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Abstract
For a group G and an abelian group A, the theory of group cohomology gives an isomor-

phism E(G,A) → H2(BG,A), where E(G,A) is the group of central extensions of G by A.

We generalize this construction to the case where G and A are (sufficiently nice) topological

groups by producing a map α : E(G,A) → H2(BG,A). Here, E(G,A) consists of central ex-
tensions which are also principal A-bundles, and H2(BG,A) is defined using the Ω-spectrum

A,BA,B2A, · · · .
The study of kerα naturally leads us to define certain maps αn : Hn

c (G,A) → Hn(BG,A),

whereH∗
c (G,A) is the homology of the chain complex of continuous inhomogeneous cochains.

When G and A are discrete, αn agrees with the classical isomorphism between group coho-

mology Hn
gp(G,A) and Hn(BG,A). Contingent on a conjecture regarding the cohomology

of the Milgram–Steenrod filtration (equivalently, Milnor’s filtration) of BG, we obtain the

following satisfactory characterization of kerαn: a cohomology class lies in kerαn if and only

if the algebraic information it contains can be killed by homotopy, loosely speaking. The

special case n = 2 gives a similar characterization of the extensions contained in kerα. We

demonstrate several examples where kerαn and kerα can be characterized independent of

the conjecture.

The study of αn is of independent interest, since it generalizes the homotopy-theoretic

approach to classical group cohomology. Furthermore, it complements the analytic and

categorical lenses employed in existing literature on continuous group cohomology.
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Chapter 1

Introduction

Let G and A be groups with A abelian. Classically, there are several ways to interpret

the group cohomology H∗
gp(G,A) (with G acting trivially on A). Algebraically, the low-

dimensional cohomology groups H1
gp(G,A) and H2

gp(G,A) are understood through their

isomorphisms with group homomorphisms Hom(G,A) and central extensions E(G,A) re-

spectively. Topologically, H∗
gp(G,A) can be studied using its isomorphism with the singular

cohomology H∗(BG,A) of the classifying space BG. Combining these perspectives yields

bijections

Hom(G,A)
∼−→ H1(BG,A) and (1.1)

E(G,A) ∼−→ H2(BG,A). (1.2)

The domains and codomains of these two bijections make sense even when G is a (suf-

ficiently nice) topological group and A is a discrete abelian group — by Hom(G,A) we

mean the group of continuous homomorphisms G → A, by E(G,A) we mean the group

(under Baer sums) of central extensions of G by A which are A-sheeted covers of G, and

classifying spaces exist for sufficiently nice topological groups. Hence, it is natural to ask

whether the bijections themselves also generalize to this context. This is immediate for (1.1)

— Hom(G,A) ≈ Hom(π0(G), A) since A is discrete and H1(BG,A) ≈ Hom(π1(BG), A) ≈
Hom(π0(G), A) by Hurewicz’s Theorem, the Universal Coefficients Theorem, and the long

exact sequence of homotopy groups for the universal G-bundle EG → BG. Generalizing

(1.2) is not as straightforward, and is considered by Joshi–Spallone in [9]. They produce a

natural injection α : E(G,A) → H2(BG,A) and show that it is an isomorphism in several

cases (most importantly, when G is connected).
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Further generalization is possible. If both G and A are sufficiently nice1 topological

groups, then Hom(G,A) can still be interpreted as the group of continuous homomorphisms

G → A and E(G,A) as the group of central extensions of G by A which are principal A-

bundles over G.2 Making sense of H∗(BG,A) is less straightforward. Let B denote the

Milgram–Steenrod construction of the classifying space functor, described in [16]. This

construction has the property that for an (sufficiently nice) abelian topological group A′, the

classifying space BA′ itself is an abelian topological group.3 Hence, we obtain a sequence

A,BA,B2A, · · · (1.3)

of abelian topological groups. There is a weak homotopy equivalence A′ → ΩBA′ (this

holds even if A′ is not abelian; see Lemma 2.8.1), so (1.3) is an Ω-spectrum. Fur-

thermore, BnA is a K(A, n)-space when A is discrete. This yields a reduced cohomol-

ogy theory X 7→ Hn(X,A) := [X,BnA]∗ which agrees with reduced singular cohomology

when A is discrete (see [8, Theorem 4.57]).4 In particular, H1(BG,A) = [BG,BA]∗ and

H2(BG,A) = [BG,B2A]∗. With these definitions, we produce maps

B : Hom(G,A) → H1(BG,A); f 7→ Bf and

α : E(G,A) → H2(BG,A)

which reduce to those previously discussed when A is discrete. In this generality, one cannot

expect these maps to be isomorphisms, or even injections. For instance, if G = A = R, then
clearly Hom(R,R) is non-trivial but H1(BR,R) is trivial since R is contractible. Similarly,

E(R2,R) is not trivial5 but H2(B(R2),R) is. In light of these examples, one might hope

that although B and α are not injective, perhaps they do still capture information which

cannot be killed by homotopy. One of the main goals of this thesis is to study the kernels of

these maps and show that this hope does materialize in a certain precise sense. We do so in

1For the purposes of the introduction, ‘sufficiently nice’ can be understood as G being a CW complex
and A being well-pointed, i.e., 1A ↪−→ A is a cofibration.

2E(G,A) is isomorphic to the second “locally continuous” cohomology H2
lc(G,A) (see [18, Remark 1.3],

for instance). This cocycle-centric approach is more suitable when working with sheaves.
3Actually, BA′ may not be a topological group — the multiplication BA′ × BA′ → BA′ will only be

continuous when the domain is given the compactly generated topology. We ignore this technicality for now.
4Caution. Generally, an expression like H∗(X,R) refers to the cohomology of X with coefficients given

by R as a discrete group. However, in our notation, the topology of R comes into play and H∗(X,R) = 0
since R is contractible (with the Euclidean topology).

5The Heisenberg group, which consists of 3 × 3 real matrices with all diagonal entries 1, is a non-trivial
extension of R2 by R.
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several increments. During this journey, we also encounter a generalization of the classical

isomorphism H∗
gp(G,A)

∼−→ Hn(BG,A) from the case of G and A discrete. Henceforth, BG

will always denote the Milgram–Steenrod construction of the classifying space for G.

Remark 1.0.1. This thesis will not study the images of α and B, except in the case of A

discrete (see Chapter 8). Note that B and α are trivial when G is discrete and A = BA′

for some (sufficiently nice) abelian topological group A′ (see Example 3.1.3), so B and α

are not surjective in general. We discuss an important aspect of the failure of surjectivity in

Section 10.2.

1.1 Understanding kerα

The most obvious question to ask is whether α detects the bundle structure of extensions.

We answer this in the affirmative in Chapter 3:

Theorem 1.1.1. Every extension in kerα is trivial as an A-bundle over G.

This is Corollary 3.1.2 in the main text, which follows from the generalization Theo-

rem 3.1.1 of [9, Proposition 7.1].

In light of the above, the natural next step for understanding kerα is to demand a

systematic way of analyzing extensions which are trivial as bundles. Analogous to the

classical isomorphism H2
gp(G,A)

∼−→ E(G,A) from the case of G and A discrete, one can use a

(inhomogeneous) continuous 2-cocycle f : G×G→ A to produce a continuous multiplication

on G× A given by

(g, a) · (g′, a′) := (gg′, aa′f(g, g′)) ,

yielding a central extension of G by A. Two 2-cocycles f and f ′ yield isomorphic extensions

if and only if they differ by the coboundary of a continuous 1-cochain G→ A. Furthermore,

every central extension of G by A which is trivial as an A-bundle comes from a 2-cocycle in

this way. Writing H∗
c (G,A) for continuous group cohomology, given by continuous cocycles

modulo coboundaries of continuous cochains, we obtain an injection H2
c (G,A) ↪−→ E(G,A)

whose image contains precisely those extensions which are trivial as A-bundles. This can

be stated succinctly as a short exact sequence (see (2.17)). Henceforth, we will identify

H2
c (G,A) as a subgroup of E(G,A) in this way.

By Theorem 1.1.1, the study of kerα reduces to the study of the kernel of the restriction

α : H2
c (G,A) → H2(BG,A). For this, we use a natural filtration B1G ⊂ B2G ⊂ . . . ⊂ BG

3



(with BG the direct limit) of the Milgram–Steenrod construction. This filtration has the

property that the successive quotients BnG/Bn−1G are homeomorphic to ΣnG∧n, the n-fold

reduced suspension of the n-fold smash product of G with itself. This allows us to obtain

an explicit description of α[f ] in terms of a given normalized6 2-cocycle f : G∧2 → A —

the restriction of α[f ] to B2G is given by the image of the homotopy class of f under the

composition

H0(G∧2, A) H2 (Σ2G∧2, A) H2(B2G,A);
≈ (1.4)

this is Theorem 5.2.1. The isomorphism comes from the fact that H∗(−, A) is a reduced

cohomology theory and the second map is induced by the quotient map B2G→ Σ2G∧2. This

has the following implication for kerα, where ιn is the inclusion BnG ↪−→ BG.

Theorem 1.1.2. Every cohomology class in kerα ⊂ H2
c (G,A) has a null-homotopic repre-

sentative. In fact, a cohomology class lies in ker(ι∗2 ◦α) if and only if it has a null-homotopic

representative.

Remark 1.1.3. When A is discrete, we have H2
c (G,A) ≈ H2

gp(π0(G), A). There is only one

null-homotopic map π0(G) × π0(G) → A, namely the constant map at the identity of A.

Hence, the injectivity result of [9] follows from the above theorem.

This theorem provides a better upper bound for kerα than Theorem 1.1.1, combining

the algebraic and topological aspects of the set-up in a way which fits the hope we set out

with. However, it has an obvious limitation — it only uses the information captured by ι∗2◦α,
the restriction of α to B2G. The natural next step would be to start with a null-homotopic

2-cocycle f : G∧2 → A and try to obtain a necessary condition for ι∗3 ◦ α[f ] to be trivial.

From Theorem 1.1.2 and the long exact sequence of cohomology for the pair (B3G,B2G),

we know that ι∗3 ◦ α[f ] lies in the image of the map

H2
(
Σ3G∧3, A

)
→ H2(B3G,A)

induced by the quotient map B3G → B3G/B2G ∼= Σ3G∧3. Note that Ω3B2A is weakly

homotopy equivalent to ΩA (since (1.3) is an Ω-spectrum), so

H2
(
Σ3G∧3, A

)
=
[
Σ3G∧3, B2A

]
∗ ≈

[
G∧3,ΩA

]
∗ = H0

(
G∧3,ΩA

)
.

6An inhomogeneous n-cocycle Gn → A is said to be normalized if it factors through G∧n. Through-
out the introduction, we will assume cocycles are normalized whenever convenient. This is justified by
Proposition 2.4.2.
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Hence, ι∗3 ◦ α[f ] lies in the image of the map

H0
(
G∧3,ΩA

)
→ H2(B3G,A). (1.5)

Comparing with (1.4) suggests that there might exist a normalized 3-cocycle f ′ : G∧3 → ΩA

whose homotopy class maps to ι∗3 ◦ α[f ] under (1.5). A natural guess for such a 3-cocycle

is as follows. Since f is null-homotopic, it has a lift f̃ : G∧2 → PA to PA, the path

space of A. Although f̃ may not be a 2-cocycle, its composition with the evaluation map

e1 : PA → A; γ 7→ γ(1) is a 2-cocycle (indeed, e1 ◦ f̃ = f). Hence, the image of δf̃ , the

coboundary of f̃ , lies in ΩA ⊂ PA. Now δ2f̃ = 0, so δf̃ : G∧3 → ΩA is a 3-cocycle.7 Our

guess for f ′ is then δf̃ .

We will return to the topic of the correctness of this guess later; for now, suppose it is

indeed correct. With some work, perhaps one could then show that ι∗3 ◦α[f ] = 0 if and only

if the cohomology class [f ′] ∈ H3
c (G,ΩA) has a null-homotopic representative, which is an

improvement on Theorem 1.1.2. Furthermore, the techniques used so far suggest that if f ′

is null-homotopic, one could choose a null-homotopy f̃ ′ and obtain a normalized 4-cocycle

f ′′ : G∧4 → Ω2A such that ι∗4 ◦ α[f ] is the image of the homotopy class of f ′′ under the

analogue

H0
(
G∧4,Ω2A

)
→ H2(B4G,A)

of (1.5). It is clear how this algorithmic procedure can be repeated ad infinitum, hopefully

giving a complete description of kerα. Of course, this is based on a lot of guesses, particularly

that our construction of f ′, f ′′, etc. has the desired properties. The need for systematizing

this procedure and proving the requisite intermediate results brings us to the next part of

this thesis, which is to generalize the classical isomorphisms H∗
gp(G,A)

∼−→ H∗(BG,A) from

the discrete case.

1.2 Analogues for α in higher degrees

In Chapter 7, we construct and study maps

αn : Hn
c (BG,A) → Hn(BG,A)

7Although δf̃ is a coboundary in PA, it may not be a coboundary in ΩA.
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which generalize the isomorphisms Hn
gp(G,A)

∼−→ Hn(BG,A) from the setting of G and A

discrete. In order to convey the full significance of this construction, we first recall the

construction of the classical isomorphism Hn
gp(G,A)

∼−→ Hn(B̄G,A) for G and A discrete.

Here, B̄G is Milnor’s construction of the classifying space of G. The isomorphism is based on

the observation that the inhomogeneous chain complex for group cohomology is isomorphic

to the simplicial chain complex of B̄G (viewed as a ∆-complex in the sense of Hatcher

[8]). Similarly, one observes that the normalized inhomogeneous chain complex for group

cohomology is isomorphic to the cellular chain complex of BG (which is a CW complex with

d-skeleton BdG when G is discrete). This yields an isomorphism Hn
gp(G,A)

∼−→ Hn
CW(BG,A)

(the notation highlights that the cohomology of spaces being used here is the cellular kind).

In order to identify Hn
CW(BG,A) with Hn(BG,A) as defined using an Ω-spectrum, we

must start with a cellular n-cocycle fCW for BG with coefficients in A and construct a

based map ϕ : BG → BnA. An outline of the standard approach for this is given in this

MathOverflow post, with the upshot that ϕ is easy to define on BnG whereas the process of

extending its definition to Bn+1G,Bn+2G, · · · is cellular and non-constructive. Hence, this

approach is not feasible when G and A may not be discrete.

In Chapter 7, we show that this extension process can instead be done constructively

and purely algebraically using combinatorial techniques. This insight allows us to construct

the maps αn : Hn
c (BG,A) → Hn(BG,A), although some might consider the insight more

important than the maps themselves. As one might expect, α2 is the restriction of α to

H2
c (G,A) and α

1 = B : Hom(G,A) = H1
c (G,A) → H1(BG,A) (see Proposition 7.2.2 and

Proposition 7.2.3).

The restriction ι∗n ◦ αn of αn to BnG has a description in terms of cocycles analogous to

that of ι∗2 ◦α. For f : G∧n → A a normalized n-cocycle, ι∗nα
n[f ] is the image of the homotopy

class of f under the analogue

H0(G∧n, A) Hn (ΣnG∧n, A) Hn(BnG,A)
≈

of (1.4). The corresponding analogue of Theorem 1.1.2 is Theorem 1.2.3 below, which

requires the following conjecture:

Conjecture 1.2.1. For A′ a discrete abelian group, the restriction maps Hd(Bn−1G,A
′) →

Hd(Bn−2G,A
′) and Hd(BG,A′) → Hd(Bn−2G,A

′) have the same image.

Remark 1.2.2. We show in Section 10.1.1 that the above conjecture is equivalent to the

corresponding statement for Milnor’s filtration of the classifying space obtained using joins

6
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(see Conjecture 10.1.2).

Theorem 1.2.3. For given G and n ≥ 1, suppose Conjecture 1.2.1 holds for all A′ and

d ≥ 0. Every cohomology class in kerαn ⊂ Hn
c (G,A) has a null-homotopic representa-

tive. In fact, a cohomology class lies in ker(ι∗n ◦ αn) if and only if it has a null-homotopic

representative.

Just as Theorem 1.1.2 only uses the information contained in the restriction of α to

B2G, Theorem 1.2.3 only uses the information contained in the restriction of αn to BnG.

The procedure for linking kerα to null-homotopic cocycles in degrees higher than 2 (discussed

in Section 1.1) is systematized and generalized by the following theorem, whose notation we

explain below.

Theorem 1.2.4. The following commutes up to a sign of (−1)n.

Hn
c (G,PA,ΩA) Hn+1

c (G,ΩA)

Hn+1(BG,ΩA)

Hn
c (G,A) Hn(BG,A)

δn

J∗

αn+1

(θA)∗

αn

Here,

• H∗
c (G,PA,ΩA) is the homology of the chain complex of continuous null-homotopic

cochains,

• J∗ is the map induced by the inclusion of the above-mentioned chain complex in the

chain complex of continuous cochains,

• δn is defined using the natural generalization of the lifting procedure described in

Section 1.1,8 and

• the map (θA)∗ is induced by a homotopy equivalence θA : BΩA→ A◦.

In particular, setting n = 2 and n = 3 respectively in this theorem shows that our guess

for f ′ in Section 1.1 is correct, whereas our guess for f ′′ is off by a sign. This issue of signs

8The notation δn is justified by the fact that this map is the connecting morphism from a certain long
exact sequence of homology induced by a short exact sequence of chain complexes (see Section 2.4.1).
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does not affect the algorithmic procedure for determining kerα that was discussed, although

we now see that Conjecture 1.2.1 must be assumed for the procedure to work. More

generally, Theorem 1.2.4 implies that an analogue of this algorithmic procedure works for

determining kerαn for all n ≥ 1 (once again, contingent on Conjecture 1.2.1).

At the ends of Chapters 6 and 7, we provide several examples where kerαn can be

characterized without assuming Conjecture 1.2.1.

Remark 1.2.5. Although the continuous cohomology groups Hn
c (G,A) have been studied

extensively, our homotopy-theoretic approach using αn is novel. Existing literature has

generally focused on techniques that ‘see’ the entire group Hn
c (G,A), whereas our approach

ignores those classes in Hn
c (G,A) which can be ‘killed by homotopy’.

Stasheff [15] provides a thorough exposition of the work done on continuous cohomol-

ogy until the 1970’s by relating it to various other cohomology theories (including some

homotopy-theoretic ones). More recent work includes [18], which relates continuous coho-

mology and its “locally continuous” counterpart to various other cohomology theories, [7],

which shows that the continuous and locally continuous cohomologies are isomorphic when

the coefficient group is contractible through group homomorphisms, and [2], which uses tech-

niques from Lie theory (such as connections with the cohomology of Lie algebras) when the

coefficient group is a vector space.

1.3 Layout of the thesis

• We begin by covering various preliminaries in Chapter 2, of which Section 2.2 (details

of the Milgram–Steenrod construction), Section 2.4 (an introduction to continuous

cohomology), Section 2.5 (an introduction to central extensions of topological groups),

and Section 2.8 (defining the cohomology theory H∗(−, A)) are the most important.

The reader who does not wish to wade into the weeds of topological technicalities may

read only these sections of Chapter 2 and still follow most of the thesis.

• In Chapter 3, we define the map α : E(G,A) → H2(BG,A) and show that it detects the

underlying bundle structure of extensions. The main tool for this is a certain model

of the classifying space for A, written XE , whose structure encodes the information

contained in a given extension E ∈ E(G,A). Hence, we conclude that kerα ⊂ H2
c (G,A).

• Chapter 4 uses the Dold–Thom Theorem to relate the cohomology theory coming

from the Ω-spectrum A,BA,B2A, · · · to singular cohomology. Section 4.4 explores the
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relation between the homotopy types of A and BΩA.

• In order to further understand kerα, Chapter 5 provides an explicit formula for ι∗2◦α[f ],
where f is a cocycle in Z2

c (G,A). Section 5.3 uses this formula to show that α agrees

with the classical isomorphism H2
gp(G,A)

∼−→ H2(BG,A) when G and A are discrete.

• The above-mentioned formula easily generalizes to give a map αn : Cn
c (G,A) →

Hn(BnG,A), which we explore in Chapter 6. Theorem 1.2.3 follows from Theo-

rem 6.3.2. In particular, this gives Theorem 1.1.2 as Corollary 6.3.5.

• In Chapter 7, everything comes together to yield our main results. We define the maps

αn : Hn
c (G,A) → Hn(BG,A), with ι∗n ◦ αn equal to the restriction of αn to cocycles.

Furthermore, α1 = B (Proposition 7.2.2) and α2 = α (Proposition 7.2.3). The-

orem 1.2.4 is proved as Corollary 7.3.3, which links kerαnG,A to kerαn+1
G,ΩA. The

algorithmic description of kerαn then follows easily.

• Chapter 8 is largely independent of the rest of the thesis, and looks at some partial

results for the surjectivity of α when A is discrete. The main result Theorem 8.0.6

says that α is an isomorphism when A is discrete and H3
gp(π0(G), A) is trivial.

1.4 Original contributions

• Our definition of and results regarding pCW complexes (Sections 2.6 and 9.1) are novel,

although most of the proofs are natural generalizations of well-known techniques used

for CW complexes. The most important consequence of this work is Corollary 2.6.9,

which asserts that BG has the homotopy type of a CW complex when G is a CW

complex.

• The contents of Chapter 3 are original, although several of our ideas are inspired by

[9]. A more precise description of how we drew inspiration from [9] can be inferred

from the remarks which relate our results to theirs.

• The main definitions and theorems in Chapters 5 to 7 are novel. These include the

definitions of αn and αn, Theorems 5.2.1, 5.3.1 and 6.3.2, Corollary 7.3.3, and the

algorithmic description of kerαn in Section 7.4.

• Chapter 8 gives a breakdown of the original contributions it contains.

9



• The author is unaware whether Proposition 9.2.1 is novel, but suspects that it might

follow from known necessary conditions for a given space to have the homotopy type

of a loop space.

• Proposition 9.3.3 and the examples of k-rings in Section 9.3 are original.
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Chapter 2

Preliminaries

For all unexplained notation, we refer to [8]. By ‘space’, we will always mean topological

space. A map between topological spaces is understood to be a continuous function. If

the continuity condition is to be relaxed, we will make this explicit by saying ‘set-map’.

I := [0, 1] is the compact unit interval. N and N0 are the sets of positive and non-negative

integers respectively. For n ∈ N0, let [n] = {1, · · · , n} and [n]0 = [n] ∪ {0}. In particular,

[0] = ∅ and [0]0 = {0}. The n-skeleton of a CW complex X is written as X(n).

For spaces X and Y , the set of homotopy classes of maps from X to Y is [X, Y ]. If base

points are chosen, then [X, Y ]∗ is the set of based homotopy classes. Write X ∼= Y if X and

Y are homeomorphic, and X ≈ Y if X and Y are homotopy equivalent (likewise for pairs of

spaces). For maps f, f ′ : X → Y , write f ≈ f ′ if f and f ′ are homotopic. If f is constant

and f(x) = y for all x ∈ X, then write f ≡ y.

For (X, x0) a based space, CX and ΣX denote its reduced cone and reduced suspension

respectively. Explicitly, CX is the quotient of X × I by the relation (x, 0) ∼ (x0, t) for

all (x, t) ∈ X × I, and ΣX is the quotient of CX by the relation (x, 1) ∼ (x0, 1) for all

x ∈ X. The unreduced cone C̃X and unreduced suspension Σ̃X are defined analogously.

For both cones and both suspensions, we take the base point to be (x0, 1). There is an action

((x, s), t) 7→ (x, st) of I (as a monoid under multiplication) on CX and C̃X. X is identified

as a subspace of CX and C̃X as x 7→ (x, 1). For a pair of spaces (X,X ′), we often write

X ∪ CX ′ for the pushout of X ′ ↪−→ X and X ′ ↪−→ CX ′ (likewise X ∪ C̃X ′).

For A a discrete abelian group, write H∗
sing(−, A) for singular cohomology with coefficient

group A. H∗
CW(−, A) and H∗

∆(−, A) will denote the cellular and simplicial cohomologies for

CW complexes and ∆-complexes respectively. For discrete abelian groups A and A′, write

A ≈ A′ if they are isomorphic.
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2.1 Conventions for compactly generated topologies

The category of compactly generated spaces is often convenient for doing algebraic topology

in, and we will use it extensively in this thesis. This section provides a brief exposition of

our conventions and notations regarding it, and a detailed exposition can be found in [17].

A space X is said to be compactly generated (CG for short) if U ⊂ X is open if and only

if U ∩ K is open in K for every compact subspace K ⊂ X. In other words, the topology

on X is the finest topology which makes the inclusion K ↪−→ X continuous for all compact

subspaces K ⊂ X.

From a space X we obtain a CG space kX, the k-ification of X, by taking an obvious

refinement of the topology on X. The set-theoretic identity map kX → X is continuous,

and kX = X if and only if X is CG. Furthermore, k-ification is functorial — corresponding

to a map f : X → Y we obtain a k-ified map kf : kX → kY , with kf = f as set-maps.

In other words, k is a functor from the category Top of topological spaces to the category

kTop of CG spaces (morphisms being continuous functions).

For spaces X and Y , write X ×τ Y for their product space (with the product topology)

and write X ×Y for their k-product given by k(X ×τ Y ). Write Xn for the n-fold k-product

of X with itself and X×τn for the n-fold τ -product of X with itself. Note that if X and Y

are CG, then X × Y is the product of X and Y in kTop. Furthermore, if X and Y are CG

and
X∼ and

Y∼ are equivalence relations on X and Y respectively, then natural the set-map

X × Y
X∼ × Y∼

→ X
X∼

× Y
Y∼

is a homeomorphism (apply [17, Proposition 2.17] twice). This property, which would not

hold if the k-product were replaced by the τ -product, is the main reason for working in

kTop.

If base points x0 ∈ X and y0 ∈ Y are chosen, then X ∧ Y denotes the smash product of

X and Y , defined as
X × Y

({x0} × Y ) ∪ (X × {y0})
.

The smash product is associative for CG spaces — if X, Y, Z are based CG spaces, then the

natural set-map X ∧ (Y ∧Z) → (X ∧ Y )∧Z is a homeomorphism. This allows us to define

X∧n := X ∧X ∧ . . . ∧X (n times) unambiguously.

All CW complexes are CG. For CW complexes X and Y , a natural product cell structure

can be given to X × Y . If both X and Y have countably many cells, then X × Y = X ×τ Y
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(see [8, Theorem A.6]).

2.1.1 Spaces of maps

For spaces X and Y , Map(X, Y ) is the space of all maps from X to Y , topologized using the

k-ification of the compact-open topology. If X and Y are based spaces, then Map∗(X, Y )

denotes the analogous space of based maps. In particular, if X is a based space, then

ΩX := Map∗(S
1, X) is its loop space and PX := Map∗((I, 0), X) is its path space. The base

point for Map(X, Y ) and Map∗(X, Y ) is the constant map at the base point of Y .

For pairs of spaces (X,X ′) and (Y, Y ′), write Map((X,X ′), (Y, Y ′)) for the space of maps

of pairs topologized as above. If X has base point x0, then we define Map(X, (Y, Y ′)) :=

Map((X, x0), (Y, Y
′)). Likewise for Map((X,X ′), Y ) if Y is a based space.

For x ∈ X, the evaluation map ex : Map(X, Y ) → Y ; f 7→ f(x) is continuous (likewise

for spaces of based maps and maps of pairs). In particular, if X is a based space then

ΩX PX X
e1

is the path space fibration.

2.1.2 Currying

Let X, Y, Z be CG spaces with Y locally compact and Hausdorff. The currying of a map

f : X × Y → Z is the map f̂ : X → Map(Y, Z);x 7→ f(x,−), and the uncurrying of a

map f̂ ′ : X → Map(Y, Z) is f ′ : X × Y → Z; (x, y) 7→ F (x)(y). It is a standard result that

currying and uncurrying preserve continuity. In fact, [17, Proposition 2.12] states that

Map(X × Y, Z) → Map(X,Map(Y, Z)); f 7→ (x 7→ f(x,−)) (2.1)

is a homeomorphism (we will not need this). Currying and uncurrying preserve homotopy

classes, so we obtain a bijection [X × Y, Z] → [X,Map(Y, Z)]. Certain factoring and base

point restrictions on a map X × Y → Z easily translate to restrictions on its currying:

Proposition 2.1.1. Let X, Y, Z be based CG spaces with Y locally compact and Hausdorff.
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Let Y ′ ⊂ Y be a subspace containing the base point. Currying yields natural set-bijections

Map∗ (X ∧ Y, Z) → Map∗(X,Map∗(Y, Z)) and [X ∧ Y, Z]∗ → [X,Map∗(Y, Z)]∗,

Map∗

(
X × Y

X
,Z

)
→ Map(X,Map∗(Y, Z)) and

[
X × Y

X
,Z

]
∗
→ [X,Map∗(Y, Z)], and

Map∗

(
X × Y

X × Y ′ , Z

)
→ Map

(
X,Map∗

(
Y

Y ′ , Z

))
and

[
X × Y

X × Y ′ , Z

]
∗
→
[
X,Map∗

(
Y

Y ′ , Z

)]
with inverses given by uncurrying.

2.1.3 Groups, monoids, and H-spaces

A Hausdorff CG space G is said to be a k-group if

• it is a group,

• the multiplication G×G→ G and inverse G→ G are continuous, and

• it is well-pointed, i.e., (G, 1G) is a cofibration.

Remark 2.1.2. Since G is well-pointed, 1G has a neighborhood U such that the inclusion

U ↪−→ G is null-homotopic. In particular, U lies in the identity component G◦ of G. Taking

shifts, we see that every point in G has a neighborhood in its path component. Hence,

all path components of G are open. In particular, G is path-connected if and only if it is

connected.

A τ -group is defined analogously, except G need not be CG and the multiplication map

must be continuous with domain G ×τ G. Similarly, we define τ -monoids and k-monoids.

When such objects are viewed as based spaces, the base point is always assumed to be

the identity. Every τ -group (monoid) that is CG is also a k-group (monoid), although the

converse does not hold.

We will make extensive use of the following technical facts.

Lemma 2.1.3. For G a k-group and X a compact Hausdorff based space, Map∗(X,G) is a

k-group under pointwise multiplication of maps.

Corollary 2.1.4. For G a k-group, PG and ΩG are k-groups.

Proof of Lemma 2.1.3. We only need to check that G̃ := Map∗(X,G) is well-pointed.

First, recall that G being well-pointed is equivalent to the existence of maps u : G→ I and

h : G× I → G such that
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• u−1(0) = {1G},

• h(g, 0) = g for g ∈ G, and

• h(g, t) = 1G whenever u(g) < t.

Now, define

ũ : G̃→ I; f 7→ sup
x∈X

uf(x) and

h̃ : G̃× I → G̃; (f, t) 7→ (x 7→ h(f(x), t)).

ũ is continuous since X is compact, and continuity of h̃ follows from the continuity of its

uncurrying (here we used that (2.1) is a bijection). We also have

• ũ−1(0) = {1G̃},

• h̃(f, 0) = f for f ∈ G̃, and

• h̃(f, t) = 1G̃ whenever ũ(f) < t,

so the lemma follows.

A k-group (monoid) is said to be a CW group (monoid) if the underlying space is a

CW complex. Henceforth, G will always denote a CW group and A will always denote an

abelian k-group (unless explicitly mentioned otherwise). The identity of a CW group is

always assumed to be a 0-cell.

Remark 2.1.5. A CW group (monoid) with countably many cells is a τ -group (see [8,

Theorem A.6]).

A H-space is a well-pointed CG space (L, 1L) with a multiplication map L×L→ L such

that 1L · 1L = 1L and the composition L ↪−→ L× L → L is homotopic to idL rel 1L for both

axial inclusions L ↪−→ L× L.

2.1.4 Bundles

Let G be any k-group. Our definition of (principal) G-bundles is the standard one, except

that local trivializations and the continuity of the G-action on the total space are interpreted

in the CG sense. To be precise, a G-bundle is a map p : E → B such that
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• there is a free and continuous right G-action E ×G→ E, and

• for each b ∈ B there exists a neighborhood U ⊂ B of b and a G-equivariant homeo-

morphism p−1(U) → U ×G which makes

p−1(U) U ×G

U

commute, where the diagonal map is the first projection.

Write BunB(G) for the collection of G-bundles over B and BunB(G) for the set of

isomorphism classes of these bundles. BunB(G) forms an abelian group under Baer sums.

2.2 The Milgram–Steenrod construction of the classi-

fying space

We give a brief summary of the important aspects of the Milgram–Steenrod classifying space

construction. For G any k-group, [16] constructs a contractible k-group EG with G a closed

subgroup. The coset space is BG := EG/G. Additionally, the projection pG : EG → BG

is a numerable G-bundle, so that BG is the classifying space for G. This construction is

functorial, i.e.,

• E is a functor from the category kGrp of k-groups and continuous homomorphisms

to itself,

• the inclusion G ↪−→ EG is a natural transformation from the identity functor on kGrp

to E,

• B is a functor from kGrp to kTop∗, the category of based CG spaces, and

• G 7→ pG is a natural transformation from E to B, where the codomain of E is viewed

as kTop∗ instead of kGrp.

Remark 2.2.1. Here, we are using the fact that a pair (X,A) is an NDR in the sense of

[16] if and only if it is a closed cofibration. This can be seen as follows. Puppe [12, Satz 1]

shows that (X,A) is a closed cofibration if and only if there exist maps v, w : X → I and

ψ : X × I → X satisfying

16



• w−1(0) = A,

• v(A) = {0},

• ψ(x, 1) ∈ A for x ∈ X with v(x) < 1, and

• ψ(a, t) = a for (a, t) ∈ A× I.

The latter of these is clearly weaker than [16]’s NDR condition (take v = w = u and ψ = k),

and it is also stronger since setting u = max(v, w) and k = ψ in [16]’s definition works.

As a group, EG is generated by the set G × I subject to the following relations for

g, g′ ∈ G and 0 ≤ t′ ≤ t ≤ 1.

(g, 0) = (1G, t) = 1EG

(g, t)(g′, t) = (gg′, t)

(g, t)(g′, t′) = (gg′g−1, t′)(g, t)

(2.2)

Consequently, each non-trivial element of EG is represented by a unique word of the form

(g1, t1) · · · (gj, tj) with j ≥ 1, 0 < t1 < . . . < tj ≤ 1, and gi ̸= 1G for all i (see [16, §7]). Such
words, together with the empty word, are said to be in normal form. Non-empty words in

normal form are non-trivial elements of EG. G is embedded in EG as g 7→ (g, 1).

We will refer to the spaces labeled Dn in [16] as DnG so that the dependence on G is

explicit. Recall that we have natural inclusions D0G ↪−→ D1G ↪−→ . . ., with EG the colimit.

This filtration can be understood in terms of the above group structure — DnG consists of all

elements which have a normal form representation with at most n words (see [16, Theorem

7.6]). In other words, DnG contains all those elements of EG which are represented by

length n words (not necessarily in normal form).

DnG = {(g1, t1) · · · (gn, tn) | gi ∈ G, ti ∈ I} ⊂ EG (2.3)

A word is said to be in semi-normal form if it is empty or has the form (g1, t1) · · · (gj, tj) with
0 ≤ t1 ≤ . . . ≤ tj ≤ 1 (the gi’s are allowed to be trivial). We can reduce the redundancy in

(2.3) by restricting to words in semi-normal form:

DnG = {(g1, t1) · · · (gn, tn) | gi ∈ G, 0 ≤ t1 ≤ . . . tn ≤ 1}. (2.4)

The space

∆n := {(t1, · · · , tn) | 0 ≤ t1 ≤ . . . ≤ tn ≤ 1} ⊂ In
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is an n-simplex, and (2.4) determines a surjection kn : Gn ×∆n → DnG. This is a quotient

map by [16, Theorem 5.1]. Gn is embedded in Gn+1 by fixing the last coordinate to 1G and

∆n is embedded in ∆n+1 by fixing the last coordinate to 1, so kn+1 restricts to kn on G
n×∆n.

The space p−1
G (pG(DnG)), the union of all left G-cosets which intersect DnG, is given by

EnG = {(g1, t1) · · · (gn, tn)(gn+1, 1) | gi ∈ G, 0 ≤ t1 ≤ . . . ≤ tn ≤ 1} ⊂ Dn+1G.

The restriction of kn+1 to Gn+1 ×∆n is a G-equivariant surjection onto EnG, where G acts

on Gn+1×∆n by multiplication with the rightmost coordinate. Note that when G is discrete,

EnG is the n-skeleton of EG (as a CW complex). This follows from the fact that k−1
n+1(EnG)

is the n-skeleton of Gn+1 ×∆n+1. Consequently, the n-skeleton of BG is given by

BnG := pG(EnG).

Write ιn for the inclusion BnG ↪−→ BG. If G is a CW group with cellular multiplication,

then DnG,EnG and BnG are CW complexes (with the obvious subcomplex relations) and

the projection EnG → BnG is cellular. In particular, EG and BG are CW complexes and

pG is cellular. The multiplication on EG is also cellular. See [16, §9].

General points of BG will always be written as

(g1, t1) · · · (gn, tn),

with the understanding that this expression is in semi-normal form, i.e., gi ∈ G and 0 ≤
t1 ≤ . . . ≤ tn ≤ 1.

2.2.1 Iterating B

Since A is abelian, so is EA. Hence, the coset space BA = EA/A also becomes a k-group.

BA is generated by A×I, subject to the relations (2.2) and (a, 1) = 1BA for a ∈ A. Applying

the functor B again, we see that BBA is generated by elements of the form ((a, t), t′) for

a ∈ A and t, t′ ∈ I. We drop the inner brackets for simplicity, so BBA is the abelian group

generated by A× I2 with the following relations for a, ai ∈ A and t, t′ ∈ I.

(a1, t, t
′)(a2, t, t

′) = (a1a2, t, t
′)

(a, t, t′) = 1BBA if {t, t′} ∩ {0, 1} ≠ ∅
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These relations have obvious analogues for BnA.

Now, suppose A were discrete. Then BnA is a K(A, n)-space, so it is desirable to fix an

identification of πn(B
nA) with A. A simple guess is that a ∈ A can be identified with the

class of the map

(In, ∂In) → (BnA, 1BnA); (t1, · · · , tn) 7→ (a, t1, · · · , tn). (2.5)

Indeed this works, and it matches with the isomorphism πn(B
nA) → A that the below se-

quence yields (this follows from a routine check). The maps ∂ are the appropriate connecting

morphisms from long exact sequences of bundles, and they are all isomorphisms.

. . . πn(B
nA) πn−1(B

n−1A) . . . π1(BA) π0(A) = A∂ ∂

Additionally, since discrete groups are CW groups with cellular multiplication, BA is a CW

group. The multiplication on BA is cellular by [16, Theorem 9.6]. Indeed, by induction

on n, the same theorem yields that BnA is a CW group with cellular multiplication for all

n ≥ 0.

2.3 Milnor versus Milgram–Steenrod

Throughout this section, G is discrete. We recall Milnor’s construction of the classifying

space of G, denoted by B̄G. The universal cover ĒG, a G-space, is a ∆-complex with 0-cells

the elements of G and j-cells given by (j + 1)-tuples in Gj+1. The cell corresponding to

(g0, · · · , gj) is glued to the cell corresponding to (g0, · · · , ĝi, · · · , gj) in the obvious way, and

the right-action of G is the diagonal action.

(g0, · · · , gj) · g = (g0g, · · · , gjg)

Since the G-action is simplicial, B̄G := ĒG/G becomes a ∆-complex such that the map

p̄G : ĒG→ B̄G is simplicial and a covering.

A general point in ĒG, lying in the cell corresponding to (g0, · · · , gj), has barycentric

coordinates (s0, · · · , sj) ∈ Ij+1 with
∑
i

si = 1. We will represent this point with the notation

[g0, s0, · · · , gj, sj]. (2.6)
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The ‘i-th coordinate’ of such a representation refers to the tuple (gi, si). The gluing of the

various cells is captured by the heuristic that if si = 0 for some i, then the i-th coordinate

can be ignored. We now use this to make the simplicial structure more explicit.

For n ≥ 0, let

Γn =
n⋃
j=0

Gj+1 ×∆j,

where ∆j ⊂ Ij+1 is the standard j-simplex given by

∆j =

{
(s0, · · · , sj) ∈ Ij+1

∣∣∣∣∣∑
i

si = 1

}
.

Following are homeomorphisms between ∆j and ∆j (they are inverses of each other).

∆j → ∆j; (t1, · · · , tj) 7→ (t1, t2 − t1, · · · , tj − tj−1, 1− tj) (2.7)

∆j → ∆j; (s0, · · · , sj) 7→ (s0, s0 + s1, · · · , s0 + s1 + . . .+ sj−1) (2.8)

When writing out the coordinates of a point in Gj+1 ×∆j, we will interleave the g’s and s’s

as in (2.6). Consider the equivalence relation on Γn generated by

(g0, s0, · · · , gi, 0, · · · , gj, sj) ∼ (g0, s0, · · · , ĝi, 0̂, · · · , gj, sj).

The n-skeleton of ĒG is precisely Γn/ ∼, so taking a colimit yields ĒG. The equivalence

class of (g0, s0, · · · , gj, sj) in this colimit is precisely [g0, s0, · · · , gj, sj].

The simplex which is the image of (g0, · · · , gn)×∆n in B̄G will be said to be the n-simplex

with vertices g0, · · · , gn. The characteristic map of this simplex is taken to be

∆n → B̄G; (t1, · · · , tn) 7→ [g0, t0, g1, t1 − t0, · · · , gn−1, tn − tn−1, gn, 1− tn]. (2.9)

This simplex is the same as that with vertices g0g
−1
n , · · · , gn−1g

−1
n , 1G. Note that B̄G has

only one 0-cell, so, strictly speaking, it does not make sense to specify simplices in B̄G by

referring to their vertices. However, the proposed convention alludes to the fact that the

simplex with vertices g0, · · · , gn lifts to the simplex in ĒG with vertices [g0, 1], · · · , [gn, 1],
and n-simplices can be uniquely specified using their vertices in ĒG. Of course, this lift is

not unique; this can be remedied by demanding that the last vertex of the lift be [1G, 1]. We

will not do this, however.
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2.3.1 A homotopy equivalence

We will now produce a G-equivariant surjection Ψ : ĒG → EG which descends to a homo-

topy equivalence Ψ̄ : B̄G → BG.1 The map is analogous to the isomorphism between the

homogeneous and inhomogeneous cochain complexes used to calculate group cohomology —

EG is analogous to the inhomogeneous complex and ĒG to the homogeneous complex.

First we define a map Ψ̃n : Gn+1 × ∆n → Gn+1 × ∆n using (2.8) as follows, where all

coordinates are interleaved as in (2.6).

(g0, s0, · · · , gn, sn) 7→ (g0g
−1
1 , s0, g1g

−1
2 , s0 + s1, · · · , gn−1g

−1
n , s0 + . . .+ sn−1, gn, 1)

Here, ∆n has been realized as its embedding in ∆n+1. The image of kn+1 ◦ Ψ̃n is EnG, the

(n+1)-fold join of G. Furthermore, kn+1 ◦ Ψ̃n factors through the n-skeleton ĒnG = Γn/ ∼.

This yields a surjection Ψn : ĒnG → EnG. We define Ψ to be the colimit of Ψ∗. It is clear

that Ψ̃n is G-equivariant, so Ψ is too.

To see that Ψ̄ is a homotopy equivalence, it suffices to show that π1(Ψ̄) is an isomorphism

(since BG and B̄G are both CW models of K(G, 1)). For this, observe that Ψ̄ sends the loop

γ̄g : t 7→ [g, t, 1G, 1 − t] in B̄G to the loop γg : t 7→ (g, t) in BG. The unique lift ˜̄γg of γ̄g to

ĒG, starting at [1G, 1], has endpoint [g, 1]. Likewise, the unique lift γ̃g of γg to EG, starting

at 1EG, has endpoint (g, 1). Hence, the following diagram commutes, where the maps ∂ are

the appropriate maps from the long exact sequence of homotopy groups for ĒG→ B̄G and

EG→ BG.

π1(B̄G) π0(G) = G

π1(BG) π0(G) = G

Ψ̄

∂
≈

∂
≈

This completes the proof of Ψ̄ being a homotopy equivalence. In Section 10.1.1, we briefly

sketch why Ψ̄ is a homotopy equivalence even when G is a CW group.

2.4 Continuous group cohomology

First, we recall the classical construction of the cohomology groups of a discrete group G

with discrete coefficient group A, acted on trivially by G. Let Ĉn
gp(G,A) (n ≥ 0) be the

1In Section 10.1.1, we will show that this map is also a homotopy equivalence when G is a CW group.
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group of set-maps from Gn to A. The coboundary maps δn : Ĉn
gp(G,A) → Ĉn+1

gp (G,A) are

defined as follows for n ≥ 1.

δnf(g1, · · · , gn+1) = f(g2, · · · , gn+1) +
n∑
i=1

f(g1, · · · , gi−1, gigi+1, gi+2, · · · , gn+1)

+ (−1)n+1f(g1, · · · , gn)

For n = 0, we set δ0 = 0. This yields the inhomogeneous cochain complex

0 Ĉ0
gp(G,A) . . . Ĉn

gp(G,A) Ĉn+1
gp (G,A) . . .δn (2.10)

whose homology groups are defined to be the cohomology groups H∗
gp(G,A).

In our context, it will be more convenient to work with a normalized version of the above

chain complex. Let Cn
gp(G,A) be the subgroup of Ĉn

gp(G,A) consisting of set-maps G∧n → A,

which are set-maps Gn → A which vanish on tuples (g1, · · · , gn) with gi = 1G for some i.

We take C0
gp(G,A) = Ĉ0

gp(G,A). This yields a subcomplex

0 C0
gp(G,A) . . . Cn

gp(G,A) Cn+1
gp (G,A) . . .δn (2.11)

of the inhomogeneous cochain complex (2.10), called the normalized inhomogeneous cochain

complex.

Proposition 2.4.1. The homology groups of (2.11) are isomorphic to H∗
gp(G,A), with iso-

morphism induced by the inclusion of (2.11) in (2.10).

Sketch of proof. It is well-known that the simplicial cochain complex of the ∆-complex B̄G

is naturally isomorphic homogeneous cochain complex of G with coefficients A. The latter

is naturally isomorphic to the inhomogeneous cochain complex Ĉ∗
gp(G,A) (for instance, see

[5, §17.2, Exercise 2]).2 Similarly, C∗
gp(G,A) is naturally isomorphic to the cellular cochain

complex of the CW complex BG.

With the above isomorphisms treated as identifications, the map from the cellular cochain

complex of BG to the simplicial cochain complex of B̄G induced by the cellular map Ψ̄ :

B̄G→ BG (see Section 2.3.1) is the inclusion C∗
gp(G,A) ↪−→ Ĉ∗

gp(G,A). This must induce an

isomorphism on homology since Ψ is a homotopy equivalence.

Remark. Proposition 2.4.1 is a special case of Proposition 2.4.2 below, and our proof of

2The composition of these isomorphisms is described in some detail in Section 5.3.
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the prior does not work for the latter. Nonetheless, the above proof is a nice demonstration

of the technique of doing algebra using topology.

For G a CW group and A an abelian k-group, we define the continuous group cohomology

H∗
c (G,A) completely analogously. Let Ĉn

c (G,A) ⊂ Ĉn
gp(G,A) be the group of continuous

maps Gn → A. The continuous cohomology groups H∗
c (G,A) are defined to be the homology

groups of the following subcomplex of (2.10).

0 Ĉ0
c (G,A) . . . Ĉn

c (G,A) Ĉn+1
c (G,A) . . .δn (2.12)

We also have a normalized version of this, with Cn
c (G,A) ⊂ Cn

gp(G,A) the group of continuous

maps G∧n → A.

0 C0
c (G,A) . . . Cn

c (G,A) Cn+1
c (G,A) . . .δn (2.13)

Proposition 2.4.2. The homology groups of (2.13) are isomorphic to H∗
c (G,A), with iso-

morphism induced by the inclusion of (2.13) in (2.12).

Proof. See Eilenberg–MacLane’s [6, Lemmas 6.1 & 6.2]. Note that they work in a purely

algebraic set-up (i.e., G and A discrete), but their proof works in the continuous set-up too.

Indeed, in their Equation 6.3, continuity of f implies continuity of gi for all i, which in turn

implies continuity of fn.

In light of the above, we will view the continuous cohomology groups as the homology

groups of (2.13) throughout this thesis. Elements of Cn
c (G,A) will be called continuous

n-cochains (n-cochains if continuity is clear from context), and elements of Ĉn
c (G,A) will be

called non-normalized continuous n-cochains.

The group of continuous cocycles is denoted by Zn
c (G,A) := ker δn ⊂ Cn

c (G,A) and

the group of continuous coboundaries by Bn
c (G,A) := im δn−1 ⊂ Cn

c (G,A). Consequently,

H∗
c (G,A) = Z∗

c (G,A)/B
∗
c (G,A).

Of course, C∗
gp(G,A) = C∗

c (G,A) when G and A are discrete, so H∗
gp(G,A) = H∗

c (G,A)

in this case.

Proposition 2.4.3. When A is discrete, the quotient map G → π0(G) induces an isomor-

phism

Hn
gp(π0(G), A) = Hn

c (π0(G), A)
∼−→ Hn

c (G,A).
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Proof. The map Cn
gp(π0(G), A) = Cn

c (π0(G), A) → Cn
c (G,A) induced by the quotient G →

π0(G) is an isomorphism since every continuous map G∧n → A factors through π0(G
∧n) =

π0(G)
∧n.

2.4.1 A long exact sequence

When G is discrete, a short exact sequence

1 A1 A2 A3 1

of discrete abelian groups induces a short exact sequence

1 C∗
gp(G,A1) C∗

gp(G,A2) C∗
gp(G,A3) 1 (2.14)

of chain complexes. This produces a long exact sequence

. . . Hn
gp(G,A1) Hn

gp(G,A2) Hn
gp(G,A3) Hn+1

gp (G,A1) . . .

(2.15)

of cohomology groups. However, for continuous group cohomology with G a CW group and

A1, A2, A3 all k-groups, right-exactness of (2.14) fails. Consequently, there is no immedi-

ate analogue of (2.15). To remedy this, we define a ‘relative’ version of continuous group

cohomology which fits into a long exact sequence analogous to that for relative singular

homology.

Let G now be a CW group and A′ ⊂ A be abelian k-groups with A/A′ also a k-group. A

continuous relative n-cochain is an n-cochain G∧n → A/A′ which lifts to A, and Cn
c (G,A,A

′)

is the group of all continuous relative n-cochains. In other words, Cn
c (G,A,A

′) is the image

of the map Cn
c (G,A) → Cn

c (G,A/A
′). Clearly, C∗

c (G,A,A
′) is a subcomplex of C∗

c (G,A/A
′).

Its homology groups are H∗
c (G,A,A

′). Furthermore, there is a short exact sequence

1 C∗
c (G,A

′) C∗
c (G,A) C∗

c (G,A,A
′) 1

of chain complexes, yielding a long exact sequence

. . . Hn
c (G,A

′) Hn
c (G,A) Hn

c (G,A,A
′) Hn+1

c (G,A′) . . .δn
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of cohomology groups. The inclusion J : C∗
c (G,A,A

′) ↪−→ C∗
c (G,A/A

′) induces a map

J∗ : H
∗
c (G,A,A

′) → H∗
c (G,A/A

′)

of cohomology groups.

Of particular interest to us will be the case of the short exact sequence

1 ΩA PA A◦ 1
e1 ,

in which case Cn
c (G,PA,ΩA) is the group of null-homotopic n-cochains G∧n → A.

2.5 Central extensions

A central extension of G by A is a tuple (E, µ, p) such that

• p : E → G is an A-bundle,

• µ : E × E → E is a multiplication map which makes E a k-group,

• p is a group homomorphism, and

• The A-action on E is compatible with µ, i.e.,

µ(e · a, e′ · a′) = µ(e, e′) · aa′ ∀ e, e′ ∈ E, a, a′ ∈ A.

Remark. The compatibility condition implies that the fiber inclusion A ↪−→ E; a 7→ 1E · a is

a group homomorphism with image contained in the center of E.

Write E(G,A) for the collection of all central extensions of G by A. Two such extensions

(Ei, µi, pi) ∈ E(G,A) (i = 1, 2) are said to be equivalent if there is an isomorphism E1 → E2

of k-groups which is also an A-bundle isomorphism. Denote the collection of isomorphism

classes by E(G,A). The Baer sum makes E(G,A) an abelian group with identity the trivial

extension G× A. There is also a ‘forgetful’ map

FG,A : E(G,A) → BunG(A),

which simply forgets the group structure. Clearly, this is a group homomorphism under the
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Baer sum. We also have a map

TG,A : H2
c (G,A) → E(G,A), (2.16)

analogous to the standard isomorphism H2
gp(G,A)

∼−→ E(G,A) from the case when G and A

are discrete, which ‘twists’ the component-wise multiplication on G×A (see [5, §17.4]). For
a continuous cocycle f : G∧2 → A, we define TG,A([f ]) to be the class of (G × A, µf , p) ∈
E(G,A), where p is the first projection and µf is defined as

µf ((g, a), (h, b)) = (gh, abf(g, h)).

The identity element of this extension is (1G, 1A). Clearly, F ◦ T = 0. The standard proof

of the fact that T is an isomorphism when G and A are discrete generalizes immediately to

show that T is a group homomorphism and the sequence

0 H2
c (G,A) E(G,A) BunG(A)

T F (2.17)

is exact.

Next, observe that we have a double-sided action of G on BunG(A) given as follows. For

X = (X, p) ∈ BunG(A), we define

g · X · h = (X, g · p · h) ∀ g, h ∈ G.

The image of F is fixed under both these actions by virtue of the group structure of central

extensions. Furthermore, g · X ·h is the pullback of X under the map G→ G;x 7→ g−1xh−1.

The homotopy class of x 7→ g−1xh−1 depends only on the connected components in which

g and h lie, so the actions of G on BunG(A) factor through π0(G) (here, we used that G

is paracompact). Hence (2.17) can be refined to say that the following sequence is exact,

where BunG(A)
π0(G) is the collection of fixed points of the double-sided action of π0(G).

0 H2
c (G,A) E(G,A) BunG(A)

π0(G)T F (2.18)

G also acts on BunG0(A)π0(G) as

g · X = (X, g · p · g−1)

for g ∈ G and X = (X, p) ∈ BunG0(A), and as before one checks that this action factors
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through π0(G). Restriction gives a map

ResG,A : BunG(A)
π0(G) → BunG0(A)π0(G),

which we claim is an isomorphism. To construct its inverse consider a bundle X = (X, p) ∈
BunG0(A)π0(G) and fix a choice of coset representatives s : π0(G) → G. Define X ′ =

(π0(G)×X, p′) with p′ : π0(G)×X → G; ([g], x) 7→ s([g])p(x). Since the isomorphism class

of X is fixed under the action of π0(G), it follows that the isomorphism class of X ′ is fixed

under the double-sided action of π0(G) and does not depend on the choice of s. The inverse

of Res is then defined to take the class of X to that of X ′. Let F ′ = Res ◦ F , so that the

discussion so far can be summarized as follows.

Theorem 2.5.1. The following is exact.

0 H2
c (G,A) E(G,A) BunG0(A)π0(G).T F ′

Remark 2.5.2. WhenA is discrete,H2
c (G,A) = H2

gp(π0(G), A) ≈ E(π0(G), A) and BunG0(A)π0(G) ≈
E(G0, A)π0(G) (see [9, Theorem 4.9]). Hence, Theorem 2.5.1 reduces to [9, (5)] in this case.

In particular, [9, Example 3.7] shows that (2.18) need not be right-exact.

2.6 pCW complexes

In general, EG and BG need not be CW complexes when G is. In this section, we will define

a class of spaces called pCW complexes (short for pseudo-CW complexes) such that EG and

BG are pCW complexes (for G a CW group). Additionally, we will show that all pCW

complexes are homotopy equivalent to CW complexes. Section 9.1 provides pCW analogues

of the computation of homotopy and (co)homology groups of CW complexes using skeleta.

A space X is said to be a pCW complex if there exist

• subspaces X0 ⊂ X1 ⊂ . . . ⊂ X, with X0 a CW complex and X = lim→
m

Xm,

• CW complexes Y1, Y2, · · · and respective subcomplexes Zm ⊂ Ym, and
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• maps ℓm : Zm → Xm−1 such that

Zm Ym

Xm−1 Xm

ℓm

is a pushout square.

Remark 2.6.1. Xm−1 ↪−→ Xm is a closed cofibration because Zm ↪−→ Ym is. Consequently,

Xm ↪−→ X is a closed cofibration.

These spaces and maps give a pCW structure on X. If there also exists M : N → N
such that the n-skeleton of Ym/Zm is a point for all m > M(n), then we say that X is a

good pCW complex. It is not hard to see that CX,ΣX, C̃X, and Σ̃X have natural pCW

structures coming from that of X, and they are good if X is.

Every CW complex B is a pCW complex in a trivial way, by letting B = X0 = X1 = · · · .
However, it will be more convenient to give the pCW structure in which Xn is the n-skeleton

and Yn is a disjoint union of n-cells. Hence, CW complexes are good pCW complexes with

M(n) = n.

Remark 2.6.2. Given a CW complex B with a subcomplex B′, one can also give a good

pCW structure to B by taking Xm to be the union of B′ and the m-skeleton of B (as a CW

complex). We will not use this in the present discussion.

Henceforth in this section, X denotes a pCW complex with the above pCW complex

structure. If X is good, then the n-skeleton of X is defined to be XM(n). This agrees with

the standard notion of ‘n-skeleton’ for CW complexes. Note that X/XM(n) is a good pCW

complex with n-skeleton a point.

Remark 2.6.3. A single pCW structure can admit several good pCW structures, and it

could happen that the n-skeleton of a good pCW complex X contains the (n + 1)-skeleton

as a proper subset (since M need not be strictly increasing).

Proposition 2.6.4. BG is a good pCW complex with n-skeleton BnG.

Proof. Set Xn = BnG and Yn = Gn×∆n. Let Zn be the subspace of Yn consisting of points

(g1, · · · , gn, t1, · · · , tn) with

• gi = 1G for at least one i, or
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• (t1, · · · , tn) ∈ ∂∆n.

Clearly, Zn is a subcomplex of Yn, where Yn is given the standard product cell structure

(recall that 1G is a 0-cell of G). Now, recall the quotient map kn : Gn ×∆n → DnG studied

in Section 2.2. Since pG ◦kn : Yn → Xn is surjective and its restriction to Yn−Zn is injective,

gluing Yn to Xn−1 along ℓn := pG ◦ kn|Zn gives Xn.

Any cell of Yn which is not in Zn must contain the n-cell of ∆n as a factor, so the

(n − 1)-skeleton of Yn/Zn is a point. Hence, we may take M(n) = n so that the n-skeleton

is Xn = BnG.

Proposition 2.6.5. pCW complexes are paracompact. In particular, BG is paracompact.

Proof. Use Theorem 4.1 and Proposition 4.2 here.

To show that X has the homotopy type of a CW complex, we will mimic the proof

of Whitehead’s Theorem [8, Theorem 4.5] on a CW approximation for X to show that

this CW approximation is actually a homotopy equivalence. For this, we first rephrase the

Compression Lemma [8, Lemma 4.6] accordingly.

Lemma 2.6.6 (Compression Lemma). Let V be a space, (Y, Z) a CW pair, θ : Z → V a

map, and (Q,R) a pair of spaces. Let U = V ⊔θ Y be the pushout and ξ : (U, V ) → (Q,R) a

map. If πi(Q,R, r) is trivial for all i ≥ 0, r ∈ R, then ξ is homotopic rel V to a map U → R.

Remark. The condition that π0(Q,R, r) is trivial for all r ∈ R is understood as saying that

R meets every path component of Q.

Proof. Completely analogous to the proof of [8, Lemma 4.6].

Corollary 2.6.7. Let (Q,R) be a pair of spaces with πi(Q,R, r) trivial for all i ≥ 0, r ∈ R.

Any map ξ : (X,X0) → (Q,R) is homotopic rel X0 to a map X → R.

Proof. Let ξm : (Xm, X0) → (Q,R) be the restriction of ξ to Xm, and set ξ′0 = ξ0, ξ
′′
0 = ξ.

Suppose, inductively, that ξ′m−1 : Xm−1 → R extends to ξ′′m−1 : (X,Xm−1) → (Q,R). By

Lemma 2.6.6, ξ′′m−1|Xm is homotopic rel Xm−1 to a map ξ′m : Xm → R. Since Xm ↪−→ X is

a cofibration, this extends to a homotopy from ξ′′m−1 to a map ξ′′m : (X,Xm) → (Q,R). This

completes the inductive construction of ξ′m and ξ′′m for all m ≥ 0.

Let ξ′ : X → R be the direct limit of the maps ξ′m, which makes sense since ξ′m|Xp = ξ′p

for p < m. A homotopy from ξ to ξ′ is obtained by playing out the homotopy from ξ = ξ′′0 to

ξ′′1 in [0, 1/2], then that from ξ′′1 to ξ′′2 in [1/2, 3/4], and so on. At time 1 we define the homotopy

to be ξ′. Continuity at 1 follows from the fact that the restriction of this homotopy to Xm

is constant in
[
2m−1
2m

, 1
]
.
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Theorem 2.6.8. If f : B → X is a CW approximation for X, then it is a homotopy

equivalence.

Proof. As in the proof of Whitehead’s Theorem in [8], the high-level strategy is to show that

the mapping cylinder Mf deforms onto B using Corollary 2.6.7 with (Q,R) = (Mf , B).

There are two ways to go about this, each with a counterpart in [8]. The first is to argue that

f is homotopic to a cellular map, i.e., one which takes the n-skeleton of B to the n-skeleton of

X. Hence, we may assume that f is cellular without loss of generality. This allows us to give

a pCW structure on the mapping cylinder Mf , and then the theorem follows immediately

from Corollary 2.6.7. This is left as an exercise for the inquisitive reader.

The second way is more direct. The inclusion (B ⊔ X,B) ↪−→ (Mf , B) is homotopic rel

B to a map B ⊔ X → B (by Corollary 2.6.7). Since B ⊔ X ↪−→ Mf is a cofibration, this

extends to a homotopy from the identity Mf → Mf to a map g : (Mf , B ∪X) → (Mf , B).

Then we apply Lemma 2.6.6 to the composition

(B × I ⊔X,B × ∂I ⊔X) (Mf , B ⊔X) (Mf , B)
g

,

and the resulting homotopy factors through Mf to yield a deformation of Mf onto X.

Corollary 2.6.9. BG has the homotopy type of a CW complex.

2.6.1 Subcomplexes

A subcomplex of a pCW complex is defined analogously to that of a CW complex. A

subspace X ′ ⊂ X is is a subcomplex if there exist

• a subcomplex X ′
0 ⊂ X0,

• subspaces X ′
m ⊂ Xm with X ′

0 ⊂ X ′
1 ⊂ . . ., and

• subcomplexes Y ′
m ⊂ Ym,

such that

• the restriction ℓ′m of ℓm to Z ′
m = Zm ∩ Y ′

m has image in X ′
m−1,

• X ′
m is the pushout Xm−1 ⊔ℓ′m Y ′

m, and

• X ′ =
⋃
m≥1

X ′
m.
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The subspace topology on X ′ coming from X is the same as the pCW complex topology.

X ′
m ↪−→ Xm can be seen to be a closed cofibration by induction onm. Consequently, X ′

m ↪−→ X

and X ′ ↪−→ X are also closed cofibrations. Collapsing X ′ in X, the space X ′′ := X/X ′ has a

natural pCW structure. Note that X ′ and X ′′ are good if X is.

Remark 2.6.10. With the above definitions, the excision axiom for generalized cohomology

theories can be stated for pCW pairs. This allows us to talk about cohomology theories on

pCW complexes, which we discuss in the next section.

Proposition 2.6.11. A pCW pair (X,X ′) is a good pair in the sense of [8], i.e., X ′ has a

neighborhood in X which deforms onto X ′.

Proof. The proof of this statement for CW pairs (e.g., [8, Proposition A.5]) generalizes to

the pCW case without much difficulty.

Theorem 2.6.12 (Blakers–Massey Excision Theorem). If a based pCW pair (X,X ′) is r-

connected and X ′ is s-connected (r, s ≥ 0), then the map

πi(X,X
′) → πi(X/X

′)

is an isomorphism for 1 ≤ i ≤ r + s and a surjection for i = r + s+ 1.

Proof. Let U ⊂ X be a neighborhood of X ′ which deforms onto X ′ (such U exists by

Proposition 2.6.11). Set

Y = X ∪ C̃X ′,

Y1 = C̃X ′ ∪ U
Y2 = X ∪ (1/2, 1]×X ′, and

Y0 = Y1 ∩ Y2 = U ∪ (1/2, 1]×X ′.

Hence, {Y1, Y2} is an open cover of Y . Observe that Y1 is contractible, Y2 deforms onto X,

and Y0 deforms onto X ′. From the long exact sequence of relative homotopy, we see that

the pair (Y1, Y0) is (s + 1)-connected. Also, (Y2, Y0) ≈ (X,X ′) is r-connected. Hence, [4,

Theorem 6.4.1] yields that the map

πi(Y2, Y0) → πi(Y, Y1) (2.19)
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is an isomorphism for 1 ≤ i ≤ r + s and a surjection for i = r + s + 1. We also have the

commutative diagram

πi(Y2, Y0) πi(Y, Y1)

πi(Y2/Y0) πi(Y/Y1)

≈

≈

,

with the isomorphisms coming from the facts that Y1 is contractible and Y2/Y0 ∼= Y/Y1.

Hence, the preceding observations about (2.19) show that

πi(Y2, Y0) → πi(Y2/Y0)

is an isomorphism for 1 ≤ i ≤ r+ s and a surjection for i = r+ s+ 1. Using [8, Proposition

0.17] together with the fact that U deforms onto X ′ (equivalently, U/X ′ deforms onto the

point X ′/X ′) now proves the theorem.

2.7 Extraordinary cohomology theories

This section provides a brief account of the extraordinary cohomology theory coming from

an Ω-spectrum. We adapt the treatment given in [8, §4.3] to our context of pCW complexes

(in light of Theorem 2.6.8, there is no essential difference between the theories for CW

complexes and pCW complexes).

An Ω-spectrum K is a sequence of based spaces (Kn)n (where n generally runs over

either the integers or the non-negative integers) together with weak homotopy equivalences

Kn → ΩKn+1. Hence, for any based space X with the homotopy type of a CW complex,

[X,Kn]∗ ≈ [X,Ω2Kn+2]∗ is an abelian group (in particular, we may take X to be a pCW

complex). The cohomology theory coming from K is the sequence of functors Hn(−,K) :=

[−, Kn]∗ from the category of based pCW complexes and based maps to the category of

abelian groups. If A is a discrete abelian group and K is the Eilenberg-MacLane spectrum

Kn = K(A, n), then H∗(−,K) is the reduced singular cohomology theory with coefficient

group A.

For our purposes, the most important property of such cohomology theories is the excision

property — for a based pCW pair (X,X ′) with inclusion ι : X ′ ↪−→ X and quotient map

q : X → X/X ′, there is a natural long exact sequence of cohomology groups

. . . Hn(X/X ′,K) Hn(X,K) Hn(X ′,K) Hn+1(X/X ′,K) . . .
q∗ ι∗ δn .
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The connecting morphism δn is defined using a Puppe sequence, and is best understood

by first considering the case of the pair (CY, Y ). In this case, the connecting morphism

δn : Hn(Y,K) → Hn+1(ΣY,K) is defined to be the composition

[Y,Kn]∗ [Y,ΩKn+1]∗ [ΣY,Kn+1]∗.
≈ ≈

Here, the first isomorphism comes from the weak homotopy equivalence Kn → ΩKn+1 and

the second comes from the adjoint relation between Σ and Ω. To define δn for an arbitrary

pCW pair (X,X ′), we start by fixing a homotopy inverse h : X/X ′ → X ∪CX ′ for the map

X ∪ CX ′ → X/X ′ which collapses CX ′ (this is a homotopy equivalence by [8, Proposition

0.17]). We define δn to be the composition

[X ′, Kn]∗ [ΣX ′, Kn+1]∗ [X ∪ CX ′, Kn+1]∗ [X/X ′, Kn+1]∗,
δn

≈
h∗

≈ (2.20)

where the first arrow is the connecting morphism for the pair (CX ′, X ′) and the second

arrow is induced by the map X ∪ CX ′ → ΣX ′ which collapses X.

Remark 2.7.1. Of course, the above discussion works just as well with the unreduced cone

and unreduced suspension replacing their reduced counterparts.

2.7.1 Morphisms of spectra and cohomology theories

A morphism K → L of Ω-spectra is a sequence of maps Kn → Ln such that the resulting

square

Kn ΩKn+1

Ln ΩLn+1

commutes. This induces a natural transformation H∗(−,K) → H∗(−,L) of cohomology

theories, and the commutativity of the above square ensures that

Hn(X ′,K) Hn+1(X/X ′,K)

Hn(X ′,L) Hn+1(X/X ′,L)

δn

δn

(2.21)

commutes for all pCW pairs (X,X ′).

More generally, a natural transformation between two cohomology theories (as functors
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from the category of based pCW complexes to the category of graded abelian groups) is

said to be a morphism of cohomology theories if it respects the connecting morphism (as

in (2.21)). Injectivity and surjectivity of such morphisms is defined in the obvious way.

A notion of exact sequences of cohomology theories is now immediate. A split short exact

sequence of cohomology theories is a short exact sequence of cohomology theories which splits

via a morphism of cohomology theories. A weakly split short exact sequence of cohomology

theories is a short exact sequence of cohomology theories which splits via a functor which

may not necessarily be a morphism of cohomology theories (i.e., this functor may not respect

the connecting morphism).

In categorical language, most of the above discussion can be summarized as follows.

There is a category of Ω-spectra and their morphisms, an abelian category of cohomology

theories and their morphisms, and a functor K 7→ H∗(−,K) from the prior to the latter.

2.8 ΩB

The classifying space functor B is a right-inverse for the loop space functor Ω in the following

sense:

Lemma 2.8.1. Let G be a k-group. There is a weak homotopy equivalence ϕG : G → ΩBG

such that the following triangle commutes.

πn(G) πn(ΩBG)

πn+1(BG)

πn(ϕG)

≈∂

≈

If G is abelian, then ϕG can be chosen to be a group homomorphism (with ΩBG a group

under pointwise multiplication of loops).

Remark 2.8.2. Let p : (X, x0) → (B, b0) be a G-bundle. In our setup, it will be con-

venient to define the connecting morphism ∂ : πn+1(B, b0) → πn(G, 1G) by lifting maps

(In+1, ∂In+1) → (B, b0) to (In+1, In × {1}, ∂In+1 − In × {1}) → (X, x0 · G, e0). This is

slightly different from the convention described in [8, P. 344].

Proof. The inclusion G ↪−→ EG is null-homotopic (since EG is contractible), so there is a

homotopy H : G × I → EG with H(·, 0) ≡ 1EG and H(·, 1) the inclusion of G in EG.

Composing with pG : EG → BG, we see that pG ◦H(·, 0) = pG ◦H(·, 1) ≡ pG(1EG). Hence
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pG ◦H induces a map ϕG : G→ ΩBG. Commutativity of the triangle follows from a routine

check using the definition of ∂. In particular, this yields that πn(ϕG) is an isomorphism and

hence ϕG is a weak homotopy equivalence.

Recalling the construction of EG, an explicit choice for H is (g, t) 7→ (g, t). The induced

map G → PG is a group homomorphism, since (g1, t)(g2, t) = (g1g2, t). When G is abelian,

this choice of H ensures that ϕG is also group homomorphism.

Remark 2.8.3. The homotopy class of ϕG is independent of the choice of H. One way

to see this is using the fact that concatenating one such null-homotopy with the reverse of

another yields a map G→ ΩEG, which is null-homotopic since ΩEG is contractible.

Corollary 2.8.4. The sequence A := (A,BA,B2A, · · · ) forms an Ω-spectrum.

The map obtained by slightly modifying the definition of ϕG as

ϕ′
G : G→ ΩBG; g 7→ (t 7→ (g, 1− t))

is also important. ϕ′
G is a homomorphism of H-spaces, i.e., the two maps G × G → ΩBG

given by

(g1, g2) 7→ ϕ′
G(g1g2) and

(g1, g2) 7→ ϕ′
G(g1) ∗ ϕ′

G(g2)

(where ‘∗’ denotes concatenation of loops) are homotopic. This can be seen from the fact

that the map

G2 × ∂∆2 → BG; (g1, g2, t1, t2) 7→ (g1, t1)(g2, t2)

extends to G2 × ∆2 (an extension is given by pG ◦ k2). Since g 7→ ϕG(g) ∗ ϕ′
G(g) is null-

homotopic, ϕ′
G is a weak homotopy equivalence. Furthermore, the map g 7→ ϕG(g

−1) is

homotopic to ϕ′
G.

Remark 2.8.5. π0(ϕ
′
G) is a group homomorphism only when π0(G) is abelian. Indeed,

π0(ϕ
′
G) is an antihomomorphism since π0(ϕG) is an isomorphism and π0(ϕ

′
G)(x) = π0(ϕG)(x)

−1.

2.8.1 The cohomology theory H∗(−, A)

We define H∗(−, A) to be the cohomology theory H∗(−,A) coming from A (in the sense

of Section 2.7). When A is discrete, A is the Eilenberg-MacLane spectrum. Consequently,
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H∗(−, A) is the reduced singular cohomology theory with coefficient group A (up to choice

of isomorphism — see [8, Theorem 4.57]).3 This construction is is also natural in A — a

continuous homomorphism A→ A′ of abelian k-groups induces a morphism B∗A→ B∗A′ of

Ω-spectra, which in turn induces a morphism H∗(−, A) → H∗(−, A′) of cohomology theories.

Remark 2.8.6. There are two natural group operations on these cohomology groups. First

is the usual group operation defined using the fact that A is an Ω-spectrum, and second is the

pointwise-addition of maps using the group operation on BnA. It is a standard exercise to

check that these operations coincide. Due to its simplicity, we will treat the latter operation

as the ‘standard’ choice.

Remark 2.8.7. For X a well-pointed space and G any path-connected k-group, the base-

point-forgetting map [X,G]∗ → [X,G] is an isomorphism of groups (group operations being

pointwise multiplication of maps, cf. [8, §4.A, Exercise 1]). In particular, this allows us to

make the identification Hn(−, A) = [−, BnA] for n ≥ 1.

3Caution: For A discrete, H∗(−, A) is the singular cohomology theory in the notation of [8], whereas it
is the reduced singular cohomology theory in our notation.
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Chapter 3

A first encounter with α

In this chapter, we will construct the map αG,A : E(G,A) → H2(BG,A), whose study moti-

vates much of this thesis. For any space B and abelian k-group A′, we have an isomorphism

ηB,A′ : BunB(A
′)

∼−→ [B,BA′] = H1(B,A′)

with inverse given by the pullback construction f 7→ f ∗EA′. For B = BG and A′ = BA,

this yields

ηBG,BA : BunBG(BA)
∼−→ [BG,BBA] = H2(BG,BA).

Next, an extension E = (E, µ, p) ∈ E(G,A) gives a BA-bundle Bp : BE → BG (by [11,

Lemma 7.4, Theorem 7.7]). Equivalent extensions in E(G,A) yield equivalent bundles in

BunBG(BA), so we have a map B : E(G,A) → BunBG(BA). We define

αG,A := ηBG,BA ◦B.

This definition coincides with that given in [9] when A is discrete, up to choice of isomorphism

between H2(BG,A) and H2
sing(BG,A).

Having generalized the definition of α from [9], we now generalize one of their key results

which many of their proofs rely on, namely Proposition 7.1. The obvious challenge in doing

so is that there is no obvious analogue for Hurewicz’s Theorem and Hurewicz’s map when

working with extraordinary cohomology theories. To address this, we interpret the propo-

sition in terms of bundles and their classifying maps. However, we still state the result in

terms of an anticommuting square.
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3.1 Constructing the square

Let f : BG → BBA be any map. By Lemma 2.8.1 and [8, Proposition 4.22], there exists

a map f̃ : G→ BA (unique up to homotopy) such that the following diagram commutes.1

ΩBG ΩBBA

G BA

Ωf

ϕG ∼

f̃

ϕBA∼

f 7→ f̃ yields a map

ω : [BG,BBA] → [G,BA].

One checks that this is a homomorphism of groups using the last statement of Lemma 2.8.1.

Hence, given an extension E ∈ E(G,A), we can use ω to construct an A bundle over G

by pulling back EA→ BA along ω ◦ α(E). This yields the following square.

E(G,A) BunG(A)

H2(BG,A) H1(G,A)

α

F

η

ω

Generalizing [9, Proposition 7.1], we claim that this square anticommutes.

Theorem 3.1.1. ω ◦ α + η ◦ F : E(G,A) → H1(G,A) is the trivial map.

The proof of the above spans the next two sections. Combining this theorem with the ex-

actness of (2.17) yields the important corollary that extensions in kerα come from continuous

cocycles.

Corollary 3.1.2. kerα ⊂ imT , i.e., kerα can be identified with a subgroup of H2
c (G,A).

Example 3.1.3. If f : G ∧G→ A is a 2-cocycle which is null-homotopic through cocycles,

then f has a lift f̃ : G ∧ G → PA which is also a cocycle. By naturality of α ◦ T , we have

(e1)∗ ◦ αG,PA ◦ TG,PA[f̃ ] = αG,A ◦ TG,A ◦ (e1)∗[f̃ ]. The prior is 0 (since PA is contractible)

and the latter is αG,A ◦ TG,A[f ], so [f ] ∈ kerαG,A under the identification mentioned in

Corollary 3.1.2.

1Since f is not assumed to be based, a priori Ωf need not be defined. However, by Remark 2.8.7, this is
not an issue since BBA is connected.
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The hypothesis on f is satisfied when G is discrete and A = BA′ for some k-group A′.

This is because f must lift to a cocycle G∧G→ EA′ and EA′ is contractible through group

homomorphisms.

3.2 A heuristic involving path space bundles

Let (B, b0) be a based CW complex and p : (X, x0) → (B, b0) a based G-bundle. Pick

a representative fX ∈ ηB,A(X), so X ∼= f ∗EG as G-bundles. Let f̃X : X → EG be the

corresponding overmap.

Lemma 3.2.1. The projection Pp : PX → PB of path spaces is a PG-bundle, where PG

is viewed as a group under pointwise multiplication of paths.

Proof. It is clear that PG acts freely on PX with orbits given by fibers of Pp. It remains to

produce local sections of Pp. Fix a path γ ∈ PB, i.e., γ : I → B with γ(0) = b0. The image

of γ is compact, so there exists a partition

0 = a0 < a1 < . . . < ak = 1

of I and open sets U1, · · · , Uk ⊂ B such that γ([ai−1, ai]) ⊂ Ui and there is a section

si : Ui → p−1(Ui) of p. Assume without loss of generality that s1(b0) = x0. Let U ⊂ PB be

the open neighborhood of γ consisting of all paths γ′ ∈ PB s.t.

γ′([ai−1, ai]) ⊂ Ui ∀ i.

Let τi : Ui ∩ Ui+1 → G be the transition functions of these sections, satisfying si = si+1 · τi.
We will now construct a section s : U → Pp−1(U). For γ′ ∈ U define

s(γ′)(t) =



s1 ◦ γ′(t) t ∈ [0, a1]

s2 ◦ γ′(t) · τ1 ◦ γ′(t) t ∈ [a1, a2]

s3 ◦ γ′(t) · τ2 ◦ γ′(t) · τ1 ◦ γ′(t) t ∈ [a2, a3]
...

Clearly, s(γ′) is a well-defined and continuous path. To show that s is continuous, we note

that the uncurried map

ŝ : U × I → X; (γ′, t) 7→ s(γ′)(t)
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is continuous (by the Pasting Lemma).

Since PB is contractible, it is tempting to conclude that every principal bundle over PB

(in particular, Pp : PX → PB) is trivial. However, we recall that drawing this conclusion

would require the bundle Pp to be numerable. The author is unaware of any reasonable

conditions on p which guarantee that Pp is numerable. Notwithstanding this technical issue,

assuming the following conjecture is a useful heuristic.

Conjecture 3.2.2. The bundle Pp : PX → PB admits a section sX : PB → PX.

Lemma 3.2.3. Assuming Conjecture 3.2.2, there exists a map ðX : ΩB → G such that

the following diagrams commute in the group and homotopy categories respectively, where ∂

is the connecting morphism from the long exact sequence of homotopy groups associated to

the bundle X → B (see Remark 2.8.2).

πn(ΩB) πn(G) ΩB ΩBG

πn+1(B) G

πn(ðX)

≈ ðX

ΩfX

ðEG∂n+1

Furthermore, the composition ΩB
ðX→ G ↪−→ X is null-homotopic.

Remark. ð is an Old English letter, pronounced ‘eth’.

Proof. Identifying p−1(b0) with G as x0 · g ∼ g, the section sX allows us to define

ðX(γ) := sX(γ)(1) ∈ G.

Continuity of ðX is clear. Commutativity of the first triangle follows from a routine check

using the definition of ∂. Commutativity of the second triangle follows from the fact that

given a loop γ ∈ ΩB, a lift of fX ◦ γ ∈ ΩBG to P (EG) can be obtained by first lifting γ to

PX and then composing with overmap f̃X .

With ιX : G → X; g 7→ x0 · g a fiber inclusion, a null-homotopy of ιX ◦ ðX is given by

(t, γ) 7→ sX(γ)(t).

Corollary 3.2.4. Assuming Conjecture 3.2.2, ðEG is a left homotopy inverse for ϕG.

Proof. The composition ðEG ◦ ϕG : G → G induces identity on the homotopy groups of G

by Lemma 2.8.1 and Lemma 3.2.3, so the claim follows by Whitehead’s Theorem.
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An analogue of Lemma 3.2.3 which does not rely on Conjecture 3.2.2 can be obtained

using CW approximation. Let ωB be a CW approximation for ΩB, with ψB : ωB → ΩB a

weak homotopy equivalence. For B′ another based CW complex and a map h : B → B′, there

exists a map ωh : ωB → ωB′ (unique up to homotopy) such that the following commutes in

the homotopy category (by [8, Proposition 4.22]).

ΩB′ ΩB

ωB′ ωB

Ωh

ωh

∃!

ψB′ ∼ ψB∼

This gives a map ω : [B,B′] → [ωB, ωB′]. We adopt the convention ωBG = G and

ψBG = ϕG, so that this definition does not clash with the map

ω : [BG,BBA] → [G,BA]

defined previously. Now we define ð′
X := ωfX : ωB → ωBG = G, i.e.,

[ð′
X ] = ω ◦ ηB,G(X). (3.1)

Lemma 3.2.5. The following diagram commutes, where ∂ is the connecting morphism from

the long exact sequence of homotopy groups associated to the bundle X → B.

πn(ωB) πn(G)

πn(ΩB) πn+1(B)

πn(ψB) ≈

πn(ð′X)

≈

∂

Furthermore, the composition ωB
ð′X→ G ↪−→ X is null-homotopic.

Proof. The lemma essentially follows using an alternate definition of ð′
X which is closer in

spirit to the definition of ðX . The composition

ωB ΩB PB
ψX

is null-homotopic (since PB is contractible), so the PG-bundle over ωB obtained by pulling

back PX → PB is trivial (since ωB is paracompact and Hausdorff). The existence of a
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section for this bundle translates to a lift ψ̃B : ωB → PX of the above composition.

PX

ωB ΩB PB

Pp

ψB

ψ̃B

The image of this lift is contained in Pp−1(ΩB), so

ψ̃B(y)(1) ∈ p−1(b0) ∀ y ∈ ωB.

Identifying p−1(b0) with G as x0 · g ∼ g, this yields a map

ð′′
X : ωB → G; y 7→ ψ̃B(y)(1).

To see that ð′′
X ≈ ð′

X , it suffices to show that the following commutes in the homotopy

category.

ΩB ΩBG

ωB ωBG = G

ΩfX

ð′′X

ψB ∼ ψBG=ϕG∼ (3.2)

For this, letH : G×I → EG be a null-homotopy ofG ↪−→ EG as in the proof of Lemma 2.8.1

and

Ĥ : G→ Pp−1
G (ΩBG); g 7→ (t 7→ H(g, t))

be the currying of H. We have the following diagram.

G

Pp−1(ΩB) Pp−1
G (ΩBG)

ωB ΩB ΩBG

Ĥ

Pp

q

PfX

PpG

r

ψB

ψ̃B

ΩfX

(3.3)

The maps temporarily labeled q and r are defined as γ 7→ γ(1), where G is identified with

the fibers of the base points of B and BG as usual. One checks that the square and two
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triangles formed by the solid arrows commute. By definition of ð′′
X and ϕG we have

ð′′
X = q ◦ ψ̃B,
ϕG = PpG ◦ Ĥ.

Hence, the commutativity of (3.2) reduces to checking that the two maps ωB → ΩBG

obtained by following the outermost paths in (3.3) are homotopic. By commutativity of the

square and triangles in (3.3), this reduces to showing that Ĥ ◦ r is homotopic to the identity

on Pp−1
G (ΩBG). For this, consider the map

Pp−1
G (ΩBG) → ΩEG; γ 7→

(
t 7→ γ(t) · Ĥ(r(γ))(t)−1

)
,

where ‘·’ and ‘−1’ are interpreted in the group EG. Since EG is contractible, this map is null-

homotopic. This shows that Ĥ ◦ r is homotopic to the identity on Pp−1
G (ΩBG),2 completing

the proof of the fact that ð′′
X ≈ ð′

X . The lemma now follows using arguments analogous to

Lemma 3.2.3.

3.3 Combining several bundles into one

We now work towards a proof of Theorem 3.1.1. Fix an extension E = (E, µ, p) ∈ E(G,A).
Our main tool will be the object XE := EG×BG BE which fits into the pullback square

XE BE

EG BG

Bp

pG

.

The first projection XE → EG is a BA-bundle and the second projection XE → BE is a G-

bundle, so the diagonal composition XE → BG is a (G×BA)-bundle. Furthermore, the map

Ep×pE : EE → XE is an A-bundle.3 This allows us to view XE as the quotient group EE/A,

since A ⊂ EA is contained in the center of EE. The fiber inclusion ι× : G×BA ↪−→ XE then

becomes a group homomorphism. Let ιG : G ↪−→ XE and ιBA : BA ↪−→ XE be the components

of ι×.

2Here we are using the fact that ΩEG ≤ Pp−1
G (ΩBG) as groups under pointwise multiplication of paths.

3This follows from the fact that pE : EE → BE is an E-bundle and p : E → G is an A-bundle.
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Lemma 3.3.1. The restriction of EE → XE to G,BA ⊂ XE yields the extensions (and

hence A-bundles) p : E → G and pA : EA→ BA respectively.

Proof. The claim follows by considering the preimages of G and BA under Ep× pE : EE →
XE .

Corollary 3.3.2. ιBA is a homotopy equivalence.

Proof. EE is contractible, so Ep× pE : EE → XE is a universal A-bundle. Since ι∗BAEE
∼=

EA is also a universal A-bundle, the claim follows.

Corollary 3.3.3. (ιBA)∗ : [B,BA] → [B,XE ] is a group isomorphism under pointwise

multiplication of maps.

Proof. (ιBA)∗ is a homomorphism since ιBA is a homomorphism, and it is a bijection since

ιBA is a homotopy equivalence.

Corollary 3.3.4. Under (ιBA)∗ ◦ η ◦ F : E(G,A) → [G,XE ], the class of E maps to [ιG].

Proof. The pullback of EA ∼= ι∗BAEE under η ◦ F (E) is the A-bundle E ∼= ι∗GEE. Since

there is a unique class in [G,XE ] which pulls EE back to E (by universality), we must have

[ιG] = (ιBA)∗ ◦ η ◦ F (E).

Proof of Theorem 3.1.1. The bundle XE → BG yields a map

ð′
XE

: ωBG = G→ G×BA.

Using the fact that B(G×BA) ∼= BG×BBA (see [16, §6]), one checks that

ð′
XE

≈ ð′
EG × ð′

BE.

Remark. The above can also be shown using the alternate construction of ð′ described in

the proof of Lemma 3.2.5.

Now ð′
EG = ω idBG = idG, since EG ∼= id∗

BGEG (this is analogous to Corollary 3.2.4).

Hence we have

ð′
XE

≈ idG × ð′
BE

∈ [idG]× ω ◦ ηBG,BA(BE) (by (3.1))

= [idG]× ω ◦ ηBG,BA ◦B(E)
= [idG]× ω ◦ α(E). (3.4)
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Using the group structure on G × BA, the right side can be written as the product of two

classes in [G,G×BA] as follows, where 1BA and 1G denote the respective constant maps.

[idG]× ω ◦ α(E) = [idG × 1BA] · [1G]× ω ◦ α(E)

Composing (3.4) with ι× yields

ι× ◦ ð′
XE

∈ [ιG] · (ιBA)∗ ◦ ω ◦ α(E)
= (ιBA)∗ ◦ η ◦ F (E) · (ιBA)∗ ◦ ω ◦ α(E) (by Corollary 3.3.4).

The left side is null-homotopic since ι× ◦ ð′
XE

is null-homotopic (by Lemma 3.2.5), so

(η ◦ F + ω ◦ α)(E)

is in the kernel of (ιBA)∗. The result now follows by Corollary 3.3.3.
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Chapter 4

The Dold–Thom Theorem and A

This chapter is a brief excursion meant to understand the consequences of the Dold–Thom

Theorem for the Ω-spectrum A and the cohomology theory it births.

4.1 The classical and the CG

In this section, we adapt the exposition of the Dold–Thom Theorem given in [8] (Theo-

rem 4K.6) and its consequences for abelian topological groups (Corollary 4K.7) to the CG

context. For a based CG space (X, x0), let SP
τ
n (X) denote the n-fold symmetric product

of X in the sense of [8], i.e., SP τ
n (X) is the quotient of X×τn by the coordinate-shuffling

action of the symmetric group. We have an inclusion SP τ
n (X) ↪−→ SP τ

n+1(X) by setting

the (n + 1)-st coordinate to x0, and the direct limit is defined to be SP τ (X). This is the

symmetric product denoted by SP (X) in [8]. Let SP k
n (X) and SP k(X) be the analogues of

the above constructions with the τ -product replaced by the k-product. These constructions

are functorial and homotopy-preserving. If X is a CW complex, then so are SP k
n (X) and

SP k(X), since the action of the symmetric group on Xn is cellular.

Lemma 4.1.1. The quotient map X×τn → SP τ
n (X) is proper.

Proof. Let K ⊂ SP τ
n (X) be compact and K̃ be its preimage in X×τn. Hence, K̃ = C×τn for

some C ⊂ X. We will show that C is compact. Let U = {Ui | i ∈ I} be an open cover of

C. The set U×τn
i is a saturated open set in X×τn, so its image Vi ⊂ SP τ

n (X) is open. Now

{Vi | i ∈ I} is an open cover of K, so it has a finite subcover. The corresponding subcover

of U is a finite cover of C.
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Lemma 4.1.2. Let Y be a topological space equipped with an equivalence relation ∼. If the

quotient map Y → Y/∼ is proper, then the induced map kY → k (Y/∼) is also a proper

quotient map.

Proof. kY → k (Y/∼) factors through kY/∼ → k (Y/∼), which is a continuous bijection. The

compact sets in both kY/∼ and k (Y/∼) are images of compact sets in Y , so kY/∼ → k (Y/∼)

is a homeomorphism. kY → kY/∼ is proper by a similar argument, so the lemma follows.

From the above lemmas and the fact that every compact set in SP τ (X) is contained in

SP τ
n (X) for some finite n, we obtain

Corollary 4.1.3. SP k
n (X) = k SP τ

n (X) and SP k(X) = k SP τ (X).

Corollary 4.1.4. The maps SP τ
n (X) → SP k

n (X) and SP τ (X) → SP k(X) are weak homo-

topy equivalences.

This last corollary allows us to state the following as a consequence of [8, Theorem 4K.6].

Theorem 4.1.5 (Dold–Thom Theorem). For X a CW complex, there are natural isomor-

phisms Hi(X,Z) ≈ πi(SP
k(X)), i ≥ 1.

Using the following lemma, we can replace ‘H-space’ by ‘k-H-space’ in [8, Corollary 4K.7].

Lemma 4.1.6. Let (Xi, xi), i ≥ 1 be a sequence of based CG spaces. The obvious set-map

SP k

(∨
i≥1

Xi

)
→ lim→

n

n∏
i=1

SP k(Xi)

is a homeomorphism.

We relegate the proof to the end of this section.

Corollary 4.1.7. Let A be a connected abelian k-monoid. There exist abelian CW monoids

A1, A2, · · · such that

• An is a K(πn(A), n)-space, and

• there exists a continuous homomorphism

lim→
n

n∏
i=1

Ai → A

of monoids, which is also a weak homotopy equivalence.
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Proof. Morally, the proof is identical to that of [8, Corollary 4K.7], with Theorem 4.1.5

used in place of [8, Theorem 4K.6]. We take

An = SP k(M(πn(A), n)),

where M(−,−) denotes the standard CW realization of Moore spaces. The technical details

which differ from [8] are covered by Lemma 4.1.6.

Proof of Lemma 4.1.6. We start with the following general fact about iterated direct limits

of topological spaces. Let Y be a space with subspaces Ym,n, indexed by m,n ≥ 1. Suppose

there are inclusions Ym,n ⊂ Ym+1,n and Ym,n ⊂ Ym,n+1. If

Y ∼= lim→
m

lim→
n

Ym,n,

then

Y ∼= lim→
n

lim→
m

Ym,n ∼= lim→
(m,n)

Ym,n.

This allows us to write

SP k

(∨
i≥1

Xi

)
∼= lim→

n

SP k

(
n∨
i=1

Xi

)
.

Hence, the lemma reduces to showing that the obvious set-map

SP k

(
n∨
i=1

Xi

)
→

n∏
i=1

SP k(Xi)

is a homeomorphism. Induction on n reduces this to the n = 2 case, i.e.,

SP k(X1 ∨X2) → SP k(X1)× SP k(X2) (4.1)

is a homeomorphism. Continuity and bijectivity are easy to check, so it suffices to show that

(4.1) is proper. Any compact subset K ⊂ SP k(X1) × SP k(X2) is contained in SP k
i (X1) ×

SP k
i (X2) for some i ≥ 1. The quotient maps X i

1 → SP k
i (X1) and X

i
2 → SP k

i (X2) are proper

(by Lemma 4.1.2 and Corollary 4.1.3), so the preimage K ′ ⊂ X i
1 ×X i

2 of K under their

product is compact. Hence, the image of K ′ under

X i
1 ×X i

2 → (X1 ∨X2)
2i → SP k(X1 ∨X2)
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is compact. This image is precisely the preimage of K under (4.1).

4.2 The connected case

A will be assumed to be a connected abelian k-group throughout this section.

Lemma 4.2.1. Let A1, A2, · · · be abelian k-monoids. The obvious set-theoretic map

lim→
n

n∏
i=1

BAi → B lim→
n

n∏
i=1

Ai (4.2)

is an isomorphism of k-monoids.

Here, B still refers to the Milgram–Steenrod construction from [16]; the description of

this construction for abelian k-monoids is much the same as that for abelian k-groups.

Proof. One checks directly that (4.2) is an isomorphism of abstract monoids. We now show

that it is continuous and proper. From the discussion in [16, §6], it is clear that the map

n∏
i=1

BAi → B
n∏
i=1

Ai (4.3)

is a homeomorphism. In particular, (4.2) is continuous. Every compact subset of B lim→
n

n∏
i=1

Ai

is contained in the image of (4.3) for some n, so (4.2) is also proper.

Lemma 4.2.2. If A is a connected abelian k-monoid which is a K(A′, n)-space, then BA is

a K(A′, n+ 1)-space.

Proof. This is immediate from [16, Theorem 8.1].

We now show that the functor H∗(−, A) can be expressed in terms of shifts of singular

cohomology with various coefficient groups.

Proposition 4.2.3. Suppose A is connected. There is an isomorphism

H∗(−, A) ≈
∏
i≥1

H∗+i(−, πi(A))

of cohomology theories (in the sense of Section 2.7.1).
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Proof. Let A1, A2, · · · be as in Corollary 4.1.7, and set

A′ = lim→
n

n∏
i=1

Ai and

A′′
n =

∏
i≥1

BnAi.

There is a weak homotopy equivalence A′ → A which is also a homomorphism of monoids.

Hence, we have

Hn(X,A) ≈ [X,BnA′]∗

for X a based pCW complex. Furthermore, using Lemma 4.2.1, it is immediate that the

inclusion BnA′ ↪−→ A′′
n is continuous and a weak homotopy equivalence. Hence, we also have

[X,BnA′]∗ ≈ [X,A′′
n]∗

≈
∏
i≥1

[X,BnAi]∗

≈
∏
i≥1

[X,Bn+iπi(A)]∗

=
∏
i≥1

Hn+i(X, πi(A))

for every based pCW complex X, where the third isomorphism comes from Lemma 4.2.2

and the definition of the Ai’s. Combining the above isomorphisms proves the proposition.

For d ≥ 0 and A not necessarily connected, say that A is of type d if πn(A) is trivial for

n > d. Say that A is of finite type if A is of type d for some d ≥ 0. When A is connected

and of finite type, the direct product in Proposition 4.2.3 becomes a direct sum.

4.3 The general case

We no longer assume that A is connected.

Lemma 4.3.1. The short exact sequence

1 A◦ A π0(A) 1
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induces a weakly split short exact sequence

0 H∗(−, A◦) H∗(−, A) H∗(−, π0(A)) 0

of cohomology theories.

Proof. Let A′ = π0(A). For each n ≥ 0, we have a BnA◦-bundle BnA → BnA′. The

lemma will follow if we show that this bundle is trivial, i.e., there is a section BnA′ → BnA

(not necessarily a group homomorphism). Since BnA′ is a CW complex, this can be done

using a cell-by-cell lifting argument. In particular, it suffices to show that given any map

f : Dd → BnA′ and a lift f̃ ′ : Sd−1 → BnA of its restriction to the boundary, f̃ ′ extends

to a lift f̃ of f . This follows from the facts that bundles are Serre fibrations and that the

connecting morphism ∂ : πd(B
nA′) → πd−1(B

nA◦) from the long exact sequence of homotopy

groups for the bundle BnA→ BnA′ is trivial.

Combining Proposition 4.2.3 and Lemma 4.3.1 yields

Theorem 4.3.2. There is a weakly split short exact sequence

0
∏
i≥1

H∗+i(−, πi(A)) H∗(−, A) H∗(−, π0(A)) 0

of cohomology theories.

4.4 BΩ

Loosely speaking, Lemma 2.8.1 says that the functor Ω is a left-inverse for B up to weak

homotopy equivalence. We will now show that for connected abelian k-groups, it is in fact

a two-sided inverse in this sense.

There is a natural homomorphism

θA : BΩA→ A

generated by (γ, t) 7→ γ(t). It is easy to see that this is well-defined and continuous.1

Through routine arguments, one checks the following.

1The fact that A is abelian is essential here.
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Lemma 4.4.1. For n ≥ 1, the following triangle commutes.

πn(BΩA) πn−1(A)

πn(A)

πn(θA)

∂
≈

≈

In particular, θA : BΩA→ A◦ is a weak homotopy equivalence.

Together with Lemma 4.3.1, the above yields

Corollary 4.4.2. The following is a weakly split short exact sequence of cohomology theories.

0 H∗(−, BΩA) H∗(−, A) H∗(−, π0(A)) 0
(θA)∗

It will also be useful to know how ϕA interacts with θA:

Lemma 4.4.3. The composition

BA BΩBA BA
BϕA θBA

is the identity.

Proof. It suffices to check that the composition is the identity on generators (a, t) ∈ BA for

a ∈ A, t ∈ I. First, recall that ϕA(a) is the loop γa : I → BA; s 7→ (a, s). Hence, we have

BϕA(a, t) = (γa, t).

Consequently, we have

θBA ◦BϕA(a, t) = θBA(γa, t)

= γa(t)

= (a, t).
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Chapter 5

α in terms of cocycles

In light of Corollary 3.1.2, studying kerα requires understanding how α acts on extensions

coming from continuous 2-cocycles G∧G→ A. This chapter gives a partial explicit descrip-

tion of this action, essentially providing a formula for the restriction ι∗2 ◦ α[f ] in terms of

the cocycle f . Furthermore, the ideas of this chapter form the backbone of our subsequent

construction of the maps αn : Hn
c (G,A) → Hn(BG,A).

5.1 D1G, D2G, and their images in BG

We begin with some simple technical lemmas.

Lemma 5.1.1. Let p : E → B be a fiber bundle, X ⊂ E and Y = p(X). Then p|X : X → Y

is a quotient map.

Proof. The claim is easy to prove when p is a trivial bundle. The general claim follows by

locally reducing to the trivial case using local trivializations.

Lemma 5.1.2. Let X, Y and Z be spaces with a continuous map f : X → Y and a set-map

g : Y → Z. Furthermore, suppose that f and g ◦ f are quotient maps. Then g is also a

quotient map.

Proof. The lemma follows from routine arguments.

Now we proceed with studying the objects mentioned in the title of this section. Since k1 :

G× I → D1G is a quotient map, D1G is the reduced cone CG of G by (2.4). Consequently,

B1G is ΣG, the reduced suspension of G. Note that here we are using both of the above

lemmas as follows. pG|D1G : D1G → B1G is a quotient map by Lemma 5.1.1, and there
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is also a set-theoretic bijection between B1G and ΣG. This yields the following commuting

diagram, where the dotted arrow denotes a set-map which is not a priori continuous and

solid arrows denote quotient maps.

G× I D1G B1G

ΣG

By Lemma 5.1.2 (with X = G × I, Y = D1G and Z = ΣG), we now see that the dot-

ted map is a homeomorphism. Henceforth we will identify B1G with ΣG, and hence we

have a natural inclusion ι1 : ΣG ↪−→ BG. This identification also makes the isomorphism

[X,G]∗ ≈ [ΣX,BG]∗ (for X a based pCW complex) easier to understand explicitly. Orig-

inally, this isomorphism comes from the weak homotopy equivalence ϕG : G → ΩBG (see

Lemma 2.8.1), but we also have the following commutative triangle.

[X,G]∗ [ΣX,BG]∗

[ΣX,ΣG]∗

≈

Σ
(ι1)∗

(5.1)

Remark 5.1.3. Commutativity of the triangle follows from the commutativity of

[X,G]∗ [X,ΩBG]∗

[ΣX,ΣG]∗ [ΣX,BG]∗

Σ

ϕG
≈

(ι1)∗

≈ ,

which is easier to see.

Now we will do a similar analysis for D2G. First, we have a quotient map

q′′ : G2 ×∆2 → Σ2(G ∧G); (g1, g2, t1, t2) 7→


(
g1, g2,

t1
t2
, t2

)
t2 ̸= 0

(1G, 1G, 0, 0) t2 = 0
. (5.2)

Here, Σ2(G∧G) is viewed as a quotient of G2×I2. Next, note that q′′ factors through pG◦k2
(which is a quotient map, by Lemma 5.1.1), yielding a map q′ : B2G → Σ2(G ∧ G) with
q′′ = q′ ◦ pG ◦ k2. By Lemma 5.1.2, we see that q′ is a quotient map. In fact, q′ is the map

which collapses ΣG = B1G ⊂ B2G. Hence we have a homeomorphism B2G/ΣG ∼= Σ2(G∧G),
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and the corresponding quotient map

q : B2G→ Σ2(G ∧G).

5.2 A partial explicit description of α ◦ T

Throughout the rest of this section, we will identify H2
c (G,A) as a subgroup of E(G,A)

using T (see (2.16) and (2.17)). Hence, we may apply α directly on 2-cocycles by defining

αf := α[f ], where [f ] denotes the cohomology class of f . Combining the various maps in

this section yields a peculiar square.

Z2
c (G,A) H2(BG,A)

H0(G ∧G,A) H2(B2G,A)

H2(Σ2(G ∧G), A)

α

Fc ι∗2

≈

q∗

q∗

(5.3)

Here, Fc is the forgetful map obtained by looking at the homotopy class of a cocycle, the

vertical isomorphism comes from excision for H(−, A), and the dotted arrow is defined so

that the triangle commutes. We claim that the square commutes.

Theorem 5.2.1. The two maps ι∗2 ◦ α, q∗ ◦ Fc : Z2
c (G,A) → H2(B2G,A) are equal.

Given a 2-cocycle f , this theorem essentially yields, explicitly in terms of f , the restriction

to B2G of a representative of αf . This can be seen by examining q∗ ◦Fc as follows. Applying
(5.1) twice (first with A in place of G, then with BA in place of G), we see that the vertical

isomorphism in (5.3) takes f : G ∧G→ A to the map

Σ2f : Σ2(G ∧G) → B2A; (g1, g2, t1, t2) 7→ (f(g1, g2), t1, t2).

Composing with q, we obtain the following representative of q∗ ◦ Fc(f).

B2G→ B2A; (g1, t1)(g2, t2) 7→
(
f(g1, g2),

t1
t2
, t2

)
(5.4)

Remark 5.2.2. The above expression is not problematic when t2 = 0 because (−,−, 0) =
(1A, 0, 0) regardless of what is substituted for ‘−’. This is made precise by the fact that
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(t1, t2) 7→
(
t1
t2
, t2

)
defines a homeomorphism ∆2/∂∆2 → I2/∂I2.

Using (5.4) together with Theorem 5.2.1 is the most important step in the proof of

Theorem 5.3.1, which makes precise the agreement of α with the classical isomorphism

H2
gp(G,A)

∼−→ H2
sing(BG,A) when G and A are discrete. Another application of Theo-

rem 5.2.1 is Corollary 6.3.5, which provides a complete description of ker(ι∗2 ◦ α).

Proof of Theorem 5.2.1. Fix a 2-cocycle f and let E = (E, µ, p) be the corresponding ex-

tension. Hence, E = G×A as a topological space, p is the first projection, and multiplication

in E is given by

µ((g, a), (g′, a′)) = (gg′, aa′f(g, g′)).

Recall that 1E = (1G, 1A). Also recall the topological group XE = EE/A from Section 3.3,

and the fact that the inclusion ιBA : BA ↪−→ XE is a homotopy equivalence (see Corol-

lary 3.3.2). Hence, BιBA : B2A→ BXE is a weak homotopy equivalence. Consequently, it

suffices to show that

(BιBA)∗ ◦ ι∗2 ◦ α(f) = (BιBA)∗ ◦ q∗ ◦ Fc(f).

(BιBA)∗ and ι
∗
2 commute (the prior acts by left-composition and the latter acts by restriction/right-

composition), so we will instead prove that

ι∗2 ◦ (BιBA)∗ ◦ α(f) = (BιBA)∗ ◦ q∗ ◦ Fc(f). (5.5)

(5.4) yields the following representative R of the right side of (5.5). The conventions used

to write elements of BXE are analogous to those used for B2A.

R : B2G→ BXE ; (g1, t1)(g2, t2) 7→
(
(1G, f(g1, g2)),

t1
t2
, t2

)
For the left side of (5.5), first recall that ιG : G ↪−→ XE pulls back EE to E (as extensions by

A). Hence, BιG : BG ↪−→ BXE pulls back BEE to BE (as BA-bundles). The homotopy class

(BιBA)∗ ◦ α(f) ∈ [BG,BXE ] also pulls back BEE to BE. The BA-bundle BEE → BXE is

universal (since BEE is contractible), so we must have

[BιG] = (BιBA)∗ ◦ α(f). (5.6)
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ιG has the straightforward description

ιG : G→ XE ; g 7→ ((g, 1A), 1),

so BιG is given by

BιG : BG→ BXE ; (g1, t1) · · · (gn, tn) 7→ ((g1, 1A), 1, t1) · · · ((g1, 1A), 1, tn). (5.7)

In toto, the left side of (5.5) is represented by

L : B2G→ BXE ; (g1, t1)(g2, t2) 7→ ((g1, 1A), 1, t1)((g2, 1A), 1, t2).

It remains to show that L and R homotopic. For this, we first observe that while BXE

is not a group, it is nonetheless acted on by B2A on the right (it is a B2A-bundle over

BEG, since XE is an extension of EG by BA). In this light, we can multiply two maps

h1, h2 : X → BXE pointwise to obtain h1 · h2, where X is any space and the image of h2

is contained in B2A ↪−→ BXE . Likewise, h2 can be inverted pointwise to obtain h−1
2 . Hence,

to show that L and R are homotopic, it suffices to prove that L · R−1 is null-homotopic.

Following is a null-homotopy, with H1 = L ·R−1 and H0 constant.

Hs : (g1, t1)(g2, t2) 7→ ((g1, 1A), s, t1)((g2, 1A), s, t2)
((

1G, f(g1, g2)
−1
)
, s t1

t2
, t2

)
In order to check that this is well-defined and continuous, it is left to the reader to verify

the following for gi ∈ G, t ∈ I, and 0 ≤ t3 ≤ t1 ≤ t2 ≤ 1.

• Hs((g1, t1)(1G, t2)) = Hs((1G, t3)(g1, t1)) = Hs((g1, t1)(1G, 1)).

• Hs((g1, 0)(g2, t2)) = Hs((g2, t2)(g3, 1)) = Hs((g2, t2)(1G, 1)).

• Hs((g1, t)(g2, t)) = Hs((g1g2, t)(1G, 1)).

5.3 α when G and A are discrete

In this section, we will use Theorem 5.2.1 to show that when BG and B̄G are identified (up

to homotopy) using Ψ̄, the maps α : E(G,A) → H2(BG,A) and the classical isomorphism

H2
gp(G,A)

∼−→ H2
∆(B̄G,A) are ‘the same’. In this sense, α generalizes the classical isomor-

phism E(G,A) ∼−→ H2(BG,A) to the case of G a CW group and A an abelian k-group.
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First, we fix an isomorphism Hn(X,A)
∼−→ Hn

CW(X,A) for n ≥ 1 and X a CW complex.

The Hurewicz map πn(B
nA) → Hn(B

nA) is an isomorphism, so the Universal Coefficient

Theorem yields an isomorphism Hn
CW(BnA,A)

∼−→ Hom(πn(A), A). Under this identification,

let εn ∈ Hn
CW(BnA,A) be the class corresponding to the isomorphism πn(B

nA) → A given

by (2.5). By [8, Theorem 4.57], the map ε∗n : [X,BnA] → Hn
CW(X,A);ϕ 7→ ϕ∗(εn) is an

isomorphism.

The inverse of the above isomorphism can be constructed as follows. Given a cellular

cocycle f : Hn
CW(Xn/Xn−1) → A, consider the map ϕn : Xn → BnA which sends Xn−1 to

1BnA and sends a n-cell e : In → X of X to the representative

In → BnA; (t1, · · · , tn) 7→ (f(e), t1, · · · , tn)

of the class in πn(B
nA) corresponding to f(e) ∈ A. The fact that f is a cocycle implies

(in fact, is equivalent to) the existence of an extension ϕn+1 : Xn+1 → BnA of ϕn. Since

πi(B
nA) ≈ 0 for i > n, ϕn+1 can now be extended cell-by-cell (uniquely, up to homotopy)

to a map ϕ : X → BnA. One checks that ϕ∗(εn) = [f ] in Hn
CW(X,A), so this construction

indeed gives a representative for (ε∗n)
−1[f ]. An outline of a direct proof that this construction

is an isomorphism (without alluding to [8, Theorem 4.57]) can be found in this MathOverflow

post.

Theorem 5.3.1. The following commutes for G and A discrete.

E(G,A) H2(BG,A) H2(B̄G,A)

H2
gp(G,A) H2

∆(B̄G,A) H2
CW(B̄G,A)

α

≈

Ψ̄∗

ε∗2≈

≈ ≈

Corollary 5.3.2. α is an isomorphism when G and A are discrete.

In the theorem, the isomorphism H2
gp(G,A) → E(G,A) is the standard one. The isomor-

phism between simplicial and cellular cohomology of a ∆-complexX is obtained by regarding

each characteristic map ∆n → X given by the ∆-complex structure as a characteristic map

for an n-cell. The isomorphism between group cohomology and simplicial cohomology of B̄G

is as follows.

Let Fn = ZGn+1, with G acting on the rightmost component from the right, be the inho-

mogeneous free resolution of Z as a simple G-module. Fn has basis G
n+1 as an abelian group,

and this basis is in G-equivariant bijection with the n-simplices of ĒG — (g0, · · · , gn+1) cor-
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responds to the simplex in ĒG with vertices [g0 . . . gn+1, 1], [g1 . . . gn, 1], · · · , [gn+1, 1]. This

yields a G-equivariant isomorphism between Fn and the group C∆
n (ĒG) of simplicial n-chains

(with Z-coefficients) in ĒG.

ZG-module morphisms Fn → A are constant on all G-orbits (since G acts trivially on A),

and the group ofG-equivariant simplicial cocycles in Cn
∆(ĒG,A) is isomorphic to Cn

∆(B̄G,A).

Hence, the isomorphism of the preceding paragraph yields

HomG(Fn, A) ≈ Cn
∆(B̄G,A). (5.8)

As depicted in the below diagram, we now have two complexes, with the upper produc-

ing H∗
gp(G,A) and the lower producing H∗(B̄G,A). This yields the isomorphism between

H2
gp(G,A) and H

2(B̄G,A) used in Theorem 5.3.1.

. . . HomG(Fn, A) HomG(Fn+1, A) . . .

. . . Cn
∆(B̄G,A) Cn+1

∆ (B̄G,A) . . .

≈ ≈

A basis of Fn as a ZG-module is Gn × {1G} ⊂ Gn+1, so HomG(Fn, A) is isomorphic to the

abelian group of set-maps Gn → A. We will use this identification throughout, so that the

simplicial cochain in Cn
∆(B̄G,A) corresponding (under (5.8)) to f : Gn → A is that which

takes the simplex with vertices g0, · · · , gn to f(g0g
−1
1 , · · · , gn−1g

−1
n ).

Proof of Theorem 5.3.1. Let f : G ∧ G → A be a 2-cocycle. Under the lower horizontal

composition in the diagram, the image of the class of f is represented by the cellular cocycle

fCW which sends the simplex with vertices g0, g1, g2 (viewed as a 2-cell) to f(g0g
−1
1 , g1g

−1
2 ).

Now we will construct a representative ϕ : B̄G→ B2A of (ε∗2)
−1[fCW] ∈ [B̄G,B2A]. For this

we first need to describe the cells of B̄G using characteristic maps In → B̄G instead of the

more familiar ∆n → B̄G (see (2.9)). This can be done by composing with the map

r : In → ∆n; (t1, · · · , tn) 7→ (t1 . . . tn, t2 . . . tn, · · · , tn),

so that the characteristic map of the n-cell with vertices g0, · · · , gn is given by composing

(2.9) with r. The construction of (ε∗n)
−1 described previously yields that the restriction

ϕ2 = ϕ|B̄2G is

ϕ2 : B̄2G→ B2A; [g0, s0, g1, s1, g2, s2] 7→
(
f(g0g

−1
1 , g1g

−1
2 ), s0

s0+s1
, s0 + s1

)
.
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Now, suppose ϕ′ : BG → B2A is a representative for α(f). The theorem will follow if we

show that ϕ′ ◦ Ψ̄|B̄2G ≈ ϕ2. Since Ψ̄(B̄2G) = B2G, it suffices to prove that

ϕ′
2 ◦ Ψ̄2 ≈ ϕ2, (5.9)

where Ψ̄2 = Ψ̄|B̄2G and ϕ′
2 = ϕ′|B2G. By Theorem 5.2.1 and (5.4), we may choose ϕ′ so

that ϕ′
2 is given by

ϕ′
2 : B2G→ B2A; (g1, t1)(g2, t2) 7→

(
f(g1, g2),

t1
t2
, t2

)
.

Composing with Ψ̄2 yields

ϕ′
2 ◦ Ψ̄2 : B̄2G→ B2A; [g0, s0, g1, s1, g2, s2] 7→

(
f(g0g

−1
1 , g1g

−1
2 ), s0

s0+s1
, s0 + s1

)
,

which in fact gives equality in (5.9).
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Chapter 6

Analogues of ι∗2 ◦ α in higher degrees

6.1 The successive quotients BnG/Bn−1G

In Section 5.1, we observed that there are homeomorphisms

B1G ∼= ΣG, and

B2G/B1G ∼= Σ2(G ∧G).

This generalizes — we have

BnG/Bn−1G ∼= ΣnG∧n, (6.1)

where G∧n is the n-fold smash product of G with itself. This holds for n = 1 too, since B0G

is a point. A homeomorphism can be constructed as follows, directly generalizing the form

that (5.2) takes. Consider the homeomorphism

µn : ∆n/∂∆n → In/∂In; (t1, · · · , tn) 7→
(
t1
t2
, · · · , tn−1

tn
, tn

)
, (6.2)

and define

qn : BnG→ ΣnG∧n; (g1, t1) · · · (gn, tn) 7→
(
g⃗, µn(⃗t )

)
.

Here, g⃗ = (g1, · · · , gn) ∈ Gn and t⃗ = (t1, · · · , tn) ∈ ∆n. It is left to the reader to verify that

this map is a quotient map, as was done for q = q2 in Section 5.1. It is clear that qn collapses

Bn−1G, and hence factors through (6.1).
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6.2 A topological counterpart to the coboundary op-

erator

Given an n-cochain f : G∧n → A, write Σnf for the map

ΣnG∧n → BnA; (g⃗, t⃗ ) 7→
(
f(g⃗), µn(⃗t )

)
.

The homotopy class of Σnf is the image of f under the composition

Cn
c (G,A) [G∧n, A]∗ [ΣnG∧n, BnA]≈ ,

where the first map takes homotopy classes and the second uses the isomorphism [−, A]∗
∼−→

[Σ−, BA] n times (see (5.1)). Composing with qn then gives a map

αn : Cn
c (G,A) → Hn(BnG,A).

With this notation, Theorem 5.2.1 can be rephrased as saying that ι∗2 ◦α is the restriction

of α2 to cocycles. For an n-cochain f , we also write αnf for the map

BnG→ BnA; (g1, t1) · · · (gn, tn) 7→
(
f(g⃗), µn(⃗t )

)
.

With δn : Hn(BnG,A) → Hn+1(Σn+1G∧(n+1), A) the connecting morphism from the long

exact sequence of cohomology for the pair (Bn+1G,BnG), we obtain the following square.

Cn
c (G,A) Bn+1

c (G,A)

Hn(BnG,A) Hn+1(Σn+1G∧(n+1), A)

δn

αn Σn+1

δn

(6.3)

Theorem 6.2.1. For n ≥ 1, the square (6.3) commutes up to a sign ϵn ∈ {−1, 1} (indepen-

dent of G and A), i.e., Σn+1 ◦ δn = ϵnδ
n ◦ αn.

Remark 6.2.2. The proof of the theorem will show that, with sufficient labor, it is possible

to determine ϵn (see Remark 6.2.12). We will not do this, however, since the precise value

of ϵn is immaterial for our purposes.

This theorem essentially gives an explicit formula for the connecting morphism δn :

Hn(BnG,A) → Hn+1(Σn+1G∧(n+1), A). Consequently, proving the theorem would require us
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to make explicit the data conveyed by the statement ‘(Bn+1G,BnG) is a cofibration’. This

is extremely difficult to do directly, so we instead translate the problem to one of giving an

explicit formula for the connecting morphism for a different cofibration which is easier to

work with.

Recall the quotient map kn+1 : Gn+1 × ∆n+1 → Dn+1G defined in [16], which satisfies

pG ◦kn+1(G
n×∂∆n+1) = BnG. Consider the following diagram, whose upper square is (6.3).

Cn
c (G,A) Bn+1

c (G,A)

Hn(BnG,A) Hn+1(Σn+1G∧(n+1), A)

Hn (Gn+1 × ∂∆n+1, A) Hn+1
(
Gn+1×∆n+1

Gn+1×∂∆n+1
, A
)

δn

αn Σn+1

δn

(pG◦kn+1)∗

δn

Here, the lowermost arrow denoted by δn comes from the long exact sequence of cohomology

for the pair (
Gn+1 ×∆n+1, G

n+1 × ∂∆n+1

)
.

The lower right vertical arrow is induced by the quotient map

Gn+1 ×∆n+1 → Σn+1G∧(n+1); (g⃗, t⃗ ) 7→
(
g⃗, µn+1(⃗t )

)
.

The lower square commutes (by naturality of the connecting morphism). If the lower-right

vertical arrow were injective, then showing that the upper square commutes up to a sign

would reduce to showing that the outer square (shown below) commutes up to a sign.

Cn
c (G,A) Bn+1

c (G,A)

Hn (Gn+1 × ∂∆n+1, A) Hn+1
(
Gn+1×∆n+1

Gn+1×∂∆n+1
, A
)

δn

δn

A moment’s thought should make the commutativity of this square believable — the left

vertical arrow ‘acts like’ the coboundary operator, and the lower horizontal arrow simply

raises the dimension by converting n-spheres to (n+1)-spheres. We provide a rigorous proof

at the end of this section. First, we produce a chain of lemmas to show that the requisite

injectivity indeed holds. Throughout this section, for based CG spaces (X, x0) and (Y, y0),
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we identify X and Y as subspaces of X × Y as x ∼ (x, y0) and y ∼ (x0, y) respectively.

Definition 6.2.3 (Fat wedge). For a based space X and integers 0 ≤ m ≤ n, the n-fold

m-fat wedge of X is the subspace Fatnm(X) ⊂ Xn consisting of points (x1, · · · , xn) ∈ Xn

with xi = x0 for at least n−m values of i. Note that Fatnm(X) is a CW complex if X is.

Remark 6.2.4. The quotient mapXn → X∧n induces a natural homeomorphism Xn

Fatnn−1(X)

∼−→
X∧n.

Lemma 6.2.5. Let X be a based space. Every based map Fatnm(X) → A extends to Xn.

Proof. Let x0 ∈ X be the base point. For each set S ⊂ [n] of size m, let pS : Xn → Fatnm(X)

be the map

(x1, · · · , xn) 7→ (y1, · · · , yn)

with yi = xi if i ∈ S and yi = x0 otherwise. Clearly, pS is continuous.

The proof of the lemma is by induction on m ∈ [n]0. For m = 0 the claim is trivial.

Now suppose the claim is true for some m ≥ 0 and we will prove it for m + 1. Let ϕ :

Fatnm+1(X) → A be based map and ψ : Fatnm → A be its restriction. Set

ϕ̃ :=
∏
S⊂[n]

|S|=m+1

ϕ ◦ pS : Xn → A, (6.4)

and let ψ̃ be an extension of ψ to Xn.

Note that if ψ ≡ 1A, then ϕ̃ an extension of ϕ to Xn (this follows directly from (6.4)).

We can use this to construct an extension of ϕ in general as follows. Let

ϕ′ = ϕ · ψ̃|−1
Fatnm+1(X)

(where ‘·’ and ‘−1’ are interpreted as pointwise operations done in A), so that

ϕ′|Fatnm(X) ≡ 1A.

Hence, ϕ′ has an extension ϕ̃′ : Xn → A as noted above. Now, ϕ̃′ · ψ̃ is an extension of ϕ.

Corollary 6.2.6. For X a based pCW complex, the restriction map H∗(Xn, A) → H∗(Fatnm(X), A)

is surjective in all degrees.

Corollary 6.2.7. For X a based pCW complex, the map H∗(X∧n, A) → H∗(Xn, A) induced

by the quotient map Xn → X∧n is injective in all degrees.
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Proof. Consider the following snippet of the long exact sequence of cohomology for the pair

(Xn,Fatnn−1(X)), keeping in mind that X∧n := Xn

Fatnn−1(X)
.

H∗−1(Xn, A) H∗−1(Fatnn−1(X), A) H∗(X∧n, A) H∗(Xn, A)

The leftmost arrow is surjective by Corollary 6.2.6, so the rightmost arrow is injective.

Lemma 6.2.8. Let X and Y be based pCW complexes. The map X×Y
Y

∪ CX → ΣX which

collapses X×Y
Y

is null-homotopic.

Proof. Let pX : X×Y
Y

→ X be the projection and consider the following maps.

H :
X × Y

Y
× I → ΣX; (z, t) 7→ (pX(z), t)

H ′ : CX × I → ΣX; (z, t) 7→ tz

The disjoint union H ⊔H ′ :
(
X×Y
Y

⊔ CX
)
× I → ΣX factors through

(
X×Y
Y

∪ CX
)
× I, and

this factor map is the desired null-homotopy.

Corollary 6.2.9. In the notation of the preceding lemma, the connecting morphism δ :

H∗(X,A) → H∗(X ∧ Y,A) from the long exact sequence of the pair
(
X×Y
Y
, X
)
is trivial.

Proof. Use the definition of the connecting morphism (see (2.20)) and the preceding lemma.

Corollary 6.2.10. Let X be a based pCW complex, d, n ≥ 1 and 0 ≤ m ≤ n. The map

H∗
(
Xn × Sd

Xn
, A

)
→ H∗

(
Fatnm(X)× Sd

Fatnm(X)
, A

)
induced by the natural inclusion

Fatnm(X)× Sd

Fatnm(X)
↪−→ Xn × Sd

Xn

is surjective in all degrees.

Proof. The rows of the following commutative diagram are snippets of the long exact se-

quences corresponding to the pairs
(
Xn×Sd

Xn , Sd
)
and

(
Fatnm(X)×Sd

Fatnm(X)
, Sd
)
, where we use the fact
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that Y ∧ Sd ∼= ΣdY for all based CG spaces Y . The vertical arrows are induced by the

obvious inclusion of pairs.

H∗(ΣdXn, A) H∗
(
Xn×Sd

Xn , A
)

H∗(Sd, A) H∗+1(ΣdXn, A)

H∗(Σd Fatnm(X), A) H∗
(

Fatnm(X)×Sd

Fatnm(X)
, A
)

H∗(Sd, A) H∗+1(Σd Fatnm(X), A)

The rightmost arrows of both rows are trivial by Corollary 6.2.9. The leftmost vertical

arrow is a surjection by Corollary 6.2.6, so the claim follows by the Four Lemma.

Corollary 6.2.11. Let X be a based pCW complex and n, d ≥ 1. The map

H∗(ΣdX∧n, A) → H∗
(
Xn ×∆d

Xn × ∂∆d

, A

)
induced by the quotient map

Xn ×∆d

Xn × ∂∆d

→ ΣdX∧n;
(
x⃗, t⃗
)
7→
(
x⃗, µd(⃗t )

)
is injective in all degrees.

Proof. We begin by observing that a choice of homeomorphism ∆d

∂∆d

∼= Sd induces a natural

homeomorphism
Y ×∆d

Y × ∂∆d

∼=
Y × Sd

Y
(6.5)

for all CG spaces Y . Furthermore, there is a natural homeomorphism(
Xn×Sd

Xn

)
(

Fatnn−1(X)×Sd

Fatnn−1(X)

) ∼= ΣdX∧n,

where
Fatnn−1(X)×Sd

Fatnn−1(X)
is identified as a subspace of Xn×Sd

Xn as in Corollary 6.2.10 (cf. Re-

mark 6.2.4). Hence, there is an exact sequence

H∗−1
(
Xn×Sd

Xn , A
)

H∗−1
(

Fatnn−1(X)×Sd

Fatnn−1(X)
, A
)

H∗(ΣdXn, A) H∗
(
Xn×Sd

Xn , A
)
.

The leftmost arrow is surjective byCorollary 6.2.10, so the rightmost arrow is injective.
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Proof of Theorem 6.2.1. As discussed in the beginning of this section, it suffices to show

that the following square commutes up to a sign (the requisite injectivity follows fromCorol-

lary 6.2.11). We replace n by n− 1 for convenience, so n ≥ 2.

Cn−1
c (G,A) Bn

c (G,A)

Hn−1 (Gn × ∂∆n, A) Hn
(
Gn×∆n

Gn×∂∆n
, A
)

δn−1

δn−1

(6.6)

Fix a continuous (n − 1)-cochain f : G∧(n−1) → A. We break the proof into several

parts, analyzing the journey of f along the various arrows in the above diagram. g⃗ =

(g1, · · · , gn) ∈ Gn and t⃗ = (t1, · · · , tn) ∈ ∆n denote general points. For 1 ≤ i ≤ n, write t⃗i

for (t1, · · · , t̂i, · · · , tn). Similarly,

g⃗i =


(g2, · · · , gn) i = 0

(g1, · · · , gi−1, gigi+1, gi+2, · · · , gn) 0 < i < n

(g1, · · · , gn−1) i = n

.

(a) Right-down: The right-down composition in the square takes f to the homotopy

class of the map f1 :
Gn×∆n

Gn×∂∆n
→ BnA given by

(g⃗, t⃗ ) 7→
(
δf(g⃗), µn(⃗t )

)
.

(b) For 0 ≤ i ≤ n, let σi : ∆n−1 → ∂∆n be the i-th face map, given by

(t1 · · · , tn−1) 7→


(0, t1, · · · , tn−1) i = 0

(t1, · · · , ti, ti, · · · , tn−1) 0 < i < n

(t1, · · · , tn−1, 1) i = n

.

We also use σi to denote the image of the map σi.

(c) Leftmost vertical: The leftmost vertical arrow in the square takes f to the homotopy
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class of the map f2 : G
n × ∂∆n → Bn−1A given by

(g⃗, t⃗ ) 7→


(
f(g⃗0), µn−1(⃗t1)

)
t ∈ σ0(

f(g⃗i), µn−1(⃗ti)
)

t ∈ σi for 0 < i ≤ n
.

(d) For X a based space and ζ : (∆n−1, ∂∆n−1) → X any map, write (σi)∗ζ for the unique

map (∂∆n, ∂∆n − σi) → X satisfying ζ = ((σi)∗ζ) ◦ σi. For X0 = ∆n−1/∂∆n−1 and

ζ0 : (∆n−1, ∂∆n−1) → X0 the quotient map, (σi)∗ζ0 can be viewed as a map from

one (n − 1)-sphere to another. An analysis of local degrees shows that the resulting

elements [(σi)∗ζ0] ∈ πn−1(S
n−1) ≈ Hn−1(S

n−1) satisfy

[(σi)∗ζ0] = (−1)i−j[(σj)∗ζ0]

(see [8, Proposition 2.30]).

(e) Let (∂∆n)
n−2 denote the (n − 2)-skeleton of ∂∆n. Let A′ be an abelian k-group and

ξ : (∂∆n, (∂∆n)
n−2) → A′ a map. Set ξi = ξ ◦ σi, so that

ξ =
n∏
i=0

(σi)∗ξi

with the product interpreted in A′. From part (d), it follows that ξ is homotopic to

(σ0)∗

n∏
i=0

(ξi)
(−1)i

with the exponents and product interpreted in A′. This construction is universal in

the sense that the set-map

Map
(
(∂∆n, (∂∆n)

(n−2)), A′)→ Map∗ (∂∆n, A
′) ; ξ 7→ (σ0)∗

n∏
i=0

(ξi)
(−1)i

is continuous and homotopic to the inclusion Map
(
(∂∆n, (∂∆n)

(n−2)), A′) ↪−→ Map∗ (∂∆n, A
′).

(f) Alternate description of leftmost vertical: Part (e) yields that f2 is homotopic
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to the map f3 : G
n × ∂∆n → Bn−1A given by

(g⃗, t⃗ ) 7→


(
δf(g⃗), µn−1(⃗t1)

)
t⃗ ∈ σ0

1Bn−1A t⃗ /∈ σ0
.

(g) We have homeomorphisms

ϕ1 : C̃∂∆n → ∆n; (⃗t, t) 7→ t · t⃗+ (1− t) ·
(

1

n+ 1
,

2

n+ 1
, · · · , n

n+ 1

)
,

ϕ2 : Σ̃∂∆n → ∆n ∪ C̃∂∆n; (⃗t, t) 7→

ϕ1(⃗t, 2t) t ≤ 1
2

(⃗t, 2− 2t) t ≥ 1
2

, and

ψ := ϕ2 ◦ ϕ−1
1 :

∆n

∂∆n

→ Σ̃∂∆n → ∆n ∪ C̃∂∆n.

Remark.
(

1
n+1

, 2
n+1

, · · · , n
n+1

)
is the image of the barycenter of ∆n under (2.8).

Clearly, ψ is a homotopy inverse of the map ∆n∪ C̃∂∆n → ∆n

∂∆n
which collapses C̃∂∆n.

Let R : ∆n → I be ‘radial’ component of ϕ−1
1 , given by the composition

∆n C̃∂∆n I.
ϕ−1
1

Similarly, write T (⃗t ) ∈ ∂∆n for the ‘transverse’ component of ϕ−1
1 (⃗t ) when R(⃗t ) > 0.

Hence,

ϕ−1
1 (⃗t ) = (T (⃗t ), R(⃗t ))

when R(⃗t ) > 0.

(h) To make the connecting morphism δn−1 in (6.6) explicit, we must produce an explicit

homotopy inverse

h :
Gn ×∆n

Gn × ∂∆n

→ (Gn ×∆n) ∪ C̃(Gn × ∂∆n)

of the map

(Gn ×∆n) ∪ C̃(Gn × ∂∆n) →
Gn ×∆n

Gn × ∂∆n

(6.7)

which collapses C̃(Gn × ∂∆n) (see (2.20)). Viewing (Gn × ∆n) ∪ C̃(Gn × ∂∆n) as a
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quotient of Gn × (∆n ∪ C̃∂∆n), we define

h : (g⃗, t⃗ ) 7→ (g⃗, ψ(⃗t )).

It is not hard to see that h is a homotopy inverse of (6.7) and also a homeomorphism.

(i) Down-right: We wish to produce a representative for the class δn−1[f3]. This is the

composition

f4 :
Gn×∆n

Gn×∂∆n
(Gn ×∆n) ∪ C̃(Gn × ∂∆n) Σ̃(Gn × ∂∆n) BnA.h Σf3

Explicitly, we have

f4 : (g⃗, t⃗ ) 7→

1BnA R(⃗t ) ≤ 1
2(

f3
(
g⃗, T (⃗t )

)
, 2− 2R(⃗t )

)
R(⃗t ) ≥ 1

2

=

1BnA R(⃗t ) ≤ 1
2
or T (⃗t ) /∈ σ0(

δf(g⃗), µn−1(T (⃗t )1), 2− 2R(⃗t )
)

R(⃗t ) ≥ 1
2
and T (⃗t ) ∈ σ0

,

where T (⃗t )1 is T (⃗t ) with the first coordinate omitted.

(j) Consider the map

ρ : ∆n/∂∆n → In/∂In; t⃗ 7→

∂In/∂In R(⃗t ) ≤ 1
2
or T (⃗t ) /∈ σ0(

µn−1(T (⃗t )1), 2− 2R(⃗t )
)

R(⃗t ) ≥ 1
2
and T (⃗t ) ∈ σ0

.

ρ is injective on ρ−1(In−∂In) and µn is injective on µ−1
n (In−∂In), so either [ρ] = [µn]

or [ρ] = −[µn] as classes in πn(I
n/∂In) (see [8, Proposition 2.30]). Let ϵn−1 ∈ {±1} so

that [ρ] = ϵn−1[µn].

Remark 6.2.12. To calculate ϵn−1, one must compare the signs of the determinants of the

derivatives of ρ and µn (viewed as linear maps Rn → Rn in the obvious way) at a generic

point t⃗ ∈ ∆n − ∂∆n with R(⃗t ) ≥ 1
2
and T (⃗t ) ∈ σ0. Here, a ‘generic’ point is one at which

the derivatives of ρ and µn are non-singular (such a point exists by Sard’s Theorem).

From part (j), it follows that ϵn−1[f1] = [f4] as classes in H
n
(
Gn×∆n

Gn×∂∆n
, A
)
.
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Corollary 6.2.13. αn is trivial on n-cochains which are homotopic to a coboundary. In

particular, restricting and factoring αn yields a map αn : Hn
c (G,A) → Hn(BnG,A) whose

kernel contains cohomology classes with null-homotopic representatives.

Proof. The proof follows by chasing the following diagram, which commutes up to sign (by

Theorem 6.2.1) and has an exact lower row.

Cn−1
c (G,A) Bn

c (G,A) Cn
c (G,A)

Hn−1(Bn−1G,A) Hn(ΣnG∧n, A) Hn(BnG,A)

αn−1

δn−1

Σn αn
Σn

δn−1 q∗n

6.3 Determining kerαn

Corollary 6.2.13 says that

Hn
c (G,PA,ΩA) Hn

c (G,A) Hn(BG,A)
αn (6.8)

is a chain complex. Phrased this way, it is natural to ask whether the above sequence is also

exact — does every class in kerαn ⊂ Hn
c (G,A) have a null-homotopic representative? We

show that an affirmative answer is equivalent to the following conjecture with A′ = Bn−1A.

Conjecture 6.3.1. A map Bn−2G→ A′ extends to Bn−1G if and only if it extends to BnG.

Theorem 6.3.2. For fixed G, A, and n ≥ 2, Conjecture 6.3.1 holds with A′ = Bn−1A if

and only if every n-cochain in kerαn is homotopic to a coboundary. In particular, Conjec-

ture 6.3.1 implies that (6.8) is exact — a cohomology class in Hn
c (G,A) lies in kerαn if

and only if it has a null-homotopic representative.

Remark 6.3.3. It is immediate that every 1-cochain in kerα1 is homotopic to a coboundary

since q1 : B1G→ ΣG is a homeomorphism.

An alternative formulation of Conjecture 6.3.1 is

Conjecture 6.3.4. A map Bn−2G→ A′ extends to Bn−1G if and only if it extends to BG.

For fixed G and A′, Conjecture 6.3.1 holds for all n ≥ 2 if and only ifConjecture 6.3.4

holds for all n ≥ 2. However, if n is also fixed, then Conjecture 6.3.4 is stronger than

Conjecture 6.3.1.
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Proof of Theorem 6.3.2. The proof essentially follows from chasing the diagram

Cn−1
c (G,A) Cn

c (G,A)

Hn−1(Σn−1G∧(n−1), A) Hn−1(Bn−1G,A) Hn(ΣnG∧n, A) Hn(BnG,A)

αn−1

δ

Σn−1 αn
Σn

q∗n−1 δn−1 q∗n

,

which commutes up to sign byTheorem 6.2.1. Here, we write δ for the coboundary operator

and δn−1 for the connecting morphism to disambiguate notation. Since kerΣn consists of

precisely the null-homotopic n-cochains (see (5.1)), we wish to show that

kerαn = kerΣn + im δ (6.9)

if and only if Conjecture 6.3.1 holds. By commutativity, (6.9) is equivalent to

ker q∗n = im δ ◦ Σn. (6.10)

The bottom row is exact at Hn(ΣnG∧n, A), so (6.10) is equivalent to

im δn−1 = im δ ◦ Σn. (6.11)

Once again alluding to commutativity, together with the surjectivity of Σn−1, (6.11) is equiv-

alent to

im δn−1 = im δn−1 ◦ q∗n−1,

which is further equivalent to

ker δn−1 + im q∗n−1 = Hn−1(Bn−1G,A). (6.12)

Now, let ῑj : BjG ↪−→ Bj+1G be the inclusion. Using the long exact sequences of cohomology

for the pairs (Bn−2G,Bn−1G) and (Bn−1G,BnG), (6.12) can be seen to be equivalent to

im ῑ∗n−1 + ker ῑ∗n−2 = Hn−1(Bn−1G,A).

Upon applying ῑ∗n−2 to both sides, the theorem follows.

Corollary 6.3.5. A cohomology class lies in ker(ι∗2 ◦ α) ⊂ H2
c (G,A) if and only if it has a

null-homotopic representative.
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Proof. Conjecture 6.3.1 is vacuously true for n = 2, so the corollary follows from Theo-

rem 6.3.2 and the fact that ι∗2 ◦ α = α2 on 2-cocycles.

6.4 Some simple cases of the conjecture

By Theorem 4.3.2, proving Theorem 4.3.2 for all abelian k-groups A′ reduces to proving

it in the discrete case. To be precise, for given G and n ≥ 2, proving the following for all

discrete abelian groups A and all d ≥ 0 would prove Conjecture 6.3.1.

Conjecture 6.4.1. For A a discrete abelian group, the restriction maps Hd(Bn−1G,A) →
Hd(Bn−2G,A) and H

d(BnG,A) → Hd(Bn−2G,A) have the same image.

Here are some cases where the above is immediate.

Theorem 6.4.2. Conjecture 6.4.1 holds when

1. G is discrete,

2. G = S1 or G = S3, or

3. d ≤ n− 2.

In particular, Conjecture 6.3.1 and Conjecture 6.3.4 hold when G is discrete, G = S1,

or G = S3.

Proof. The case of G discrete is immediate upon considering the cases d ≤ n− 3, d = n− 2,

and d ≥ n− 1 separately.

If G = S1, then BnG ∼= CP n has a cell in each even dimension ≤ 2n. Likewise, if G = S3,

then BnG ∼= HP n has a cell in each dimension ≤ 4n that is a multiple of 4. Hence, the

restriction map Hd(BmG,A) → Hd(Bm−1G,A) is either 0 or an isomorphism for eachm ≥ 1.

If d ≤ n − 2, then both the maps in Conjecture 6.4.1 are isomorphisms by Corol-

lary 9.1.4.

What Conjecture 6.3.4 is to Conjecture 6.3.1, the following is to Conjecture 6.4.1.

Conjecture 6.4.3. For A a discrete abelian group, the restriction maps Hd(Bn−1G,A) →
Hd(Bn−2G,A) and H

d(BG,A) → Hd(Bn−2G,A) have the same image.

To be precise, for fixed G, A, and d ≥ 0, Conjecture 6.4.1 holds for all n ≥ 2 if and only

if Conjecture 6.4.3 holds for all n ≥ 2. However, if n is also fixed, then Conjecture 6.4.3

is stronger than Conjecture 6.4.1.
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6.5 Some examples

Example 6.5.1. Suppose G = S1 or G = S3, i.e., the underlying space of G is a sphere.

Hence, G∧(n−1) and G∧n are spheres of different dimensions. In particular, for any d ≥ 0

and discrete abelian group A′, at least one of Hd(G∧(n−1), A′) and Hd(G∧n, A′) must be

trivial. Consequently, Theorem 4.3.2 yields that all n-coboundaries are null-homotopic.

By Theorem 6.3.2 and Theorem 6.4.2, kerαn ⊂ Cn
c (G,A) consists of precisely those

n-cochains which are null-homotopic. In other words,

kerαn = Cn
c (G,PA,ΩA).

Example 6.5.2. Let us examine the map induced by a non-normalized 2-cocycle f : G×G→
A on homotopy groups. Fix n ≥ 1 and let ϕ1, ϕ2 : πn(G) → πn(A) be the maps induced by

G G×G A
f

,

where G ↪−→ G×G varies over the two axial inclusions. The cocycle condition

f(x, y) + f(xy, z) = f(y, z) + f(x, yz)

yields the following for all a, b, c ∈ πn(G).

ϕ1(a) + ϕ2(b) + ϕ1(a+ b) + ϕ2(c) = ϕ1(b) + ϕ2(c) + ϕ1(a) + ϕ2(b+ c).

Setting b = c = 0 yields ϕ1(a) = 0 for all a, and setting a = b = 0 yields ϕ2(c) = 0 for all c.

Hence, πn(f) = 0 — f is trivial on all homotopy groups.

When A has a weakly contractible universal covering and G is connected, this implies

that f must be null-homotopic. By Corollary 6.2.7, all normalized 2-cocycles must also

be null-homotopic in this case. Hence, ι2 ◦α is trivial on continuous cohomology in this case

(by Corollary 6.3.5).

Example 6.5.3. Suppose G = BA1 and A = B2A2 for discrete abelian groups A1 and A2,

with A2 written additively. We will find the image of the map B2
c (G,A) → [G∧G,A]∗. This

will be used in the next example to produce an element of H2
c (G,A) which is not in kerα

(for certain choices of A1 and A2).
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First, we examine the homotopy classes of maps G→ A. We have

[G,A]∗ = H2(BA1, A2)

≈ H2
gp(A1, A2),

with an isomorphism given by αA1,A2 : H
2
gp(A1, A2) → H2(BA1, A2) (see Corollary 5.3.2).

Hence, every 1-cochain f : G → A is homotopic to a map f ′ : G → A whose restriction to

the 2-skeleton B2A1 of G is

B2A1 → A; (a1, t1)(a2, t2) 7→ (h(a1, a2), µ2(t1, t2)) , (6.13)

for some 2-cocycle h ∈ Z2
gp(A1, A2). We wish to understand the homotopy class of δf ≈ δf ′,

for which it suffices to examine (δf ′)|B1A1∧B1A1 (since B1A1∧B1A1 is the 2-skeleton of G∧G).

B1A1 = ΣA1 is a wedge of circles (one circle for each non-trivial element of A1), so

B1A1 ∧ B1A1 is a wedge of 2-spheres (one 2-sphere for each ordered pair of non-trivial

elements of A1). The characteristic map for the 2-cell corresponding to (a1, a2) ∈ A1 ×A1 is

e2a,b : I
2 → BA1 ∧BA1; (s1, s2) 7→ ((a1, s1), (a2, s2)).

Hence, it suffices to examine the map

(δf ′) ◦ e2a,b : I2/∂I2 → A

for non-trivial a, b ∈ A1. By (6.13), we have

(δf ′) ◦ e2a,b(s1, s2) = δf ′((a1, s1), (a2, s2))

= f ′(a1, s1) + f ′(a2, s2)− f ′((a1, s1)(a2, s2))

=

(−h(a1, a2), µ2(s1, s2)) s1 ≤ s2

(−h(a2, a1), µ2(s2, s1)) s1 ≥ s2
. (6.14)
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It is not hard to see that the homotopy classes of the two maps I2/∂I2 → I2/∂I2 given by

(s1, s2) 7→

µ2(s1, s2) s1 ≤ s2

∂I2/∂I2 s1 ≥ s2
and (6.15)

(s1, s2) 7→

∂I2/∂I2 s1 ≤ s2

µ2(s2, s1) s1 ≥ s2

are negatives of each other (in π2(I
2/∂I2)). Also, (6.15) is homotopic to idI2/∂I2 . Hence,

(6.14) yields that δf ′ ◦ e2a,b is homotopic to the map

(s1, s2) 7→ (h(a2, a1)− h(a1, a2), s1, s2).

Putting this together over all 2-cells of G shows that the homotopy class of (δf ′)|B1A1∧B1A1

is the image of the 2-cocycle1

A1 ∧ A1 → A2; (a1, a2) 7→ h(a2, a1)− h(a1, a2) (6.16)

under the map

W : Z2
gp(A1, A2) → [B1A1 ∧B1A1, A]∗;h

′ 7→ [((a1, s1), (a2, s2)) 7→ (h′(a1, a2), s1, s2)].

Here is a succinct reformulation of the above. Write ρ for the involution Z2
gp(A1, A2) →

Z2
gp(A1, A2) induced by interchanging the two coordinates of A1 ∧ A1. The following com-

mutes.

Z2
gp(A1, A2) Z2

gp(A1, A2) [B1A1 ∧B1A1, A]∗

H2
gp(A1, A2) [G,A]∗ [G ∧G,A]∗

ρ−id W

αA1,A2

≈
δ2

(6.17)

Here, δ2 denotes the coboundary operator acting on homotopy classes as [f ] 7→ [δf ], the

vertical inclusion restricts to the 2-skeleton, and W is injective because h′ 7→ π2(W (h′))

is.

Example 6.5.4. Let A′ = Z/nZ (n ≥ 2) or A′ = Z. Set G = BA′ and A = B2A′. We will

produce a 2-cocycle f : G∧G→ A which is not homotopic to a coboundary, so that f /∈ kerα

1h being a cocycle implies that (a1, a2) 7→ h(a2, a1) is a cocycle since A1 is abelian. Hence, (6.16) is also
a cocycle.
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by Corollary 6.3.5. The construction builds on the 2-cocycle A′ ∧ A′ → A′; (a, b) 7→ ab

(where ab is the product in A′ as a ring).

We define f as follows, recalling that every element of BA′ can be written as
ℓ∏
i=1

(ai, si)

for some ℓ ≥ 0 and (ai, si) ∈ A′ × I (we do not require that s1 ≤ . . . ≤ sℓ since BA′ is

abelian).

f :

(
ℓ∏
i=1

(ai, si),
m∏
j=1

(bj, tj)

)
7→

∏
1≤i≤ℓ
1≤j≤m

(aibj, si, tj).

To see that f is well-defined and continuous, observe that the following hold for all a, b ∈ A′

and s, t ∈ I.

f(x(0, s), y) = f(x, y),

f(x, y(0, s)) = f(x, y),

f(x(a, 0), y) = f(x(a, 1), y) = f(x, y),

f(x, y(a, 0)) = f(x, y(a, 1)) = f(x, y),

f(x(a, s)(b, s), y) = f(x(a+ b, s), y),

f(x, y(a, s)(b, s)) = f(x, y(a+ b, s)), and

f(x, 1G) = f(1G, y) = 1A.

A straightforward computation shows that f is also a cocycle. To show that f is not ho-

motopic to a coboundary, first observe that all central extensions of A′ by itself are abelian.

Hence, the involution ρ : Z2
gp(A

′, A′) → Z2
gp(A

′, A′) from Example 6.5.3 is the identity

map and all coboundaries in B2
c (G,A) are null-homotopic (by the commutativity of (6.17)).

Hence, f is not homotopic to a coboundary if and only if it is not null-homotopic.

We will now show that π2(f) is non-trivial. Indeed, consider the following representative

of a class in π2(G ∧G).

λ : I2 → G ∧G; (s, t) 7→ ((1, s), (1, t)).

f ◦ λ represents the image of 1 ∈ A′ under the isomorphism A′ ∼−→ π2(B
2A′) (see (2.5)), so

the claim follows.

Example 6.5.5. Let A′ be a discrete abelian group (written additively) such that there

exist a0, b0 ∈ A′ with a0 ⊗ b0 ̸= −b0 ⊗ a0 in A
′ ⊗A′ (for instance, A′ being finitely generated
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with order at least 3 works). Set G = BA′ and A = B2(A′ ⊗ A′). We will produce a

2-cocycle f : G ∧ G → A which is not homotopic to a coboundary, so that f /∈ kerα by

Corollary 6.3.5. The construction builds on the 2-cocycle A′∧A′ → A′⊗A′; (a, b) 7→ a⊗ b.
Analogous to the preceding example, we define

f :

(
ℓ∏
i=1

(ai, si),
m∏
j=1

(bj, tj)

)
7→

∏
1≤i≤ℓ
1≤j≤m

(ai ⊗ bj, si, tj).

To see that f is well-defined and continuous, observe that the following hold for all a, b ∈ A′

and s, t ∈ I.

f(x(0A′ , s), y) = f(x, y),

f(x, y(0A′ , s)) = f(x, y),

f(x(a, 0), y) = f(x(a, 1), y) = f(x, y),

f(x, y(a, 0)) = f(x, y(a, 1)) = f(x, y),

f(x(a, s)(b, s), y) = f(x(ab, s), y),

f(x, y(a, s)(b, s)) = f(x, y(ab, s)), and

f(x, 1G) = f(1G, y) = 1A.

A straightforward computation shows that f is also a cocycle.2 To show that f is not

homotopic to a coboundary, first observe that 2-coboundaries G ∧ G → A are fixed under

composition with the involution r : G ∧G → G ∧G; (g1, g2) 7→ (g2, g1) (since G is abelian).

Hence, f is not homotopic to a 2-coboundary if f ̸≈ f ◦ r.
We will now show that π2(f) ̸= π2(f ◦ r). Indeed, consider the following representative

of a class in π2(G ∧G).

λ : I2 → G ∧G; (s, t) 7→ ((a0, s), (b0, t)).

f ◦λ represents the image of a0⊗ b0 under the isomorphism A′⊗A′ ∼−→ π2 (B
2(A′ ⊗ A′)) (see

(2.5)). Likewise, f ◦ r ◦ λ represents the image of −b0 ⊗ a0 under said isomorphism. Hence,

the claim follows from the fact that a0 ⊗ b0 ̸= −b0 ⊗ a0.

Example 6.5.6. The general form taken by G and A in the preceding example, namely

2Actually, BA′ ⊗ BA′ and B2(A′ ⊗ A′) are isomorphic as abstract groups — x ⊗ y 7→ f(x, y) is an
isomorphism. Hence, f is is also of the form (a, b) 7→ a⊗ b.
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G = BA′ and A = B2(A′ ⊗ A′), can be generalized. The techniques used in that example

also work for G = BdA′ and A = B2d(A′ ⊗ A′) with d odd.

Example 6.5.7. Let G = Z/mZ (m ≥ 2) and A = S1. Let f : G → A;x 7→ e
2πix
m be the

canonical inclusion. Clearly, f is a null-homotopic group homomorphism and hence lies in

the kernel of α1 = ι∗1 ◦ B : H1
c (G,A) → H1(B1G,A). However, [Bf ] ∈ H1(BG,A) is not

trivial — see Example 7.5.2.
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Chapter 7

Analogues of α in higher degrees

When G and A are discrete, it is not hard to see, using the techniques of Section 5.3, that

the composition

Hn
gp(G,A) Hn(B̄G,A) Hn(BG,A) Hn(BnG,A)

≈ (Ψ̄∗)−1

is the same as αn. In particular, for f ∈ Zn
c (G,A) a cocycle, the cohomology class αnf ∈

Hn(BnG,A) extends to BG. In this chapter, we will show that this holds in general, without

the assumption that G and A are discrete.

When G and A are discrete, the restriction map Hn(BG,A) → Hn(Bn+1G,A) is an

isomorphism. Hence, in this case, αnf (as above) extends to BG if and only if it extends to

Bn+1G. This line of reasoning fails for general G and A, but nonetheless it is instructive to

first try extending αnf to Bn+1G in the general set up. We begin with the ansatz that the

desired extension of αnf to Bn+1G takes the form

F : (g1, t1) · · · (gn+1, tn+1) 7→
n+1∏
i=1

(
xi(g⃗), µn(⃗ti)

)
for some continuous maps xi : G

∧(n+1) → A. Here, we have borrowed notation from Chapter 6

— g⃗ = (g1, · · · , gn+1) ∈ Gn+1 and t⃗ = (t1, · · · , tn+1) ∈ ∆n+1 are general points. Since F
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extends αnf , we must have

F (g⃗, t⃗ ) =


αnf

(
g⃗0, t⃗1

)
0 = t1

αnf
(
g⃗i, t⃗i

)
ti = ti+1 for 0 < i < n+ 1

αnf
(
g⃗n+1, t⃗n+1

)
tn+1 = 1

, (7.1)

where points in BnG and Bn+1G are viewed as points inGn×∆n andG
n+1×∆n+1 respectively

for notational simplicity. This imposes the following equations on the xi’s.

x1 (g⃗) = f (g⃗0) ,

xi (g⃗)xi+1 (g⃗) = f (g⃗i) for 0 < i < n+ 1, and

xn+1 (g⃗) = f (g⃗n+1) .

(7.2)

This is essentially a system of n+1 linear equations in n unknowns, so it is over-determined.

However, it has a unique solution given by

xi (g⃗) :=
i−1∏
j=0

f (g⃗j)
(−1)i+j+1

for 0 ≤ i ≤ n+ 1.

The fact that this solution works is equivalent to the cocycle condition on f :

xn+1 (g⃗) = f (g⃗n+1) =
n∏
j=0

f (g⃗j)
(−1)n+j

.

One checks that the resulting map F : Bn+1G → BnA is well-defined. In particular, if

gi = 1G for some i ∈ [n+ 1], then

F
(
g⃗, t⃗
)
= αnf

(
g⃗i, t⃗i

)
.

One could similarly use the ansatz

(g1, t1) · · · (gn+1, tn+2) 7→
∏

1≤i<j≤n+2

(
xi,j(g⃗), µn(⃗ti,j)

)
(7.3)

for an extension of F to Bn+2G, where t⃗i,j := (t1, · · · , t̂i, · · · , t̂j, · · · , tn+2). The analogue of

(7.1) then yields a system of linear equations for the xi,j’s in terms of the xi’s (analogous

to (7.2)), although it is once again over-determined. Hence, a non-trivial check needs to
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be done to ensure that a solution exists and that the resulting map (7.3) is well-defined.

This process gets harder when one tries to extend to Bn+3G,Bn+4G, · · · . This calls for a

systematization of the above ansatz, which we now do.

7.1 Formalizing the ansatz

Throughout this section, A is written additively. Let S denote an arbitrary finite (possibly

empty) subset of N0, the non-negative integers. If i ∈ S, write dsciS for the i-th descent of

S, defined as

dsciS := {j ∈ S | j < i} ∪ {j − 1 | j ∈ S, j > i}.

If i ∈ S and i− 1 /∈ S, write repiS for the i-th replacement of S, defined as

repiS := S − {i} ∪ {i− 1}.

If |S| ≥ 2, write D(S) for the difference between the largest and second-largest elements

of S. If S is singleton, then D(S) will denote the sole element of S. For S non-empty,

let M(S) and m(S) be the maximum and minimum elements of S respectively. Let S ′ =

S − {M(S)} = dscM(S)S.

Let G be the subspace of GN0 consisting of tuples with all but finitely many coordinates

trivial. For i ≥ 0, define

di : G → G; (g0, g1, · · · ) 7→ (g1, · · · , gi−1, gigi+1, gi+2, · · · ).

Note that

di ◦ dj = dj−1 ◦ di for 0 ≤ i < j. (7.4)

To each finite S ⊂ N0, we associate an ‘unknown’ continuous map xS : G → A on which the

following equations are imposed for i ≥ 1.

xS = xdsciS ◦ di−1 if i, i− 1 ∈ S, and (7.5)

xS + xrepiS = xdsciS ◦ di−1 if i ∈ S and i− 1 /∈ S. (7.6)
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Remark 7.1.1. For m ≥ 1, these equations come from the ansatz

(g1, t1) · · · (gn+m, tn+m) 7→
∏

S⊂[n+m]
|S|=m

(
xS(g⃗), µn(⃗tS)

)

for an extension of αnf to Bn+mG, and are analogous to Equation (7.2). Here, t⃗S denotes t⃗

with coordinates indexed by elements of S dropped. In analogy with (7.1), (7.5) and (7.6)

come from the case of ti−1 = ti (which is interpreted as 0 = t1 for i = 1 and tn+m = 1 for

i = n+m+ 1). This remark will be formalized in Section 7.2, but for now the reader shall

regard it only as motivation for the algebra that follows.

Proposition 7.1.2. If x∅ is fixed and x{0} ≡ 0, then for each finite S ⊂ N0 there exists

unique xS so that (7.5) and (7.6) are satisfied.

Proof. We will first define xS by inducting on |S|, and then show that (7.5) and (7.6) are

satisfied. Uniqueness will be clear from the fact that our definition of the xS is forced on

us by special cases of (7.5) and (7.6) (see Case 1 below). For S non-empty, we define xS

inductively as

xS :=

D(S)∑
j=1

(−1)j−1xS′ ◦ dM(S)−j. (7.7)

We now show that this definition satisfies (7.5) and (7.6) by inducting on |S|, with the base

case of |S| = 1 being easy to verify (here one uses that x{0} = 0). Hence, suppose |S| > 1

and i ∈ S is positive. We will show that xS satisfies (7.5) if i− 1 ∈ S and (7.6) otherwise.

• Case 1: i =M(S).

In this case, the claim is immediate from the definition of xS.

• Case 2: i < M(S) and i− 1 ∈ S.

First, observe that

(dsciS)
′ = dsciS

′,

D(dsciS) = D(S), and

M(dsciS) =M(S)− 1.

(7.8)

86



Next, (7.7) yields

xS =

D(S)∑
j=1

(−1)j−1xS′ ◦ dM(S)−j

=

D(S)∑
j=1

(−1)j−1xdsciS′ ◦ di−1 ◦ dM(S)−j (using (7.5) for S ′ and i)

=

D(S)∑
j=1

(−1)j−1xdsciS′ ◦ dM(S)−j−1 ◦ di−1 (by (7.4))

=

D(dsciS)∑
j=1

(−1)j−1x(dsciS)′ ◦ dM(dsciS)−j ◦ di−1 (by (7.8))

= xdsciS ◦ di−1 (by (7.7) for dsciS, which is non-empty),

as desired.

• Case 3: i < M(S)−D(S) (i.e., i is neither the largest nor the second-largest element

of S) and i− 1 /∈ S.

First, observe that

(repiS)
′ = repiS

′,

D(repiS) = D(S),

(dsciS)
′ = dsciS

′,

M(dsciS) =M(S)− 1, and

D(dsciS) = D(S).

(7.9)
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Hence, (7.7) yields

xS + xrepiS =

D(S)∑
j=1

(−1)j−1
(
xS′ + xrepiS′

)
◦ dM(S)−j

=

D(S)∑
j=1

(−1)j−1xdsciS′ ◦ di−1 ◦ dM(S)−j (using (7.6) for S ′ and i)

=

D(S)∑
j=1

(−1)j−1xdsciS′ ◦ dM(S)−j−1 ◦ di−1 (using (7.4))

=

D(dsciS)∑
j=1

(−1)j−1x(dsciS)′ ◦ dM(dsciS)−j ◦ di−1 (using (7.9))

= xdsciS ◦ di−1 (by (7.7) for dsciS, which is non-empty),

as desired.

• Case 4: i =M(S)−D(S) (i.e., i is the second-largest element of S) and i− 1 /∈ S.

First, observe that

(repiS)
′ = repiS

′,

D(repiS) = D(S) + 1,

(dsciS)
′ = dsciS

′,

M(dsciS) =M(S)− 1,

D(dsciS) = D(S) +D(S ′)− 1 ≥ D(S), and

M(repiS)−D(repiS) = i− 1.

(7.10)

Hence, (7.7) yields

xS + xrepiS =

D(S)∑
j=1

(−1)j−1xS′ ◦ dM(S)−j +

D(repiS)∑
j=1

(−1)j−1xrepiS′ ◦ dM(repiS)−j

=

D(S)∑
j=1

(−1)j−1
(
xS′ + xrepiS′

)
◦ dM(S)−j + (−1)D(S)xrepiS′ ◦ di−1 (by (7.10)).

(7.11)
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We temporarily denote the summation in the above expression by T . We have

T =

D(S)∑
j=1

(−1)j−1xdsciS′ ◦ di−1 ◦ dM(S)−j (using (7.6) for S ′ and i)

=

D(S)∑
j=1

(−1)j−1xdsciS′ ◦ dM(S)−j−1 ◦ di−1 (using (7.4))

=

D(dsciS)∑
j=1

(−1)j−1x(dsciS)′ ◦ dM(dsciS)−j ◦ di−1

−
D(dsciS)∑
j=D(S)+1

(−1)j−1xdsciS′ ◦ dM(dsciS)−j ◦ di−1 (by (7.10)).

Using (7.7) for dsciS (which is non-empty) on the first summation and making a change

of variable in the second summation, we obtain

T = xdsciS ◦ di−1 − (−1)D(S)

D(dsciS)−D(S)∑
j=1

(−1)j−1xdsciS′ ◦ dM(dsciS)−D(S)−j ◦ di−1

= xdsciS ◦ di−1 − (−1)D(S)

D(S′)−1∑
j=1

(−1)j−1xdsciS′ ◦ dM(dsciS)−D(S)−j ◦ di−1 (by (7.10)).

(7.12)

We have

M(dsciS)−D(S) =M(S)− 1−D(S) (by (7.10))

= i− 1 (by definition of D(S) and choice of i)

=M(repiS
′),

dsciS
′ = (repiS

′)′, and

D(S ′)− 1 = D(repiS
′),

so (7.12) yields

T = xdsciS ◦ di−1 − (−1)D(S)

D(repiS
′)∑

j=1

(−1)j−1x(repiS′)′ ◦ dM(repiS
′)−j ◦ di−1

= xdsciS ◦ di−1 − (−1)D(S)xrepiS′ ◦ di−1 (using (7.7) on repiS
′, which is non-empty).
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Plugging the above into (7.11) yields the desired result.

Corollary 7.1.3. If x∅ is fixed and x{0} ≡ 0, then xS ≡ 0 whenever 0 ∈ S.

Proof. The claim is vacuous for |S| = 1. Hence, the corollary follows from (7.7) using

induction.

Now fix n ≥ 1 and a cochain f ∈ Cn
c (G,A). Write xSf for the map xS given by (7.7)

when x{0} ≡ 0 and x∅ is chosen as

x∅ : G → A; (g0, g1, · · · ) 7→ f(g1, · · · , gn).

By induction on |S| (with base case |S| = 0), it is easy to see that xSf is only a function of

the coordinates indexed by [n+ |S|], i.e.,

xSf(g0, g1, · · · ) = xSf(1G, g1, g2, · · · , gn+|S|, 1G, 1G, · · · ).

Hence, we will view xSf as a map Gn+|S| → A by embedding Gn+|S| in G as

(g1, · · · , gn+|S|) 7→ (1G, g1, · · · , gn+|S|, 1G, 1G, · · · ).

Note that the set-map Cn
c (G,A) → Map(Gn+|S|, A); f 7→ xSf is a group homomorphism (the

topology of Map(Gn+|S|, A) is irrelevant here).

Lemma 7.1.4. If M(S) = n+ |S|+ 1 ∈ S, then

xSf = (−1)n+1xS′(δf).

Proof. The proof proceeds by induction on |S|.

• Base case: |S| = 1.

We have S = {n+ 2}, so (7.7) yields

xSf =
n+2∑
j=1

(−1)j−1x∅f ◦ dn+2−j

= (−1)n+1δf

= (−1)n+1x∅(δf).
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• Induction step: |S| > 1.

We use induction on m(S), with the base case of m(S) = 0 following from Corol-

lary 7.1.3. For m(S) > 1, we have

xSf = xdscm(S)Sf ◦ dm(S)−1 − xrepm(S)Sf (by (7.6))

= (−1)n+1
(
xdscm(S)S

′(δf) ◦ dm(S)−1 − xrepm(S)S
′(δf)

)
(by the induction hypotheses)

= (−1)n+1xS′(δf) (by (7.6)).

Here we have used that (dscm(S)S)
′ = dscm(S)S

′ and (repm(S)S)
′ = repm(S)S

′, which

follow from the fact that |S| > 1.

Corollary 7.1.5. If f is a cocycle and M(S) = n+ |S|+ 1, then xS ≡ 0.

Proof. Use Lemma 7.1.4 and the linearity of f 7→ xSf .

Lemma 7.1.6. If gi = 1G for some i ∈ [n+ |S|], then

xSf(g1, · · · , gn+|S|) =

xdsciSf ◦ di−1(g1, · · · , gn+|S|) i ∈ S

0 i /∈ S
.

Proof. The proof proceeds by induction on |S|, with the base case of |S| = 0 immediate from

fact that f has domain G∧n. Now suppose |S| ≥ 1.

• Case 1: i =M(S).

We have

xS′f ◦ dM(S)−j(g1, · · · , gn+|S|) = 0 for j > 1

by the induction hypothesis, so the claim follows by (7.7).

• Case 2: i < M(S)−D(S) and i /∈ S.

We have

xS′f ◦ dM(S)−j(g1, · · · , gn+|S|) = 0 for 1 ≤ j ≤ D(S)

by the induction hypothesis, so the claim follows by (7.7).

• Case 3: i < M(S)−D(S) and i ∈ S.

We have

xS′f ◦ dM(S)−j(g1, · · · , gn+|S|) = xdsciS′ ◦ di−1 ◦ dM(S)−j(g1, · · · , gn+|S|) for 1 ≤ j ≤ D(S)
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by the induction hypothesis, so the claim follows by (7.4) and (7.7) (with S replaced

by dsciS).

• Case 4: M(S)−D(S) < i < M(S).

(7.7) yields

xS(g1, · · · , gn+|S|) =

D(S)∑
j=1

(−1)j−1xS′ ◦ dM(S)−j(g1, · · · , gn+|S|).

The j = M(S) − i and j = M(S) − i + 1 terms cancel, so the claim follows from the

induction hypothesis.

• Case 5: i = M(S) − D(S). We have di(g1, · · · , gn+|S|) = di−1(g1, · · · , gn+|S|), so the

claim follows from (7.7) and the induction hypothesis.

7.2 Extending αn to BG

We are now ready to produce an extension of αnf to BG for f ∈ Zn
c (G,A) a cocycle. First,

for m ≥ n we define

αnmf : BmG→ BnA; (g1, t1) · · · (gm, tm) 7→
∏
S⊂[m]

|S|=m−n

(
xSf(g⃗), µn(⃗tS)

)
,

where g⃗ = (g1, · · · , gm) and t⃗S is the tuple obtained by omitting the coordinates in (t1, · · · , tm)
which are indexed by S. To see that this is well-defined and αnmf |Bm−1G = αnm−1f for m > n,

we make the following checks.
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• If t1 = 0, then

αnmf ((g1, t1) · · · (gm, tm)) =
∏
S⊂[m]

|S|=m−n
1∈S

(
xSf(g⃗), µn(⃗tS)

)

=
∏
S⊂[m]

|S|=m−n
1∈S

(
xSf(g⃗) + xrep1Sf(g⃗), µn(⃗tS)

)
(by Corollary 7.1.3)

=
∏
S⊂[m]

|S|=m−n
1∈S

(
xdsc1Sf ◦ d0(g⃗), µn(⃗tS)

)
(by (7.6))

=
∏

S⊂[m−1]
|S|=m−n−1

(
xSf ◦ d0(g⃗), µn(⃗tdsc−1

1 S)
)

= αnm−1f ((g2, t2) · · · (gm, tm)) . (7.13)

• If ti−1 = ti for some i with 1 < i ≤ m, then

αnmf ((g1, t1) · · · (gm, tm)) =
∏
S⊂[m]

|S|=m−n
{i−1,i}∩S ̸=∅

(
xSf(g⃗), µn(⃗tS)

)

=
∏
S⊂[m]

|S|=m−n
i−1,i∈S

(
xSf(g⃗), µn(⃗tS)

) ∏
S⊂[m]

|S|=m−n
i∈S, i−1/∈S

(
xSf(g⃗) + xrepiSf(g⃗), µn(⃗tS)

)

=
∏
S⊂[m]

|S|=m−n
i∈S

(
xdsciSf ◦ di−1(g⃗), µn(⃗tS)

)
(by (7.6))

=
∏

S⊂[m−1]
|S|=m−n−1

(
xSf ◦ di−1(g⃗), µn(⃗tdsc−1

i S)
)

= αnm−1f ((g1, t1) · · · (gi−2, ti−2)(gi−1gi, ti−1)(gi+1, ti+1) · · · (gm, tm)) .
(7.14)
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• If tm = 1, then

αnmf ((g1, t1) · · · (gm, tm)) =
∏
S⊂[m]

|S|=m−n
m∈S

(
xSf(g⃗), µn(⃗tS)

)

=
∏
S⊂[m]

|S|=m−n
m∈S

(
xSf(g⃗) + xrep−1

m+1S
f(g⃗), µn(⃗tS)

)
(by Corollary 7.1.5)

=
∏
S⊂[m]

|S|=m−n
m∈S

(
xS′f ◦ dm(g⃗), µn(⃗tS)

)
(by (7.6))

=
∏

S⊂[m−1]
|S|=m−n−1

(
xSf ◦ dm(g⃗), µn(⃗tS∪{m})

)
= αnm−1f ((g2, t2) · · · (gm−1, tm−1)) . (7.15)

• Calculations similar to but simpler than the above involving Lemma 7.1.6 show that

if g1 = 1G for some i, then

αnmf ((g1, t1) · · · (gm, tm)) = αnm−1f
(
(g1, t1) · · · (̂gi, ti) · · · (gm, tm)

)
.

Remark 7.2.1. Observe that we only needed to use the fact that f is a cocycle in the tm = 1

case (since Corollary 7.1.5 relies on f being a cocycle).

In light of the above, the direct limit of αnmf over m yields a map αnf : BG → BnA.

We have αnf |BnG = αnnf = αnf since x∅f = f . Furthermore, since f 7→ xSf is a group

homomorphism, so is

αn : Zn
c (G,A) → Hn(BG,A).

It is not yet clear whether αn factors through continuous cohomology; we show that it does in

the next section. First, we show that αn agrees with the maps B : Z1
c (G,A) = H1

c (G,A) →
H1(BG,A) and α : Z2

c (G,A) → H2(BG,A) for n = 1 and n = 2 respectively.

Proposition 7.2.2. For f : G → A a continuous homomorphism (i.e., 1-cocycle), we have

α1f = Bf .

Proof. For m ≥ 1 and i ∈ [m], let Smi = [m] − {i} and xmi = xSm
i
f . We wish to show that

xmi (g1, · · · , gm) = f(gi), which we will prove by induction on m. The base case of m = 1 is
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immediate from definitions. For m ≥ 2, we have

M(Smi ) =

m i ∈ [m− 1]

m− 1 i = m
,

D(Smi ) =


1 i ∈ [m− 2]

2 i = m− 1

1 i = m

, and

(Smi )
′ =

Sm−1
i i ∈ [m− 1]

Sm−1
m−1 i = m

.

Hence, (7.7) yields

xmi =


xm−1
i ◦ dm−1 i ∈ [m− 2]

xm−1
m−1 ◦ dm−1 − xm−1

m−1 ◦ dm−2 i = m− 1

xm−1
m−1 ◦ dm−2 i = m

.

The claim now follows using the induction hypothesis.

Proposition 7.2.3. The two maps α, α2 : Z2
c (G,A) → H2(BG,A) are equal.

Proof. The proof is essentially the same as that of Theorem 5.2.1, except with more moving

parts. Fix a 2-cocycle f ∈ Z2
c (G,A) and let E = (E, µ, p) be the corresponding extension (as

in the proof of Theorem 5.2.1). For m ≥ 2 and 1 ≤ j < k ≤ m, let Smj,k = [m]−{j, k} and

xmj,k = xSm
j,k
f . Recall the object XE defined in Section 3.3, in particular that the inclusion

ιBA : BA ↪−→ XE is a homotopy equivalence (Corollary 3.3.2). Hence, BιBA : B2A ↪−→ BXE

is a weak homotopy equivalence. Consequently, it suffices to show that

(BιBA)∗ ◦ α(f) = (BιBA)∗ ◦ α2(f).

By (5.6), this reduces to proving that

[BιG] = (BιBA)∗ ◦ α2(f). (7.16)

By (5.7), the restriction to BmG (m ≥ 2) of the left side in (7.16) is represented by

Lm = BιG ◦ ιm : BmG→ BXE ; (g1, t1) · · · (gm, tm) 7→ ((g1, 1A), 1, t1) · · · ((gm, 1A), 1, tm).
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Likewise, the restriction of the right side of (7.16) to BmG admits the representative

Rm : BmG→ BXE ; (g1, t1) · · · (gm, tm) 7→
∏

1≤j<k≤m

((
1G, x

m
j,k(g⃗)

)
, µ2(tj, tk)

)
,

where g⃗ := (g1, · · · , gm). Let L and R be the respective direct limits, so that (7.16) reduces

to showing that L ≈ R. Equivalently, we may show that L ·R−1 (interpreted in terms of the

right-action of B2A on BXE) is null-homotopic.

Analogous to the proof of Theorem 5.2.1, consider the homotopy Hm
s : BmG → BXE

(s ∈ I) given by

Hm
s : (g1, t1) · · · (gm, tm) 7→ ((g1, 1A), s, t1) · · · ((gm, 1A), s, tm)·

∏
1≤j<k≤m

((
1G,−xmj,k(g⃗)

)
,
stj
tk
, tk

)
.

(7.17)

Supposing for the moment that this is well-defined, it is immediate that Hm
1 = Lm ·R−1

m and

Hm
0 is constant. We will now show that Hm

s is well-defined and Hm
s |Bm−1G = Hm−1

s , so that

the direct limit yields a null-homotopy of L ·R−1.

For m = 2, it is clear that H2
s is well-defined (this was proved while proving Theo-

rem 5.2.1). For m > 2, we have the following. When i, j, k ∈ [m] (j ̸= i ̸= k) are fixed, we

use the notation

j′ :=

j − 1 i < j

j i > j
and

k′ :=

k − 1 i < k

k i > k
.

In particular, dsciS
m
j,k = Sm−1

j′,k′ .

• Suppose gi = 1G for some i ∈ [m]. Since α2
mf |Bm−1G = α2

m−1f , we have

∏
1≤j<k≤m

((
1G, x

m
j,k(g⃗)

)
,
tj
tk
, tk

)
=

∏
1≤j<k≤m
j ̸=i ̸=k

((
1G, x

m−1
j′,k′ (g⃗i)

)
,
tj
tk
, tk

)
.
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The calculations used to prove this also yield

∏
1≤j<k≤m

((
1G, x

m
j,k(g⃗)

)
,
stj
tk
, tk

)
=

∏
1≤j<k≤m
j ̸=i ̸=k

((
1G, x

m−1
j′,k′ (g⃗i)

)
,
stj
tk
, tk

)
.

This shows that

Hm
s ((g1, t1) · · · (gm, tm)) = Hm−1

s

(
(g1, t1) · · · (̂gi, ti) · · · (gm, tm)

)
.

• For the cases of t1 = 0 and tm = 1, the calculations done for (7.13) and (7.15) yield

Hm
s ((g1, t1) · · · (gm, tm)) =

Hm−1
s ((g2, t2) · · · (gm, tm)) t1 = 0

Hm−1
s ((g1, t1) · · · (gm−1, tm−1)) tm = 1

.

• Suppose ti−1 = ti for some i with 1 < i ≤ m. The calculation done for (7.14) yields

∏
1≤j<k≤m

((
1G, x

m
j,k(g⃗)

)
,
stj
tk
, tk

)
=
((
1G, x

m
i−1,i(g⃗)

)
, s, ti

)
·
∏

1≤j<k≤m
j ̸=i ̸=k

((
1G, x

m−1
j′,k′ (g⃗i)

)
,
stj
tk
, tk

)
.

We also have

((g1, 1A), s, t1) · · · ((gm, 1A), s, tm) = ((g1, 1A), s, t1) · · · ((gi−2, 1A), s, ti−2)

((gi−1gi, f(gi−1, gi)) , s, ti) ((gi+1, 1A), s, ti+1) · · · ((gm, 1A), s, tm) .

Hence, to show that Hm
s is well-defined and Hm

s |Bm−1G = Hm−1
s , it only remains to

show that xmi−1,i(g⃗) = f(gi−1, gi) for m ≥ 2 and 1 < i ≤ m. This follows by inducting

on m using (7.7) and considering the cases i ∈ [n− 2], i = n− 1, and i = n separately

(this is similar to the proof of Proposition 7.2.2).

Example 7.2.4. We generalize the idea of Example 3.1.3 to αn. If f ∈ Zn
c (G,A) is

null-homotopic through cocycles, then f has a lift f̃ : G∧n → PA which is also a cocycle.

By naturality of αn, we have (e1)∗ ◦ αnG,PAf̃ = αnG,A ◦ (e1)∗f̃ . The prior is 0 (since PA is

contractible) and the latter is αnG,Af , so f ∈ kerαnG,A.

The hypothesis on f is satisfied when G is discrete and A = BA′ for some k-group A′.

This is because f must lift to a cocycle in EA′, and EA′ is contractible through group

homomorphisms.
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7.3 A topological counterpart to continuous cohomol-

ogy’s connecting morphism

Recall the evaluation map e1 : PA→ A◦, which fits into a short exact sequence

1 ΩA PA A◦ 1.
e1

The connecting morphism δn : Hn
c (G,PA,ΩA) → Hn+1

c (G,ΩA) from the corresponding long

exact sequence of continuous cohomology is induced by the coboundary map

δn : e−1
1 (Zn

c (G,A)) → Zn+1
c (G,ΩA).

Also, recall the weak homotopy equivalence θA : BΩA→ A◦; (γ, t) 7→ γ(t) from Section 4.4.

Proposition 7.3.1. The following commutes up to a sign of (−1)n.

e−1
1 (Zn

c (G,A)) Zn+1
c (G,ΩA)

Hn+1(BG,ΩA)

Zn
c (G,A) Hn(BG,A)

δn

e1

αn+1

(θA)∗

αn

Proof. Fix a cocycle f ∈ Zn
c (G,A) and a lift f̃ ∈ e−1

1 (Zn
c (G,A)), i.e., f̃ is a null-homotopy

of f . We wish to show that the two maps

(−1)nαnf,BnθA ◦ αn+1(δf̃) : BG→ BnA

are homotopic. We will explicitly construct a null-homotopy of the difference between these

two maps using a technique similar to that used for Proposition 7.2.3. For m ≥ n + 1,

consider the following homotopy.

Hm
s : (g1, t1) · · · (gm, tm) 7→

∏
S⊂[m]

|S|=m−n

(
xS f̃(s)(g⃗), µn(⃗tS)

)
·

∏
S⊂[m]

|S|=m−n−1

θA

(
(−1)n+1xS(δf̃)(g⃗), µn+1(st⃗S)

)
.

(7.18)

Here, st⃗S denotes coordinate-wise multiplication of s to all entries of tS. Assuming that this

homotopy is well-defined, it is clear that Hm
1 = αnmf + (−1)n+1BnθA ◦ αn+1

m (δf̃) and Hm
0 is
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constant. Hence, the proposition will follow by taking direct limits if we show that Hm
s is

well-defined with Hm
s |Bm−1G = Hm−1

s . For this, we make the following checks.

• Suppose gi = 1G for some i ∈ [m]. The corresponding calculation done in the beginning

of Section 7.2 shows that

Hm
s ((g1, t1) · · · (gm, tm)) = Hm−1

s

(
(g1, t1) · · · (̂gi, ti) · · · (gm, tm)

)
.

Although those calculations were done in the context of cocycles (and f̃ is not a

cocycle), this is not an issue by Remark 7.2.1.

• Suppose t1 = 0 or ti−1 = ti for some i with 1 < i ≤ m. Appealing to Remark 7.2.1

once again, we use the calculations (7.13) and (7.14) to conclude that

Hm
s ((g1, t1) · · · (gm, tm)) = Hm−1

s ((g2, t2) · · · (gm, tm))

if t1 = 0 and

Hm
s ((g1, t1) · · · (gm, tm)) = Hm−1

s ((g1, t1) · · · (gi−2, ti−2)(gi−1gi, ti)(gi+1, ti+1) · · · (gm, tm))

if ti−1 = ti.

• Suppose tm = 1 (so Remark 7.2.1 no longer applies). The first product in the expression

for Hm
s is∏

S⊂[m]
|S|=m−n

(
xS f̃(s)(g⃗), µn(⃗tS)

)
=

∏
S⊂[m]

|S|=m−n
m∈S

(
xS f̃(s)(g⃗), µn(⃗tS)

)

=
∏
S⊂[m]

|S|=m−n
m∈S

(
xS f̃(s)(g⃗) + xrep−1

m+1S
f̃(g⃗), µn(⃗tS)

)
·

∏
S⊂[m]

|S|=m−n
m∈S

(
(−1)nxS′(δf̃)(s)(g⃗), µn(⃗tS)

)
(by Lemma 7.1.4).
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The first product in the right side can be simplified just as in (7.15), so we obtain∏
S⊂[m]

|S|=m−n

(
xS f̃(s)(g⃗), µn(⃗tS)

)
=

∏
S⊂[m−1]

|S|=m−n−1

(
xS f̃(s) ◦ dm(g⃗), µn(⃗tS∪{m})

)
·

∏
S⊂[m−1]

|S|=m−n−1

(
(−1)nxS(δf̃)(s)(g⃗), µn(⃗tS∪{m})

)
. (7.19)

Next, the second product in the expression for Hm
s is∏

S⊂[m]
|S|=m−n−1

θA

(
(−1)n+1xS(δf̃)(g⃗), µn+1(st⃗S)

)

=
∏
S⊂[m]

|S|=m−n−1
m/∈S

θA

(
(−1)n+1xS(δf̃)(g⃗), µn+1(st⃗S)

)
·

∏
S⊂[m]

|S|=m−n−1
m∈S

θA

(
(−1)n+1xS(δf̃)(g⃗), µn+1(st⃗S)

)

=
∏

S⊂[m−1]
|S|=m−n−1

θA

(
(−1)n+1xS(δf̃)(g⃗), µn+1(st⃗S)

)
·

∏
S⊂[m]

|S|=m−n−1
m∈S

θA

(
(−1)n+1xS(δf̃)(g⃗), µn+1(st⃗S)

)
.

The first product in the right side of the above is the inverse of the second product in

the right side of (7.19) (since tm = 1 is the last coordinate of t⃗S when m /∈ S). The

second product in the right side of the above can be seen to be∏
S⊂[m−1]

|S|=m−n−1

θA

(
(−1)n+1xS(δf̃) ◦ dm(g⃗), µn+1(st⃗S∪{m})

)

using (7.15) (since δf̃ is a cocycle). Combining these observations with (7.19) yields

Hm
s ((g1, t1) · · · (gm, tm)) = Hm−1

s ((g1, t1) · · · (gm−1, tm−1)) ,

as desired.

Corollary 7.3.2. The kernel of αn : Zn
c (G,A) → Hn(BG,A) contains Bn

c (G,A), i.e., α
n

factors through a map αn : Hn
c (G,A) → Hn(BG,A).

Proof. The claim is trivial for n = 1, since 0 is the only 1-coboundary. For n > 1, consider

100



the following diagram.

e−1
1 (Zn−1

c (G,BA)) Zn
c (G,ΩBA) Zn

c (G,A)

Hn(BG,ΩBA) Hn(BG,A)

Zn−1
c (G,BA) Hn−1(BG,BA)

δn−1

e1

αn

(ϕA)∗

αn

(θA)∗

(ϕA)∗

αn−1

Here, ϕA : A → ΩBA is the weak homotopy equivalence (and group homomorphism) from

Lemma 2.8.1. The top-right square commutes by naturality of αn, and the lower-right

triangle can be seen to commute using Lemma 4.4.3. Hence, the diagram commutes up to

sign by Proposition 7.3.1.

Now fix a cochain f ∈ Cn−1
c (G,A) with coboundary δf ∈ Zn

c (G,A) lying in the top

right corner of the diagram. We wish to show that αnδf = 0. Let f ′ = (ϕA)∗f , so that

f ′ ∈ Cn−1
c (G,ΩBA) ⊂ Cn−1

c (G,PBA). Since e1f
′ = 0, we see that f ′ lies in the top left

corner of the diagram. By definition of f ′, we have δf ′ = (ϕA)∗δf . Commutativity of the

diagram thus yields αn−1 ◦ e1f ′ = αnδf . The left side is 0 (since e1f
′ = 0), so the claim

follows.

Corollary 7.3.3. The following commutes up to a sign of (−1)n.

Hn
c (G,PA,ΩA) Hn+1

c (G,ΩA)

Hn+1(BG,ΩA)

Hn
c (G,A) Hn(BG,A)

δn

J∗

αn+1

(θA)∗

αn

7.4 An algorithmic description of kerαn

If Conjecture 6.3.1 holds, then Theorem 6.3.2 and Corollary 7.3.3 lend themselves to

an algorithmic way of understanding kerαn, which goes as follows. We start with a class

ζ0 ∈ Hn
c (G,A) and ask whether it lies in kerαn.

1. If ζ0 does not have a null-homotopic representative in Zn
c (G,A), then αnζ0 ̸= 0 (by

Theorem 6.3.2). Hence, αnζ0 ̸= 0. [Algorithm terminates]
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2. If ζ0 has a null-homotopic representative, then it lies in im J∗. Let ζ̃0 ∈ Hn
c (G,PA,ΩA)

be a preimage and set ζ1 = δnζ̃0 ∈ Hn+1
c (G,ΩA).

3. If ζ1 does not have a null-homotopic representative in Zn+1
c (G,ΩA), then αn+1ζ1 ̸= 0

(by Theorem 6.3.2). Hence, αn+1ζ1 ̸= 0. Consequently, αnζ0 ̸= 0 (by Corol-

lary 7.3.3). [Algorithm terminates]

4. If ζ1 has a null-homotopic representative, then it lies in im J∗. Let ζ̃1 ∈ Hn+1
c (G,PΩA,Ω2A)

be a preimage and set ζ2 = δn+1ζ̃1 ∈ Hn+2
c (G,Ω2A).

5. If ζ2 does not have a null-homotopic representative in Zn+2
c (G,Ω2A), then αn+2ζ2 ̸= 0

(by Theorem 6.3.2). Hence, αn+2ζ2 ̸= 0. Consequently, αn+1ζ1 ̸= 0 (by Corol-

lary 7.3.3) and αnζ0 ̸= 0 (by Corollary 7.3.3). [Algorithm terminates]

...

If the algorithm never terminates, then αnmζ0 = 0 for all m ≥ n. Hence, αnζ0 = 0 in this

case.

Remark 7.4.1. It is true unconditionally (i.e., without assuming Conjecture 6.3.1) that

αnζ0 = 0 if the algorithm never terminates.

If A is of finite type and Conjecture 6.3.1 holds, then the algorithm determines whether

ζ0 ∈ kerαn in only finitely many steps (since ΩdA is weakly contractible for sufficiently large

d). When G is connected and A is of finite type, we can say even more.

Proposition 7.4.2. If G is d-connected (d ≥ 0), then G∧n is (n(d+ 1)− 1)-connected.

Hence, if G is d-connected (d ≥ 0), then the connectivity of G∧(n+m) grows linearly

with m. If A of finite type, then the type of ΩmA simultaneously falls linearly with m. In

particular, if A has type t, then all maps G∧(n+m) → ΩmA are null-homotopic when

(n+m)(d+ 1)− 1 ≥ t−m,

i.e., m ≥ t+1−n(d+1)
d+2

. In particular, all cocycles in Zn+m
c (G,ΩmA) are null-homotopic in this

case.

The proof of Proposition 7.4.2 requires some intermediate results.

Lemma 7.4.3. Let
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• X and Y be spaces with f : X → Y a homotopy equivalence,

• D be a disjoint union of disks (not necessarily of the same dimension), and

• ϕ : ∂D → X be a map, where ∂D denotes the union of the boundaries of all disks in

D.

The map f̃ : X ⊔ϕ D → Y ⊔fϕ D induced by f is a homotopy equivalence.

Proof. This is a special case of [3, 7.5.7].

Lemma 7.4.4. Let X be a CW complex and Y be a d-dimensional CW complex which is

homotopy equivalent to X(d). There exists a CW complex X ′ which is homotopy equivalent

to X and has d-skeleton Y .

Proof. Let Yd = Y and fd : Yd → X(d) be the given homotopy equivalence. By induction

on i > d, we will produce an i-dimensional CW complex Yi and a homotopy equivalence

fi : Yi → X(i) such that Y
(i−1)
i = Yi−1 and fi|Yi−1

= fi−1. Taking direct limits will yield

a CW complex X ′ with X ′(i) = Yi and a map f : X ′ → X which restricts to homotopy

equivalences X ′(i) → X(i) for all i. Hence, f will be a homotopy equivalence by Whitehead’s

Theorem, proving the lemma.

Suppose fi−1 and Yi−1 have been constructed for some i > d. Let D be a disjoint union

of i-disks and ϕ : D → X(i−1) a map so that X(i) = X(i−1) ⊔ϕ D. Let Yi = Yi−1 ⊔fi−1ϕ D and

fi : Yi → X(i) the map induced by fi−1. By Lemma 7.4.3, Yi and fi are as desired.

Corollary 7.4.5. Suppose X is a d-connected CW complex, d ≥ 0. There exists a CW

complex X ′ which is homotopy equivalent to X and has d-skeleton a point.

Proof. For d = 0, the corollary follows from [8, Propositions 0.17 & 1A.1]. Next, suppose

d > 0 and X is (d + 1)-dimensional. Hd+1(X,Z) is free abelian, so let X ′ be a wedge of

(d+1)-spheres indexed by a basis of Hd+1(X,Z). Hurewicz’s Theorem yields a map X ′ → X

which induces isomorphism on (d + 1)-st homology with integer coefficients. This map is a

homotopy equivalence by [8, Corollary 4.33], so X ′ is as desired.

The general case now follows from Lemma 7.4.4.

Corollary 7.4.6. Let X1 and X2 be based CW complexes such that Xi is di-connected (di ≥
0). Then X1 ∧X2 is (d1 + d2 + 1)-connected.
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Proof. The homotopy type of X1 ∧ X2 depends only on the homotopy types of X1 and

X2, and Xi is homotopy equivalent to a CW complex with di-skeleton a point (by Corol-

lary 7.4.5). Hence, we may assume, without loss of generality, that Xi has di-skeleton a

point. Consequently, the (d1 + d2 + 1)-skeleton of X1 ×X2 is contained in X1 ∨X2. Thus,

X1 ∧X2 has (d1 + d2 + 1)-skeleton a point.

Proof of Proposition 7.4.2. Apply Corollary 7.4.6 n− 1 times.

Although the algorithm requires Conjecture 6.3.1 in general, some specific cases hold

unconditionally in light of Corollary 6.3.5 and Theorem 6.4.2.

Theorem 7.4.7. 1. The algorithm works unconditionally when G is discrete, G = S1, or

G = S3.

2. For n = 1, the algorithm works unconditionally up to step 3.

3. For n = 2, the algorithm works unconditionally up to step 1.

Proof. The case of G discrete or G = S1, S3 follows immediately from Theorem 6.4.2. The

case of n = 1, 2 follows from Remark 6.3.3 and Corollary 6.3.5.

7.5 Some examples

Example 7.5.1. Recall the set-up of Example 6.5.3. Since G is connected, G∧3 is 1-

connected (by Proposition 7.4.2). Hence, all cocycles in Z3
c (G,ΩA) are null-homotopic.

Since G∧4 is connected, all cocycles in Z4
c (G,Ω

2A) are null-homotopic. Also, all cocycles

in Zn+2
c (G,ΩnA) are null-homotopic for n > 2 since ΩnA is weakly contractible for n > 2.

From Remark 7.4.1, it follows that kerα = kerα2 = kerα2. Hence, Example 6.5.3 provides

a complete description of the homotopy types of cocycles in kerα.

Example 7.5.2. Recall the set-up of Example 6.5.7. We will use Theorem 7.4.7 to show

that ζ0 := [f ] is not in kerα1. Since f is null-homotopic, we proceed to the second step in

the algorithm and choose an explicit null-homotopy f̃ : G→ PA of f . We make the choice

f̃(x)(t) = e
2πixt
m ,
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where x ∈ {0, · · · ,m− 1}. Hence,

ζ̃0 = [f̃ ] ∈ H1
c (G,PA,ΩA) and

ζ1 = δ1ζ̃0 = [δf̃ ] ∈ H2
c (G,ΩA).

For x, y ∈ {0, · · · ,m− 1}, we have

δf̃(x, y)(t) = f̃(x)(t) · f̃(y)(t) · f̃(x+ y)(t)−1

=

1 x+ y < m

e2πit x+ y ≥ m.

We will show that ζ1 does not have a null-homotopic representative, so that the algorithm

will terminate on the third step. It suffices to show that q∗ζ1 ∈ H2
c (G, π1(A)) does not have

a null-homotopic representative, where q is the projection ΩA → π1(A). Since π1(A) is

discrete, it suffices to show that q∗ζ1 ̸= 0.

Identifying π1(A) = π1(S
1) with Z by choosing its generator to be the homotopy class of

t 7→ e2πit, the extension

1 → Z → E → G→ 1

induced by the 2-cocycle q ◦ δf̃ is

1 → Z → Z → Z/mZ → 1.

This is a non-trivial extension, so q∗ζ1 ̸= 0 (by Theorem 7.4.7) as desired.

Example 7.5.3. The preceding example can easily be generalized to cohomologies of higher

degrees when m = 2. Let G = Z/2Z and A = S1, and fix odd n ≥ 1. Consider the n-cocycle

f ∈ Zn
c (G,A) which takes (1, · · · , 1) (n-times) to −1 ∈ A.1 This is indeed a cocycle, since

δf(1, · · · , 1) = f(1, · · · , 1) ·
n∏
j=1

f(1, · · · , 0, · · · , 1)(−1)j · f(1, · · · , 1)(−1)n+1

= f(1, · · · , 1)2 (since n is odd)

= (−1)2 = 1.

1Note that G∧n has only two points, one of which is the base point (0, · · · , 0) and the other is (1, · · · , 1).
Hence, defining f on (1, · · · , 1) determines it completely. Similar reasoning is used in the subsequent check
that f is a cocycle.
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In the indexed product, the j-th coordinate of the argument of f is 0 and all other coordinates

are 1. Let ζ0 = [f ] ∈ Hn
c (G,A). f is clearly null-homotopic, so we proceed to the second

step of the algorithm and fix the null-homotopy

f̃ : G∧n → PA; (1, · · · , 1) 7→
(
t 7→ eπit

)
.

Hence,

ζ̃0 = [f̃ ] ∈ Hn
c (G,PA,ΩA) and

ζ1 = δnζ̃0 = [δf̃ ] ∈ Hn+1
c (G,ΩA).

We have

δf̃(1, · · · , 1)(t) = f̃(1, · · · , 1)(t) ·
n∏
j=1

f̃(1, · · · , 0, · · · , 1)(t)(−1)j · f̃(1, · · · , 1)(t)(−1)n+1

= f̃(1, · · · , 1)(t)2 (since n is odd)

= e2πit.

Hence, q ◦ δf̃(1, · · · , 1) = 1 (where q and the identification π1(A) ≈ Z are as in Exam-

ple 7.5.2). It is not hard to see that q∗ζ1 = [q◦δf̃ ] ̸= 0, so ζ1 does not have a null-homotopic

representative. Hence, ζ0 /∈ kerαn by the third step in the algorithm (since G is discrete, we

use Theorem 7.4.7).

Example 7.5.4. Suppose G is abelian and A• is an abelian k-group. Let h ∈ Z2
c (G,A•) be a

cocycle which is not homotopic to a coboundary, so [h] /∈ kerαG,A• . Suppose h is symmetric,

i.e., h(g1, g2) = h(g2, g1) for gi ∈ G. Let E = (E, µ, p) be the extension of G by A induced

by h. Note that E is abelian because h is symmetric.

Let A = XE , where XE is as defined in Section 3.3. We will show that the inclusion ιG :

G ↪−→ XE ; g 7→ ((g, 1A), 1) does not lie in kerα1
G,A using the algorithm and Theorem 7.4.7.

First, observe that ιG is null-homotopic — we have the null-homotopy

ι̃G : G→ PA; g 7→ (t 7→ ((g, 1A), t)) .

106



Hence, we proceed to the second step of the algorithm with

ζ0 = [ιG] ∈ H1
c (G,A) = Hom(G,A) and

ζ̃0 = [ι̃G] ∈ H1
c (G,PA,ΩA).

A representative of ζ1 = δ1ζ̃0 is δι̃G. We have

δι̃G(g1, g2)(t) = ι̃G(g1)(t) · ι̃G(g2)(t) · ι̃G(g1g2)(t)−1

= ((g1, 1A) · (g2, 1A), t) ((g1g2, 1A), t)−1

= ((1G, h(g1, g2)), t)

= ιBA•(h(g1, g2), t)

= ιBA• (ϕA• ◦ h(g1, g2)(t)) ,

where ιBA• is the inclusion BA• ↪−→ XE ; (a, t) 7→ ((1G, a), t) and ϕA• is the weak homotopy

equivalence A• → ΩBA; a 7→ (t 7→ (a, t)) (see Lemma 2.8.1). Hence,

δι̃G = ΩιBA• ◦ ϕA• ◦ h.

We claim that this is not homotopic to a coboundary, so that the algorithm terminates on

the third step and ιG /∈ kerα1
G,A. For the sake of contradiction, suppose h′ : G → ΩA were

a 1-cocycle with δh′ ≈ δι̃G. Since ιBA• is a homotopy equivalence (by Corollary 3.3.2),

ΩιBA• ◦ ϕA• is a weak homotopy equivalence and there exists h′′ : G→ A• such that

A•

G ΩA

ΩιBA•◦ϕA•

h′

h′′

commutes up to homotopy. Hence, δ(ΩιBA• ◦ ϕA• ◦ h′′) = ΩιBA• ◦ ϕA• ◦ δh′′ is homotopic to

δh′ ≈ δι̃G = ΩιBA• ◦ ϕA• ◦ h. Since ΩιBA• ◦ ϕA• is a weak homotopy equivalence, this implies

that h ≈ δh′′. This contradicts the hypothesis on h.

7.6 kerαn and null-homotopy through cocycles

Example 7.2.4 shows that if f ∈ Zn
c (G,A) is null-homotopic through cocycles, then [f ] ∈

kerαn. Morally, this says that if the information captured by ζ ∈ Hn
c (G,A) is ‘strongly null-
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homotopic’ in some sense, then ζ ∈ kerαn. The algorithm from Section 7.4 gives another way

of interpreting ‘strongly null-homotopic’, and this interpretation completely characterizes

kerαn if Conjecture 6.3.1 holds. This naturally leads to the question of whether these

two interpretations are equivalent. To be precise, does the algorithm terminate for a class in

Hn
c (G,A) if and only if it has no representative which is null-homotopic through cocycles?

In this section, we produce a counter-example for the ‘if’ part of the above question.

The main tool for this is a k-group analogue of the standard mapping cone construction for

spaces. Recall that, given a based map ϕ : X → Y between based spaces, the mapping cone

Cϕ is the pushout of X ↪−→ CX and ϕ.

Now, consider a continuous homomorphism f : A → G whose image is contained in the

center Z(G) of G. Let K be the subgroup

K := {(a, f(a)−1) | a ∈ A} ≤ EA×G.

This is indeed a subgroup since A is abelian, and it is normal in EA×G since im f ⊂ Z(G).

Define

Ef :=
EA×G

K
.

Observe that the image of CA×G in Ef is Cf , and Cf generates Ef as a group (since CA

generates EA). Also, the projection Ef → BA is a G-bundle — it is the pushforward of

pA : EA→ BA along f .2

Proposition 7.6.1. If A is a CW group, both A and G have cellular multiplication, and

f : A→ G is cellular, then Ef has a cell structure which renders G ⊂ Ef a subcomplex and

the projection EA×G→ Ef cellular.

The proof is relegated to the end of this section. Now, consider the case of A = BZ,
G = S1, and f generated by (1, t) 7→ e2πit. The hypotheses of Proposition 7.6.1 are

satisfied, so Ef is a k-group and α1
G,Ef

makes sense. We claim that the algorithm does

not terminate on the inclusion G ↪−→ Ef , but it is not null-homotopic through 1-cocycles

(group homomorphisms). The first part follows from the fact that Ef is weakly contractible,

which can be seen as follows. π1(f) is an isomorphism, which yields that the connecting

morphism π2(BA) → π1(G) from the long exact sequence for the bundle Ef → BA is also

an isomorphism. The same long exact sequence now yields that Ef is weakly contractible.3

2The projection Ef → BA is the k-group analogue of the map Cϕ → ΣX which collapses Y .
3In fact Ef is contractible, since it is a CW complex by Proposition 7.6.1.
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To see that G ↪−→ Ef is not null-homotopic through 1-cocycles, assume the contrary.

Composing a given null-homotopy through 1-cocycles with the projection Ef → BA yields

a continuous homomorphism S1 → ΩBA which induces an isomorphism on fundamental

groups. In particular, we have obtained a non-trivial continuous homomorphism S1 → ΩBA.

This is a contradiction because every open set in S1 contains a torsion element and ΩBA

has no torsion. This concludes the counter-example.

Proof of Proposition 7.6.1. Recall from Section 2.2 that, under the present hypotheses,

EA is a CW complex with subcomplexesDnA and EnA. Write p for the projection EA×G→
Ef . By inducting on n, we will produce a cell structure for Xn := p(EnA × G) so that the

restriction p : EnA×G→ Xn is cellular and Xn−1 is a subcomplex of Xn. Note that we also

have Xn = p(DnA× G). Since D0 = {1EA} is a point, the cell structure on X0 is the same

as that for G and p : D0 × G → X0 is a homeomorphism. Since f and the multiplication

G×G→ G are cellular, so is p : E0 ×G = A×G→ X0; (a, g) 7→ (1EA, f(a)g).

Now, suppose n ≥ 1 and the cell structure on Xn−1 is given. For I an indexing set, let

{ej : Ddj → DnA×G | j ∈ I}

be the characteristic maps of the cells of (DnA− En−1A)×G. Observe that

• p ◦ ej restricts to a homeomorphism from the open disk intDdj to its image, and

• the union over I of the images of these open disks is (DnA− En−1A)×G.

Hence, we obtain a cell structure on Xn = p(DnA × G) by adding the cells p ◦ ej to Xn−1.

Cellularity of p : En−1A × G → Xn−1 ensures that the intersection of Xn−1 with the image

of a gluing map p ◦ ∂ej is contained in X
(dj−1)
n−1 . Clearly, p : DnA × G → Xn is cellular; it

remains to show that p : EnA×G→ Xn is also cellular.

Write λ for the A-action DnA× A → EnA. Since f and the multiplication G×G → G

are cellular, so is the composition

DnA× A×G EnA×G Xn
λ×idG p

,

which takes (x, a, g) ∈ DnA × A × G to p(x, f(a)g). Also, λ is cellular and restricts to a

homeomorphism from (DnA − En−1A) × (A − 1A) to EnA − DnA. Combining the above

observations, we see that p : EnA×G→ Xn is cellular.
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Remark 7.6.2. One can show that, under the hypotheses of Proposition 7.6.1, the mul-

tiplication on Ef is also cellular. This allows for iterating the construction by taking a

sequence of cellular homomorphisms f1 : A1 → G, f2 : A2 → Ef1 , · · · , fn : An → Efn−1 (with

im fi ⊂ Z(Efi−1
)) and obtaining a CW group Efn . This is analogous to how CW (and pCW)

complexes are obtained by iteratively gluing disks — gluing an n-disk to a space X amounts

to taking the mapping cone of a map Sn−1 → X.
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Chapter 8

Surjectivity of α for discrete A

Throughout this chapter, A is assumed to be discrete. Write π0 for π0(G). Joshi–Spallone

proved that α is injective under this hypothesis, and in Remark 1.1.3 we saw that our results

yield this too. On the topic of surjectivity, they prove

Theorem 8.0.1. If A has prime order and G = G◦ ⋊ π0(G), then α is an isomorphism.

The hypothesis of A having prime order came about due to the same hypothesis appearing

in [1, Lemma 1.12], which Joshi–Spallone used to conclude that απ0,A is an isomorphism.

Theorem 5.3.1 yields bijectivity of απ0,A without such a hypothesis, so we have

Theorem 8.0.2. If A is discrete and G = G◦ ⋊ π0(G), then α is an isomorphism.

In order to include this improved result within the context of their manuscript [9], Joshi–

Spallone decided, in consultation with the author, to add the requisite material from Chap-

ter 5 to a new version of their manuscript. At the time of writing, this updated version

(Jain–Joshi–Spallone) is in preparation.

In discussions with the author, Joshi–Spallone proposed the following approach to proving

that αG,A is an isomorphism (in the absence of hypotheses on G). In the proof of [9, Theorem

10.4], they produce the diagram

0 E(π0, A) E(G,A) E(G◦, A)π0

0 H2(Bπ0, A) H2(BG,A) H2(BG◦, A)π0

Ϙ
∗

α

ι∗

α α

BϘ∗ Bι∗

, (8.1)

where Ϙ : G → π0 is the projection and ι : G◦ ↪−→ G is the inclusion. They show that both

rows are exact (and the squares commute by naturality of α). Suppose one could produce
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maps δ : E(G◦, A) → H3
gp(π0, A) and δ : H2(BG◦, A) → H3(Bπ0, A) so that the extended

diagram

0 E(π0, A) E(G,A) E(G◦, A)π0 H3
gp(π0, A)

0 H2(Bπ0, A) H2(BG,A) H2(BG◦, A)π0 H3(Bπ0, A)

Ϙ
∗

α

ι∗

α α

δ

α3

BϘ∗ Bι∗ δ

also commutes and has exact rows.1 All vertical arrows apart from αG,A are known to be

isomorphisms, so it would follow that αG,A is also an isomorphism (by the Five Lemma). We

propose the following modified strategy: produce a map δ : E(G◦, A) → H3
gp(π0, A) so that

0 E(π0, A) E(G,A) E(G◦, A)π0 H3
gp(π0, A)

H3(Bπ0, A)

0 H2(Bπ0, A) H2(BG,A) H2(BG◦, A)π0 H3(BG/BG◦, A)

Ϙ
∗

α

ι∗

α α

δ

α3

BϘ
∗

BϘ∗ Bι∗ δ2

(8.2)

commutes and has an exact top row, where

• the dotted arrow is defined to make the triangle commute,

• δ2 is (the appropriate restriction of) the connecting morphism for the pCW pair

(BG,BG◦), and

• BϘ : BG/BG◦ → Bπ0 is obtained by factoring BϘ : BG→ Bπ0 through BG/BG◦.

The definition of δ2 automatically ensures exactness of the bottom row, and we now show

that BϘ
∗
is injective. Hence, the dotted arrow is also injective and the Five Lemma would

still yields that αG,A is an isomorphism.

Remark 8.0.3. The existence of such δ would imply that im δ2 ⊂ imBϘ
∗
, so ultimately one

would obtain a map H2(BG◦, A)π0 → H3(Bπ0, A) (as in the strategy proposed by Joshi–

Spallone) anyway.

Proposition 8.0.4. BϘ
∗
: H3(Bπ0, A) → H3(BG/BG◦, A) is injective.

The proof requires the following lemma.

1Actually, their proposal involved the classical isomorphism in place of α3
π0,A

. We noted in the beginning

of Chapter 7 that this agrees with α3
π0,A

.
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Lemma 8.0.5. π1(BϘ) is an isomorphism and π2(BG/BG
◦) is trivial.

Proof. By [9, Corollary 6.7.2], π1(BϘ) is an isomorphism. Also, BG◦ is 1-connected (since

G◦ is connected), so van Kampen’s Theorem implies that the quotient map BG→ BG/BG◦

induces an isomorphism on fundamental groups. Hence, π1(BϘ) is an isomorphism.

Again by [9, Corollary 6.7.2], π2(Bι) is an isomorphism. Hence, π2(BG,BG
◦) is trivial.

The second part of the lemma now follows from Theorem 2.6.12 with r = 0 and s = 1.

Proof of Proposition 8.0.4. Let X be the space obtained by gluing cells of dimension 4

and above to BG/BG◦ so that πn(X) is trivial for n > 1 (this can be done in light of the

second part of Lemma 8.0.5).2 Hence, BϘ extends to a map B̃Ϙ : X → Bπ0 which induces

isomorphism on fundamental groups (by the first part of Lemma 8.0.5). Since X and Bπ0

are both K(π0, 1)-spaces, B̃Ϙ is in fact a weak homotopy equivalence. In particular,

B̃Ϙ
∗
: H3(Bπ0, A) → H3(X,A)

is an isomorphism. Next, we observe that the map

H3(X,A) → H3(BG/BG◦, A)

induced by BG/BG◦ ↪−→ X is injective, since X was constructed by gluing cells of dimensions

4 and above to BG/BG◦. Hence, taking the third cohomology of

X

BG/BG◦ Bπ0

B̃Ϙ

BϘ

proves the proposition.

To prove that αG,A is an isomorphism, it now suffices to produce a map δ which fits into

(8.2), rendering the top row exact and the rightmost square commutative. In the following

section, we produce a candidate for δ and show that it makes the top row of (8.2) exact.

However, we are unable to prove the commutativity of the square. Nonetheless, the Five

Lemma yields the following partial result.

Theorem 8.0.6. If A is discrete and H3
gp(π0(G), A) is trivial, then αG,A is an isomorphism.

2This is the standard construction of the first term in the Postnikov tower of BG/BG◦.

113



Remark 8.0.7. The hypothesis of Theorem 8.0.6 is satisfied if, for instance, A and π0(G)

are finite and have coprime orders.

8.1 A candidate for δ

8.1.1 Loops and paths

For paths γ, γ1, γ2 : I → G, write γ1 · γ2 for their pointwise product. If γ1(1) = γ2(0), then

γ1 ∗ γ2 is their concatenation. γ−1 is the pointwise inverse of γ and γ∗−1 is the reverse path

t 7→ γ(1− t). For 0 ≤ a ≤ b ≤ 1, write γ|[a,b] for the path

t 7→ γ(a+ (b− a)t).

If γ1 and γ2 have the same end-points, write γ1 ≈ γ2 when there is an end-point fixing

homotopy between γ1 and γ2.

Recall that if λ is a loop based at 1G, then

λ−1 ≈ λ∗−1. (8.3)

Also,

λ · γ ≈ γ ∗ (λ · γ(1)) ≈ γ · γ(1)−1 · λ · γ(1). (8.4)

In particular, if γ(1) = 1G then

γ · λ ≈ γ ∗ λ ≈ λ · γ. (8.5)

If γ1(1) = 1G, then

γ1 · γ2 = (γ1 · γ2(0)) ∗ γ2. (8.6)

8.1.2 A motivating construction

The following theorem is a restatement of [9, Theorem 4.9], but we spell out its proof in a

way which motivates the upcoming techniques.

Theorem 8.1.1. If G is connected, then every A-cover p : E → G with a choice base point

in p−1(1G) has a unique group structure which makes it a central extension of G by A.
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Proof. Write 1E for the chosen base point of E, and identify A as a subspace of E as

a 7→ 1E · a. Given e1, e2 ∈ E, we will define their product e1e2 such that

• E is a k-group with this product, and

• the maps p and A ↪−→ E are group homomorphisms,

• E a central extension of G by A with these maps, and

• the action of A on E coming from the A-cover structure is the same as that coming

from the group structure on E.

Each component of E meets A, so pick a1, a2 ∈ A and paths γ1, γ2 : I → E with γi(0) = ai

and γi(1) = ei for i = 1, 2. Let γ12 be the unique lift of pγ1 · pγ2 with γ12(0) = a1a2 (where

‘·’ denotes the pointwise product of paths in G) and define e1e2 := γ12(1). Standard lifting

arguments can be used to check that

• this definition is independent of the choice of ai and γi,

• 1E is the identity with respect to this product,

• this product is associative and has inverses,

• p and A ↪−→ E are group homomorphisms, and

• the two actions of A on E agree.

This product can also be realized as a lift of the composition

E × E
p×p→ G×G→ G,

where the second map is the product on G. Continuity and uniqueness can now be checked

using standard lifting arguments.

8.1.3 Extending the construction

For g ∈ G, write ḡ for the class of g in π0. We now attempt to apply this procedure when

G is not connected; the obstruction in doing so will give the required map δ. Hence, fix an

A-bundle p : E → G. It will be convenient to regard E as the pullback of EA → BA along

some map ϕ : G→ BA. Hence,

E = {(g, x) ∈ G× EA | ϕ(g) = pA(x)}
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and p is the first projection. Let τ : π0 → G be a choice of coset representatives, with

τ(1G) = 1G.

A simple necessary condition for E to have a central extension structure is that the

homotopy class of ϕ should be fixed under the two-sided translation action of G on the

domain, so we assume at the outset that this condition is satisfied. Hence, we may assume,

by adjusting ϕ up to homotopy if necessary, that

ϕ(τ(ḡ)g′) = ϕ(g′) for g ∈ π0, g
′ ∈ G◦. (8.7)

Also, the homotopy class of ϕ is fixed under the conjugation action of G on itself.

Since G is well-pointed, we may further assume that ϕ(1G) = 1BA, and consequently

ϕ(τ(ḡ)) = 1BA for g ∈ π0. In other words, the fiber p−1(τ(ḡ)) is given by

p−1(τ(ḡ)) = {(τ(ḡ), a) | a ∈ A}.

Now, consider the following attempt at mimicking the procedure from the proof of Theo-

rem 8.1.1, with 1E = (1G, 1A). Let e1, e2 ∈ E. Each component of E contains a point of

the form (τ(ḡ), a) for some ḡ ∈ π0 and a ∈ A, so pick g1, g2 ∈ π0, a1, a2 ∈ A, and paths

γ1, γ2 : I → E satisfying γi(0) = (τ(gi), ai) and γi(1) = ei for i = 1, 2.

The next step would be to let γ12 be the unique lift of pγ1 · pγ2 starting at some cleverly

chosen point in the fiber of τ(g1)τ(g2). A näıve choice would be the point (τ(g1)τ(g2), a1a2),

which does not work since it need not be a point in E. This can be somewhat remedied as

follows. Choose, as part of the the information about G in the set-up, paths εg1, g2 : I → G◦

with

εg1, g2(0) = (τ(g1)τ(g2))
−1 τ(g1g2),

εg1, g2(1) = 1G, and

εg, 1G = ε1G, g ≡ 1G.

(8.8)

It will be convenient to view ε as a map π2
0 × I → G◦. Now, let γ12 be the unique lift of

pγ1 · pγ2 · εg1, g2 starting at (τ(g1g2), a1a2). Define e1e2 := γ12(1). Once again, one checks

using standard lifting arguments that

• this definition is independent of the choice of a1, a2 and γ1, γ2,

• this product is continuous,
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• (g, x)(1G, a) = (g, xa) = (1G, a)(g, x) for (g, x) ∈ E and a ∈ A, and

• p(e1e2) = p(e1)p(e2).

This last property is satisfied precisely because of how εg1, g2 was chosen. However, we refrain

from saying that p and A ↪−→ E are homomorphisms for now — we do not yet know whether

the product on E satisfies the group axioms.

Assuming for the moment that the product thus far defined is associative, it is easy to

construct inverses. Hence, this product makes A → E → G into a central extension if and

only if it is associative. To examine associativity, let e1, e2, e3 ∈ E and gi, ai, γi be as before.

Define

γ′12,3 := (pγ1 · pγ2 · εg1, g2) · pγ3 · εg1g2, g3 and

γ′1,23 := pγ1 · (pγ2 · pγ3 · εg2, g3) · εg1, g2g3 .

Observe that γ′•(0) = 1G and γ′•(1) = g1g2g3, where • can be substituted by ‘12, 3’ or ‘1, 23’.

Let γ12,3 and γ1,23 be the respective lifts to E starting at (τ(g1g2g3), a1a2a3). Associativity

holds if and only if γ12,3(1) = γ1,23(1).

Note that (γ′12,3)
−1 ·γ′1,23 is a loop at 1G, so associativity holds if and only if the homotopy

class of (γ′12,3)
−1 · γ′1,23 lies in the kernel of π1(ϕ). Writing out the definitions, we obtain

(
γ′12,3

)−1
γ′1,23 = (εg1g2, g3)

−1 · (pγ3)−1 · (εg1, g2)−1 · pγ3 · εg2, g3 · εg1, g2g3 . (8.9)

We also have a homotopy of loops

t 7→ (εg1g2, g3)
−1 · pγ3|−1

[0,t] · (εg1, g2)
−1 · pγ3|[0,t] · εg2, g3 · εg1, g2g3

from

(εg1g2, g3)
−1 · τ(g3)−1 · (εg1, g2)−1 · τ(g3) · εg2, g3 · εg1, g2g3

to (8.9). To summarize,

Proposition 8.1.2. Let τ : G → π0 be a choice of coset representatives with τ(1G) = 1G.

Let ϕ : G → BA be a based map satisfying (8.7) whose homotopy class is fixed under the

conjugation action of G on itself, and let E = ϕ∗EA the corresponding A-cover of G. Given

a choice of ε satisfying (8.8), the above-defined product on E makes A → E → G a central
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extension if and only if the homotopy class of the loop

ϵg1,g2,g3 := (εg1g2, g3)
−1 · τ(g3)−1 · (εg1, g2)−1 · τ(g3) · εg2, g3 · εg1, g2g3 ,

based at 1G, lies in ker(π1(ϕ)) for g1, g2, g3 ∈ π0.

Remark 8.1.3. Every central extension of G by A can be obtained in the above way — if

ϕ and a product × : E × E → E are given (such that A → E → G is a central extension),

then ε can be chosen as follows. For g1, g2 ∈ π0, let ε̃g1, g2 be any path in E from a point in

p−1
(
(τ(g1)τ(g2))

−1τ(g1g2)
)

to a point in p−1(1BA). Define εg1, g2 := pε̃g1, g2 . One checks that this choice of ε satisfies the

hypothesis of Proposition 8.1.2 and e1e2 = e1 × e2 for e1, e2 ∈ E.

Remark 8.1.4. When G = G◦ ⋊ π0, we may choose τ to be a group homomorphism and ε

to be constant. Hence, Proposition 8.1.2 yields that ι∗ from (8.1) is surjective. Thus, we

recover Theorem 8.0.2.

We now give another perspective on Proposition 8.1.2. Let τ be as in the proposition

and ϕ̄ : G◦ → BA be a based map whose homotopy class is fixed under the conjugation

action of G on G◦. We can extend ϕ̄ to ϕ : G→ BA as

ϕ(τ(ḡ)g′) := ϕ̄(g′) for ḡ ∈ π0, g
′ ∈ G◦,

so that ϕ satisfies the hypothesis of the proposition. Of course, this construction can be

reversed by simply restricting ϕ to get ϕ̄, and this gives an isomorphism

[G,BA]G ≈ [G◦, BA]G.

Here, [G,BA]G denotes the fixed points of the two-sided action of G on [G,BA], and

[G◦, BA]G denotes the fixed points of the conjugation action of G on [G◦, BA]. Both of

these actions factor through π0, so we can also write

[G,BA]π0 ≈ [G◦, BA]π0 . (8.10)

Next, let E = ϕ∗EA as before and pick arbitrary ε satisfying (8.8). We have a map fϕ̄ :

π3
0 → π1(BA) ≈ A given by

(g1, g2, g3) 7→ ϕ̄∗ [ϵg1, g1, g3 ] ,
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thought of as an inhomogeneous 3-cochain in C3
gp(π0, A) (with π0 acting trivially on A). It

is natural to ask whether this cochain is a cocycle, and how it depends on the choice of ε.

We answer these questions in the next two lemmas.

Lemma 8.1.5. fϕ̄ depends on the choice of ε only up to a 3-coboundary.

Proof. Let ε′ be another map π2
0 × I → G◦ satisfying (8.8), and let ϵ′ and f ′

ϕ̄
be the cor-

responding analogues of ϵ and fϕ̄ respectively. It is clear that fϕ̄ = f ′
ϕ̄
if εg1, g2 ≈ ε′g1, g2 for

all g1, g2 ∈ π0. Hence, we may assume that, for all g1, g2 ∈ π0, the path ε′g1, g2 is given by

εg1, g2 ∗ λg1, g2 for some loop λg1, g2 at 1G.

Several applications of (8.5) show that there is an end-point fixing homotopy

ϵ′g1, g1, g3 ≈ ϵg1, g1, g3 ∗ (λg1g2, g3)−1 ∗
(
τ(g3)

−1 · (λg1, g2)−1 · τ(g3)
)
∗ λg2, g3 ∗ λg1, g2g3

for all (g1, g2, g3) ∈ π3
0. Taking homotopy classes and applying ϕ̄∗ on both sides yields the

following, where π1(BA) is written additively.

f ′
ϕ̄(g1, g2, g3) = fϕ̄(g1, g2, g3) + ϕ̄∗

[
(λg1g2, g3)

−1
]
+ ϕ̄∗

[
τ(g3)

−1 · (λg1, g2)−1 · τ(g3)
]

+ ϕ̄∗ [λg2, g3 ] + ϕ̄∗ [λg1, g2g3 ]

= fϕ̄(g1, g2, g3) + ϕ̄∗
[
(λg1g2, g3)

−1
]
+ ϕ̄∗

[
(λg1, g2)

−1
]
+ ϕ̄∗ [λg2, g3 ] + ϕ̄∗ [λg1, g2g3 ]

= fϕ̄(g1, g2, g3)− ϕ̄∗ [λg1g2, g3 ]− ϕ̄∗ [λg1, g2 ] + ϕ̄∗ [λg2, g3 ] + ϕ̄∗ [λg1, g2g3 ] .

The second equality follows from the hypothesis on ϕ̄, and the third follows from (8.3). The

lemma now follows.

Lemma 8.1.6. fϕ̄ is a 3-cocycle.

Proof. The proof is essentially a long calculation which involves going back and forth between

products and concatenations of paths in order to get cancellations. First, we establish some

notation. 1G will sometimes be used to denote the constant path at the identity. Fix gi ∈ π0

(1 ≤ i ≤ 4), and write gi for τ(gi), gij for τ(gigj), and so on. Write εi,j for εgi, gj , likewise

εij,k for εgigj , gk , and so on. Hence, for instance,

ε12,34 := εg1g2, g3g4 .

Similar notation is used for ϵ. For loops λ1, λ2 with a common base point, write

λ1
ϕ̄
≈ λ2
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if ϕ̄ ◦ λ1 ≈ ϕ̄ ◦ λ2. In particular, recall that

gλg−1 ϕ̄
≈ λ (8.11)

for all g ∈ G and loops λ based at 1G, since the homotopy class of ϕ̄ is fixed under the

conjugation action of G. To prove the lemma, we need to show that

ϵ2,3,4 ∗ (ϵ12,3,4)∗−1 ∗ ϵ1,23,4 ∗ (ϵ1,2,34)∗−1 ∗ ϵ1,2,3
ϕ̄
≈ 1G.

By (8.5) and (8.3), it suffices to show that

ϵ1,2,3 · (ϵ12,3,4)−1 · ϵ1,23,4 · (ϵ1,2,34)−1 · ϵ2,3,4
ϕ̄
≈ 1G.

We now write out the left hand side, omitting ‘·’ and using angular brackets ⟨⟩ to enclose

products which are loops at 1G. Terms which are important for the next step are highlighted.

ϵ1,2,3 (ϵ12,3,4)
−1 ϵ1,23,4 (ϵ1,2,34)

−1 ϵ2,3,4

=
〈
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23
〉 〈

(ε12,34)
−1 (ε3,4)

−1 g−1
4 ε12,3 g4 ε123,4

〉
〈
(ε123,4)

−1 g−1
4 (ε1,23)

−1 g4 ε23,4 ε1,234

〉〈
(ε1,234)

−1 (ε2,34)
−1 g−1

34 ε1,2 g34 ε12,34

〉
〈
(ε23,4)

−1 g−1
4 (ε2,3)

−1 g4 ε3,4 ε2,34
〉

=
〈
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23
〉 (

(ε12,34)
−1 (ε3,4)

−1 g−1
4 ε12,3

) (
(ε1,23)

−1 g4 ε23,4
)

(
(ε2,34)

−1 g−1
34 ε1,2 g34 ε12,34

) 〈
(ε23,4)

−1 g−1
4 (ε2,3)

−1 g4 ε3,4 ε2,34
〉

(8.12)

An application of (8.5) allows for more cancellations. We continue from (8.12).

≈
〈
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23
〉 (

(ε12,34)
−1 (ε3,4)

−1 g−1
4 ε12,3

) (
(ε1,23)

−1 g4 ε23,4
)〈

(ε23,4)
−1 g−1

4 (ε2,3)
−1 g4 ε3,4 ε2,34

〉(
(ε2,34)

−1 g−1
34 ε1,2 g34 ε12,34

)
=
〈
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23
〉 (

(ε12,34)
−1 (ε3,4)

−1 g−1
4 ε12,3

)
(ε1,23)

−1(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
(8.13)

Interchanging the highlighted factors would also lead to several cancellations, but this cannot

be done since (8.5) is not applicable. Hence, we instead use (8.4) and (8.11) to continue
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(8.13):

≈
((
(ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3
)
∗
(
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23 g
−1
4

))
(ε1,23)

−1
(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
(by (8.4))

ϕ̄
≈ g4

((
(ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3
)
∗
(
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23 g
−1
4

))
(ε1,23)

−1
(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
g−1
4 (by (8.11))

=
((
g4 (ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3
)
∗
〈
g4 (ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23 g
−1
4

〉)
(ε1,23)

−1
(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
g−1
4 (8.14)

At 0, the highlighted path evaluates to g := g−1
123 g1234 g

−1
4 ∈ G◦. Hence, we can continue

(8.14) as follows using (8.6):

≈
(
g4 (ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3 g
)
∗
(
g4 (ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23 g
−1
4 g

)
∗(

(ε1,23)
−1
(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
g−1
4

)
ϕ̄
≈
(
g4 (ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3 g
)
∗
(
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23 g
)

∗(
(ε1,23)

−1
(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
g−1
4

)
(by (8.11))

≈
((
g4 (ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3
)
∗
〈
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23
〉)

(ε1,23)
−1
(
(ε2,3)

−1 g4 ε3,4
) (
g−1
34 ε1,2 g34 ε12,34

)
g−1
4 (using (8.6)) (8.15)

(8.5) now applies on the highlighted concatenation, so (8.15) can be continued as

≈
(
g4 (ε12,34)

−1 (ε3,4)
−1 g−1

4 ε12,3

)〈
(ε12,3)

−1 g−1
3 (ε1,2)

−1 g3 ε2,3 ε1,23

〉
(ε1,23)

−1
(
(ε2,3)

−1 g4 ε3,4

) (
g−1
34 ε1,2 g34 ε12,34

)
g−1
4

=
(
g4 (ε12,34)

−1 (ε3,4)
−1 g−1

4

) (
g−1
3 (ε1,2)

−1 g3
)
(g4 ε3,4)

(
g−1
34 ε1,2 g34 ε12,34

)
g−1
4

= g4 (ε12,34)
−1
〈
(ε3,4)

−1 g−1
4 g−1

3 (ε1,2)
−1 g3 g4 ε3,4 g

−1
34 ε1,2 g34

〉
ε12,34 g

−1
4 (8.16)

The last equality simply involves some re-bracketing to highlight that a new loop, based at

1G, has been obtained (it is left to the reader to verify that it is indeed a loop at 1G). The

reader should also verify that the following is a homotopy of loops based at 1G:

t 7→ (ε3,4)
−1 g−1

4 g−1
3 ε1,2|−1

[t,1] g3 g4 ε3,4 g
−1
34 ε1,2|[t,1] g34.
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Hence, (8.16) may be continued as

≈ g4 (ε12,34)
−1
〈
(ε3,4)

−1 g−1
4 g−1

3 g3 g4 ε3,4 g
−1
34 g34

〉
ε12,34 g4

= 1G.

Putting the last two lemmas together, we see that ϕ̄→ fϕ̄ induces a well-defined map

[G◦, BA]π0 → H3
gp(π0, A).

Composing with the isomorphism E(G◦, A)π0 ≈ [G◦, BA]π0 (which comes fromTheorem 8.1.1)

yields the desired map δ : E(G◦, A)π0 → H3
gp(π0, A). In terms of this map, Proposi-

tion 8.1.2 and Remark 8.1.3 can be restated as

Theorem 8.1.7. The sequence

E(G,A) E(G◦, A)π0 H3
gp(π0, A)

ι∗ δ

is exact.

Theorem 8.0.6 now follows.
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Chapter 9

Miscellaneous

9.1 Homotopy and singular (co)homology groups of

good pCW complexes

As a general principle, the n-skeleton of a CW complex determines all of its elementary

homotopy invariants (homotopy, singular homology, and singular cohomology groups) with

dimension at most n − 1. We will now prove analogous results for good pCW complexes.

Throughout this section, X is a good pCW complex (with pCW structure as in Section 2.6)

and A is discrete.

Lemma 9.1.1. Every compact subset of X meets only finitely many sets of the form Xm −
Xm−1.

Proof. Suppose K ⊂ X with K ∩ (Xmi
− Xmi−1) ̸= ∅ for m1 < m2 < · · · . Pick xi ∈

K ∩ (Xmi
−Xmi−1), and let Ui = X − ({x1, x2, · · · } − {xi}). For all i and m, Ui ∩Xm is the

complement of finitely many points in Xm. Hence, Ui is open in X (here we used that pCW

complexes are Hausdorff). The open cover {U1, U2, · · · } of K has no finite subcover, so K is

not compact.

Corollary 9.1.2. The inclusions Xm ↪−→ X induce isomorphisms

lim→
m

Hn(Xm, A)
∼−→ Hn(X,A) and

lim→
m

πn(Xm)
∼−→ πn(X).
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Proof. The corollary essentially follows from Lemma 9.1.1, since the images of all maps

∆n → X and Sn → X are compact.

Lemma 9.1.3. Suppose X is a good pCW complex. For i ≥M(n), the maps

Hj(Xi, A) → Hj(X,A) and

πj(Xi) → πj(X),

induced by Xi ↪−→ X, are isomorphisms for j < n and surjections for j = n. Likewise, for

i ≥M(n),

Hj(X,A) → Hj(Xi, A)

is an isomorphism for j < n and an injection for j = n.

Proof. It suffices to prove the claim regarding the homology and homotopy groups, since the

claim regarding cohomology groups would follow using the Universal Coefficients Theorem.

By Corollary 9.1.2, it suffices to show that, for i ≥M(n),

Hj(Xi, A) → Hj(Xi+1, A) and

πj(Xi) → πj(Xi+1)

are isomorphisms for j < n and surjections for j = n. Since Yi+1/Zi+1
∼= Xi+1/Xi, the space

Xi+1 (i ≥ M(n)) is obtained by attaching cells of dimension n + 1 and above to Xi. The

claim now follows using standard cellularity results.

Corollary 9.1.4. For i ≥ n, the maps

Hj(BiG,A) → Hj(BG,A) and

πj(BiG) → πj(BG),

induced by BiG ↪−→ BG, are isomorphisms for j < n and surjections for j = n. Likewise,

for i ≥ n,

Hj(BG,A) → Hj(BiG,A)

is an isomorphism for j < n and an injection for j = n.

Proof. Use Proposition 2.6.4 and Lemma 9.1.3.
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Corollary 9.1.5. EnG is (n−1)-connected. Consequently, the restriction pG : EnG→ BnG

is a universal G-bundle with respect to CW complexes of dimension at most n− 1.

Proof. EnG is clearly connected, so it remains to show that πi(EnG) = 0 for 1 ≤ i ≤ n. For

this we use the diagram

πn(BnG) πn−1(G) πn−1(EnG) πn−1(BnG) . . . π0(G)

πn(BG) πn−1(G) πn−1(EG) πn−1(BG) . . . π0(G)

,

which commutes and has exact rows. By Corollary 9.1.4, πi(BnG) → πi(BG) is an iso-

morphism for 1 ≤ i < n and surjection for i = n. Also, EG is contractible so πi(EG) = 0

for 1 ≤ i ≤ n. Hence, the Five Lemma proves the corollary.

9.2 Classifying spaces and suspensions

Commutativity of (5.1) shows that the suspension map

Σ : [X,G]∗ → [ΣX,ΣG]∗

is injective, for X a based pCW complex. This reasoning works even when G is an arbitrary

k-group (not necessarily a CW group). This immediately provides a necessary condition for

a space K to have the based homotopy type of a k-group:

Proposition 9.2.1. If a based space K has the based homotopy type of a k-group, then the

suspension map

Σ : [X,K]∗ → [ΣX,ΣK]∗

is injective for all pCW complexes X.

The classical necessary condition that π1(K) must be abelian follows from the special

case X = S1 of the above. Also, taking G = S3 (the group of unit quaternions) and X = Sn

shows that the suspension map

πn(S
3) → πn+1(S

4)

is injective for all n ≥ 1.
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9.3 Some interesting k-rings

In this section, all abelian groups are written additively (including groups of the form BA′

for A′ an abelian k-group).

A k-ring is a CG space R with a ring structure, so that addition makes it an abelian

k-group and multiplication makes it a k-monoid (in particular R must have a multiplicative

identity). The most ubiquitous examples of non-discrete k-rings are the matrix rings Mn(R)
andMn(C) and their subrings. However, being contractible, these are somewhat trivial from

a homotopy-theoretic perspective. In this section, we exhibit some k-rings which do not have

weakly contractible components.

Remark 9.3.1. If R is a k-ring whose additive and multiplicative identities lie in the same

component (for instance, if R is connected), then R must be contractible. Indeed, a path

γ : I → R with γ(0) = 0R and γ(1) = 1R yields a null-homotopy t 7→ (r 7→ r · γ(t)). In

fact, this shows that the underlying additive k-group of R is contractible through group

homomorphisms.

Let Cm = Z/mZ, and consider the ring R = End(BCm) of continuous group endomor-

phisms of BCm. R is a subset of Map(BCm, BCm), so it can be topologized as a subspace.

This renders addition and composition of maps continuous. Hence, R is a k-ring if it is

well-pointed. We show something much stronger:

Proposition 9.3.2. Composition with S1 ↪−→ BCm; t 7→ (1, t) defines a homeomorphism

ξm : R → ΩBCm.

In particular, R is well-pointed, and hence a k-ring.

Proof. {1} × I generates BCm, so it is clear that ξm is injective. To check surjectivity, we

will show that, given a based loop γ ∈ ΩBCm, the map

BCm → BCm; (g1, t1) + . . .+ (gn, tn) 7→ g1γ(t1) + . . .+ gnγ(tn) (9.1)

is continuous. Here, gx denotes x + x + . . . + x (g times) for g ∈ Cm and x ∈ BCm. First,

observe that the image of γ is contained in BNCm for some N ∈ N (since S1 is compact).

Hence, (9.1) takes BnCm to BnNCm for all n ∈ N. Continuity of the restriction of (9.1) to

BnCm is now easy to show, so (9.1) is continuous. Hence, ξm is a continuous bijection.
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Now, we check the continuity of ξ−1
m . It is enough to prove continuity when R is given the

compact-open topology (instead of the k-ification of the compact-open topology). Hence,

consider a compact set K ⊂ BCm and an open set U ⊂ BCm. Let S(K,U) = {f ∈ R |
f(K) ⊂ U}. We wish to show that ξm(S(K,U)) is open in ΩBCm. Fix f0 ∈ S(K,U), and

we will produce a neighborhood of ξm(f0) which is contained in ξm(S(K,U)).

Let NK ∈ N so that K ⊂ BNK
Cm. Let V ⊂ BCm be a neighborhood of the identity so

that f0(V +K) = {f0(x + y) | x ∈ V, y ∈ K} ⊂ U (here, we use compactness of K and the

fact that BCm is a τ -group (by Remark 2.1.5)). Let W ⊂ BCm be a neighborhood of the

identity so that mNKW = W +W + . . . +W (mNK times) is contained in V (once again,

we have used that BCm is a τ -group). Hence, the neighborhood

{γ ∈ ΩBCm | γ(t)− f0(1, t) ∈ W} ⊂ ΩBCm

of ξm(f0) is contained in ξm(S(K,U)).

Clearly, ξm is also a homomorphism of additive groups. Hence, transfer of structure yields

a multiplication on ΩBCm which makes it a k-ring! However, this is still not very interesting

from a homotopy-theoretic perspective — ΩBCm has m components, all of which are weakly

contractible (see Lemma 2.8.1). Nonetheless, this is a step in the right direction. The

proof of Proposition 9.3.2 generalizes easily to prove

Proposition 9.3.3. Suppose m1,m2 ∈ N such that m2 divides m1. Composition with

In1/∂In1 ↪−→ Bn1Cm1 ;x 7→ (1, x) yields a homeomorphism

Hom(Bn1Cm1 , B
n2Cm2) → Ωn1Bn2Cm2 .

Remark 9.3.4. The condition of m2 dividing m1 is needed so that the analogue of (9.1) is

well-defined.

Now, consider the k-ring

End(BCm ×B2Cm) ∼= End(BCm)× Hom(BCm, B
2Cm)× Hom(B2Cm, BCm)× End(B2Cm)

∼= ΩBCm × ΩB2Cm × Ω2BCm × Ω2B2Cm (by Proposition 9.3.3).

By Lemma 2.8.1, this has the weak homotopy type of Cm ×BCm × Cm. In particular, its

components are not weakly contractible. Similar examples include

End (Bn1Cm ×Bn2Cm × . . .×BnℓCm) .
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Chapter 10

Further questions

10.1 Conjecture 6.3.1 and its equivalents

The importance of Conjecture 6.3.1 for the study of continuous cohomology and central

extensions is apparent through our work. It first came up in Chapter 6, where we saw that

the study of kerαn is intimately linked with the conjecture. In Chapter 7, we gave a complete

characterization of kerαn (in particular, kerα) by assuming Conjecture 6.3.1.

In this section, we wish to convince the reader of the importance of this conjecture in the

broader context of homotopy theory, and provide a perspective that might aid an eventual

proof. This calls for the conjecture to be placed in a framework that is interesting from a

homotopy-theoretic perspective, i.e., all the objects in the conjecture must be defined using

ideas that are ubiquitous in homotopy theory.

For this, we turn to the equivalent formulationConjecture 6.4.3. The objects of interest

are singular cohomology, the classifying space BG, and the Milgram–Steenrod filtration

B1G ⊂ B2G ⊂ · · · . Singular cohomology needs no introduction, and BG can be understood

as either a classifying space forG-bundles or a delooping ofG (see Lemma 2.8.1). What is so

interesting, from a homotopy-theoretic perspective, about the Milgram–Steenrod filtration?

An answer is provided by Stasheff [13, 14] through the framework of An-spaces, whose

implications in our context can be summarized as saying that the cohomology of BnG carries

information regarding An-maps out of G (viewed as an An-space in a trivial way).

To make use of this framework, however, we must show that the Milgram–Steenrod

filtration is the same as that of Milnor (up to homotopy). This is needed since Milnor’s

construction is older and more popular than that of Milgram–Steenrod, and the literature
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generally uses the prior when stating results.1

10.1.1 Revisiting Milnor versus Milgram–Steenrod

In Section 2.3, we produced a homotopy equivalence Ψ̄ : B̄G→ BG in the case of G discrete.

In fact, the same construction also works in the general case of G a CW group. Furthermore,

the restriction Ψ̄n := Ψ̄|B̄nG : B̄nG → BnG is also a homotopy equivalence, where B̄nG is

the image of ĒnG (the (n+ 1)-fold join of G) in B̄G.

Theorem 10.1.1. Ψ̄n and Ψ̄ are homotopy equivalences for G a CW group.

In particular, Conjecture 6.4.3 is equivalent to

Conjecture 10.1.2. For A a discrete abelian group, the restriction maps Hd(B̄n−1G,A) →
Hd(B̄n−2G,A) and H

d(B̄G,A) → Hd(B̄n−2G,A) have the same image.

Sketch of proof of Theorem 10.1.1. First, one observes, in similar fashion as (6.1), that

EnG/DnG ∼= ΣnG∧(n+1).

Since DnG is contractible and DnG ↪−→ EnG is a cofibration, we thus obtain a homotopy

equivalence

EnG→ ΣnG∧(n+1). (10.1)

Next, for 1 ≤ i ≤ n, let Xn
i ⊂ ĒnG be the subspace consisting of points

[g0, s0, · · · , gn, sn]

with gi−1 = gi (here, we used notation from Section 2.3). Let Xn
n+1 ⊂ ĒnG be the subspace

consisting of points

[g0, s0, · · · , gn, sn]

with gn = 1G. It is easy to see that, for each S ⊂ [n+ 1], the space⋂
i∈S

Xn
i

1In fact, the paper [10] which first developed the Milgram–Steenrod construction came four years after
[13, 14].
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is contractible. Hence,

Xn :=
⋃

i∈[n+1]

Xn
i

is weakly contractible. Now,

• ĒnG/X
n ∼= ΣnG∧(n+1) and

• (ĒnG,X
n) is a pCW pair,

so we obtain a homotopy equivalence

ĒnG→ ΣnG∧(n+1) (10.2)

(by Theorem 2.6.8). (10.1) and (10.2) fit into the commuting triangle

ĒnG EnG

ΣnG∧(n+1)

Ψn

,

so Ψn is a homotopy equivalence. By the Five Lemma and the long exact sequences of

homotopy groups for the bundles EnG → BnG and ĒnG → B̄nG, we now see that Ψ̄n is a

weak homotopy equivalence, and hence a homotopy equivalence (by Theorem 2.6.8, since

BnG and B̄nG are pCW complexes).

B̄G is a good pCW complex with n-skeleton B̄nG, so Ψ̄ is also a weak homotopy equiv-

alence (see Corollary 9.1.2), and hence a homotopy equivalence.

10.2 The images of α and αn

We studied the image of α only in the case of A discrete, in which case the following conjecture

implies that α is an isomorphism.

Conjecture 10.2.1. The rightmost square in (8.2) commutes.

Next, we consider imαn. It is clear that

imαn ⊂ im (Hn(BG/Bn−1G,A) → Hn(BG,A))

(by definition of αn = ι∗n ◦ αn). When G and A are discrete, this is an equality. Hence, one

might conjecture that this is also an equality in general. Here is an example to show that
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this does not hold. Let G = Z/2Z, A1 = BZ, and A2 = S1. By Example 7.2.4, αnG,A1
= 0.

Also, αnG,A2
̸= 0 for odd n by Example 7.5.3. However, A1 and A2 are both K(Z, 1)-spaces,

and hence weakly homotopy equivalent.2 In particular,

im (Hn(BG/Bn−1G,A1) → Hn(BG,A1)) and

im (Hn(BG/Bn−1G,A2) → Hn(BG,A2))

are isomorphic but imαnG,A1
and imαnG,A2

are not. In fact, this example shows that imαnG,A
depends on something more than just the homotopy-theoretic data about BG, its filtration

B1G ⊂ B2G ⊂ · · · , and the Ω-spectrum A. The same is true for imα = α(E(G,A)), since
E(G,Ai) = H2

c (G,Ai) (i = 1, 2) in the preceding example.

10.3 αn and Yoneda extensions

The story of α started with central extensions, and we later narrowed our attention to second

continuous cohomology (which corresponds with ‘topologically trivial’ extensions) since our

main goal was to understand kerα. Conversely, one could view α as an ‘extension-based’

definition of α2 which reduces to the original definition of α2 when only ‘topologically trivial’

extensions are considered. This begs the question:

Question 10.3.1. Is there an ‘extension-based’ definition of αn which reduces to our defi-

nition when only ‘topologically trivial’ extensions are considered?

It is well-known (see, for instance, [19, Vista 3.4.6]) that for discrete groups G and

A, group cohomology Hn
gp(G,A) is isomorphic to the group (under Baer sums) of Yoneda

extensions of length n modulo equivalences. In this context, a Yoneda extension of length n

is an exact sequence

E : 0 E0 = A E1 . . . En En+1 = Z 0
f0 f1 fn−1 fn

in the category of G-modules (with G acting trivially on A and Z). For G a CW group

and A an abelian k-group, [15, §3] describes how the above can be generalized to give a

2Something much stronger is true. (1, t) 7→ e2πit generates a continuous homomorphism f : A1 → A2

which is also a weak homotopy equivalence. Since A1 and A2 are CW complexes, f is a homotopy equivalence.
Furthermore, Bnf : BnA1 → BnA2 is also a group homomorphism and a homotopy equivalence by the same
reasoning. In particular, the homotopy equivalence between BnA1 and BnA2 captures some group-theoretic
data, and yet imαn

G,A1
̸= imαn

G,A2
(cf. Section 7.6).
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correspondence between continuous cohomology Hn
c (G,A) and Yoneda extensions of length

n which are ‘topologically trivial’. To make this precise, we need some definitions.

For G a CW group, a G-module is an abelian k-group E with a continuous G-action

G × E → E through group automorphisms. Morphisms of G-modules are continuous and

G-equivariant group homomorphisms. For A a fixed abelian k-group, a Yoneda extension of

length n is an exact sequence

E : 0 E0 = A E1 . . . En En+1 = Z 0
f0 f1 fn−1 fn

in the category of G-modules (with G acting trivially on A and Z) such that, for 1 ≤ i ≤ n,

• im fi−1 = ker fi is a k-group,

• the map f̄i : cokerfi−1 → im fi induced by fi is a homeomorphism, and

• the projection Ei → cokerfi−1 is a numerable (im fi−1)-bundle.

Equivalence of Yoneda extensions is defined in the same way as in the discrete case, and

YEn(G,A) is the group (under Baer sums) of equivalence classes of length n Yoneda exten-

sions. The Yoneda extension E is said to be topologically trivial if the bundles Ei → cokerfi−1

are trivial, and YEn• (G,A) is the group of equivalence classes of topologically trivial length

n Yoneda extensions.

The precise statement of [15, §3] (alluded to previously) is that there is a natural isomor-

phism

YEn• (G,A) ≈ Hn
c (G,A).

Hence, we may state Question 10.3.1 more precisely as

Question 10.3.2. Does there exist a natural map βn : YEn(G,A) → Hn(BG,A) whose

restriction to YEn• (G,A) ≈ Hn
c (G,A) is α

n?

Remark 10.3.3. [20, Theorem 4] gives an isomorphism between YE∗(G,A) and the sheaf

cohomology of BG when A is discrete and G is finite dimensional and has countably many

cells (i.e., G is a Lie group).

In the n = 2 case, it would be nice to have agreement with α:

Question 10.3.4. Is there a natural isomorphism YE2(G,A) ≈ E(G,A)?

Question 10.3.5. If the answers to both the preceding questions are affirmative, then does

the map E(G,A) ≈ YE2(G,A) → H2(BG,A) agree with α?
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Since we have already studied kerαn, it would be nice if kerαn = ker βn:

Question 10.3.6. If the answer to Question 10.3.2 is affirmative, is there an analogue

of Theorem 3.1.1 for βn? In particular, do we have ker βn = kerαn (with appropriate

identifications)?
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