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Abstract

Quantum shadow tomography based on the classical shadow representation provides an ef-

ficient way to estimate properties of an unknown quantum state without performing a full

quantum state tomography. In scenarios where estimating the expectation values for certain

classes of observables is required, obtaining information about the entire density matrix is

unnecessary. We propose a partial quantum shadow tomography protocol, which allows es-

timation of a subset of the density matrix’s elements contributing to the expectation values

of certain classes of observables. This method utilizes tomographically incomplete subsets

of single qubit Pauli basis measurements to perform partial tomography, making it experi-

mentally more efficient. We have found a channel description allowing us to extract specific

density matrix elements utilizing minimal sets of unitary applications. We demonstrate the

advantage over unitary k designs such as Clifford and full Pauli by numerically analyzing the

protocol for random states and different classes of observables. We experimentally demon-

strate the partial estimation scheme for a wide class of two-qubit states (pure, entangled,

and mixed) in the nuclear magnetic resonance (NMR) platform, which relies on ensemble-

based measurements. The full density matrix re-constructed from different partial estimators

produces fidelities exceeding 97%.
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Chapter 1

Introduction

1.1 Density Matrix

In quantum mechanics, the state of a quantum system is mathematically represented by a

density matrix. It provides a more general description of a system than a wave function,

allowing for the representation of both pure and mixed states. The density matrix of a

quantum system satisfies certain properties which are described below.

1. Trace: The Trace of a valid density matrix operator is always 1, Tr{ρ} = 1.

2. Hermiticity: The density matrix is a Hermitian matrix, meaning ρ = ρ†, where ρ† is

the conjugate transpose of ρ.

3. Positivity: The density matrix is positive semi-definite, meaning all its eigenvalues are

non-negative.

The density matrix formulation of quantum states effectively captures both quantum co-

herences (through off-diagonal elements) and statistical ensembles (via diagonal elements)

associated with mixed states. It provides a unified description of pure and mixed states,

accounting for both the phase relationships in superposition (coherences) and probabilistic

mixtures of states.
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1.2 Quantum State Tomography

Quantum state tomography is a process to reconstruct the full density matrix of a system

based on experimental measurements. It involves determining the density matrix through a

sequence of repeated measurements, generating the Born probabilities associated with each

of the different basis measurements.

For a single qubit, common measurement bases include the Pauli operators (X, Y, Z).

For multi-qubit systems, tensor products of these operators or Clifford group-based measure-

ments are used. Methods such as linear inversion, maximum likelihood estimation (MLE),

and compressed sensing help reconstruct the density matrix while ensuring physical con-

straints like positivity and unit trace. QST remains essential for quantum computing, cryp-

tography, and experimental verification of quantum states.

However, the rapid growth of quantum platforms has exposed the limitations of tradi-

tional prediction techniques like quantum state tomography. This challenge arises from the

curse of dimensionality, where the number of parameters needed to characterize a quantum

system increases exponentially with the number of its components. Moreover, these parame-

ters are not directly observable but must be inferred through measurements, which are both

destructive—causing wavefunction collapse—and probabilistic, as dictated by Born’s rule.

Consequently, estimating even a single parameter with precision requires a large number of

identically prepared quantum states. Additionally, the vast amount of measurement data

must be processed and stored, demanding significant computational resources. In essence,

fully reconstructing an n-qubit quantum state necessitates an exponential number of mea-

surements, as well as exponential memory and computational power.

Quantum state tomography faces several limitations, making it impractical for large

quantum systems. These drawbacks have led to the development of shadow tomography.

1. Exponential Scaling: The number of parameters in an n-qubit density matrix grows

as 4n, making reconstruction infeasible.

2. Large Measurement Overhead: Requires measurements in multiple bases, increasing

exponentially with system size.
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3. High Computational Cost: Reconstruction involves solving large optimization prob-

lems, demanding significant resources.

4. Noise Sensitivity: Susceptible to experimental errors, requiring complex corrections.

5. Redundant Information: Full state reconstruction is unnecessary when only expecta-

tion values are needed.

6. Storage and Post-Processing Issues: Handling large density matrices requires extensive

memory and computation.

Quantum shadow tomography overcomes these issues by estimating expectation values

directly, reducing measurement complexity and improving scalability.

Quantum shadow tomography is a more efficient alternative to quantum state tomogra-

phy, particularly for large quantum systems. While quantum state tomography reconstructs

the full density matrix, shadow tomography estimates expectation values of observables with

significantly fewer measurements. It scales polynomially with the number of qubits, unlike

state tomography, which scales exponentially.

• Fewer measurements – Uses randomized bases (Pauli/Clifford) instead of exhaustive

measurements.

• Better scalability – Efficient for many-qubit systems.

• Noise resilience – Averaging reduces errors.

• Task-specific efficiency – Ideal for learning properties rather than full state recon-

struction.

Shadow tomography is crucial in quantum information tasks, quantum verification, and

near-term quantum technologies where quantum state tomography becomes infeasible.

1.3 Quantum Shadow Tomography

Quantum Shadow Tomography (QST) has emerged as an efficient way to estimate a wide

range of properties of an unknown quantum state from the data collected via projective
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Figure 1.1: Shadow tomography: A pictorial analog of classical shadows constructed via
quantum shadow tomography [17].

measurements on the state. QST was motivated by the seminal work of Aaronson [1], which

established theoretical bounds for sampling complexity using Haar-random unitaries [27].

Subsequent advances introduced the classical shadow framework [19] which replaced Haar-

random unitaries with simpler unitary designs, such as the Clifford group [34, 39] allowing for

more efficient experimental implementation [31, 32] particularly on near-term quantum in-

formation devices in superconducting, trapped ions, and nuclear magnetic resonance (NMR)

platforms.

The general QST protocol is outlined below. We perform a measurement procedure

where we sample a unitary from the set ζ = {Ui} and apply it to the unknown state ρ,

followed by a measurement in the computational basis |k⟩ ∈ {0, 1}n. The set of unitaries

need to be sufficiently large that it is tomographically complete [19]- for any two distinct

states, there should be at least one unitary U ∈ ζ and some computational basis state

b ∈ |k⟩⟨k| such that the two states have different expectation values for U † |b⟩⟨b|U . Full

unitary group of Pauli basis measurements and the Clifford measurements are examples of

such sets. The resulting collapsed state ˆ|k⟩ ˆ⟨k| is reverse rotated using the inverse unitary U †
i

4



and the resulting outcome U †
i
ˆ|k⟩ ˆ⟨k|Ui is stored. We iterate this process

ρ
Ui−−−→

rotate
UiρU

†
i
−−−−→
Measure

ˆ|k⟩ ˆ⟨k| U†
i−−−−→

Inverse
rotate

U †
i
ˆ|k⟩ ˆ⟨k|Ui (1.1)

for different choices of unitaries and measurement outcomes. Now, if we average U †
i
ˆ|k⟩ ˆ⟨k|Ui

over choices of unitary applications and measurement outcomes, we get a quantum channel

map

ρ → M(ρ) = �U,k[U
†|k⟩⟨k|U ] ≈ �i,k̂[U

†
i
ˆ|k⟩ ˆ⟨k|Ui] (1.2)

where �U,k is the weighted average over ζ and the computational basis states |k⟩ weighted
by Born probabilities, which can be estimated using the empirical average �i,k̂ over both the

sampled unitaries and the post measurement states ˆ|k⟩. The channel map has an inverse

due to tomographic completeness of ζ [19]. The shadow estimator of the density matrix of

the original state is given by the inverse channel map action on reverse rotated measurement

outcomes, averaged over the sampling size

bρ = �i,k̂[M−1(U †
i
ˆ|k⟩ ˆ⟨k|Ui)], (1.3)

Here bρ is the shadow estimator, which in the limit of infinite shadows yields ρ [19]. If we

know the inverse channel M−1, we can retrieve the density matrix ρ by taking an average

over the classical shadows M−1(U †
i
ˆ|k⟩ ˆ⟨k|Ui). The quantum channel depends on the proba-

bility distribution over the unitary transformations. Sampling from the Haar measure (See

Appendix A) over the full unitary group produces a depolarization channel (Appendix B)

given by

D1/2n+1(A) =
A+ Tr(A)�

2n + 1
. (1.4)

The inverse channel is given by

D−1
1/2n+1(A) = (2n + 1)A− Tr(A)�. (1.5)

The same quantum channel is generated when unitaries are sampled uniformly from the

Clifford group Cl(2n), consisting of 2n
2+2n

nQ
j=1

(4j − 1) unitaries for a n-qubit system.

Another tomographic complete set involves Pauli basis measurements, where the unitary

5



operator set takes the form ζ = Cl(2)⊗n. Effectively the protocol amounts to making a

sequence of random measurements in x, y and z directions picked independently on each

site. The shadow estimator formed by the Pauli basis measurements is given by

bρ = �U∈Cl(2)⊗n,k̂

"
nO

j=1

D−1
1/3(U

†
j

���k̂j
ED

k̂j

���Uj)

#
,

where k̂1, . . . , k̂n ∈ {0, 1} (1.6)

In contrast to Clifford unitaries, Pauli basis measurements require only local control, with a

significantly smaller set of unitaries.

1.4 Advances in Shadow Tomography

Classical shadows have found applications in quantum simulation tasks such as probing

quantum scrambling [26, 12], in quantum machine learning tasks [14, 22], and vast usage

in randomized measurement protocols for fidelity estimation, characterization of topological

order [11], energy estimation [15], entanglement detection [10, 28] and many more. Sub-

sequent advances introduced the classical shadow framework [19], replacing Haar-random

unitaries with simpler unitary designs, such as the Clifford group [34, 39] allowing for more

efficient experimental implementations [31, 32] particularly on near-term quantum devices.

Apart from these two, other unitary ensembles which have been explored, include fermionic

Gaussian unitaries [37], Pauli-invariant unitary ensembles [3], and unitary ensembles corre-

sponding to time evolution of a random Hamiltonian [16]. Unitary ensembles defined through

locally scrambled quantum dynamics [18] have been shown to achieve a lower tomography

complexity compared to Clifford based methods. Recent developments in entangled-based

measurements have shown a quadratic improvement in sampling complexity [21] to learn

Pauli expectation values. Classical shadows using mutually unbiased bases (MUBs) [33]

provide a framework for shadow tomography by measuring along 2n + 1 MUBs, ensuring

a robust sampling complexity. The construction of MUB circuits, as detailed in [36], em-

ploys a −cz − S − H− structure, enabling an efficient decomposition of each MUB circuit

using O(n2) gates within O(n3) time. These advancements significantly reduce the required

unitary samples and strive toward a systematic framework for efficient tomography.
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Novel techniques in shadow tomography have been designed to mitigate the impact of

experimental imperfections [7]. Neural networks have been used in combination with shadow

tools for efficient quantum state reconstruction [35] that provides considerable advantages

over direct shadow estimation. Its continued development focuses on optimizing protocols

for scalability and noise resilience [20, 4, 38].

1.5 Motivation

In this work, we focus on scenarios where only partial information about an unknown state

is needed. We propose partial quantum shadow tomography (PQST) that can efficiently

extract expectation values for certain classes of observables. In the PQST protocol, uni-

taries are sampled from a tomographically incomplete set that does not form a full unitary

design but suffices to extract relevant partial information about the unknown quantum state

by focusing measurements on estimating specific density matrix elements. We also exper-

imentally demonstrate PQST in nuclear magnetic resonance (NMR) system where PQST

when combined with diagonal tomography of the ensemble system [2] can achieve accurate

estimation of density matrix elements and thereby can achieve significant advantages over

shadow protocols in these contexts.
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Chapter 2

Partial Quantum Shadow Tomography

2.1 Estimation using subsets of tomographically com-

plete unitaries

QST provides full characterization of a quantum state and involves sampling unitaries from

a tomographically complete set. This in principle allows for the estimation of any observable

and can be extended to quantities non-linear in the density matrix such as the subsystem

entropies. In this work, we consider the task of estimating expectation values of observables

which are Pauli strings {�, X, Y, Z}⊗n, using shadow tomography with optimally chosen

unitaries. We investigate whether sampling unitaries from subsets of a tomographically

complete set still permits partial state reconstruction via the pseudo-inverse map:

M−1
p (A) = pA− �, (2.1)

where p is the strength of the pseudo-inverse map. This map is not completely positive and

trace-preserving. However, when p = 2n + 1, it acts as an inverse depolarizing map that

preserves the trace for states with Tr(A) = 1, though it remains non-completely positive. It

is called the pseudo-inverse because it serves as the inverse only for a subset of density matrix

elements, enabling the selective estimation of those elements, as described in the following

sections.
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Figure 2.1: Illustrating (a) QST- full state characterization by sampling unitaries from tomo-
graphic completer set of unitaries and (b) PQST-partial characterization by sampling uni-
taries from a subset of Clifford unitary design, on a 2-qubit system. In each partial shadow
estimator bρi, the density matrix elements represented by {×} are efficiently estimated in
the PQST protocol, while the elements represented by {◦} are discarded. However, by com-
bining multiple partial shadow estimators {bρi}, the full density matrix is reconstructed, as
described in Eqn. (2.12).

More precisely, we aim to determine suitable combinations of triplets {p, ζ ′,O}, where p

is the strength of the pseudo-inverse map M−1
p (·) defined in Eq. (2.1), ζ ′ is a subset of the

tomographically complete set ζ with O is the set of observables of Pauli string type, such

that the shadow estimator bρ constructed using unitaries Ui uniformly sampled from ζ ′, given

by

bρ = �i,k̂

h
M−1

p

�
U †
i

���k̂
ED

k̂
���Ui

�i
. (2.2)

satisfies the following relation:

⟨O⟩ρ = Tr(Obρ). (2.3)

for some non-trivial set of Pauli string observables O ∈ O.

To illustrate this idea, we consider a two-qubit system ρ, where we sample specific subsets

of unitaries from ζ = Cl(2)⊗2 and construct bρ using the pseudo-inverse map M−1
p (·). At

first, we take the unitary set consisting of only one unitary ζ ′ = {� ⊗ �}, we generate the

10



shadow estimator, which in the limit of a large number of samples reduces to

bρ�⊗� = p diag(ρ)− �, where diag(ρ) = (ρ00,00 ρ01,01 ρ10,10 ρ11,11) (2.4)

In general, it does not estimate any non-trivial Pauli string observable except � ⊗ � when

p = 5. None of the other density matrix elements can be recovered. Consequently, additional

post-processing is required to estimate observables such as � ⊗ Z, Z ⊗ �, Z ⊗ Z. Now

we explore other cases: ζ ′ = {H ⊗ H} and ζ ′ = {HS ⊗ HS}, for which the estimator in

Eq. 2.2 approaches bρH⊗H and bρHS⊗HS respectively, given by

bρH⊗H = −� + p

4
BH . (2.5)

bρHS⊗HS = −� + p

4
BHS. (2.6)

The explicit form of BH and BHS matrices are given in the Appendix C in Eqns. (C.7)

and (C.9) respectively. These estimators fail to accurately estimate any non-trivial Pauli

string observables for any values of p. As further examples, for ζ ′ = {� ⊗ �, H ⊗ H}, and
ζ ′ = {�⊗ �, HS⊗HS} we generate the estimator using Eq. (2.2) which approaches bρ�,H and

bρ�,HS

bρ�,H = −� + p

8
BH +

p

2
diag(ρ). (2.7)

bρ�,HS = −� + p

8
BHS +

p

2
diag(ρ). (2.8)

The estimators bρ�,H and bρ�,HS again fail to estimate any non-trivial Pauli string observables

for any p values. These examples suggest that arbitrary subsets of ζ for any p-values cannot

be used to easily estimate expectation values of any nontrivial Pauli string observables.

However, an explicit scan through all the subsets suggests a convenient set of unitaries

which satisfy the above requirements can be found to be

ζX = {� ⊗ �, H ⊗H,H ⊗HS,HS ⊗H,HS ⊗HS}

ζ1 = {� ⊗ �, H ⊗ �, � ⊗H, � ⊗HS,HS ⊗ �}.

The estimator Eq (2.2) with p = 5, and unitaries sampled from ζX and ζ1 approach bρX and

11



bρ1 respectively and are given by:

bρX =




ρ00,00 ρ00,01 + ρ10,11 ρ00,10 + ρ01,11 ρ11,11

ρ01,00 + ρ11,10 ρ01,01 ρ01,10 ρ01,11 + ρ00,10

ρ10,00 + ρ11,01 ρ10,01 ρ10,10 ρ10,11 + ρ00,01

ρ00,11 ρ11,01 + ρ10,00 ρ11,10 + ρ01,00 ρ11,11




(2.9)

bρ1 =




2ρ00,00 − ρ11,11 ρ00,01 ρ00,10 0

ρ01,00 2ρ01,01 − ρ10,10 0 ρ01,11

ρ10,00 0 2ρ10,10 − ρ01,01 ρ10,11

0 ρ11,01 ρ11,10 2ρ11,11 − ρ00,00




(2.10)

The estimator bρX accurately captures the diagonal and anti-diagonal elements of the density

matrix. The other remaining off-diagonal elements are captured in their respective positions

via the estimator bρ1.

Note that bρX allows to calculate, without any additional processing, the expectation

values of Pauli strings OX = {�⊗�, �⊗Z, Z⊗�, Z⊗Z, X⊗X, Y ⊗Y, X⊗Y, X⊗Y } and

their arbitrary linear combinations. These operators set includes widely studied models such

as the XYZ Hamiltonian with longitudinal field and therefore can be useful in efficient use of

shadow tomography approaches for variational quantum algorithms on such Hamiltonians.

On the other hand, the estimator bρ1 allows one to calculate the expectation values of the

Pauli strings O1 = {� ⊗ X, � ⊗ Y, X ⊗ �, Y ⊗ �, X ⊗ Z, Y ⊗ Z, Z ⊗ X, Z ⊗ X} and

their arbitrary linear combinations via Eqn. (2.3). Combining the two estimates allows

complete characterization of the density matrix. More importantly, if the observables to be

estimated are in either of the sets, estimation can be performed more efficiently than full

shadow tomography.

The structure of the subsets ζX and ζ1 can be generalized by carefully tuning p−values

to get similar efficient estimates of larger Pauli strings inside a general n-qubit system. We

discuss this in Sec. 2.7. Lastly we note that the unitary set ζ = {�, H,HS}⊗n is also a subset

of Pauli basis measurements ζ ⊂ Cl(2)⊗n. However, we find that when the inverse channel

description from the Pauli basis measurements given in the Eqn. (1.6) is used in conjugation
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with ζX , we do not recover correct matrix elements without using correction factors.

2.2 Partial Quantum Shadow Tomography Protocol

The PQST protocol [29] involves performing independent shadow tomography using differ-

ent sets of unitaries ζ1, ζ2, . . ., where each set ζi is associated with an pseudo-inverse map

described in Eq. (2.1) for some appropriate strength p1, p2, . . . , yielding Partial Shadow

Estimators (PSEs) bρ1, bρ2, . . .

ζ1, p1 : ρ
QST−−→ bρ1

ζ2, p2 : ρ
QST−−→ bρ2

ζ3, p3 : ρ
QST−−→ bρ3 (2.11)

...

Each PSE captures partial disjoint pieces of information about the quantum state. As shown

in Sec. 2.7, these PSEs collectively reconstruct the full density matrix by:

ρ =
NX

i=1

Pi(bρi), (2.12)

where Pi(·) projects the density matrix elements which preserves those elements that each

estimator bρi can estimate. This process is illustrated in Fig. 2.1.

Here, we introduce the active notation for density matrix elements [25]. Let ρ be the density

matrix of an n-qubit quantum system, expressed in the computational basis {|k⟩}2n−1
k=0 . The

matrix element ρij corresponds to the transition amplitude between the basis states |i⟩ and
|j⟩, i.e., ρij = ⟨i|ρ|j⟩. Here, i and j are bit strings of length n, representing the computational

basis states |i⟩ and |j⟩ of the n-qubit system, given by the tensor product of single-qubit

basis states. A matrix element ρij is said to be d-active if the bit strings i and j differ in

exactly d sites. This difference is quantified by the Hamming distance, which counts the

number of positions where i and j have different bits.

13



2.3 PQST in ensemble systems

In the context of ensemble systems like in NMR, PQST can be implemented efficiently by

measuring population elements via diagonal tomography, which is equivalent to performing

a large number of projective measurements [2, 24, 30]. In this case, averaging over com-

putational basis states |k⟩ is captured by diagonal tomography. Given a quantum state ρ

encoded in an ensemble quantum processor, the PQST is realized via the following steps:

(i) First rotate the target state ρ under Ui ∈ ζ, i.e., ρ → UiρU
†
i .

(ii) Readout all the diagonal elements
D
k
���UiρU

†
i

��� k
E
= Pik by performing diagonal tomog-

raphy in the computational basis {|k⟩} .

(iii) Reverse rotate the diagonal state on a classical processor to obtain the given matrix

X

k

U †
i (Pik |k⟩⟨k|)Ui (2.13)

(iv) Average over the choices of unitary and invert using the pseudo-inverse map of Eq.

(2.1) to construct the PSE

bρζ = EUi∈ζ

"
M−1

p

 X

k

U †
i (Pik |k⟩⟨k|)Ui

!#
. (2.14)

In the following, we consider PQST for quantum registers of different sizes.

2.4 Shadow protocol for 1-qubit system

Using the uniform sampling of unitaries from set ζ = {�, H,HS}, the full shadow estimator

can be written as

bρ = �k̂,Ui∈ζ

h
M−1

3

�
U †
i

���k̂
ED

k̂
���Ui

�i
, (2.15)

where
���k̂
E
is the measurement outcome in the computational basis |k⟩ after rotating ρ with

Ui. It requires only three unitaries for the full density matrix estimation without any ap-
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proximation in the large measurement limit. Here, we used the channel strength p = 3 for

the pseudo-inverse (2.1).

2.4.1 Proof

We will analyze the tomographically complete set of unitaries for a single qubit and extend

these insights to multi-qubit systems. The most general density matrix for a single qubit is

given by

ρ =
1

2
(I + rxX + ryY + rzZ) . (2.16)

Measurement after U1 = I The measurement outcomes p(0) and p(1) are given by:

p(0) = ⟨0|ρ|0⟩ = 1

2
(1 + rz) , (2.17)

p(1) = ⟨1|ρ|1⟩ = 1

2
(1− rz) . (2.18)

Measurement after U2 = H The Hadamard gate H transforms ρ to HρH†.

p(0) = ⟨0|HρH†|0⟩ = 1

2
(1 + rx) , (2.19)

p(1) = ⟨1|HρH†|1⟩ = 1

2
(1− rx) . (2.20)

Measurement after U3 = HS The combination HS transforms ρ to HSρ(HS)†.

p(0) = ⟨0|HSρ(HS)†|0⟩ = 1

2
(1− ry) , (2.21)

p(1) = ⟨1|HSρ(HS)†|1⟩ = 1

2
(1 + ry) . (2.22)

Now, the Eqns (2.19)-(2.22), specify that the set of unitaries (U1 = I, U2 = H,U3 = HS)

forms a tomographically complete set for the case of a single qubit.

The difference in the rz values between two different states is captured by U1 = I, similarly

the difference in the rx values between two different states is captured by U1 = H and the
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difference in the ry values between two different states is captured by U1 = HS.

I will demonstrate with some examples and pictorial representation for the case of a single

qubit.

Figure 2.2: Quantum State (Green) and the Depolarizing Channel (orange) visualization.

2.5 PQST of a 2-qubit system

For the 2-qubit case, the full tomography complete set consists of all tensor products of

the single qubit unitaries, i.e., {�, H,HS}⊗2, which has 9 unitaries. We can divide these

unitaries into two sets

ζX = {� ⊗ �, H ⊗H,H ⊗HS,HS ⊗H,HS ⊗HS}

The shadow estimator bρX generated from ζX with p = 5, estimates zero-active (diagonal)

and two-active (anti-diagonal) elements of a 2-qubit density matrix.
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⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ ρ00,00 ρ00,01 ρ00,10 ρ00,11

|01⟩ ρ01,00 ρ01,01 ρ01,10 ρ01,11

|10⟩ ρ10,00 ρ10,01 ρ10,10 ρ10,11

|11⟩ ρ11,00 ρ11,01 ρ11,10 ρ11,11

Table 2.1: Two-qubit PQST using sets ζX and ζ1 of Sec. 2.5, which extract PSEs bρX estimat-
ing diagonal and anti-diagonal elements represented by dashed boxes and bρ1 estimating the
other off-diagonal elements represented by solid boxes, respectively. The channel description
is provided in Appendix C.

ζ1 = {� ⊗ �, H ⊗ �, � ⊗H, � ⊗HS,HS ⊗ �}

The shadow estimator bρ1 generated from ζ1 with p = 5, estimates all the single-active

elements of a 2-qubit density matrix. Further ζ1 = ζ1a ∪ ζ1b can be further separated into

two subsets.

(i) ζ1a = {� ⊗ �, H ⊗ �, HS ⊗ �} with p = 3, yields PSE bρ1a = {ρ00,10, ρ01,11, ρ10,00, ρ11,01}
estimating single-active terms of the first qubit.

(ii) ζ1b = {� ⊗ �, � ⊗ H, � ⊗ HS} with p = 3, yields PSE bρ1b = {ρ00,01, ρ01,00, ρ10,11, ρ11,10}
estimating single-active terms of the second qubit.

The reconstructed channel description for each set of unitaries is analyzed in Appendix C.

2.6 PQST for a 3-qubit system

The full unitary set {�, H,HS}⊗3 can be divided into three sets (Fig. 2.3)

(i) The unitary set ζX = {�⊗3, u1 ⊗ u2 ⊗ u3}, where ui ∈ {H,HS}, consists of unitaries

that apply either the identity operation or a non-identity unitary (H or HS) across
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Λ Ωc Ωb Φb Ωa Φc Φa Λ

Ωc Λ Φb Ωb Φc Ωa Λ Φa

Ωb Φb Λ Ωc Φa Λ Ωa Φc

Φb Ωb Ωc Λ Λ Φa Φc Ωa

Ωa Φc Φa Λ Λ Ωc Ωb Φb

Φc Ωa Λ Φa Ωc Λ Φb Ωb

Φa Λ Ωa Φc Ωb Φb Λ Ωc

Λ Φa Φc Ωa Φb Ωb Ωc Λ

X-shadow Non-X shadow
ζX → Λ ζ1 → Ω ζ2 → Φ

Ωb ΩcΩa Φb ΦcΦa
(ζ1b) (ζ1c)(ζ1a) (ζ2b) (ζ2c)(ζ2a)

Figure 2.3: PQST of a 3-qubit system. The estimator bρX , generated by ζX , efficiently
estimates the density matrix elements corresponding to the Λ positions of the X-shadow,
while the estimators bρ1 and bρ2, generated by ζ1 and ζ2, respectively, efficiently estimate the
single-active terms Ω and double-active terms Φ. Ω and Φ can be further divided into subsets
as mentioned in Sec. 2.6.

all three qubits. This set includes a total of 9 unitaries. The PSE bρX constructed

by uniformly sampling unitaries from this set estimates the diagonal (0-active) and

anti-diagonal (3-active) elements of the density matrix, denoted by Λ in Fig. 2.3. The

reconstruction is performed using the pseudo-inverse transformation in Eq. (2.1) with

an associated channel strength of p = 9.

(ii) ζ1 = {�⊗3, u1 ⊗ � ⊗ �, � ⊗ u2 ⊗ �, � ⊗ � ⊗ u3} consists of unitaries where non-identity

unitaries ui ∈ {H,HS} act only on a single site. This set contains a total of 7 unitaries.

The PSE bρ1, constructed by uniformly sampling unitaries from this set, estimates the

single-active terms (labeled as Ω in Fig. 2.3) of the density matrix. The reconstruction

follows the pseudo-inverse transformation in Eq. (2.1), with an associated channel

strength of p = 7. It can be further divided into the following subsets

ζ1a = {�⊗3, u1 ⊗ � ⊗ �} is used to construct the PSE bρ1a, which estimates the

single-active terms of the first qubit, denoted by Ωa in Fig, 2.3. The reconstruc-
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tion follows the pseudo-inverse transformation (2.1) with an associated channel

strength of p = 3.

ζ1b = {�⊗3, �⊗u2⊗�} is used to construct the PSE bρ1b, which estimates the single-

active terms of the second qubit, denoted by Ωb in Fig, 2.3 with an associated

channel strength of p = 3.

ζ1c = {�⊗3, � ⊗ � ⊗ u3} is used to construct the PSE bρ1b, which estimates the

single-active terms of the third qubit, denoted by Ωc in Fig. 2.3 with an associated

channel strength of p = 3.

Note that each of these subsets ζ1i consists of three unitaries. The terms estimated from

each subset correspond to the active terms of the qubit on which the applied unitary

is non-identity. To estimate the single-active terms of the first and second qubits, we

combine the subsets as ζ1ab = ζ1a ∪ ζ1b, (consisting of five unitaries) with the channel

strength parameter set to p = 5 for reconstruction, which we find by inspection. This

approach can be extended to different combinations of subsets.

(iii) ζ2 = {�⊗3, u1 ⊗ u2 ⊗ �, � ⊗ u2 ⊗ u3, u1 ⊗ � ⊗ u3} consists of unitaries where the non-

identity unitaries ui ∈ {H,HS}. This set contains a total of 13 unitaries. The PSE

bρ2, constructed by uniformly sampling unitaries from this set, estimates the two-active

terms (labelled as Φ in Fig. 2.3) of the density matrix. The reconstruction follows

the pseudo-inverse transformation in Eq. (2.1), with an associated channel strength of

p = 13. It can be further divided into the following subsets

ζ2a = {�⊗3, u1⊗u2⊗�} constructs the PSE bρ2a, which estimates the 2-active terms

of the first and second qubit, denoted as Φa in Fig. 2.3 using the pseudo-inverse

map (2.1) with strength parameter p = 5.

ζ2b = {�⊗3, �⊗u2⊗u3} constructs the PSE bρ2b, which estimates the 2-active terms

of the first and second qubit,, denoted as Φb in Fig. 2.3 with strength parameter

p = 5.

ζ2c = {�⊗3, u1⊗�⊗u3} constructs the PSE bρ2c, which estimates the 2-active terms

of the first and second qubit, denoted as Φc in Fig. 2.3 with strength parameter

p = 5.

Each of these subsets consists of five unitaries with p = 5. By combining the subsets

ζ2a and ζ2b, we define ζ2ab = ζ2a ∪ ζ2b, which consists of 9 unitaries. We construct
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the estimator by uniform sampling of unitaries from ζ + 2ab with channel strength

p = 9 (2.1), allowing us to estimate 2-active terms of the density matrix where qubits

1 and 2 are active, as well as where qubits 2 and 3 are active, simultaneously.

Through these examples, it becomes evident that the strength of the pseudo-inverse is equal

to the cardinality of the corresponding unitary set ζ, given by p = |ζ|. This protocol allows
to generate PSEs (2.2) which estimate the elements of the density matrix that belong to

particular active orders.

2.7 Generalized PQST Protocol

For an n-qubit system, the full unitary set is given by 3n unitary operations ζ = {�, H,HS}⊗n.

We consider the question of estimating the A-active matrix elements of ρ for which qubits

in a subset A of the set of all qubits are active. For this, we introduce a set of unitary ζA

containing, in addition to �⊗n the unitaries that act trivially on the complement of A and as

non-trivial u ∈ {H,HS} unitaries on the qubits in A. Set ζA enables the estimation of all

A-active terms of the density matrix using the estimator in Eq. (2.2) and the pseudo-inverse

map Eq. (2.1) with p = |ζA| = 2|A| + 1, where |.| denotes the cardinality.

We empirically find that the idea can be extended to simultaneously calculate all A

active and B active density matrix elements for two subsets A and B of same cardinality.

For this we use the set ζA∪ ζB and use the estimator (2.2) with the pseudo-inverse map with

p = |ζA ∪ ζB|. This can be generalized to a combination of more subsets A1, A2 . . . all of the

same size. For instance all the m-active elements (1 ≤ m ≤ n) of ρ can be calculated using

a unitary set of size p =
�
n
m

�
× 2m + 1.

To be more precise, we have outlined the protocol for a n-qubit system

(i) ζX =

�
�
⊗n,

nN
i=1

ui

�
, where ui ∈ {H,HS}. This set has 2n + 1 elements and the

corresponding PSE bρX is generated using the pseudo-inverse Eq. (2.1) with p = |ζX | =
2n + 1. bρX estimates the X-shadow (Fig. 2.3), i.e., zero-flip (diagonal) and n-flip

(anti-diagonal) elements of the density matrix.

(ii) ζ1 = {�⊗n, {ηα}} with α ∈ [1, 2, · · · , n], ηα =

�
nN

i=1

ui

�
, and ui=α ∈ {H,HS} and
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ui̸=α = �. This set contains 2n + 1 unitaries. The PSE ζ1 is generated via sampling

these unitaries and applying the inverse map (2.1) with p = |ζ1| = 2n + 1. The

estimator bρ1 estimates all the single-flip elements, while the PSE bρ1α, corresponding
to the subset ζ1α = {�⊗n, ηα}, estimates elements corresponding to the single-flip of

the α-th qubit, with p = |ζ1α| = 3. Subsequently, we can combine different subsets,

ζ̃1 =
S
i

ζ1i, and estimate the corresponding single-flip terms using p = |ζ̃1|.

(iii) ζd = {�⊗n, {ηα1···αd
}} for distinct αk ∈ [1, 2, · · · , n] ηα1···αd

=

�
nN

i=1

ui

�
, and ui/∈{α1,...,αd} =

�, else, ui ∈ {H,HS}. In each of these subsets {ηα1···αd
}, the non-identity unitaries

{H,HS} simultaneously act at d-chosen sites decided by the choices of αk. There are

total
�
n
d

�
subsets ηα1...αd

each with cardinality 2d. The PSE bρd is constructed via sam-

pling these unitaries and the pseudo-inverse (2.1) with p = |ζd| =
�
n
d

�
×2d+1. However,

each subset ζdα with identity {�⊗n, ηα1···αd
} for a particular choice of α1 · · ·αd generates

the PSE ζdα, which estimates the d-flip terms corresponding to the qubits chosen by

αk’s, with pseudo-inverse strength p = |ζdα| = 2d+1. Similarly, we can construct PSEs

using different subset of ζd given by ζ̃d =
S
i

ζdi and tuning the pseudo-inverse strength

to be p = |ζ̃d|.
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Chapter 3

PQST for Structured Operators

In this section, we present structured operators where PQST enables efficient estimation.

PQST is particularly useful when either the density matrix or the observable exhibits a

specific structure, as demonstrated in

3.1 X Shadow Tomography

If the observable has an X-structure, the expectation value can be determined using the

X-shadow for any density matrix. Conversely, if the density matrix itself has an X-structure,

the expectation value can be computed using the X-shadow for any observable.

X-structured operators : We can use the X-shadow which samples unitaries uniformly

from ζX to compute the expectation of observables of the form given by

P = PZ + PXY , (3.1)

where PZ and PXY can be any linear combinations of Pauli strings made of {�, Z} and

{X, Y } operators respectively. Note that P is a X-structured operator, i.e., contains only

diagonal and anti-diagonal elements in the computational basis for the n qubits.

Many operators representing Hamiltonians of commonly studied systems such as trans-
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verse field Ising model as well as XXZ and XY Z models with longitudinal field contain

X-structured operators of every adjacent pair of qubits. Thus their expectation values can

be estimated efficiently using the X-tomography on every adjacent pair. This reduces the

cost of unitary sampling while still capturing relevant correlations in XX, YY, and XY

interactions.

In cases where the observable O does not have the X-structure, we can still estimate the

expectation of such observables via a unitary transformation U †, which maps the observable

O to an observable of the form P in Eq. (3.1). The expectation value of O can then be

calculated as the expectation value of the X-structured operator P of the rotated state

UρU †.

O = U †PU . (3.2)

Single-qubit unitaries can be implemented efficiently and with high fidelities, enlarging the

set of operators whose expectation values can be estimated using X-shadow tomography.

For examples, 2-qubit observables Z ⊗ X, Z ⊗ Y are not directly accessible but they can

be estimated by employing X-shadow tomography on UρU † state, where U = � ⊗ H, U =

� ⊗HSH respectively, effectively calculating X-shadow of Z ⊗ Z w.r.t. the rotated state in

each cases.

X-structured density matrices : X-tomography can be used also to estimate the ex-

pectation values of arbitrary operators on states whose density matrix is known to be X-

structured. Such states with X-structured density matrices include Werner states and Bell

diagonal states (convex sums of Bell states) etc.

3.2 Non-X shadow tomography

In cases where the state or observable do not have X-structure, we can sample unitaries

from smaller subsets {ζd} to extract relevant elements to estimate certain observables. As

an example, see Fig 2.3, we can determine all the elements given by Ωa from set ζ1a which

consists of only 3 unitaries. Similarly, if we need to estimate a combination of terms like Φa

and Ωb, then we can sample from subsets ζ2a and ζ1b, respectively and construct the PSEs
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bρ2a and bρ1b separately and estimate all the Φa and Ωb terms. Since this approach samples

unitaries from subsets of tomographically complete sets, it is advantageous in comparison to

performing full shadow tomography, which is demonstrated in Sec. 4.
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Chapter 4

Numerical Analysis of PQST

We analyze the performance of PQST as a function of the number of measurements, for

different structures of the observable or the state. We then compare PQST with standard

QST based on unitary 2-design Clifford sampling, unitary 1-design Pauli sampling, and mea-

surements utilizing mutually unbiased bases (MUBs) [33]. We evaluate the Mean Squared

Error (MSE) σ2
O of the expectation values estimated using the PSE bρ (generated by different

methods) relative to the true expectation value, given by

σ2
O =

1

N

NX

i=1

(Tr(Obρi)− Tr(Oρ))2 (4.1)

The results are shown in Fig. 4.1 (a-f). PQST achieves an equal/ improved scaling of variance

with the number of measurements, compared to the standard QST using Clifford sampling,

Pauli basis sampling, MUB sampling of unitaries, thus offering lower error bounds. This

scaling behavior has been observed for arbitrary choices of density matrices and Pauli string

observables that belong to respective classes, however, we have considered three cases of

randomly generated density matrices separately for a 2-qubit system and a 3-qubit system.

A key feature of PQST is that it samples single-qubit unitaries, which are easier to implement

in near-term quantum devices from a smaller subset of a tomographically complete set while

achieving improved scaling. In certain cases, PQST even outperforms the QST using Clifford,

MUB sampling, based on the specific structure of the density matrices as seen for the case

of X-structured density matrices in Fig 4.1 (c,f).

For our numerical simulations we have generated 2-qubit, and 3-qubit random states for a
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given X-structured observable (Fig. 4.1 (a,d)) of the form in Eq. (3.1) as well as for non-X

structured observable containing only single-active terms for 2-qubit case (Fig. 4.1 (b)), and

non-X structured observable containing only double-active terms for 3-qubit (Fig. 4.1 (e))

case. For X-states we generate density matrices having X-structure for 2-qubit (Fig. 4.1

(c)) and 3-qubit (Fig. 4.1 (f)) systems, where we take the observable to be an arbitrary

Pauli string operator. The variance is computed over N = 1000 independent trials for each

sampling size.

4.1 Numerical details

In our numerical simulations in Sec. 4, we consider randomly generated two- and three-qubit

states to verify MSE (σ2
O) scaling with number of measurements across different observables.

Specifically, we use:

1. A two-qubit state ρ2 to analyze MSE scaling in X-type (O2X) and Non-X-type (O2NX)

observables.

2. A two-qubit X-state ρ2X to study MSE scaling for an arbitrary observable O2.

3. A three-qubit state ρ3 to examine MSE scaling in X-type (O3X) and Non-X-type

(O3NX) observables.

4. A three-qubit X-state ρ3X to evaluate MSE scaling for an arbitrary observable O3.

This structured approach systematically compares MSE scaling behaviors across different

structured states and observable types.

ρ2 =




0.3484 0.0242 + 0.1014i 0.0118− 0.0301i −0.1986 + 0.0933i

0.0242− 0.1014i 0.2641 0.0447− 0.0050i −0.0548− 0.0516i

0.0118 + 0.0301i 0.0447 + 0.0050i 0.1210 0.0263− 0.0367i

−0.1986− 0.0933i −0.0548 + 0.0516i 0.0263 + 0.0367i 0.2665




(4.2)
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ρ2X =




0.19375 0 0 0.09375

0 0.30625 −0.20625 0

0 −0.20625 0.30625 0

0.09375 0 0 0.19375




(4.3)

ρ3 =




0.1855 −0.0429 + 0.0097i 0.0075− 0.0288i 0.0319− 0.0305i −0.0640− 0.0150i 0.0061 + 0.0318i −0.0125− 0.0371i 0.0348− 0.0563i

−0.0429− 0.0097i 0.1172 0.0383 + 0.0321i 0.0171− 0.0024i 0.0434− 0.0252i 0.0786− 0.0181i −0.0078 + 0.0359i −0.0350 + 0.0078i

0.0075 + 0.0288i 0.0383− 0.0321i 0.1012 0.0545− 0.0414i 0.0106− 0.0673i 0.0505− 0.0307i 0.0487− 0.0143i −0.0449 + 0.0372i

0.0319 + 0.0305i 0.0171 + 0.0024i 0.0545 + 0.0414i 0.0957 0.0118− 0.0219i 0.0630 + 0.0153i 0.0474− 0.0341i −0.0510 + 0.0032i

−0.0640 + 0.0150i 0.0434 + 0.0252i 0.0106 + 0.0673i 0.0118 + 0.0219i 0.1038 0.0349 + 0.0267i −0.0042 + 0.0408i −0.0387− 0.0013i

0.0061− 0.0318i 0.0786 + 0.0181i 0.0505 + 0.0307i 0.0630− 0.0153i 0.0349− 0.0267i 0.1308 0.0294− 0.0356i −0.0518 + 0.0164i

−0.0125 + 0.0371i −0.0078− 0.0359i 0.0487 + 0.0143i 0.0474 + 0.0341i −0.0042− 0.0408i 0.0294 + 0.0356i 0.1359 −0.0453 + 0.0288i

0.0348 + 0.0563i −0.0350− 0.0078i −0.0449− 0.0372i −0.0510− 0.0032i −0.0387 + 0.0013i −0.0518− 0.0164i −0.0453− 0.0288i 0.1300




(4.4)

ρ3X =




0.20 0 0 0 0 0 0 0.05 + 0.02i

0 0.15 0 0 0 0 0.04 + 0.03i 0

0 0 0.10 0 0 0.03 + 0.01i 0 0

0 0 0 0.18 0.06 + 0.02i 0 0 0

0 0 0 0.06− 0.02i 0.12 0 0 0

0 0 0.03− 0.01i 0 0 0.10 0 0

0 0.04− 0.03i 0 0 0 0 0.08 0

0.05− 0.02i 0 0 0 0 0 0 0.07




(4.5)

The observables whose expectation values we have calculated are listed below-

1. O2X = 8ZZ + 2XY + 3XX − 10 �Z with spectral norm ||O2X || = 18.630

2. O2NX = 7XZ + 15Y Z + 12ZX with spectral norm ||O2NX || = 28.553

3. O2 = 8ZY + 12XZ + 3XX − 10 �Z + 9 �� with spectral norm ||O2|| = 34.061

4. O3X = 2 ��Z + 4XXX + 6XYX + 8Y Y X + 10 �ZZ + 12XXX with spectral norm

||O3X || = 34.819
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Figure 4.1: The scaling of variance, σ2
O with the number of measurements is analyzed for

different scenarios. We consider an X-type structured observable with a randomly generated
quantum state for a 2-qubit system in case (a) and for a 3-qubit system in case (d). Similarly,
a non-X-type observable with a randomly generated quantum state is examined for a 2-qubit
system in case (b) and for a 3-qubit system in case (e). Additionally, we study the scaling
behavior for a 2-qubit X-state with an arbitrarily chosen Pauli string observable in case (c)
and extend this analysis to a 3-qubit X-state in case (f).

5. O3NX = 2XZY + 4Y �Y with spectral norm ||O3NX || = 4.472

6. O3 = 5XXX + 10ZZZ + 7XY Y − 6Z�Z + 6Y Y Y + 7ZXX − 2ZX� with spectral

norm ||O3|| = 25.0381
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Chapter 5

Experimental Demonstration with

NMR

5.1 Nuclear magnetic resonance

Nuclear Magnetic Resonance (NMR) is a powerful analytical technique widely used in chem-

istry and physics to determine molecular structures, study molecular dynamics, and analyze

complex mixtures. In recent years, NMR has also emerged as a near-term quantum device,

playing a significant role in Quantum Information Processing (QIP). The fundamental prin-

ciple of NMR relies on the interaction between nuclear spins and an external magnetic field,

leading to energy level splitting due to the Zeeman effect. The energy levels for a nucleus

with spin quantum number I are given by:

Em = −γℏmB0, (5.1)

where B0 represents the externally applied magnetic field, γ is the gyromagnetic ratio of the

nucleus, ℏ is the reduced Planck’s constant, and m is the magnetic quantum number, which

takes values from {−I,−I +1, . . . , I− 1, I}. The corresponding resonance frequency, known

as the Larmor frequency, is given by:

ω0 = γB0. (5.2)
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NMR-active nuclei must have a nonzero spin quantum number (I ̸= 0). For quantum

computing applications, we often use nuclei with I = 1
2
, as they provide a well-defined

two-level quantum system suitable for qubit representation.

5.1.1 Qubit Representation and Internal Hamiltonian

In an NMR system, a single qubit is represented by a spin-1
2
nucleus. The internal Hamilto-

nian for such a system is given by:

H0 = −ℏω0Iz, (5.3)

where Iz =
σz

2
, demonstrating its equivalence to a two-level quantum system.

For an n-qubit system composed of n coupled spin-1
2
nuclei, the internal Hamiltonian

takes the form [25]:

H0 = −
nX

i=1

ℏωiI
i
z + 2πℏ

X

i<j

JijI
i
z · Ijz , (5.4)

where Jij represents the scalar coupling between the nuclei, and ωi is the Larmor frequency

of the i-th nucleus. Under the weak coupling approximation, where |Jij| ≪ |ωi − ωj|, the
Hamiltonian simplifies to the secular form:

H0 = −
nX

i=1

ℏωiI
i
z + 2πℏ

X

i<j

JijI
i
zI

j
z . (5.5)

5.1.2 Initialization of NMR Qubits

NMR qubits are initialized in thermal equilibrium at temperature T , where the density

matrix follows the Boltzmann distribution:

ρeq =
e−H0/kBT

Tr[e−H0/kBT ]
. (5.6)
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Since Ei ≪ kBT at room temperature, we approximate it using a Taylor expansion:

ρeq ≈
I

2n
+

2n−1X

i=0

ℏω0i

2nkBT
I iz. (5.7)

The first term is a scaled identity matrix, which does not contribute to the NMR signal,

while the second term, known as the deviation matrix ρI , is the measurable part of the

system. The signal strength decreases as 2n, limiting the scalability of NMR-based quantum

computing.

5.1.3 Quantum Gates in NMR

Quantum gates are implemented using radio-frequency (rf) pulses, which induce coherent

spin rotations. The total Hamiltonian for a single qubit under an rf pulse is:

Htot(t) = H0 +Hrf(t) = −ℏω0Iz − ℏω1 [Ix cos(ωrft+ ϕ) + Iy sin(ωrft+ ϕ)] , (5.8)

where ω1 = γB1 is the rf amplitude, and ϕ is the pulse phase. Transforming to the

rotating frame, the effective Hamiltonian simplifies to:

He = ℏΩIz + ℏω1 [Ix cos(ϕ) + Iy sin(ϕ)] , (5.9)

where Ω = ω0 − ωrf is the frequency offset. Under this Hamiltonian, the qubit state

evolves as:

ρ(τ) = e−iHeτρ(0)eiHeτ . (5.10)

In multi-qubit systems, the qubits interact via a coupling Hamiltonian:

Hint = 2πℏJ12I
1
z I

2
z , (5.11)
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where J12 is the coupling constant. One can control the effective rotation angle and

implement desired quantum operations by adjusting the pulse duration.

5.1.4 Pulse Shaping Techniques

Quantum gate operations typically use hard pulses, which have short durations and broad

frequency spectra, ensuring uniform excitation of multiple qubits. However, in homonuclear

systems or in cases with significant radio-frequency (RF) inhomogeneity, soft pulses with

narrow bandwidths are preferred to address specific transitions selectively.

For precise quantum control, optimal control techniques such as Gradient Ascent Pulse

Engineering (GRAPE) [23] are employed. These techniques optimize pulse shapes to max-

imize fidelity and compensate for system imperfections, ensuring high-precision quantum

gate implementations.

NMR-based quantum computing relies on coherent control of nuclear spins using rf pulses.

By leveraging different pulse sequences, coupling interactions, and optimal control methods,

it is possible to implement high-fidelity quantum gates. Despite the challenges posed by

signal decay in large systems, techniques like pseudo-pure state preparation and optimal

pulse design make NMR a powerful platform for quantum information processing.

5.2 Experimental Demonstration of PQST

1H (Hz) 13C (Hz) T1 (s) T2 (s) T ∗
2 (s)

0 217.715 1H 4.88 3.5 0.68

0 13C 5.78 - 0.26

Table 5.1: Chemical shifts (diagonal elements), J-coupling constants, and relaxation times
(T1, T2) for the

13CHCl3 molecule in DMSO.

We now describe the experimental demonstration of PQST in a two-qubit NMR register
13C-Chloroform (CHCl3) wherein

13C and 1H spin-1/2 nuclei are qubit 1 and 2 respectively

(see Fig. 5.1 (a)). In a strong ẑ-magnetic field of 11.7 T inside a Bruker 500 MHz NMR
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[θ2]−y
[θ1]−y

[θ2]−y

[θ]−y

[θ]−y
Gz

[θ1]−x
[θ2]−y

[θ]−y

[θ]−y
Gz

[θ1]−y

[θ2]−y

Z

Exp [i] & [ii]
Exp [iii] Exp [iv] Exp [v]

(a) (b) (c)

(d)

(e)

ζ1

1

1

1

1 1

1 1

1

Exp [i]  (  and )θ1 = 2π/3 θ2 = π/3

Exp (Re) Th (Re)

F = 0.9936
[ ]ζX

Th (Re)Exp (Re)

Exp [ii]  (  and )θ1 = π/4 θ2 = π/6
F = 0.9965

Exp (Re) Th (Re)

 = FT 0.9723
Exp (Re) Th (Re)

F = 0.9995
Exp [iii]  (  and )θ = π/4, θ1 = π/4 θ2 = π/6

Exp (Re) Th (Re)

 = FT 0.9916

Exp (Re)

Exp (Im)

Th (Re)

Th (Im)
F = 0.9989 Exp [iv] 

Exp (Re) Th (Re)

Exp [v]  (  and )θ1 = π/3 θ2 = π/6F = 0.9888

[ ]ζX [ ]ζ1

[ ]ζX

[ ]ζX

[ ]ζX

[ ]ζ1

(  and )θ = π/6, θ1 = π/4 θ2 = π/3

Figure 5.1: (a) The molecular structure of 13C-Chloroform with the qubits labeled. The
measured relaxation times are T1 = 4.88s, T2 = 3.5s and T ∗

2 = 0.68s for 1H, and T1 = 5.78s
and T ∗

2 = 0.26s for 13C. (b) A schematic showing the three basic steps involved in partial
shadow tomography experiments. First, the desired state is prepared following the pulse
sequences (for more information regarding the prepared states, see Tab. 5.2) shown in (d),
which is followed by the application of the shadow unitaries from set ζX or ζ1 (c) depending
on whether we want to do an X tomography or non-X tomography. Finally, the populations
are measured in the computational basis using standard diagonal tomography. The results
(e) show remarkably good fidelities achieved, considering some experimental error in the
preparation and applications of shadow unitaries (FT denotes the full state fidelity, F is the
fidelity of the X-shadow).
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Exp No. State Prepared Class
PPS PPS

purity Entanglement

Exp[i]
ρi = |ηi⟩⟨ηi|,

Pure 1 0
|ηi⟩ =

�
cos

�
π
6

�
|1⟩+ sin

�
π
6

�
|0⟩

�
⊗

�
cos

�
π
3

�
|1⟩+ sin

�
π
3

�
|0⟩

�

Exp[ii]
ρii = |ηii⟩⟨ηii|,

Pure 1 0
|ηii⟩ =

�
cos

�
π
8

�
|1⟩+ sin

�
π
8

�
|0⟩

�
⊗
�
cos

�
π
12

�
|1⟩+ sin

�
π
12

�
|0⟩

�

Exp[iii]
ρiii =

�
�

2
− cos

�
π
4

�
R1

�
⊗
�
�

2
− cos

�
π
4

�
R2

�
,

Mixed 0.56 0
R1 = cos

�
π
4

�
Iz − sin

�
π
4

�
Ix, R2 = cos

�
π
6

�
Iz − sin

�
π
6

�
Ix

Exp[iv]
ρiv =

�
�

2
− cos

�
π
6

�
R3

�
⊗
�
�

2
− cos

�
π
6

�
R4

�
,

Mixed 0.765 0
R3 = cos

�
π
4

�
Iz + sin

�
π
4

�
Iy, R4 = cos

�
π
3

�
Iz + sin

�
π
3

�
Ix

Exp[v]

ρv = |ηv⟩⟨ηv|,
Entangled 1 0.28|ηv⟩ = sin

�
π
6

�
sin

�
π
12

�
|00⟩+ sin

�
π
6

�
cos

�
π
12

�
|01⟩+

sin
�

π
12

�
cos

�
π
6

�
|10⟩ − cos

�
π
6

�
cos

�
π
12

�
|11⟩

Table 5.2: List of all states prepared experimentally for testing partial shadow tomography,
including their purity and entanglement values. Here, purity of a density operator ρ refers
to Tr ρ2 (which is 1 for pure states and 0.25 for maximally mixed states), and entanglement
is measured by usual entanglement entropy (for pure states) and by logarithmic negativity
(for mixed states). Both of these measures take value 1 for maximally entangled states and
0 for separable states. The spin operator Ik := σk/2, where σk is the kth component of the
Pauli operator σ⃗.

spectrometer, the liquid ensemble of CHCl3, dissolved in Dimethyl sulfoxide (DMSO), rests in

thermal equilibrium at an ambient temperature of 300 K. Under high temperature-high field

assumption [5], the density matrix of the quantum register reads ρth = �/4+ϵ(γCI
C
z +γHI

H
z ),

where γi is the gyro-magnetic ratio of the i’th nucleus, Ivz := σ̂v
z/2 are the spin operators,

and ϵ ∼ 10−5 is the purity factor. Using secular approximation in a doubly-rotating frame,

rotating at the resonant frequency of each nucleus, the Hamiltonian can be written as [5, 25]

HNMR = 2πℏJCHI
C
z I

H
z , (5.12)

where JCH = 220 Hz is the scalar coupling constant. Starting from the thermal state ρth,

we initialize the quantum register into the pseudopure state of |11⟩ [8, 13, 9]. Subsequently,
using the pulses shown in Fig. 5.1 (d), we prepare each of the five different states listed in

Tab. 5.2.
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We now apply the shadow unitaries from the appropriate sets (ζX and ζ1) as shown

in Fig. 5.1 (c) and measure the populations via diagonal tomography. Being an ensemble

architecture, the NMR diagonal tomography is efficient since it only requires a single readout

of the NMR signal spanning over all the spin transitions after twirling non-diagonal elements

and applying a detection pulse [2, 24, 30].

The experimentally measured diagonal states are back-evolved by the same shadow uni-

tary chosen before, after which they are subjected to the pseudo-inverse (2.1) with strength

parameter p = 5 as described in Sec. 2.5. The full estimator bρ is constructed via com-

bining the PSEs bρi generated by respective unitary sets ζi. The final reconstructed states

are displayed in Fig 5.1 (e) show excellent agreement with the actual states ρ, with most

of the fidelities F =
�
tr
p√

ρbρ√ρ
�2

being around 0.99. Such high fidelities confirm the ro-

bustness of PQST against the experimental limitations in preparing the states and applying

shadow unitaries in the presence of thermal electronic noise introducing random errors and

RF inhomogeneity introducing systematic errors.

5.3 Diagonal Tomography Results

In this section, we present the experimental data obtained from NMR diagonal tomography,

as described in Section 5. Each quantum state is evolved under the action of unitaries U

from the sets ζX and ζ1, followed by population measurements via diagonal tomography, as

shown in Fig. 5.2. The resulting diagonal matrices are then inverse-rotated using U †
i . To

construct the partial state estimators (PSEs) bρX and bρ1, we apply the pseudo-inverse (2.1)

with p = |ζX | = |ζ1| = 5 on each of the inverse-rotated diagonally tomographed states and

compute the average over all unitary choices in their respective sets. Finally, we reconstruct

the full density matrix by selectively incorporating the density matrix elements that remain

preserved in each of the PSEs using Eq. (2.12). The unitaries in each set are labeled in

Fig. 5.2 by

ζX = {U1 = H ⊗H, U2 = H ⊗HS, U3 = HS ⊗H, U4 = HS ⊗HS, U5 = � ⊗ �}

ζ1 = {U1 = H ⊗ �, U2 = � ⊗HS, U3 = � ⊗H, U4 = HS ⊗ �, U5 = � ⊗ �}.
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Figure 5.2: Experimental data from diagonal tomography were obtained using unitaries sam-
pled from the sets ζX and ζ1 for a two-qubit system. The specific unitaries Ui associated with
each set are listed in Appendix 5.3. The full density matrix is reconstructed by combining
partial information preserved in each estimator, bρX and bρ1. The theoretical and experimen-
tal values are compared in two parts: Real: Th.[Re] and Exp.[Re] and Imaginary: Th.[Im]
and Exp.[Im].
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Chapter 6

Conclusion

Quantum shadow tomography is a powerful tool to estimate the expectation values of both

linear and nonlinear observables for an unknown quantum state. However, in many settings

such as in variational quantum algorithms (VQAs) [6], we are interested in calculating specific

expectation values such as that of nearest neighbor X1X2, Y1Y2, Z1Z2 operators in the case of

a VQA to optimize the XXZ ground state. Executing the full shadow tomography protocol

may be unnecessary. In scenarios where prior knowledge about the structure of required

observables or the density matrix is available — for instance, from symmetries or state

preparation protocols, partial quantum shadow tomography (PQST) that we introduced

here can provide an efficient alternative.

We have generalized the inverse channel description with the pseudo-inverse formalism

and provided a systematic approach for performing partial shadow tomography using care-

fully selected subsets of single-qubit unitaries. This protocol helps identify minimal sets

of unitaries that, when paired with appropriate pseudo-inverses, facilitate efficient partial

shadow tomography. A promising direction for future research is the exhaustive exploration

of optimal combinations of subsets of tomographically complete sets of unitaries that enable

partial estimation of density matrix elements. This would allow for the estimation of subsys-

tem properties, effectively reducing the complexity of unitary sampling while enabling more

efficient subsystem shadow tomography.

PQST achieves the same power law scaling of variance σ2
O with the number of measure-

ments x, σ2
O ∼ ax−γ where the exponent γ is comparable to that obtained using Clifford or
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mutually unbiased basis (MUB) unitary sampling. However, for specific operators, PQST

achieves a smaller amplitude a of the power law, leading to a lower overall variance for the

same number of measurements, as demonstrated by our numerical analysis. Additionally

PQST has the advantage of relying on simple local unitaries, unlike other protocols that

may require nonlocal unitaries with significantly greater circuit depth. Single-qubit uni-

taries are easier to implement in practice, achieve better fidelities and are noise-resistant.

On account of the simplicity of the unitaries involved, our experimental implementation of

PQST for the case of two NMR qubits demonstrated remarkably high fidelities. Quantum

state tomography is a challenging yet essential task for advancing quantum technologies, as

it enables the estimation of expectation values, characterization of quantum states, and val-

idation of state-preparation protocols. However, when the structure of the output quantum

state or observables is partially known, our method offers an efficient approach for extracting

state information. We believe this work will inspire further research into more sophisticated

and optimized state estimation techniques that leverage partial prior knowledge.
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Appendix A

Haar measure and Unitary k-designs

The Haar measure on the unitary group U(d) is the unique probability measure µH that is

both left and right invariant over the group U(d). That is, for all integrable functions f and

for all V ∈ U(d), we have:

Z

U(d)

f(U)dµH(U) =

Z

U(d)

f(UV )dµH(U) =

Z

U(d)

f(V U)dµH(U). (A.1)

This can be rewritten as the expected value of f(U) with respect to the probability

measure µH , denoted as:

EU∼µH
[f(U)] :=

Z
U(d)f(U)dµH(U). (A.2)

A.1 The k-th Moment Operator

The k -th moment operator, with respect to the probability measure µH , is defined as:

M (k)
µH

: L(Cd)⊗k → L(Cd)⊗k, (A.3)
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given by:

M (k)
µH

(O) := EU∼µH

�
U⊗kOU †⊗k

�
, (A.4)

for all operators O ∈ L(Cd)⊗k.

A.2 Properties

• Any statistical property of a Haar-random unitary does not depend on its specific

choice.

• Haar-random unitaries are hard to sample exactly but can be approximated using

random quantum circuits.

• The expectation of an observable O under Haar measure satisfies:

EU [UOU †] =
Tr(O)

d
�d, (A.5)

which describes how Haar-random unitaries scramble operators.

A.3 Unitary k-Designs

A unitary k -design is a finite set of unitary operators that mimics the statistical properties

of Haar-random unitaries up to the k -th moment.

A.4 Definition

Let ν be a probability distribution defined over a set of unitaries S ⊆ U(d). The distribution

ν is a unitary k-design if and only if:

EV∼ν

�
V ⊗kOV †⊗k

�
= EU∼µH

�
U⊗kOU †⊗k

�
, (A.6)
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for all O ∈ L(Cd)⊗k.

A.5 Properties

• A 1-design reproduces uniform averaging over quantum states.

• A 2-design captures second-moment statistics, making it useful for applications like

quantum state tomography and randomized benchmarking.

• The Clifford group forms an exact 2-design but not a 3-design.

• Haar-random unitaries are perfect ∞-designs, but implementing them requires expo-

nential resources.
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Appendix B

Depolarization Channel

The Quantum depolarization channel map D is a quantum channel which corresponds to

the convex sum of the quantum state ρ with the maximally mixed state �/2n given by

D(ρ) = (1− λ)ρ+ λ
�

2n
, (B.1)

where λ is the loss parameter. This is a completely positive tracing preserving (CPTP) map.

Geometrically, this channel can be interpreted as a uniform contraction of the Bloch sphere,

parameterized by λ. For a single-qubit system, the depolarization channel is represented in

the form of Kraus operator representation.

D(ρ) =
3X

i=0

KiρK
†
i (B.2)

where the Ki are defined as

K0 =

r
1− 3λ

4
�

K1 =

r
λ

4
X

K2 =

r
λ

4
Y

K3 =

r
λ

4
Z. (B.3)
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Figure B.1: Pictoral representation of a single-qubit depolarization channel (Orange arrow)
on Bloch sphere for a given state (Green arrow). The depolarization channel is a unique
channel that mixes Identity (maximally mixed state) and the state itself- more precisely it
corresponds to uniform shrinkage of the Bloch sphere, however, preserving the information
in the direction of the given state.

We have represented the depolarization channel for a single-qubit system in the Fig. B.1:
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Appendix C

Channel description for the 2-qubit

system

The forward channel Ed map generated by unitaries {U} sampled uniformly from the unitary

set ζd is given by:

Ed = �U∈ζd,k̂U
†
���k̂
ED

k̂
���U Large−−−−−−−−→

Measurements
�U

"X

k

⟨k|UρU † |k⟩U † |k⟩⟨k|U
#
, (C.1)

where
���k̂
E
are the post-measurement collapsed states, |k⟩ are the computational basis and

�[.] is the empirical average. The empirical average over a unitary set ζ is computed as
1
|ζ|
P

Ui∈ζ f(Ui), where |ζ| denotes the cardinality of the set. In the following, we have stated

the results for 2-qubit system in the limit of large measurements. We will consider the sets

ζX and ζ1 as described in Sec. 2.5. The pseudo-inverse map action Eq. (2.1) with p = 5 on

each of the forward channel EX and E1 generated by uniform sampling of unitaries from set

ζX and ζ1, respectively is given below.

bρX = M−1
5 (EX) =




ρ00,00 ρ00,01 + ρ10,11 ρ00,10 + ρ01,11 ρ11,11

ρ01,00 + ρ11,10 ρ01,01 ρ01,10 ρ01,11 + ρ00,10

ρ10,00 + ρ11,01 ρ10,01 ρ10,10 ρ10,11 + ρ00,01

ρ00,11 ρ11,01 + ρ10,00 ρ11,10 + ρ01,00 ρ11,11




(C.2)
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bρ1 = M−1
5 (E1) =




2ρ00,00 − ρ11,11 ρ00,01 ρ00,10 0

ρ01,00 2ρ01,01 − ρ10,10 0 ρ01,11

ρ10,00 0 2ρ10,10 − ρ01,01 ρ10,11

0 ρ11,01 ρ11,10 2ρ11,11 − ρ00,00




(C.3)

The equations (C.2) and (C.3) show the extraction of subsets of elements of the full density

matrix. However, if we construct PSEs using subsets of ζ1a and ζ1b using the pseudo-inverse

in Eq. (2.1) with p = 3 for this case, we get the following matrices:

bρ1a = M−1
3 (E1a) =




−1 + 2ρ00,00 + ρ10,10 0 ρ00,10 0

0 −1 + 2ρ01,01 + ρ11,11 0 ρ01,11

ρ10,00 0 −1 + 2ρ10,10 + ρ00,00

0 ρ11,01 0 −1 + 2ρ11,11 + ρ01,01




(C.4)

bρ1b = M−1
3 (E1b) =




−1 + 2ρ00,00 + ρ10,10 ρ00,01 0 0

ρ01,00 −1 + 2ρ01,01 + ρ00,00 0 0

0 0 −1 + 2ρ10,10 + ρ11,11 ρ10,11

0 0 ρ11,10 −1 + 2ρ11,11 + ρ10,10




(C.5)

The shadow estimator bρH⊗H is given below

bρH⊗H = −� + p

4
BH (C.6)

48



BH =




ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11

ρ00,01 + ρ01,00

+ρ10,11 + ρ11,10

ρ00,10 + ρ01,11

+ρ10,00 + ρ11,01

ρ00,11 + ρ01,10

+ρ10,01 + ρ11,00

ρ00,01 + ρ01,00

+ρ10,11 + ρ11,10

ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11

ρ00,11 + ρ01,10

+ρ10,01 + ρ11,00

ρ00,10 + ρ01,11

+ρ10,00 + ρ11,01

ρ00,10 + ρ01,11

+ρ10,00 + ρ11,01

ρ00,11 + ρ01,10

+ρ10,01 + ρ11,00

ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11

ρ00,01 + ρ01,00

+ρ10,11 + ρ11,10

ρ00,11 + ρ01,10

+ρ10,01 + ρ11,00

ρ00,10 + ρ01,11

+ρ10,00 + ρ11,01

ρ00,01 + ρ01,00

+ρ10,11 + ρ11,10

ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11




(C.7)

The shadow estimator bρHS⊗HS is given below

bρHS⊗HS = −� + p

4
BHS (C.8)

BHS =




ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11

ρ00,01 − ρ01,00

+ρ10,11 − ρ11,10

ρ00,10 + ρ01,11

−ρ10,00 − ρ11,01

ρ00,11 − ρ01,10

−ρ10,01 + ρ11,00

−ρ00,01 + ρ01,00

−ρ10,11 + ρ11,10

ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11

−ρ00,11 + ρ01,10

+ρ10,01 − ρ11,00

ρ00,10 + ρ01,11

−ρ10,00 − ρ11,01

−ρ00,10 − ρ01,11

+ρ10,00 + ρ11,01

−ρ00,11 + ρ01,10

+ρ10,01 − ρ11,00

ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11

ρ00,01 − ρ01,00

+ρ10,11 − ρ11,10

ρ00,11 − ρ01,10

−ρ10,01 + ρ11,00

−ρ00,10 − ρ01,11

+ρ10,00 + ρ11,01

−ρ00,01 + ρ01,00

−ρ10,11 + ρ11,10

ρ00,00 + ρ01,01

+ρ10,10 + ρ11,11




(C.9)
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Appendix D

Ancilla Assisted Shadow Tomography

ρ S H

|0⟩ ⟨0|+ |1⟩ ⟨1| H Postselect |0⟩ ⟨0|

|0⟩ ⟨0|+ |1⟩ ⟨1| O H Postselect |0⟩ ⟨0|

Action of O:

O(|0⟩ ⟨0|+ |1⟩ ⟨1|)O† → a2 |0⟩ ⟨0|+ b2 |1⟩ ⟨1|

O =

"
a 0

0 b

#
(a2 + b2 = 1)

Conditional S:

CS = S ⊗ |0⟩ ⟨0|⊗ |0⟩ ⟨0|+ I ⊗ |1⟩ ⟨1|⊗ |0⟩ ⟨0|+ I ⊗ |0⟩ ⟨0|⊗ |1⟩ ⟨1|+ I ⊗ |1⟩ ⟨1|⊗ |1⟩ ⟨1|

Conditional H (Green):

CH = H ⊗ I ⊗ |0⟩ ⟨0|+ I ⊗ I ⊗ |1⟩ ⟨1|
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Conditional H (Red):

C ′
H = I ⊗H ⊗ |0⟩ ⟨0|+ I ⊗ I ⊗ |1⟩ ⟨1|

Circuit details:

Initial State : ρ⊗ [|0⟩ ⟨0|+ |1⟩ ⟨1|]⊗ [|0⟩ ⟨0|+ |1⟩ ⟨1|]

Action O on 3rd qubit:

ρ̃ : ρ⊗ [|0⟩ ⟨0|+ |1⟩ ⟨1|]⊗ [a2 |0⟩ ⟨0|+ b2 |1⟩ ⟨1|]

Action of CS:

ρ′ = CS ρ̃C
†
S : (SρS ⊗ |0⟩ ⟨0|+ ρ⊗ |1⟩ ⟨1|)⊗ a2 |0⟩ ⟨0|+ ρ⊗ [|0⟩ ⟨0|+ |1⟩ ⟨1|]⊗ b2 |1⟩ ⟨1|

Action of H (Green):

ρ′′ = CHρ
′C†

H : (HSρSH⊗ |0⟩ ⟨0|+HρH⊗ |1⟩ ⟨1|)⊗a2 |0⟩ ⟨0|+ρ⊗ [|0⟩ ⟨0|+ |1⟩ ⟨1|]⊗b2 |1⟩ ⟨1|

Action of H (Red):

ρ′′′ = C ′
Hρ

′′C ′†
H : (HSρSH⊗|+⟩ ⟨+|+HρH⊗|−⟩ ⟨−|)⊗a2 |0⟩ ⟨0|+ρ⊗[|+⟩ ⟨+|+|−⟩ ⟨−|]⊗b2 |1⟩ ⟨1|

Action of the H on the 3rd qubit:

ρout = (HSρSH⊗ |+⟩ ⟨+|+HρH⊗ |−⟩ ⟨−|)⊗a2 |+⟩ ⟨+|+ρ⊗ [|+⟩ ⟨+|+ |−⟩ ⟨−|]⊗ b2 |−⟩ ⟨−|

Post-selecting state |0⟩ ⟨0| for the 3rd qubit:

ρpost3 =
1

2
[a2(HSρSH ⊗ |+⟩ ⟨+|+HρH ⊗ |−⟩ ⟨−|) + b2ρ⊗ [|+⟩ ⟨+|+ |−⟩ ⟨−|]]

52



Post-selecting state |0⟩ ⟨0| for the 2nd qubit:

ρfinal =
a2

2
(HSρSH +HρH) + b2ρ

Now, let’s choose the a and b values:

a2

2
= b2

a2 + b2 = 1

we get a =
q

2
3
and b =

q
1
3

Finally we get:

ρfinal =
1

3
(HSρSH +HρH + ρ)
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