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Abstract

We theoretically study single and multi particle dynamics on long-range hopping one di-

mensional fermionic and bosonic lattice systems with hopping decaying as a power-law with

exponent µ. The lattice is further subjected to local particle number conserving dephasing

at each of its sites. In the limit of strong dephasing, we adiabatically eliminate the coher-

ences and obtain e↵ective dynamical equations for the two-point and four-point correlation

functions in the site basis. We devise a novel bond length representation for the four-point

correlator, which holds for the alternating initial state and allows us to numerically simulate

four-point correlator dynamics for significantly large system sizes. For single particle dynam-

ics, we find that even moments of the density profile of a single exciton shows one-parameter

scaling behaviour in the form of Family-Viscek (FV) scaling for µ � 1.5 with di↵usive scaling

exponents, whilst for µ < 1.5 the moments fail to show FV scaling. For multi particle dy-

namics, we find that observables such as particle transport and particle number fluctuations

show FV scaling with di↵usive scaling exponents for µ � 1.5 and super-di↵usive scaling

exponents for µ < 1.5. We further use the bond length representation to analytically derive

the exact FV scaling exponents for particle number fluctuation on fermionic tight-binding

(µ ! 1) lattice.

ix



x



Contents

Abstract ix

1 Introduction 1

2 Method 5

2.1 Two-point correlator dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Fermionic four-point correlator dynamics . . . . . . . . . . . . . . . . . . . . 11

2.3 Bosonic four-point correlator dynamics . . . . . . . . . . . . . . . . . . . . . 22

3 Results 29

3.1 Single particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Fermionic multi particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Bosonic multi particle dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 46

A Approximate generator for tight-binding fermionic bond length equations 59

B Particle number fluctuation dynamics in closed long-range hopping lat-
tices 61

C Initial state dependence of particle number fluctuation dynamics 65

xi



xii



Chapter 1

Introduction

The Eigenstate Thermalization Hypothesis (ETH) predicts that generic many-body quan-

tum systems, with bulk dephasing, inevitably equilibrate to an infinite temperature thermal

state [1, 2]. The non-equilibrium dynamics of such thermalization processes entails rich

physics, and can be used to establish universality class of the transport phenomenon of the

system. Indeed, the universal properties of non-equilibrium dynamics of local and non-local

observables in many-body systems has been a subject of great interest [3–14]. For initial

states without large scale density variations, the local observables relax in a system size

independent time scales which can predicted via emergence of hydrodynamics in many-body

quantum systems [3, 5, 7, 15]. However, the relaxation of non-local observables extends

beyond this framework, and typically exhibit much slower and system size dependent time

scales [16–22]. Recent theoretical as well as experimental e↵orts have tried to understand

the non-equilibrium dynamics and subsequent equilibration of non-local observables through

the frameworks of quantum generalized hydrodynamics [18] and fluctuating hydrodynam-

ics [9, 11]. A key non-local observable to study out-of-equilibrium dynamics is the particle

number fluctuation, which quantifies the variance in particle densities in a finite domain

of the system [23–29, 29–36]. Many recent works have used particle number fluctuation

in contexts such as quantum surface roughening dynamics [37–40], entanglement entropy

dynamics [23–25, 29], many-body localization [29–36], characterization of dynamical phase

transitions [26–28], among others.
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Interaction of quantum systems with the environment leads to dephasing in the form of

decoherence, which a↵ects the dynamics of local as well as non-local observables and their

corresponding scaling behaviours [41–46]. However, research in this direction has hitherto

been limited to short-range hopping systems [11, 37, 38, 47], leaving open questions about

dynamics of number fluctuation in long-range hopping systems with power-law hopping and

environmental interactions.

Long-range systems exhibit significant qualitative changes in equilibrium phases, ground

state properties, and dynamics [48–59] leading to rich and unconventional physics, such

as measurement-induced entanglement transitions [60–62] and transitions from normal to

anomalous transport in steady-state currents under bulk dephasing [63, 64]. Long-range

systems with hopping strength decreasing as a power-law with distance (⇠ 1/rµ) are preva-

lent in natural and artificial light harvesting systems [65–69], and can be engineered in

experimental setups [70, 71]. We model such a lattice setup, say with L sites, via the Hamil-

tonian [58, 63, 64, 72],

Ĥ = J

LX

i=1

LX

j>i

1

d(i, j)µ

h
ĉiĉ

†
j + ĉ

†
i ĉj

i
. (1.1)

Where, ĉi(ĉ
†
i ) denotes the fermionic or bosonic annihilation(creation) operator at lattice site

i. J is the hopping strength and µ is the power-law hopping exponent. d(i, j) denotes

the distance between lattice sites i and j, and for periodic boundary conditions, is given

as d(m,n) = min(|i, j|, L � |i� j|). Throughout this thesis, we adopt the natural units,

~ = c = 1. We further consider a particle number conserving dephasing probe at each site

of the lattice [47, 58, 63, 64, 73–81]. Such a local dephasing can arise from thermal noise

or local coupling to the vibrational degrees of freedom [82]. We model the dynamics of the

open lattice system setup by the Lindblad quantum master equation (LQME) [83],

d

dt
⇢̂(t) = L[⇢̂] = �i

h
Ĥ, ⇢̂(t)

i
+ �

LX

j=1

⇣
n̂j ⇢̂(t) n̂j �

1

2
{n̂2

j , ⇢̂(t)}
⌘
. (1.2)

Where, ⇢(t) denotes the system density matrix and the jump operator n̂i = ĉ
†
i ĉi is the

particle number operator at lattice site i. The first term in Eq. (1.2) represents the unitary

(coherence) evolution, whilst the second term represents the Lindbladian dissipation, in the

form of on-site (local) dephasing.

Previous studies on such systems have established the existence of a critical value of the
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hopping exponent, µcr = d/2 + 1 (where d is the spacial dimension) below which the system

exhibits a distinct phase [58, 62–64]. Such studies have either been in the single exciton

limit [58, 64] or have been in the context of steady states of the system [62, 63]. However,

the criticality of the hopping exponent µ in the context of multi-particle dynamics remains

to be elucidated.

Bipartite particle number fluctuation w(L, t) is defined on a one-dimensional (bosonic or

fermionic) lattice with L sites as w(L, t) =
D
ĥ
2
E
�
D
ĥ

E2
, where the operator ĥ =

PL/2
i=1 n̂i

counts the number of particles in one-half the lattice system. Fujimoto et.al. [11, 37, 38, 47]

have established number fluctuation as an excellent candidate to study multi particle dynam-

ics on one-dimensional lattices with conserved total particle number, and have found that in

tight-binding (µ ! 1) lattice systems, bipartite particle number fluctuation dynamics show

one-parameter scaling in the form Family-Vicsek (FV) scaling [84–86]:

w(L, t) = L
↵
f

✓
t

Lz

◆
, (1.3)

where, the scaling function f(y) satisfies the limiting behaviour

f(y) ⇠

8
<

:
y
� for y ⌧ 1

1 for y � 1

with � = ↵/z. This implies the scaling w(L, t) ⇠ t
� in the limit t ⌧ t

⇤ ⇠ L
z. In the absence

of dephasing, the scaling exponents fall in the ballistic class (↵ = z = 1) [11, 38], whilst

in the presence of dephasing the transport is di↵usive and the scaling exponents fall in the

so-called Edwards-Wilkinson (EW) class (↵ = z/2 = 1) [47]. FV scaling of bipartite particle

number fluctuation in long-range lattices and the impact of long-range hopping on the scaling

exponents remains to be shown and forms one of the main questions of this project.

In this project, we study single and multi particle out-of-equilibrium dynamics on one-

dimensional long-range fermionic and bosonic lattices, via establishing spatio-temporal scal-

ing of relevant observables. To study single particle dynamics, we consider the moments

of the density profile of a single exciton, whilst multi-particle dynamics is studied via ob-

servables such as particle transport (comprising of local correlators) and bipartite particle

number fluctuation (comprising of non-local correlators).
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All observables of our interest can be written in terms of two-point and/or four-point

correlators in the site basis. In chapter 2, considering strong dephasing (� � J), we obtain

e↵ective equations of the correlators and develop the bond length representation for the

e↵ective equations of the four-point correlators. This representation allows us to simulate

four-point correlator dynamics for significantly large system sizes (⇡ 104 sites), which has

hitherto been a computational challenge. We present our results for fermionic and bosonic

single particle dynamics in section 3.1 and find that even-moments of the density profile

show FV scaling with di↵usive scaling exponents for µ � 1.5, whilst for µ < 1.5 the moments

fail to show FV scaling. The results for fermionic and bosonic multi particle dynamics is

presented in sections 3.2 and 3.3, respectively. We report that particle transport and number

fluctuations show universal behaviour in the form of FV scaling for all values of hopping

exponent µ, whilst the criticality of µ appears in the values of the scaling exponents ↵, �

and z. We find a crossover from super-di↵usive (↵, �, z = 1, 1/(2µ� 1), 2µ� 1) dynamics to

di↵usive dynamics (↵, �, z = 1, 0.5, 2) at the critical value of the hopping exponent µcr ⇠ 1.5.

We further used the bond length representation to analytically derive the exact FV scaling

exponents for dephased fermionic lattices in the short range (µ ! 1) limit. Our results

thus illustrate the Family-Viscek universality of non-equilibrium phenomenon for dephased

long-range lattice systems, where the value of the scaling exponents entail information of

the universality class. Notably, all observables of our interest are experimentally accessible

through quantum simulators [8, 9, 70, 71, 87–95].
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Chapter 2

Method

The long-range hopping one-dimensional lattice system, consisting of L sites, with hopping

strength decreasing as a power-law, can be modelled by the Hamiltonian,

Ĥ = J

LX

i=1

LX

j>i

1

d(i, j)µ

h
ĉiĉ

†
j + ĉ

†
i ĉj

i
, (2.1)

where, d(i, j) denotes the distance between lattice sites indexed by i and j, J is the hopping

strength and µ is the power-law hopping exponent. Each lattice site is further subject

to local particle number conserving dephasing. Given that the mixed state of the system

is described the the density matrix ⇢̂(t), the system dynamics can be represented by the

Lindblad Quantum Master Equation(LQME), d⇢̂/dt = L[⇢̂], where L[⇤] is the Lindblad

super-operator, given by:

L[⇢̂(t)] = �i

h
Ĥ, ⇢̂(t)

i
+ �

LX

j=1

⇣
n̂j ⇢̂(t) n̂j �

1

2
{n̂2

j , ⇢̂(t)}
⌘
. (2.2)

Here, the jump operators n̂i = ĉ
†
i ĉi is the particle number operator at lattice site i, with

ĉi(ĉ
†
i ) being the fermionic or bosonic annihilation(creation) operator. Each lattice site is,

thus, subject to local particle number conserving dephasing of homogeneous strength �.

The equation of motion of expectation value of an observable hÂi(t) = Tr
h
⇢̂(t)Â

i
may be
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obtained as,

d

dt
hÂi = Tr


Â · d⇢̂

dt

�
= �i

⌧
[Â, Ĥ]

�
+

LX

i=1

�

✓⌧
n̂iÂn̂i

�
� 1

2

⌧n
n̂
2
i , Â

o�◆
, (2.3)

Dynamics of thermalization

The LQME Eq. (2.2) conserves the total particle number in the system, i.e,
PL

i=1 Tr[n̂i⇢̂(t)] =

N is a constant of motion. Since the system dynamics remains confined to a fixed particle

number Hilbert space HN , which is dictated by the initial condition ⇢̂(t = 0). Note that,

dimHN =
�
L
N

�
.

Further, due to the local particle number dephasing, the system undergoes decoherence

in the site basis in time scale 1/�, controlled by the strength of dephasing. That is, the

o↵-diagonals of the density matrix ⇢̂ written in the site basis vanish in time scale 1/�. The

steady state of Eq. (2.2) is the maximally mixed state, i.e., d⇢̂/dt = 0 for ⇢̂ / I, where I
denotes the identity matrix in the Hilbert space H. Under the conditions of strong dephasing

(� � J), the coherences(o↵-diagonals) of the density matrix die out much before the system

relaxes to the maximally mixed state.

2.1 Two-point correlator dynamics

The two point correlator Dmn(t) is defined as, Dmn(t) = Tr
⇥
⇢̂(t)ĉ†mĉn

⇤
. Here, ĉm denotes

the bosonic or fermionic annihilation operator at site m. The equations of motion of Dmn(t)

may be obtained using Eq. (2.3). It is important to note that given the quadratic nature

of the Hamiltonian and the Lindblad jump operators, the fermionic and bosonic equations

of motion of Dmn(t) are identical. Hence the analysis that follows in this section holds for

fermions as well as bosons. The equation of motion of Dmn(t) is given as,

d

dt
Dmn = �ih

h
ĉ
†
mĉn, Ĥ

i
i+

LX

i=1

�

✓
hn̂iĉ

†
mĉnn̂iit �

1

2
h
�
n̂
2
i , ĉ

†
mĉn

 
i
◆

= iJ

±(L/2�1),L/2X

j=±1

Dm(n+j) �D(m+j)n

|j|µ + � (�mn � 1)Dmn.

(2.4)
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Here we have assumed periodic boundary conditions on the lattice and the site indices are

understood to be in mod L arithmetic. The number of independent variables in the above

set of equations is L2. To understand the e↵ect of dephasing, it is worth transforming these

equation to the momentum basis defined by the Fourier transform,

D̃k1k2 = F [Dmn] =
1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)Dmn. (2.5)

The equation of motion in the momentum basis can be obtained as follows,

d

dt
D̃k1k2 =

1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)
d

dt
Dmn

= i(E(k1)� E(k2))D̃k1k2 +
1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)�(�nm � 1)Dmn.

(2.6)

The first term in the above equation represents the unitary(coherence) evolution, whilst the

second term represents the Lindbladian dissipation. E(k) is the spectrum of the long-range

hopping Hamiltonian Ĥ (Eq. (2.1)), given as,

E(k) = 2
L/2�1X

j=1

cos(2⇡kj/L)

jµ
+

e
i⇡k

(L/2)µ
(2.7)

The second term in Eq. (2.6) can be solved as,

d

dt
D̃k1k2 = i(E(k1)� E(k2))D̃k1k2 �

�

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)Dmn +
�

L

L�1X

m=0

e
� 2⇡i

L m(k1+k2)Dmm

= i(E(k1)� E(k2))D̃k1k2 � �D̃k1k2 +
�

L2

X

k01k
0
2

L�1X

m=0

e
2⇡i
L m[(k01+k02)�(k1+k2)]

D̃k01k
0
2

(2.8)

Now, in order to evaluate the summation over m in the above equation, note the following:

1

L

L�1X

m=0

e
2⇡i
L m[(k01+k02)�(k1+k2)] =

8
<

:
1 for (k0

1 + k
0
2)� (k1 + k2) = 0, L, 2L, · · ·

0 otherwise
(2.9)
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Hence the equation of motion of two-point correlators in the momentum basis reads as,

d

dt
D̃k1k2 = i(E(k1)� E(k2))D̃k1k2 � �D̃k1k2 +

�

L

X

(k01+k02)=(k1+k2),(k1+k2)±L

D̃k01k
0
2

(2.10)

Thus we see that the local particle number dephasing induces scattering such that the mode

(k0
1, k

0
2) couples to the mode (k1, k2) with the following selection rule:

(k0
1 + k

0
2) = (k1 + k2) or (k1 + k2) + L or (k1 + k2)� L (2.11)

2.1.1 E↵ective equations for two-point correlator dynamics

As noted before, the density matrix ⇢̂(t), under the LQME Eq. (2.2) remains confined to

a fixed particle number Hilbert space HN . The density matrix confined to the one-particle

Hilbert space H1, written in the site basis is the transpose of the two point correlation

matrix. That is,

hn|⇢̂|mi = Dmn, (2.12)

where, |ii = ĉ
†
i |0i represents the single particle pure state, with a particle localized at site i.

Thus, under the conditions of strong dephasing � � J , the o↵ diagonals of the two-point

correlator matrix Dmn(m 6= n) decay to zero in time scale 1/�, much before the system

achieves equilibrium, and at late times (t � 1/�) the dynamics can be e↵ectively described

as a classical Markov process involving only the diagonals Dmm. Such e↵ective equations can

be obtained via adiabatic elimination of the o↵-diagonals in the slower time scale t̃ = Jt. In

this time scale, note that for the o↵-diagonals, dDmn

dt̃
⌧ �

JDmn. Hence, the strong dephasing

assumptions are:

1. Dmn ⌧ Dmm 8 m 6= n

2. dDmn

dt̃
⌧ �

JDmn 8 m 6= n

The equation of motion of the two-point correlator o↵-diagonal Dmn is

d

dt
Dmn = iJ

±(L/2�1),L/2X

j=±1

Dm(n+j) �D(m+j)n

|j|µ � �Dmn (2.13)

8



Applying the second strong dephasing assumption, the derivative on the LHS may be ne-

glected with respect to the dissipative term on the RHS. Which gives,

Dmn =
iJ

�

±(L/2�1),L/2X

j=±1

Dm(n+j) �D(m+j)n

|j|µ (2.14)

Now, on the RHS, noting the first assumption, the o↵-diagonals may be neglected with

respect to the diagonals. This gives the o↵-diagonal correlator element Dmn in terms of the

diagonals Dmm and Dnn,

Dmn = i
J

�

 
Dmm �Dnn

|m� n|µ

!
. (2.15)

Now, the microscopic equation of motion of the diagonal Dmm reads

d

dt
Dmm = iJ

±(L/2�1),L/2X

j=±1

Dm(m+j) �D(m+j)m

|j|µ (2.16)

Note that on the RHS, only the o↵-diagonal terms appear. Substituting these with diagonals

using Eq. (2.13) gives,

d

dt
Dmm = ⇤

±(L/2�1),L/2X

j=±1

D(m+j)(m+j) �Dmm

|j|2µ . (2.17)

Here, ⇤ = 2J2
/� may be identified as the e↵ective di↵usion constant. Equation (2.17) is

a discrete one-dimensional fractional di↵usion equation, which e↵ectively describes the dy-

namics of the two-point correlator diagonals, in time scale t � 1/�. Fig. 2.1, compares the

dynamics of a two-point correlator diagonal obtained via numerical integration of the micro-

scopic equations, Eq. (2.4), and e↵ective equations, Eq. (2.17), of the two-point correlator,

under the strong dephasing condition (�/J = 100). The dynamics show a perfect collapse

at times �t � 1.

The e↵ective equations Eq. (2.17) are translationally invariant, and hence decouple in

the Fourier space. Defining the discrete Fourier transform as,

D̃k =
1p
L

LX

m=1

e
� 2⇡i

L mk
Dmm, (2.18)

9



Figure 2.1: Plot for dynamics of a two-point correlator diagonal Dmm(t) =
⌦
ĉ
†
mĉm

↵
(m = 0),

obtained via numerical integration of the microscopic equations (Eq. (2.4)) and e↵ective
equations (Eq. (2.17)) of the two-point correlator, for three di↵erent values of hopping ex-
ponent µ (a)µ = 1.2, (b)µ = 1.7 and (c)µ ! 1. Lattice size L = 32 and dephasing strength
� = 100 ⇤ J . Dynamics start from the alternating initial state | alti =

QL/2
m=1 ĉ

†
2m |0i

where, k 2 {0, 1, · · · , L � 1}. The equation of motion of the Fourier modes D̃k can be

obtained as,

d

dt
D̃k =

1p
L

LX

m=1

e
� 2⇡i

L mk d

dt
Dmm

= ⇤
±(L/2�1),L/2X

j=±1

1

|j|2µ
1p
L

LX

m=1

e
� 2⇡i

L mk
�
D(m+j)(m+j) �Dmm

�

= ⇤
±(L/2�1),L/2X

j=±1

1

|j|2µ
⇣
e

2⇡i
L jk � 1

⌘
D̃k.

(2.19)

As expected, the e↵ective equations decouple in the Fourier basis, and the Fourier modes

decay as,

D̃k(t) = e
�E(k)t

D̃k(0), (2.20)

where, the spectrum of the e↵ective equation, Eq. (2.17), E(k) is given by,

E(k) = ⇤

0

@4

L
2 �1X

j=1

sin2(⇡jk/L)

j2µ
+

1� e
i⇡k

(L/2)2µ

1

A . (2.21)

10



The only non-decaying mode of this spectrum is the lowest lying k = 0 mode, since, E(k =

0) = 0 and E(k) > 0 for k > 0. Hence, the two-point correlator matrix equilibrates to:

Dmm(t ! 1) =
1p
L

L�1X

k=0

e
� 2⇡i

L mk
�
0
kD̃k=0(t = 0)

=
1p
L
D̃k=0(t = 0)

(2.22)

2.2 Fermionic four-point correlator dynamics

The four point correlator on a fermionic lattice in the site basis is defined as:

Fmnpq(t) = Tr
⇥
⇢(t)ĉ†mĉ

†
nĉpĉq

⇤
(2.23)

where ĉm(ĉ†m) is the fermionic annihilation(creation) operator at site m. Fermionic anti-

commutation sets correlators of the form Fmmpq and Fmnpp to zero at all times. For the

four-point correlator Fmnpq, with (m 6= n) and (p 6= q), the dynamical equation can be

obtained via Eq. (2.3), as follows:

d

dt
Fmnpq = �ih

h
ĉ
†
mĉ

†
nĉpĉq, Ĥ

i
i+

LX

i=1

�

✓
hn̂iĉ

†
mĉ

†
nĉpĉqn̂iit �

1

2
h
�
n̂
2
i , ĉ

†
mĉ

†
nĉpĉq

 
i
◆

= i J

±(L/2�1),L/2X

j=±1

(1� �
p+j
q )Fmn(p+j)q + (1� �

p
q+j)Fmnp(q+j)

|j|µ

� iJ

±(L/2�1),L/2X

j=±1

(1� �
m+j
n )F(m+j)npq + (1� �

m
n+j)Fm(n+j)pq

|j|µ

+ � (�pm + �
q
m + �

p
n + �

q
n � 2)Fmnpq.

(2.24)

The (1��mn ) factors appear on the RHS of the Eq. (2.24) due to Fermionic anti-commutation

relations, which sets the four-point correlators of the form Fmmpq and Fmnpp to zero. The

(1� �
m
n ) factors prevent such correlators from appearing in Eq. (2.24). The last term on the

RHS of Eq. (2.24) represents the dissipation due to the local particle number dephasing on

the lattice.
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2.2.1 E↵ective equations for Fermionic four-point correlator dy-

namics

The four-point correlators are, in fact, elements of the system density matrix ⇢(t), confined

to the two-particle Hilbert space H2. In the two-particle site basis {|mni}, where |mni =
ĉ
†
mĉ

†
n |0i and (m 6= n),

hmn|⇢̂|pqi = Fmnpq (2.25)

Fermionic anti-commutation relations confers the following symmetries on the four-point

correlator:

Fmnpq = �Fnmpq = �Fmnqp = Fnmqp (2.26)

Hence, there exists
�
L
2

�2
independent four-point correlators. Of these,

�
L
2

�
are the diagonals

of the four-point correlation matrix, identified as the diagonals of the two-particle density

matrix in the two-particle site basis, of the form Fmnmn or Fmnnm, where m 6= n. The

microscopic equation of motion for these diagonals is given as,

d

dt
Fmnmn = i J

±(L/2�1),L/2X

j=±1

(1� �
m+j
n )Fmn(m+j)n + (1� �

m
n+j)Fmnm(n+j)

|j|µ

� iJ

±(L/2�1),L/2X

j=±1

(1� �
m+j
n )F(m+j)nmn + (1� �

m
n+j)Fm(n+j)mn

|j|µ

(2.27)

The o↵-diagonals of the four-point correlation matrix Fmnpq can be categorized as follows:

(i) Only one element of pair (m,n) matches with pair (p, q) i.e., either m = p, or m = q,

or n = p, or n = q. (ii) No element of pair (m,n) matches with pair (p, q). Note that

in the equation for the diagonals Fmnmn (Eq. (2.27)), only the o↵-diagonals of type 1 (i.e.,

Fmnm(n+j), Fmnn(m+j), F(m+j)nmn or Fm(n+j)mn, with j 6= 0) appear on the RHS. The equation

of motion of these o↵-diagonals is given as follows:

d

dt
Fmnm(n+j) = iJ

±(L/2�1),L/2X

j0=±1

(1� �
m+j0

n+j )Fmn(m+j0)(n+j) + (1� �
m
n+j+j0)Fmnm(n+j+j0)

|j0|µ

� iJ

±(L/2�1),L/2X

j0=±1

(1� �
m+j0
n )F(m+j0)nm(n+j) + (1� �

m
n+j0)Fm(n+j0)m(n+j)

|j0|µ

� �Fmnm(n+j)

(2.28)
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d

dt
Fmn(m+j)n = iJ

±(L/2�1),L/2X

j0=±1

(1� �
m+j+j0
n )Fmn(m+j+j0)n + (1� �

m+j0

n+j )Fmn(m+j0)(n+j)

|j0|µ

� iJ

±(L/2�1),L/2X

j0=±1

(1� �
m+j0
n )F(m+j0)n(m+j)n + (1� �

m
n+j0)Fm(n+j0)(m+j)n

|j0|µ

� �Fmn(m+j)n

(2.29)

d

dt
F(m+j)nmn = i J

±(L/2�1),L/2X

j0=±1

(1� �
m+j0
n )F(m+j)n(m+j0)n + (1� �

m
n+j0)F(m+j)nm(n+j0)

|j0|µ

� iJ

±(L/2�1),L/2X

j0=±1

(1� �
(m+j)+j0
n )F((m+j)+j0)nmn + (1� �

(m+j)
n+j0 )F(m+j)(n+j0)mn

|j0|µ

� �F(m+j)nmn

(2.30)

d

dt
Fm(n+j)mn = i J

±(L/2�1),L/2X

j0=±1

(1� �
m+j0
n )Fm(n+j)(m+j0)n + (1� �

m
n+j0)Fm(n+j)m(n+j0)

|j0|µ

� iJ

±(L/2�1),L/2X

j0=±1

(1� �
m+j0

n+j )F(m+j0)(n+j)mn + (1� �
m
n+j+j0)Fm(n+j+j0)mn

|j0|µ

� �Fm(n+j)mn

(2.31)

Under the conditions of strong dephasing (� � J), the o↵-diagonals of the four-point cor-

relator matrix vanish, much before the system equilibrates to the maximally mixed state.

Hence, in the slower time scale (t̃ = Jt), the dynamics can be mapped to a classical Markov

process involving the diagonals Fmnmn, via adiabatic elimination of the o↵-diagonals. Denot-

ing the diagonals as Fd and the o↵-diagonals as Fo↵�d, the strong dephasing assumptions,

valid in time scale t̃ = Jt are:

1. Fo↵�d ⌧ Fd

2. @t̃Fo↵�d ⌧ �
JFo↵�d

Applying the second assumption to Eqs. (2.28) to (2.31), the derivative on LHS of these

equations may be neglected. Further, applying the first assumption, the o↵-diagonals in the

13



summations on the RHS of these equations may be neglected. This gives the o↵-diagonals

of type (i) in the terms of the diagonals, as follows,

F(m+j)nmn =
iJ

�
(1� �

m+j
n )

F(m+j)n(m+j)n � Fmnmn

|j|µ .

Fm(n+j)mn =
iJ

�
(1� �

m
n+j)

Fm(n+j)m(n+j) � Fmnmn

|j|µ .

Fmn(m+j)n =
iJ

�
(1� �

m+j
n )

Fmnmn � F(m+j)n(m+j)n

|j|µ .

Fmnm(n+j) =
iJ

�
(1� �

m
n+j)

Fmnmn � Fm(n+j)m(n+j)

|j|µ .

(2.32)

Substituting the above in the equation of motion of the diagonal Fmnmn (Eq. (2.27)), provides

the e↵ective equation for the Fermionic four point correlator:

d

dt
Fmnmn = ⇤

±(L/2�1),L/2X

j=±1

(1� �
m+j
n )

F(m+j)n(m+j)n � Fmnmn

|j|2µ

= ⇤
±(L/2�1),L/2X

j=±1

(1� �
m
n+j)

Fm(n+j)m(n+j) � Fmnmn

|j|2µ ,

(2.33)

with the constraint m 6= n, and ⇤ = 2J2
/� can be identified as the di↵usion constant.

Fig. 2.2, compares the dynamics of a four-point correlator diagonal obtained via numerical

integration of the microscopic equations, Eq. (2.24), and e↵ective equations, Eq. (2.33), of

the four-point correlator, under the strong dephasing condition (�/J = 100). The dynamics

show a perfect collapse at times �t � 1.

Although Eq. (2.33) appears to be a two-dimensional discrete di↵usion equation, the

(1� �
m
n ) factors, appearing due to Fermionic anti-commutation relations, destroy the trans-

lational invariance of the equations. This prevents the decoupling of the equations in the

Fourier space. The e↵ective equations for the four-point correlator are essentially a classical

Markov process amongst the diagonals of two-particle density matrix. Since, the number

of diagonals are
�
L
2

�
, the size of the generator of these equations grows as ⇠ L

4. This is

a significant computational improvement, compared to the microscopic equations for the

four-point correlator, where the number of independent variables are
�
L
2

�2
and the size of the

generator grows as ⇠ L
8.
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Figure 2.2: Plot for dynamics of a four-point correlator diagonal Fmnpq(t) =
⌦
ĉ
†
mĉ

†
nĉpĉq

↵

with (m,n, p, q) = (1, L/2, 1, L/2), obtained via numerical integration of the microscopic
equations (Eq. (2.24)) and e↵ective equations (Eq. (2.33)) of the four-point correlator, for
three di↵erent values of hopping exponent µ (a)µ = 1.2, (b)µ = 1.7 and (c)µ ! 1. Lattice
size is L = 8 and the dephasing strength is � = 100⇤J . Dynamics start from the alternating
initial state | alti =

QL/2
m=1 ĉ

†
2m |0i

2.2.2 Bond length equations for Fermionic four-point correlators

On a lattice system with L sites, under periodic boundary conditions, the distance d(m,n)

between sites m and n is given as, d(m,n) = min(|m� n|, L � |m� n|). This distance

can be defined as the bond lenght of the four-point correlator diagonal Fmnmn. Note that

d(m,n) 2 {1, 2, · · · , L/2}. For the alternating state | alti =
QL/2

m=1 ĉ
†
2m |0i, all bonds with

d(m,n) being odd have one lattice site occupied and another unoccupied. Whilst for bonds

with d(m,n) being even, either both the lattice sites are occupied or both the lattice sites are

unoccupied. These points, along with the translational invariance of the e↵ective equations

for the four-point correlators (Eq. 2.33) motivate the following claims:

– Given a value p 2 {1, 3, .., L/2 � 1}, the values of all diagonals Fmnmn(t) with bond

length d(m,n) = p are identical throughout the dynamics, and we label these as G(0)
p (t).

That is, F1212 = F2323 = · · · = FL1L1 = G
0
(1), F1414 = F2525 = · · · = F(L�3)1(L�3)1 = G

(0)
3

and so on for p = 5, 7, · · · , L/2� 1

– Given a value p 2 {2, 4, · · · , L/2}, the values of all diagonals Fmnmn(t) with (i) bond

length d(m,n) = p and (ii) both sites occupied in the initial state are identical through-

out the dynamics, and we label these as G(1)
p . That is, F2424 = F4646 = · · · = FL2L2 =

15



G
(1)
2 , F2626 = F4848 = F(L�2)2(L�2)2 = G

(1)
4 and so on for p = 6, 8, · · · , L/2.

– Given a value p 2 {2, 4, · · · , L/2}, the values of all diagonals Fmnmn(t) with bond length

d(m,n) = p and both sites unoccupied in the initial state are identical throughout the

dynamics, and we label these as G
(2)
p . That is, F1313 = F3535 = · · · = F(L�1)1(L�1)1 =

G
(2)
2 , F1515 = F3737 = F(L�3)1(L�3)1 = G

(2)
4 and so on for p = 6, 8, · · · , L/2.

The above rules essentially define a bijection between the set of four-point correlator diago-

nals {Fmnmn} and the set of bond length variables
n
G

(0),(1),(2)
p

o
. Using this map on Eq. (2.33)

and substituting the diagonals Fmnmn with the appropriate bond length variables G(0),(1),(2)
p

gives,

d

dt
G

(0)
p =2⇤

X

p0!odd
p0 6=p

Upp0
�
G

(0)
p0 �G

(0)
p

�
+ 2⇤

X

p0!even
p0 6=p

Upp0

⇣G(1)
p0 +G

2
p0

2
�G

(0)
p

⌘
, (2.34)

d

dt
G

(1)
p =2⇤

X

p0!odd
p0 6=p

Upp0
�
G

(0)
p0 �G

(1)
p

�
+ 2⇤

X

p0!even
p0 6=p

Upp0
�
G

(1)
p0 �G

(1)
p

�
, (2.35)

d

dt
G

(2)
p =2⇤

X

p0!odd
p0 6=p

Upp0
�
G

(0)
p0 �G

(2)
p

�
+ 2⇤

X

p0!even
p0 6=p

Upp0
�
G

(2)
p0 �G

(2)
p

�
. (2.36)

Here, ⇤ = 2J2
/� is the di↵usion constant appearing in Eq. (2.33) and the elements of the

coupling matrix Upp0 are given as,

Upp0 =

8
>>><

>>>:

1
|p0�p|2µ if p0 = L/2

1
|p0�p|2µ +

8
<

:
1/(p+ p

0)2µ if p+ p
0  L/2

1/(L� (p+ p
0))2µ if p+ p

0
> L/2

if p0 < L/2
(2.37)

Now, particle number fluctuations on a domain {1, 2, · · · ,M} of the lattice, wM(L, t) =D
ĥ
2
E
�
D
ĥ

E2
where ĥ =

PM
i=1 n̂i counts the number of particles in the domain {1, 2, · · · ,M},
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can be written in terms of the bond length variables as,

wM(L, t) = �
MX

p=1
p!odd

(M�p)G(0)
p �

MX

p=1
p!even

(M�p)
G

(1)
p +G

(2)
p

2
+

MX

m=1

Dmm

"
1�

MX

n=1

Dnn

#
, (2.38)

where Dmm =
⌦
ĉ
†
mĉm

↵
are the diagonals of the two-point correlator matrix, as defined in

Sec. 2.1. In the above expression of particle number fluctuation, for bonds with even length

bond length, the occupied (G(1)) and unoccupied (G(2)) bonds contribute equally. Hence,

for purposes of computing particle number fluctuation, the following representation can be

used:

Gp =

8
<

:
G

(0)
p for p 2 odd

G
(1)
p +G

(2)
p

2 for p 2 even
(2.39)

The dynamical equations of the bond length variables {Gp} can be obtained via averaging

Eqs. (2.35) and (2.36), which gives,

d

dt
Gp = 2⇤

L/2X

p0=1
p0 6=p

Upp0 (Gp0 �Gp), (2.40)

where, the coupling matrix Upp0 is as defined in Eq. (2.37). Fig. 2.3, compares the dynamics

of a four-point correlator diagonal obtained via numerical integration of the microscopic

equations (Eq. 2.24) and bond length equations (Eq. 2.40) of the four-point correlator. One

observes a perfect collapse between the microscopic and bond length dynamics at all times.

There are L/2 independent variables in the above bond length equations, Eq (2.40). As a

result, the number of elements in generator of these equations grows as ⇠ L
2. This provides

a significant computational advantage in the numerical simulation of number fluctuation

dynamics, over the microscopic (Eq. 2.24) and e↵ective equations (Eq. 2.33) of four-point

correlator dynamics, where the size of the generator grows as ⇠ L
8 and ⇠ L

4, respectively.
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Figure 2.3: Plot for dynamics of a four-point correlator diagonal Fmnpq(t) =
⌦
ĉ
†
mĉ

†
nĉpĉq

↵

with (m,n, p, q) = (1, L/2, 1, L/2), obtained via numerical integration of the microscopic
equations (Eq. (2.24)) and bond length equations (Eq. (2.40)) of the four-point correlator,
for three di↵erent values of hopping exponent µ (a)µ = 1.2, (b)µ = 1.7 and (c)µ ! 1.
Lattice size L = 8 and dephasing strength � = 100 ⇤ J . Dynamics start from the alternating
initial state | alti =

QL/2
m=1 ĉ

†
2m |0i. One observes a perfect collapse between the dynamics at

all times.

Solution for Fermionic bond length equations for tight-binding lattice (µ ! 1)

The Fermionic bond length equations (Eq. 2.40) can be written as the linear first-order

di↵erential equation:
d

d⌧
|Gi = Uµ|Gi, (2.41)

where, ⌧ = 2⇤t and the p-th element of the vector |Gi is the bond length variable Gp. For

the tight-binding lattice setup (i.e., for hopping exponent µ ! 1) the generator Uµ!1 is

tri-diagonal and is of the form:

Uµ!1 =

0

BBBBBBBBBBB@

�1 1 0 0 . . . 0 0

1 �2 1 0 . . . 0 0

0 1 �2 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 �2 1 0

0 0 0 . . . 1 �2 1

0 0 0 . . . 0 2 �2

1

CCCCCCCCCCCA

L/2⇥L/2

. (2.42)
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This generator Uµ can be symmetrized to Ũµ by scaling the last row by half, i.e. Ũµ = SUµ,

where,

S =

0

BBBBBB@

1 0 0 . . . 0

0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . 0 1 0

0 . . . 0 0 0.5

1

CCCCCCA

L/2⇥L/2

(2.43)

The symmetrized generator for the tight-binding setup is:

Ũµ!1 = S ·Uµ!1 =

0

BBBBBBBBBBB@

�1 1 0 0 . . . 0 0

1 �2 1 0 . . . 0 0

0 1 �2 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 �2 1 0

0 0 0 . . . 1 �2 1

0 0 0 . . . 0 1 �1

1

CCCCCCCCCCCA

L/2⇥L/2

. (2.44)

It can be shown that the dynamics generated by Uµ!1 and Ũµ!1 for a bond length variable

Gp, converge in the thermodynamic limit (L ! 1), provided that p ⌧ L (see appendix A).

That is,

lim
L!1

hp| eUµ!1t |G(t = 0)i = lim
L!1

hp| eŨµ!1t |G(t = 0)i , (2.45)

where the vector |pi, |pij = �
j
p, extracts the p-th element from the dynamics generated by

Uµ!1 or Ũµ!1. Therefore, the symmetrized generator Ũµ!1 can be used to analyse the

dynamics of the bond length variables, in the thermodynamic limit.

The symmetrized tight binding generator Ũµ!1 can be diagonalized, with eigenvectors

|v(k)i and corresponding eigenvalues �(k) [96] given as,

�
(k) = �2 + 2 cos

✓
2⇡k

L

◆
= �4 sin2

✓
⇡k

L

◆

|v(k)ij =

8
><

>:

1/
p

L/2 for k = 0

1p
L/4

cos

✓
⇡k(2j�1)

L

◆
for k = 1, 2, · · · , L2 � 1

(2.46)
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where, j = 1, . . . , L/2. The bond length vector at time ⌧ = 2⇤t, |G(⌧)i, is given by:

|G(⌧)i = F�1
e
FŨF�1⌧ |G̃(0)i. (2.47)

Where |G̃(0)i = F|G(0)i is bond length vector in the eigenbasis
�
|v(k)i

 
, k-th row of F is the

eigenvector |v(k)i and F�1 = FT . The initial state of the bond length vector can be obtained

from the alternating initial condition on the lattice, |G(0)ip = 0 for p = 1, 3, · · · , L/2 � 1

and |G(0)ip = �1
2 for p = 2, 4, · · · , L/2. The initial state in the eigenbasis

�
|v(k)i

 
is given

as,

G̃k(⌧ = 0) = |F|G(0)iik =
X

j

|v(k)ij|G(0)ij

=

8
<

:
� L/8p

L/2
for k = 0

� 1p
L
cos
�
⇡k
L

�PL/4
j=1 cos

⇣
⇡k

(L/4)j

⌘
� 1p

L
sin
�
⇡k
L

�PL/4
j=1 sin

⇣
⇡k

(L/4)j

⌘
for k 6= 0.

(2.48)

For k 2 {1, .., L/2� 1}, the summations over cos and sin can be evaluated exactly, to get:

L/4X

j=1

cos

✓
⇡k

(L/4)
j

◆
=

8
<

:
0 if k 2 even

�1 if k 2 odd

L/4X

j=1

sin

✓
⇡k

(L/4)
j

◆
=

8
><

>:

0 if k 2 even

cot

✓
2⇡k
L

◆
if k 2 odd.

(2.49)

Therefore at t = 0, and for k 2 odd, the mode occupancy is:

G̃k(⌧ = 0) =
1p
L
cos

✓
⇡k

L

◆
� 1p

L
sin

✓
⇡k

L

◆
cos(2⇡k/L)

sin(2⇡k/L)

=
1p
L
cos

✓
⇡k

L

◆
� 1p

L
sin

✓
⇡k

L

◆
cos(2⇡k/L)

2 sin(⇡k/L) cos(⇡k/L)

=
1p
L

✓
2 cos2(⇡k/L)� cos(2⇡k/L)

2 cos(⇡k/L)

◆

=
1p
L

✓
2 cos2(⇡k/L)� 2 cos2(⇡k/L) + 1

2 cos(⇡k/L)

◆
=

1

2
p
L

1

cos(⇡k/L)
.

(2.50)

Therefore, to summarize, the initial state of the bond length vector in the eigenbasis
�
|v(k)i
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is,

G̃k(⌧ = 0) =

8
>>><

>>>:

�
p
2L/8 for k = 08

<

:
0 if k 2 even
sec(⇡k/L)

2
p
L

if k 2 odd
for k 6= 0.

(2.51)

Using this result, the bond length variables at time ⌧ = 2⇤t can be obtained as

Gp(⌧) =
L/2�1X

k=0

F�1
pk e

�(k)⌧
G̃k(⌧ = 0)

= �1

4
+

1p
L/4

L/2�1X

k=1

cos

✓
⇡k(2p� 1)

L

◆
e
�(k)⌧

G̃k(⌧ = 0)

= �1

4
+

1

L

X

k2odd

cos

✓
⇡k(2p� 1)

L

◆
e
�(k)⌧ sec

✓
⇡k

L

◆

= �1

4
+

1

L

X

k2odd

✓
cos

✓
2⇡pk

L

◆
+ tan

✓
⇡k

L

◆
sin

✓
2⇡pk

L

◆◆
e
�(k)⌧

.

(2.52)

At su�ciently late times, low-lying modes (k ⌧ L) dominate the dynamics and higher

modes k ⇠ O(L) decay to zero. Hence, small angle approximation holds for ⇡k/L, i.e., the

approximations (i) �(k) ⇡ �4⇡2
k
2
/L

2, (ii) tan(⇡k/L) ⇡ ⇡k/L hold, and one obtains,

Gp(t) ⇡ �1

4
+

1

L

X

k2odd

✓
cos

✓
2⇡pk

L

◆
+
⇡k

L
sin

✓
2⇡pk

L

◆◆
e
� 4⇡2k2

L2 ⌧

⇡ �1

4
+

1

L

X

k2odd

cos

✓
2⇡pk

L

◆
e
� 4⇡2k2

L2 ⌧

. (2.53)

The second term on the RHS is denoted as Hp(⌧), and is solved as follows,

Hp(⌧) =
1

L

X

k2odd

cos

✓
2⇡pk

L

◆
e
� 4⇡2k2

L2 ⌧

=
1

L

L/2�1X

k=0

cos

✓
2⇡pk

L

◆
e
� 4⇡2k2

L2 ⌧ � 1

L

L/2�1X

k=0

cos

✓
2⇡p(2k)

L

◆
e
� 4⇡2(2k)2

L2 ⌧
.

(2.54)
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In the limit L ! 1 and p ⌧ L, the summations above can be approximated as integrals,

1

L

L/2�1X

k=0

cos

✓
2⇡pk

L

◆
e
� 4⇡2k2

L2 ⌧ ⇡ 1

2⇡

Z 1

0

dx cos(px)e�x2⌧ =
1

4
p
⇡⌧

e
�p2/4⌧

1

L

L/2�1X

k=0

cos

✓
2⇡p(2k)

L

◆
e
� 4⇡2(2k)2

L2 ⌧ ⇡ 1

4⇡

Z 1

0

dx cos(px)e�x2⌧ =
1

8
p
⇡⌧

e
�p2/4⌧

,

(2.55)

which gives the profile of the bond length variables Gp(t) for the dephased, tight-binding

lattice setup,

Gp(t) ⇡ �1

4
+

1

8
p
⇡⇤t

e
�p2/4⇤t for p ⌧ L. (2.56)

Hence the bond length variables exhibit a Gaussian profile. Additionally, recall that ⇤ =

2J2
/� is the e↵ective di↵usion constant of the system.

2.3 Bosonic four-point correlator dynamics

The four point correlator on a Bosonic lattice in the site basis is defined as:

Fmnpq(t) = Tr
⇥
⇢(t)ĉ†mĉ

†
nĉpĉq

⇤
(2.57)

where ĉm(ĉ†m) is the Bosonic annihilation(creation) operator at site m. The microscopic

equations for the dynamics of the four-point correlator can be obtained from Eq. (2.3),

d

dt
Fmnpq = �i

⌧h
ĉ
†
mĉ

†
nĉpĉq, Ĥ

i�
+

LX

i=1

�

✓⌧
n̂iĉ

†
mĉ

†
nĉpĉqn̂i

�
� 1

2

⌧�
n̂
2
i , ĉ

†
mĉ

†
nĉpĉq

 �◆

= i J

X

j 6=0

+Fmn(p+j)q + Fmnp(q+j) � F(m+j)npq � Fm(n+j)pq

|j|µ

+ � (�mp + �
n
q + �

m
q + �

n
p � �

m
n � �

p
q � 2)Fmnpq.

(2.58)

Here, the lattice site indices are understood to be in mod L arithmetic, a consequence

of periodic boundary conditions of lattice setup. The first term on the RHS in the above

equation represents the standard unitary contribution and exhibits translational invariance,

whilst the second terms contributes to dissipation and represents the local particle number

dissipation.
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2.3.1 E↵ective equations for Bosonic four-point correlator dynam-

ics

As described in section 2.2.1, the four-point correlators are the elements of the density matrix

confined to the two-particle Hilbert space H2, when the density matrix is written in the two-

particle site basis {|mni}, where |mni = ĉ
†
mĉ

†
n |0i. The four-point correlator matrix diagonals

are identified as the diagonals of the two-particle density matrix in this site basis, and are

of the form Fmnmn or Fmnnm, where m = n is allowed. The standard Bosonic commutation

relation confers the following symmetry to the four-point correlators:

Fmnpq = Fnmpq = Fmnqp = Fnmqp (2.59)

Hence, there are
��

L
2

�
+ L

�2
linearly independent four-point correlators, out of which

�
L
2

�
+L

are the four-point correlator diagonals. Under the conditions of strong dephasing (� � J),

the o↵-diagonal elements relax to zero, much before the system attains equilibrium. Hence at

late times (t � 1/�), the dynamics can be e↵ectively described by a classical Markov process

involving only the diagonal elements. The o↵-diagonals can be adibatically eliminated in the

slower time scale t̃ = Jt, to obtain these equations.

The microscopic dynamical equations of the four-point correlator diagonals of the form

Fmnmn(m 6= n) reads

d

dt
Fmnmn = +iJ

±(L/2�1),LX

j=±1

+Fmn(m+j)n + Fmnm(n+j) � F(m+j)nmn � Fm(n+j)mn

|j|µ . (2.60)

Only the o↵-diagonals of the four-point correlator matrix appear on the RHS of the above

equations. To understand better, the form of these o↵-diagonals, the summation can be split

as follows:

d

dt
Fmnmn =+ iJ

0

BB@

±(L/2�1),LX

j=±1
j 6=n�m

Fmn(m+j)n � F(m+j)nmn

|j|µ +
Fmnnn � Fnnmn

|m� n|µ

1

CCA

+ iJ

0

BB@

±(L/2�1),LX

j=±1
j 6=m�n

Fmnm(n+j) � Fm(n+j)mn

|j|µ +
Fmnmm � Fmmmn

|m� n|µ

1

CCA

(2.61)
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Following the prescription described in section 2.2.1, the o↵-diagonals appearing the above

equation can be obtained in terms of the diagonals:

Fmn(m+j)n =
iJ

�


Fmnmn � F(m+j)n(m+j)

|j|µ
�

Fmnnn =
iJ

�


Fmnmn + Fmnnm � Fnnnn

|m� n|µ
�

F(m+j)nmn =
iJ

�


F(m+j)n(m+j)n � Fmnmn

|j|µ
�

Fnnmn =
iJ

�


Fnnnn � Fmnmn � Fnmmn

|m� n|µ
�

Fmnm(n+j) =
iJ

�


Fmnmn � Fm(n+j)m(n+j)

|j|µ
�

Fmnmm =
iJ

�


Fmnnm + Fmnmn � Fmmmm

|m� n|µ
�

Fm(n+j)mn =
iJ

�


Fm(n+j)m(n+j) � Fmnmn

|j|µ
�

Fmmmn =
iJ

�


Fmmmm � Fnmmn � Fmnmn

|m� n|µ
�

(2.62)

Substituting the above in Eq. (2.61) gives the e↵ective equation of motion of four-point

diagonals of the form Fmnmn, where (m 6= n),

d

dt
Fmnmn =

J
2

�

 
2
X

j 6=n�m

F(m+j)n(m+j)n � Fmnmn

|j|2µ
+

2Fnnnn � 2Fmnmn � Fmnnm � Fnmmn

|m� n|2µ

!

J
2

�

 
2
X

j 6=m�n

Fm(n+j)m(n+j) � Fmnmn

|j|2µ
+

2Fmmmm � 2Fmnmn � Fmnnm � Fnmmn

|m� n|2µ

!
.

(2.63)

Now, the microscopic dynamical equation of the diagonals of the form Fmmmm is given as,

d

dt
Fmmmm = +iJ

 
X

j

Fmm(m+j)m + Fmmm(m+j) � F(m+j)mmm � Fm(m+j)mm

|j|µ

!
. (2.64)

Following the same prescription as above (and as described in section 2.2.1), the o↵-diagonals
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on the RHS in the above equation can be written in terms of the diagonals,

Fmm(m+j)m =
iJ

�


Fmmmm � F(m+j)m(m+j)m � Fm(m+j)(m+j)m

|j|µ
�

Fmmm(m+j) =
iJ

�


Fmmmm � Fm(m+j)m(m+j) � F(m+j)mm(m+j)

|j|µ
�

Fm(m+j)mm =
iJ

�


Fm(m+j)(m+j)m + Fm(m+j)m(m+j) � Fmmmm

|j|µ
�

F(m+j)mmm =
iJ

�


F(m+j)m(m+j)m + F(m+j)mm(m+j) � Fmmmm

|j|µ
�

(2.65)

Substituting the above in Eq. (2.64) gives the e↵ective equations of motion of the four-point

diagonals Fmmmm:

d

dt
Fmmmm =

2J2

�

±(L/2�1),LX

j=±1

✓
Fm(m+j)m(m+j) + Fm(m+j)(m+j)m � Fmmmm

|j|2µ
◆

+
2J2

�

±(L/2�1),LX

j=±1

✓
F(m+j)m(m+j)m + F(m+j)mm(m+j) � Fmmmm

|j|2µ
◆ (2.66)

Noting the symmetries of the Bosonic four point correlator, equations (2.63) and (2.66) can

be written together as,

d

dt
Fmnmn = ⇤

0

@
±(L/2�1),LX

j=±1

(1 + �
m
n )F(m+j)n(m+j)n � (1 + �

m+j
n )Fmnmn

|j|2µ

1

A

+ ⇤

0

@
±(L/2�1),LX

j=±1

(1 + �
m
n )Fm(n+j)m(n+j) � (1 + �

m
n+j)Fmnmn

|j|2µ

1

A ,

(2.67)

where, ⇤ = 2J2
/� can be identified as the di↵usion constant. The above equations e↵ectively

describe the dynamics of the Bosonic four-point correlator diagonals in time scale t � 1/�.

2.3.2 Bond length equations for Bosonic four-point correlators

Akin to the case of Fermionic four-point correlator diagonals (Sec. 2.2.2), the “bond length”

of a Bosonic four-point correlator diagonal Fmnmn is defined as the distance d(m,n) between
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lattice sitesm and n. On a periodic lattice with L sites, d(m,n) = min(|m� n|, L�|m� n|),
and can take values {0, 1, · · · , L/2}. For the alternating state | alti =

QL/2
m=1(ĉ

†
2m)

M |0i, with
M bosons on all sites with even indices, all bonds with d(m,n) being odd have one site

unoccupied and the other occupied with M bosons. Whilst, all bonds with d(m,n) being

even have either both sites unoccupied or both sites occupied with M bosons. These points,

along with the translational invariance of the e↵ective equations (Eq. 2.67), support the

following claims:

– Given a value p 2 {1, 3, .., L/2 � 1}, the values of all diagonals Fmnmn(t) with bond

length d(m,n) = p are identical throughout the dynamics, and we label these as G(0)
p (t).

That is, F1212 = F2323 = · · · = FL1L1 = G
0
(1), F1414 = F2525 = · · · = F(L�3)1(L�3)1 = G

(0)
3

and so on for p = 5, 7, · · · , L/2� 1

– Given a value p 2 {0, 2, 4, · · · , L/2}, the values of all diagonals Fmnmn(t) with (i)

bond length d(m,n) = p and (ii) both sites occupied in the initial state are identical

throughout the dynamics, and we label these as G
(1)
p . That is, F2222 = F4444 = · · · =

FLLLL = G
(1)
0 ,F2424 = F4646 = · · · = FL2L2 = G

(1)
2 and so on for p = 4, 6, · · · , L/2.

– Given a value d 2 {2, 4, · · · , L/2}, the values of all diagonals Fmnmn(t) with bond

length p(m,n) = d and both sites unoccupied in the initial state are identical through-

out the dynamics, and we label these as G
(2)
p . That is, F1111 = F3333 = · · · =

F(L�1)(L�1)(L�1)(L�1) = G
(2)
0 ,F1312 = F3535 = · · · = F(L�1)1(L�1)1 = G

(2)
2 and so on

for p = 4, 6, · · · , L/2.

The above rules define a bijection between the set of Bosonic four-point correlator diagonals

{Fmnmn} and the set of bond length variables
n
G

(0),(1),(2)
p

o
. Using this map on the e↵ective

equations of bosons (Eq. 2.67), and substituting the diagonals Fmnmn with appropriate bond

length variables G(0),(1),(2)
p , gives the following equations,

For p = 0:

d

dt
G

(1)
p =2⇤

X

p0!odd
p0 6=p

Upp0
�
2G0

p0 �G
(1)
p

�
+ 2⇤

X

p0!odd
p0 6=p

Upp0

⇣
2G(1)

p0 �G
(1)
p

⌘
(2.68)

d

dt
G

(2)
p =2⇤

X

p0!odd
p0 6=p

Upp0
�
2G0

p0 �G
(2)
p

�
+ 2⇤

X

p0!odd
p0 6=p

Upp0

⇣
2G(2)

p0 �G
(2)
p

⌘
(2.69)
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For p > 0:

d

dt
G

0
p =2⇤

X

p0!odd
p0 6=p

Upp0

⇣
G

0
p0 � (1 + �

p0

0 )G
0
p

⌘
+ 2⇤

X

p0!odd
p0 6=p

Upp0

✓
G

1
p0 +G

2
p0

2
� (1 + �

p0

0 )G
0
p

◆

(2.70)

d

dt
G

(1)
p =2⇤

X

p0!odd
p0 6=p

Upp0

⇣
G

0
p0 � (1 + �

p0

0 )G
(1)
p

⌘
+ 2⇤

X

p0!odd
p0 6=p

Upp0

⇣
G

(1)
p0 � (1 + �

p0

0 )G
(1)
p

⌘
(2.71)

d

dt
G

(2)
p =2⇤

X

p0!odd
p0 6=p

Upp0

⇣
G

0
p0 � (1 + �

p0

0 )G
(2)
p

⌘
+ 2⇤

X

p0!odd
p0 6=p

Upp0

⇣
G

(2)
p0 � (1 + �

p0

0 )G
(2)
p

⌘
, (2.72)

where ⇤ = 2J2
/� is the di↵usion constant, and the elements of the coupling matrix Upp0 is

given as:

Upp0 =

8
>>><

>>>:

1
|p0�p|2µ for p0 = 0, L/2

1
|p0�p|2µ +

8
<

:

1
(p+p0)2µ for p+ p

0  L/2

1
(L�(p+p0))2µ for p+ p

0
> L/2

for 0 < p
0
< L/2

(2.73)

Particle number fluctuations on a domain {1, 2, · · · ,M} of the lattice, wM(L, t) =
D
ĥ
2
E
�

D
ĥ

E2
where ĥ =

PM
i=1 n̂i counts the number of particles in the domain {1, 2, · · · ,M}, can

be written in terms of the bond length variables as,

wM(L, t) = �MG
(0)
0 �

M�1X

p=1
p!odd

(M�p)G(0)
p �

M�1X

p=1
p!even

(M�p)
G

(1)
p +G

(2)
p

2
+

MX

m=1

Dmm

"
1�

MX

n=1

Dnn

#
,

(2.74)

where, Dmm =
⌦
ĉ
†
mĉm

↵
are the diagonals of the two-point correlator matrix, as defined in Sec.

2.1. In the expression of particle number fluctuation, for bonds of even length, the occupied

(G(1)) and unoccupied (G(2)) bonds contribute equally. Hence, for purposes of computing

particle number fluctuation, the following representation can be used:

Gp =

8
<

:
G

(0)
p for p 2 odd

G
(1)
p +G

(2)
p

2 for p 2 even
(2.75)
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Finally, the equations of the bond length variables {Gp} can be obtained via averaging

Eqs. (2.68) and (2.69) for p = 0 and Eqs. (2.71) and (2.72) for p > 0, which gives,

d

dt
Gp = 2⇤

L/2X

p0=0
p0 6=p

Upp0

⇣
(1 + �

p
0)Gp0 � (1 + �

p0

0 )Gp

⌘
, (2.76)

where, the coupling matrix Upp0 is as defined in Eq. (2.73). As can be seen, the size of the

generator of the bond length equations Eq. (2.76) grows as ⇠ L
2. This provides a significant

numerical advantage for computation of four-point correlator dynamics, over the e↵ective

(Eq. 2.67) and microscopic (Eq. 2.58) equations, size of the generators of which grow as ⇠ L
4

and ⇠ L
8, respectively.
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Chapter 3

Results

3.1 Single particle dynamics

Given the quadratic nature of the Hamiltonian and the jump operators in Eq. (2.2), a single

fermion and boson behave identically on the lattice system. Mathematically, this is reflected

in the identical equations of motion of the fermionic and bosonic single particle density

matrix (Eq. 2.4). Hence, what follows in this section holds for fermions as well as bosons.

To study the dynamics of a single particle on the dephased long-range lattice system, the

lattice is initialized in a pure state with a single particle localized at site m0, | 0i = ĉ
†
m0

|0i.
Under the strong dephasing assumption, the e↵ective equations for the single particle density

matrix is given by Eq. (2.17). As described in section 2.1.1, the e↵ective equations decouple

in the Fourier space, defined as, D̃k = 1p
L

PL
m=1 e

� 2⇡i
L mk

Dmm, where, k can take values

k 2 {0, 1, · · · , L� 1}. Further, the initial state | 0i = ĉ
†
m0

|0i in the Fourier basis reads as,

D̃k(t = 0) =
1p
L
e
� 2⇡i

L m0k (3.1)

Therefore, the density profile on the lattice, at arbitrary time t, is given by:

Dmm(t) =
1

L

L�1X

k=0

e
2⇡i
L (m�m0)ke

�E(k)t
, (3.2)
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where, E(k) is the spectrum of the e↵ective equations of the two-point correlator (derived

in section 2.1.1) and is given as,

E(k) = ⇤

0

@4

L
2 �1X

j=1

sin2(⇡jk/L)

j2µ
+

1� e
i⇡k

(L/2)2µ

1

A . (3.3)

Here ⇤ = 2J2
� is the di↵usion constant of the e↵ective equations of the two-point correlators.

3.1.1 Early time density profile

Figure 3.1: Density profile for a single particle initialized at sitem0, at early times (t ⌧ 1/⇤),
for two di↵erent values of hopping exponent (a)µ = 1.2 and (b)µ = 1.7. The hydrodynamic
tail Dmm ⇠ 1/|m�m0| is a characteristic of long-range lattices with power-law hopping.

At early times t ⌧ 1/⇤, the propagator e�E(k)t can be approximated till linear order, to

give the density profile,

Dmm(t) =
1

L

L�1X

k=0

e
2⇡i
L (m�m0)ke

�E(k)t

⇡ 1

L

L�1X

k=0

e
2⇡i
L (m�m0)k(1� E(k)t) = �

m
m0

� t

L

L�1X

k=0

e
2⇡i
L (m�m0)kE(k)

(3.4)
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The summation on the RHS solves as follows,

L�1X

k=0

e
2⇡i
L (m�m0)kE(k) = 4⇤

0

@
L
2X

j=1

1

j2µ

L�1X

k=0

e
2⇡i
L (m�m0)ksin2(⇡jk/L)

1

A

= 2⇤

L
2X

j=1

1

j2µ

L�1X

k=0

e
2⇡i
L (m�m0)k(1� cos(2⇡jk/L))

= 2⇤

L
2X

j=1

1

j2µ

✓
�
m
m0

�
�
m+j
m0

+ �
m�j
m0

2

◆

(3.5)

Therefore, at early times (t ⌧ 1/⇤), the density profile is given as,

Dmm(t) =

8
<

:
1� 2⇤t

PL/2
j=1

1
j2µ for m = m0.

⇤t
|m�m0|2µ

for m 6= m0.

(3.6)

Where, m0 is the site index of the initial excitation. The ⇠ 1/|m�m0|2µ density profile is the

so called ”hydrodynamic tail” of the excitation, and is a characteristic feature of long range

lattices [58, 72]. In fact, these hydrodynamic tails appear at all times on the lattice system,

at sites far away from the initial excitation site (Sec. 3.1.2). Figure 3.1 plots the density

profile on the lattice system, obtained via numerical integration of the e↵ective equations

(Eq. (2.17)), starting from the localized single particle state, clearly showing the presence of

hydrodynamic tails at early times (t ⌧ 1/⇤).

3.1.2 Density profile at finite time

The e↵ective equation Eq. (2.17) dictates the rate for hopping of the initial excitation at site

m0 to site m, given as

Wm0!m =
⇤

|m�m0|2µ
. (3.7)

This rate sets the time scale ⌧(m) for hopping of the initial excitation to lattice site m,

⌧(m) = 1/Wm0!m. At arbitrary time t, for lattice sitesm far away from the initial excitation,

such that t ⌧ ⌧(m), the density profile is governed by single hopping events and is given by

the hydrodynamic tails. That is, Dmm(t) = ⇤t/|m�m0|2µ for t ⌧ ⌧(m). For lattice sites

m near the initial excitation, such that t � ⌧(m), Refs. [58, 72] provide a solution to the
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density profile, which is given as follows,

Dmm(t) ⇡

8
><

>:

1

8
p

⇡Dµt
e
� |m�m0|

2

4Dµ
t

for µ � 1.5

1
8⇡(Dµt)�1/(2µ�1)Fµ

⇣
|m�m0|

(Dµt)1/(2µ�1)

⌘
for µ  1.5.

(3.8)

Here, the constant Dµ is proportional to the di↵usion constant ⇤, and the scaling function

Fµ(y) is given by, Fµ(y) =
R +1
�1 dk e

iyk
e
�|k|1/(2µ�1)

. Therefore, at sites near the excitation,

the density profile shows the universal behaviour,

Dmm =
1

t1/z
f

✓
|m�m0|

t1/z

◆
, (3.9)

with some scaling function f(y), and the value of the scaling exponent is given as,

z =

8
<

:
2µ� 1 for µ < 1.5

2.0 for µ � 1.5
(3.10)

Figure 3.2 plots the density profile on the lattice system, starting from a single excitation

at site m0 and illustrates (i) the self-similar behavior (Eq. 3.9) of the profile near the initial

excitation site m0 and (ii) hydrodynamic tails ⇠ 1/|m�m0|2µ of the profile at sites far away

from m0.

3.1.3 Moments of the density profile

The n-th moment, hxni (t), of the density profile Dmm(t) of a single exciton initialized at

site m0 is defined as:

hxni (t) =
LX

m=1

(m�m0)
n
Dmm(t) (3.11)

Given the symmetric nature of the density profile Dmm(t) about the initial excitation site

m0, all odd moments of the profile are zero at all times. The moments of the distribution

may be obtained from the characteristic function K(q, t) of the density profile, defined as,

K(q, t) =
PL

m=1 e
iq(m�m0)Dmm(t), for real number q. Expanding the exponential in the above

equation gives the relation between the characteristic function K(q, t) and the moments

{hxni (t)} of the profile, K(q, t) =
P1

n=0
(iq)n

n! hxni (t). Therefore the moments can be written
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Figure 3.2: Plot for density profile Dmm vs |m�m0| on the lattice system, starting from
an initial excitation at m0, obtained via numerical integration of the e↵ective equations
(Eq. (2.17)). (a) and (c) show the scaling behaviour of the density profile, Dmm =
1

t1/z
f(|m�m0|/t1/z), at sites m near the initial excitation site m0. Scaling the y and x

axes by t
1/z and 1/t1/z shows a perfect collapse amongst the profile Dmm(t) at di↵erent

times, verifying the scaling behaviour. The value of scaling exponent is z = 2µ � 1 for
µ < 1.5 and z = 2.0 for µ � 1.5. (b) and (c) show the hydrodynamic tails of the density
profile Dmm = ⇤t/|m�m0|2µ at sites m far away from the initial excitation site m0.

as,

⌦
x
2
↵
(t) = �@

2
K(q, t)

@q2

����
q=0

,
⌦
x
4
↵
(t) =

@
4
K(q, t)

@q4

����
q=0

,
⌦
x
6
↵
(t) = �@

6
K(q, t)

@q6

����
q=0

(3.12)

and so on, for all even-moments. The equation of motion of the characteristic function can

be obtained from the e↵ective equations for the two-point correlator Dmm(t). Given the

translationally invariant nature of the e↵ective equations, the equations for K(q, t) decouple
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in q space, and is given as, K(q, t) = e
�E(q)t, with E(q) = 4⇤

PL/2
j=1

sin2(qj/2)
j2µ . With this, the

temporal growth of even-moments hx2i , hx4i , hx6i can be obtained as,

⌦
x
2
↵
(t) =

@
2
E(q)

@q2

����
q=0

t (3.13)

⌦
x
4
↵
(t) = 3

 
@
2
E(q)

@q2

����
q=0

!2

t
2 +

@
4
E(q)

@q4

����
q=0

t (3.14)

⌦
x
6
↵
(t) = 18

 
@
2
E(q)

@q2

����
q=0

!3

t
3 � 24

 
@
2
E(q)

@q2

����
q=0

! 
@
4
E(q)

@q4

����
q=0

!
t
2 +

@
6
E(q)

@q6

����
q=0

t

(3.15)

Further, the derivatives of E(q) can be obtained as,

@
2n
E(q)

@q2n
= (�1)n+1

0

@2⇤
L/2X

j=1

1

j2(µ�n)

1

A . (3.16)

Note that at early times t ⌧ 1/⇤, the linear term in Eqs. (3.13)-(3.15) dominates, and as a

result, at early times, the moments grow linearly in time. This is illustrated in Fig. 3.3. At

late times, the leading order term dominates, which gives the growth hx2ni (t) ⇠ (Dt)n for

even moments, where the constant D can be identified as the e↵ective di↵usion constant,

and is given as, D = @2E(q)
@q2

��
q=0

.

For values of hopping exponent µ < 1.5, the e↵ective di↵usion constant D diverges in

the thermodynamic limit (L ! 1), a signature of super-di↵usive transport in the regime

µ < 1.5. Whilst, for values of hopping exponent µ � 1.5, the even moments do not diverge in

the thermodynamic limit and grow as hx2ni (t) ⇠ t
n. This is a signature of di↵usive transport

in the regime µ � 1.5. In fact, in the di↵usive regime (µ � 1.5), at late times (⇤t � 1),

even-moments of the density profile show self similar behaviour in the form of FV scaling

(as defined in Eq. 1.3). That is, for ⇤t � 1,

⌦
x
2n
↵
= L

↵
f

✓
t

Lz

◆
, (3.17)
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Figure 3.3: Plot for dynamics of even moments hx2ni =
PL

m=1(m�m0)2nDmm of the density
profile, obtained numerically. All moments initially grow linearly in time. The collapse in
dynamics on scaling the y and x axes with 1/L↵ and 1/Lz respectively, along with t

� growth
confirms FV scaling of even moment hx2ni with scaling exponents (↵, �, z) = (n/2, n/4, 2)

with some scaling function f(y), that shows the limiting behaviour

f(y) =

8
<

:
y
� for y ⌧ L

z

1 for y � L
z

and z = ↵/�. The scaling exponents for the even moment hx2ni is given by (↵, �, z) =

(n/2, n/4, 2). The limiting behaviour of scaling function f(y), implies the limiting behaviour

⌦
x
2n
↵
⇠

8
<

:
t
� for t ⌧ t

⇤

L
↵ for t � t

⇤
,

(3.18)

where, the saturation time scale t
⇤ shows system size scaling t

⇤ ⇠ L
z. Figure 3.3 plots the

dynamics of even moments of the density profile, obtained via numerically via integrating

Eq. (2.17), and illustrates (i) the linear growth of the moments for ⇤t ⌧ 1 (ii) FV scaling of

the moments for ⇤t � 1.
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3.2 Fermionic multi particle dynamics

3.2.1 Particle transport

Particle transport, Ptra(t), is a local observable employed to study multi-particle dynamics

for the domain wall initial condition, | D.W.i =
QL/2

m=1 ĉ
†
m |0i . For such an initial condition

particle transport is defined as the number of particles in the right half of the lattice system,

i.e., Ptra(t) =
PL

m=L/2+1 Dmm(t). Under strong dephasing, particle transport dynamics can

be obtained via numerical integration of the two-point e↵ective equations.

As illustrated in Fig. 3.4, particle transport dynamics shows universal behaviour in the

form of FV scaling, for all values of hopping exponent µ. That is,

Ptra(t) = L
↵
f

✓
t

Lz

◆
(3.19)

with some scaling function f(y), that satisfies the limiting behaviour

f(y) =

8
<

:
y
� for y ⌧ 1

1 for y � 1

with � = ↵/z. This implies the limiting behaviour of Ptra(t),

Ptra(t) ⇠

8
<

:
t
� for t ⌧ t

⇤

L
↵ for t � t

⇤
,

(3.20)

where, the saturation time scale t
⇤ shows system size scaling t

⇤ ⇠ L
z. Further, the infor-

mation of the universality class is encoded in the values of the scaling exponents (↵, �, z).

For µ < 1.5, particle transport dynamics shows super-di↵usive scaling with exponents values

(↵, �, z) = (1.0, 1/(2µ � 1), 2µ � 1), whilst for µ � 1.5, di↵usive dynamics is retained with

exponent values (↵, �, z) = (1.0, 0.5, 2.0) (See Fig. 3.4).
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Figure 3.4: Plot for dynamics of particle transport Ptra(t) =
PL/2

m=1 Dmm(t), of fermionic

lattices, defined for the domain wall initial state | D.W.i =
QL/2

m=1 ĉ
†
m |0i, for three di↵erent

values of hopping exponent (a)µ = 1.2,(b)µ = 1.7 and (c)µ ! 1. The dynamics show a
collapse upon scaling the y and x axes by 1/L↵ and 1/Lz respectively, along with an initial
⇠ t

� growth, where z = ↵/�. This confirms the FV scaling of the dynamics, with scaling
exponents (↵, �, z) = (1.0, 1/(2µ � 1), 2µ � 1) for µ < 1.5 and (↵, �, z) = (1.0, 0.5, 2.0) for
µ � 1.5.
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3.2.2 Bipartite particle number fluctuation

Bipartite particle number fluctuation, w(L, t), is a multi-particle, non-local observable that

quantifies the variance of particle number in one-half of the lattice system. That is, w(L, t) =D
ĥ
2
E
�
D
ĥ

E2
, where ĥ =

PL/2
i=1 n̂i(t) counts the number of particles in one-half of the lattice

system. Particle number fluctuation can be written in terms of two-point,Dmn =
⌦
ĉ
†
mĉn

↵
, and

four-point, Fmnpq =
⌦
ĉ
†
mĉ

†
nĉpĉq

↵
, correlators in the site basis. This requires the decomposition

of
D
ĥ
2
E
, in terms of the two and four-point correlator, which can be done as follows,

D
ĥ
2
E
=

L/2X

m,n=1
m 6=n

hn̂mn̂ni+
L/2X

m=1

⌦
n̂
2
m

↵

=
L/2X

m,n=1
m 6=n

hn̂mn̂ni+
L/2X

m=1

hn̂mi Since, for fermions n̂
2
m = n̂m

= �
L/2X

m,n=1
m 6=n

⌦
ĉ
†
mĉ

†
nĉmĉn

↵
+

L/2X

m=1

⌦
ĉ
†
mĉm

↵

= �
L/2X

m,n=1

⌦
ĉ
†
mĉ

†
nĉmĉn

↵
+

L/2X

m=1

⌦
ĉ
†
mĉm

↵

= �
L/2X

m,n=1

Fmnmn +
L/2X

m=1

Dmm

(3.21)

Therefore, bipartite particle number fluctuation can be written in terms of two and four-point

correlators as,

w(L, t) = �
L/2X

m,n=1

Fmnmn(t) +
L/2X

m=1

Dmm(t)

2

41�
L/2X

n=1

Dnn(t)

3

5 (3.22)

Under the conditions of strong dephasing, the dynamics of Fmnmn and Dmm can be described

by e↵ective equations (2.17) and (2.33), respectively. The e↵ective equation of two-point

correlator is given as
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d

dt
Dmm = ⇤

±(L/2�1),L/2X

j=±1

D(m+j)(m+j) �Dmm

|j|2µ (3.23)

which can be solved employing Fourier transform, D̃k = 1p
L

PL
m=1 e

� 2⇡i
L mk

Dmm for k 2
{0, 1, · · · , L� 1}, which decouples the e↵ective equations as D̃k(t) = e

�E(k)t
D̃k(0), with the

spectrum (see Sec. 2.1.1)

E(k) = ⇤

0

@4

L
2 �1X

j=1

sin2(⇡jk/L)

j2µ
+

1� e
i⇡k

(L/2)2µ

1

A . (3.24)

Starting from the alternating initial condition | alti =
QL/2

m=1 ĉ
†
2m |0i, only two Fourier modes,

k = 0, L/2 are occupied, and the e↵ective equations solve asDmm(t) = (1 + e
i⇡m

e
�E(L/2)t)/2.

Further, the particle number in one half of the lattice remains constant, i.e.,
PL/2

m=1 Dmm(t) =
L
4 . Thus, starting from alternating initial state, bipartite particle number fluctuation can be

written as

w(L, t) = �
L/2X

m,n=1

Fmnmn(t) +
L

4


1� L

4

�
(3.25)

The dynamics of four-point correlator diagonals Fmnmn(t) is obtained via numerical integra-

tion of the bond length equations (Eq. 2.40), which hold for the alternating initial state and

are derived in section 2.2.2.

Dynamics of saturation– At times t ! 1, the system density matrix ⇢̂(t), undergoing

the dynamics as described by the LQME Eq. (??), relaxes to the maximally mixed state,

i.e., limt!1 ⇢̂(t) / I, where I is the Identity matrix. For the maximally state, the value of

the four-point correlator Fmnmn is given as, Fmnmn = �(L� 2)/(4L� 4) where m 6= n. This

gives the saturation value of bipartite number fluctuation,

lim
t!1

w(L, t) = �
L/2X

m,n=1

lim
t!1

Fmnmn(t) +
L

4


1� L

4

�

=
(L/2)(L/2� 1)2

2(L� 1)
+ L/4� (L/4)2

⇡ L/4 for L � 1

(3.26)

The deviation �(t) of the bipartite number fluctuations w(L, t), from its saturation value
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limt!1 w(L, t) is defined as,

�(t) =
[limt!1 w(L, t)]� w(L, t)

limt!1 w(L, t)
. (3.27)

At late times (i.e., for times when �(t) < 10�2), number fluctuation relaxes exponentially

to its equilibrium value, with decay rate ⌧µ(L). This is illustrated in Fig. 3.5(a),(b) and (c),

which shows exponential decay of the deviation �(t) when �(t) < 10�2, for three di↵erent

values of hopping exponent µ. The rate of this exponential decay, ⌧µ(L), shows system size

scaling with dynamical exponent z,

⌧µ(L) ⇠ L
z (3.28)

This system size scaling of the relaxation rate ⌧µ(L) is illustrated in Fig. 3.5(d). Fig. 3.5(e)

plots the values of the dynamical exponent z against the hopping exponent µ. From this,

the dependence of the dynamical exponent z on the hopping exponent µ can be concluded

to be

z =

8
<

:
2µ� 1 for µ < 1.5

2.0 for µ � 1.5
(3.29)

which indicates super-di↵usive non-equilibrium dynamics for µ < 1.5 and di↵usive non-

equilibrium dynamics for µ > 1.5 with crossover happening at µ ⇠ 1.5.

Family Viscek (FV) dynamical scaling– Fig. 3.6(a)-(c) plots the dynamics and eventual

saturation of bipartite particle number fluctuations w(L, t) for three representative values

of the hopping exponent µ = 1.2, µ = 1.7 and µ ! 1, respectively. For each case, the

dynamics for di↵erent lattice sizes L exhibit excellent data collapse upon rescaling w(L, t)

and t axes by 1/L↵ and 1/Lz, respectively, with the saturation exponent ↵ = 1 and the

dynamical exponent z given by Eq. (3.29). Additionally, at times t ⌧ ⌧µ(L) ⇠ L
z, the

fluctuations grow as w(L, t) ⇠ t
�, with � = ↵/z. These results confirm the Family-Vicsek

(FV) scaling of bipartite particle number fluctuations, given by

w(L, t) = L
↵
f

✓
t

Lz

◆
, (3.30)

where, the scaling function f(y) satisfies the limiting behaviour f(y) ⇠ y
� for y ⌧ 1 and

f(y) ⇠ 1 for y � 1, with � = ↵/z. This implies the scaling �
2(L, t) ⇠ t

� in the limit

t ⌧ L
z. Thus, particle number fluctuation dynamics show FV scaling with super-di↵usive

exponents (↵, �, z) = (1.0, 1/(2µ � 1), 2µ � 1 for µ < 1.5 and di↵usive scaling exponents
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(↵, �, z) = (1.0, 0.5, 2.0) for µ � 1.5. Further, as reported in the appendix C, particle

number fluctuation dynamics show FV scaling with the same scaling exponents also for

the domain wall initial condition, highlighting the robustness of the universality class with

respect to the choice of initial state.

Derivation of Family Viscek (FV) scaling exponents for tight-binding (µ ! 1)

lattice setup

As previously shown, the bipartite particle number fluctuation equilibrates to the saturation

value w(L, t ! 1) ⇠ L. Hence, for all values of hopping exponent, the value of spatial

exponent is ↵ = 1.0. In section, the bond length representation for the four-point correlator

(Sec. 2.2.2) is used to analytically establish the value of the dynamical scaling exponent (z)

and di↵usive growth of bipartite number fluctuations w(L, t) ⇠ t
�, with � = 0.5 for the

tight-binding lattice setup.

The bond length equations for the tight-binding lattice (derived in section 2.2.2) can be

written as,
d

dt
|Gi = 2⇤Uµ!1|Gi, (3.31)

Further, in appendix A, it is shown that in the thermodynamic limit (L ! 1) the generator

Uµ!1 can be approximated as the symmetric Ũµ!1, where,

Ũµ!1 =

0

BBBBBBBBBBB@

�1 1 0 0 . . . 0 0

1 �2 1 0 . . . 0 0

0 1 �2 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 �2 1 0

0 0 0 . . . 1 �2 1

0 0 0 . . . 0 1 �1

1

CCCCCCCCCCCA

L/2⇥L/2

. (3.32)

The eigenvalues
�
�
(k)
 
of the symmetrized generator Ũµ!1 is given as [96], �(k) = �4 sin2

✓
⇡k
L

◆
,

where k = 0, 1, · · · , L/2 � 1. Further, the alternating initial state, in the eigenbasis of the
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Figure 3.5: (a),(b) and (c): Exponential decay of deviation of particle number fluctuation,
defined as �(t) = 1�w(L, t)/w(L, t ! 1), for �(t) ⌧ 1, with decay rate ⌧µ(L). (d) System
size scaling of the decay rate ⌧µ(L) ⇠ L

z, for three di↵erent values of hopping exponent
µ = 1.2, µ = 1.7 and µ ! 1. (e) Dependence of dynamical exponent z on hopping
exponent µ, showing a crossover from super-di↵usive dynamics (z = 2µ � 1) to di↵usive
dynamics (z = 2.0) at µ ⇠ 1.5
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Figure 3.6: Plot for dynamics of bipartite particle number fluctuation w(L, t) =
D
ĥ
2
E
�
D
ĥ

E2
,

with ĥ =
PL/2

i=1 n̂i(t), of fermionic lattices, starting from the alternating initial state | alti =QL/2
m=1 ĉ

†
2m |0i, for three di↵erent values of hopping exponent (a)µ = 1.2,(b)µ = 1.7 and

(c)µ ! 1. The dynamics show a collapse upon scaling the y and x axes by 1/L↵ and 1/Lz

respectively, along with an initial ⇠ t
� growth, where z = ↵/�. This confirms the FV scaling

of the dynamics, with scaling exponents (↵, �, z) = (1.0, 1/(2µ� 1), 2µ� 1) for µ < 1.5 and
(↵, �, z) = (1.0, 0.5, 2.0) for µ � 1.5.
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symmetrized generator Ũµ!1, is given as (see Sec. 2.2.2),

G̃k(t̃ = 0) =

8
>>><

>>>:

�
p
2L/8 for k = 08

<

:
0 if k 2 even
sec(⇡k/L)

2
p
L

if k ! odd
for k > 0.

(3.33)

The time scale of equilibration of the bond length equation (and hence, of bipartite number

fluctuation w(L, t)) is determined by the lowest occupied non-zero mode. Since the spectrum

�
(k) satisfies the inequalities �(k) < 0 for k > 0 and |�(k1)| < |�(k2)| for k1 < k2, the saturation

time scale of bipartite number fluctuation, ⌧µ!1(L), is determined by the k = 1 mode. That

is, ⌧µ!1(L) = 1/
���(1)

��. In the limit L � 1, this gives the system size scaling of the saturation

time scale, ⌧µ!1(L) ⇡ L
2
/4⇡2. By definition of the dynamical exponent ⌧µ!1(L) ⇠ L

z, one

obtains the value of the dynamical exponent z = 2.0.

The profile of the bond length variables for the tight binding setup (µ ! 1) in the

thermodynamic limit (L ! 1) at late times (⇤t � 1) is derived in section 2.2.2 to be

Gp(t) = �1/4 +Hp(t), where,

Hp(t) ⇡
1

8
p
⇡⇤t

e
�p2/4⇤t (3.34)

Bipartite particle number fluctuation w(L, t) can be written in terms of bond length variables

as

w(L, t) = �2
L/2X

p=1

✓
L

2
� p

◆
Gp(t) + L/4� (L/4)2

= �2
L/2X

p=1

✓
L

2
� p

◆✓
�1

4
+Hp(t)

◆
+ L/4� (L/4)2

(3.35)

The summation over Hp can be written as follows,

L/2X

p=1

✓
L

2
� p

◆
Hp(t) ⇡

L

2

L/2X

p=0

e
�p2/4⇤t

8
p
⇡⇤t

�
L/2X

p=0

p
e
�p2/4⇤t

8
p
⇡⇤t

� L

16
p
⇡t

(3.36)

Since the above expression holds for the limit ⇤t � 1, the summations can be approximated
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as the following integrals,

L/2X

p=1

✓
L

2
� p

◆
Hp(t) ⇡

L

16
p
⇡

Z L/2
p
⇤t

0

dxe
�x2/4 �

p
⇤t

8
p
⇡

Z L/2
p
⇤t

0

dx x · e�x2/4 � L

16
p
⇡⇤t

(3.37)

which upon taking the limit L/
p
⇤t � 1, i.e., t ⌧ L

2
/⇤ gives,

L/2X

p=1

✓
L

2
� p

◆
Hp(t) ⇡

L

16
�
r

⇤t

16⇡
(3.38)

Substituting the above in the expression for bipartite number fluctuation (Eq. 3.35) gives,

w(L, t) = �2
L/2X

p=1

✓
L

2
� p

◆
Gp(t) + L/4� (L/4)2

=
L/2X

p=1

1

2
� 2

L/2X

p=1

✓
L

2
� p

◆
Hp(t) + L/4� (L/4)2

⇡ L
2
/16� L/8� L/8 +

p
⇤t/(2⇡) + L/4� (L/4)2

⇡
r

⇤t

4⇡

(3.39)

Hence at times ⇤t � 1, but much before saturation (i.e., L/
p
⇤t � 1), bipartite particle

number fluctuations grow as w(L, t) ⇠ t
0.5, thus confirming the di↵usive growth of particle

number fluctuations and the value of di↵usive exponent � = 0.5.
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3.3 Bosonic multi particle dynamics

3.3.1 Bipartite particle number fluctuations

Akin to the case of fermionic lattices, bipartite particle number fluctuation w(L, t) is defined

as the variance of particle number in one half of the lattice system, i.e., w(L, t) =
D
ĥ
2
E
�
D
ĥ

E2

where ĥ =
PL/2

i=1 n̂i(t) counts the number of particles in one half of the lattice. In terms of

the bosonic two-point Dmn =
⌦
ĉ
†
mĉn

↵
and four-point correlator Fmnpq =

⌦
ĉ
†
mĉ

†
nĉpĉq

↵
,
D
ĥ
2
E

can be written as follows,
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+
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↵

=
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L/2X

m=1
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(3.40)

Therefore, bipartite particle number fluctuation can be written in terms of two and four-point

correlator as,

w(L, t) =
L/2X

m,n=1

Fmnmn(t) +
L/2X

m=1

Dmm(t)

2

41�
L/2X

n=1

Dnn(t)

3

5 (3.41)

The dynamics of bipartite particle number fluctuation is studied under the strong dephas-

ing condition (� � J), starting from the alternating initial state, defined as | alti =
QL/2

m=1 ĉ
†
2m |0i. Since the two point correlator for fermions as well as bosons, behave identi-

cally, the number of particles in one half the lattice remain constant, i.e.,
PL/2

m=1 Dmm = L/4.
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And bipartite number fluctuations can be written as, w(L, t) =
PL/2

m,n=1 Fmnmn(t)+
L
4

⇥
1� L

4

⇤
.

The dynamics of four-point correlator diagonals Fmnmn(t) is obtained via numerical integra-

tion of the bosonic bond length equations (Eq. 2.76), which are derived in section 2.3.2 and

hold for alternating initial state.

Family Viscek (FV) dynamical scaling– Fig. 3.7 plots the dynamics and subsequent sat-

uration of bipartite particle number fluctuations on bosonic lattices, for three representative

values of the hopping exponent µ = 1.2, µ = 1.7 and µ ! 1, respectively. For each value of

µ, the excellent collapse in the numerical data for di↵erent lattice sizes L upon rescaling the

w(L, t) and t axes by 1/L↵ and 1/Lz, along with the initial w(L, t) ⇠ t
� growth, confirms the

FV scaling of bipartite particle number fluctuations on dephased long-range lattice system

consisting of bosons. Further, the value of the scaling exponents (↵, �, z) are identical to the

case of fermions (see Sec. 3.2.2). That is, (↵, �, z) = (1.0, 1/(2µ� 1), 2µ� 1) for µ < 1.5 and

(↵, �, z) = (1.0, 0.5, 2.0) for µ � 1.5. Thus, particle number fluctuation dynamics in bosonic

systems exhibit super-di↵usive dynamical phase for µ < 1.5 and di↵usive dynamical phase

for µ � 1.5, with the cross-over happening at µ ⇠ 1.5.
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Figure 3.7: Plot for dynamics of bipartite particle number fluctuation w(L, t) =
D
ĥ
2
E
�
D
ĥ

E2
,

with ĥ =
PL/2

i=1 n̂i(t), of bosonic lattices, starting from the alternating initial state | alti =QL/2
m=1 ĉ

†
2m |0i, for three di↵erent values of hopping exponent (a)µ = 1.2,(b)µ = 1.7 and

(c)µ ! 1. The dynamics show a collapse upon scaling the y and x axes by 1/L↵ and
1/Lz respectively, along with an initial ⇠ t

� behaviour, where z = ↵/�. This confirms the
FV scaling of the dynamics, with scaling exponents (↵, �, z) = (1.0, 1/(2µ � 1), 2µ � 1) for
µ < 1.5 and (↵, �, z) = (1.0, 0.5, 2.0) for µ � 1.5.
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Appendix A

Approximate generator for

tight-binding fermionic bond length

equations

In section 2.2.2, the bond length equations for the tight-binding (µ ! 1) lattice setup,
d
dt |Gi = 2⇤Uµ!1|Gi, is approximated with the symmetrized generator Ũµ!1,

Ũµ!1 =

0

BBBBBBBBBBB@

�1 1 0 0 . . . 0 0

1 �2 1 0 . . . 0 0

0 1 �2 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 �2 1 0

0 0 0 . . . 1 �2 1

0 0 0 . . . 0 1 �1

1

CCCCCCCCCCCA

L/2⇥L/2

. (A.1)

This section shows that this approximation holds in the thermodynamic limit (L ! 1).

The approximation claims that, given an initial state |G(t = 0)i, the dynamics generated by

Uµ!1 and Ũµ!1, for a bond length variable Gp(t), converge in the limit L ! 1, provided

that p is finite. That is,

lim
L!1

hp| eUµ!1t |G(t = 0)i = lim
L!1

hp| eŨµ!1t |G(t = 0)i , (A.2)
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where the vector |pi, |pij = �
j
p, extracts the p-th element from the dynamics generated by

Uµ!1 or Ũµ!1.

To show that Eq. (A.2) holds for finite values of p, one needs to show that p-th rows of

e
Uµ!1t and e

Ũµ!1t are identical in the limit L ! 1. These propagators can be approx-

imated to arbitrary precision by choosing an arbitrary upper cut-o↵ m in the their series

expansion,

e
Uµ!1t ⇡

mX

n=0

1

n!
Un

µ!1t
n (A.3)

e
Ũµ!1t ⇡

mX

n=0

1

n!
Ũn

µ!1t
n (A.4)

Further, note that the tridiagonal structure of the generators Uµ!1 and Ũµ!1 implies,

hp|Un
µ!1 = hp| Ũn

µ!1 for p < L� n. (A.5)

Hence, in the limit L ! 1, one may choose arbitrarily high cut-o↵m in the series expansions

Eqs. (A.3) and (A.4), whilst keeping the p-th rows of the propagators identical. Which proves

the result,

lim
L!1

hp| eUµ!1t = lim
L!1

hp| eŨµ!1t for finite values of p (A.6)
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Appendix B

Particle number fluctuation dynamics

in closed long-range hopping lattices

In this section, bipartite particle number fluctuations w(L, t) =
D
ĥ
2
E
�
D
ĥ

E2
on a long-

range hopping fermionic lattice, closed to environmental interactions, is studied. The lattice

system is modelled by the Hamiltonian given in Eq. (1.1).Given the quadratic nature of the

Hamiltonian, applying Wick’s theorem, all observables can be written in terms of two-point

correlators Dmn =
⌦
ĉ
†
mĉn

↵
. Bipartite particle number fluctuations can be written in terms

of two-point correlators as follows,

w(L, t) =

*0

@
L/2X

i=1

n̂i

1

A
2+

�

0

@
*

L/2X

i=1

n̂i

+1

A
2

=
L/2X

i,j=1

hn̂in̂ji �
L/2X

i,j=1

hn̂ii hn̂ji

=
L/2X

i=1

⌦
n̂
2
i

↵
+

L/2X

i,j=1
i 6=j

hn̂in̂ji �
L/2X

i,j=1

hn̂ii hn̂ji

=
L/2X

i=1

hn̂ii+
L/2X

i,j=1
i 6=j

hn̂in̂ji �
L/2X

i,j=1

hn̂ii hn̂ji

(B.1)
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Applying Wick’s theorem to the 4 point correlator hn̂in̂ji (i 6= j):

hn̂in̂ji =
D
ĉ
†
i ĉiĉ

†
j ĉj

E
=
D
ĉ
†
i ĉi

ED
ĉ
†
j ĉj

E
�
D
ĉ
†
i ĉj

ED
ĉ
†
j ĉi

E
(B.2)

Hence, the last two summations in the expression for w(L, t) solve to:

L/2X

i,j=1
i 6=j

hn̂in̂ji �
L/2X

i,j=1

hn̂ii hn̂ji =
L/2X

i,j=1
i 6=j

D
ĉ
†
i ĉi

ED
ĉ
†
j ĉj

E
�

L/2X

i,j=1
i 6=j

D
ĉ
†
i ĉj

ED
ĉ
†
j ĉi

E
�

L/2X

i,j=1

D
ĉ
†
i ĉi

ED
ĉ
†
j ĉj

E

= �
L/2X

i,j=1
i=j

D
ĉ
†
i ĉi

ED
ĉ
†
j ĉj

E
�

L/2X

i,j=1
i 6=j

D
ĉ
†
i ĉj

ED
ĉ
†
j ĉi

E

= �
L/2X

i,j=1

���
D
ĉ
†
i ĉj

E���
2

(B.3)

Putting the above solution in the expression for w(L, t) gives,

w(L, t) =
L/2X

i=1

hn̂ii �
L/2X

i,j=1

���
D
ĉ
†
i ĉj

E���
2

=
L/2X

i=1

Dii(t)�
L/2X

i,j=1

|Dij(t)|2
(B.4)

Now, the unitary evolution of the two-point correlator can be written as

d

dt
Dmn = �ih

h
ĉ
†
mĉn, Ĥ

i
i

= iJ

±(L/2�1),L/2X

j=±1

Dm(n+j) �D(m+j)n

|j|µ
(B.5)

The long-range Hamiltonian (Eq (1.1)) exhibits translational invariance and this symmetry

is conferred upon the dynamical equations for the two-point correlator Eq. (B.5). Hence,

the latter decouple in the momentum space, defined by the Fourier transform, D̃k1k2 =
1
L

PL�1
m,n=0 e

� 2⇡i
L (k1m+k2n)Dmn, where k1, k2 = 0, 1, · · · , L� 1. The equations of motion in the
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momentum basis can be obtained as follows,

d

dt
D̃k1k2 =

1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)
d

dt
Dmn

= iJ

±(L/2�1),L/2X

j=±1

1

|j|µ
1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)(Dm(n+j) �D(m+j)n)

= iJ

±(L/2�1),L/2X

j=±1

e
2⇡i
L k1j

|j|µ
1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)Dmn

� iJ

±(L/2�1),L/2X

j=±1

e
2⇡i
L k2j

|j|µ
1

L

L�1X

m,n=0

e
� 2⇡i

L (k1m+k2n)Dmn

= i(E(k1)� E(k2))D̃k1k2 ,

(B.6)

Where E(k) is the spectrum of the Hamiltonian (Eq 1.1), and is given as

E(k) = 2J

0

@
L/2�1X

j=1

cos(2⇡kj/L)

jµ
+

e
i⇡k

(L/2)µ

1

A (B.7)

Hence at arbitrary time t, the two-point correlator in the momentum basis is given as,

D̃k1k2(t) = e
i(E(k1)�E(k2))tD̃k1k2(0) (B.8)

The dynamics of bipartite particle number fluctuation w(L, t) is obtained via numerically

solving Eq. (B.8). Figure B.1 illustrates the Family-Viscek (FV) dynamical scaling of bipar-

tite particle number fluctuation dynamics, for all values of hopping exponent µ. As opposed

to the case of dissipative systems, the value of the hopping exponents has no impact on

the universality class of the scaling and the scaling exponents always take ballistic values,

(↵, �, z) = (1.0, 1.0, 1.0).
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Figure B.1: Plot for dynamics of bipartite particle number fluctuation w(L, t) =
D
ĥ
2
E
�
D
ĥ

E2
,

with ĥ =
PL/2

i=1 n̂i(t), of free fermionic lattices, starting from the alternating initial state

| alti =
QL/2

m=1 ĉ
†
2m |0i, for three di↵erent values of hopping exponent (a)µ = 1.2,(b)µ = 1.7

and (c)µ ! 1. The dynamics show a collapse upon scaling the y and x axes by 1/L↵ and
1/Lz respectively, along with an initial ⇠ t

� behaviour, where z = ↵/�. This confirms the
FV scaling of the dynamics, with ballistic scaling exponents (↵, �, z) = (1.0, 1.0, 1.0) for all
values of hopping exponent µ.
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Appendix C

Initial state dependence of particle

number fluctuation dynamics

In this section, dependence of initial state on the dynamics of bipartite particle number

fluctuation on a long-range fermionic lattice (Eq (2.1)) with particle number dephasing at

each site (Eq (2.2)) is discussed. In the main text (Sec.3.2.2), Family-Viscek(FV) dynamic

scaling of bipartite number fluctuation dynamics, starting from the alternating initial state

| alti =
QL/2

m=1 ĉ
†
2m |0i is established. An initial state that can be taken as extreme example

to the alternating state, is the domain wall state, defined as | D.W.i =
QL/2

m=1 ĉ
†
m |0i .

Under strong dephasing conditions, the dynamics of the two and four-point correlators

can be e↵ectively described by Eqs. (2.17) and (2.33), respectively. These are numerically

integrated to obtain the dynamics of bipartite number fluctuation.

Figure C.1(a)-(c) plots the dynamics of bipartite particle number fluctuation, starting

from the domain wall initial state, for three representative values of the hopping exponent

µ = 1.2,µ = 1.7 and µ ! 1, respectively. Identical to the case of alternating initial

state, particle number fluctuation dynamics starting from the domain wall state show spatio-

temporal universality in the form of FV scaling, with the exact same scaling exponents. That

is, (↵, �, z) = (1.0, 1/(2µ � 1), 2µ � 1) for µ < 1.5 and (↵, �, z) = (1.0, 0.5, 2.0) for µ � 1.5.

This result, thus highlights the robustness of the FV scaling universality of particle number

fluctuation against the choice of initial conditions.
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Figure C.1: Family-Viscek(FV) scaling of bipartite particle number fluctuation w(L, t) dy-
namics, starting from the domain wall initial state. For (a)µ < 1.5 the scaling exponents are
super-di↵usive, whilst for (b),(c)µ � 1.5 the scaling exponents are di↵usive. Note that in
the super-di↵usive regime, (a)µ = 1.2, the initial super-di↵usive growth ⇠ t

� is not observed
due to finite-size e↵ects in small lattice sizes (L ⇠ 102).
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