0 0 · · · 1 −1 1


And continuing like this we get the final form as

−1 0 0 · · · 0 1 1
0 −1 0 · · · 0 1 2
0 0 −1 · · · 0 1 3
... ... ... . . . ... ... ...
0 0 0 · · · −1 1 n− 1
0 0 0 · · · 0 0 n


So rk([At

E − JE b]) = n and rk(At
E − JE) = n− 1. So

rk(At
E − JE) = n− 1 < n = rk([At

E − JE b])

Thus, by theorem 5.2.7, Lk(EG,S) has IBN property.

Definition 6.2.9. A ring R possesses the Unbounded Generating Number (UGN)
property when for any choice of m,n ∈ N and an arbitrary right R-module K, the
isomorphism Rn ∼= Rm necessarily implies n ≥ m.

Rn ∼= Rm ⇒ n ≥ m.

We designate the ring R as stably finite provided that for every n ∈ N, the
existence of an isomorphism Rn ∼= Rn ⊕K for some right R-module K forces K
to be the zero module.

Rn ∼= Rn ⊕K ⇒ K = 0.

The designation Hermite ring applies to R whenever for any m,n ∈ N and
any right R-module K, the conditions Rn ∼= Rm ⊕K ∼= Rn−m and K lead to the
conclusion n ≥ m.

Rn ∼= Rm ⊕K ⇒ n ≥ m and Rn−m ∼= K.

Finally, R exhibits cancellation of projectives should for any pair of finitely
generated projective right R-modules Q and Q′, an isomorphism Q⊕R ∼= Q′ ⊕R
guarantee that Q ∼= Q′.

Q⊕R ∼= Q′ ⊕R ⇒ Q ∼= Q′.
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Lemma 6.2.10. For a ring R with unity,

Cancellation of projectives ⇒ Hermite ⇒ Stably finite ⇒

UGN ⇒ IBN

Proof. Cancellation of projectives ⇒ Hermite:
Let Rn ∼= Rm ⊕ K. Since K is direct summand of a free R module, K is

projective. Let, if possible, m > n, then

Rn ∼= Rn ⊕ (Rm−n ⊕K)

And by cancellation of projectives, we have

0 ∼= Rm−n ⊕K

which gives us m = n, a contradiction. Hence n ≥ m.
Thus we get

Rn−m ⊕Rm ∼= Rm ⊕K

And by cancellation of projectives, we get K ∼= Rn−m.

Hermite ⇒ Stably finite:
Let Rn ∼= Rn ⊕K, then from the Hermite property we have K ∼= Rn−n ∼= 0.

Stably finite ⇒ UGN:
Let Rn ∼= Rm ⊕K. Let, if possible, m > n. Then we have

Rn ∼= Rn ⊕ (Rm−n ⊕K)

And by stably finite property we get Rm−n ⊕K which gives us m = n, a contra-
diction. So n ≥ m.

UGN ⇒ IBN:
Let Rn ∼= Rm. Then we have the equivalent forms as

Rn ∼= Rm ⊕ 0 and Rm ∼= Rn ⊕ 0

So by UGN property m ≥ n and n ≥ m, so that m = n.

Corollary 6.2.11. Regarding the LPA Lk(EG,S), the characteristics listed subse-
quently are equivalent to one another:

1. Lk(EG,S) has cancellation of projectives

2. Lk(EG,S) is Hermite
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3. Lk(EG,S) is stably finite

4. Lk(EG,S) has Unbounded Generating Number

5. Lk(EG,S) has IBN

6. |S| = 1

7. Lk(EG,S) is Noetherian
Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(6) follow directly from lemma
6.2.10 and theorem 6.2.8. And the rest follow from the fact that Lk(E) has can-
cellation of projectives iff Lk(E) is Noetherian. (using [1], theorem 3.10 and [3],
theorem 4.2).

6.3 IBN property for Power Graphs of semigroups
Here we will define a new kind of graph that arises from a weaker structure than
groups, viz., semigroups.
Definition 6.3.1. For a semigroup S we construct the power graph of S, denoted
by Pow(S) as follows:

1. Pow(S)={vs : g ∈ S}

2. There is an edge from vg to vg′ if g 6= g′ and g′ = gn for some n ∈ Z+.
In other words for every element of S there is a vertex in Pow(S). And we take

any vertex vs and then we compute sn for n = 1, 2, . . ., and we draw an edge from
s to sn for all n = 1, 2, . . .. Following are some examples of power graphs for some
easy semigroups (groups).
Example 6.3.2. Let Zn = {1, 2, . . . , n} and then Pow(Zn)

0 = {vi : i = 1, 2, . . . , n}.
We see that for every generator k of Zn there is an edge from vk to every vertex of
Pow(Zn). And also the vertex vn is a sink and there is an edge from every other
vertex to vn. Here are some power graphs

v1 v2

Figure 22: Pow(Z2)

v1

v2

v3

Figure 23: Pow(Z3)
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v1

v3

v2 v4

Figure 24: Pow(Z4)

Lemma 6.3.3 ([9], Lemma 4.5). Consider the power graph Pow(Zn) for n ≥ 2.
For any two vertices va and vb such that 1 ≤ a, b ≤ n−1 and a 6= b, the existence of
a directed edge a→ b is equivalent to the condition that gcd(a, n) divides gcd(b, n).

Then using this lemma we can make the incidence matrix of power graphs.
Take n, i, k to be positive integers such that 1 ≤ i, j ≤ n. Let

C(i) = {vk ∈ Pow(Zn) : gcd(k, n) = i}

Then using lemma 6.3.3 we find that for any distinct vertices vp and vq in C(i),
there is exactly one edge from vp to vq and exactly one edge from vq to vp. Also
for vp ∈ C(i) and vq ∈ C(k) there is an edge from vp to vq iff i divides k.

Now let {d1, d2, . . . , dm} be the set of divisors of n arranged in non-decreasing
order. Then

Pow(Zn)
0 = C(d1) t · · · t C(dm)

Then renumber the vertices as follows

C(d1) = {v1, · · · , vk1}
C(d2) = {vk1+1, · · · , vk1+k2}

...
C(dm−1) = {v∑m−2

i=1 ki+1, · · · , v∑m−1
i=1 ki

}
C(dm) = {vn}

where ki := |C(di)|. Then

XPow(Zn) =



Z11 Y12 Y13 · · · Y1(m−1) rt1
0 Z22 Y23 · · · Y2(m−1) rt2
0 0 Z33 · · · Y3(m−1) rt3
... ... ... . . . ... ...
0 0 0 · · · Z(m−1)(m−1) rt(m−1)

0 0 0 · · · 0 0


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where rti =


1
1
...
1


ki×1

(i = 1, 2, . . . ,m − 1), and the blocks Zii and Yij (for i < j)

are defined as:

Zii :=


0 1 · · · 1
1 0 · · · 1
... ... . . . ...
1 1 · · · 0


ki×ki

if ki > 1, Zii := (0)1×1 if ki = 1,

and

Yij :=


1 1 · · · 1
1 1 · · · 1
... ... . . . ...
1 1 · · · 1


ki×kj

if di divides dj, Yij := (0)ki×kj otherwise.

Now we see an example of this
Example 6.3.4. We construct the power graph of Z6. We see that d1 = 1, d2 =
2, d3 = 3, d4 = 6. Then

C(d1) = {v1, v2}
C(d2) = {v3, v4}
C(d3) = {v5}
C(d4) = {v6}

and the graph is
v1v3

v4 v2

v6v5

Figure 25: Pow(Z6)
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and

APow(Z6)=



0 1 1 1 1 1
1 0 1 1 1 1
0 0 0 1 0 1
0 0 1 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0



The next theorem by Nam proves that LPA of power graph of Zpn for some
prime p has IBN property. The proof of which is a nice application of the matrix
theoretic version of condition of IBN property, which can be seen in [9].

Theorem 6.3.5 ([9], Theorem 4.7). Given any positive integer m, an arbitrary
prime number p, and any field k, the Leavitt path algebra Lk(Pow(Zpm)) possesses
the IBN property.
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