
The Parameterized Complexity Landscape of
Some Graph Problems

विद्या वाचस्‍पति की
उपाधि की अपेक्षाओं की आशंिक परू्ति में प्रस्‍ततु शोध

प्रबधं

A thesis submitted in partial fulfillment of the requirements of the
degree of Doctor of Philosophy

द्वारा / By
छात्र का नाम / Gaikwad Ajinkya Ramdas गायकवाड अजिकं्य रामदास

पजंीकरण स.ं / Registration No.: 20193687

 शोध प्रबधं पर्यवेक्षक / Thesis Supervisor:
Prof. Soumen Maity

भारतीय विज्ञान शिक्षा एवं अनसुंधान संस्‍थान
पणेु

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE
2024

Certificate

This is to certify that this dissertation entitled The Parameterized Complexity Landscape
of Graph Problemstowards the partial fulfilment of the BS-MS dual degree programme at
the Indian Institute of Science Education and Research, Pune represents study/work
carried out by Gaikwad Ajinkya Ramdas at Indian Institute of Science Education and
Research under the supervision of Prof. Soumen Maity, IISER Pune, Professor at IISER
Pune, Department of Mathematics , during the academic year 2019-2024.

Prof. Soumen Maity, IISER Pune

Committee:

Prof. Soumen Maity, IISER Pune

Prof. Saket Saurabh, IMSc Chennai

Dr. Vivek Mohan Mallick, IISER Pune

Declaration

I hereby declare that the matter embodied in the report entitled The Parameterized
Complexity Landscape of Graph Problems are the results of the work carried out by me at
the Department of Mathematics, Indian Institute of Science Education and Research,
Pune, under the supervision of Prof. Soumen Maity, IISER Pune and the same has not
been submitted elsewhere for any other degree.

Gaikwad Ajinkya Ramdas

ARbe

Acknowledgments

I would like to express my heartfelt gratitude to everyone who supported me during my
journey to complete this thesis.

First and foremost, I extend my appreciation to my advisor, Soumen Maity. His guidance,
expertise, and support have been invaluable in shaping my research. I am particularly
thankful for his constant availability for discussions, whether they pertained to my work or
personal matters, including health challenges. Soumen’s understanding and encouragement
created a supportive environment that motivated me to continue striving for my goals. I
truly appreciate the time and e!ort he dedicated to my development as a researcher and as
an individual.

I would also like to thank Saket Saurabh, my RAC member and collaborator. His en-
couragement pushed me to take on challenging problems and broaden my perspective. The
energy and enthusiasm he brought to our discussions greatly enriched my research experi-
ence. I value his insights into the ethics of research and his ability to inspire me to aim for
excellence. Working alongside Saket has been a rewarding experience, and I am grateful for
the contributions he made to my academic journey. I am thankful to Dr. Vivek Mallick for
being in my research advisory committee and for his valuable suggestions.

I would also like to acknowledge my time at IMSc Chennai, where I spent a week working
on a problem with Roohani Sharma. This experience initiated our collaboration and led to
numerous productive meetings where we exchanged ideas. I am grateful for the fruitful
discussions that resulted in some promising outcomes.

This journey would not have been possible without the financial support that enabled
my academic pursuits. I am profoundly grateful to the MHRD for granting me the Prime

vii

Minister’s Research Fellowship (PMRF) throughout my doctoral studies. I would also like
to express my sincere appreciation to the many reviewers whose invaluable feedback greatly
improved my work during the review process. Additionally, I am thankful to various local
institutions for enhancing my teaching experiences. Lastly, I extend my gratitude to all
the research institutes that provided me with opportunities to participate in workshops and
conferences across India.

I am also grateful to the administrative sta!, especially Mrs. Suvarna Bhardwaj, Mr.
Yogesh Kolap, and Mrs. Sayalee Damle. I want to express my heartfelt gratitude to my school
teachers and my friends, Amol and Omkar, who sparked my interest in mathematics. Their
encouragement and support have been invaluable, and I truly appreciate their friendship
throughout my journey.

I would like to express my gratitude to Nishad for his invaluable assistance with my PMRF
application. His support made a significant di!erence, and I am truly thankful for his help.
My heartfelt gratitude goes out to my friends, especially Dharm, Pranjal, Ronit, Loveleen,
Hitendra, Dhruv, Darshan, Kunal, Ramandeep, Cli!ord, Tushar, Prachi, Divyashree, Bittu,
and Subhash. I truly appreciated the enjoyable moments we shared, both academically and
beyond. Their presence and support made my journey all the more memorable.

Finally, words cannot express my gratitude to my parents, especially my brother Akshay.
He has been a great source of support, helping me cope with pressure and feel stress-free
throughout my academic journey. His ability to lead by example and show me the importance
of balance has been invaluable.

viii

Abstract

The study of computational complexity has evolved significantly since the classification of
the Boolean satisfiability problem as NP-complete in 1971. With thousands of problems
now identified as NP-hard, understanding their tractability remains a central challenge,
particularly under the widely held assumption that P →= NP. This thesis investigates the
parameterized complexity of several fundamental graph-theoretic problems, providing new
algorithmic insights and complexity classifications.

We analyze problems such as Harmless Set, Defensive Alliances, Offensive Al-
liances, Locally & Globally Minimal Alliances, and F-Free Edge Deletion,
as well as the maximum minimal versions of classical problems like Minimum-Separator
and Odd Cycle Transversal. Our research provides a comprehensive parameterized
complexity landscape for these problems by establishing their fixed-parameter tractability
(FPT) status, designing kernelization algorithms, and proving hardness results.

A key contribution of this thesis is the establishment of W[1]-hardness results for several
problems, including Harmless Set, Defensive Alliance, and Offensive Alliance,
when parameterized by restrictive structural parameters such as feedback vertex set number,
pathwidth, treedepth, and cluster vertex deletion number. Additionally, we develop fixed-
parameter tractable (FPT) algorithms for problems such as Harmless Set parameterized
by vertex integrity, neighborhood diversity, and twin cover, as well as for Locally Mini-
mal Defensive Alliance when parameterized by solution size. In terms of kernelization
complexity, we show that Defensive Alliance does not admit a polynomial kernel when
parameterized by vertex cover number, unless coNP ↑ NP/poly, and we establish an XP
algorithm for this problem parameterized by clique-width. Moreover, we resolve open prob-
lems in the literature, such as proving the W[1]-hardness of Th+1-Free Edge Deletion
parameterized by treewidth and determining the FPT classification of Maximum Mini-
mal st-Separator parameterized by solution size. Finally, we introduce new kernelization
techniques and subexponential algorithms for problems like Locally Minimal Defensive
Alliance on special graph classes, including planar graphs.

Beyond their theoretical significance, these results have potential applications in net-
work security, social influence analysis, and computational biology, where e"cient structural
modifications play a crucial role. By leveraging advanced tools from graph theory, combina-

ix

torial optimization, and algorithm design, this thesis provides a refined perspective on the
tractability of NP-hard problems within the framework of parameterized complexity.

x

Contents

Abstract ix

1 Introduction 1

1.1 Harmless Set . 2

1.2 Defensive and O!ensive Alliances . 4

1.3 Locally and Globally Minimal Defensive Alliances 7

1.4 F -Free Edge Deletion . 11

1.5 Th+1-Free Edge Deletion . 12

1.6 MaxMin Separation Problems . 14

1.7 Literature Survey . 16

1.8 An Overview of the Thesis . 22

2 Preliminaries 25

2.1 Graph Theory . 25

2.1.1 Graph Types . 26

2.1.2 Brekable and Unbreakable Graphs . 27

2.1.3 Monadic Second Order Logic . 27

2.2 Introduction to Parameterized Complexity 28

xi

2.2.1 Fixed Parameter Tractability . 28

2.3 Standard Techniques used to Design FPT Algorithms 29

2.3.1 Kernelization . 29

2.3.2 Bounded search trees . 29

2.3.3 Parameterized Reduction . 30

2.3.4 The ILP Technique . 31

2.4 Standard Techniques used to Design Lower Bounds 32

2.4.1 The W-hierarchy . 32

2.4.2 Lower Bounds based on Exponential Time Hypothesis 33

2.4.3 Lower bounds on Kernelization . 33

2.5 Structural Graph Parameters . 34

3 Harmless Set 43

3.1 FPT via Integer Linear Programming . 44

3.1.1 Harmless Set Parameterized by Neighbourhood Diversity 44

3.1.2 Harmless Set Parameterized by Twin Cover 50

3.1.3 Harmless Set Parameterized by Vertex Integrity 54

3.2 W[1]-Hardness results . 58

3.2.1 Harmless Set Parameterized by Treewidth 58

3.2.2 Harmless Set Parameterized by Cluster Vertex Deletion Number . 62

3.3 XP algorithm parameterized by clique-width 65

3.4 Closing Remarks and Future directions . 68

4 Defensive Alliance in Graphs 71

4.1 Hardness Results of Defensive Alliance . 71

xii

4.2 No Polynomial Kernel Parameterized by Vertex Cover Number 80

4.2.1 Proof of Theorem 4.2.1 . 81

4.3 Defensive Alliance has no Subexponential Algorithm 84

4.4 Defensive Alliance on Circle Graphs . 86

4.4.1 Proof of Theorem 4.4.1 . 92

4.5 Closing Remarks and Future Directions . 93

5 Locally Minimal Defensive Alliance in Graphs 95

5.1 Main Results and Proof Techniques . 95

5.2 FPT algorithm parameterized by solution size 97

5.2.1 Graphs with diameter ↓ 4k2 . 101

5.2.1.1 Proof of Theorem 5.2.4 . 103

5.2.2 Graphs with diameter < 4k2 . 104

5.2.2.1 !(G) is large: . 104

5.2.2.2 !(G) is small: . 109

5.2.3 Proof of Theorem 5.1.1 . 110

5.3 Kernels for Locally Minimal Defensive Alliance restricted to C3-free
and C4-free graphs . 110

5.3.1 Proof of Theorem 5.1.2 . 112

5.4 FPT algorithm for Locally Minimal Defensive Alliance on planar graphs112

5.5 Locally Minimal Defensive Alliance Parameterized by Treewidth . . 118

5.6 Closing Remarks and Future Directions . 125

6 Globally Minimal Defensive Alliance 127

6.1 FPT algorithm parameterized by neighbourhood diversity 128

xiii

6.1.1 ILP formulation . 128

6.1.2 Running time . 132

6.2 No polynomial kernel parameterized by vertex cover number 133

6.2.1 Proof of Theorem 6.2.1 . 134

6.3 Hardness Results . 136

6.4 NP-completeness . 142

6.5 Closing Remarks and Future Directions . 144

7 O!ensive Alliances in Graphs 145

7.1 Introduction . 145

7.2 W[1]-Hardness Parameterized by Structural Parameters 146

7.3 FPT Lower Bound Parameterized by Solution Size 158

7.4 No polynomial kernel parameterized by solution size and vertex cover 161

7.4.1 Proof of Theorem 7.4.1 . 162

7.5 Faster FPT algorithms parameterized by vertex cover number 164

7.6 FPT algorithm parameterized by vertex integrity 165

7.7 Classical lower bounds under ETH . 167

7.7.1 Offensive Alliance on bipartite graphs 168

7.7.2 Strong Offensive Alliance on apex graphs 170

7.8 NP-completeness results . 172

7.8.1 Split and Chordal Graphs . 173

7.8.2 Circle graphs . 175

7.9 Closing Remarks and Future Directions . 179

8 F-Free Edge Deletion 181

xiv

8.1 Introduction . 181

8.2 Hardness of F-Free Edge Deletion parameterized by tw(G)+|F| 181

8.3 Hardness of F-Free Edge Deletion parameterized by k+fvs(G)+pw(G) 189

8.4 Closing Remarks . 191

9 The Th+1-free edge deletion problem 193

9.1 Introduction . 193

9.2 Th+1-Free Edge Deletion parameterized by vertex cover number 194

9.3 Th+1-Free Edge Deletion parameterized by treewidth 197

9.4 Th+1-Free Edge Deletion on planar graphs 200

9.5 Th+1-Free Arc Deletion parameterized by solution size 202

9.6 Closing Remarks and Future Directions . 204

10 MaxMin Separation Problems 207

10.1 Challenges and Our Approach . 208

10.1.1 The Sunflower Lemma . 210

10.2 Our Results and Technical Overview . 211

10.3 Para-NP-hardness for extending a vertex to a minimal st-separator 213

10.4 Maximum Minimal st-Separator parameterized by the solution size . . . 214

10.5 Maximum Minimal st-Separator on (q, k)-unbreakable graphs 216

10.6 NP-hardness of Maximum Minimal OCT 221

10.7 Maximum Minimal OCT parameterized by solution size 223

10.7.1 Maximum Minimal OCT on (q, 2k)-unbreakable graphs 225

10.8 Closing Remarks and Future Directions . 232

xv

11 Conclusions and Open Problems 233

xvi

Chapter 1

Introduction

In 1971, it was proved that the Boolean satisfiability problem is NP-complete. Later in
1972, Karp provided a list of 21 important NP-complete problems. To this date, thousands
of problems have been proved to be NP-hard. Unless the famous conjuncture P →= NP fails, the
NP-hard problems do not admit a polynomial-time algorithm in the size of the input. Since
these problems cannot be solved e"ciently in the general case, various frameworks have been
introduced to tackle them, such as Heuristic Algorithms, Approximation Algorithms, Exact
Exponential Algorithms, Randomized Algorithms etc. Each of the above listed frameworks
compromise either in the quality of the solution or in the running time (or both). Downey
and Fellows introduced the framework of Parameterized Complexity in early 90’s for dealing
with hard problems. This framework measures the computational complexity of the problem
using the input size and an additional measurement which is called the parameter. The
most natural candidate for the parameter is the size of the solution we are looking for.
Although, in many cases we exploit the structural properties of the input instances such as
treewidth, vertex cover number, feedback vertex set number, clique width or solution quality,
among others. The overall goal is to identify interesting parameterizations of hard problems
where we can design algorithms running in time polynomial in the input size but possibly
exponential (or worse) in the small parameter. A problem is called fixed-parameter tractable
(FPT) if there exists an algorithm that solves it within a polynomial-time bound in the input
size, multiplied by a function of the parameter. Not all parameterized problems are fixed-
parameter tractable (FPT) under reasonable complexity-theoretic assumptions. There exists
a hierarchy of complexity classes, known as the W-hierarchy, which captures the hardness of

1

parameterized problems. Similar to NP-hardness, which provides evidence that a problem
is unlikely to be solvable in polynomial time, showing that a parameterized problem is hard
for one of the classes in the W-hierarchy provides evidence that the problem is unlikely to
be in FPT.

In this dissertation, we consider parameterized algorithms and complexity of the following
graph problems: harmless set, defensive and o!ensive alliances, locally and globally minimal
defensive alliances, F -free edge deletion, Th+1-free edge deletion, and maximum minimal
st-separation in graphs. We give below, section-wise, the problems considered.

1.1 Harmless Set

Social networks are used not only to stay in touch with friends and family, but also to
spread and receive information on specific products and services. Much of human interac-
tion happens on a local level, wherein our opinions and actions are a!ected most by our
peers, families, and neighbours. The spread of information, propagated through such social
interactions, is a well-documented and well-studied topic. Kempe, Kleinberg, and Tardos
[89] initiated a model to study the spread of influence through a social network. One of the
most well-known problems that appear in this context is Target Set Selection intro-
duced by Chen [26] and defined as follows. We are given a graph, modelling a social network,
where each node v has a (fixed) threshold t(v). The node will adopt a new product if at
least t(v) of its neighbours adopt it. Their goal is to find a small set S of nodes such that
targeting the product to S would lead to the adoption of the product by a large number of
nodes in the graph. This problem may occur for example in the context of disease propa-
gation, viral marketing or even faults in distributed computing [39, 112]. For example, to
explain disease propagation, consider a network in which each person is in one of two states:
infected or uninfected. Suppose a person v becomes infected if at least t(v) of its neighbours
are infected. We also assume that a person is never cured once infected. Here a target set is
a set of people such that if they are infected at the beginning, then eventually everyone in
the network becomes infected. According to Dreyer and Roberts [39] “Such a set of people
represents a set of individuals a bioterrorist could infect so as to be sure to infect every-
one eventually. Defense against infection would then amount to finding good vaccination or
quarantine strategies." Target Set Selection has received considerable attention in a

2

series of papers from classical complexity [39, 22, 27, 114], polynomial time approximability
[26, 1], parameterized approximability [11], and parameterized complexity [14, 29, 111]. A
natural research direction considering this fact is to look for the complexity of variants or
constrained versions of this problem.

Consider the following variant of the marketing problem mentioned above: As before, we
are given a graph that represents social interactions, and each node v has a threshold t(v).
A person buys the product if it is recommended by at least t(v) people. However, social
interactions can spread negative reviews as well, and so, experimenting with a novel product
can also harm the company’s reputation if the product is not well received by the target set.
In such a scenario, it is beneficial for the company to approach the largest group of people,
whose possibly negative reviews do not influence other members of society. This motivates
the idea of a harmless set in a graph. Indeed, the company can approach a target set for
marketing purposes post a successful experiment phase.

The notion of a harmless set was introduced by Bazgan and Chopin [10]. Roughly
speaking, a harmless set is a subset S of nodes, such that every node of the graph has
fewer than t(v) neighbours in the set S. By definition, a harmless set cannot initiate a
cascading behaviour in a network, and in some sense is a converse notion of a target set.
The harmlessness of the set can be emphasised by noting that the problem searches for
isolated vertices when all thresholds are set to 1. Large harmless sets can be used as a strong
first line of defence while mitigating disasters, or to maximise profitable actions without
spreading adverse e!ects. Consider the following instances. Suppose a company has network
towers in each area of a city. The residents of each area use a combination of surrounding
towers to receive network and would switch to some other company if a certain number of
towers stop working. If the company wishes to cut costs by removing some towers without
losing any customers, then it must look for a maximum harmless set in the graph with towers
as nodes and whose edges connect geographically neighbouring towers. Similarly, a harmless
set could also be useful to find trees in a forest for conducting experiments, such that the
experiment can be done in natural conditions without a!ecting any other trees. We now
define these notions more formally. A harmless set consists of a set S of vertices with the
property that no propagation occurs if any subset of S gets activated.

Definition 1.1.1. [10] Let G = (V,E) be an undirected graph, and t : V ↔ N a threshold

3

function. A subset S ↑ V is a harmless set of G, if for every vertex v ↗ V we have |N(v) ↘

S| < t(v).

Note that in the definition of a harmless set, the threshold condition is imposed on every
vertex, including those in the solution set S. According to Bazgan and Chopin [10], “Another
perhaps more natural definition could have been a set S such that every vertex v /↗ S has
fewer than t(v) neighbours in S. This definition raises the following two problems. First, it
makes Harmless Set meaningless as a trivial solution would be to take the whole set of
vertices of the input graph. Second, there might be some propagation steps inside S if some
vertices are activated in it." Here, we consider Harmless Set under structural parameters.
We define the problem as follows:

Harmless Set
Input: A graph G = (V,E), a threshold function t : V ↔ N where 1 ≃ t(v) ≃ d(v) for
every v ↗ V , and an integer k.
Question: Is there a harmless set S ↑ V of size at least k?

If the threshold function is defined by t(v) = ⇐
d(v)
2 ⇒ for all v ↗ V then we call the problem

the Majority Harmless Set problem. Bazgan and Chopin [10] introduced this problem.
We show that the problem is W[1]-hard when parameterized by several restrictive structural
parameters, including the feedback vertex set number, pathwidth, treedepth, and cluster
vertex deletion number of the input graph. On the positive side, we present fixed-parameter
tractable (FPT) algorithms when the problem is parameterized by vertex integrity, neighbor-
hood diversity, or twin cover. Additionally, we establish an upper bound on the complexity
by providing an XP algorithm parameterized by clique-width.

1.2 Defensive and O!ensive Alliances

In real life, an alliance is a collection of people, groups, or states such that the union is
stronger than individual. The alliance can be either to achieve some common purpose, to
protect against attack, or to assert collective will against others. This motivates the defini-
tions of defensive alliances in graphs. The properties of alliances in graphs were first studied
by Kristiansen, Hedetniemi, and Hedetniemi [95]. They introduced defensive, o!ensive and

4

powerful alliances. An alliance is global if it is a dominating set. The alliance problems have
been studied extensively during last fifteen years [56, 120, 25, 117, 121], and generalizations
called r-alliances are also studied [119].

Definition 1.2.1. A non-empty set S ↑ V is a defensive alliance in G = (V,E) if dS(v)+1 ↓

dSc(v) for all v ↗ S.

We often use the terms defenders and attackers of an element v of a defensive alliance S.
By these we mean the sets N [v] ↘ S and N [v] \ S, respectively. A vertex v ↗ S is said to be
protected if the number of defenders of v is greater than or equal to the number of attackers
of v, that is, |N [v]↘S| = dS(v)+1 ↓ dSc(v) = |N [v]\S|. A set S ↑ V is a defensive alliance
if every vertex in S is protected. In this thesis, we consider Defensive Alliance under
structural parameters. We define the problem as follows:

Defensive Alliance
Input: An undirected graph G = (V,E) and an integer k ↓ 1.
Question: Is there a defensive alliance S ↑ V (G) such that |S| ≃ k?

We study the parameterized complexity of Defensive Alliance, where the aim is to
find a minimum size defensive alliance. Our main results are the following: (1) Defen-
sive Alliance has been studied extensively during the last twenty years, but the question
whether it is FPT when parameterized by feedback vertex set has still remained open. We
prove that the problem is W[1]-hard parameterized by a wide range of fairly restrictive
structural parameters such as the feedback vertex set number, treewidth, pathwidth, and
treedepth of the input graph; (2) the problem parameterized by the vertex cover number of
the input graph does not admit a polynomial compression unless coNP ↑ NP/poly, (3) it
does not admit 2o(n) algorithm under ETH, and (4) Defensive Alliance on circle graphs
is NP-complete.

Definition 1.2.2. A non-empty set S ↑ V is an o!ensive alliance in G if dS(v) ↓ dSc(v)+1

for all v ↗ N(S).

Since each vertex in N(S) has more neighbors in S than in Sc, we say that every vertex in
N(S) is vulnerable to possible attack by vertices in S. Equivalently, since an attack by the
vertices in S on the vertices in V \ S can result in no worse than a “tie” for S, we say that
S can e!ectively attack N(S).

5

Definition 1.2.3. A non-empty set S ↑ V is a strong o!ensive alliance in G if dS(v) ↓

dSc(v) + 2 for all v ↗ N(S).

We consider Offensive Alliance and Strong Offensive Alliance problems under
structural parameters. We define these problems as follows:

Offensive Alliance
Input: An undirected graph G = (V,E) and an integer r ↓ 1.
Question: Is there an o!ensive alliance S ↑ V (G) such that |S| ≃ r?

Strong Offensive Alliance
Input: An undirected graph G = (V,E) and an integer r ↓ 1.
Question: Is there a strong o!ensive alliance S ↑ V (G) such that |S| ≃ r?

Alliances have been used to study problems such as classification and clustering problems,
understanding communities on the internet, protocols for distribution etc. [122, 118]. The
data clustering problem relies on the concept of partitioning the vertices of the graph into
multiple strong defensive alliances.

The goal here is to provide new insight into the complexity of Offensive Alliance
parameterized by the structure of the input graph. We resolve the problem with most of
the structural parameters. We mostly discuss the parameters that deal with sparseness of
graph. We show that Offensive Alliance is W[1]-hard parameterized by any of the
following parameters: the feedback vertex set number, treewidth, pathwidth, and treedepth
of the input graph. Interestingly, our result is significantly stronger since we show that the
problem is W[1]-hard parameterized by the size of a vertex deletion set into trees of height
at most seven. Next, we turn our attention to parameters the vertex cover number of the
input graph and the solution size. It is known that the problem admits FPT algorithms
parameterized by each of these parameters individually. As there is no hope to get FPT
algorithms with small structural parameters, we need to make the most out of these two
parameters by obtaining e"cient algorithms and kernels. The FPT algorithm mentioned
in [43], has a running time O

→(2O(r log r)) where r is the solution size. The first question
that arises from here is whether we can get a single exponential algorithm? We answer this
question in a negative way by proving that unless ETH fails, Offensive Alliance cannot
be solved in time O

→(2o(r log r)). For the parameter vertex cover number, the FPT algorithm
mentioned in [92] has running time O→((2vc(G))

O(2vc(G))
) where vc(G) is the vertex cover number

6

of the input graph. In this case, we improve the running time to O
→(vc(G)O(vc(G)). Finally,

we show that it is unlikely to get a polynomial kernel when parameterized by both of these
parameters combined.

In search of e"cient algorithms, alliance problems have been studied on special graph
classes. There are polynomial time algorithms for finding minimum alliances in trees [23,
84]. A polynomial time algorithm for finding minimum defensive alliance in series parallel
graph is given in [83]. But still, alliance problems remained unexplored on special classes of
intersection graphs such as interval graphs, circle graphs, circular arc graphs, unit disk graphs
etc. We show that the problem remains NP-hard even when restricted to bipartite, chordal,
split and circle graphs. We also prove that the known algorithms on general graphs and
apex graphs are unlikely to improve. This is done by showing that Offensive Alliance
cannot be solved in 2o(n) time even when restricted to bipartite graphs and also it cannot be
solved in 2o(

↑
n) time even when restricted to apex graphs, unless ETH fails.

1.3 Locally and Globally Minimal Defensive Alliances

Throughout history, humans have formed communities, guilds, faiths, etc in the hope of
coming together with a group of people having similar requirements, visions, and goals.
Their reasons to do so usually rest on the fact that any group with common interests often
provides added mutual benefits to the union in fields of trade, culture, defense, etc, as
compared to the individual. Such activities are commonly seen today in geopolitics, cultures,
trades, economics, unions, etc. and are popularly termed as alliances. Based on an alliance
structure, formation, and goals, many variations of the problem exist in graph theory. A
defensive alliance is usually formed to defends its members against non-members; hence, it is
natural to ask that each member of the alliance should have more friends within the alliance
(including oneself) than outside. These lead to algorithmic problems in the formation of
alliances. The main focus here is the study of one such problem from the perspective of
parameterized complexity.

A non-empty set D of vertices of a graph is a defensive alliance if, for each element of D,
the majority of its neighbors are in D. In the Defensive Alliance problem, given a graph
G and a positive integer k, the objective is to decide whether there exists a vertex subset
of size at most k, that forms a defensive alliance. During the last 20 years, the Defensive

7

Alliance problem, and several of its variants, have been studied extensively from both the
combinatorial and computational perspective [95, 113, 12, 21, 120, 117, 119, 121, 43, 16,
49, 52, 84, 56, 21, 51]. As expected, the problems of finding small defensive and o!ensive
alliances are NP-complete.

The focus has chiefly been on finding small alliances, although studying large alliances
makes a lot of sense given the original motivation behind these notions, and they were
actually also outlined in the very first papers on alliances [95]. To remedy this situation,
researchers have considered the notion of minimal defensive alliance problems. We first
caution that being a defensive alliance is not a hereditary property, that is, a superset or
subset of a defensive alliance is not necessarily a defensive alliance. Shafique [82] called an
alliance a locally minimal alliance if the set obtained by removing any vertex of the alliance
is not an alliance. Bazgan et al. [12] considered another notion of alliance that they called a
globally minimal alliance, which has the property that no proper subset is an alliance. Bazgan
et al. [12] proved that deciding if a graph contains a locally minimal defensive alliance of size
at least k is NP-complete, even when restricted to bipartite graphs with an average degree
less than 5.6. This naturally leads to the question, what is the tractability of this problem
when considered from the algorithmic paradigms meant to cope with NP-hardness, such as
parameterized complexity?

Here, we take up such a study and consider the Locally Minimal Defensive Al-
liance problem from the perspective of parameterized complexity. In this problem, given
an undirected graph G = (V,E) and an integer k ↗ N, the goal is to check whether G has a
locally minimal defensive alliance of size at least k, say D. Such a vertex set D is called a
solution. The parameterized complexity of alliance problems is well-studied with both nat-
ural and structural parameters. The problem of finding a defensive alliance of size at most
k admits an FPT algorithm when parameterized by solution size, see [50]. We complement
this positive result by showing that Locally Minimal Defensive Alliance also admits
an FPT algorithm, which uses a similar approach of extreme combinatorics mentioned in
[48].

A vertex v ↗ D is said to be protected if degD(v) + 1 ↓ degDc(v). Here v has degD(v) + 1

defenders and degDc(v) attackers in G. A set D ↑ V is a defensive alliance if every vertex
in D is protected.

Definition 1.3.1. A vertex v ↗ D is said to be marginally protected if it becomes unprotected

8

when any of its neighbors in D is moved from D to V \ D. A vertex v ↗ D is said to be
overprotected if it remains protected even when any of its neighbors is moved from D to
V \D.

Definition 1.3.2. [12] A defensive alliance D is called a locally minimal defensive alliance
if for any v ↗ D, D \ {v} is not a defensive alliance.

It is important to note that if D is a locally minimal defensive alliance, then for every vertex
v ↗ D, at least one of its neighbors in D is marginally protected.

Definition 1.3.3. [12] A defensive alliance D is a globally minimal defensive alliance or
shorter minimal alliance if no proper subset is a defensive alliance.

1

2 3 4 5 6 7 8 9

Figure 1.1: The set D1 = {2, 3, 5, 6, 8, 9} is a locally minimal defensive alliance of size 6 and
D2 = {1, 2, 4, 6, 8} is a globally minimal defensive alliance of size 5 in G.

It may be noted that every globally minimal defensive alliance is also a locally minimal
defensive alliance but the converse is not true. A defensive alliance D is connected if the
subgraph induced by D is connected. An alliance D is called a connected locally minimal
alliance if for any v ↗ D, D \ {v} is not an alliance and the graph induced by vertices in
D is a connected graph. Notice that any globally minimal alliance is always connected. We
consider Locally Minimal Defensive Alliance. We define the problem as follows:

Locally Minimal Defensive Alliance
Input: An undirected graph G = (V,E) and an integer k.
Question: Does G have a locally minimal defensive alliance D with |D| ↓ k?

The parameterized complexity of alliance problems is well-studied with both natural
and structural parameters. The problem of finding a defensive alliance of size at most k

admits an FPT algorithm when parameterized by solution size, see [50]. We complement
this positive result by showing that Locally Minimal Defensive Alliance also admits
an FPT algorithm, which uses a similar approach of extreme combinatorics mentioned in
[48]. Our main contribution is that Locally Minimal Defensive Alliance is FPT when
parameterized by solution size.

9

In this thesis, we also consider Globally Minimal Defensive Alliance under various
structural parameters. In the literature, a defensive alliance S is called a global defensive
alliance if S is a dominating set. It is important to note that the globally minimal defensive
alliance problem is di!erent from the global defensive alliance problem.

Observation 1.3.1. Let S be a globally minimal defensive alliance of size at least two in
G. Then S can never contain a vertex of degree one.

This can be proved by contradiction. Suppose S contains a vertex v of degree one. Note
that {v} is a proper subset of S and it is a defensive alliance, a contradiction to the fact
that S is a globally minimal defensive alliance.

A defensive alliance S is connected if the subgraph G[S] induced by S is connected. Notice
that any globally minimal defensive alliance is always connected.

Observation 1.3.2. If a non-empty set S ↑ V is connected and each v ↗ S is marginally
protected, then S is a globally minimal defensive alliance.

Note that although the conditions of this observation are su"cient to assure that S is a
globally minimal defensive alliance, they are certainly not necessary. For example, consider
the graph G shown in Figure 1.2. Note that S = {x, y, u1, u2} is a globally minimal defensive
alliance, but u1 and u2 are not marginally protected.

x y

u1 u2 u3 u4 u5

Figure 1.2: S = {x, y, u1, u2} is a globally minimal defensive alliance in G.

We define the problem as follows:

Globally Minimal Defensive Alliance
Input: An undirected graph G = (V,E) and an integer k ↓ 2.
Question: Is there a globally minimal defensive alliance S ↑ V (G) such that |S| ↓ k?

10

We provide new insights into the complexity of Globally Minimal Defensive Al-
liance parameterized by the structure of the input graph. We show that the problem is
FPT parameterized by the neighbourhood diversity of the input graph. This result implies
that the problem is also FPT when parameterized by the vertex cover number. We prove
that the problem, parameterized by the vertex cover number of the input graph, does not
admit a polynomial compression unless coNP ↑ NP/poly. We show that the problem is
W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as
the feedback vertex set number, pathwidth, treewidth and treedepth. We also prove that,
given a vertex r ↗ V (G), deciding if G has a globally minimal defensive alliance of any size
containing vertex r is NP-complete.

1.4 F-Free Edge Deletion

Animal diseases pose a risk to public health and cause damage to businesses and the economy
at large. Among di!erent reasons for livestock disease, livestock movements constitute major
routes for the spread of an infectious livestock disease [76]. For example, the long-range
movement of sheep in combination with local transmission resulted in the FMD epidemic
in the UK in 2001 [76, 106]. Livestock movements could, therefore, provide insight into
the structure of the underlying transmission network and thus allow early detection and
more e!ective management of infectious diseases [90]. To do this, mathematical modelling
has been employed widely to describe contact patterns of livestock movements and analyse
their potential use for designing disease control strategies [90]. For the purpose of modelling
disease spread among farm animals, it is common to consider a transmission network with
farms as nodes and livestock movement between farms as edges.

In order to control or limit the spread of a disease on this sort of transmission network,
we focus our attention on edge deletion, which might correspond to forbidden trade partners
or more reasonably, extra vaccinations or disease surveillance along certain trade routes.
Introducing extra control of this kind is costly, so it is important to ensure that this is
done as e"ciently as possible. Many properties that might be desirable from the point of
view of restricting the spread of a disease can be expressed in terms of forbidden subgraphs:
delete edges so that each connected component in the resulting graph has at most h vertices,
is equivalent to edge-deletion to a graph avoiding all trees on h + 1 vertices. In general,

11

given a graph G = (V,E) and a set F of forbidden subgraphs, we study the F-Free Edge
Deletion problem, where the goal is to remove a minimum number of edges such that the
resulting graph does not contain any F ↗ F as a (not necessarily induced) subgraph. We
define the problem as follows:

F-Free Edge Deletion
Input: A graph G = (V,E), a set F of forbidden subgraphs and a positive integer k.
Question: Does there exist E ↓

↑ E(G) with |E ↓
| = k such that G \ E ↓ does not contain

any F ↗ F as a (not necessarily induced) subgraph?

Enright and Meeks (Algorithmica, 2018) gave an algorithm to solve F-Free Edge
Deletion whose running time on an n-vertex graph G of treewidth tw(G) is bounded by
2O(|F|tw(G)r)n, if every graph in F has at most r vertices. We complement this result by
showing that F-Free Edge Deletion is W[1]-hard when parameterized by tw(G) + |F|.
We also show that F-Free Edge Deletion is W[2]-hard when parameterized by the
combined parameters solution size, the feedback vertex set number and pathwidth of the
input graph.

1.5 Th+1-Free Edge Deletion

Graph theoretic problems show immense applicability in real-life scenarios such as those
involving transportation, flows, relationships and complex systems. The spread of a disease,
for instance, can be modeled via such mathematical verbiage. A way to describe this idea
is as follows: Livestock are often carriers of various pathogens, and thus their movement,
among other reasons, plays a key role in inducing a pandemic amongst humans or livestock
[76]. To point at a particular instance, the cause of the 2001 FMD epidemic in the UK can
be traced to long-range movements of sheep combined with local transmissions amongst the
flocks [76, 106]. Thus, an e!ective way of mitigating the spread of livestock diseases could
be modelled by studying the underlying transmission networks based on the routes of cattle
movement. Such models can allow for early detection and better management of disease
control strategies [90].

More precisely, we consider a graph with its nodes as livestock farms and edges denoting
common routes of livestock movement between farms. Using this graph, we can identify

12

certain edges, or routes, such that connected components of the network obtained by deleting
these edges are manageably small in size. Then, these deleted edges will precisely correspond
to those trade routes which require more disease surveillance, vaccination stops, movement
controls etc, required for disease management. In essence, we have divided our disease
control strategies to a few routes and smaller manageable networks. Naturally, for maximum
e"ciency, one would also like to minimise the number of edges being deleted, and this
provides us enough information to chalk out a graph theoretic problem, which we shall
describe in the next section. It should be noted that the damaging e!ect such pandemics
have on public health, economies, and businesses, essentially validates the need for such a
study.

Many properties that might be desirable from the point of view of restricting the spread
of a disease can be expressed in terms of forbidden subgraphs: delete edges so that each
connected component in the resulting graph has at most h vertices, is equivalent to edge-
deletion to a graph avoiding all trees on h+ 1 vertices. One question of particular relevance
to epidemiology would be the complexity of the problem on planar graphs; this would be rel-
evant for considering the spread of a disease based on the geographic location (in situations
where a disease is likely to be transmitted between animals in adjacent fields) [44]. Further-
more, in practice animal movement networks can capture more information when considered
as directed graphs. The natural generalisation of Th+1-Free Edge Deletion to directed
graphs in this contexts follows: given a directed graph and a positive integer k, the goal is
to verify whether it is possible to delete at most k edges from a given directed graph so that
the maximum number of vertices reachable from any given starting vertex is at most h. The
Th+1-Free Edge Deletion problem on planar graph and directed graphs were introduced
by Enright and Meeks [44]. Exploiting information on the direction of movements might
allow more e"cient algorithms for Th+1-Free Edge Deletion; a natural first question
would be to consider whether there exists an e"cient algorithm to solve this problem on
directed acyclic graphs.

We are interested in solving the Th+1-Free Edge Deletion problem. This problem is
of particular interest because it can be seen as the problem of removing connections so as
to obtain a network where each connected component has at most h vertices, an abstract
view of numerous real world problems. Here, we study Th+1-Free Edge Deletion and
Th+1-Free Arc Deletion. We define the problems as follows:

13

Th+1-Free Edge Deletion
Input: An undirected graph G = (V,E), and two positive integers k and h.
Question: Does there exist E ↓

↑ E(G) with |E ↓
| ≃ k such that each connected compo-

nent in G \E ↓ has at most h vertices, that is, the graph G \E ↓ does not contain any tree
on h+ 1 vertices as a (not necessarily induced) subgraph?

A natural generalization of this problem to directed graphs in this context would be to con-
sider whether it is possible to delete at most k arcs from a given directed graph so that the
maximum number of vertices reachable from any given starting vertex is at most h.

Th+1-Free Arc Deletion
Input: A directed graph G = (V,E), and two positive integers k and h.
Question: Does there exist E ↓

↑ E(G) with |E ↓
| ≃ k such that the maximum number

of vertices reachable from any given starting vertex is at most h in G \ E ↓?

Enright and Meeks (Algorithmica, 2018) gave an algorithm to solve Th+1-Free Edge
Deletion whose running time on an n-vertex graph G of treewidth tw(G) is bounded by
O((tw(G)h)2tw(G)n). We complement this result by showing that Th+1-Free Edge Dele-
tion is W[1]-hard when parameterized by tw(G) alone. We thereby resolve a conjecture
stated by Enright and Meeks (Algorithmica, 2018) concerning the complexity of Th+1-Free
Edge Deletion parameterized by the treewidth of the input graph. One question of par-
ticular relevance to epidemiology would be the complexity of the problem on planar graphs;
this would be relevant for considering the spread of a disease based on the geographic loca-
tion. We prove that the Th+1-Free Edge Deletion problem is NP-complete even when
restricted to planar graphs. We also show that the Th+1-Free Edge Deletion problem is
W[2]-hard when parameterized by the solution size on directed acyclic graphs.

1.6 MaxMin Separation Problems

We study fixed-parameter tractability of two fundamental MaxMin separation problems:
Maximum Minimum st-Separator (MaxMin st-Sep) and Maximum Minimum Odd
Cycle Transversal (MaxMin OCT). In the MaxMin st-Sep problem, the input is an
undirected graph G, two distinct vertices s, t of G and a positive integer k. The goal is to

14

determine if there exists a subset of vertices Z, of size at least k, such that Z is a minimal
st-separator in G. That is, the deletion of Z disconnects s and t and the deletion of any
proper subset of Z results in a graph where s and t are connected. Similarly, in the MaxMin
OCT problem, given G, k, the goal is to determine if there exists a set of vertices Z, of size
at least k, such that Z intersects all odd length cycles in G and Z is minimal, that is no
proper subset of Z intersects all odd length cycles in G.

In contrast to the classical polynomial-time solvable st-Separator problem, where the
goal is to find an st-separator of size at most k, the MaxMin st-Sep problem is NP-hard [81].
The MaxMin OCT problem can also be shown to be NP-hard by giving a reduction from
the MaxMin st-Sep problem.

MaxMin versions of several classical vertex/edge deletion minimization problems have
been studied in the literature. The original motivation behind studying such versions is that
the size of the solution of the MaxMin versions reflects on the worst-case guarantees of a
greedy heuristic. In addition to this, the MaxMin problems have received a lot of attention
also because of their deep combinatorial structure which makes them stubborn even towards
basic algorithmic ideas. As we will highlight later, neither greedy, nor an exhaustive-search
strategy like branching, works for the MaxMin versions of even the “simplest” problems with-
out significant e!ort. The MaxMin versions are even harder to approximate. For example,
the classic Vertex Cover and Feedback Vertex Set problems admit 2-approximation
algorithms [5], which are tight under the Unique Games Conjecture [91]. But the MaxMin
Vertex Cover admits a n1/2-approximation, which is tight unless P = NP [19, 130], and
the MaxMin Feedback Vertex Set admits a tight n2/3-approximation [41].

We note here that the study of MaxMin versions of classical deletion problems is not the
only proposed way of understanding worst-case heursitics guarantees (though in this work
we only focus on such versions). Several variations of di!erent problems have been defined
whose core is similar. This includes problems like b-Coloring, Grundy Coloring etc,
which are analogs for the classic Chromatic Number problem.

We demonstrate that MaxMin versions of two fundamental separation problems: Max-
imum Minimal st-Separator and Maximum Minimal Odd Cycle Transversal
(OCT) problems are fixed-parameter tractable parameterized by k. Our FPT algorithm
for Maximum Minimal st-Separator answers the open question by Hanaka, Bodlaender,
van der Zanden & Ono [TCS 2019].

15

1.7 Literature Survey

In this section, we review the existing literature on the specific problems studied in this
dissertation.

Harmless Set: Given a graph G = (V,E), a threshold function t : V ↔ N and an
integer k, we study Harmless Set, where the goal is to find a subset of vertices S ↑

V of size at least k such that every vertex v ↗ V has fewer than t(v) neighbours in S.
Bazgan and Chopin [10] studied the parameterized complexity of Harmless Set and the
approximation of the associated maximization problem. When the parameter is k, they
proved that Harmless Set is W[2]-complete in general and W[1]-complete if all thresholds
are bounded by a constant. When each threshold is equal to the degree of the vertex,
they showed that Harmless Set is fixed-parameter tractable parameterized by k and the
maximization version is APX-complete. They gave a polynomial-time approximation scheme
for planar graphs. Drange, Muzi and Reidl [38] showed that Harmless Set parameterized
by k is fixed-parameter tractable in nowhere dense classes. Bazgan and Chopin [10] gave an
algorithm to solve Harmless Set whose running time on an n-vertex graph G of treewidth
tw(G) is bounded by O(kO(tw(G))

· n) where k is the solution size and we are provided a tree
decomposition of width tw(G) as part of the input. However, it remains open whether the
problem might belong to FPT when parameterized only by the treewidth tw(G). In this
thesis, we resolve this open problem by showing that Harmless Set is indeed W[1]-hard
when parameterized by tw(G) alone, even when restricted to bipartite graphs. Drange, Muzi
and Reidl [38] proved that Harmless Set is W[1]-hard when parameterized by a modulator
to a 2-spider-forest. That is, they independently proved that the problem is W[1]-hard for
parameters like treewidth, pathwidth, and even treedepth. They also proved that Harmless
Set is fixed-parameter tractable when parameterized by the vertex cover number of the input
graph and the problem is solvable in time O(2o(k) · n) on apex-minor-free graphs. Gaikwad
and Maity [65] showed that Majority Harmless Set is W[1]-hard when parameterized
by the treewidth of the input graph. Bazgan and Chopin [10] introduced the parametric
dual problem (n⇑ k)-Harmless Set which asks for the existence of a harmless set of size
at least n⇑ k. Here n is the number of vertices in the input graph, and the parameter is k.
They showed that the parametric dual problem (n⇑ k)-Harmless Set is fixed-parameter
tractable for a large family of threshold functions. Bazgan and Chopin [10] also proved that
finding a maximum harmless set can be done in O(log(tmax) · n) time for trees and finally

16

they showed that given a tree decomposition of width tw(G) of G, a maximum harmless set
can be computed in time tO(tw(G))

max · n where tmax is the maximum threshold. Gaikwad and
Maity [68, 65] provided new insights into the complexity of the Harmless Set problem
parameterized by the structure of the input graph. They presented several results, both
tractability and intractability, as follows: (i) Harmless Set is FPT when parameterized
by any of the following parameters: the neighbourhood diversity, twin cover, and vertex
integrity of the input graph. These results are obtained via Integer Linear Programming
(ILP). (ii) Majority Harmless Set is W[1]-hard when parameterized by the treewidth
of the input graph. (iii) Harmless Set is W[1]-hard when parameterized by the size of a
vertex deletion set into trees of height at most 3, even when restricted to bipartite graphs.
A similar result is shown independently by Drange, Muzi and Reidl [38]. (iv) Harmless
Set is W[1]-hard when parameterized by cluster vertex deletion set. (v) Given a graph
G and an irredundant c-expression of G, Harmless Set can be solved in XP-time when
parameterized by clique-width.

Defensive and O!ensive Alliances: The decision version for several types of alliances
have been shown to be NP-complete. For an integer r, a nonempty set S ↑ V (G) is a
defensive r-alliance if for each v ↗ S, |N(v) ↘ S| ↓ |N(v) \ S| + r. A set is a defensive
alliance if it is a defensive (⇑1)-alliance. A defensive r-alliance S is global if S is a dominating
set. The defensive r-alliance problem is NP-complete for any r [119]. The defensive alliance
problem is NP-complete even when restricted to split, chordal and bipartite graph [84].
There are polynomial time algorithms for finding minimum alliances in trees [23, 84]. A
polynomial time algorithm for finding minimum defensive alliance in series parallel graph
is presented in [83]. There has also been some work on the parameterized complexity of
alliance problems. It is known that Defensive Alliance and Offensive Alliance
are fixed-parameter tractable when parameterized by the solution size [43, 50]. Alliance
problems have been studied with respect to structural graph parameters. In this paper,
we show that the problems for all variants are e"ciently solvable for much larger graph
classes. Kiyomia and Otachi [92] proved that alliance problems can be solved in polynomial
time for graphs of bounded clique-width. They also showed that the problems are fixed-
parameter tractable when parameterized by the vertex cover number. Ensico [43] showed
that the problems of finding minimum size defensive alliances and global defensive alliances
are fixed-parameter tractable when parameterized by the combined parameters treewidth
and maximum degree. Treewidth [116, 17] is one of the most extensively studied structural
parameters in parameterized complexity. It indicates how close a graph is to being a tree.

17

It is particularly interesting because there are many hard problems which become tractable
on instances of bounded treewidth. It has also been observed that the problem instances for
several practical applications exhibit small treewidth [17, 125]. Hence it is very appealing to
obtain FPT algorithms for the Defensive Alliance and Offensive Alliance problems
using this parameter. Bliem and Woltran [16] proved that defensive alliance problem is
W[1]-hard when parameterized by the treewidth of the input graph. Gaikwad and Maity
[60, 67] proved that the Offensive Alliance problem is W[1]-hard when parameterized
by the treewidth of the input graph. This puts these two problems among the few problems
that are FPT when parameterized by solution size but not when parameterized by treewidth
(unless FPT=W[1]).

Locally and Globally Minimal Defensive Alliances: Bazgan, Fernau, and Tuza [12]
demonstrated that determining whether a graph contains a locally minimal strong defensive
alliance of size at least k is NP-complete, even when restricted to bipartite graphs with an av-
erage degree of less than 3.6. Similarly, they showed that deciding whether a graph contains
a locally minimal defensive alliance of size at least k remains NP-complete under the same
restrictions, with an average degree of less than 5.6. Furthermore, the authors proved that
determining whether a graph contains a connected locally minimal strong defensive alliance
or a connected locally minimal defensive alliance of size at least k is NP-complete, even for
bipartite graphs with an average degree of less than 2 + ω, for any ω > 0. Bazgan et al. [12]
proved that deciding if a graph contains a globally minimal strong defensive alliance of size at
least k is NP-complete, even for cubic graphs. Moreover, deciding if a graph contains a glob-
ally minimal defensive alliance of size at least k is NP-complete, even for graphs of degree 3
or 4 [12]. Gaikwad, Maity and Tripathi [72] provided new insights into the complexity of the
Locally Minimal Defensive Alliance problem parameterized by the structure of the
input graph. They presented several results, both tractability and intractability, as follows:
(i) Locally Minimal Defensive Alliance is NP-complete, even when restricted to pla-
nar graphs, (ii) it is fixed-parameter tractable (FPT) when parametrized by neighbourhood
diversity, (iii) the problem parameterized by treewidth is W[1]-hard and thus not FPT (un-
less FPT = W[1]), (iv) it can be solved in polynomial time for graphs of bounded treewidth.
Gaikwad and Maity [63] gave a polynomial-time algorithm to find a maximum size globally
minimal defensive alliance when the input graph happens to be a tree. They also proved
that Globally Minimal Defensive Alliance is W[1]-hard when parameterized by the
treewidth of the input graph. Gaikwad, Maity and Saurabh [69] showed that the Locally
Minimal Defensive Alliance problem is FPT when parameterized by solution size. For

18

graphs that are C3-free and C4-free with minimum degree at least 2, they provided a kernel of
size kO(k). When restricted to planar graphs with minimum degree at least 2, they designed
an algorithm with running time kO(

↑
k)nO(1).

F-Free Edge Deletion: If ε is a property on graphs or digraphs, the edge-deletion prob-
lem can be stated as follows: find the minimum number of edges whose deletion results in
a subgraph (or subdigraph) satisfying property ε. Several well-studied graph problems can
be formulated as edge-deletion problems. Yannakakis [128] showed that the edge-deletion
problem is NP-complete for the following properties: (1) without cycles of specified length
ϑ, for any fixed ϑ ↓ 3, (2) connected and degree-constrained, (3) outer-planar, (4) tran-
sitive digraph, (5) line-invertible, (6) bipartite, (7) transitively orientable. Watanabe, Ae,
and Nakamra [126] showed that the edge-deletion problem is NP-complete if ε is finitely
characterizable by 3-connected graphs. Natanzon, Shamir and Sharan [109] proved the NP-
hardness of edge-deletion problems with respect to some well-studied classes of graphs. These
include perfect, chordal, chain, comparability, split and asteroidal triple free graphs. This
problem has also been studied in generality under paradigms like approximation [57, 105]
and parameterized complexity [20, 79]. Cai [20] showed that edge-deletion to a graph class
characterisable by a finite set of forbidden induced subgraphs is fixed-parameter tractable
when parameterized by k (the number of edges to delete); he gave an algorithm to solve
the problem in time O(r2k · nr+1), where n is the number of vertices in the input graph and
r is the maximum number of vertices in a forbidden induced subgraph. FPT algorithms
have been obtained for the problem of determining whether there are k edges whose deletion
results in a split graph [75] and to chain, split, threshold, and co-trivially perfect graphs [79].
Enright and Meeks [44] gave an algorithm for the F-Free Edge Deletion problem with
running time 2O(|F|tw(G)r)n where tw(G) is the treewidth of the input graph G and r is the
maximum number of vertices in any element of F . This is a significant improvement on Cai’s
algorithm [20] but does not lead to a practical algorithm for addressing real world problems.
Gaikwad and Maity [62] complemented this result by showing that F-Free Edge Dele-
tion is W[1]-hard when parameterized by tw(G) + |F|. They also showed that F-Free
Edge Deletion is W[2]-hard when parameterized by the combined parameters: solution
size, the feedback vertex set number and pathwidth of the input graph.

Th+1-Free Edge Deletion: The special case of F-Free Edge Deletion problem in which
F is the set of all trees on h+1 vertices is of particular interest from the point of view of the
control of disease in livestock. Enright and Meeks [44] have proved that Th+1-Free Edge

19

Deletion is NP-hard for every h ↓ 3. Enright and Meeks [44] have derived an improved
algorithm for this special case, running in time O((tw(G)h)2tw(G)n). However, it remained
open whether the problem might belong to FPT when parameterized only by the treewidth;
they conjectured that treewidth alone is not enough, and that the problem is W[1]-hard
with respect to this parameterization. In this thesis, we resolve this conjecture. Gaikwad
and Maity [61] gave a polynomial kernel for Th+1-Free Edge Deletion parameterized by
k + h where k is the solution size. As Th+1-Free Edge Deletion is NP-hard for every
h ↓ 3 [44], it is not possible to obtain an FPT-algorithm parameterized by h alone (unless
P=NP). However, the parameterized complexity of this problem when parameterized by k

alone remains open.

MaxMin Separation Problems: Given the extensive study of the Vertex Cover prob-
lem in parameterized complexity, the parameterized complexity MaxMin Vertex Cover
has naturally garnered significant attention [129, 19, 130, 3]. More recently, MaxMin Feed-
back Vertex Set problem has also been explored in [41, 98], where several faster FPT
algorithms are proposed. The MaxMin Dominating Set problem has been studied in
[2, 4, 9, 42], and its edge variant, the MaxMin Edge Dominating Set, is addressed
in [108]. Additionally, MaxMin and MinMax formulations have been investigated for a
range of other problems, including cut and separation problems [97, 40], knapsack problems
[78, 58], matching problems [24], and coloring problems [13]. We elaborate more on the
literature around MaxMin versions of cut and separation problems in the later paragraph.

We remark that for most problems mentioned in the paragraph above, showing that they
are FPT parameterized by the solution size is not very di"cult (though designing faster
FPT algorithms could be much challenging and require deep problem-specific combinatorial
insights). The reason is that it is easy to bound the treewidth of the input graph: find a
greedy packing of obstructions (edges for MaxMin Vertex Cover and cycles for MaxMin
Feedback Vertex Set); if the packing size is at least k, then the instance is a yes-instance,
otherwise there exists a vertex cover (resp. feedback vertex set) of the input graph, of size at
most 2k (resp. O(k log k) from the Erdös-Pósa theorem). In both case, the treewidth of the
graph is bounded by a function of k. Since these problems are expressible in Monadic Second
Order (MSO) Logic, from Courcelle’s theorem a linear-time FPT in k algorithm follows.

The key challenge in the study of cut and separation problems, in contrast to the
vertex/edge-deletion problems mentioned in the paragraph above, is that it is not always easy

20

to bound the treewidth of the instances. Having said that the existing work on MaxMin
versions of cut and separation problems are still based on treewidth win-win approaches as
explained below.

Hanaka et al. [81] studied the parameterized complexity of the MaxMin Separator
problem. Here the input is only a connected graph G and a positive integer k, and the goal
is to find a minimal vertex set of size at least k whose deletion disconnects the graph. This
problem has an easy FPT algorithm parameterized by k based on a win-win approach: if the
input graph has large treewidth, then it has a large grid-minor which implies the existence
of a large solution; otherwise the treewidth is bounded and since the problem is expressible
in MSO, one can solve the problem in linear time on bounded treewidth graphs. Note that
this approach completely fails when we are looking for an st-separator (which is the problem
we attack in the present work) for fixed vertices s and t. In particular, a large grid minor
does not necessarily imply a large st-separator.

In the same work Hanaka et al. designed an explicit FPT algorithm parameterized by
treewidth for the MaxMin st-Sep problem and left open the question of determining the
parameterized complexity of MaxMin st-Sep parameterized by the solution size k.

Later Duarte et al. [40] studied the edge-deletion variant of the MaxMin st-Sep problem.
They termed it the Largest st-Bond problem and showed, amongst other results, that
it is FPT parameterized by the solution size k. At the core of this algorithm is another
treewidth-based win-win approach, which seems hard to generalize to the vertex-deletion
case.

The Maximum Minimal st-Separator problem has been studied in the context of
parameterized complexity by Hanaka et al. [81]. Their work focuses on finding a mini-
mal st-separator with maximum weight in a vertex-weighted graph. They showed that the
Maximum Weight Minimal st-Separator problem is NP-hard, even on bipartite graphs
where all vertex weights are identical. The authors also explored structural parameteriza-
tion, providing an O

→(twO(tw))-time deterministic algorithm based on tree decompositions,
where O

→ notation omits polynomial factors of n. Additionally, they improved the algo-
rithm using a rank-based approach, achieving a running time of O(38.2ω)tw. Finally, they
presented an O(9tw · W 2)-time randomized algorithm to determine whether there exists a
minimal st-separator, where W is its weight and tw is the treewidth of the graph G.

21

Duarte et al. [40] examined the Largest st-Bond problem, where given an undirected
graph G, two vertices s, t ↗ V (G), and a positive integer k, the task is to find a subset S ⇓ V

such that s ↗ S, t /↗ S, both G[S] and G[V \ S] are connected, and |ϖ(S)| ↓ k, where ϖ(S)

represents the set of edges with one endpoint in S and the other in V \ S. They proved
that the Largest st-Bond is NP-complete even on planar bipartite graphs, and showed
that it does not admit a constant-factor approximation algorithm unless P = NP. The paper
also provided an FPT algorithm parameterized by the solution size. The paper presented
several FPT algorithms parameterized by di!erent structural parameters such as treewidth,
cliquewidth, and twin cover as well.

1.8 An Overview of the Thesis

In Chapter 2, we provide a brief introduction to Parameterized Complexity. We formally
define parameterized problems, fixed-parameter tractable algorithms, and kernelization. Ad-
ditionally, we introduce the concept of fixed-parameter intractability and the W-hierarchy.
Finally, we list all the structural graph parameters used in the thesis.

In Chapter 3, we investigate the computational complexity of the Harmless Set prob-
lem. This chapter is based on the papers [68, 65]. We show that the problem is W[1]-hard
when parameterized by several restrictive structural parameters, including the feedback ver-
tex set number, pathwidth, treedepth, and cluster vertex deletion number of the input graph.
On the positive side, we present fixed-parameter tractable (FPT) algorithms when the prob-
lem is parameterized by vertex integrity, neighborhood diversity, or twin cover. Additionally,
we establish an upper bound on the complexity by providing an XP algorithm when param-
eterized by clique-width.

In Chapter 4, we analyze the computational complexity of the Defensive Alliance
problem. This chapter is based on the paper [61]. We prove that the problem is W[1]-hard
when parameterized by several restrictive structural parameters, including the feedback ver-
tex set number, pathwidth, treewidth, treedepth, and clique-width of the input graph, even
under the restriction to bipartite graphs. Furthermore, we show that when parameterized
by the vertex cover number, the problem does not admit a polynomial compression unless
coNP ↑ NP/poly. We also establish that it cannot be solved in 2o(n) time unless the Expo-
nential Time Hypothesis (ETH) fails, and that the problem remains NP-complete on circle

22

graphs. Notably, the constructions used in our hardness proofs extend to problem variants
that require finding defensive alliances of exactly a given size.

In Chapter 5, we focus on the Locally Minimal Defensive Alliance problem. This
chapter is based on the paper [69]. We demonstrate that the problem is fixed-parameter
tractable (FPT) when parameterized by the solution size. For C3-free and C4-free graphs
with a minimum degree of at least 2, we provide a kernel of size kO(k). Additionally, when
restricted to planar graphs with a minimum degree of at least 2, we design an algorithm
with a running time of kO(

↑
k)nO(1), establishing e"cient approaches for these graph classes.

In Chapter 6, we present the main contributions related to the Globally Minimal
Defensive Alliance problem. This chapter is based on the papers [63, 64]. We show
that the problem is fixed-parameter tractable (FPT) when parameterized by neighborhood
diversity. On the other hand, we establish that the problem does not admit a polynomial
kernel when parameterized by the vertex cover number. Furthermore, we prove that the
problem is W[1]-hard when parameterized by several restrictive structural parameters, in-
cluding the feedback vertex set number, pathwidth, treewidth, and treedepth of the input
graph. Additionally, we demonstrate that deciding whether a given vertex v ↗ V (G) is part
of a globally minimal defensive alliance in G is NP-complete.

In Chapter 7, we analyze the computational complexity of the Offensive Alliance
problem. This chapter is based on the papers [60, 67]. We prove that the problem is
NP-complete, even when restricted to bipartite, chordal, split, and circle graphs. Further-
more, we establish that the problem is W[1]-hard when parameterized by several restrictive
structural parameters, including the feedback vertex set number, treewidth, pathwidth, and
treedepth of the input graph, implying that it is not fixed-parameter tractable (FPT) unless
FPT = W[1]. This resolves an open question posed by Bernhard Bliem and Stefan Woltran
(2018) regarding the complexity of Offensive Alliance parameterized by treewidth. This
result is particularly noteworthy because most “subset problems” that are FPT when param-
eterized by solution size are also FPT for treewidth [33], and Offensive Alliance is
computationally easy on trees. On the positive side, we show that the problem can be solved
in O

→(vc(G)O(vc(G))) time, where vc(G) is the vertex cover number of the input graph, and
it admits an FPT algorithm when parameterized by the vertex integrity of the input graph.
Additionally, we establish a lower bound based on the Exponential Time Hypothesis (ETH),
proving that the Offensive Alliance problem cannot be solved in 2o(n) time, even when

23

restricted to bipartite graphs, unless ETH fails.

In Chapter 8, we investigate the F-Free Edge Deletion problem, a generalized frame-
work for edge-deletion tasks in graphs. This chapter is based on the papers [65, 62]. The
problem asks whether it is possible to remove at most k edges from an input graph G such
that the resulting graph avoids all forbidden subgraphs from a given set F . Our results ex-
plore both the algorithmic and complexity aspects of this problem. Specifically, we show that
the problem is W[1]-hard when parameterized by the treewidth of the input graph combined
with the size of F . Additionally, we establish that it is W[2]-hard when parameterized by the
combined parameters of solution size, feedback vertex set number, and pathwidth. These
hardness results highlight the problem’s inherent complexity across a range of structural
parameters, advancing the theoretical understanding of edge-deletion problems.

In Chapter 9, we focus on the Th+1-Free Edge Deletion problem, a special case of
F -Free Edge Deletion, where F is the set of all trees with h + 1 vertices. This chapter is
based on the paper [66]. This problem is motivated by practical applications in epidemiology,
where minimizing the spread of diseases can be modeled by controlling connected component
sizes in networks. We prove that the problem is NP-complete even when restricted to planar
graphs. Further, we show that the problem is W[1]-hard when parameterized by treewidth
alone, thereby resolving an open conjecture by Enright and Meeks (2018). Additionally, we
study its directed variant and prove that the problem is W[2]-hard when parameterized by
solution size on directed acyclic graphs. These results underscore the complexity of this
edge-deletion task and provide key insights into its parameterized complexity.

In Chapter 10, we investigate the parameterized complexity of the Maximum Minimal
st-Separator and Maximum Minimal Odd Cycle Transversal (OCT) problems.
This chapter is based on the paper [59]. We establish that both problems are fixed-parameter
tractable (FPT) when parameterized by the solution size.

In Chapter 11, we present our conclusions and discuss several open problems.

24

Chapter 2

Preliminaries

In this chapter, we present some basic definitions in graph theory and introduce terminologies
that are used in this thesis. We also cover the basics of parameterized complexity.

2.1 Graph Theory

In this section, we provide some basic definitions from graph theory. For standard notations
and definitions in graph theory, we refer to West [127]. Let G = (V,E) denote a finite, simple,
and undirected graph. We denote by V (G) and E(G) its vertex and edge set, respectively.
For a vertex v ↗ V , we use N(v) = {u : (u, v) ↗ E(G)} to denote the open neighbourhood of
v in G, and N [v] = N(v)⇔{v} to denote the closed neighbourhood of v. The degree d(v) of a
vertex v ↗ V (G) is |N(v)|. For a subset S ↑ V (G), we use NS(v) = {u ↗ S : (u, v) ↗ E(G)}

to denote the (open) neighbourhood of vertex v in S, and dS(v) to denote the number of
neighbours of vertex v in S. We denote by Sc the set of vertices in G⇑ S. For s, t ↗ V (G),
an st-path in G refers to a path between s to t in G. For subsets S, T ↑ V (G), an ST -path is
a path between a vertex of S to a vertex of T . A graph H is said to be a subgraph of a graph
G if V (H) ↑ V (G) and E(H) ↑ E(G), denoted by H ↑ G. Given a graph G = (V,E) and a
subset of vertices U ↑ V , the induced subgraph G[U] is the subgraph of G that includes all
vertices in U and all edges in E that have both endpoints in U . We also define d-scattered
set in graphs which will be used later.

25

Definition 2.1.1 (d-scattered set). Let G = (V,E) be a graph and let d be a positive integer.
A set S ↑ V is called a d-scattered set if for every pair of distinct vertices u, v ↗ S, the
distance between u and v in G is greater than d, i.e., distG(u, v) > d.

2.1.1 Graph Types

• A directed graph (or digraph) is a graph where the edges have a direction.

• A graph is said to be connected if there is a path between every pair of vertices. If
the graph is not connected, it is called a disconnected graph. The maximal connected
subgraphs are called connected components of a graph.

• A graph is called a tree if it is connected and acyclic. The height of a rooted tree is
the maximum number of vertices on a path from root to a leaf.

• A graph is called bipartite if its vertices can be partitioned into two sets V1 and V2 such
that every edge has one endpoint in V1 and the other in V2.

• A graph G is said to be a chordal graph if every cycle of G of length at least four has
a chord.

• A split graph is a special kind of chordal graph where its vertex set V (G) can be
partitioned into two subsets V1 and V2 such that the graph G[V1] is a clique and G[V2]

is an independent set.

• A circle graph is the intersection graph of a set of chords of a circle. That is, it is an
undirected graph whose vertices can be associated with chords of a circle such that two
vertices are adjacent if and only if the corresponding chords cross each other.

• A planar graph is a graph that can be embedded in the plane, that is, it can be drawn
on the plane in such a way that its edges intersect only at their endpoints. In other
words, it can be drawn in such a way that no edges cross each other.

• An apex graph is a graph that can be made planar by the removal of a single vertex.
The deleted vertex is called an apex of the graph.

26

2.1.2 Brekable and Unbreakable Graphs

A pair (X, Y), where X ⇔ Y = V (G), is called a separation if E(X \ Y, Y \ X) = ↖. The
order of (X, Y) is |X ↘ Y |. If there exists a separation (X, Y) of order at most k such that
|X \ Y | ↓ q and |Y \X| ↓ q, then G is (q, k)-breakable and the separation (X, Y) is called
a witnessing separation for the (q, k)-breakability of G. Otherwise, G is (q, k)-unbreakable.

2.1.3 Monadic Second Order Logic

The syntax of Monadic Second Order Logic (MSO) formula for graphs includes the logical
connectives ↙,∝,¬, =′ , ∞′ , variables for vertices, edges, sets of vertices, and sets of
edges, the quantifiers ∈ and ∋, and five binary relations:

1. u ↗ U , where u is a vertex variable and U is a vertex set variable;

2. d ↗ D, where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is
that the edge d is incident to u;

4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v

are adjacent;

5. equality of variables representing vertices, edges, vertex sets, and edge sets.

Counting Monadic Second Order Logic (CMSO) extends MSO by including atomic sen-
tences testing whether the cardinality of a set is equal to q modulo r, where q and r are
integers such that 0 ≃ q < r and r ↓ 2. That is, CMSO is MSO with the following atomic
sentence:

cardq,r(S) = true if and only if |S| △ q mod r,

where S is a set. For our applications, we will restrict ourselves to MSO, whereas the next
proposition holds for the more general CMSO.

27

2.2 Introduction to Parameterized Complexity

The time taken by an algorithm is a key measure of its e"ciency. For many problems,
there are algorithms with time complexities that are polynomial in the size of the input.
However, for a large number of problems, no polynomial-time algorithm is known to exist.
The algorithms that are known for such problems are typically exponential in the size n

of the input. As a result, the time complexity grows much more rapidly with n, making
the problem computationally intractable even for relatively small instances. Downey and
Fellows [35] introduced the framework of Parameterized Complexity in early 90’s for dealing
with such hard problems. This framework measures the computational complexity of the
problem using the input size and an additional measurement which is called the parameter.
We refer to [31, 36] for further details on parameterized complexity.

2.2.1 Fixed Parameter Tractability

A popular method to soften this exponential blow is to look at parameterized problems. Here,
every instance is attached with a parameter k, thereby expanding the set of all instances to
”→

▽ N. Next, we move to the formal definition of parameterized problems.

Definition 2.2.1. [31] A parameterized problem # is a subset of ”→
▽N, where ” is a (fixed)

finite alphabet set. An instance of a parameterized problem is a tuple (x, k), where k is called
the parameter.

A parameterized problem now asks a Yes/No question, often linking x to k, and is charac-
terised by a subset L ↑ ”→

▽ N of yes instances. Parameterized complexity introduces the
notion of fixed-parameter tractability (FPT), which classifies problems based on their com-
plexity with respect to the parameter. A problem is called FPT if there exists an algorithm
that solves it within a polynomial-time bound in the input size, multiplied by a function of
the parameter. This characterization allows for a fine-grained analysis of complexity. Here
we provide a formal definition of a fixed parameter tractable problem.

Definition 2.2.2. [31] A parameterized problem L ↑ ”→
▽ N is called fixed parameter

tractable if there exists an algorithm A , a computable function f : N ↔ N, and a constant
c such that, given (x, k) ↗ ”→

▽ N, the algorithm A correctly decides whether (x, k) ↗ L in

28

time bounded by f(k) · |(x, k)|c. The complexity class containing all fixed parameter tractable
problems is called FPT.

2.3 Standard Techniques used to Design FPT Algorithms

There are several standard techniques for designing FPT algorithms. In this section, we
discuss a few of them that are primarily used in this thesis.

2.3.1 Kernelization

Kernelization stands as a cornerstone of parameterized complexity, o!ering a powerful tool
to process complex problem instances to their essential cores. Formally, a kernelization
algorithm takes as input an instance of a problem along with a parameter and outputs
an equivalent instance whose size is bounded by a polynomial function of the parameter.
This output, known as a kernel, retains the essence of the original problem while being
significantly smaller in size. Moreover, kernelization serves as a bridge between parameterized
complexity theory and practical algorithm design. By providing a systematic framework
for preprocessing problem instances, it allows the construction of fixed-parameter tractable
(FPT) algorithms that exhibit polynomial-time complexity when the parameter is considered
small. Now we provide a formal definition of Kernelization Algorithm.

Definition 2.3.1. [31] A kernelization algorithm, or simply a kernel, for a parameterized
problem Q is an algorithm A that, given an instance (I, k) of Q, works in polynomial time
and return an equivalent instance (I ↓, k↓) of Q. Moreover, we require that sizeA(k) ≃ g(k)

for some computable function g : N ↔ N.

2.3.2 Bounded search trees

Branching search trees is also known as branching technique. Branching, is one of the sim-
plest and most commonly used techniques in parameterized complexity that uses in general
the idea of systematic search. Branching algorithms traverse a search tree representing
possible solutions to a given problem instance, with each node corresponding to a partial

29

solution. At each branching point, decisions are made based on the current state of the
solution and the values of additional parameters, branching into subproblems that explore
di!erent choices. This iterative process continues until either a solution is found or the
search space is exhausted, providing valuable information about the problem’s complexity.
Branching algorithms often exhibit exponential worst-case complexity, especially when ex-
ploring all possible branches of the search tree. This exponential growth arises from the
combinatorial explosion of choices at each branching point, making exhaustive exploration
impractical for large instances. The complexity of branching algorithms depends upon both
the branching factor and the depth of the search tree. A high branching factor or depth can
significantly increase the number of nodes explored, leading to longer execution times and
increased memory requirements.

2.3.3 Parameterized Reduction

Lets recall that the idea of polynomial time reduction in classical complexity allows us to
prove NP-hardness results. In the polynomial time reduction algorithm, we map an instance
of problem A to an equivalent instance of problem B in polynomial time. If there is a poly-
nomial time reduction from problem A to a problem B then it implies that if a problem B

can be solved in polynomial time then the problem A also admits a polynomial time algo-
rithm. The underlying idea in the parameterized reduction is similar, except here we have
to maintain the size of a parameter in the reduced problem. Formally, a parameterized re-
duction maps instances of one parameterized problem to instances of another, such that the
transformed instance preserves the parameterized complexity of the original. This preserva-
tion ensures that the inherent di"culty captured by additional parameters remains intact,
which helps us to analyze the complexity landscape of problems through a parameterized
lens. Here, we provide a formal definition of parameterized reduction.

Definition 2.3.2. [31] Let A,B ↑ ”→
▽N be two parameterized problems. A parameterized

reduction from problem A to B is an algorithm that, given an instance (x, k) of A, outputs
an instance (x↓, k↓) of B such that

1. (x, k) is a yes instance of A if and only if (x↓, k↓) is a yes instance of B,

2. k↓
≃ g(k) for some computable function g, and

30

3. the running time is f(k).|x|O(1) for some computable function f .

The parameterized reduction provides a way to prove that a problem is FPT in the following
way.

Theorem 2.3.1. [31] If there is a parameterized reduction from problem A to B and B is
FPT, then A is FPT as well.

2.3.4 The ILP Technique

This technique is based on a computational problem called integer linear programming (ILP).
A special and important case of the parameterized reduction technique is to map a problem
to an integer linear programming (ILP) problem. Integer linear programming (ILP) is de-
fined as follows:

p-ILP
Input: A matrix A ↗ Zm↔p, and vectors b ↗ Zp and c ↗ Zp.
Question: Find a vector x ↗ Zp that satisfies the m inequalities, that is, A · x ↓ b.
Parameter: p, the number of variables.

Lenstra [99] showed that p-ILP is FPT with running time doubly exponential in p, where
p is the number of variables. Later, Kannan [87] proved an algorithm for p-ILP running in
time pO(p). In our algorithms, we need the optimization version of p-ILP rather than the
feasibility version. We state the minimization version of p-ILP as presented by Fellows et
al. [47]. The problem and the result are formally stated as follows.

p-Opt-ILP
Input: A matrix A ↗ Zm↔p, and vectors b ↗ Zp and c ↗ Zp.
Question: Find a vector x ↗ Zp that minimizes the objective function cT ·x and satisfies
the m inequalities, that is, A · x ↓ b.
Parameter: p, the number of variables.

Lemma 2.3.2 (Fellows et al. [47]). p-Opt-ILP can be solved using O(p2.5p+o(p)
·L·log(MN))

arithmetic operations and space polynomial in L. Here L is the number of bits in the input,

31

N is the maximum absolute value any variable can take, and M is an upper bound on the
absolute value of the minimum taken by the objective function.

Given any problem P with parameter k, we must try to reformulate it as an ILP problem
with at most f(k) variables for some computable function f in order to apply the ILP
technique. This is the most crucial requirement for this technique. If then, substituting
L, M and N gives a running time polynomial in n, we shall obtain an FPT algorithm for
the problem P .

2.4 Standard Techniques used to Design Lower Bounds

In this section, we will focus on the tools used in this thesis to establish lower bounds on the
complexity of certain computational problems.

2.4.1 The W-hierarchy

As discussed in the previous section, the first technique is parameterized reduction. We
know that given a parameterized reduction from problem A to B implies that if the problem
B is FPT then so is problem A. Similar to the theory of NP-completeness, we can also say
that problem A is at least as hard as problem B. Note that, if we assume that the problem
A is not FPT then it implies that the problem B is not FPT as well. If we accept as a
working hypothesis that Clique is not fixed-parameter tractable, then given a reduction
from Clique to other problems suggests that the other problem is not fixed-parameter
tractable either. Lets look at some simple examples. There is a simple parameterized
reduction from Clique to Independent Set. This implies that Clique is at least as hard
as Independent Set. Let us recall that given any two NP-complete problems, there is
always exists a polynomial time reduction from one to the other. This kind of phenomenon
seem to fail in the realm of parameterized complexity. We know that there is parameterized
reduction from Clique to Dominating Set but there is no known parameterized reduction
from Dominating Set to Clique. This suggests that there are di!erent levels in the
parameterized complexity of hard problems. More details of W-hierarchy can be in Chapter
13 in [31]. As far as this thesis is concerned, we are mainly interested in whether given

32

problem and a parameter, does there exists a FPT algorithm or not. If there is no FPT
algorithm then we do not pay much attention to the di!erent levels of hardness in the W-
hierarchy. The following theorem are used to provide a number of lower bounds on the
complexity of some problems.

Theorem 2.4.1. [35] Independent Set is W[1]-hard.

Theorem 2.4.2. [31] Dominating Set, Set Cover, and Hitting Set are W[2]-hard.

It is important to note that the above theorem are true under the assumption that FPT →=W[1]
and not P →=NP.

2.4.2 Lower Bounds based on Exponential Time Hypothesis

The Exponential Time Hypothesis (ETH) is a conjecture stating that n-variable 3-SAT can-
not be solved in time 2o(n). Standard techniques for designing FPT algorithms—such as
branching, kernelization, color coding, and iterative compression—typically yield algorithms
with running times of the form 2O(k)

· nO(1), 2O(k log k)
· nO(1), or even 2poly(k) · nO(1). These

forms suggest that FPT problems admit an internal hierarchy based on the parameter de-
pendence of their running times. The ETH conjecture serves as a useful tool in establishing
this hierarchy. It allows us to show that, for many problems, the known FPT algorithms
are essentially optimal under ETH. In the context of parameterized complexity, ETH is fre-
quently used to prove lower bounds of the form that a problem cannot be solved in time
2o(k) · nO(1), ko(k)

· nO(1), or even f(k) · no(k) for any computable function f .

2.4.3 Lower bounds on Kernelization

As mentioned in the previous section, kernelization is one of the important tool to construct
FPT algorithms. There are number of classical problems for which polynomial kernels have
been constructed. For example, Vertex Cover admits a kernel of size 2k, and Feedback
Vertex Set admits a kernel of size O(k2). The list is quite long. One might ask whether,
given a parameterized problem, it is always possible to construct a kernel of polynomial
size. Unfortunately, the answer is no. There are many ways to prove the non-existence
of a polynomial kernel. Here, we discuss one such method called Polynomial Parameter

33

Transformation(PPT) which is used multiple times in this thesis. This technique allows us
to transfer the hardness from one problem to another. To do this, we provide the following
definition.

Definition 2.4.1 ([53]). Let P,Q ↑ ”→
▽N be two parameterized problems. An algorithm A

is called a polynomial parameter transformation from P to Q if, given an instance (x, k) of
problem P , A works in polynomial time and outputs an equivalent instance (x↓, k↓) of problem
Q, that is, (x, k) ↗ P if and only if (x↓, k↓) ↗ Q, such that k↓

≃ p(k) for some polynomial
p(.).

The above definition allows us to state the following.

Theorem 2.4.3 ([53]). Let P,Q ↑ ”→
▽N be two parameterized problems and assume there

exists a polynomial parameter transformation from P to Q. Then, if P does not admit a
polynomial compression, neither does Q.

We refer to [53] for further details on kernelization.

2.5 Structural Graph Parameters

In this section, we recall the definitions of the structural graph parameters discussed in this
thesis and provide information on how these parameters are related to one another.

Definition 2.5.1. A set S ↑ V (G) is a vertex cover of G = (V,E) if each edge in E has at
least one endpoint in S. The size of a smallest vertex cover of G is the vertex cover number
of G.

Next, we define Twin Cover, Neighbourhood Diversity, and Vertex Integrity of a graph.

According to Ganian [73], “The twin-cover is a direct generalization of vertex cover towards
richer graph classes, including dense graph classes (which have unbounded treewidth)." Here
we relax the definition of vertex cover so that not all edges need to be covered.

Definition 2.5.2. [73] An edge (u, v) ↗ E(G) is a twin edge of G if N [u] = N [v].

34

Definition 2.5.3. [73] A set X ↑ V (G) is a twin-cover of G if every edge in G is either
twin edge or incident to a vertex in X. We then say that G has twin-cover number k if k is
the minimum possible size of a twin-cover of G.

(a)

v2
v1

v4

v3

v5

v8

v6

v7
(b)

Figure 2.1: (a) A minimum vertex cover (size 5–depicted in black) (b) A minimum twin-cover
(size 2–depicted in blue). The twin edges are shown in red.

Two di!erent vertices u, v are called true twins if N [u] = N [v]. Likewise, u, v are called
false twins if N(u) = N(v). In general, u, v are called twins if they are either true twins or
false twins. If they are twins, we say that they have the same neighbourhood type.

Definition 2.5.4. [96] A graph G = (V,E) has neighbourhood diversity at most d, if there
exists a partition of V into at most d sets (we call these sets type classes) such that all the
vertices in each set have the same neighbourhood type.

If the neighbourhood diversity of a graph is bounded by an integer d, then there exists a
partition {C1, C2, . . . , Cd} of V (G) into d type classes. We would like to point out that
it is possible to compute the neighbourhood diversity of a graph in linear time using fast
modular decomposition algorithms [124]. Notice that each type class could either be a clique
or an independent set by definition. For algorithmic purposes it is often useful to consider
the type graph H of G, where each vertex of H is a type class in G, and two vertices Ci

and Cj are adjacent if and only if every vertex of Ci is adjacent to every vertex of Cj

in G. It is not di"cult to see that there will be either no edges between Ci and Cj or
every vertex of Ci is adjacent to every vertex of Cj. The key property of graphs of bounded
neighbourhood diversity is that their type graphs have bounded size. For example, a graph
G with neighbourhood diversity four and its corresponding type graph H are illustrated in
Figure 2.2.

35

a

b c

d

e

f

g h

i

G H

a, b, c, d

e

f, g h, i

Figure 2.2: A graph G with neighbourhood diversity 4 and its corresponding type graph H.

Next, we move to vertex integrity. This vulnerability measure was introduced by Barefoot et
al. [7] in 1987. For an overview of structural results on vertex integrity, we refer the reader
to a survey on vertex integrity by Bagga et al. [6].

Definition 2.5.5. [7] The vertex integrity of a graph G, denoted vi(G), is the minimum
integer k satisfying that there is X ↑ V (G) such that |X|+ |V (C)| ≃ k for each component
C of G⇑X. We call such S a k-vi-set of G.

Gima et al. [77] described an equivalence relation among components. For a vertex set
X of G, we define an equivalence relation ̸G,X among components of G ⇑ X by setting
C1 ̸G,X C2 if and only if there is an isomorphism g from G[X ⇔ V (C1)] to G[X ⇔ V (C2)]

that fixes X; that is, g|X is the identity function. When C1 ̸G,X C2, we say that C1 and C2

have the same (G,X)-type (or just the same type if G and X are clear from the context).
See Figure 2.3.

36

X

C1 C2 C3 C4

Figure 2.3: The components C2 and C3 of G⇑X have the same (G,X)⇑type.

This equivalence relation induces a set of equivalence classes C1, C2, We can choose a
representative of each equivalence class.

Next, we define cluster vertex deletion number of a graph. One can observe that this is a
generalization of twin cover in dense graphs.

Definition 2.5.6. [34] The cluster vertex deletion number of a graph is the minimum num-
ber of its vertices whose deletion results in a disjoint union of complete graphs.

Figure 2.4: The red vertex form a cluster vertex deletion set of the given graph.

An example of a cluster vertex deletion set is given in Figure 2.4.

Next, we will define feedback vertex set and treedepth of a graph.

Definition 2.5.7. A feedback vertex set of a graph G is a set of vertices whose removal turns
G into a forest. The minimum size of a feedback vertex set in G is the feedback vertex set
number of G, denoted by fvs(G).

Figure 2.5: The red vertices form a feedaback vertex set of the given graph.

An example of a feedback vertex set is given in Figure 2.5.

37

A rooted forest is a disjoint union of rooted trees. Given a rooted forest F , its transitive
closure is a graph H in which V (H) contains all the nodes of the rooted forest, and E(H) con-
tain an edge between two vertices whenever those two vertices form an ancestor-descendant
pair in the forest F .

Definition 2.5.8. The treedepth of a graph G is the minimum height of a rooted forest F

whose transitive closure contains the graph G as a subgraph. It is denoted by td(G).

Example is given in figure 2.6.

Figure 2.6: The input graph is on the left and a corresponding rooted forest is on the right.

Next, we review the concept of a tree decomposition introduced by Robertson and Seymour
[116]. Treewidth is a measure of how “tree-like” the graph is.

Definition 2.5.9 (Robertson and Seymour [116]). A tree decomposition of a graph G =

(V,E) is a tree T together with a collection of subsets Xt (called bags) of V labeled by the
nodes t of T such that

⋃
t↗T Xt = V and (1) and (2) below hold:

1. For every edge (u, v) ↗ E(G), there is some t such that {u, v} ↑ Xt.

2. (Interpolation Property) If t is a node on the unique path in T from t1 to t2, then
Xt1 ↘Xt2 ↑ Xt.

Definition 2.5.10 (Robertson and Seymour [116]). The width of a tree decomposition is the
maximum value of |Xt|⇑1 taken over all the nodes t of the tree T of the decomposition. The
treewidth tw(G) of a graph G is the minimum width among all possible tree decompositions
of G.

Example 1. Figure 2.7 gives an example of a tree decomposition of width 2.

Definition 2.5.11. If the tree T of a tree decomposition is a path, then we say that the tree
decomposition is a path decomposition. The pathwidth pw(G) of a graph G is the minimum
width among all possible path decompositions of G.

38

b

a c

d

h

e

f

g

b, d

a, b, d c, b, d

c, d, h

c, h, g h, e

c, g, f

Figure 2.7: Example of a tree decomposition of width 2

Finally, we define cliquewidth of a graph.

Definition 2.5.12. The clique-width of a graph G, denoted by cw(G), is the minimum
number of labels needed to construct G using the following four operations:

1. Create a new graph with a single vertex v with label i (written i(v)).

2. Take the disjoint union of two labelled graphs G1 and G2 (written G1 ⊕G2).

3. Add an edge between every vertex with label i and every vertex with label j, i →= j

(written ϱi,j).

4. Relabel every vertex with label i to have label j (written ςi↘j).

We say that a construction of a graph G with the four operations is a c-expression if it uses at
most c labels. Thus the clique-width of G is the minimum c for which G has a c-expression.
A c-expression is a rooted binary tree T such that

1. each leaf has label i for some i ↗ {1, . . . , c},

2. each non-leaf node with two children has label ⊕, and

3. each non-leaf node with only one child has label ςi↘j or ϱi,j (i, j ↗ {1, . . . , c}, i →= j).

39

Example 2. Consider the graph Pn, which is simply a path on n vertices. Note that
cw(P1) = 1 and cw(P2) = cw(P3) = 2. Now consider a path on four vertices v1, v2, v3, v4, in
that order. Then this path can be constructed using the four operations (using only three
labels) as follows:

ϱ3,2(3(v4)⊕ ς3↘2(ς2↘1(ϱ3,2(3(v3)⊕ ϱ2,1(2(v2)⊕ 1(v1)))))).

Figure 2.8 shows a 3-expression of P4. This construction can readily be generalized to longer

ϱ3,2

⊕

3(v4) ς3↘2

ς2↘1

ϱ3,2

⊕

3(v3)ϱ2,1

⊕

1(v1) 2(v2)

Figure 2.8: A 3-expression of P4.

paths for n ↓ 5. It’s easy to see that cw(Pn) ≃ 3 for all n ↓ 4.

A c-expression represents the graph represented by its root. A c-expression of an n-vertex
graph G has O(n) vertices. A c-expression of a graph is irredundant if for each edge {u, v},
there is exactly one node ϱi,j that adds the edge between u and v. It is known that a c-
expression of a graph can be transformed into an irredundant one with O(n) nodes in linear
time [30]. From here on, we assume we are given an irredundant c-expression.

Computing the clique-width and a corresponding c-expression of a graph is NP-hard. For
c ≃ 3, we can compute a c-expression of a graph of clique-width at most c in O(n2m) time,
where n and m are the number of vertices and edges, respectively. For fixed c ↓ 4, it is
not known whether one can compute the clique-width and a corresponding c-expression of
a graph in polynomial time. On the other hand, it is known that for any fixed c, one can
compute a (2c+1

⇑1)-expression of a graph of clique-width c in O(n3) time. For more details,
see [86].

40

Figure 2.9 shows how these parameters are related to each other.

vc

nd tcvi

td

fvspw
mw cvd

tw

cw

Figure 2.9: Relationship between vertex cover [vc] (see Definition 2.5.1), neighbourhood
diversity [nd] (see Definition 2.5.4), twin cover [tc] (see Definition 2.5.3), modular width
[mw] (see [107]), cluster vertex deletion number [cvd] (see Definition 2.5.6), feedback vertex
set [fvs] (see Definition 2.5.7), pathwidth [pw] (see Definition 2.5.11), treewidth [tw] (see
Definition 2.5.10) and clique width [cw] (see Definition 2.5.12). Note that A ↔ B means
that there exists a function f such that for all graphs, f(A(G)) ↓ B(G).

41

42

Chapter 3

Harmless Set

In this chapter, we study the Harmless Set problem from a parameterized complexity
perspective. Given a graph G = (V,E), a threshold function t : V ↔ N and an integer k,
we study Harmless Set, where the goal is to find a subset of vertices S ↑ V of size
at least k such that every vertex v ↗ V has fewer than t(v) neighbours in S. On the
positive side, we obtain fixed-parameter algorithms for the problem when parameterized by
the neighbourhood diversity, the twin-cover number and the vertex integrity of the input
graph. We complement two of these results from the negative side. On dense graphs, we
show that the problem is W[1]-hard parameterized by cluster vertex deletion number – a
natural generalization of the twin-cover number. We show that the problem is W[1]-hard
parameterized by a wide range of fairly restrictive structural parameters such as the feedback
vertex set number, pathwidth, and treedepth – a natural generalization of the vertex integrity.
We thereby resolve one open question stated by Bazgan and Chopin (Discrete Optimization,
2014) concerning the complexity of Harmless Set parameterized by the treewidth of the
input graph. We also show that Harmless Set for a special case where each vertex has
the threshold set to half of its degree (the so-called Majority Harmless Set problem) is
W[1]-hard when parameterized by the treewidth of the input graph. Given a graph G and
an irredundant c-expression of G, we prove that Harmless Set can be solved in XP-time
when parameterized by clique-width. This chapter is based on the papers [65, 68].

43

3.1 FPT via Integer Linear Programming

In this section, we study the parameterized complexity of Harmless Set with respect to
various structural parameters. Drange, Muzi and Reidl [38] proved that Harmless Set
is fixed-parameter tractable when parameterized by the vertex cover number of the input
graph. We present FPT algorithms for Harmless Set parameterized by the neighbour-
hood diversity, twin-cover number, and vertex integrity of the input graph. Studying the
parameterized complexity of Harmless Set with respect to these parameters improves the
understanding of the boundary between tractable and intractable parameterizations. Our
algorithms use an integer linear programming (ILP) subroutine. ILP is a well known frame-
work for formulating problems and a powerful tool for the development of fixed-parameter
algorithms for optimization problems.

Suppose A and B are two parameterized problems. It is known that if A fpt-reduces to
B and B is fixed-parameter tractable, then A is fixed-parameter tractable as well. In this
section, we shall let B be the classical Integer Linear Programming (ILP) problem, and show
how FPT algorithms can be designed for Harmless Set, via the ILP method. Given any
problem P with parameter k, we must try to reformulate it as an ILP problem with at most
f(k) variables for some computable function f in order to apply the ILP technique. This is
the most crucial requirement for this technique.

3.1.1 Harmless Set Parameterized by Neighbourhood Diversity

Let us first recall the definition of neighbourhood diversity. Two di!erent vertices u, v are
called true twins if N [u] = N [v]. Likewise, u, v are called false twins if N(u) = N(v). In
general, u, v are called twins if they are either true twins or false twins. If they are twins,
we say that they have the same neighbourhood type.

Definition 3.1.1 (Lampis [96]). has neighbourhood diversity at most d, if there exists a
partition of V into at most d sets (we call these sets type classes) such that all the vertices
in each set have the same neighbourhood type.

The following result explains why the vertices with low thresholds are included in the solution.

44

Lemma 3.1.1. Let Ci be a type class and (v1, v2, . . . , vni) be an increasing ordering of V (Ci)

according to threshold values, that is, t(v1) ≃ t(v2) ≃ · · · ≃ t(vni). Let S be a maximum size
harmless set in G and Si = Ci ↘S. Then S ↓ = (S \Si)⇔ {v1, v2, . . . , v|Si|} is also a maximum
size harmless set in G.

Proof. Clearly, |S| = |S ↓
|. To show S ↓ is a harmless set, it is enough to show that each vertex

v in Ci has fewer than t(v) neighbours in S ↓. Recall that Ci is either an independent or a
clique type class and every vertex in Ci has the same neighbourhood in G. We consider two
cases:

Case 1: Suppose that v ↗ {v1, . . . , v|Si|}, that is, v has a smaller threshold value. If v ↗ S,
then it will remain in S ↓. Therefore dS→(v) = dS(v) < t(v). If v /↗ S, then to obtain S ↓ from
S we remove a vertex v↓ ↗ S \ {v1, . . . , v|Si|} having a larger threshold value t(v↓) ↓ t(v)

from S and include v in S. Note that dS→(v) = dS(v) < t(v) if Ci is an independent type
class whereas dS→(v) = dS(v)⇑ 1 < t(v) if Ci is a clique type class. Therefore v satisfies the
threshold condition.

S S→

Si

Ci Ci

3
4

6
v→

4

v
3

6

4

4

v→

v

Figure 3.1: Illustration of Case 1 where v is a vertex with small threshold value but outside S.
Here Ci is a clique type class and Si = S ↘Ci is shown in yellow. Clearly dS→(v) = dS(v)⇑ 1.
If v satisfies the threshold condition for S then it also satisfies the threshold condition for
S ↓.

Case 2: Suppose that v ↗ {v|Si|+1, . . . , vni}, that is, v has a larger threshold value. If v →↗ S

then v →↗ S ↓, therefore dS→(v) = dS(v) < t(v). If v ↗ S then, to obtain S ↓ from S we remove
v from S and include a vertex v↓ ↗ {v1, v2, . . . , v|Si|}\S having a smaller threshold value
t(v↓) ≃ t(v). If Ci is an independent type class then dS→(v) = dS(v) < t(v). If Ci is a clique
type class, then we have dS(v↓) = dS(v) + 1 and also dS→(v) = dS(v) + 1. It implies that
dS→(v) = dS(v) + 1 = dS(v↓) < t(v↓) ≃ t(v). That is, v has fewer than t(v) neighbours in S ↓.
Therefore, S ↓ is a harmless set.

45

S S→

Si

Ci Ci

3
4

8
v

4

v→
3

8

4

4

v

v→

Figure 3.2: Illustration of Case 2 where v is a vertex with a larger threshold value but inside
S. Here Ci is a clique type class and Si = S ↘ Ci is shown in yellow.

In this section, we prove the following theorem:

Theorem 3.1.2. Harmless Set can be solved in time dO(d)
· nO(1) where d is the neigh-

bourhood diversity of the input graph.

Given a graph G = (V,E) with neighbourhood diversity nd(G) ≃ d, we first find a parti-
tion of the vertices into at most d type classes C1, . . . , Cd. Let C be the set of all clique type
classes and I be the set of all independent type classes. The case where some Ci are single-
tons can be considered as cliques or independent sets. For simplicity, we consider singleton
type classes as independent sets.

ILP formulation: Our goal here is to find a largest harmless set S of G. For each Ci, we
associate a variable xi that indicates |S ↘ Ci| = xi. As the vertices in Ci have the same
neighbourhood, the variables xi determine S uniquely, up to isomorphism. The threshold
t(Ci) of a type class Ci is defined to be

t(Ci) = min{t(v) | v ↗ Ci}.

Let φ(Ci) be the number of vertices in Ci with threshold value t(Ci). We define C< = {Ci ↗

C | xi < φ(Ci)} and C≃ = {Ci ↗ C | xi ↓ φ(Ci)}. We next guess if a clique type class
Ci belongs to C< or C≃. There are at most 2d guesses as each clique type class Ci has two
options: either it is in C< or in C≃. We reduce the problem of finding a maximum harmless
set to at most 2d integer linear programming problems with d variables. Since integer linear
programming is fixed-parameter tractable when parameterized by the number of variables
[99], we conclude that our problem is FPT when parameterized by the neighbourhood di-
versity d. We consider the following cases based on whether Ci is in I, C< or C≃. See Figure
3.3 for an illustration.

46

Case 1: Assume that Ci is in I.

Lemma 3.1.3. Let Ci be an independent type class. Let u0 be a vertex in Ci with thresh-
old t(Ci). Then every vertex u in Ci has fewer than t(u) neighbours in S if and only if u0

has fewer than t(Ci) neighbours in S.

Proof. Suppose each u ↗ Ci has fewer than t(u) neighbours in S. Then obviously u0 ↗ Ci

has fewer than t(u0) = t(Ci) neighbours in S. Conversely, suppose u0 has fewer than t(Ci)

neighbours in S. Let u be an arbitrary vertex of Ci. As u and u0 are two vertices in the
same type class Ci, we have dS(u) = dS(u0). Moreover, for each u ↗ Ci, we have t(Ci) ≃ t(u)

by definition of t(Ci). Therefore, dS(u) = dS(u0) < t(Ci) ≃ t(u).

Note that dS(u0) =
∑

Cj↗NH(Ci)

xj. By Lemma 3.1.3, every vertex u in Ci has fewer than t(u)

neighbours in S if and only if ∑

Cj↗NH(Ci)

xj < t(Ci).

(i) (ii) (iii)

8 9

10

8

u0

8

8
u0 9

10

88

8 9

10

8
8
u0

Figure 3.3: (i) Case 1: An independent type class Ci with t(Ci) = 8 and xi = 3. (ii) Case
2: A clique type class Ci in C< with t(Ci) = 8, φ(Ci) = 3 and xi = 2 < φ(Ci). (iii) Case 3:
A clique type class Ci in C≃ with t(Ci) = 8, φ(Ci) = 3 and xi = 4 ↓ φ(Ci); S ↘ Ci is shown
in yellow.

Case 2: Assume that Ci is in C<. That is, Ci is a clique type class and xi < φ(Ci).
Assumption xi < φ(Ci) ensures that there exists at least one vertex in Sc

↘Ci with threshold
t(Ci).

Lemma 3.1.4. Let Ci ↗ C< and u0 be a vertex in Sc
↘Ci with threshold t(Ci). Then every

vertex u in Ci has fewer than t(u) neighbours in S if and only if u0 has fewer than t(Ci)

neighbours in S.

47

Proof. Suppose every vertex u in Ci has fewer than t(u) neighbours in S. Then obviously
u0 has fewer than t(u0) = t(Ci) neighbours in S. Conversely, suppose u0 has fewer than
t(Ci) neighbours in S. Let u be an arbitrary vertex of Ci. If u ↗ S ↘ Ci, then Lemma 3.1.1
and the condition xi < φ(Ci) ensure u has threshold t(Ci). Note that dS(u) = dS(u0)⇑ 1 <

t(Ci) ⇑ 1 < t(Ci) = t(u). If u ↗ Sc
↘ Ci, then we have dS(u) = dS(u0) < t(Ci) ≃ t(u).

Therefore, every vertex in Ci satisfies the threshold condition.

Note that dS(u0) = xi +
∑

Cj↗NH(Ci)

xj. By Lemma 3.1.4, every vertex u in Ci has fewer than

t(u) neighbours in S if and only if

xi +
∑

Cj↗NH(Ci)

xj < t(Ci).

Case 3: Assume that Ci is in C≃. That is, Ci is a clique type class and xi ↓ φ(Ci). By
Lemma 3.1.1, all the vertices with threshold t(Ci) are inside S.

Lemma 3.1.5. Let Ci ↗ C≃ and u0 be a vertex in S ↘ Ci with threshold t(Ci). Then every
vertex u in Ci has fewer than t(u) neighbours in S if and only if u0 has fewer than t(Ci)

neighbours in S.

Proof. Suppose every vertex u in Ci has fewer than t(u) neighbours in S. Then obviously u0

has fewer than t(u0) = t(Ci) neighbours in S. Conversely, suppose u0 has fewer than t(Ci)

neighbours in S. Let u be an arbitrary vertex of Ci. If u ↗ S ↘ Ci, then dS(u) = dS(u0) <

t(Ci) ≃ t(u). Suppose u ↗ Sc
↘ Ci. Note that such an element u may not always exist,

it is possible that all vertices in Ci are included in S (that is, xi = |Ci|). Let us assume
that such u exists. Since u is outside the solution and by Lemma 3.1.1, all the vertices
with threshold t(Ci) are inside the solution, we get t(u) ↓ t(Ci) + 1. It is easy to note that
dS(u) = dS(u0) + 1 < t(Ci) + 1 ≃ t(u).

Here dS(u0) = (xi ⇑ 1) +
∑

Cj↗NH(Ci)

xj. By Lemma 3.1.5, every vertex u in Ci has fewer than

t(u) neighbours in S if and only if

(xi ⇑ 1) +
∑

Cj↗NH(Ci)

xj < t(Ci).

48

The next lemma follows readily from the three lemmas above and the definition of the
sequence (x1, x2, . . . , xd) and harmless set.

Lemma 3.1.6. Let G = (V,E) be a graph such that V can be partitioned into at most d

type classes C1, . . . , Cd. The sequence (x1, x2, . . . , xd) represents a harmless set S of G if and
only if (x1, x2, . . . , xd) satisfies

1. xi ↗ {0, 1, . . . , |Ci|} for i = 1, 2, . . . , d

2.
∑

Cj↗NH(Ci)

xj < t(Ci) for all Ci ↗ I.

3. xi +
∑

Cj↗NH(Ci)

xj < t(Ci) and xi < φ(Ci) for all Ci ↗ C<

4. (xi ⇑ 1) +
∑

Cj↗NH(Ci)

xj < t(Ci) and φ(Ci) ≃ xi ≃ |Ci| for all Ci ↗ C≃.

In the following, we present an ILP formulation for Harmless Set parameterized by neigh-
bourhood diversity for a given guess:

Maximize
∑

Ci

xi

Subject to

xi ↗ {0, 1, . . . , |Ci|} for i = 1, 2, . . . , d
∑

Cj↗NH(Ci)

xj < t(Ci), for all Ci ↗ I,

xi +
∑

Cj↗NH(Ci)

xj < t(Ci) and xi < φ(Ci) for all Ci ↗ C<

(xi ⇑ 1) +
∑

Cj↗NH(Ci)

xj < t(Ci) and φ(Ci) ≃ xi ≃ |Ci| for all Ci ↗ C≃

Example 3. Consider a graph composed of a clique C of size 5 plus a vertex u adjacent to
a vertex v of the clique as shown in Figure 3.4. We set unanimity thresholds, so t(u) = 1,
t(v) = 5 and t(x) = 4 for all x in C \ {v}. The type classes are C1 = {u}, C2 = {v} and

49

4

4

4

4

5

v

1

u

Figure 3.4: The graph in Example 3.

C3 = C \ {v}. Here φ(C1) = 1, φ(C2) = 1 and φ(C3) = |C3| = 4. We guess C1, C2 ↗ I and
C3 ↗ C≃. Then we end up with the following ILP:

max x1 + x2 + x3

s.t. x2 < 1

x1 + x3 < 5

x3 ⇑ 1 + x2 < 4 and x3 = 4

Note that x2 < 1 implies that x2 = 0; x1 + x3 < 5 and x3 = 4 imply x1 = 0. It is easy to see
that x1 = x2 = 0, x3 = 4 is an optimal solution and represent a valid harmless set for the
graph.

Running time: In our formulation for Harmless Set, we have at most d variables.
The value of the objective function is bounded by n and the value of any variable in the
integer linear programming is also bounded by n. The constraints can be represented using
O(d2 log n) bits. There are at most 2d guesses, and due to Lemma 2.3.2, each ILP formula
for a given guess can be solved in time dO(d)

· nO(1). Thus Theorem 6.1.1 holds.

3.1.2 Harmless Set Parameterized by Twin Cover

In this section, we present an FPT algorithm for Harmless Set parameterized by twin-
cover. That is, we prove the following theorem:

Theorem 3.1.7. Harmless Set can be solved in time 2O(k2k)
· nO(1) where k is the twin-

cover of the input graph.

Outline of the algorithm. Given an n-vertex graph G with tc(G) ≃ k, we first find a twin
cover X of size at most k. We next guess SX = S ↘ X where S is a largest harmless set

50

in G. Define Sc = V \ S. There are at most 2k candidates for SX as each member of X
has two options: either in S ↘ X or Sc

↘ X. Finally we reduce the problem of finding the
rest of S to an integer linear programming (ILP) optimization with at most 2k variables.
Again, using ILP optimization which is fixed-parameter tractable when parameterized by
the number of variables [47], we can conclude that our problem is fixed-parameter tractable
when parameterized by the twin-cover number.

Characterizations of a harmless set S with a twin-cover X. Let G = (V,E) be a graph and
X ↑ V be a twin-cover of G. Then C = G ⇑ X is a collection of disjoint cliques, that is
C = {C1, C2, . . .}. For the graph in Figure 3.5, we have X = {v1, v2} and the disjoint cliques
are C1 = {v3, v4}, C2 = {v5} and C3 = {v6, v7, v8}. The threshold t(Ci) of a clique Ci is
defined similar to the previous section to be

t(Ci) = min{t(v) | v ↗ Ci}.

Let φ(Ci) be the number of vertices in Ci with threshold value t(Ci). It may be observed that
from a clique it is always better to include the vertices with lower thresholds in the solution.
If a and b are true twins with t(a) < t(b) then any solution S containing b but not a can
be replaced with a solution containing a but not b. If a is in the solution but not b, then a

has one fewer neighbour in the solution compared to b. The fact that a has a lower degree
in the solution helps a to satisfy the required threshold condition as t(a) < t(b). We define
C> = {C ↗ C : φ(C) > t(C) ⇑ |NSX (C)|} and C⇐ = {C ↗ C : φ(C) ≃ t(C) ⇑ |NSX (C)|}

where NSX (C) denotes the neighbourhood of C in SX , that is, the set of all vertices in SX

adjacent to all elements of C. A clique C ↗ C is said to be S-good if every vertex u ↗ C has
fewer than t(u) neighbours in S.

Lemma 3.1.8. Assume that C is in C>. Then C is S-good if and only if |S ↘ C| ≃

t(C)⇑ |NSX (C)|⇑ 1.

Proof. Suppose C is S-good and suppose for the sake of contradiction, that |S ↘ C| ↓

t(C) ⇑ |NSX (C)|. If |S ↘ C| = t(C) ⇑ |NSX (C)| then |S ↘ C| < φ(C). This implies there
exists a vertex u0 ↗ Sc

↘ C with t(u0) = t(C). Note that dS(u0) = |S ↘ C| + |NSX (C)| =

t(C) = t(u0), a contradiction to the assumption that C is S-good. Let us assume that
|S ↘ C| ↓ t(C) ⇑ |NSX (C)| + 1. Let u be an arbitrary vertex in C. Then dS(u) ↓ |S ↘

51

C| ⇑ 1 + |NSX (C)| ↓ t(C) ↓ t(u), which is again a contradiction. This proves the forward
direction.
On the other hand, let us assume that |S↘C| ≃ t(C)⇑|NSX (C)|⇑1. It implies that |S↘C| <

φ(C) and this ensures that there exists at least one vertex u0 in Sc
↘C with threshold t(C).

By Lemma 3.1.4, it is enough to check whether u0 ↗ Sc
↘C with threshold t(C) satisfies the

threshold condition. Clearly, dS(u0) = |S↘C|+|NSX (C)| ≃ t(C)⇑|NSX (C)|⇑1+|NSX (C)| =

t(C)⇑ 1 satisfies the threshold condition. Therefore, C is S-good.

Lemma 3.1.9. Assume that C is in C⇐. Then C is S-good if and only if |S ↘ C| ≃

t(C)⇑ |NSX (C)|.

Proof. Suppose C is S-good. Let u0 ↗ C with threshold t(u0) = t(C). Then u0 also has fewer
than t(u0) neighbours in S, that is, dS(u0) ≃ |S ↘ C| +NSX (C) < t(u0) = t(C). Therefore,
we get |S ↘ C| ≃ t(C)⇑ |NSX (C)|.

On the other hand, first suppose that |S ↘ C| = t(C) ⇑ |NSX (C)|. Therefore, we can
say that |S ↘ C| ↓ φ(C). It means that all the vertices with least threshold are inside the
solution. Let u be an arbitrary vertex in S ↘ C with threshold t(u). By Lemma 3.1.5, it
is enough to check whether u satisfies the threshold condition. It is easy to observe that
dS(u) = |S ↘ C|⇑ 1 + |NSX (C)| = t(C)⇑ 1 < t(C) = t(u), that is, u satisfies the threshold
condition. Now suppose |S ↘ C| = t(C) ⇑ |NSX (C)| ⇑ ↼ for some integer ↼ ↓ 1. Take an
arbitrary vertex u ↗ C. We have dS(u) ≃ |S ↘ C| + |NSX (C)| = t(C) ⇑ ↼ < t(C) ≃ t(u).
This implies that C is S-good.

We partition the family C of cliques into twin classes C1, C2, . . . , Ct, where t ≃ 2k. Two cliques
Ci and Cj are in the same twin class if and only if they have the same neighbours in X, that
is, NX(Ci) = NX(Cj). For example, the graph G in Figure 3.5 has two twin classes C1 and
C2 where C1 consists of cliques C1 = {v3, v4}, C2 = {v5} and C2 consists of C3 = {v6, v7, v8}.
For each twin class Ci, we associate a variable xi that indicates the number of vertices from
Ci that are in the solution S, that is, xi =

∑
C↗Ci

|C ↘ S|. The variables xi determine S. The

objective is to maximize
t∑

i=1
xi under the conditions

0 ≃ xi ≃

∑

C↗C>⇒Ci

(
t(C)⇑ |NSX (C)|⇑ 1

)
+

∑

C↗C↑⇒Ci

(
t(C)⇑ |NSX (C)|

)

52

and the additional conditions described below. The above constraints make sure that the
vertices of twin class Ci satisfy the threshold condition. Next, we add k more constraints
to make sure that all the vertices in X satisfy threshold condition. Let u ↗ X be an ar-
bitrary vertex. We need dS(u) < t(u). Therefore, for each u ↗ X, we add the constraint
dS(u) = dSX (u) +

∑
Ci : N(u)⇒C ⇑=⇓ ⇔ C↗Ci

xi < t(u). In the following, we present an ILP formula-

tion for Harmless Set for a given SX :

Maximize
t∑

i=1

xi, t ≃ 2k

Subject to

0 ≃ xi ≃

∑

C↗C>⇒Ci

(
t(C)⇑ |NSX (C)|⇑ 1

)
+

∑

C↗C↑⇒Ci

(
t(C)⇑ |NSX (C)|

)
∈Ci

dS(u) = dSX (u) +
∑

Ci : N(u)⇒C ⇑=⇓ ⇔ C↗Ci

xi < t(u) ∈u ↗ X

Let (x1, x2, . . . , xt) be an optimal solution of ILP for a given SX where xi is the number
of vertices from the twin class Ci that are in S. In order to obtain S, we need to choose
xi vertices from the cliques in Ci for all i. We arbitrarily choose at most t(C) ⇑ |NSX (C)|

vertices from the clique C if C ↗ C⇐ ↘ Ci and at most t(C)⇑ |NSX (C)|⇑ 1 vertices from the
clique C if C ↗ C> ↘ Ci so that the total number of vertices selected from Ci is xi. Note that
such a selection is possible because of the constraint on xi in the ILP.

Running time: In our ILP formulation for Harmless Set parameterized by twin-cover,
we have at most 2k variables. The value of the objective function is bounded by n and the
value of any variable in the integer linear programming is also bounded by n. The constraints
can be represented using O(2k log n) bits. Lemma 2.3.2 implies that we can solve the problem
for a given SX in time 2O(k2k)

· nO(1). As there are at most 2k candidates for SX , Theorem
3.1.7 holds.

Example 4. Consider the graph shown in Figure 3.5. We set unanimity thresholds, so
t(v5) = 2, t(v2) = 6, and t(v1) = t(v3) = t(v4) = t(v6) = t(v7) = t(v8) = 3. Here X =

53

{v1, v2} is a minimum size twin-cover and G \ X is the collection of disjoint cliques C1 =

{v3, v4}, C2 = {v5} and C3 = {v6, v7, v8}. These three cliques are partitioned into two
twin classes C1 and C2 where C1 consists of cliques C1, C2 and C2 consists of C3. We have
t(C1) = 3, t(C2) = 2, t(C3) = 3 and φ(C1) = 2, φ(C2) = 1, φ(C3) = 3. Take SX = {v1},

v2
v1

v4

v3

v5

v8

v6

v7

Figure 3.5: The graph in Example 4.

that is, v1 is in the solution. Given SX = {v1}, we observe that C1, C2, C2 are in C⇐ and we
end up with the following ILP:

max x1 + x2

such that 0 ≃ x1 ≃ (t(C1)⇑ |NSX (C1)|) + (t(C2)⇑ |NSX (C2)|) = 3 for C1

0 ≃ x2 ≃ (t(C3)⇑ |NSX (C3)|) = 3 for C2

dS(u1) = x1 < 3

dS(u2) = x1 + x2 < 6

It is easy to see that x1 = 2, x2 = 3 is an optimal solution. As x1 = 2 we randomly choose
two vertices say v3 and v5 from C1 and as x2 = 3 we choose three vertices v6, v7, v8 from
C2. Thus x1 = 2, x2 = 3 represent a valid harmless set {v1, v3, v5, v6, v7, v8} of size 6 for the
graph. Similarly for SX = {v2} and SX = ↖, we get valid harmless sets of size 5. It may be
noted that SX = {v1, v2} is not a valid choice as v5 does not satisfy the threshold condition
if both v1 and v2 are in the solution. Therefore G has a maximum harmless set of size 6.

3.1.3 Harmless Set Parameterized by Vertex Integrity

In this section, we present an FPT algorithm for Harmless Set parameterized by vertex
integrity. This vulnerability measure was introduced by Barefoot et al. [7] in 1987. For an
overview of structural results on vertex integrity, we refer the reader to a survey on vertex
integrity by Bagga et al. [6].

54

Theorem 3.1.10. Harmless Set can be solved in time 22
O(k2)

· nO(1) where k is the vertex
integrity of the input graph.

Outline of the algorithm. Let X be a k-vi-set of G. Such a set can be found in O(kk+1n)

time [37]. We next guess SX = S ↘X where S is a largest harmless set in G. There are at
most 2k candidates for SX as each member of X has two options: either in S ↘X or Sc

↘X.
Finally we reduce the problem of finding the rest of S to an integer linear programming
(ILP) optimization with number of variables depend only on k.

Characterizations of a harmless set S with a k-vi-set X. Let G = (V,E) be a graph and
X ↑ V be a k-vi-set of G. Then C = G ⇑ X is a collection of disjoint components, that
is C = {C1, C2, . . .} such that |X| + |Ci| ≃ k for all i. We know C can be partitioned into
equivalent classes C1, C2, Let Cl be a representative of the equivalence class Cl and let
v ↗ Cl. Note that v has neighbours only in X ⇔ V (Cl), that is, N(v) ↑ X ⇔ V (Cl). Suppose
the intersection of the solution S with X is SX = S ↘ X and the intersection of S with
the component Cl is A = S ↘ Cl ↑ Cl. Therefore v ↗ Cl satisfies the threshold condition
if dS(v) = |NSX (v)| + |NA(v)| < t(v). We say A ↑ Cl is a valid selection for Cl if every
vertex of Cl satisfies the threshold condition when the vertices of A⇔SX are in the solution.
Similarly, we say A ↑ Cl is a valid selection for C ↗ Cl, C →= Cl, if every vertex of C satisfies
the threshold condition when the vertices of g(A) ⇔ SX are in the solution, where g is an
isomorphism from G[X ⇔ V (Cl)] to G[X ⇔ V (C)] that fixes X. It is important to note that
given two connected component C1 and C2 from the same equivalence class Cl, a subset
A ↑ Cl might be valid selection for one connected component but may not be valid for the
other connected component as the threshold values of vertices in C1 and C2 can di!er.

Given SX = S ↘X, for every equivalence class Cl, we define the set of valid selection

VS(l) =
{
A ↑ Cl | A is a valid selection for some C ↗ Cl

}
.

We denote by ς(A, l) the number of components in Cl where A is a valid selection. Similarly,
we denote by ς(Ai1 , Ai2 , . . . , Air , l) the number of components in Cl where Ai1 , Ai2 , . . . , Air

are valid selection. Note that for each component there may be more than one valid se-
lections. But while forming the harmless set we can pick at most one valid selection for
every component. Observe that as long as we are taking exactly one valid selection for each

55

SX

B
A g(A)

C

v1 v2 v3 v4 v5
X

a

1

b

2

c

3

C1

d

3

e

3

C2

f

3

g

2

C3

h

4

i

3

C4

Figure 3.6: The components C2 and C3 of G ⇑ X have the same (G,X)⇑type. That is,
C2 and C3 are in the same equivalence class. Here the four components are partitioned
into three equivalent classes C1 = {C1}, C2 = {C2, C3} and C3 = {C4}. Note that given
SX = {v3, v4, v5}, A = {d} is a valid selection for C2 but g(A) = {f} is not a valid selection
for C3, thus ς(A, C2) = 1; B is not a valid selection for C1; C is a valid selection for C4.

connected component, we are guaranteed that all the vertices in G⇑X satisfy the threshold
conditions. We need to add constraints in ILP separately to make sure that every vertex
of X also satisfies the threshold condition. Let x(A, l) denote the number of components in
Cl for which A has been picked as a valid selection in the final solution. They satisfy the
following properties:

x(Ai, l) ≃ ς(Ai, l) for all Ai ↗ VS(l)

x(Ai, l) + x(Aj, l) ≃ ς(Ai, l) + ς(Aj, l)⇑ ς(Ai, Aj, l) for all Ai, Aj ↗ VS(l)

...
∑

Ai↗VS(l)

x(Ai, l) = |Cl|

Example 5. Suppose the equivalent class Cl has three components C1, C2, C3. Suppose
A1, A2, A3 are valid selections for the component C1; A1, A3 are valid selections for the
component C2, and A2, A3 are valid selections for the component C3. Clearly, ς(A1, l) =

2, ς(A2, l) = 2, ς(A3, l) = 3, ς(A1, A2, l) = 1, ς(A1, A3, l) = 2, ς(A2, A3, l) = 2 and
ς(A1, A2, A3, l) = 1. Then x(A1, l), x(A2, l) and x(A3, l) satisfy the following constraints:

1. x(A1, l) ≃ 2, x(A2, l) ≃ 2, x(A3, l) ≃ 3

2. x(A1, l) + x(A2, l) ≃ ς(A1, l) + ς(A2, l)⇑ ς(A1, A2, l) = 2 + 2⇑ 1 = 3

x(A1, l) + x(A3, l) ≃ ς(A1, l) + ς(A3, l)⇑ ς(A1, A3, l) = 2 + 3⇑ 2 = 3

56

x(A2, l) + x(A3, l) ≃ ς(A2, l) + ς(A3, l)⇑ ς(A2, A3, l) = 2 + 3⇑ 2 = 3

3. x(A1, l) + x(A2, l) + x(A3, l) = |Cl| = 3

Therefore the possible solutions are (x(A1, l), x(A2, l), x(A3, l)) = (0, 0, 3), (0, 1, 2), (0, 2, 1),
(1, 1, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0). Note that (0, 0, 3) indicates A3 is valid selection
in three components C1, C2 and C3; similarly (0, 1, 2) indicates A2 is a valid selection in one
component and A3 is a valid selection in two components.

In the following, we present an ILP formulation for Harmless Set for a given SX :

Maximize
∑

l

∑

A↗VS(l)

|A|▽ x(A, l)

Subject to

x(Ai, l) ≃ ς(Ai, l) ∈ l & ∈ Ai ↗ VS(l)

x(Ai, l) + x(Aj, l) ≃ ς(Ai, l) + ς(Aj, l)⇑ ς(Ai, Aj, l) ∈ l & ∈ Ai, Aj ↗ VS(l)

...
∑

Ai↗VS(l)

x(Ai, l) = |Cl| ∈ l

∑

l

∑

A↗VS(l)

|N(u) ↘ A|▽ x(A, l) < t(u) ∈ u ↗ X

Running time: In our ILP formulation for Harmless Set parameterized by vertex in-
tegrity, the number of variables is bounded by 2O(k2). The reason is this. The number of
equivalence classes is bounded by 2O(k2) as each component of G⇑X has at most k vertices
and hence at most O(k2) edges. Also for each equivalence class the number of valid inter-
sections is bounded by 2k as choosing a subset of vertices fixes the intersection. This implies
that the number of variables is at most 2O(k2). The value of the objective function is bounded
by n and the value of any variable in the integer linear programming is also bounded by n.
The constraints can be represented using 2O(k2)

· log n bits. Lemma 2.3.2 implies that we can
solve the problem for a given SX in time 22

O(k2)
· nO(1). There are at most 2k candidates for

SX , thus Theorem 3.1.10 holds.

57

3.2 W[1]-Hardness results

3.2.1 Harmless Set Parameterized by Treewidth

Bazgan and Chopin [10] proved that Harmless Set is FPT when parameterized by the
combined parameters treewidth and solution size. However, it remains open whether the
problem might belong to FPT when parameterized only by the treewidth of the input graph.
In this section we resolve this open problem by showing that Harmless Set is indeed W[1]-
hard when parameterized by treewidth alone, even when restricted to bipartite graphs. This
result is also proved simultaneously and independently by Drange, Muzi and Reidl [38]. Our
proof is very di!erent from their proof. First, we show that Harmless Set is W[1]-hard
parameterized by a vertex deletion set to trees of height at most three, that is, a subset D

of the vertices of the graph such that every component in the graph, after removing D, is
a tree of height at most three. Clearly trees of height at most three are trivially acyclic.
It is easy to verify that such trees have pathwidth [93] at most three and hence treewidth
at most three, which implies that Harmless Set is W[1]-hard when parameterized by the
treewidth of the input graph.

We show our hardness result for Harmless Set using reduction from Multidimensional
Relaxed Subset Sum (MRSS).

Multidimensional Subset Sum (MSS)
Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ↗ Nk for every i with
1 ≃ i ≃ n and a target vector g ↗ Nk.
Parameter: k

Question: Is there a subset S ↓
↑ S such that

∑
s↗S→

s = g?

We consider a variant of MSS that we require in our proofs. In the Multidimensional
Relaxed Subset Sum (MRSS) problem, an additional integer k↓ is given (which will be
part of the parameter) and we ask whether there is a subset S ↓

↑ S with |S ↓
| ≃ k↓ such that

∑
s↗S→

s ↓ g. This variant can be formalized as follows:

58

Multidimensional Relaxed Subset Sum (MRSS)
Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ↗ Nk for every i with
1 ≃ i ≃ n, a target vector g ↗ Nk and an integer k↓.
Parameter: k + k↓

Question: Is there a subset S ↓
↑ S with |S ↓

| ≃ k↓ such that
∑
s↗S→

s ↓ g?

It is known that MRSS is W[1]-hard when parameterized by the combined parameter k+k↓,
even if all integers in the input are given in unary [74]. In this section, we prove the following
theorem:

Theorem 3.2.1. Harmless Set is W[1]-hard when parameterized by the size of a vertex
deletion set into trees of height at most 3, even when restricted to bipartite graphs.

Proof. Let (k, k↓, S, g) be an instance of MRSS. From this we construct an instance (G, t, r) of
Harmless Set the following way. We introduce three types of vertices: necessary vertices,
forbidden vertices and normal vertices. We want to make sure that necessary vertices are
always inside every solution and forbidden vertices are always outside every solution; and a
normal vertex could be inside or outside the solution. For each vector s ↗ S, we introduce
a tree T s of height three. For s ↗ S, max(s) is the value of the largest coordinate of s and
max(S) is maximum of max(s) values. The tree T s consists of vertices V (T s) = As

⇔Bs
⇔{cs}

where the vertices in As = {as1, . . . , a
s
max(S)} and cs are normal vertices and the vertices in

Bs = {bs1, . . . , b
s
max(S)} are necessary vertices. Make cs adjacent to every vertex of Bs. We

also make asi adjacent to bsi for all 1 ≃ i ≃ max(s). Next, we create a set U = {u1, . . . , uk} of
k necessary vertices into G. For each 1 ≃ i ≃ k and s ↗ S, make ui adjacent to exactly s(i)

many vertices of As arbitrarily. We introduce three cycles C1, C2, C3 of length four where
V (C1) = {a1, a2, a3, a4}, V (C2) = {b1, b2, b3, b4} and V (C3) = {c1, c2, c3, c4}. We will prove
why the vertices of these three cycles are always outside every solution. We make a1 adjacent
to every vertex of

⋃
s↗S

As, make b1 adjacent to every vertex of
⋃
s↗S

Bs and make c1 adjacent

to every vertex of
⋃
s↗S

{cs}. This completes the construction of graph G. Note that G is a

bipartite graph with bipartition

V1 = U ⇔ {a1, a3, b2, b4, c1, c3} ⇔
⋃

s↗S

Bs

59

cs2

bs22bs21

as21as22

cs3

bs32bs31

as32as31

cs1

bs12bs11

as11 as12

a1

a3

a2 a4

C1

u1 u2

c1

c3

c4c2
b1

b3

b2 b4

C2 C3

Figure 3.7: The graph G in the proof of Theorem 3.2.1 constructed from MRSS instance
S = {(2, 1), (1, 1), (1, 2)}, g = (3, 3), k = 2, k↓ = 2. The set S ↓ = {(2, 1), (1, 2)} forms a
solution of MRSS instance and the set H = {u1, u2}⇔Bs1 ⇔Bs2 ⇔Bs3 ⇔As2 ⇔{cs1 , cs3} forms
a harmless set in G.

and
V2 = {a2, a4, b1, b3, c2, c4} ⇔

⋃

s↗S

As
⇔ {cs}.

We observe that if we delete the set U ⇔ {a1, a2, a3, a4, b1, b2, b3, b4, c1} of size k + 9 from G

then we are left with trees of height at most three. We define the threshold function as
follows:

t(u) =






d(u) if u ↗ {b1}
⋃
s↗S

As
⇔ {cs}

1 if u ↗ {a2, a3, a4, b2, b3, b4, c2, c3, c4}

2 if u ↗
⋃
s↗S

Bs

(n⇑ k↓) ·max(S) + 1 if u = a1

k↓ + 1 if u = c1
∑
s↗S

s(i)⇑ g(i) + 1 if u = ui for all 1 ≃ i ≃ k

We set r = k + n · max(S) + (n ⇑ k↓) · max(S) + k↓. It may be noted that the sets {cs}

60

and As play the role of complimentary sets, that is, only one of them can contribute to the
solution. If both {cs} and As contribute to the solution then a vertex in Bs will fail to satisfy
the threshold condition. Also we argue in the later part of the proof that either we have
{cs} ↑ H and As

↘H = ↖, or As
↑ H and {cs} ↘H = ↖ for all s ↗ S. The intention is that

for each solution S ↓
↑ S of instance I we have a solution candidate H in I ↓ such that s ↗ S ↓

entails {cs} ↑ H and As
↘H = ↖, and s /↗ S ↓ entails As

↑ H and {cs} ↘H = ↖.

Now we show that our reduction is correct. That is, we claim (k, k↓, S, g) is a yes instance
of MRSS if and only if (G, t, r) is a yes instance of Harmless Set. Towards showing the
forward direction, let S ↓

↑ S be such that |S ↓
| ≃ k↓ and

∑
s↗S→

s ↓ g. We claim that the set

H = U ⇔

⋃

s↗S

Bs
⇔

⋃

s↗S\S→

As
⇔

⋃

s↗S→

{cs}

is a harmless set of size at least r. It is easy to see that |H| ↓ r. Next, we show that all the
vertices in G satisfy the threshold condition. Let u be an arbitrary vertex of G. If u = ui is
an element of U , then d(ui) =

∑
s↗S

s(i) and
∑
s↗S→

s ↓ g. Hence, we get dH(ui) ≃
∑
s↗S

s(i)⇑g(i) <

t(ui) =
∑
s↗S

s(i)⇑ g(i) + 1. If u is an element of
⋃
s↗S

As, then dH(u) = d(u)⇑ 1 < d(u) = t(u)

as a1 →↗ H. Similarly, every vertex of
⋃
s↗S

{cs} satisfies the threshold condition as c1 →↗ H. For

each bsi ↗
⋃
s↗S

Bs, we have either asi or cs inside the solution and b1 →↗ H. Thus dH(bsi) = 1 <

2 = t(bsi). Hence all the vertices in
⋃
s↗S

Bs satisfy the threshold condition. As |S ↓
| ≃ k↓, we

see that c1 has at most k↓ neighbours inside H, thus dH(c1) = k↓ < k↓ + 1 = t(c1). For the
rest of the vertices in H it is easy to verify that the threshold condition is satisfied.

Towards showing the reverse direction of the claim, let H be a harmless set of size at least r
in G. We need the following three simple observations. First, H ↘ {ai, bi, ci | 1 ≃ i ≃ 4} = ↖.
Otherwise one of the vertices of {ai, bi, ci | 2 ≃ i ≃ 4} will fail to satisfy the threshold
condition. Therefore the vertices in {ai, bi, ci | 1 ≃ i ≃ 4} are forbidden vertices. Second,
for each s ↗ S, {cs} and As play the role of complimentary sets, that is, only one of them
can contribute to the solution H. If both {cs} and As contribute to H then some vertex
b in Bs will have two neighbours in the solution but t(b) = 2. Therefore b will not satisfy
the threshold condition, a contradiction to the assumption that H is a harmless set. Third,
the vertices of U and

⋃
s↗S

Bs are always inside every solution of size r. Because of the first

two observations, it would not be possible to get a harmless set of size at least r unless we

61

include all the vertices of U and
⋃
s↗S

Bs in the solution. Clearly U and
⋃
s↗S

Bs can contribute

to the solution at most k and n ·max(S) vertices respectively. We also observe that the set
⋃
s↗S

As can contribute at most (n⇑ k↓) ·max(S) vertices to the solution due to the fact that

t(a1) = (n⇑ k↓) ·max(S) + 1. Therefore, the only way to have a harmless set of size at least
r is that

⋃
s↗S

{cs} contributes at least k↓ elements to H. Since t(c1) = k↓ + 1, the set
⋃
s↗S

{cs}

can contribute at most k↓ elements to H. Therefore, the set
⋃
s↗S

{cs} contributes exactly k↓

elements to H. We define
S ↓ = {s ↗ S | cs ↗ H}.

From here, we see that H = U ⇔
⋃
s↗S

Bs
⋃

s↗S\S→

As
⋃
s↗S→

{cs}. Since each ui ↗ U satisfies the

threshold condition, we have dH(ui) =
∑

s↗S\S→

s(i) =
∑
s↗S

s(i) ⇑
∑
s↗S→

s(i) < t(ui) =
∑
s↗S

s(i) ⇑

g(i) + 1. This implies that
∑
s↗S→

s(i) ↓ g(i) for all 1 ≃ i ≃ k. Therefore (k, k↓, S, g) is a

yes-instance.

Clearly trees of height at most three are trivially acyclic. Moreover, it is easy to verify
that such trees have pathwidth [93] and treedepth [110] at most three, which implies:

Theorem 3.2.2. Harmless Set is W[1]-hard when parameterized by any of the following
parameters:

• the feedback vertex set number,

• the pathwidth and hence also treewidth of the input graph,

• the size of a minimum set of vertices whose deletion results in components of path-
width/treedepth at most three,

even when restricted to bipartite graphs.

3.2.2 Harmless Set Parameterized by Cluster Vertex Deletion Num-
ber

We prove that Harmless Set is W[1]-hard when parameterized by the cluster vertex dele-
tion number of the input graph. The cluster vertex deletion number of a graph is the mini-

62

mum number of its vertices whose deletion results in a disjoint union of complete graphs [34].
This generalizes the vertex cover number, provides an upper bound to the clique-width and
is related to the previously studied notion of the twin cover of the graph under consideration.
We show our hardness result for Harmless Set using reduction from Multidimensional
Relaxed Subset Sum (MRSS). We prove the following theorem:

Theorem 3.2.3. Harmless Set is W[1]-hard when parameterized by the cluster vertex
deletion number of the input graph.

Proof. Let (k, k↓, S, g) be an instance of MRSS. From this we construct an instance (G, t, r)

of Harmless Set the following way. We introduce two types of vertices: forbidden vertices
and normal vertices. We want to make sure that forbidden vertices are always outside every
solution and a normal vertex could be inside or outside the solution.

bs23bs22bs21

as23as22as21

bs32bs31 bs33

as32as31 as33

bs11 bs12 bs13

as11 as12 as13

x y
u1 u2

Figure 3.8: The graph G in the proof of Theorem 3.2.3 constructed from MRSS instance
S = {(2, 1), (1, 1), (1, 2)}, g = (3, 3), k = 2, k↓ = 2. The set S ↓ = {(2, 1), (1, 2)} forms a
solution of MRSS instance and the set H = Bs1 \ bs11 ⇔ Bs3 \ bs31 ⇔ As2 forms a harmless set
in G.

For each vector s ↗ S, we introduce a clique Cs. For s ↗ S, max(s) is the value
of the largest coordinate of s and max(S) is maximum of max(s) values. The clique Cs

consists of normal vertices V (Cs) = As
⇔ Bs where As = {as1, . . . , a

s
max(S)+1} and Bs =

{bs1, . . . , b
s
max(S)+1}. We introduce a set of k forbidden vertices U = {u1, . . . , uk} into G. For

each 1 ≃ i ≃ k and s ↗ S, make ui adjacent to exactly s(i) many vertices of As arbitrarily.
Finally, we add two forbidden vertices x and y; make x adjacent to every vertex of U and y.
This completes the construction of graph G. Note that deletion of the set U of size k from G

63

results in a disjoint union of complete graphs. We define the threshold function as follows:

t(u) =






1 if u ↗ {x, y}

max(S) + 1 if u ↗
⋃
s↗S

As

max(S) + 2 if u ↗
⋃
s↗S

Bs

∑
s↗S

s(i)⇑ g(i) + 1 if u = ui for all 1 ≃ i ≃ k

We set r = k↓
·max(S)+(n⇑k↓) · (max(S)+1). The vertices of U ⇔{x, y} are always outside

every solution as t(x) = t(y) = 1. Therefore the solution can take vertices only from n

cliques. We shall observe that |H ↘ (As
⇔Bs)| ≃ max(S)+1 and this bound can be achieved

if and only if H ↘ (As
⇔ Bs) = As.

Now we show that our reduction is correct. That is, we claim (k, k↓, S, g) is a yes-instance
of MRSS if and only if (G, t, r) is a yes-instance of Harmless Set. Towards showing the
forward direction, let S ↓

↑ S be such that |S ↓
| ≃ k↓ and

∑
s↗S→

s ↓ g. We claim that

H =
⋃

s↗S→

Bs
\{bs1} ⇔

⋃

s↗S\S→

As

is a harmless set in G of size at least r. Clearly |H| ↓ r. Next, we show that each
vertex of G satisfies the threshold condition. Since x and y have no neighbours in H and
t(x) = t(y) = 1, they satisfy the threshold condition. Since each vertex of

⋃
s↗S→

Cs has at

most max(S) neighbours in H and has threshold value max(S) + 1 or max(S) + 2, therefore
each vertex of

⋃
s↗S→

Cs satisfies the threshold condition. Every vertex of
⋃

s↗S\S→

As has exactly

max(S) neighbours in H and has threshold value max(S) + 1; every vertex of
⋃

s↗S\S→

Bs has

exactly max(S) + 1 neighbours in H and has threshold value max(S) + 2. Therefore, every
vertex of

⋃
s↗S\S→

Cs satisfies the threshold condition. Let ui be an arbitrary element in U . As
∑
s↗S→

s(i) ↓ g(i), we get dH(ui) =
∑

s↗S\S→

s(i) =
∑
s↗S

s(i)⇑
∑
s↗S→

s(i) ≃
∑
s↗S

s(i)⇑ g(i) < t(ui).

Towards showing the reverse direction, let H be a harmless set of size at least r in G.
It may be noted that H ↘ (U ⇔ {x, y}) = ↖, otherwise one of the vertices in {x, y} will
fail to satisfy the threshold condition. Observe that any clique Cs can contribute at most
max(S) + 1 vertices, otherwise vertices of As will fail to satisfy the threshold condition. We

64

now prove the following simple claim.

Claim 3.2.1. If |Cs
↘H| = max(S) + 1 then Cs

↘H = As.

Proof. Targeting a contradiction, suppose |Cs
↘H| = max(S) + 1 but Cs

↘H →= As. That
is, there exists a vertex as ↗ As such that as →↗ H. As |Cs

↘ H| = max(S) + 1, we have
dH(as) = max(S) + 1 = t(as), which is a contradiction. This proves the claim.

Note that n cliques together contribute at least r = k↓
· max(S) + (n ⇑ k↓) · (max(S) + 1)

vertices to H and each clique can contribute at most max(S) + 1 vertices. Therefore, by
Pigeonhole principle, there are at least (n⇑ k↓) cliques Cs for which |H ↘Cs

| = max(S) + 1.
By the above claim, there are at least (n⇑ k↓) cliques Cs for which H ↘Cs = As. We define

S ↓ = {s ↗ S | H ↘ Cs
→= As

}.

Clearly for s ↗ S ↓, we have |Cs
↘H| ≃ max(S). We construct H ↓ from H as follows:

H ↓ =
(
H \

⋃

s↗S→

As
)
⇔

⋃

s↗S→

Bs
\ {bs1}.

Clearly |H ↓
| ↓ |H| and H ↓ is a harmless set. Every vertex of

⋃
s↗S→

Cs satisfies the threshold

condition because every vertex of
⋃
s↗S→

Cs has max(S) neighbours in H and has threshold

value max(S) + 1. For each ui ↗ U , we see that dH→(ui) ≃ dH(ui) < t(ui). For rest of the
vertices, we can easily verify that the threshold conditions are satisfied. This implies that
H ↓ is a harmless set of size at least r. So we consider the harmless set to be of the form
H ↓ =

⋃
s↗S\S→

As
⋃
s↗S→

Bs
\ {bs1}. Since each ui ↗ U satisfies the threshold condition, we have

dH→(ui) =
∑

s↗S\S→

s(i) =
∑
s↗S

s(i) ⇑
∑
s↗S→

s(i) < t(ui) =
∑
s↗S

s(i) ⇑ g(i) + 1. This implies that
∑
s↗S→

s(i) ↓ g(i) for 1 ≃ i ≃ k. Therefore (k, k↓, S, g) is a yes-instance.

3.3 XP algorithm parameterized by clique-width

This section presents an XP-time algorithm for Harmless Set parameterized by clique-
width.

65

Theorem 3.3.1. Given an n-vertex graph G and an irredundant c-expression T of G, Harm-
less Set is solvable in O(cn4c) time.

For each node t in a c-expression T , let Gt be the vertex-labeled graph represented
by t. We denote by Vt the vertex set of Gt. For each label i, we denote the set of i-
vertices in Gt by V i

t . For each node t in T , we construct a table dpt(r, s) ↗ {true, false}
where r = (r(1), . . . , r(c)) and s = (s(1), . . . , s(c)) are c-dimensional vectors; for each index
i ↗ {1, 2, . . . , c}, r(i) can take value from the set {0, . . . , n} and s(i) can take value from the
set {⇑n+ 1, . . . , n⇑ 1} ⇔ {∀}. We set dpt(r, s) = true if and only if there exists a set S in
Vt such that for all i ↗ {1, 2, . . . , c}

• r(i) = |S ↘ V i
t |;

• s(i) = minv↗V i
t

{
t(v)⇑ |NGt(v) ↘ S|

}
, with s(i) = ∀ if V i

t = ↖.

That is, r(i) denotes the number of the i-vertices in S and s(i) is the “surplus" at the weakest
i-vertex in S.

Let ↽ be the root of the c-expression T of G. Then G has a harmless set of size h if there
exist r, s satisfying

1. dpε (r, s) = true;

2.
∑c

i=1 r(i) = h

3. min
{
s(i)

}
↓ 1.

In the following, we compute all entries dpt(r, s) in a bottom-up manner. There are
(n+1)c · (2n)c = O(n2c) possible tuples (r, s). Thus, to prove Theorem 3.3.1, it is enough to
prove that each entry dpt(r, s) can be computed in time O(cn2c) assuming that the entries
for the children of t are already computed.

Lemma 3.3.2. For a leaf node t with label i, dpt(r, s) can be computed in O(c) time.

Proof. Observe that dpt(r, s) = true if and only if r(j) = 0, s(j) = ∀ for all j →= i, and
either

66

• r(i) = 0, s(i) = ∀ or

• r(i) = 1, s(i) ↓ 1.

The first case corresponds to S = ↖, and the second case corresponds to S = V i
t . These

conditions can be checked in O(c) time.

Lemma 3.3.3. For a ⊕ node t, dpt(r, s) can be computed in O(cn2c) time.

Proof. Let t1 and t2 be the children of t in T . Then dpt(r, s) = true if and only if there exist
(r1, s1) and (r2, s2) such that dpt1(r1, s1) = true, dpt2(r2, s2) = true, r(i) = r1(i) + r2(i),
and s(i) = min

{
s1(i), s2(i)

}
for all i. The number of possible pairs for (r1, r2) is (n+1)c as

r2 is uniquely determined by r1. There are at most (2n)c possible pairs for (s1, s2) as either
s1(i) = s(i) or s2(i) = s(i) for all i. In total, there are (n+ 1)c · (2n)c = O(n2c) candidates.
Each candidate can be checked in O(c) time. Thus the lemma holds.

Lemma 3.3.4. For a ϱi,j node t, dpt(r, s) can be computed in O(c) time.

Proof. Let t↓ be the child of t in T . Then, dpt(r, s) = true if and only if dpt→(r, s↓) = true

for some s↓ with the following conditions:

• s(h) = s↓(h) hold for all h ↗ {1, 2, . . . , c} \ {i, j};

• s(i) = s↓(i)⇑ r(j) and s(j) = s↓(j)⇑ r(i).

We now explain the condition for s(i). Recall that T is irredundant. That is, the graph Gt→

does not have any edge between the i-vertices and the j-vertices. In Gt, an i-vertex has
exactly r(j) more neighbours in S and similarly a j-vertex has exactly r(i) more neighbours
in S. Thus we have s(i) = s↓(i)⇑ r(j) and s(j) = s↓(j)⇑ r(i). The lemma holds as there is
only one candidate for each s↓(i) and s↓(j).

Lemma 3.3.5. For a ςi↘j node t, dpt(r, s) can be computed in O(cn2) time.

Proof. Let t↓ be the child of t in T . Then, dpt(r, s) = true if and only if there exist r↓, s↓

such that dpt→(r↓, s↓) = true, where :

• r(i) = 0, r(j) = r↓(i) + r↓(j), and r(h) = r↓(h) for all h ↗ {1, 2, . . . , c} \ {i, j};

67

• s(i) = ∀, s(j) = min
{
s↓(i), s↓(j)


, and s(h) = s↓(h) for all h ↗ {1, 2, . . . , c} \ {i, j};

The number of possible pairs for (r↓(i), r↓(j)) is O(n) as r↓(j) is uniquely determined by r↓(i).
There are at most O(n) possible pairs for (s↓(i), s↓(j)). In total, there are O(n2) candidates.
Each candidate can be checked in O(c) time, thus the lemma holds.

3.4 Closing Remarks and Future directions

Our results close a wide gap in the understanding of the complexity landscape of Harmless
Set parameterized by structural parameters. We have shown that Harmless Set is W[1]-
hard parameterized by a wide range of fairly restrictive structural parameters such as the
feedback vertex set number, pathwidth, treedepth, and cluster vertex deletion number of the
input graph. On the positive side, we have given FPT algorithms when parameterized by
any of the following parameters: vertex integrity, neighbourhood diversity and twin cover.
To give an upper bound on the complexity, we give an XP-algorithm parameterized by
clique-width. The figure 3.9 provides a summary of results.

It is interesting to figure out the parameterized complexity of Harmless Set with
respect to the parameters such as vertex deletion to disjoint paths and modular width.
Also it will be inetresting to know the exact class of these problems in W-hierarchy. For
Majority Harmless Set, it will be interesting to see if the parameters such as treedepth,
feedback vertex set and cluster vertex deletion set allow FPT algorithms or the problem still
remains intractable.

68

vc†

nd→ tc→vi→

td→†

fvs→†pw→†

mw cvd→

tw→†

cw→

Figure 3.9: This is an overview of the parameterized complexity landscape for the Harm-
less Set problem with general thresholds. The stars highlight parameters that are covered
in this study. The † symbol highlight parameters that are simultaneously and independently
proved by Drange, Muzi and Reidl [38]. The problem is FPT parameterized by blue colored
parameters and W[1]-hard when parameterized by red colored parameters. The problem can
be solved in XP-time when parameterized by clique-width; hence the problem is in XP when
parameterized by each of the following parameters: tw, pw, fvs, td and cvd. The problem
remains unsettled when parameterized by mw.

69

70

Chapter 4

Defensive Alliance in Graphs

A set S of vertices of a graph is a defensive alliance if, for each element of S, the majority of its
neighbours are in S. In this chapter, we study the parameterized complexity of Defensive
Alliance, where the aim is to find a minimum size defensive alliance. Our main results
are the following: (1) Defensive Alliance has been studied extensively during the last
twenty years, but the question whether it is FPT when parameterized by feedback vertex
set has still remained open. We prove that the problem is W[1]-hard parameterized by a
wide range of fairly restrictive structural parameters such as the feedback vertex set number,
treewidth, pathwidth, and treedepth of the input graph; (2) the problem parameterized by
the vertex cover number of the input graph does not admit a polynomial compression unless
coNP ↑ NP/poly, (3) it does not admit 2o(n) algorithm under ETH, and (4) Defensive
Alliance on circle graphs is NP-complete. This chapter is based on the papers [61, 72].

4.1 Hardness Results of Defensive Alliance

In this section we show that Defensive Alliance is W[1]-hard when parameterized by
the size of a vertex deletion set into collection of stars, i.e., the size of a subset D of the
vertices of the graph such that every component in the graph, after removing D, is a star.
To show W[1]-hardness of Defensive Alliance, we reduce from the following problem:

71

Multidimensional Relaxed Subset Sum (MRSS)
Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ↗ Nk for every i with
1 ≃ i ≃ n, a target vector t ↗ Nk and an integer k↓.
Parameter: k + k↓

Question: Is there a subset S ↓
↑ S with |S ↓

| ≃ k↓ such that
∑
s↗S→

s ↓ t?

It is known that MRSS is W[1]-hard when parameterized by the combined parameter k+k↓,
even if all integers in the input are given in unary [74]. To prove W[1]-hardness of Defensive
Alliance, we reduce MRSS to Defensive Alliance.

Construction: Let I = (k, k↓, S, t) be an instance of MRSS. From this we construct an
instance I ↓ = (G, r) of Defensive Alliance the following way. See Figure 4.1 for an
illustration. Before we formally define our reduction, we briefly describe the intuition. We
introduce three types of vertices: necessary vertices, forbidden vertices and normal vertices.
We often indicate necessary vertices by means of a triangular node shape, and forbidden
vertices by means of a square node shape, and normal vertices by means of a circular node
shape. We want to make sure that necessary vertices are always inside every solution and
forbidden vertices are always outside every solution; and a normal vertex could be inside or
outside the solution. Note that it is easy to force a forbidden vertex outside every solution
by simply increasing its degree in the graph. Specifically, if we are looking for a defensive
alliance of size at most r then vertices of degree more than 2r are always outside every
solution. The challenging part is to force inclusion of all necessary vertices in every solution.
Our strategy is to first make sure that if even one necessary vertex is included in a solution
then that will force inclusion of all necessary vertices in the solution. In order to do this, we
have introduced a “chain" like gadget consisting of some necessary vertices. Next, in order
to force inclusion of at least one necessary vertex in every solution, we consider protection
of normal vertices. For all normal vertices, we add some forbidden and necessary neighbours
such that their protection will require at least one necessary vertex.

Let s = (s(1), s(2), . . . , s(k)) ↗ S and let max(s) denote the value of the largest coordinate
of s. Set N =

∑
s↗S

(2max(s) + 2). The vertex set of the constructed graph G is defined as

follows:

1. We introduce a set of k necessary vertices U = {u1, u2, . . . , uk}. For every ui ↗ U ,

72

u1 u2 f1 f2 f3
V ↭
u1

V ↭
f3

xs1

As1

ys1

Bs1

xs2

As2

ys2

Bs2

xs3

As3

ys3

Bs3

Hu1u2

h0
u1u2

V ↭
u1u2

Hu2f1

h0
u2f1

Hf1f2

h0
f1f2

Hf2f3

h0
f2f3

Hf3u1

h0
f3u1

V ↭
f3u1

h↭
1 h↭

2 h↭
3

a↭1 a↭2 a↭3 a↭4 a↭5 a↭6 a↭7

Figure 4.1: The graph G in the proof of Theorem 4.1.4 constructed for MRSS instance
S = {(2, 1), (1, 1), (1, 2)}, t = (3, 3), k = 2 and k↓ = 2. The vertices t and t↓, and their
adjacency are not shown. Every square vertex is adjacent to 2r + 2 vertices which are also
not shown in the diagram.

create a set V ↭
ui

of 2N ⇑
∑
s↗S

s(i) + 2t(i) forbidden vertices.

2. We introduce a set of three necessary vertices F = {f1, f2, f3}. For every f ↗ F , create
a set V ↭

f of 2N forbidden vertices.

3. Consider the vertices of U ⇔ F in the following order: u1, . . . , uk, f1, f2, f3, u1. Let
P = {(u1, u2), . . . , (uk↖1, uk), (uk, f1), (f1, f2), (f2, f3), (f3, u1)} be the set of pairs of
consecutive vertices. For each pair (x, y) ↗ P , create a set of N necessary vertices
Hxy = {h1

xy, . . . , h
N
xy}, a set V ↭

xy of N forbidden vertices, and a special necessary vertex
h0
xy.

4. We introduce a set of three forbidden vertices H↭ = {h↭
1 , h

↭
2 , h

↭
3 }

73

5. For each vector s ↗ S, we introduce two stars. The first star has internal node xs and
max(s) + 1 leaves As = {as1, . . . , a

s
max(s)+1}; the second star has internal node ys and

max(s) + 1 leaves Bs = {bs1, . . . , b
s
max(s)+1}.

6. We introduce a set V ↭
a = {a↭1 , . . . , a

↭
k+5} of k + 5 forbidden vertices.

We now create the edge set of G.

1. For every ui ↗ U , make ui adjacent to every vertex of V ↭
ui

.

2. For every f ↗ F , make f adjacent to every vertex of V ↭
f .

3. For each pair (x, y) ↗ P , make x and y adjacent to every vertex of Hxy; make h0
xy

adjacent to every vertex of Hxy ⇔ V ↭
xy.

4. For each pair (x, y) ↗ P , make every vertex of Hxy adjacent to every vertex of H↭.

5. For each ui ↗ U and for each s ↗ S, we make ui adjacent to exactly s(i) many vertices
of As in an arbitrary manner. Make every vertex of F adjacent to every vertex of
⋃
s↗S

As ⇔ Bs.

6. For each s ↗ S, we make each as ↗ As adjacent to exactly |NU(as)|+ 5 many vertices
of V ↭

a arbitrarily.

We define the set of necessary vertices V↙ = U ⇔F ⇔
⋃

(x,y)↗P

Hxy ⇔ {h0
xy}, the set of forbidden

vertices V↭ = V ↭
a ⇔ H↭

⇔
⋃

(x,y)↗P

V ↭
xy ⇔

⋃
u↗U

V ↭
u ⇔

⋃
f↗F

V ↭
f and r = (k + 3)N + 2k + 6 +

∑
s↗S

(max(s) + 1) + k↓. For every x ↗ V↭, create a set Vx of 2r + 2 vertices, and make x

adjacent to every vertex of Vx. We also add two vertices t and t↓. The newly added vertices
t, t↓ and the vertices in Vx are not shown in Figure 4.1. Make t adjacent to every vertex
of Vx for x ↗

⋃
(x,y)↗P

V ↭
xy ⇔

⋃
u↗U

V ↭
u ⇔

⋃
f↗F

V ↭
f and make t↓ adjacent to every vertex of Vx for

x ↗ V ↭
a ⇔H↭. This completes the construction of I ↓.

The proof of Lemma 4.1.3, explains how inclusion of one vertex from U ⇔ F ensures
inclusion of all necessary vertices V↙ in the solution. In order to make sure that at least
one necessary vertex from V↙ is included in every solution, we consider protection of normal
vertices. For each normal vertex, we add some forbidden and necessary neighbours such

74

that its protection requires at least one necessary vertex. As all the vertices in V↙ are inside
every solution, the idea in the remaining part of the reduction is hidden in the protection of
vertices in U . Note that a normal vertex may or may not be included in the solution. The
vertices of two star graphs that we have introduced corresponding to each vector in S are
normal vertices. Note that the vertices in U have neighbours only in star graphs containing
As’s. Now, the construction makes sure that if a defensive alliance uses a vertex from As

then it must pay a cost of one extra vertex xs by forcing it to be inside the solution which
is not true for Bs. As this is a minimization problem, every defensive alliance uses either As

for protection of vertices in U and pay a cost of one extra vertex or uses Bs. At the end, we
argue that if the defensive alliance includes As then we add the corresponding vector s to
the solution of MRSS, otherwise not.

Lemma 4.1.1. The size of a vertex deletion set of G into collection of stars, is 3k + 16.
Moreover, G is a bipartite graph.

Proof. Observe that if we remove the set U ⇔ F ⇔H↭
⇔ V ↭

a ⇔ {h0
xy | (x, y) ↗ P}

⋃
{t, t↓} of

3k + 16 vertices from G then we are left with only star graphs. Moreover, G is a bipartite
graph with bipartition

V1 = H↭
⇔ V ↭

a ⇔ U ⇔ F ⇔ {t↓}
⋃

x↗V↭\(H↭∝V ↭
a)

Vx ⇔

⋃

(x,y)↗P

{h0
xy} ⇔

⋃

s↗S

{xs, ys}

and

V2 = {t} ⇔
⋃

(x,y)↗P

(V ↭
xy ⇔Hxy) ⇔

⋃

u↗U

V ↭
u ⇔

⋃

f↗F

V ↭
f ⇔

⋃

x↗H↭∝V ↭
a

Vx ⇔

⋃

s↗S

(As ⇔ Bs).

Lemma 4.1.2. If (k, k↓, S, t) is a positive instance of MRSS then G has a defensive alliance
of size at most r.

Proof. Let S ↓
↑ S be such that |S ↓

| ≃ k↓ and
∑
s↗S→

s ↓ t. We claim that the set

R = U ⇔ F ⇔

⋃

(x,y)↗P

Hxy ⇔ {h0
xy} ⇔

⋃

s↗S→

As ⇔ {xs} ⇔

⋃

s↗S\S→

Bs

75

is a defensive alliance in G such that |R| ≃ r. Let x be an arbitrary element of R.
Case 1: If x = ui ↗ U , then the neighbours of ui in R are the elements in Hui↓1ui ⇔Huiui+1

and s(i) elements of As if s ↗ S ↓. Thus

dR(ui) =
∑

s↗S→

s(i) + 2N.

The neighbours of ui in Rc are the elements of V ↭
ui

and s(i) elements of As if s ↗ S \S ↓. Thus

dRc(ui) =
∑

s↗S\S→

s(i) + |V ↭
ui
| =

∑

s↗S\S→

s(i) + 2N ⇑

∑

s↗S

s(i) + 2t(i)

  
size of V ↭

ui

Note that

dRc(ui) = 2N +
∑

s↗S\S→

s(i)⇑
∑

s↗S

s(i) + 2t(i)

= 2N ⇑

(∑

s↗S

s(i)⇑
∑

s↗S\S→

s(i)
)
+ 2t(i)

= 2N ⇑

∑

s↗S→

s(i) + 2t(i)

= 2N +
∑

s↗S→

s(i) + 2
(
t(i)⇑

∑

s↗S→

s(i)
)

  
⇐0

≃ 2N +
∑

s↗S→

s(i)

= dR(ui)

Therefore, we have dR(ui) + 1 ↓ dRc(ui), and hence ui is protected.

Case 2: If x = as ↗ As, then dR(as) = |NU(as)| + |{f1, f2, f3, xs}| = |NU(as)| + 4 and
dRc(as) = |NU(as)|+ 5. Therefore, we get dR(as) + 1 ↓ dRc(as).

Case 3: If x = f1 ↗ F , then NR(f1) =
⋃
s↗S→

As ⇔
⋃

s↗S\S→

Bs ⇔ Hu2f1 ⇔ Hf1f2 and NRc(f1) =

⋃
s↗S→

Bs ⇔
⋃

s↗S\S→

As ⇔ V ↭
f1 . As |As| = |Bs|, |Hu2f1 | = |Hf1f2 | = N and |V ↭

f1 | = 2N + 1, we have

dR(f1) + 1 ↓ dRc(f1). We can similarly check that {f2, f2} are also protected.

For the rest of the vertices in R, it is easy to see that dR(x) + 1 ↓ dRc(x). Therefore, (G, r)

76

is a yes-instance of Defensive Alliance.

Lemma 4.1.3. If G has a defensive alliance of size at most r then (k, k↓, S, t) is a positive
instance of MRSS.

Proof. Let R be a defensive alliance in G of size at most r. It is easy to see that (V↭⇔{t, t↓})↘

R = ↖ as any defensive alliance of size at most r cannot contain vertices of degree greater than
2r. This also shows that

⋃
x↗V↭

Vx ↘R = ↖. Now we show that V↙ = U⇔F
⋃

(x,y)↗P

Hxy⇔{h0
xy} ↑

R. We claim that if V↙ ↘R →= ↖ then V↙ ↑ R.

Case 1: Suppose R contains u1 from U . We observe that if some hu1u2 ↗ Hu1u2 is not in R

then h0
u1u2

is also not in R. This implies that no vertex from Hu1u2 is in R. Since the elements
of Hu1u2 ⇔ V ↭

u1
are not in R, we get dRc(u1) ↓ |Hu1u2 | + |V ↭

u1
| = N + 2N ⇑

∑

s↗S

s(1) + 2t(1)

  
size of V ↭

u1

.

On the other hand the elements of Hf3u1 and s(1) nodes from As for each s ↗ S could be
in R. Thus dR(u1) ≃ N +

∑
s↗S

s(1). This implies that u1 is not protected in R which is

a contradiction as u1 ↗ R. This implies that Hu1u2 ⇔ {h0
u1u2

} ↑ R. Applying the same
argument for hf3,u1 ↗ Hf3u1 , we see that Hf3u1 ⇔ {h0

f3u1
} ↑ R. Clearly, this shows that f3

and u2 are in R for protection of vertices in Hu1u2 ⇔Hf3u1 . Applying the same argument for
u2 and f3, we get Hu2u3 ⇔ {h0

u2u3
} ↑ R and Hf3u1 ⇔ {h0

f3u1
} ↑ R, respectively. Repeatedly

applying the above argument, we get V↙ ↑ R. Observe that this argument can be easily ex-
tended to all the vertices of U and F . Therefore, we see that if (U⇔F)↘R →= ↖, then V↙ ↑ R.

Case 2: Suppose R contains hxy from Hxy for some (x, y) ↗ P . Clearly, this implies R

contains both x and y from U ⇔ F . Using Case 1, we get V↙ ↑ R.

Case 3: Suppose R contains h0
xy for some (x, y) ↗ P . Clearly, this implies that Hxy ↑ R.

Using Case 2, we get V↙ ↑ R.

Therefore we proved that if V↙ ↘ R →= ↖ then V↙ ↑ R. Next we claim that if R is non-
empty then R contains the set V↙. Since R is non-empty, we see that R must contain a
vertex from graph G. We consider the following cases:

Case 1: Suppose R contains as from As for some s ↗ S. Then we know that dRc(as) ↓

77

|NU(as)| + 5. We see that as is protected if and only if F ↘ R →= ↖. This implies that
V↙ ↘R →= ↖ which implies V↙ ↑ R.

Case 2: Suppose R contains xs for some s ↗ S. We know that xs has at least two neighbours
in As as max(s) + 1 ↓ 2. This implies that xs is protected if and only if at least one vertex
as ↗ As is in R. Now, Case 1 implies that V↙ ↑ R.

Case 3: Suppose R contains bs ↗ Bs for some s ↗ S. Then we know that N(bs) = {ys} ⇔ F .
Clearly, the protection of bs requires at least one vertex from F . This implies that F ↘R →= ↖.
Therefore, we have V↙ ↘R →= ↖ and hence V↙ ↑ R.

Case 4: Suppose R contains ys for some s ↗ S. We know that ys has at least two neighbours
in Bs as max(s) + 1 ↓ 2. This implies that ys is protected if and only if at least one vertex
bs ↗ Bs is in R. Now, Case 3 implies that V↙ ↑ R.

This shows if R is non-empty then V↙ ↑ R. We know V↙ contains exactly (k+3)N +2k+6

many vertices; thus besides the vertices of V↙, there are at most
∑
s↗S

(max(s) + 1) + k↓ many

vertices in R. Since f1 ↗ R and dV↔
(f1) = dV↭(f1) = 2N , it must have at least

∑
s↗S

(max(s)+1)

many neighbours in R from the set
⋃
s↗S

As ⇔Bs. We also observe that if a vertex as from the

set As is in the solution then xs also lie in the solution for the protection of as. This shows
that at most k↓ many sets of the form As contribute to the solution as otherwise the size of
solution exceeds r. Therefore, any arbitrary defensive alliance R of size at most r can be
transformed to another defensive alliance R↓ of size at most r as follows:

R↓ = V↙

⋃

xs↗R

As ⇔ {xs}

⋃

xs↗V (G)\R

Bs.

We define a subset S ↓ =
{
s ↗ S | xs ↗ R↓

}
. Clearly, |S ↓

| ≃ k↓. We claim that
∑
s↗S→

s(i) ↓ t(i)

for all 1 ≃ i ≃ k. Assume for the sake of contradiction that
∑
s↗S→

s(i) < t(i) for some

i ↗ {1, 2, . . . , k}. Note that
dR→(ui) =

∑

s↗S→

s(i) + 2N

78

and
dR→c(ui) =

∑

s↗S\S→

s(i) + |V ↭
ui
| =

∑

s↗S\S→

s(i) + 2N ⇑

∑

s↗S

s(i) + 2t(i)

Then, we have

dR→c(ui) = 2N ⇑

(∑

s↗S

s(i)⇑
∑

s↗S\S→

s(i)
)
+ 2t(i)

= 2N ⇑

∑

s↗S→

s(i) + 2t(i)

= 2N +
∑

s↗S→

s(i) + 2
(
t(i)⇑

∑

s↗S→

s(i)
)

  
>0 by assumption

> 2N +
∑

s↗S→

s(i) = dR→(ui)

We also know that ui ↗ R↓, which is a contradiction to the fact that R↓ is a defensive al-
liance. Therefore,

∑
s↗S→

s(i) ↓ t(i) for all 1 ≃ i ≃ k. This shows that I = (k, k↓, S, t) is a

yes-instance.

We now prove our main theorem in this section:

Theorem 4.1.4. Defensive Alliance is W[1]-hard when parameterized by the size of a
vertex deletion set into collection of stars, even when restricted to bipartite graphs.

Proof. Given an instance (k, k↓, S, t) of RBDS, we use the above construction to create an
instance (G, r) of Defensive Alliance parameterized by the size of a vertex deletion set
into collection of stars. Lemma 4.1.2 and Lemma 4.1.3 show the correctness of our reduction,
while Lemma 4.1.1 provides the bound on the size of a vertex deletion set into collection of
stars, showing that our new parameter is linearly bounded by the original parameter k. This
completes the proof.

Clearly stars are trivially acyclic. Moreover, it is easy to verify that stars have pathwidth
[93] and treedepth [110] at most two, which implies:

Theorem 4.1.5. The Defensive Alliance problem is W[1]-hard when parameterized by

79

any of the following parameters:

• the feedback vertex set number,

• the treewidth and clique width of the input graph,

• the pathwidth and treedepth of the input graph,

even when restricted to bipartite graphs.

4.2 No Polynomial Kernel Parameterized by Vertex Cover
Number

A set C ↑ V is a vertex cover of G = (V,E) if each edge e ↗ E has at least one endpoint
in X. The minimum size of a vertex cover in G is the vertex cover number of G, denoted by
vc(G). Parameterized by vertex cover number vc, Defensive Alliance is FPT [92] and
in this section we prove the following kernelization hardness of Defensive Alliance.

Theorem 4.2.1. Defensive Alliance parameterized by the vertex cover number of the
input graph does not admit a polynomial compression unless coNP ↑ NP/poly.

To prove Theorem 4.2.1, we give a polynomial parameter transformation (PPT) from the
well-known Red Blue Dominating Set problem (RBDS) to Defensive Alliance pa-
rameterized by vertex cover number. Recall that in RBDS we are given a bipartite graph
G = (T ⇔ S,E) and an integer k, and we are asked whether there exists a vertex set X ↑ S

of size at most k such that every vertex in T has at least one neighbour in X. We also refer
to the vertices of T as terminals and to the vertices of S as sources or nonterminals. The
following theorem is known:

Theorem 4.2.2. [55] RBDS parameterized by |T | does not admit a polynomial compression
unless coNP ↑ NP/poly.

80

4.2.1 Proof of Theorem 4.2.1

By Theorem 6.2.2, RBDS parameterized by |T | does not admit a polynomial compression
unless coNP ↑ NP/poly. To prove Theorem 4.2.1, we give a PPT from RBDS parameterized
by |T | to Defensive Alliance parameterized by the vertex cover number. Given an
instance (G = (T ⇔ S,E), k) of RBDS, we construct an instance (G↓, k↓) of Defensive
Alliance as follows. Take three distinct copies T0, T1, T2 of T , and let ti be the copy of
t ↗ T in Ti. Similarly, take two distinct copies S0, S1 of S, and let si be the copy of s ↗ S in
Si. Now for every vertex t ↗ T1⇔T2, we introduce a set Vt = {t1, . . . , tϑ} of vertices and make
them adjacent to t where the number ϑ is defined later in the proof. Moreover, create three
vertices a, b and c ans make them adjacent to every vertex of

⋃
t↗T1∝T2

Vt. We also make a and

b adjacent to every vertex of T0; and make a adjacent to every vertex of S1. If (t, s) ↗ E(G)

then we add the edges (t0, s0), (t0, s1), (t1, s1) and (t2, s0) in E(G↓). Finally, we add a vertex
x→ which is adjacent to every vertex of S1 and also adjacent to exactly |S| many arbitrary
vertices from Vt for some t ↗ T1 ⇔ T2. We set k↓ = |T |+ |S|+ k + 1 and l = 2k↓ + 1. Clearly
(G↓, k↓) can be computed in polynomial time. We observe that C = T0⇔T1⇔T2⇔{a, b, c, x→

}

is a vertex cover of G↓. Therefore the vertex cover size of G↓ is bounded by 3|T | + 4. See
Figure 4.2 for an illustration. We now claim that (G, k) is a yes-instance of RBDS if and
only if (G↓, k↓) is a yes-instance of Defensive Alliance.

Suppose there exists a vertex set X ↑ S of size at most k in G such that every vertex in T

has at least one neighbour in X. We claim that the set R = S1⇔
{
s0 ↗ S0 | s ↗ X


⇔T0⇔{x→

}

is a defensive alliance in graph G↓. Let x be an arbitrary element of R. We prove that x is
protected in R.

Case 1: Suppose x ↗ S1. Note that NR(x) = NT0(x) ⇔ {x→
}. Thus, including itself, it has

dG(x) + 2 defenders in G↓. The attackers of x consist of elements of NT1(x) and element
a. Hence x has dG(x) + 1 attackers. This shows that x has at least as many defenders as
attackers; hence x is protected.

Case 2: Suppose x ↗
{
s0 ↗ S0 | s ↗ X


. Note that NR(x) = NT0(x). Thus, including itself,

it has dG(x) + 1 defenders in G↓. The attackers of x consist of elements of NT2(x). Hence x

has dG(x) attackers in G↓. This shows that x is protected.

81

G

G↓

t

t↓

s

s↓

t1
T1

Vt1

t↓1

Vt→1

t2
T2

Vt2

t↓2

Vt→2

t0
T0 t↓0

s1

S1

s↓1

s0
S0

s↓0

a

b

c

x→

Figure 4.2: PPT from RBDS to Defensive Alliance, where graph G is show on the left
and G↓ is shown on the right.

Case 3: Suppose x ↗ T0. Clearly, including itself, x has 2dG(x) + 3 neighbours in G↓.
Thus it requires at least dG(x) + 2 many defenders in G↓. Note that, including itself, x has
dG(x) + 1 neighbours in S1 ↑ R. Therefore, it requires at least one neighbour from the set
{
s0 ↗ S0 | s ↗ X


inside the solution and this is true because (G, k) is a yes-instance of

RBDS.

Case 4: Suppose x = x→. It has the same number of defenders and attackers in G↓. This
shows that x is protected.

Conversely, suppose there exists a defensive alliance R of size at most k↓ in G↓. Clearly,
no vertex from the set Q = T1 ⇔ T2 ⇔ {a, b, c}

⋃
t↗T1∝T2

Vt can be part of R as |R| ≃ k↓ and

dG→(v) > 2k↓ for all v ↗ Q. Since R is non-empty, it must contain a vertex from one of the
sets {x→

}, S1, T0 or S0.

82

Case 1: Suppose x→
↗ R. Since x→ has |S| many neighbours in Q, it implies that all the

neighbours of x→ in S1 must be inside the solution for protection of x→. This implies that
S1 ↑ R. Let v be an arbitrary vertex in S1. Note that v has dG(v) neighbours in T0, and
it has dG(v) + 1 neighbours in Q. For protection of v all the neighbours of v in T0 must be
part of the solution. This implies that T0 ↑ R as all the vertices in S1 must be protected.
Note that till now we have added |S| + |T | + 1 many vertices in the solution. Therefore,
we can add at most k vertices to the solution from the set S0 as otherwise the solution size
will exceed k↓. Suppose we add a set X ↑ S0 of size at most k to the solution. Consider
the protection of vertices in T0. If v is a vertex of T0, then it has dG(v) neighbours in S0

and similarly dG(v) neighbours in S1. Excluding itself, v has 2dG(v) + 2 neighbours in G↓.
Thus it requires at least dG(v)+1 many neighbours inside the solution. We know that dG(v)
neighbours are inside the solution due to the fact that S1 ↑ R. Therefore, it requires at least
one neighbour from S0 inside the solution. Since there exists a set X ↑ S of size at most k

such that all the vertices in T0 are protected, it shows that all vertices in T0 have at least
one neighbour in X.

Case 2: Suppose R contains a vertex v from the set S1. In this case, the protection of v
requires x→ to be inside the solution and then the same argument as in Case 1 will lead to
the proof.

Case 3: Suppose R contains a vertex v from the set T0. Excluding itself, v has 2dG(v) + 2

neighbours in G↓. Thus it requires at least dG(v) + 1 many neighbours from S0 ⇔ S1 inside
the solution. This implies that at least one neighbour from the set S1 must be inside the
solution. Now the same argument as in Case 2 will lead to the proof.

Case 4: Suppose R contains a vertex v from the set S0. Clearly, it has dG(v) neighbours
in T2 ↑ Q and dG(v) neighbours in T0. Since the vertices in the set Q cannot be part of
the solution, the protection of v will imply that all the neighbours of v in T0 are part of the
solution. In other words, there exists a vertex in T0 which is inside the solution. Now the
same argument as in Case 3 will lead to the proof.

This proves that (G, k) is a yes-instance of RBDS.

83

4.3 Defensive Alliance has no Subexponential Algo-
rithm

In this section, we prove lower bound based on ETH for the time needed to solve the De-
fensive Alliance problem. In order to prove that a too fast algorithm for Defensive
Alliance contradicts ETH, we give a reduction from Vertex Cover in graphs of maxi-
mum degree 3 and argue that a too fast algorithm for Defensive Alliance would solve
Vertex Cover in graphs of maximum degree 3 in time 2o(n). Using Theorem 1.1 in [85],
we get that there is an algorithm which finds a minimum size vertex cover in an arbitrary
graph on n vertices in time sub-exponential in n if and only if there is an algorithm which
finds a minimum size vertex cover for graphs that have maximum degree at most 3 in time
sub-exponential in n. Assuming ETH, there is no algorithm which finds a minimum size
vertex cover in an arbitrary graph on n vertices in time sub-exponential in n [100]. This
implies, assuming ETH, there is no algorithm which finds a minimum size vertex cover for
graphs that have maximum degree at most 3 in time sub-exponential in n.

Theorem 4.3.1. Unless ETH fails, Defensive Alliance does not admit a 2o(n) algorithm
where n is the number of vertices of the input graph.

Proof. We give a linear reduction from Vertex Cover in graphs of maximum degree 3 to
Defensive Alliance, that is, a polynomial-time algorithm that takes an instance (G, k)

of Vertex Cover, where G has n vertices and m = O(n) edges, and outputs an equivalent
instance of Defensive Alliance whose size is bounded by O(n). We assume that the input
graph contains at least two edges otherwise the problem will be polynomial time solvable.
We construct an equivalent instance (G↓, k↓) of Defensive Alliance the following way.
See Figure 4.3 for an illustration.

1. We introduce the vertex sets X and Y into G↓, where X = V (G) = {v1, . . . , vn} and
Y = E(G) = {e1, e2, . . . , em}, the edge set of G. We make vi adjacent to ej if and only
if vi is an endpoint of ej.

84

Figure 4.3: The reduction from Vertex Cover to Defensive Alliance.

2. For every 1 → i → m, we introduce a cycle Ci of length 4. For every 1 → i → m ↑ 1,
make every vertex of Ci adjacent to ei and ei+1; and make every vertex of Cm adjacent
to em and e1.

3. We add a set F = {f1, f2, . . . , f8} of 8 new vertices into G→. Set k→ = 5m + k. For
every vertex f ↓ F we introduce a set Vf of 4k→ new vertices into G→ and make them
adjacent to f . We make every vertex of {f1, f2, f3, f4, f5} adjacent to every vertex of
Ci for i = 1, 2, . . . ,m. We also make every vertex of F adjacent to every vertex of Y .

4. Finally, we introduce a vertex a and make it adjacent to every vertex of X ↔
⋃
f↑F

Vf .

We now argue equivalence of the instances. Suppose there exists a vertex cover S of size
at most k in G. We show that D = S ↔ Y

m⋃
i=1

V (Ci) is a defensive alliance of size at most k→

in G→. It is easy to verify that all the vertices in D are protected.

To prove the reverse direction of the equivalence, suppose now that D is a defensive
alliance of size at most k→ in G→. Clearly, no vertex from Q = {a} ↔ F ↔

⋃
f↑F

Vf can be part

of D. To prove the reverse direction, we need the following simple claim:

Claim 4.3.1. Every defensive alliance D of G→ contains the set Y
m⋃
i=1

V (Ci).

85

Proof. Since the defensive alliance is non-empty, it must contain a vertex from X↔Y
m⋃
i=1

V (Ci).

Case 1: Suppose D contains ei from Y . We observe that degG→(ei) = 18. Note that eight
neighbours of ei in F cannot be part of the solution as they belong to the forbidden set
Q. This implies that we need to add at least one vertex from the set V (Ci↓1) ↔ V (Ci) to
the solution for the protection of ei. Without loss of generality, suppose we include one
vertex from V (Ci) in the solution. Inclusion of one vertex from the set V (Ci) in the solution
forces V (Ci) ↗ D. This in turn forces ei+1 in the solution. Repeatedly applying the above

argument, we see that Y
m⋃
i=1

V (Ci) ↗ D.

Case 2: Suppose D contains an arbitrary vertex from the set X
m⋃
i=1

V (Ci). Then the pro-

tection of that vertex forces at least one vertex from Y in the solution. Using the argu-
ment in Case 1, it implies that Y

m⋃
i=1

V (Ci) ↗ D. This completes the proof of the claim.
↭

We observe that for every vertex e ↓ Y , we have included eight out of its 18 neighbours in
the solution. For the protection of e, we need to include at least one more of its neighbours
from X in the solution. As we have already added 5m vertices in the solution, we can add a
set S ↗ X of at most k vertices in D such that every vertex e ↓ Y has at least one neighbour
in S. If such a set S exists then it forms a vertex cover of G. This shows that (G, k) is a
yes-instance of Vertex Cover.

4.4 Defensive Alliance on Circle Graphs

Recall that a circle graph is the intersection graph of a set of chords of a circle. That is,
it is an undirected graph whose vertices can be associated with chords of a circle such that
two vertices are adjacent if and only if the corresponding chords cross each other. Here, we
prove that Defensive Alliance is NP-complete even when restricted to circle graphs, via
a reduction from Dominating Set. It is known that Dominating Set on circle graphs is
NP-hard [88].

Theorem 4.4.1. Defensive Alliance on circle graphs is NP-complete.

86

On the way towards this result, we provide a hardness result for a variant of Defen-
sive Alliance which we require in the proof of Theorem 4.4.1. The problem Defensive
AllianceF generalizes Defensive Alliance where some vertices are forced to be outside
the solution; these vertices are called forbidden vertices. This variant can be formalized as
follows:

Defensive AllianceF

Input: An undirected graph G = (V,E), a positive integer r and a set V↫ ↗ V (G) of
forbidden vertices.
Question: Is there a defensive alliance S ↗ V such that 1 → |S| → r, and S ↘ V↫ = ≃?

Lemma 4.4.2. Defensive AllianceF on circle graphs is NP-complete.

Proof. It is easy to see that the problem is in NP. To show that the problem is NP-hard
we give a polynomial reduction from Dominating Set on circle graphs. Let (G, k) be an
instance of Dominating Set, where G is a circle graph. Suppose we are also given the
circle representation C of G. Without loss of generality, we can assume that none of the
endpoints of chords overlap with each other. We create a graph G→ and output the instance
(G→, V↫, k→). See Figure 4.7. The steps given below describe the construction of G→:

• Step 1: Take two distinct copies G1 and G2 of G and let vi be the copy of v ↓ V (G)

in graph Gi. For each v ↓ V , make v1 adjacent to every vertex of NG2 [v2] and similarly
make v2 adjacent to every vertex of NG1 [v1]. Note that this operation can be easily
incorporated in the circle representation by replacing the chord corresponds to v with
two crossing cords correspond to v1 and v2 as shown in Figure 4.4.

• Step 2: For every v ↓ V , create two sets of vertices Xv = {xv
1, . . . , x

v
2n+1} and

Y v = {yv1 , . . . , y
v
2n+1} and make v1, v2 adjacent to every vertex of Xv

↔ Y v. This can
be easily incorporated in circle representation by introducing 2n+1 parallel chords for
the vertices xv

1, . . . , x
v
2n+1 which cross the chords for v1, v2. Similarly, introduce 2n+ 1

parallel chords for the vertices yv1 , . . . , yv2n+1 which cross the chords for v1, v2, as shown
in Figure 4.5.

• Step 3: For each xv
↓ Xv, create two 3-vertex cliques C1

xv and C2
xv , and make xv

adjacent to every vertex of C1
xv and C2

xv . For 1 → i → 2n, make every vertex of C1
xv
i

87

a

b c

a1
b1
c1

a2
b2
c2

b
a
c

(i)

(ii)

Figure 4.4: (i) Graph G and its circle representation. (ii) The graph produced after the
first step of reduction and its circle representation.

v1
v2

xv
1
xv
7

yv1
yv7

v1 v2

xv
1

xv
7

yv7

yv1

Figure 4.5: Illustration of Step 2. Here 2n+ 1 = 7.

adjacent to every vertex of C1
xv
i+1

. Similarly, make every vertex of C2
xv
i

adjacent to every
vertex of C2

xv
i+1

for 1 → i → 2n. For each yv ↓ Y v, create two 3-vertex cliques C1
yv and

C2
yv , and make yv adjacent to every vertex of C1

yv and C2
yv . Make every vertex of C1

yvi

adjacent to every vertex of C1
yvi+1

for 1 → i → 2n. Similarly, make every vertex of C2
yvi

adjacent to every vertex of C2
yvi+1

for 1 → i → 2n. We start at an arbitrary vertex on
the circle representation of C of G and then traverse the circle in counter clockwise
direction. We record the sequence in which the chords are visited. For example, in
Figure 4.4(i), if we start at the red vertex on the circle, then the sequence in which the
chords are visited, is a, c, b, a, c, b. Note that every vertex appears twice in the sequence
as every chord is visited twice while traversing the circle. Thus we get a sequence S

of length 2n where n is the number of chords. We use the sequence to connect newly
added cliques. For every consecutive pair (u, v) in the sequence S, make every vertex
of C2

xu
2n+1

adjacent to every vertex of C1
xv
2n+1

when both u and v appear for the first time
in the sequence S; make every vertex of C2

yu2n+1
adjacent to every vertex of C1

yv2n+1
when

both u and v appear for the second time; and make every vertex of C2
xu
2n+1

adjacent to
every vertex of C1

yv2n+1
when u appears for the first time and v appear for the second

88

ya2n+1
C2

ya2n+1
C1

ya2n+1

yb2n+1

C2
yb2n+1

C1
yb2n+1

yb2n+1

ya2n+1

C1
yb2n+1

C2
ya2n+1

C1
ya2n+1

C2
yb2n+1

Figure 4.6: Illustration of Step 3.

time. These adjacencies are shown in green color in Figure 4.7 and 4.6.

• Step 4: For every vertex u in cliques, add d forbidden vertices where d is the degree of
u until now in G→ and make them adjacent to u. For every vertex u ↓ Xv

↔Y v, add six
forbidden vertices and make them adjacent with u. For very vertex u ↓ V (G1)↔V (G2),
add 4n + 3 forbidden vertices and make them adjacent to u. This completes the
construction of G→. We set k→ = 7n(4n+ 2) + n+ k and V↫ be the set of all one degree
forbidden vertices.

We observed that the constructed graph G→ is indeed a circle graph, and the construction
can be performed in time polynomial in n. We now claim that G admits a dominating set
of size at most k if and only if G→ admits a defensive alliance D of size at most k→ such that
D ↘ V↫ = ≃. Assume first that G admits a dominating set S of size at most k. Let

C =
⋃

v↑V (G)

2n+1⋃

i=1

V (C1
xv
i
) ↔ V (C2

xv
i
) ↔ V (C1

yvi
) ↔ V (C2

yvi
).

Consider D = C ↔

{
v1 : v ↓ S

}
↔V (G2)↔

⋃
v↑V (G)

Xv
↔Y v. Clearly, |D| → 7n(4n+2)+n+k

and D ↘ V↫ = ≃, so it su!ces to prove that D is a defensive alliance in G→. We observe
that every vertex in C has equally many neighbours inside and outside the solution. Every
vertex v ↓

⋃
v↑V (G)

Xv
↔ Y v is protected as it has at least 7 neighbours inside the solution and

at most 7 neighbours outside the solution. Each v ↓

{
v1 : v ↓ S

}⋃
V (G2) has at least

d+ 1+ 4n+ 2 neighbours inside the solution and at most d+ 1+ 4n+ 2 neighbours outside

89

c1 c2

xc
1 C2

xc
1

C1
xc
1 xc

2 C2
xc
2

C1
xc
2

xc
7 C2

xc
7

C1
xc
7

yc1
C2

yc1
C1

yc1

yc2
C2

yc2
C1

yc2

yc7

G→

C2
yc7

C1
yc7

b1 b2

xb
1

C2
xb
1

C1
xb
1

xb
2

C2
xb
2

C1
xb
2

xb
7

C2
xb
7

C1
xb
7

yb1
C2

yb1
C1

yb1

yb2
C2

yb2
C1

yb2

yb7 C2
yb7

C1
yb7

a1 a2

xa
1

C2
xa
1

C1
xa
1

xc
2

C2
xa
2

C1
xa
2

xa
7

C2
xa
7

C1
xa
7

ya1
C2

ya1
C1

ya1

ya2
C2

ya2
C1

ya2

ya7 C2
ya7

C1
ya7

a

b c

G

Figure 4.7: The reduction of an instance G of Dominating Set on circle graphs to an
instance G→ of Defensive AllianceF in Theorem 4.4.1. Here 2n + 1 = 7. One degree
forbidden vertices introduced in Step 4 are not shown here.

90

the solution where d = dG(x). This shows that D is a defensive alliance of size at most k→ in
G→.

Conversely, suppose that G→ admits a defensive alliance D of size at most k→ such that
D ↘ V↫ = ≃. We define

V↔ = C ↔

⋃

v↑V (G)

Xv
↔ Y v.

We first show that V↔ ↗ D. Since D in non-empty, it should contain a vertex from either
V↔ or V (G1) ↔ V (G2). We consider the following cases:

Case 1: Suppose D contains a vertex from C. Without loss of generality, we may assume
that D contains a vertex u from V (C1

xv). It is easy to see that u is protected if and only if
all its non-forbidden neighbours are inside D because the number of forbidden neighbours
of u is equal to the number of non-forbidden neighbours. This implies that xv

↓ D. It
is easy to note that either Cxv ↗ D or Cxv ↘ D = ≃. Since dG→(xv) = 15 and xv has 6

forbidden neighbours, the above observation implies that C1
xv ↔ C2

xv ↗ D. This implies that
2n+1⋃
i=1

C1
xv
i
↔ C2

xv
i
↗ D. This in turn implies that Xv

↗ D. Note that every vertex of C2
xv
2n+1

is adjacent to every vertex of C1
xw
2n+1

(resp. C1
yw2n+1

) for some w ↓ G such that u, w are con-
secutive elements in the sequence S and w appears for the first (resp. second) time in the

sequence. Therefore
2n+1⋃
i=1

C1
xw
i
↔ C2

xw
i
↗ D and also Xw

↗ D if w appears for the first time

in the sequence; whereas
2n+1⋃
i=1

C1
ywi

↔ C2
ywi

↗ D and also Y w
↗ D if w appears for the second

time in the sequence. Repeatedly applying the above argument, we get V↔ ↗ D.

Case 2: Suppose D contains a vertex from
⋃

v↑V (G)

Xv
↔Y v. Without loss of generality, we may

assume that D contains xv from Xv. We observe that the protection of xv clearly requires
at least one vertex from the set C1

xv ↔ C2
xv . Now, Case 1 implies that V↔ ↗ D.

Case 3: Suppose D contains a vertex v from V (G1) ↔ V (G2). The protection of v requires

91

x
x→

x

x→

Figure 4.8: The circle representation to get rid of forbidden vertices when k→ = 2.

at least one vertex from the set Xv
↔ Y v. Now, Case 2 implies that V↔ ↗ D.

Observe that |V↔| = 7n(4n + 2). Therefore |D ↘ (V (G1) ↔ V (G2))| → n + k. For each
v ↓ V (G), the protection of every vertex in Xv

↔ Y v requires either v1 or v2 inside the
solution. Since, v1 and v2 are twins, we can assume that V (G2) ↗ D. Let v2 ↓ V (G2). We
see that v2 has d + 1 + 4n + 2 neighbours (including itself) inside the solution. The vertex
v2 has 4n + 3 forbidden neighbours. The only unsettled neighbours of v2 are in V (G1) and
v2 has d + 1 neighbours in V (G1). For protection of each v2 ↓ V (G2), we require at least
one neighbour from V (G1) inside the solution. We can add at most k vertices from V (G1)

to the solution as we have already added 7n(4n + 2) + n vertices. Clearly, S = V (G1) ↘D

is a dominating set of size at most k.

4.4.1 Proof of Theorem 4.4.1

It is easy to see that the problem is in NP. To show that the problem is NP-hard we give
a polynomial reduction from Defensive AllianceF. Let (G, k, V↫) be an instance of
Defensive AllianceF, where G is a circle graph. We construct an instance (G→, k→) of
Defensive Alliance the following way. For every x ↓ V↫, create a vertex x→ and a set
of 2k→ vertices V x

↫ . Make both x and x→ adjacent to every vertex in V x
↫ . This completes the

construction of G→. Set k→ = k.

We observe in Figure 4.8 that the constructed graph G→ is indeed a circle graph, and
the construction can be performed in time polynomial in n. We now claim that G admits
a defensive alliance D of size at most k such that D ↘ V↫ = ≃ if and only if G→ admits a
defensive alliance D→ of size at most k→. Assume first that D is a defensive alliance of size at
most k in G such that D ↘ V↫ = ≃. Consider D→ = D. Clearly, D→ is a defensive alliance of

92

size at most k→ in G→. Conversely, suppose that G→ admits a defensive alliance D→ of size at
most k→. Observe that D→

↘
⋃

x↑V↭
V x
↫ ↔ {x, x→

} = ≃. As x and x→ are of degree 2k→, they cannot

be part of a defensive alliance of size at most k→. As x and x→ are outside D→, the vertices in
V x
↫ cannot be in D→. Consider D = D→. Clearly, D is a defensive alliance of size at most k in

G such that D ↘ V↫ = ≃.

4.5 Closing Remarks and Future Directions

In this work we proved that the Defensive Alliance problem is W[1]-hard parameterized
by a wide range of fairly restrictive structural parameters such as the feedback vertex set
number, pathwidth, treewidth, treedepth, and clique width of the input graph, even when
restricted to bipartite graph. We also proved that the problem parameterized by the vertex
cover number of the input graph does not admit a polynomial compression unless coNP ↗

NP/poly; it cannot be solved in time 2o(n), unless ETH fails, and the Defensive Alliance
problem on circle graphs is NP-complete. By the construction of our proofs in Section 4.1, it
is clear that hardness also holds for problem variants that ask for defensive alliances exactly
of a given size. In the future it may be interesting to study if our ideas can be useful for
di"erent kinds of alliances from the literature such as o"ensive and powerful alliances. The
parameterized complexity of defensive alliance problems remain unsettled when parameter-
ized by other important structural graph parameters like twin cover and modular-width. It
will also be interesting to study W[t]-membership of Defensive Alliance problem param-
eterized by treewidth. In [18], Hans L. Bodlaende, Gunther Cornelissen and Marieke van der
Wegen put up an open question that whether Defensive Alliance is XNLP-hard when
parameterized by treewidth. Note that this would imply that Defensive Alliance is
W[t]-hard for all t when parameterized by treewidth of the input graph. It is also interesting
to see if Defensive Alliance is W[1]-hard when parameterized by stable gonality [18].

93

94

Chapter 5

Locally Minimal Defensive Alliance in
Graphs

This chapter deals with the problem Locally Minimal Defensive Alliance: Given an
undirected graph G = (V,E) and an integer k, the question is whether there is a vertex subset
D ↗ V of at least k vertices satisfying the following two conditions: 1. Each x ↓ D has at
least as many neighbors (including itself) in S as it has neighbors not in D. 2. Removing any
vertex from D destroys Condition 1 for at least one remaining vertex in D. A vertex subset
of any size fulfilling the first condition is called a defensive alliance. Clearly, the vertex set of
the whole graph is a defensive alliance. Any defensive alliance satisfying the second condition
is called a locally minimal defensive alliance. Locally Minimal Defensive Alliance
is known to be NP-hard and its parameterized complexity has been studied before, but the
question whether it is FPT when parameterized by the solution size k has still remained
open. This question is answered positively here. Further results are a kernel with kO(k)

vertices on C3-free and C4-free graphs of minimum degree at least two and a subexponential
algorithm with respect to k for planar graphs of minimum degree at least 2. This chapter is
based on the paper [69].

5.1 Main Results and Proof Techniques

Theorem 5.1.1. Locally Minimal Defensive Alliance is FPT.

95

The proof of Theorem 5.1.1 relies on a win/win argument. We first find the diameter of
G in polynomial time. We show that if diam(G) ⇐ 4k2, then the given instance (G, k) is
a yes-instance (see Theorem 5.2.4). Hence, we assume that diam(G) < 4k2. If G has a
high-degree vertex v such that v has a large number of neighbours of degree ⇐ 2, then we
show that G has a locally minimal defensive alliance of size at least k (Lemma 5.2.9). If
G has a high-degree vertex v such that v has a small number of neighbours of degree ⇐ 2,
then we give an FPT algorithm to check whether there is a locally minimal defensive alliance
containing v (Lemma 5.2.11). If G has no high-degree vertices, then as diam(G) < 4k2, the
number of vertices in G is bounded by a function of k alone, and we are done. Our algorithm
starts with trivial defensive alliance V (G) and tries to construct a locally minimal defensive
alliance of size at least k in a greedy fashion. Either we succeed in this process or derive some
useful structural properties of the greedy solution. The di!cult part is to keep witnesses of
minimality for our solution. This is highly non-trivial and uses several interesting ideas.

The running time of our algorithm on general graphs is quite large and thus we also study
the problem on special graph classes and obtain exponential kernels in polynomial time.

Theorem 5.1.2. Locally Minimal Defensive Alliance on C3-free or C4-free graphs
of minimum degree at least 2, admits a kernel with at most kO(k) vertices.

The proof of the above theorem uses some subtle structural observations on these special
graph classes which allows us to bound the maximum degree of the input graph by O(k2)

to obtain the kernel mentioned in Theorem 5.1.2. The next special class of graphs that we
consider are planar graphs. On this class we obtain a subexponential time algorithm.

Theorem 5.1.3. Locally Minimal Defensive Alliance on the planar graphs of min-
imum degree at least 2, admits an FPT algorithm with running time kO(

↗
k).

The proof of this theorem relies on a win/win argument that exploits the relation between
treewidth and the linear grid theorem [54]. We show that the existence of “!10

↗
k+4” as

a minor obtained by only edge contractions guarantees the existence of locally minimal
defensive alliance of size at least k. When this case does not arise, we use a dynamic
programming algorithm on graphs of treewidth at most O(

⇒
k) and maximum degree ”

with running time ”O(
↗
k)nO(1). Finally, to get the required time complexity mentioned in

Theorem 5.1.3, we show that if the maximum degree of the input graph is at least O(k5),
then there always exists a locally minimal defensive alliance of size at least k.

96

Finally, getting rid of the minimum degree 2 requirement in both Theorems 5.1.2 and
5.1.3, are interesting open questions.

5.2 FPT algorithm parameterized by solution size

Let D be a defensive alliance in G. A vertex u ↓ D is said to be a good vertex if it has at
least one marginally protected neighbor in D. A vertex u ↓ D is said to be a bad vertex if
it has no marginally protected neighbor in D. In this section we propose a simple greedy
algorithm (Algorithm 1) that takes as input a defensive alliance and returns a locally minimal
defensive alliance. At each iteration of Algorithm 1, if D contains a bad vertex, we identify
it and remove from D. During the execution of Algorithm 1, a good vertex may become a
bad vertex and finally gets removed from D. For an illustration, see the graph in Figure

v goodop

w goodop
ubad
mp

x

y

v badmp

w badmp
u

x

y

Figure 5.1: Left hand side figure shows a graph G and a defensive alliance D. The vertices
of D are shown in green; u is a bad vertex where as v and w are good vertices. Right hand
side figure shows the defensive alliance after the first iteration of Algorithm 1. Note that
initially v and w are good vertices but after the first iteration of Algorithm 1, they become
bad vertices.

5.1. The vertices of defensive alliance D are shown in green. Here u is marginally protected
(mp) where as v and w are over protected (op); v and w are good vertices as they have a
marginally protected neighbour u; on the other hand u is a bad vertex as it has no marginally
protected neighbour in D. At the end of the first iteration, u is removed from D as u is a bad
vertex. Then v and w become bad vertices as they have no marginally protected neighbour
in the updated D. Finally, v and w are also removed from D. We now introduce the notion
of crucial vertices in a defensive alliance.

A good vertex is called a crucial vertex of D if it is not removed from D during the exe-
cution of Algorithm 1. Consider the graph in Figure 5.2. During the execution of Algorithm
1, only u4 will be removed from D; u1, u2, u3 will not be removed from D. Thus u1, u2, u2

are crucial vertices. Note that u1 and u2 are adjacent and marginally protected in D.

97

u0 u1

good

mp
u2

good

mp
u3

good

op
u4

bad

op

u5 u6

Figure 5.2: A graph G and a defensive alliance D = {u1, u2, u3, u4}. Here u1, u2 and u3 are
crucial vertices of D.

Now we characterize crucial vertices in a defensive alliance D. Suppose u1 and u2 are two
marginally protected and adjacent vertices in D. Let ND({u1, u2}) be the set of neighbours
of {u1, u2} in D. It is easy to note that during the execution of Algorithm 1, the vertices of
{u1, u2}↔ND({u1, u2}) remain good and hence never removed from D. Thus the vertices in
{u1, u2}↔ND({u1, u2}) are crucial vertices. More formally, we have the following definition:

Definition 5.2.1. Let D be a defensive alliance in G. A vertex u ↓ D is said to be a crucial
vertex of D if u has a marginally protected neighbor u1 in D and u1 also has a marginally
protected neighbor u2 in D (u2 and u are not necessarily distinct vertices).

Lemma 5.2.1. A defensive alliance D of size at least two is a locally minimal defensive
alliance in G if and only if every vertex of D is crucial.

Proof. Suppose D is a locally minimal defensive alliance of size at least two in G. For
any u ↓ D, D \ {u} is not a defensive alliance. This implies that u must have a marginally
protected neighbor u1 in D. Due to the same reason u1 must also have a marginally protected
neighbor u2 in D. Therefore u is a crucial vertex in D. On the other hand, suppose every
vertex of D is crucial. Therefore, for any u ↓ D, D \ {u} cannot form a defensive alliance as
u is adjacent to a marginally protected vertex in D. We

now propose a simple greedy algorithm that takes as input a defensive alliance and returns
a locally minimal defensive alliance.

During the execution of Algorithm 1, a good vertex may become a bad vertex and finally
gets removed from D. Similarly during the execution of Algorithm 1, a good or bad vertex
may become a crucial vertex, and then it never gets deleted from D. For example, see Figure
5.3.

Lemma 5.2.2. Let u be a crucial vertex in Din. Then the locally minimal defensive alliance
D obtained by Algorithm 1 contains u.

98

Algorithm 1
Require: A graph G = (V,E) and a defensive alliance Din in G
Ensure: A locally minimal defensive alliance D
1: D = Din

2: while D contains a bad vertex do
3: Identify a bad vertex u ↓ D
4: D = D \ {u}
5: end while
6: return D

Proof. As u is a crucial vertex in Din, u has a marginally protected neighbor u1 in Din and
u1 also has a marginally protected neighbor u2 in Din. As u1 has a marginally protected
neighbor u2 in Din and similarly u2 has a marginally protected neighbor u1 in Din, u1, u2

will never be removed during the execution of Algorithm 1. As u has a marginally protected
neighbor u1 which will never be removed, u will also never be removed from Din. Thus the
locally minimal defensive alliance D obtained by Algorithm 1 contains all crucial vertices of
Din.

We now modify Algorithm 1. Note that in Algorithm 1, the bad vertices of D were
getting removed from Din in an arbitrary order. In the following algorithm, we restrict the
order in which the bad vertices will be removed from Din. First, the bad vertices of Din \C

will be removed, and then the bad vertices of C will be removed. Note that due to Lemma
5.2.2, we know that if there exists a defensive alliance Din that contains k crucial vertices
then we have a locally minimal defensive alliance D of size at least k. The importance of
introducing the set C is explained in the next lemma.

Algorithm 2
Require: A graph G = (V,E), a defensive alliance D ↗ V (G) and a set C ↗ D.
Ensure: A locally minimal defensive alliance.
1: while D \ C contains a bad vertex of D do
2: Identify a bad vertex u ↓ D \ C
3: D = D \ {u}
4: end while
5: run Algorithm 1 on (G,D).

Lemma 5.2.3. Suppose D0 is the defensive alliance obtained at the end of the while loop
in Algorithm 2. Then every vertex in D0 \ N [C] is a crucial vertex of D0. Furthermore,
every vertex in D0 \N [C] will be there in the locally minimal defensive alliance obtained at

99

v0

(i) Initially D = Din (ii) Iter. 1: D = {v1, v2, v3, v4} (iii) Iter. 2: D = {v1, v2, v3}

v1

v2
v3

v4

v5
v6
v7
v8

v9
v10
v11
v12

v0

v1

v2
v3

v4

v5
v6
v7
v8

v9
v10
v11
v12

v0

v1

v2
v3

v4

v5
v6
v7
v8

v9
v10
v11
v12

Figure 5.3: The execution of Algorithm 1 on the input graph G and Din = {v0, v1, v2, v3, v4}.
In each iteration, green vertices are in D and red vertices are outside D. (i) Initially the
vertices v1, v2, v3, v4 are good in Din as they have a marginally protected neighbor v0. On the
other hand, v0 is a bad vertex in Din as it has no marginally protected neighbor in Din (note
that vertices v1, v2, v3, v4 are overprotected in Din). (ii) In the first iteration, we remove the
bad vertex v0 and get D = {v1, v2, v3, v4}. All the vertices of D are bad. (iii) In the second
iteration, we remove say v4 and get D = {v1, v2, v3}. Note that all the vertices of D are
good as well as crucial in D now. Thus the algorithm stops and returns D = {v1, v2, v3}, a
locally minimal defensive alliance. It is important to note that initially, v4 was a good vertex
in D = Din, but it has been removed from D during the execution of the algorithm. Thus
during the execution of Algorithm 1, a good vertex may become bad and get deleted; but a
crucial vertex will never be deleted.

the end of Algorithm 2.

Proof. Let u be an arbitrary vertex in D0\N [C]. Since every vertex in D0\C has a marginally
protected neighbor in D0, u also has a marginally protected neighbor u1 in D0. Clearly, u1

is in D0 \ C. Therefore u1 also has a marginally protected neighbor u2 (u2 can be u) in D0.
By Definition 5.2.1, u is a crucial vertex in D0. Therefore every vertex in D0 \ N [C] is a
crucial vertex. Due to Lemma 5.2.2, since every vertex in the set D0 \N [C] is crucial in D0,
applying Algorithm 1 will return a locally minimal defensive alliance which contains the set
D0 \N [C].

Next, we show that a correct choice of C in Algorithm 2 can generate a locally minimal
defensive alliance of size at least k in G.

100

5.2.1 Graphs with diameter ⇐ 4k2

Let G be a graph with diam(G) ⇐ 4k2. In this section, we prove that G contains a locally
minimal defensive alliance of size at least k. In particular, we prove the following theorem.

Theorem 5.2.4. Let k be a positive integer and Sin be a defensive alliance in G. If
diam(G[Sin]) ⇐ 4k2, then G has a locally minimal defensive alliance of size at least k.
Moreover, such a locally minimal defensive alliance can be obtained in polynomial time.

We will begin by applying Algorithm 3 on defensive alliance Sin.

Algorithm 3
Require: A graph G = (V,E) and a defensive alliance Sin in G
Ensure: A modified defensive alliance S
1: S = Sin

2: while S has either a degree one bad vertex or a bad vertex with a degree one neighbor
in S do

3: for each u ↓ S do
4: if u is a bad vertex and degG(u) = 1 then
5: S = S \ {u}
6: end if
7: end for
8: for each v ↓ S do
9: if v is a bad vertex and v has a neighbor say u in S with degG(u) = 1 then

10: S = S \ {v}
11: end if
12: end for
13: end while
14: return S

Lemma 5.2.5. Let S be the defensive alliance obtained at the end of Algorithm 3. Let
u, v ↓ S be two adjacent vertices such that degG(u) = 1 and v be the only neighbor of u in
G. Then both u and v are crucial.

Proof. As u is a degree one vertex, its only neighbor v ↓ S must be marginally protected;
otherwise, u is a bad vertex and the for loop of line 2-6 in Algorithm 3 would have deleted
u. Note that u is overprotected. Thus v must be adjacent to a marginally protected vertex
w in S; otherwise the for loop of line 7-11 in Algorithm 3 would have deleted v. This shows
that both u and v must be crucial in S. This completes the proof of the lemma.

101

Let S be the defensive alliance obtained at the end of Algorithm 3. Note that G[S] may
be disconnected. Suppose S1, S2, . . . , Sl are the connected defensive alliances such that S =
l⋃

i=1
Si.

Lemma 5.2.6. For each i ↓ [l], Algorithm 1 on (G,Si) produces a locally minimal defensive
alliance of size of at least two.

Proof. For the sake of contradiction, suppose Algorithm 1 on (G,Si) produces a locally
minimal defensive alliance {u} of size exactly one. It is easy to see that u must be a degree
one vertex. Suppose the only neighbor of u is v. By Lemma 5.2.5, both u and v are crucial
vertices in Si. So the connected locally minimal defensive alliance obtained by Algorithm 1
on (G,Si) contains both u and v, a contradiction to the assumption that it is of size exactly
one. This proves the lemma.

Lemma 5.2.7. Suppose Sin is the input defensive alliance in Algorithm 3. Suppose the
diameter of graph G[Sin] ⇐ 4k2, that is, there exists a pair of vertices u, v ↓ Sin such that
d(u, v) = 4k2 in G[Sin]. Let P = (u = v0, v1, v2, . . . , v4k2 = v) be a shortest u ↑ v path in
G[Sin]. Then for each 1 → i → 4k2

↑ 1, either vi ↓ S or vi+1 ↓ S where S is the defensive
alliance obtained at the end of Algorithm 3.

Proof. For the sake of contradiction suppose that both vi and vi+1 are not in S for some
1 → i → 4k2

↑ 1. As both vi and vi+1 have a degree of at least two, they must have been
deleted by Algorithm 3 during the execution of second for loop of lines 8-12. Observe that
vi and vi+1 must have at least one neighbor of degree one. As these degree one neighbors
are not deleted during the execution of the first for loop, it implies that vi and vi+1 are
marginally protected. As vi is adjacent to vi+1, it is clear that both vi and vi+1 are crucial.
Therefore Algorithm 3 cannot delete either of them. This is a contradiction.

Due to Lemma 5.2.7, it is clear that if diam(G[Sin]) ⇐ 4k2 either S contains a connected
defensive alliance Si of diameter at least 8k or a collection of at least k

2 connected defensive
alliances S1, S2, . . . , Sl. In the latter case, it is easy to see that one can obtain a locally
minimal defensive alliance of size at least two by simply applying Algorithm 1 on (G,Si) for
each i. This is true due to Lemma 5.2.6.

Lemma 5.2.8. If there is a connected defensive alliance Si of diameter at least 8k then there
exists a locally minimal defensive alliance of size at least k.

102

Proof. As diam(G[Si]) ⇐ 8k, there exists a pair of vertices w0 and w8k such that d(w0, w8k) =

8k in G[Si]. Let P = (w0, w1, . . . , w8k) be a shortest w0-w8k path in G[Si]. Set C = {w4i | 0 →

i → 2k}. Run Algorithm 2 on (G,Si, C). Let Si(C) be the defensive alliance obtained at
the end of the while loop of lines 1-4 in Algorithm 2. Note that Si(C) may not be a
connected defensive alliance. Suppose G[Si(C1)], G[Si(C2)], . . . , G[Si(Cp)] are the connected
components of Si(C) which generates a partition of C into p parts C1, C2, . . . , Cp such that
Cj ↗ Si(Cj) for all j ↓ [p]. Line 5 of Algorithm 2 executes Algorithm 1 on (G,Si(C)), that
is, it executes Algorithm 1 on (G,Si(Cj)) for all j ↓ [p].

Claim 5.2.1. Line 5 of Algorithm 2 runs Algorithm 1 on (G,Si(Cj)) and outputs a locally
minimal defensive alliance Sij such that |Sij| ⇐ max

{
2, |Cj|↑ 1

}
for all j ↓ [p].

Proof. Due to Lemma 5.2.6, we always have |Sij| ⇐ 2 as Si(Cj) ↗ Si. We now prove that
Algorithm 1 on input instance (G,Si(Cj)) returns a locally minimal defensive alliance Sij

of size at least |Cj| ↑ 1. Suppose Cj = {c1, . . . , cq}, q ⇐ 2. We know d(cl, cl+1) ⇐ 4 and
d(w0, cl) < d(w0, cl+1) in G[Si(Cj)] for all 1 → l → q↑1. As G[Si(Cj)] is connected, a shortest
path between cl and cl+1 in G[Si(Cj)] contains a vertex, say x, such that x ↓ Si(Cj) \N [Cj].
By Lemma 5.2.3, x is a crucial vertex in Si(Cj). As Cj has q vertices, we have at least
q ↑ 1 crucial vertices in Si(Cj). By Lemma 5.2.2, the locally minimal defensive alliance Sij

returned by line 4 of Algorithm 2 contains all q ↑ 1 crucial vertices of Sij. Thus we have
|Sij| ⇐ q ↑ 1. This completes the proof of the claim.

As the closed neighborhood of one Sij does not intersect others and |C| ⇐ 2k, we get
p⋃

j=1
Sij

is a locally minimal defensive alliance of size at least k. This completes the proof of the
lemma.

5.2.1.1 Proof of Theorem 5.2.4

Proof. We present a polynomial-time algorithm to obtain a locally minimal defensive alliance

of size at least k. We begin by applying Algorithm 3 on (G,Sin). Let S =
l⋃

i=1
Si be the

defensive alliance obtained at the end of Algorithm 3 where S1, S2, . . . , Sl are connected
defensive alliances such that N [Si] ↘ Sj = ≃ for all i, j ↓ [l] and i ⇑= j. Due to Lemma
5.2.6, we know that applying Algorithm 1 on each Si returns a locally minimal defensive

103

alliance of size at least 2. Therefore we can assume that l < k
2 , otherwise it is a yes instance.

As diameter of G[S] ⇐ 4k2 and l < k
2 , due to Lemma 5.2.7 we observe that there exists

i ↓ [l] such that diam(G[Si]) ⇐ 8k. Due to Lemma 5.2.8, one can obtain a locally minimal
defensive alliance of size at least k by applying Algorithm 2 on (G,Si). As Algorithm 1, 2
and 3 run in polynomial time, the above algorithm runs in polynomial time as well. This
completes the proof of Theorem 5.2.4.

5.2.2 Graphs with diameter < 4k2

Let G be a graph with diam(G) < 4k2. We consider two cases: ”(G) is large and ”(G) is
small.

5.2.2.1 ”(G) is large:

We partition the set of vertices of G into two parts H and L. We define

H = {v ↓ V (G) | deg(v) > 2f0(k)} and L = {v ↓ V (G) | deg(v) → 2f0(k)}

where f0(k) = kkc0k for some large constant c0. The vertices of H are called high-degree
vertices. For each v ↓ V , we define N2(v) = {u ↓ N(v) | deg(u) ⇐ 2} and N1(v) = {u ↓

N(v) | deg(u) = 1}. We further partition H into two parts

H1 = {v ↓ H | |N2(v)| < f0(k)} and H2 = {v ↓ H | |N2(v)| ⇐ f0(k)}.

Lemma 5.2.9. If H2 ⇑= ≃ then there exists a locally minimal defensive alliance of size at
least k in G.

Proof. Let us assume that u0 ↓ H2. We will show that there exists a locally minimal defen-
sive alliance of size at least k in G.

Case 1. Let us assume that |N1(u0)| → |N2(u0)|. This implies that V (G) \ N1(u0) is a
defensive alliance. This is true because the number of neighbors of u0 in V (G) \ N1(u0) is
greater than or equal to the number of neighbors of u0 in N1(u0). So u0 is protected; the

104

other vertices are clearly protected. Now run Algorithm 2 on (G, V (G) \N1(u0), {u0}) and
suppose it returns D0.

Subcase 1.1 If u0 ↓ D0 then at least deg(u0)
2 > k neighbors of u0 are in D0 for its pro-

tection. That means, |D0| ⇐ k.

Subcase 1.2 Suppose u0 is not in D0. Let D→

0 be the defensive alliance obtained at the
end of the while loop of lines 1-4 in Algorithm 2 and all neighbors of u0 in D→

0 are overpro-
tected. This is why u0 is deleted from D→

0 in line 5. We partition the vertices of defensive
alliance D→

0\{u0} into two parts: part P u0
1 ↗ N2(u0) contains vertices adjacent to u0 and part

P u0
2 contains vertices not adjacent to u0. Note that all the vertices in P u0

1 have a degree of
at least two. Due to Lemma 5.2.3, the vertices of P u0

2 will be there in a final locally minimal
defensive alliance as they are crucial in D→

0. Thus we have |P u0
2 | → k ↑ 1, otherwise we can

obtain a solution of size at least k by applying Algorithm 1 on D→

0. Furthermore, every vertex
in P u0

2 has a degree at most 2k, or else we have a solution of size at least k. As every vertex
in P u0

2 has degree at most 2k, we prove that P u0
1 contains at least one vertex u1 with degree

at least f1(k) where f1(k) = kkc1k for some large constant c1. Note that G[D→

0\{u0}] contains
at most k

2 ↑ 1 connected components of size at least two, otherwise by applying Algorithm 1
on each of these defensive alliances, we will obtain a locally minimal defensive alliance of size
at least k. Moreover, every component of G[D→

0 \ {u0}] has diameter at most 4k2, otherwise
by Theorem 5.2.4, it is a yes instance. Therefore, if the maximum degree of G[D→

0 \ {u0}]

is f1(k) then we know that it contains at most O(k · f1(k)4k
2
) vertices. We also know that

G[D→

0 \ {u0}] contains at least O(f0(k)) vertices. Therefore, we get cf0(k) → c→k · f1(k)4k
2

where c and c→ are two positive real numbers. This implies

f1(k) ⇐
(c · f0(k)

c→ · k

) 1
4k2

.

Since we have f0(k) = kkc0k , we can assume that f1(k) = kkc1k for some large constant
c1 → c0. As we have proved that the maximum degree of G[D→

0 \ {u0}] is f1(k), there must
exist a vertex in P u0

1 with degree at least f1(k). Let us call that vertex u1.

We again run Algorithm 2 on (G,D→

0\{u0}, {u1}). Let D→

1 is a defensive alliance obtained
at the end of the while loop of lines 1-4 in Algorithm 2 on (G,D→

0 \ {u0}, {u1}). We can
apply the same argument as before and either obtain a locally minimal defensive alliance of
size at least k containing u1 or a defensive alliance D→

1 \{u1} containing a vertex u2 of degree

105

f2(k) = kkc2k for some large constant c2.

We repeat the same procedure k times. Let uk be the vertex obtained by the same pro-
cedure with a degree at least fk(k) = kkckk for some large constant ck. Call Algorithm 2 on
(G,D→

k↓1 \ {uk↓1}, uk) and suppose it returns Dk. If uk is in Dk then at least deg(uk)
2 > k

neighbors of uk are in Dk for its protection. That means we have a locally minimal defensive
alliance Dk of size at least k; so we are done. Suppose uk is not in Dk. Let D→

k be the
defensive alliance obtained at the end of the while loop of Algorithm 2. We assume that
all neighbors of uk in D→

k are overprotected and this is why uk is deleted. We partition the
vertices of defensive alliance D→

k \ {uk} into two parts: P uk
1 and P uk

2 . A vertex x is in part
P uk
1 if it is adjacent to all ui’s for i ↓ [k] and a vertex x is in part P uk

2 if it is not adjacent
to ui for any i ↓ [k]. By Lemma 5.2.3, the vertices of P uk

2 are crucial, and therefore these
crucial vertices will be there in the final locally minimal defensive alliance. If |P uk

2 | ⇐ k, then
we have a locally minimal defensive alliance of size at least k, and we are done. Thus we
assume |P uk

2 | < k. Consider a vertex x ↓ P uk
1 . By the definition of P uk

1 , x is adjacent to k+1

vertices u0, u1, . . . , uk which are outside the defensive alliance D→

k \ {uk}. As x is protected
in D→

k \ {uk} it must have at least k neighbors in D→

k \ {uk}. Thus degG(x) ⇐ 2k + 1. Line 6
of Algorithm 2 executes Algorithm 1 on (G,D→

k \{uk}); suppose it outputs S. We prove that
at least one vertex of P uk

1 will survive in S. For the sake of contradiction, assume that this
is false, that is, no vertex survive in S. Suppose vertex x in P uk

1 is deleted last. It has at
most k neighbors, including itself, in the current defensive alliance as P uk

2 contains at most
k ↑ 1 vertices and k + 1 neighbors outside the current defensive alliance. That means, x is
not protected, a contradiction to the fact that x is protected in D→

k \ {uk}. Therefore, the
locally minimal defensive alliance S obtained by Algorithm 2 contains a vertex of degree at
least 2k + 1; hence S is of size at least k.

Case 2. Let us assume that |N1(u0)| ⇐ |N2(u0)|. Suppose N(u0) = {u1, . . . , ul}. As we
know that |N1(u0)| ⇐ |N2(u0)|, without loss of generality, we can assume that deg(ui) = 1 for
i ↓

[
⇓
l↓1
2 ⇔

]
. Let us denote N↘

1 (u0) = {u1, u2, . . . , u≃
l↑1
2 ⇐

} ↗ N1(u0). Clearly, V (G)\N↘

1 (u0) is
a defensive alliance. Now run Algorithm 2 on (G, V (G) \N↘

1 (u0), {u0}). Suppose it returns
D0.

Subcase 2.1 If u0 ↓ D0, then there exists a locally minimal defensive alliance of size
at least k.

106

Subcase 2.2 Suppose u0 ⇑↓ D0. Let D→

0 be the defensive alliance obtained at the end of lines
1-4 in Algorithm 2 and all neighbors of u0 in D→

0 are overprotected. This is why we deleted
u0 from D→

u0
. As u0 is marginally protected in V (G) \N↘

1 (u0) and N2(u0) ↗ V (G) \N↘

1 (u0)

implies that N2(u0) ↗ D→

0. This is true because we cannot remove the neighbors of u0 any-
more in V (G) \ N↘

1 (u0) as u0 is marginally protected in V (G) \ N↘

1 (u0). Next, we consider
the defensive alliance D→→

0 = D→

0 \ (N1(u0) ↔ {u0}) where we get rid of degree one neighbors
of u0 from D→

0. Just as in Subcase 1.2, we can partition the vertices of D→→

0 into two parts
P u0
1 = {w ↓ N(u0)↘D→→

0} and P u0
2 = {w ⇑↓ N(u0) | w ↓ D→→

0)}. Clearly, all the vertices in P u0
1

are of degree at least 2, in fact, P u0
1 = N2(u0). Also, we know that |N2(u0)| = |P u0

1 | ⇐ f0(k).
From here on, we can apply the same argument as in Subcase 1.2 and obtain a locally min-
imal defensive alliance of size at least k. This proves Lemma 5.2.9. Now let us focus on

vertices in the set H1. First, we make some simple observations about vertices in H1.

Observation 5.2.1. Suppose u ↓ H1 is contained in a locally minimal defensive alliance
S and u is overprotected. Then u can be made marginally protected in S by moving some
degree one neighbors of u from S to V \ S.

Observation 5.2.2. A graph G has a defensive alliance D with a pair of adjacent marginally
protected vertices u, v ↓ D if and only if G has a locally minimal defensive alliance S in
which u is marginally protected.

Lemma 5.2.10. Given a partition of V (G) into three parts A,B,C, we can check in poly-
nomial time if there is a defensive alliance D in G such that A ↗ D and B ↘D = ≃. Also
if such a defensive alliance exists then it can be obtained in polynomial time.

Proof. We begin with the set D = A ↔ C. Note that D may not be a defensive alliance.
We keep removing the unprotected vertices from D until all the vertices are protected. Let
D→ be the defensive alliance obtained by this method. If A ↗ D→ then we return D→ as the
required defensive alliance. If A ⇑↗ D→ then one can see that there does not exist a defensive
alliance satisfying the given constraints.

Lemma 5.2.11. Given a vertex v ↓ H1 and H2 = ≃, we can determine if there exists a
locally minimal defensive alliance containing v in FPT time.

Proof. We know that there exists a locally minimal defensive alliance containing v if and
only if there exists a defensive alliance S where v is a crucial vertex. Thus our goal here is

107

to generate a defensive alliance where v is a crucial vertex. Due to Observation 5.2.1, we
can assume that v is marginally protected in S. Also due to Lemma 5.2.10, it is enough to
guess N(v)↘ S and N(N(v)↘ S)↘ S such that v will be marginally protected in S and also
have a marginally protected neighbor. Note that as v is marginally protected in S, guessing
S ↘ N2(v) already determines |S ↘ N1(v)|. As N1(v) is a set of degree one vertices, it also
determines S↘N1(v) as any subset of N1(v) of size |S↘N1(v)| will work. As |N2(v)| → f0(k),
it implies that there are at most 2f0(k) guesses for S↘N2(v) and therefore for N(v)↘S as well.
We partition the vertices in N(v) ↘ S ↗ N2(v) into two types. Type 1 contains vertices of
degree at most 2f0(k). Type 2 contains vertices of degree more than 2f0(k). Since we know
that H2 = ≃, all the vertices of type 2 are contained in H1. For every vertex w of type 1, we
can guess N(w) ↘ S as the number of guesses required are 2deg(w) where deg(w) → 2f0(k).
We also know that type 1 and type 2 vertices are bounded by f0(k). Since there are at most
f0(k) vertices of type 1, guessing N(type1) ↘ S will require at most 2(2f0(k))

2 guesses. Now
for every type 2 vertex w, since we know they are marginally protected in S, we need to
only guess N2(w) ↘ S. Since |N2(w)| → f0(k), we need to make 2f0(k) guesses. Determining
N2(w)↘S will automatically determine |N1(w)↘S| and therefore N1(w)↘S as well. We have
made at most 2O(2f0(k)2) guesses. Due to Lemma 5.2.10, we can check in polynomial time
whether there exists such a defensive alliance S, which satisfies the guesses above. If the
above conditions are satisfied by S, that is, v ↓ S, v is marginally protected, and v is crucial
then one can apply Algorithm 1 on S to get a locally minimal defensive alliance containing
v. Therefore we have an FPT algorithm to determine whether there exists a locally minimal
defensive alliance S containing v. Note that the running time of the algorithm is bounded
by 2(f0(k))

2
nO(1). By substituting the value of f0(k), we get the running time of the algorithm

to be 2k
kO(k)

nO(1). This proves Lemma 5.2.11.

Given a graph G, we first check whether H2 ⇑= ≃. If yes, then due to Lemma 5.2.9 conclude
that we are dealing with a yes-instance. Therefore, we can assume that H2 = ≃. Next, for
each v ↓ H1, we check in FPT time whether there exists a locally minimal defensive alliance
containing v. If there exists a locally minimal defensive alliance containing v then conclude
that we are dealing with a yes-instance as deg(v) > 2k. Therefore, we can assume that there
does not exist any locally minimal defensive alliance containing a vertex from H1. So we
remove the vertices of H1 from graph G. To do this, we create a weighted graph G→ from G in
the following way: G→ = G↑H1 and w : V (G→) ↖ Z is a weight function where w(v) is equal
to the number of neighbors of v in H1. Note that G→ can be a disconnected graph. Suppose

108

G→

1, G
→

2, . . . , G
→

l are the connected components of G→. We observe that D ↗ V (G→

i) is a defensive
alliance in G if for all v ↓ D, we have degD(v)+1 ⇐ degV (G→

i)\D
(v)+w(v). Given a connected

component G→

i, if there exists a vertex v ↓ V (G→

i) such that degG→

i
(v) + 1 < w(v) then we

update G→

i to G→

i↑{v} and update the weight of the vertices in G→

i↑{v} to w(u) = w(u)+1 for
all u ↓ N(v), otherwise we keep the same weight. This is true because such a vertex v cannot
be part of any locally minimal defensive alliance in G. Now let us assume that after this
“reduction" procedure, we get G→→

1, G
→→

2, . . . , G
→→

l→ , l→ → l, as nonempty connected components.

Claim 5.2.2. For each i ↓ [l→], V (G→→

i) forms a defensive alliance in G.

Proof. Let v ↓ V (G→→

i). We know that degV (G→→

i)
(v) + 1 ⇐ w(v), otherwise v must have been

deleted from G→→

i . Note that w(v) = degV (G)\V (G→→

i)
(v) by construction. Therefore, we have

degV (G→→

i)
(v) + 1 ⇐ degV (G)\V (G→→

i)
(v) for all v ↓ V (G→→

i). This completes the proof of the
claim.

Note that we have deleted the vertices v for which we know that there is no locally minimal
defensive alliance containing v. Now, one can check if diam(G[V (G→→

i)]) ⇐ 4k2 for some i. If
yes then conclude that we are dealing with a yes-instance due to Theorem 5.2.4. Therefore
we can assume that diam(G[V (G→→

i)]) < 4k2 for all i. We also know that ”(G→→

i) → 2f0(k).
This means that we have a weighted graph where a function of k bounds the size of each
connected component. From here, one can do brute force to find the largest locally minimal
defensive alliance in each G→→

i . Finally, we can add the sizes of the largest locally minimal
defensive alliances from di"erent connected components, and if the sum is at least k then
conclude that we are dealing with a yes-instance.

5.2.2.2 ”(G) is small:

Given a graph G, if we know that ”(G) is at most kkc0k for some constant c0 and also
that the diameter of each connected component is at most 4k2 then clearly each connected
component size is bounded by a function of k only. As explained in previous paragraph, we
can easily get a locally minimal defensive alliance of size at least k in FPT time.

109

5.2.3 Proof of Theorem 5.1.1

Given a graph G, we first check if the diameter of G is at least 4k2. This can be done in
polynomial time. If yes, then due to Theorem 5.2.4 it is a yes instance. Hence, we assume
that the diameter of G is less than 4k2. We find a vertex v in G with maximum degree ”(G).
As explained in Section 5.2.2.1, if ”(G) > kkc0k for some constant c0 then we can solve the
problem in FPT time. Finally, if ”(G) → kkc0k then due to Section 5.2.2.2, we know how
to find a locally minimal defensive alliance of size at least k in FPT time. Let us calculate
the total time required to solve the problems in Section 5.2.2.1 and Section 5.2.2.2. One
can observe that the worst case time complexity is obtained when we solve the problem by
brute force technique. Therefore the worst case time complexity is essentially the number of
subsets of connected components whose maximum degree is bounded by 2f0(k) and diameter
is bounded by 4k2. That is, we need to consider at most 2f0(k)

4k2 many subsets. Therefore,
we get the worst case time complexity to be 2k

kO(k3)

.nO(1). This proves Theorem 5.1.1.

5.3 Kernels for Locally Minimal Defensive Alliance

restricted to C3-free and C4-free graphs

In this section we give improved kernels for Locally Minimal Defensive Alliance
restricted to C3-free and C4-free graphs, when the parameter is the solution size k. The
following lemma is the basis for our kernelization algorithm.

Lemma 5.3.1. Let G be a C3-free graph with a minimum degree at least 2. If ”(G) ⇐ 4k2

then G has a locally minimal defensive alliance of size at least k.

Proof. Suppose d(u) = 4k2. Run BFS(G, u) to obtain the BFS tree T rooted at u and to
get level for each vertex in G. Let Li be the set of vertices at level i of T . Run Algorithm
2 on (G, V (G), u) and suppose it outputs D. If u ↓ D then clearly D is a locally minimal
defensive alliance of size at least 2k2 as the degree of u is 4k2 and u is protected in D.
Consider the case where u is not in D. Let D→ be the defensive alliance obtained at line 5
of Algorithm 2. As u is protected in D→ at least 2k2 of its neighbours are in L1 ↘ D→. All
neighbors of u in L1 ↘ D→ are overprotected, this is why u is deleted from D→ in line 6. As
G is triangle-free and ω(G) ⇐ 2, every x ↓ L1 ↘D→ has least one neighbour in L2 ↘D→. We

110

know every vertex from level 2 or higher that survives in the defensive alliance obtained by
Algorithm 2 is crucial and they remain in the final locally minimal defensive alliance. This
implies that there are at most k↑ 1 vertices in D→

↘L2, otherwise we have a solution of size
at least k. Note that there are at least 2k2 vertices in D→

↘ L1, at most k ↑ 1 vertices in
L2 ↘D→ and each vertex in D→

↘ L1 has at least one neighbor in L2 ↘D→. By the Pigeonhole
principle there exists a vertex w ↓ L2 ↘D→ of degree at least 2k. As w is crucial it is in the
final solution. Moreover, as d(w) ⇐ 2k, the final locally minimal defensive alliance is of size
at least k.

Lemma 5.3.2. Let G be a C4-free graph with a minimum degree of at least 2. If ”(G) ⇐

4k2
↑ 2k then G has a locally minimal defensive alliance of size at least k.

Proof. Let d(u) ⇐ 4k2
↑ 2k. Run BFS(G, u) to obtain the BFS tree T rooted at u and to

get level for each vertex in G. Run Algorithm 2 on (G, V (G), u) and suppose it outputs D.
If u ↓ D then clearly D is a locally minimal defensive alliance of size at least 2k2

↑ k as the
degree of u is 4k2

↑2k and u is protected in D. Consider the case where u is not in D. Let D→

be the defensive alliance obtained at line 5 of Algorithm 2. As u is protected in D→ at least
2k2

↑ k of its neighbours are in L1↘D→. All neighbors of u in L1↘D→ are overprotected, this
is why u is deleted from D→ in line 6. Now let us focus on G[L1 ↘D→]. It may be noted that
the maximum degree of a vertex in G[L1 ↘D→] is at most 1 as G is C4-free. As ω(G) ⇐ 2, all
isolated vertices in G[L1↘D→] must have at least one neighbour in L2↘D→. Every vertex from
level 2 or higher that survives in the defensive alliance obtained by Algorithm 2 is crucial
and it remains in the final locally minimal defensive alliance. Thus we assume there are at
most k↑ 1 vertices in D→

↘L2, otherwise we have a solution of size at least k. Furthermore,
every vertex in D→

↘L2 has a degree at most 2k, or else we have a solution of size at least k.
This implies that there are at most 2k2

↑ 2k vertices in G[N(u)↘D→] which have neighbour
in L2 ↘ D→. Note that there are still k vertices that have no neighbor in L2 ↘ D→; so they
must have at least one neighbor in L1 ↘D→. As G[N(u) ↘D→] has maximum degree one, we
must have at least k

2 isolated edges in G[D→
\ {u}]. As these k

2 isolated edges in G[D→
\ {u}]

are connected defensive alliances such that the closed neighborhood of one defensive alliance
does not intersect the other, we get a locally minimal defensive alliance of size at least k.

111

5.3.1 Proof of Theorem 5.1.2

Proof. If ”(G) ⇐ 4k2 or diam(G) ⇐ O(k) then we get a yes instance due to Lemma 5.3.1,
Lemma 5.3.2 and the Lemma 5.4.4 . Therefore, we assume G has ”(G) < 4k2 and diam(G) <

O(k) which produces a kernel of size kO(k).

5.4 FPT algorithm for Locally Minimal Defensive Al-

liance on planar graphs

It is proved in [71] that the Locally Minimal Defensive Alliance is NP-complete
in planar graphs via a reduction from Minimum Maximal Matching in a cubic planar
graph. In this section, we design an FPT algorithm for Locally Minimal Defensive
Alliance on planar graphs with ω(G) ⇐ 2. We use a win/win approach to design an FPT
algorithm for Locally Minimal Defensive Alliance on planar graphs. For n ↓ N, by
[n] we denote the set {1, 2, . . . , n}. For a positive integer t, a t ↙ t grid ↬t is a graph with
vertex set {(x, y) : x, y ↓ [t]} and two di"erent vertices (x, y) and (x→, y→) are adjacent if
and only if |x↑ x→

|+ |y ↑ y→| = 1. The triangulated grid !t is obtained from the grid ↬t by
adding the edges (x+ 1, y), (x, y+ 1) for all 1 → x, y → t↑ 1 and additionally making vertex
(t, t) adjacent to the whole border of ↬t. Theorem 5.4.1 gives the relationship between the
treewidth and the size of a triangulated grid as a contraction.

Theorem 5.4.1. [54] (Planar excluded grid theorem for edge contractions). For
every connected planar graph G and integer t > 0, if tw(G) > 9t + 5 then G contains !t as
a contraction. Furthermore, for every ε > 0 there exists an O(n2) algorithm that, given a
connected planar n-vertex graph G and an integer t, either outputs a tree decomposition of
G of width (9 + ε)t+ 5 or a set of edges whose contraction in G results in !t.

We now obtain the following result.

Lemma 5.4.2. Let G be a planar graph of minimum degree at least 2 which contains a
triangulated grid !10

↗
k+4 as a minor obtained by only edge contraction operations. Then

there always exists a locally minimal defensive alliance of size at least k.

Proof. The proof of Lemma 5.4.2 is similar to that of Lemma 5.2.8. Given that G can be

112

transformed to !t after a sequence of edge contractions. Suppose that the vertices of !t are
labelled (i, j) where i, j ↓ [t]. Consider the set C → = {(4x + 2, 4y + 2) | 0 → x, y →

t↓4
5 } ∝

V (!t). See Figure 5.4 for an illustration; the vertices of C → are shown in red. Every (red)
vertex in !t is either an original vertex of G or obtained by contracting some edges of G.
We obtain a set C ↗ V (G) from C → as follows. For each (red) vertex (i, j) in C →, if the red
vertex is an original vertex, then include it in C; if the red vertex is obtained by contracting
some edges of G, then arbitrarily include in C an endpoint of one of the contracted edges.
Run Algorithm 2 on (G, V (G), C). Let DC be a defensive alliance obtained at the end of

Figure 5.4: Example of a triangulated grid !14. Note that a blue edge denotes that the
vertex is adjacent to all the vertices inside the blue boundary. The set of vertices colored
red forms C →.

the while loop of lines 1-4 in Algorithm 2. Note that DC may not be a connected defensive

alliance. Let S1, S2, . . . , Sp be connected components of DC such that
p⋃

i=1
Si = DC . This

implies that DC will generate a partition of C into C1, C2, . . . , Cp such that Ci ↗ Si.

Claim 5.4.1. Line 6 of Algorithm 2 runs Algorithm 1 on (G,Si) and outputs a locally
minimal defensive alliance S →

i such that |S →

i| ⇐ max
{
2, |Ci|↑ 1

}
for all 1 → i → p.

Proof of Claim: As we have ω(G) ⇐ 2, we have |S →

i| ⇐ 2. Therefore let us focus on Ci’s such
that |Ci| ⇐ 4. Let Ci = {c1, c2, . . . , cq}. Then dG(cs, ct) ⇐ 4 for all 1 → s, t → q↑ 1 and s ⇑= t

due to choice of C. Note that as G[Si] is connected, it implies that G[Si] contains at least
q ↑ 1 crucial vertices in the defensive alliance Si. This is because any path between cs and
ct in G[Si] contains a vertex u such that d(u, Ci) ⇐ 2 for all 1 → i → q ↑ 1. Due to Lemma
5.2.2, we have |S →

i| ⇐ q ↑ 1. This completes the proof of the lemma.

113

If we set t = 10
⇒
k + 4 then |C| ⇐ 2k. It implies that

p⋃
i=1

S →

i is a locally minimal defensive

alliance of size at least k. This completes the proof of the lemma.

To design a dynamic programming algorithm on a given tree decomposition of the input
graph, we use the following theorem.

Theorem 5.4.3. [71] Given an n-vertex graph G and its nice tree decomposition T of width
at most w, the size of a maximum locally minimal defensive alliance of G can be computed
in time O

↘(18w”O(w)).

In the next lemma, we improve the bound given in Theorem 5.2.4, for graphs with
minimum degree at least two. Note that the proof is similar to Lemma 5.2.8.

Lemma 5.4.4. Let G be a graph such that ω(G) ⇐ 2 and S be a connected defensive alliance
of diameter at least 8k→ where k→ is any positive integer then there exists a locally minimal
defensive alliance of size at least k→.

Proof. As diam(G[S]) ⇐ 8k→, there exists a pair of vertices w0 and w8k→ such that d(w0, w8k→) =

8k→ in G[S]. Let P =< w0, w1, . . . , w8k→ > be a shortest w0-w8k→ path in G[S]. Set C =

{w4i | 0 → i → 2k→
}. Run Algorithm 2 on (G,S, C). Let S(C) be the defensive alliance

obtained at the end of the while loop of lines 1-4 in Algorithm 2. Note that S(C) may
not be a connected defensive alliance. Suppose S(C1), S(C2), . . . , S(Cp) are the connected
components of S(C) which generates a partition of C into p parts C1, C2, . . . , Cp such that
Cj ↗ S(Cj) for all j ↓ [p]. Line 5 of Algorithm 2 executes Algorithm 1 on (G,S(C)), that
is, it executes Algorithm 1 on (G,S(Cj)) for all j ↓ [p].

Claim 5.4.2. Line 5 of Algorithm 2 runs Algorithm 1 on (G,S(Cj)) and outputs a connected
locally minimal defensive alliance Sj such that |Sj| ⇐ max

{
2, |Cj|↑ 1

}
for all j ↓ [p].

Proof. As we have ω(G) ⇐ 2, any (locally minimal) defensive alliance in G must be of size
at least 2. Therefore, we get |Sj| ⇐ 2. We now prove that Algorithm 1 on input instance
(G,S(Cj)) returns a connected locally minimal defensive alliance Sj of size at least |Cj|↑ 1.
Suppose Cj = {c1, . . . , cq}, q ⇐ 2. We know d(cl, cl+1) ⇐ 4 and d(w0, cl) < d(w0, cl+1) in
G[S(Cj)] for all 1 → l → q↑1. As G[S(Cj)] is connected, a shortest path between cl and cl+1

in G[S(Cj)] contain a vertex, say x, such that x ↓ S(Cj) \ N [Cj]. By Lemma 5.2.3, x is a
crucial vertex in S(Cj). As Cj has q vertices, we have at least q↑1 crucial vertices in S(Cj).

114

By Lemma 5.2.2, the locally minimal defensive alliance Sj returned by line 4 of Algorithm 2
contains all q↑ 1 crucial vertices of Sj. Thus we have |Sj| ⇐ q↑ 1. This completes the proof
of the claim.

As the closed neighbourhood of one Sj does not intersect others and |C| ⇐ 2k→, we get
p⋃

j=1
Sj

is a locally minimal defensive alliance of size at least k→. This completes the proof of the
lemma.

Corollary 5.4.5. Let l and k be positive integers and S1, S2, . . . , Sl be a set of connected
defensive alliance in G with ω(G) ⇐ 2 such that N [Si]↘Sj = ≃ for all i ⇑= j and i, j ↓ [l]. If

8.(di + 1) > diam(G[Si]) ⇐ 8.di for some integer di such that
l∑

i=1
di ⇐ k then G has a locally

minimal defensive alliance of size at least k. Also, such a locally minimal defensive alliance
can be obtained in polynomial time.

Proof. Due to Lemma 5.4.4, given a defensive alliance Si one can obtain a locally minimal
defensive alliance of size at least di for di ⇐ 1. Note that when di = 0, one can simply apply
algorithm 1 on Si to get a locally minimal defensive alliance of size at least 2. It is easy
to see that the union of such locally minimal defensive alliances is also a locally minimal

defensive alliance as N [Si] ↘ Sj = ≃ for all i ⇑= j and i, j ↓ [l]. Since
l∑

i=1
di ⇐ k, we get a

locally minimal defensive alliance of size at least k.

Finally, to design an FPT algorithm when parameterized by the solution size k, we prove
the following lemma.

Lemma 5.4.6. Let G be a planar graph with a minimum degree of at least 2. If ”(G) ⇐ ck5

where c is a su!ciently large constant then there exists a locally minimal defensive alliance
of size at least k.

Proof. Let v be any vertex such that d(v) ⇐ ck5. Run BFS(G, v) to obtain the BFS tree T

rooted at v and to get the level for each vertex in G. We will first run the Algorithm 2 on
(G, V (G), v) and suppose it outputs D0. If v ↓ D0 then at least d(v)

2 > k neighbours of v are
in D0 for its protection. Therefore D0 is a locally minimal defensive alliance of size at least
k. Consider the case v is not in D0. Let D1 be the defensive alliance obtained at the end of

115

v

w

r1 r2

r3

r4 r5 r6 r7 r8

Figure 5.5: A planar drawing of the vertices in (D↘L1)↔{v}. The vertices colored green are
inside the defensive alliance, and the vertices colored red are outside the defensive alliance.

the while loop of lines 1-4 in Algorithm 2 and all neighbors of v in D1 are overprotected.
This is why v is deleted from D0. As we have discussed before, the vertices in D1 ↘ L⇒2 are
crucial. Therefore if D1 ↘L⇒2 contains more than k↑ 1 vertices or any of them has a degree
more than 2k, then we have a locally minimal defensive alliance of size at least k. So we
assume |D1 ↘ L⇒2| → k ↑ 1 and every vertex in D1 ↘ L⇒2 has degree less than 2k. Now we
consider the defensive alliance D = D1 \ {v}. As v was protected in D1, D ↘ L1 contains at
least ′

ck5

2 ∞ vertices.

Case 1. Let us assume that there exists a vertex w in D ↘ L1 such that it has at least
34k neighbours in D ↘ L1. In this case, we run Algorithm 2 on (G,D, {w}) and suppose it
outputs D2. If w ↓ D2 then at least d(w)

2 > k neighbours of w are in D2 for its protection.
Therefore D2 is a locally minimal defensive alliance of size at least k. Consider the case
w is not in D2. Let D3 be the defensive alliance obtained at the end of the while loop
of lines 1-4 in Algorithm 2, and all neighbors of w are overprotected in D3. This is why
w is deleted from D3. Let us denote D4 = D3 \ {w}. Since w was protected in D3 and
it had at most k ↑ 1 neighbours in D ↘ L⇒2, D4 must contain at least 16k vertices from
set N(w) ↘ N(v). As D4 may not be a connected defensive alliance, let us assume that

D4 =
l⋃

i=1
D4i where D41, D42, . . . , D4l be a set of connected defensive alliance in G such that

N [D4i] ↘D4j = ≃ for all i ⇑= j and i, j ↓ [l]. Due to planarity of the graph, one can observe
that diam(G[D4i]) ⇐ max{1, |D4i ↘ N(w) ↘ N(v)| ↑ 1}. See Figure 5.5 for an illustration.

This shows that
l∑

i=1
diam(G[D4i]) ⇐ 8k. Due to Corollary 5.4.5, a locally minimal defensive

alliance of size at least k exists.

116

Case 2. We assume that every vertex in D↘L1 has at most 34k neighbors in the set D↘L1.
As |D ↘ L⇒2| → k ↑ 1, the maximum degree of graph G[D] is at most 35k. As D contains
at least ck5

2 vertices and ”(G[D]) → 35k, one can greedily construct a 4-scattered set C in a
graph G[D] of size at least c→k2 for a large constant c→, assuming that c is su!ciently large.
Next run Algorithm 2 on (G, V (G), C). Let DC be a defensive alliance obtained at the end
of the while loop of lines 1-4 in Algorithm 2. Note that DC be a defensive alliance. Let

S1, S2, . . . , Sp be connected component of DC such that
p⋃

i=1
Si = DC . This implies that DC

will generate a partition of C into C1, C2, . . . , Cp such that Ci ↗ Si.

Claim 5.4.3. Line 6 of Algorithm 2 runs Algorithm 1 on (G,Si) and outputs a locally
minimal defensive alliance S →

i such that |S →

i| ⇐ max
{
2, |Ci|

35k

}
for all 1 → i → p.

Proof. Clearly, as minimum degree of G is at least 2 implies that |S →

i| ⇐ 2. Therefore let
us focus on Ci’s such that |Ci| ⇐ 70k. Let Ci = {c1, c2, . . . , cq}. We have d(ci→ , cj→) ⇐ 4 for
all 1 ⇐ i→, j→ ⇐ q and i→ ⇑= j→ in G[Si] as Ci is a 4-scattered set in G[Si]. All the vertices in
Si \ N [Ci] are crucial in Si due to Lemma 5.2.3. To get a lower bound on the number of
crucial vertices, we make the following observation. Let us consider the subgraphs G[N [Ci]]

as an induced subgraph of graph G[Si]. Clearly the induced subgraph G[N [Ci]] have exactly
q many connected components. For any vertex subset {x1, x2, . . . , xl} ↗ Si \ N [Ci], the
induced subgraph G[N [Ci] ↔ {x1, x2, . . . , xl}] will contain at least max{1, q ↑ (35k)l} con-
nected components as ”(G[Si]) → 35k. As we know that G[Si] is connected, we must have
|Si \N [Ci]| ⇐

q
35k which is essentially the number of crucial vertices in the defensive alliance

Si. Therefore we get that |S →

i| ⇐
|Ci|

35k . This proves the claim.

Due to the claim above, we see that
p∑

i=1
|S →

i| ⇐

p∑
i=1

c→k2

35k ⇐ k as c→ is a large constant. Also, it

is easy to see that
p⋃

i=1
S →

i is a locally minimal defensive alliance.

117

5.5 Locally Minimal Defensive Alliance Parameter-
ized by Treewidth

This section presents an XP-algorithm for Locally Minimal Defensive Alliance prob-
lem parameterized by treewidth. We prove the following theorem:

Theorem 5.5.1. Given an n-vertex graph G and its nice tree decomposition T of width at
most k, the size of a maximum locally minimal defensive alliance of G can be computed in
O(18kn4k+10) time.

Let (T, {Xt}t↑V (T)) be a nice tree decomposition rooted at node r of the input graph G.
For a node t of T , let Vt be the union of all bags present in the subtree of T rooted at t,
including Xt. We denote by Gt the subgraph of G induced by Vt. Here we distinguish not
only if a vertex is in the solution or not, but if it is in the solution we also distinguish if it is
marginally protected or not. A coloring of bag Xt is a mapping f : Xt ↖ {b, w, r} assigning
three di"erent colours to vertices of the bag. We give intuition behind the three colours.

• White, represented by w. The meaning is that all white vertices have to be contained
in the partial solution in Gt.

• Black, represented by b. The meaning is that all black vertices have to be contained in
the partial solution in Gt; additionally, all black vertices must be marginally protected
in the final solution.

• Red, represented by r. The meaning is that all red vertices are not contained in the
partial solution in Gt.

For a node t, there are 3|Xt| colourings Xt. Now, for each node t in T , we construct a table
dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) ↓ {true, false} where f is a colouring of Xt, p is a vector of length
n such that

p(i) =





0 or 1 if vi ↓ Xt and f(vi) ↓ {b, w}

φ otherwise;

a and v are vectors of length n, and their ith coordinates are positive only if vi is in
Xt and it is coloured b or w; ϑ, ϖ, ϱ, ϱ↘ and ς are integers between 0 to n. We set
dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) = true if and only if there exists a set At ↗ Vt such that

118

1. ϑ = |At| = |{v ↓ Vt : f(v) ↓ {b, w}}|

2. f↓1
{b, w} = At ↘Xt = A, which is the set of vertices of Xt colored black or white.

3. the ith coordinate of vector p is

p(i) =






1 if vi ↓ Xt, f(vi) ↓ {b, w} and vi has a black neighbour in At

0 if vi ↓ Xt, f(vi) ↓ {b, w} and vi has no black neighbours in At

φ otherwise

4. the ith coordinate of vector a is

a(i) =





dAt(vi) if vi ↓ Xt and f(vi) ↓ {b, w}

0 otherwise

That is, a(i) denotes the number of neighbours of vertex vi in At if vi ↓ Xt and
f(vi) ↓ {b, w}.

5. the ith coordinate of vector v is

v(i) =





dVt(vi) if vi ↓ Xt and f(vi) ↓ {b, w}

0 otherwise.

That is, v(i) denotes the number of neighbours of vertex vi in Vt if vi ↓ Xt and
f(vi) ↓ {b, w}.

6. ϖ is the number of vertices v ↓ At that are protected, that is, dAt(v) ⇐
dG(v)↓1

2 .

7. ϱ is the number of black vertices in At.

8. ϱ↘ is the number of black vertices v in At such that N(v) ↗ Vt and dAt(v) = ⇓
dG(v)↓1

2 ⇔.
Thus ϱ↘ is the number of black vertices v in At that are marginally protected when
all its neighbours are introduced in Gt. The intuition here is that we want every back
vertex to be marginally protected when all its neighbours are introduced.

9. ς is the number of vertices in At who has a black neighbour. In other words, ς is the
number of good vertices in At.

119

We compute all entries dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) in a bottom-up manner. Since tw(T) → k,
there are O(3k · 2k · nk

· nk
· (n+ 1)5) = O(6kn2k+5) possible tuples (f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς).

Thus, to prove Theorem 5.5.1, it su!ces to show that each entry dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς)

can be computed in O(3kn2k+5) time, assuming that the entries for the children of t are
already computed.

Lemma 5.5.2. For a leaf node t, dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) can be computed in O(1) time.

Proof. For leaf node t we have that Xt = ≃. Thus dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) is true if and
only if f = ≃, p = 0, a = 0, v = 0, ϑ = 0, ϖ = 0, ϱ = 0, ϱ↘ = 0 and ς = 0. These conditions
can be checked in O(1) time.

Lemma 5.5.3. For an introduce node t, dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) can be computed in O(1)
time.

Proof. Suppose t is an introduce node with child t→ such that Xt = Xt→ ↔ {vi} for some
vi /↓ Xt→ . Let f be any coloring of Xt. We consider three cases:

Case (i): Let f(vi) = r. In this case dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) is true if and only if
dpt→(f |Xt→

,p, a,v→,ϑ, ϖ, ϱ, ϱ↘, ς) is true where

v(j) =





v→(j) + 1 if j ⇑= i, vj ↓ Xt, f(vj) ↓ {b, w} and vj ↓ NXt(vi)

v→(j) otherwise

Case (ii): Let f(vi) = b. Here dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) is true if and only if there exist a
tuple (f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘

→

, ς→) such that dpt→(f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘
→

, ς→)=true, where

1. f |Xt\{vi} = f →
|Xt→

;

2.

p(j) =





1 if vj ↓ Xt, f(vj) ↓ {b, w} and vj ↓ N(vi)

p→(j) otherwise

120

3.

a(j) =






a→(j) + 1 if j ⇑= i, vj ↓ Xt, f(vj) ↓ {b, w} and vj ↓ NXt(vi)

|NA(vi)| if j = i

a→(j) otherwise

where A = At ↘Xt.

4.

v(j) =






v→(j) + 1 if j ⇑= i, vj ↓ Xt, f(vj) ↓ {b, w} and vj ↓ NXt(vi)

|NXt(vi)| if j = i

v→(j) otherwise

5. ϑ = ϑ→ + 1;

6. ϖ = ϖ→ + l; here l is the cardinality of the set

{
vj ↓ Xt | f(vj) ↓ {b, w}, a→(j) <

dG(vj)↑ 1

2
; a(j) ⇐

dG(vj)↑ 1

2

}
.

That is, to compute ϖ from ϖ→ we need to add the number l of vertices vj ↓ Xt which
are not protected in Xt→ but protected in Xt.

7. ϱ = ϱ→ + 1;

8. ϱ↘ = ϱ↘
→

+ ω

where ω is the number of black vertices vj ↓ Xt such that a→(j) ⇑= ⇓
dG(vj)↓1

2 ⇔ or v→(j) ⇑=

d(vj) but it satisfies the conditions a(j) = ⇓
dG(vj)↓1

2 ⇔ and v(j) = d(vj).

9. ς = ς→ + |{vj ↓ A | p(j) = 1 but p→(j) = 0}|.

Case (iii): Let f(vi) = w. Here dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) is true if and only if there exist a
tuple (f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘

→

, ς→) such that dpt→(f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘
→

, ς→)=true, where

1. f |Xt\{vi} = f →;

2.

p(j) =






p→(j) if j ⇑= i

1 if j = i and vi has a black neighbour in Xt

0 if j = i and vi has no black neighbours in Xt

121

3.

a(j) =






a→(j) + 1 if j ⇑= i, vj ↓ Xt, f(vj) ↓ {b, w} and vj ↓ NXt(vi)

|NA(vi)| if j = i

a→(j) otherwise

where A = At ↘Xt.

4.

v(j) =






v→(j) + 1 if j ⇑= i, vj ↓ Xt, f(vj) ↓ {b, w} and vj ↓ NXt(vi)

|NXt(vi)| if j = i

v→(j) otherwise

5. ϑ = ϑ→ + 1;

6. ϖ = ϖ→ + l; here l is the cardinality of the set

{
vj ↓ Xt | f(vj) ↓ {b, w}, a→(j) <

dG(vj)↑ 1

2
; a(j) ⇐

dG(vj)↑ 1

2

}
.

That is, to compute ϖ from ϖ→ we need to add the number l of vertices vj ↓ Xt which
are not protected in Xt→ but protected in Xt.

7. ϱ = ϱ→;

8. ϱ↘ = ϱ↘
→

+ ω

where ω is the number of black vertices vj ↓ Xt such that a→(j) ⇑= ⇓
dG(vj)↓1

2 ⇔ or v→(j) ⇑=

d(vj) but it satisfies the conditions a(j) = ⇓
dG(vj)↓1

2 ⇔ and v(j) = d(vj).

9. ς = ς→ + 1 if vi is adjacent to a vertex in Xt which is coloured black; otherwise ς = ς→.

For introduce node t, dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) can be computed in O(1) time as there is
only one candidate of such tuple (f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘

→

, ς→).

Lemma 5.5.4. For a forget node t, dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) can be computed in O(n)

time.

Proof. Suppose t is a forget node with child t→ such that Xt = Xt→ \ {vi} for some vi ↓ Xt→ .
Here dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) is true if and only if dpt→(f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘

→

, ς→) is true,

122

where

1. f → = fvi⇑b, fvi⇑w or fvi⇑r.

2.

p(j) =





p→(j) if j ⇑= i

φ if j = i

3. a(j) = a→(j) for all j ⇑= i and a(i) = 0;

4. v(j) = v→(j) for all j ⇑= i and v(i) = 0;

5. ϑ = ϑ→;

6. ϖ = ϖ→;

7. ϱ = ϱ→;

8. ϱ↘ = ϱ↘
→ ;

9. ς = ς→.

There are n + 1 choices for a→(i) and v→(i) each. Thus the lemma follows as there are O(n)

candidates of such tuples (f →,p→, a→,v→,ϑ→, ϖ→, ϱ→, ϱ↘
→

, ς→). This completes the proof of the
lemma.

Lemma 5.5.5. For a join node t, dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) can be computed in O(3kn3k+5)

time.

Proof. Suppose t is a join node with children t1 and t2 such that Xt = Xt1 = Xt2 . Then
dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) is true if and only if there exist (f1,p1, a1,v1,ϑ1, ϖ1, ϱ1, ϱ↘

1 , ς1) and
(f2,p2, a2,v2,ϑ2, ϖ2, ϱ2, ϱ↘

2 , ς2) such that dpt1(f1,p1, a1,v1,ϑ1, ϖ1, ϱ1, ϱ↘

1 , ς1) and dpt2(f2,p2, a2,v2,ϑ2, ϖ2, ϱ2, ϱ↘

2 , ς2)

are true, where

1. f = f1 = f2;

123

2. p(i) = 1 if p1(i) = 1 or p2(i) = 1;

3. a(i) = a1(i) + a2(i) ↑ dA(vi) for all vi ↓ A, and a(i) = 0 if vi /↓ A where A = {v ↓

Xt | f(v) ↓ {b, w}};

4. v(i) = v1(i) + v2(i)↑ dXt(vi) for all vi ↓ A, and v(i) = 0 if vi /↓ A;

5. ϑ = ϑ1 + ϑ2 ↑ |A|;

6. ϖ = ϖ1 + ϖ2 ↑ l1 + l2;
where l1 is the cardinality of the set

{
vj ↓ A | a1(j) ⇐

dG(vi)↑ 1

2
; a2(j) ⇐

dG(vi)↑ 1

2

}

and l2 is the cardinality of the set

{
vj ↓ A | a1(j) <

dG(vi)↑ 1

2
; a2(j) <

dG(vi)↑ 1

2
; a(j) ⇐

dG(vi)↑ 1

2

}
.

To compute ϖ from ϖ1+ϖ2, we need to subtract the number of those vj which are pro-
tected in both the branches and add the number of vertices vj which are not protected
in either of the branches t1 and t2 but protected in t.

7. ϱ = ϱ1 + ϱ2 ↑ |{v ↓ A | f(v) = b}|;

8. ϱ↘ = ϱ↘

1 + ϱ↘

2 + ω1 + ω2 ↑ ω12.
Here ω1 is the number of black vertices vj in Xt such that a1(j) ⇑= ⇓

dG(vj)↓1
2 ⇔ or v1(j) ⇑=

d(vj) but it satisfies the conditions a(j) = ⇓
dG(vj)↓1

2 ⇔ and v(j) = d(vj). Similarly, ω2 is
the number of black vertices vj in Xt such that either a2(j) ⇑= ⇓

dG(vj)↓1
2 ⇔ or v2(j) ⇑= d(vj)

but it satisfies the conditions a(j) = ⇓
dG(vj)↓1

2 ⇔ and v(j) = d(vj). Finally ω12 is the
number of black vertices vj in Xt such that a1(j) ⇑= ⇓

dG(vj)↓1
2 ⇔ or v1(j) ⇑= d(vj), and

a2(j) ⇑= ⇓
dG(vj)↓1

2 ⇔ or v2(j) ⇑= d(vj) but it satisfies the conditions a(j) = ⇓
dG(vj)↓1

2 ⇔ and
v(j) = d(vj).

9. ς = ς1 + ς2 ↑ |{v ↓ A | p1(v) = p2(v) = 1}|.

For join node t, there are at most 3k possible pairs for (p1,p2) as (p1(i),p2(i)) ↓ {(1, 0), (0, 1), (1, 1)}

when p(i) = 1 and (p1(i),p2(i)) = (0, 0) when p(i) = 0; there are nk possible pairs for
(a1, a2) as a2 is uniquely determined by a1; there are nk possible pairs for (v1,v2) as v2 is

124

uniquely determined by v1; n+1 possible pairs for (ϑ1,ϑ2); n+1 possible pairs for (ϖ1, ϖ2);
n + 1 possible pairs for (ϱ1, ϱ2); n + 1 possible pairs for (ϱ↘

1 , ϱ
↘

2); and n + 1 possible pairs
for (ς1, ς2). In total, there are O(3kn2k+5) candidates, and each of them can be checked in
O(1) time. Thus, for join node t, dpt(f,p, a,v,ϑ, ϖ, ϱ, ϱ↘, ς) can be computed in O(3kn2k+5)

time.

At the root node r, we look at all records such that dpr(≃, ≃, ≃, ≃,ϑ, ϖ, ϱ, ϱ↘, ς)= true, ϱ = ϱ↘

(that is, all black vertices in the solution are marginally protected) and ϑ = ϖ = ς (that
is, every vertex in the solution is protected and has a black or marginally protected neigh-
bour). The size of a maximum locally minimal defensive alliance is the maximum ϑ satisfying
dpr(≃, ≃, ≃, ≃,ϑ, ϖ, ϱ, ϱ↘, ς)= true, ϑ = ϖ = ς and ϱ = ϱ↘.

Remark. The above algorithm implies that Locally Minimal Defensive Alliance
can be solved in polynomial time on trees.

5.6 Closing Remarks and Future Directions

We showed that Locally Minimal Defensive Alliance is FPT when parameterized
by solution size. On the C3-free and C4-free graphs with minimum degree at least 2, we
have provided a kernel of size kO(k). When restricted to planar graphs with minimum degree
at least 2, we have designed an algorithm with running time kO(

↗
k)nO(1). It remains open

whether Locally Minimal Defensive Alliance admits a kernel of polynomial size. Also
it would be interesting to know if our ideas can be used to decide if Globally Minimal
Defensive Alliance is FPT when parameterized by solution size.

125

126

Chapter 6

Globally Minimal Defensive Alliance

A defensive alliance in an undirected graph G = (V,E) is a non-empty set S of vertices
satisfying the condition that every vertex v ↓ S has at least as many neighbours (including
itself) in S as it has in V \ S. We consider the notion of global minimality in this chapter.
A defensive alliance S is called a globally minimal defensive alliance if no proper subset
is a defensive alliance. Given an undirected graph G and a positive integer k, we study
Globally Minimal Defensive Alliance, where the goal is to check whether G has
a globally minimal defensive alliance of size at least k. This problem is NP-hard but its
parameterized complexity remains open until now. The goal of this chapter is to provide new
insights into the complexity of Globally Minimal Defensive Alliance parameterized
by the structure of the input graph. We show that the problem is FPT parameterized by the
neighbourhood diversity of the input graph. The result for neighborhood diversity implies
that the problem is FPT parameterized by vertex cover number also. We prove that the
problem parameterized by the vertex cover number of the input graph does not admit a
polynomial compression unless coNP ↗ NP/poly. We show that the problem is W[1]-hard
parameterized by a wide range of fairly restrictive structural parameters such as the feedback
vertex set number, pathwidth, treewidth and treedepth. We also prove that, given a vertex
r ↓ V (G), deciding if G has a globally minimal defensive alliance of any size containing
vertex r is NP-complete. This chapter is based on the paper [63].

127

6.1 FPT algorithm parameterized by neighbourhood di-
versity

In this section, we show that when parameterized by neighbouhood diversity, the problem
of finding a largest globally minimal defensive alliance is fixed-parameter tractable. In this
section, we prove the following theorem:

Theorem 6.1.1. Globally Minimal Defensive Alliance can be solved in time kO(k2)
·

nO(1) where k is the neighbourhood diversity of the input graph.

We reduce the problem of finding a largest globally minimal defensive alliance to an
integer linear programming optimization with k variables. Since integer linear programming
is fixed parameter tractable when parameterized by the number of variables [99], we conclude
that our problem is FPT when parameterized by the neighbourhood diversity k.

6.1.1 ILP formulation

Let G be a connected graph such that nd(G) = k. In this section we assume that we have
the partition of V (G) into sets of type classes C1, . . . , Ck. We assume k ⇐ 2 since otherwise
the problem becomes trivial. We prove the following lemma.

Lemma 6.1.2. Suppose S1, S2 ↗ V (G) are such that |S1 ↘ Ci| = |S2 ↘ Ci| for all i ↓ [k]. If
S1 is a GMDA in G then S2 is also a GMDA in G.

Proof. Suppose S1 is a globally minimal defensive alliance in G. For each i ↓ [k], the vertices
in S1 ↘ Ci and S2 ↘ Ci have the same neighbourhood in G as the vertices in Ci have the
same neighbourhood in G. Therefore S2 is also a globally minimal defensive alliance in G.
Similarly, given S2 is a globally minimal defensive alliance in G, it is easy to prove that S1

is also a globally minimal defensive alliance in G.

Let xi = |Ci ↘ S| where S is a globally minimal defensive alliance. We define the following
sets:

C0 = {Ci | xi = 0}; I0 = {i | Ci ↓ C0}

128

C1 = {Ci | xi = 1}; I1 = {i | Ci ↓ C1}

C⇒2 = {Ci | xi ⇐ 2}; I⇒2 = {i | Ci ↓ C⇒2}

Our goal here is to find a largest globally minimal defensive alliance S of G, with Ci ↘S = ≃

when Ci ↓ C0, |Ci ↘ S| = 1 when Ci ↓ C1 and |Ci ↘ S| ⇐ 2 when Ci ↓ C⇒2 where C0, C1 and
C⇒2 are given. By Lemma 6.1.2, the variables xi determine S uniquely. The objective is to
maximize the sum

|I1|+


i↑[k]

xi[Ci ↓ C⇒2]

under the condition 2 → xi → |Ci| = ni for all i ↓ [k] and the additional conditions (Type 1
and Type 2) described below. Here [Ci ↓ C⇒2] denotes the Iverson bracket.

Type 1 Condition: For each i ↓ [k] we add the condition given in Equation 1. This is
called type 1 condition. Type 1 conditions ensure that the vertices in Ci for all i ↓ [k] are
protected. Define

K = the collection of all clique type classes.

A vertex v from Ci is protected if and only if dS(v) ⇐ dG(v)↓1
2 , that is,

(xi ↑ 1)[Ci ↓ K] +


j↑[k]

1↙ [Cj ↓ NH(Ci) ↘ C1] +


j↑[k]

xj[Cj ↓ NH(Ci) ↘ C⇒2]

⇐
dG(v)↑ 1

2
(6.1)

Type 2 Conditions: Let x = (x1, . . . , xk) be the vector corresponds to S ↗ V (G). We
want to make sure that the vector x = (x1, . . . , xk) or S forms a globally minimal defensive
alliance, that is, no proper subset of S forms a defensive alliance. Type 2 conditions ensure
that no proper subset of S is a defensive alliance. To do this, we use the idea of Proposition
5 in [12] which is a polynomial time algorithm to check whether a given defensive alliance
is globally minimal or not. Note that given a defensive alliance S, we will first remove an
arbitrary vertex v from it. If S is globally minimal, clearly S \ {v} cannot be a defensive
alliance. To get a defensive alliance we must delete all the unprotected vertices of S \{v}. In
this way, if we keep on removing all the unprotected vertices then at the end we must be left
with an empty set otherwise the non-empty set remaining at the end will form a defensive

129

alliance which is impossible if S is a globally minimal defensive alliance. We repeat this for
all vertices v in S. Note that the vertices in a type class have the same number of defenders
in S and the same number of attackers outside S. This implies if one vertex of a type
class becomes unprotected then all the vertices of that type class become unprotected. As
the neighbourhood diversity of G is bounded by k, we guess an ordering of type classes in
which we want them to become unprotected. We now summarize the above discussion in
the following lemma.

Lemma 6.1.3. Let I1↔I⇒2 = {i1, i2, . . . , ir}, r → k. Then, S is a globally minimal defensive
alliance in G if and only if for every il ↓ I1 ↔ I⇒2 there exists

ϖil =





a permutation of elements of I1 ↔ I⇒2, if il ↓ I⇒2

a permutation of elements of (I1 \ {il}) ↔ I⇒2, if il ↓ I1

such that

1. Vertices in Cωil (i1) are unprotected in S \ {v} for any v ↓ Cil .

2. Define Sωil (i1) = (S \ {v}) \Cωil (i1) and Sωil (ij) = Sωil (ij↑1) \Cωil (ij) for all j > 1. Then,
the vertices in Cωil (ij+1) are unprotected in Sωil (ij) for all j ⇐ 1 and finally Sωil (ir) = ≃

if il ↓ I⇒2, otherwise Sωil (ir↑1) = ≃ if il ↓ I1.

Proof. The forward direction follows from the idea of Proposition 5 in [12]. Suppose S is
globally minimal in G. Clearly S \ {v} cannot be a defensive alliance for any v ↓ S; suppose
v is in the type class Cil . To get a defensive alliance we must delete all the unprotected
vertices of S \ {v}. The unprotected vertices of S \ {v} are in some type class. Suppose
the unprotected vertices are in the type class Cωil (i1). Note that if one vertex of Cωil (i1) is
unprotected in S \ {v} then all the vertices of Cωil (i1) are unprotected in S \ {v}. Thus we
remove all the elements of Cωil (i1) from S \ {v} and set Sωil (i1) = (S \ {v}) \Cωil (i1). Clearly,
Sωil (i1) cannot be a defensive alliance in G as S is a globally minimal defensive alliance.
Suppose the unprotected vertices of Sωil (i1) are in the type class Cωil (i2). Thus we remove all
the elements of Cωil (i2) from Sωil (i1) and set Sωil (i2) = Sωil (i1) \Cωil (i2). Again, using the same
argument, Sωil (i2) cannot be a defensive alliance in G, so remove all the unprotected elements
of Sωil (i2) and so on. In this way, if we keep on removing all the unprotected vertices then
at the end we must be left with an empty set otherwise the non-empty set remaining at the

130

end will form a defensive alliance which is impossible as S is a globally minimal defensive
alliance.

The reverse direction follows from the definition of a globally minimal defensive alliance.

Definition 6.1.1. Given il and ϖil , we say S ↗ V (G) is reducible by (il, ϖil) if S satisfies
the conditions of Lemma 6.1.3.

For given il and ϖil , we want S to satisfy the conditions in inequality 2 and 3. These are
called type 2 conditions. By Lemma 6.1.3, the vertices in Cωil (i1) must be unprotected in
S \ {v} for any v ↓ Cil . Let u ↓ Cωil (i1). Then u is unprotected in S \ {v} if and only if the
number of neighbours of u in S \ {v} is strictly less than dG(u)↓1

2 , that is,

(xil ↑ 1)[Cil ↓ NH(Cωil (i1)) ↘ C⇒2] +


j↑[k]

1↙ [Cj ↓ NH(Cωil (i1)) ↘ C1][j ⇑= l]+



j↑[k]

xj[Cj ↓ NH(Cωil (i1)) ↘ C⇒2][j ⇑= l] + (xωil (i1) ↑ 1)[Cωil (i1) ↓ K] <
dG(u)↑ 1

2
(6.2)

Let ij be the jth element of I1 ↔ I⇒2 and P il(ij) = {ϖil(i1), ϖil(i2), . . . , ϖil(ij)} for j ⇐ 1. Let
u ↓ Cωil (ij+1). Then u is unprotected in Sωil (ij) if and only if the number of neighbours of u
in Sωil (ij) is strictly less than dG(u)↓1

2 , that is,

(xil ↑ 1)[il /↓ P il(ij)][Cil ↓ NH(Cωil (ij+1)) ↘ C⇒2]+


i↑[k]

1↙ [Ci ↓ NH(Cωil (ij+1)) ↘ C1][i /↓ P il(ij) ↔ {il}]+



i↑[k]

xi[Ci ↓ NH(Cωil (ij+1)) ↘ C⇒2][i /↓ P il(ij) ↔ {il}]

+ (xωil (ij+1) ↑ 1)[Cωil (ij+1) ↓ K] <
dG(u)↑ 1

2
. (6.3)

Our algorithm for GMDA will use the following annotated problem as subroutine. In the
Annotated GMDA problem, we are given a graph G, type classes C1, C2, . . . , Ck of G, two
disjoint subsets I1, I⇒2 of {1, 2, . . . , k}, a permutation ϖil for each il ↓ I1 ↔ I⇒2 where

ϖil =





a permutation of elements of I1 ↔ I⇒2, if il ↓ I⇒2

a permutation of elements of (I1 \ {il}) ↔ I⇒2, if il ↓ I1

131

and the goal is to find a largest set S ↗ V (G) such that S ↘ Ci ⇑= ≃ if i ↓ I1 ↔ I⇒2 and S is
reducible by (il, ϖil) for all il ↓ I1 ↔ I⇒2.

An algorithm for Annotated GMDA: Let (G, (C1, . . . , Ck), I1, I⇒2, ϖil ∈ il ↓ I1↔I⇒2) be
an instance of Annotated GMDA. We reduce the problem of solving Annotated GMDA
to an integer linear programming optimization with at most k variables as follows:

Maximize |I1|+


i↑[k]

xi[Ci ↓ C⇒2]

Subject to

xi = 1 ∈ i ↓ I1

2 → xi → |Ci| = ni i ↓ I⇒2

Equation (1) ∈ Ci

Equation (2) ∈ il ↓ I1 ↔ I⇒2

Equation (3) ∈ il ↓ I1 ∈ j ↓ [r ↑ 1]

Equation (3) ∈ il ↓ I⇒2 ∈ j ↓ [r]

6.1.2 Running time

In our formulation for Annotated GMDA, we have at most k variables. The value of
the objective function is bounded by n and the value of any variable in the integer linear
programming is also bounded by n. The constraints can be represented using O(k2 log n)

bits. Therefore, Lemma 2.3.2 implies that we can solve the problem in kO(k)
· nO(1) time.

Lemma 6.1.4. If there exists an FPT algorithm for Annotated GMDA then there exists
an FPT algorithm for GMDA.

Proof. Suppose there exists an FPT algorithm for Annotated GMDA parameterized by
neighbourhood diversity k. Note that there are at most 3k(k!)k candidates for Annotated
GMDA instances. The reason is this. There are at most 3k candidates for I1 ↔ I⇒2 as each
Ci has three options: either in I0, I1 or I⇒2; there are at most (k!)k candidates for ϖl for

132

all l ↓ I1 ↔ I⇒2. In order to obtain a largest globally minimal defensive alliance, we first
solve all Annotated GMDA instances, then consider a largest solution over all Anno-
tated GMDA instances. Therefore, GMDA can be solved in FPT time parameterized by
neighbourhood diversity k.

We have already proved that the ILP formula for an Annotated GMDA can be solved
in kO(k)

· nO(1) time. As there are at most 3k(k!)k many instances of Annotated GMDA,
we can solve the GMDA in kO(k2)

· nO(1) time. Thus Theorem 6.1.1 holds.

6.2 No polynomial kernel parameterized by vertex cover
number

A set C ↗ V is a vertex cover of G = (V,E) if each edge e ↓ E has at least one endpoint
in X. The minimum size of a vertex cover in G is the vertex cover number of G, denoted
by vc(G). The problem is FPT parameterized by neighbourhood diversity implies that it
is FPT parameterized by vertex cover number vc. In this section we prove the following
kernelization hardness of Globally Minimal Defensive Alliance.

Theorem 6.2.1. Globally Minimal Defensive Alliance parameterized by the vertex
cover number of the input graph does not admit a polynomial compression unless coNP ↗

NP/poly.

To prove Theorem 6.2.1, we give a polynomial parameter transformation (PPT) from the
well-known Red Blue Dominating Set problem (RBDS) to Globally Minimal De-
fensive Alliance parameterized by vertex cover number. Recall that in RBDS we are
given a bipartite graph G = (T ↔ S,E) and an integer k, and we are asked whether there
exists a vertex set X ↗ S of size at most k such that every vertex in T has at least one
neighbour in X. We also refer to the vertices of T as terminals and to the vertices of S as
sources or nonterminals. The following theorem is known:

Theorem 6.2.2. [55] RBDS parameterized by |T | does not admit a polynomial compression
unless coNP ↗ NP/poly.

133

u

u1

T↫
1

T↫
2

V ↫
u1

V ↔

u

u2
V ↫
u2

v

v1
V ↫
v1

V ↔

v

v2
V ↫
v2

b
V ↫
b

a
V ↫
a

V a
u

V a
v

x
V ↔

x

x→

V ↫
x

V ↫
x→

T

S

Figure 6.1: PPT from RBDS to Globally Minimal Defensive Alliance

6.2.1 Proof of Theorem 6.2.1

By Theorem 6.2.2, RBDS parameterized by |T | does not admit a polynomial compression
unless coNP ↗ NP/poly. To prove Theorem 6.2.1, we give a PPT from RBDS parameterized
by |T | to Globally Minimal Defensive Alliance parameterized by the vertex cover
number. Given an instance I = (G = (T ↔ S,E), k) of RBDS, we construct an instance
I → = (G→, k→) of Globally Minimal Defensive Alliance as follows. See Fig. 6.1 for an
illustration.

• We introduce two new vertices x and x→, a set V ↔

x of 4n vertices, a set V ↫
x of |S|↑ k+

4n + 1 vertices, and a set V ↫
x→ of 4n + 1 vertices. Make x adjacent to every vertex of

V ↔

x ↔ S ↔ V ↫
x and make x→ adjacent to every vertex of V ↔

x ↔ V ↫
x→ .

• For every vertex u ↓ T , we introduce two vertices u1 and u2, a set V ↔

u of 4n vertices,
a set V ↫

u1
of 4n + 1 vertices, and a set V ↫

u2
of 4n vertices. Make u1 adjacent to every

vertex of {u} ↔ V ↔

u ↔ V ↫
u1

, and make u2 adjacent to every vertex of V ↔

u ↔ V ↫
u2

.

• We introduce two new vertices a and b into G→, a set V ↫
a of |T | +

∑
u↑T

(dS(u) ↑ 1) + 2

vertices, and a set V ↫
b of |T |+1 vertices. Make a adjacent to every vertex of T↔V ↫

a , and
make b adjacent to very vertex of T ↔V ↫

b ↔ {x→
}. Let dS(u), u ↓ T , denote the number

134

of neighbours of u in S. For each u ↓ T , we add a set V a
u = {ua

1, u
a
2, . . . , u

a
dS(u)↓1} of

dS(u)↑ 1 vertices and make a and u adjacent to every vertex of V a
u .

• Finally, we add a set T↫ = T↫
1 ↔T↫

2 of vertices where |T↫
1 | = |T |+1 and |T↫

2 | = 2. We
make every vertex of V ↔

x ↔
⋃
u↑T

V ↔

u adjacent to every vertex of T↫
2 . For every s ↓ S,

we make s adjacent to dT (s) + 1 many arbitrary vertices of T↫
1 . For every t ↓ T↫, we

introduce d + 2 vertices and make them adjacent to t where d is the degree of t until
this point of the construction; these vertices are not shown in the figure. Finally, we
set k→ = (|S|↑ k) + 4n+ 2 + |T |(4n+ 3) + 1.

Now we claim that there exists a vertex set X ↗ S in G of size at most k such that every
vertex in T has at least one neighbour in X if and only if G→ has a globally minimal defensive
alliance of size at least k→. Suppose there is a vertex set X ↗ S in G of size at most k such
that every vertex in T has at least one neighbour in X. We show that the set

H = (S \X) ↔ {b, x, x→
} ↔ V ↔

x ↔

⋃

u↑T

({u, u1, u2} ↔ V ↔

u) ↔
⋃

u↑T

{ua
1, . . . , u

a
dX(u)↓1}

is a globally minimal defensive alliance. Clearly |H| ⇐ k→ and observe that every vertex in
H is marginally protected. Let u be an arbitrary element of H. If u is an element of T , then
NH(u) = {b, u1}↔ {ua

1, . . . , u
a
dX(u)↓1}↔NS\X(u) and NHc(u) = {b}↔ {udX(u), . . . , udS(u)↓1}↔

NX(u). That is, dH(u) = dS(u) + 1 and dHc(u) = dS(u) + 1; thus u is marginally protected.
Similarly, it is easy to check that other vertices of H are also marginally protected. We also
see that G→[H] is connected. Using Observation 2, H is a globally minimal defensive alliance.

To prove the reverse direction of the equivalence, we assume that there exists a globally
minimal defensive alliance H of size at least k→. By Observation 1.3.1, H can never contain a
vertex of degree one. As one degree vertices cannot be part of the solution, we observe that
no vertex from T↫ is part of the solution. This is true because we will not be able to protect
any vertex from T↫ as more than half of the neighbours are one degree vertices. We claim
that T ↗ H. For the sake of contradiction suppose that there exists some u ↓ T such that
u ⇑↓ H. Then vertices in V ↔

u ↔ {u1, u2} cannot be inside H as a globally minimal defensive
alliance must be connected. If we do not include V ↔

u inside H then H cannot achieve the size
k→. Therefore, we must include u in H. From the above argument, we also see that we must
include u1 and u2 inside H as otherwise vertices in V ↔

u cannot be protected. Therefore, we
have

⋃
u↑T

(V ↔

u ↔ {u, u1, u2}) ↗ H. Similarly, we can argue that V ↔

x ↔ {x, x→, b} ↗ H. Observe

135

that u ↓ T must be marginally protected in H as otherwise H \ (V ↔

u ↔ {u1, u2}) forms a
defensive alliance, which is not possible. For u ↓ T , we have N(u) = NS(u)↔ V a

u ↔ {a, b, u1}

and hence d(u) = 2dS(u) + 2. Since a ⇑↓ H and b, u1 ↓ H, we must have added at most
dS(u) ↑ 1 nodes from NS(u) in H for each u ↓ T . Consider X = Hc

↘ S. Clearly, every
vertex u ↓ T has at least one neighbour in X. Next, we see that |X| → k. As otherwise,
|S ↘H| < |S|↑ k and then x cannot be protected. This implies that I is a yes instance.

6.3 Hardness Results

In this section, we show that Globally Minimal Defensive Alliance is W[1]-hard
when parameterized by the size of a vertex deletion set into trees of height at most three,
i.e., a subset R of the vertices of the graph such that every component in the graph, after
removing R, is a tree of height at most three. We give a reduction from Multi-Colored
Clique. The input of Multi-Colored Clique consists of a graph G, an integer k, and a
partition (V1, . . . , Vk) of the vertices of G; the task is to decide if there is a k-clique containing
exactly one vertex from each set Vi.

Theorem 6.3.1. Globally Minimal Defensive Alliance is W[1]-hard when parame-
terized by the size of a vertex deletion set into trees of height at most 3.

Proof. The approach for using Multi-Colored Clique in reductions is described in [46],
and has been proven to be very useful in showing hardness results in the parameterized
complexity setting. We use G to denote a graph colored with k colors given in an instance of
Multi-Colored Clique, and G→ to denote the graph in the reduced instance of Globally
Minimal Defensive Alliance. For a color i ↓ [k], let Vi denote the subset of vertices in
G colored with color i and for a pair of distinct colors i, j ↓ [k], let Eij denote the subset of
edges in G with endpoints colored i and j.

We construct G→ using two types of gadgets. Our goal is to guarantee that any globally
minimal defensive alliance in G→ with a specific size encodes a multi-colored clique in G.
These gadgets are the selection and validation gadgets. The selection gadgets encode the
selection of k vertices and


k
2


edges that together encode a vertex and edge set of some multi-

colored clique in G. The selection gadgets also ensure that in fact k distinct vertices are
chosen from k distinct color classes, and that distinct


k
2


edges are chosen from


k
2


distinct

136

edge color classes. The validation gadgets validate the selection done in the selection gadgets
in the sense that they make sure that the edges chosen are in fact incident to the selected
vertices. In the following we sketch the construction of selection and validation gadgets as
given in [14]:

Selection: For each color-class i ↓ [k], and each pair of distinct colors i, j ↓ [k], we construct
an i-selection gadget and an {i, j}-selection gadget which respectively encode the selection
of a vertex colored i and an edge colored {i, j} in G. The i-selection gadget consists of
a vertex xv for every vertex v ↓ Vi , and likewise, the {i, j}-selection gadget consists of a
vertex x{u,v} for every edge {u, v} ↓ E{i,j}. There are no edges between the vertices of the
selection gadgets, that is, the union of all vertices in these gadgets is an independent set in G→.

Validation: We assign to every vertex v in G two unique identification numbers, low(v) and
high(v), with low(v) ↓ [n] and high(v) = 2n ↑ low(v) where n is the order of the graph G.
For every pair of distinct colors i, j ↓ [k], we construct validation gadgets between the {i, j}-
selection gadget and the i- and j-selection gadget. Let i and j be any pair of distinct colors.
We describe the validation gadget between the i- and {i, j}-selection gadgets. It consists of
two validation vertices ϑij and ϱij, the validation-pair of this gadget. The first vertex ϑij of
this pair is adjacent to each vertex xu, u ↓ Vi, by high(u) parallel edges, and to each edge-
selection vertex x{u,v}, {u, v} ↓ E{ij} and v ↓ Vj , by low(u) parallel edges. The other vertex
ϱij is adjacent to each xu, u ↓ Vi, by low(u) parallel edges, and to each x{u,v}, {u, v} ↓ E{i,j}

and v ↓ Vj, by high(u) parallel edges. We next subdivide the edges between the selection
and validation gadgets to obtain a simple graph, where all new vertices introduced by the
subdivision are referred to as the connection vertices. The set of connection vertices adjacent
to one of the validation vertices {ϑij, ϱij} and xu is denoted by Au

ij and the set of connection
vertices adjacent to one of the validation vertices {ϑij, ϱij} and x{u,v} is denoted by Buv

ij .

For each connection vertex we add two new vertices and make them adjacent to it. For
each xu in the i-selection gadget, we introduce d(xu) new vertices and make them adjacent to
xu, and likewise for each x{u,v} in {i, j}-selection gadget we introduce d(x{u,v}) new vertices
and make them adjacent to x{u,v}. Let L be the set of all validation vertices in G→. Set
N = 100n2.

For every validation vertex ϑ ↓ L, we add the following protection gadget. We introduce

137

xu xu,vϑij

ϱij

Au
ij Buv

ij

high(u)

low(u)

low(u)

high(u)

validationpair

i↑ selection gadget {ij}↑ selection gadget

Figure 6.2: A graphical depiction of the validation gadget. In the example, n = 5 and low(u)
= 3. Note that Au

ij contains the connection vertices in the yellow region and Buv
ij contains the

connection vertices in the pink region. The red vertices are one-degree vertices, and hence
they are not part of any globally minimal defensive alliance.

a new vertex ϑ↔, a set V ↔

ε of N vertices, and a set of V ↫
ε↓ of N vertices. We make ϑ

adjacent to every vertex of V ↔

ε ; make ϑ↔ adjacent to every vertex of V ↔

ε ↔ V ↫
ε↓ . For each

vertex x ↓ V ↔

ε , we introduce two new vertices and make them adjacent to x.

Finally for every validation vertex ϑ ↓ L, we add the following marginal protection gadget.
This gadget ensures that ϑ is marginally protected in a globally minimal defensive alliance.
We introduce two new vertices ϑ→ and ϑ→↔, a set V ↔

ε→ of N vertices, a set V ↫
ε→ of N vertices,

and a set V ↫
ε→↓ of N + 1 vertices. We make ϑ→ adjacent to every vertex of {ϑ} ↔ V ↔

ε→ ↔ V ↫
ε→ ;

make ϑ→↔ adjacent to every vertex of V ↔

ε→ ↔ V ↫
ε→↓ . For each vertex x ↓ V ↔

ε→ , we introduce two
new vertices and make them adjacent to x. Let d be the degree of ϑ up to this point of
construction. Finally for each ϑ ↓ L, we introduce a set V ↫

ε of N + 4n↑ d+ 1 vertices and
make them adjacent to ϑ. This completes the construction of graph G→.
We set k→ = k +


k
2


+ 8n


k
2


+ 2(4N + 8)


k
2


. We observe that on removing

R =
{
ϑij,ϑji,ϑ

↔

ij ,ϑ
↔

ji ,ϑ
→

ij,ϑ
→

ji,ϑ
→↔

ij ,ϑ
→↔

ji : i, j ↓ [k], i ⇑= j
}

↔
{
ϱij, ϱji, ϱ

↔

ij , ϱ
↔

jiϱ
→

ij, ϱ
→

ji, ϱ
→↔

ij , ϱ
→↔

ji : i, j ↓ [k], i ⇑= j
}

from graph G→, we are left with trees of height at most 3. Note that |R| = 16

k
2


, a function

of k only. We claim that G has a k-clique with exactly one vertex from each Vi if and only

138

ϑ

ϑ↔

ϑ→

ϑ→↔

V ↫
ε↓

V ↔

ε

V ↫
ε

V ↫
ε→↓

V ↔

ε→

V ↫
ε→

Figure 6.3: A graphical depiction of protection and marginal protection gadgets associated
with validation vertex ϑ. Note that the red vertices are one-degree vertices, and hence they
are not part of any globally minimal defensive alliance.

if G→ has a globally minimal defensive alliance of size at least k→. Suppose that v1 ↓ V1,
v2 ↓ V2,. . . , vk ↓ Vk is a k-clique in G. We show that

S =
{
xvi : i ↓ [k]

}
↔
{
x{vi,vj} : i, j ↓ [k], i ⇑= j

}
↔

⋃

i,j↑[k],i ⇓=j

Avi
ij ↔ B

vivj
ij ↔ A

vj
ji ↔ B

vjvi
ji

↔

⋃

i,j↑[k],i ⇓=j

{
ϑij,ϑ

↔

ij ,ϑ
→

ij,ϑ
→↔

ij , ϱij, ϱ
↔

ij , ϱ
→

ij, ϱ
→↔

ij

}
↔ V ↔

εij
↔ V ↔

ε→

ij
↔ V ↔

ϑij
↔ V ↔

ϑ→

ij

↔

⋃

i,j↑[k],i ⇓=j

{
ϑji,ϑ

↔

ji ,ϑ
→

ji,ϑ
→↔

ji , ϱji, ϱ
↔

ji , ϱ
→

ji, ϱ
→↔

ji

}
↔ V ↔

εji
↔ V ↔

ε→

ji
↔ V ↔

ϑji
↔ V ↔

ϑ→

ji

is a globally minimal defensive alliance. Clearly |S| = k→. To prove that S is a globally
minimal defensive alliance, we prove that S is connected and every vertex in S is marginally
protected. It is easy to see that each vertex in

{
xvi : i ↓ [k]

}
↔
{
x{vi,vj} : i, j ↓ [k], i ⇑= j

}

is marginally protected as all the connection vertices adjacent to it are inside the solution
and the same number of one degree neighbours are outside the solution. It is also easy to see

139

that every connection vertex in
⋃

i,j↑[k],i ⇓=j

Avi
ij ↔ B

vivj
ij ↔ A

vj
ji ↔ B

vjvi
ji is marginally protected as

it has two neighbours inside the solution and two neighbours outside the solution. Similarly,
we observe that all the vertices in the set

⋃

i,j↑[k],i ⇓=j

{
ϑ↔

ij ,ϑ
→

ij,ϑ
→↔

ij , ϱ
↔

ij , ϱ
→

ij, ϱ
→↔

ij

}
↔ V ↔

εij
↔ V ↔

ε→

ij
↔ V ↔

ϑij
↔ V ↔

ϑ→

ij

↔

⋃

i,j↑[k],i ⇓=j

{
ϑ↔

ji ,ϑ
→

ji,ϑ
→↔

ji , ϱ
↔

ji , ϱ
→

ji, ϱ
→↔

ji

}
↔ V ↔

εji
↔ V ↔

ε→

ji
↔ V ↔

ϑji
↔ V ↔

ϑ→

ji

are also marginally protected. Lastly, we prove that the vertices in the set
⋃

i,j↑[k],i ⇓=j

{ϑij, ϱij,ϑji, ϱji}

are marginally protected. Consider ϑij; it has total 2n connection vertices neighbours inside
the solution as high(u) + low(u) = 2n. Since V ↔

εij
↗ S and V ↫

εij
↘S = ≃, note that, including

itself, ϑij has N+2n+1 neighbours in S and dSc(ϑij) = (d↑2n)+(N+4n↑d+2) = N+2n+1.
Therefore ϑij is marginally protected. It is easy to observe that S is connected. This shows
that S is a globally minimal defensive alliance.

In the reverse direction, we assume that G→ admits a globally minimal defensive alliance
S of size at least k→. By Observation 1, no vertex of degree one can be part of a globally
minimal defensive alliance of size ⇐ 2 as a one-degree vertex itself forms a defensive alliance.
We claim that the vertices in

⋃

i,j↑[k],i ⇓=j

{
ϑij,ϑ

↔

ij ,ϑ
→

ij,ϑ
→↔

ij , ϱij, ϱ
↔

ij , ϱ
→

ij, ϱ
→↔

ij

}
↔ V ↔

εij
↔ V ↔

ε→

ij
↔ V ↔

ϑij
↔ V ↔

ϑ→

ij

↔

⋃

i,j↑[k],i ⇓=j

{
ϑji,ϑ

↔

ji ,ϑ
→

ji,ϑ
→↔

ji , ϱji, ϱ
↔

ji , ϱ
→

ji, ϱ
→↔

ji

}
↔ V ↔

εji
↔ V ↔

ε→

ji
↔ V ↔

ϑji
↔ V ↔

ϑ→

ji

are always in S. Assume, for the sake of contradiction, that ϑij /↓ S. Then we cannot
include any vertex from V ↔

εij
in the solution. This is true because every globally minimal

defensive alliance must be connected. If we cannot include the set V ↔

εij
then clearly |S| → k→,

a contradiction. Next, we observe that the protection of ϑij requires at least one vertex
from the set V ↔

εij
inside the solution. As every vertex in V ↔

εij
has two one degree neighbours,

it implies that the protection of that vertex requires ϑ↔

ij inside the solution. Now, the
protection of ϑ↔

ij forces the full set V ↔

εij
inside the solution as its one-degree neighbours are

always outside S. Similarly, we argue that ϑ→

ij and V ↔

ε→

ij
will be inside the solution. This

proves the claim.

140

Observe that the above set has size exactly equal to 2(4N + 8)

k
2


. We need to add at least

k +

k
2


+ 8n


k
2


more vertices in S. We claim that

⋃

i,j↑[k],i ⇓=j

Avi
ij ↔B

vivj
ij ↔ A

vj
ji ↔ B

vjvi
ji ↗ S.

Observe that ϑij must be marginally protected inside the solution as otherwise S\({ϑ→

ij,ϑ
→↔

ij }↔

V ↔

ε→

ij
) forms a defensive alliance. This is equivalent to say that the marginal protection of ϑij

requires 2n neighbours from connection vertices inside the solution. Similarly, the marginal
protection of ϱij requires exactly 2n neighbours from connection vertices inside the solution.
Therefore, for each i, j ↓ [k], i ⇑= j, we have Avi

ij ↔ B
vivj
ij ↔ A

vj
ji ↔B

vjvi
ji ↗ S.

We now show that each vertex (or edge, respectively) selection gadget contributes exactly
one vertex in S. We first show that every vertex selection gadget contributes at most one
vertex inside the solution. Suppose there exists a vertex selection gadget which contributes at
least two vertices inside the solution. Without loss of generality, suppose xu1 and xu2 from an
i-selection gadget are inside the solution. It implies that the protection of xu1 and xu2 requires
Au1

ij and Au2
ij , respectively, inside the solution. Note that either ϑij or ϱij will have more than

2n connection vertex neighbours inside the solution as either high(u1) + high(u2) > 2n or
low(u1) + low(u2) > 2n. This is a contradiction as either ϑij or ϱij will not be marginally
protected inside S. We can argue similarly for edge selection gadgets and other color classes
as well. Next, we show that every vertex (or edge, respectively) selection gadget contributes
at least one vertex to the solution. For the sake of contradiction, assume that some i-selection
gadget does not contribute any vertex to the solution. In this case, it will not be possible to
protect the validation vertices ϑij and ϱij for j ⇑= i, because no connection vertex between
i-selection gadget and the validation pair {ϑij, ϱij} can be added to the solution. This is
true as the protection of connection vertices require their neighbour in the i-selection gadget
to be part of the solution. As the edge selection gadget can contribute at most one vertex
due to above argument, the vertices in the set {ϑij, ϱij} will have < 2n neighbours from
the set of connection vertices. This makes the protection of the validation vertices ϑij and
ϱij impossible. Therefore each selection gadget contributes exactly one vertex inside the
solution.
Next, we claim that if the i-selection gadget contributes xvi and if the j-selection gadget
contributes xvj then the {i, j}-selection gadget must contribute x{vi,vj}. Assume, for the

141

sake of contradiction, that the {i, j}-selection gadget contributes x{vk,vj} where vk ⇑= vi.
In this case, we have Avi

ij ↔ A
vj
ji ↔ Bvivk

ij ↔ B
vjvk
ji ↗ S. Note that one of the vertices from

the set {ϑij, ϱij} is not protected because when vi ⇑= vk either high(vi)+low(vk) < 2n or
low(vi)+high(vk) < 2n. This is a contradiction. Therefore, we proved that if the i-selection
gadget contributes xvi and if the j-selection gadget contributes xvj , then the {i, j}-selection
gadget must contribute x{vi,vj}. It implies that the set {vi ↓ G | xvi ↓ i-selection gadget, i ↓
[k]} forms a multicolored clique in G.

Clearly trees of height at most three are trivially acyclic. Moreover, it is easy to verify
that such trees have pathwidth [93] and treedepth [110] at most three, which implies:

Theorem 6.3.2. Globally Minimal Defensive Alliance is W[1]-hard when parame-
terized by any of the following parameters:

• the feedback vertex set number,

• the pathwidth and hence also treewidth of the input graph,

• the treedepth of the input graph.

6.4 NP-completeness

Rooted Globally Minimal Defensive Alliance asks for a globally minimal defensive alliance
S that contains a specified vertex r in a graph G. The vertex r is called the root of S. A
globally minimal defensive alliance of G will not be of use for this problem unless the set
contains r. We define the problem as follows:

Rooted Globally Minimal Defensive Alliance
Input: An undirected graph G = (V,E), a vertex r ↓ V .
Question: Does there exist a globally minimal defensive alliance S ↗ V , such that r ↓ S?

In this section, we prove the following theorem:

Theorem 6.4.1. Rooted Globally Minimal Defensive Alliance is NP-hard.

142

Proof. We prove it is NP-hard by giving a polynomial time reduction from Clique on regu-
lar graphs to Rooted Globally Minimal Defensive Alliance. See Figure 6.4 for an
illustration. Let I = (G, k) be an instance of Clique, where G is an s-regular graph. We
construct an instance I → = (G→, r) of Rooted Globally Minimal Defensive Alliance
as follows. First, we introduce one vertex r and a set of vertices {z1, z1, . . . , zn↓2k} into G→.

r

V ↫
r

z1 zn↓2k

K

u1 un G

V ↫
un

V ↫
u1

Figure 6.4: Reduction from Clique to Rooted Globally Minimal Defensive Al-
liance

We make the set {z1, z1, . . . , zn↓2k} a clique K in G→. We make every vertex of K adjacent
to every vertex u of G and the vertex r. Next, we introduce a set V ↫

r of n↑ 2k vertices and
make them adjacent to r. For every u ↓ V (G), we introduce a set V ↫

u of n↑s↑2 vertices and
make them adjacent to u. This completes the construction of G→. To prove the correctness
of the reduction, we claim that G has a k-clique if and only if G→ admits a globally minimal
defensive alliance containing r. Assume first that G has a clique C of size k. We claim that
S = C ↔ K ↔ {r} is a globally minimal defensive alliance of G→. We observe that all the
vertices in S are marginally protected and G[S] is connected. Using Observation 1.3.2, S is
a globally minimal defensive alliance containing r in G→.

To prove the reverse direction of the equivalence, suppose G→ has a globally minimal
defensive alliance S containing vertex r. By Observation 1.3.1, one degree vertices cannot
be part of S. This implies that the protection of r requires all the vertices of K in the
solution. Therefore, we can assume that K ↗ S. We observe that every vertex of K needs
at least k vertices from V (G) for its protection. We also see that, if we take more than k

vertices from V (G) inside S then all the vertices in K are overprotected. Then S \{r} is also

143

a defensive alliance. This is a contradiction to the assumption that S is globally minimal
defensive alliance. This proves that V (G) contributes exactly k vertices in the solution. Let
us denote this set by C. Since G is s-regular, note that each u ↓ C requires exactly k ↑ 1

neighbours from C for its protection. Then u has n↑ 2k + k ↑ 1 = n↑ k ↑ 1 neighbours in
S and (n↑ s↑ 2) + (s↑ k + 1) = n↑ k ↑ 1 neighbours outside S. This implies that C is a
clique of size exactly k.

6.5 Closing Remarks and Future Directions

The main contributions in this work are that Globally Minimal Defensive Alliance
is FPT when parameterized by neighborhood diversity; no polynomial kernel parameterized
by vertex cover number; and the problem is W[1]-hard parameterized by a wide range of
fairly restrictive structural parameters such as the feedback vertex set number, pathwidth,
treewidth, and treedepth of the input graph. We also proved that given a vertex v ↓ V (G),
deciding if G has a globally minimal defensive alliance containing v, is NP-complete. The
parameterized complexity of Globally Minimal Defensive Alliance remains unsettled
when parameterized by the solution size. It would be interesting to consider the parameter-
ized complexity with respect to structural parameters twin-cover and vertex integrity. The
modular width parameter also appears to be a natural parameter to consider here; since
there are graphs with bounded modular-width and unbounded neighborhood diversity, we
believe this is also an interesting open problem.

144

Chapter 7

O!ensive Alliances in Graphs

7.1 Introduction

The Offensive Alliance problem has been studied extensively during the last twenty
years. A set S ↗ V of vertices is an o!ensive alliance in an undirected graph G = (V,E) if
each v ↓ N(S) has at least as many neighbours in S as it has neighbours (including itself)
not in S. We study the classical and parameterized complexity of the Offensive Alliance
problem, where the aim is to find a minimum size o"ensive alliance. We enhance our under-
standing of the problem from the viewpoint of parameterized complexity by showing that
(1) the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural
parameters such as the feedback vertex set number, treewidth, pathwidth, and treedepth of
the input graph; this puts it among the few problems that are FPT when parameterized by
solution size but not when parameterized by treewidth (unless FPT=W[1]), (2) the problem
cannot be solved in time O

↘(2o(k log k)) where k is the solution size, unless ETH fails, (3) it
does not admit a polynomial kernel parameterized by solution size and vertex cover of the
input graph. On the positive side we prove that (4) it can be solved in time O↘(vc(G)O(vc(G)))

where vc(G) is the vertex cover number of the input graph. (5) it admits an FPT algorithm
when parameterized by vertex integrity of input graph. In terms of classical complexity, we
prove that (6) the problem cannot be solved in time 2o(n) even when restricted to bipartite
graphs, unless ETH fails, (7) it cannot be solved in time 2o(

↗
n) even when restricted to apex

graphs, unless ETH fails. We also prove that (8) it is NP-complete even when restricted to

145

bipartite, chordal, split and circle graphs. This chapter is based on the papers [67, 60].

7.2 W[1]-Hardness Parameterized by Structural Param-
eters

In this section, we show that Offensive Alliance is W[1]-hard parameterized by the
size of a vertex deletion set into trees of height at most seven, that is, a subset D of the
vertices of the graph such that every component in the graph, after removing D, is a tree of
height at most seven. On the way towards this result, we provide hardness results for several
interesting versions of Offensive Alliance which we require in our proofs.

The Offensive AllianceF problem generalizes Offensive Alliance where some ver-
tices are forced to be outside the solution; these vertices are called forbidden vertices. This
variant can be formalized as follows:

Offensive AllianceF

Input: An undirected graph G = (V,E), an integer r and a set V↫ ↗ V of forbidden
vertices such that each degree one forbidden vertex is adjacent to another forbidden vertex
and each forbidden vertex of degree greater than one is adjacent to a degree one forbidden
vertex.
Question: Is there an o"ensive alliance S ↗ V such that (i) 1 → |S| → r, and (ii)
S ↘ V↫ = ≃?

The Strong Offensive AllianceFN problem is a generalization of Strong Offensive
AllianceF that, in addition, requires some “necessary” vertices to be in S. This variant
can be formalized as follows:

Strong Offensive AllianceFN

Input: An undirected graph G = (V,E), an integer r, a set V↔ ↗ V of necessary
vertices, and a set V↫ ↗ V of forbidden vertices such that each degree one forbidden
vertex is adjacent to another forbidden vertex and each forbidden vertex of degree greater
than one is adjacent to a degree one forbidden vertex.
Question: Is there a strong o"ensive alliance S ↗ V such that (i) 1 → |S| → r, (ii)
S ↘ V↫ = ≃, and (iii) V↔ ↗ S?

146

While Offensive Alliance asks for o"ensive alliance of size at most r, we also consider
Exact Offensive Alliance that concerns o"ensive alliance of size exactly r. Analogously,
we also define exact versions of Strong Offensive Alliance presented above. To prove
Lemma 7.2.2, we consider the following problem:

Multidimensional Relaxed Subset Sum (MRSS)
Input: Two integers k and k→, a set S = {s1, . . . , sn} of vectors with si ↓ Nk for every i

with 1 → i → n and a target vector t ↓ Nk.
Parameter: k + k→

Question: Is there a subset S →
↗ S with |S →

| → k→ such that
∑
s↑S→

s ⇐ t?

Lemma 7.2.1. [74] MRSS is W[1]-hard when parameterized by the combined parameter
k + k→, even if all integers in the input are given in unary.

We now show that Strong Offensive AllianceFN is W[1]-hard parameterized by the
size of a vertex deletion set into trees of height at most 5, via a reduction from MRSS.

Lemma 7.2.2. Strong Offensive AllianceFN is W[1]-hard when parameterized by
the size of a vertex deletion set into trees of height at most 5.

Proof. To prove this we reduce from MRSS, which is known to be W[1]-hard when parameter-
ized by the combined parameter k+k→, even if all integers in the input are given in unary [74].
Let I = (k, k→, S, t) be an instance of MRSS. We construct an instance I → = (G, r, V↔, V↫) of
Strong Offensive AllianceFN the following way. See Figure 7.1 for an illustration.

147

Vu1↔Vu2↔Vu1↫ Vu2↫

Zs1 Zs2 Zs3

u1 u2

a↫s1
2a↫s1

1

b↫s1
1 as11 b

s1
1 b↫s1

3 as13 bs13

a↫s1
3

b↫s1
2 as12 bs12

xs1

zs1

ys1

cs11 cs12 cs13 cs14 cs15 cs16

a

a↔1 a↔2 a↔3 a↫

a↫s2
1 a↫s2

2

b↫s2
1 as21 bs21 b↫s2

2 as22 bs22

zs2

xs2

ys2

cs21 cs22 cs23 cs24

a↫s3
1 a↫s3

2 a↫s3
3

b↫s3
1 as31 b

s3
1 b↫s3

2 as32 bs32 b↫s3
3 as33 bs33

zs3

xs3

ys3

cs31 cs32 cs33 cs34 cs35 cs36

Figure 7.1: A schematic view of the construction of G in the proof of Lemma 7.2.2 for a
MRSS instance S = {(2, 1), (1, 1), (1, 2)}, t = (3, 3), k = 2 and k→ = 2. We introduce k = 2

new vertices {u1, u2} in G. For u1, we introduce a set Vu1↫ of
∑
s↑S

s(1) = 2+1+1 = 4 forbidden

vertices and a set Vu1↔ of
∑
s↑S

s(1)↑2t(1)+2 = 2↙4↑2↙3+2 = 4 necessary vertices. Similarly

we introduce four forbidden and four necessary vertices for u2. For the vector s1 = (2, 1), we
introduce a tree structure Ts1 with vertex set As1↔Bs1↔A↫

s1↔B↫
s1↔Cs1↔Zs1↔

{
xs1 , ys1 , zs1

}
.

As max(s1) = 2, As1 = {as11 , as12 , as13 }, Bs1 = {bs11 , bs12 , bs13 }, A↫
s1 = {a↫s1

1 , a↫s1
2 , a↫s1

3 }, B↫
s1 =

{b↫s1
1 , b↫s1

2 , b↫s1
3 } have three vertices each; Cs1 has 2max(s1) + 2 = 6 vertices. Similarly, for

the vectors s2 = (1, 1) and s3 = (1, 2), we create tree structures Ts2 and Ts3 respectively.
The edges incident to a are depicted in pink colour.

148

Let s = (s(1), s(2), . . . , s(k)) ↓ S and let max(s) denote the value of the largest coordinate
of s. Set N =

∑
s↑S

(2max(s) + 2). We introduce three types of vertices: necessary vertices,

forbidden vertices and normal vertices. We often indicate necessary vertices by means of
a triangular node shape, forbidden vertices by means of a square node shape, and normal
vertices by means of a circular node shape. We want to make sure that necessary vertices
are always inside every solution, forbidden vertices are always outside every solution, and
a normal vertex could be inside or outside the solution. The vertex set of the constructed
graph G is defined as follows:

1. We introduce a set of k necessary vertices U = {u1, u2, . . . , uk}. For every ui ↓ U , we
create a set Vui↫ of

∑
s↑S

s(i) forbidden vertices and a set Vui↔ of 2
∑
s↑S

s(i) ↑ 2t(i) + 2

necessary vertices.

2. For each vector s = (s(1), s(2), . . . , s(k)) ↓ S, we introduce a tree Ts into G. The
vertex set of tree Ts is defined as follows:

V (Ts) = As ↔Bs ↔ A↫
s ↔ B↫

s ↔ Cs ↔ Zs ↔

{
xs, ys, zs

}

where As = {as1, . . . , a
s
max(s)+1}, Bs = {bs1, . . . , b

s
max(s)+1}, A↫

s = {a↫s
1 , . . . , a↫s

max(s)+1},
B↫

s = {b↫s
1 , . . . , b↫s

max(s)+1} and Cs = {cs1, . . . , c
s
2max (s)+2} are five sets of vertices, and

the set Zs = {z↔s
1 , z↔s

2 , z↔s
3 , z↔s

4 , z↔s
5 , z↫s

} contains five necessary vertices and one
forbidden vertex.

3. We introduce a vertex a and a set of four vertices A = {a↔1 , a
↔

2 , a
↔

3 , a
↫
} containing

three necessary vertices and one forbidden vertex.

We now create the edge set of G.

1. For every ui ↓ U , make ui adjacent to every vertex of Vui↫ ↔ Vui↔. For each i ↓

{1, 2, . . . , k} and for each s ↓ S, we make ui adjacent to exactly s(i) many vertices of
As in arbitrary manner.

149

2. We now create the edge set of Ts.

E(Ts) = {(xs, zs), (zs, ys)} ↔
max(s)+1⋃

i=1

{
(a↫s

i , b↫s
i), (a↫s

i , asi), (a
↫s
i , bsi), (xs, a

↫s
i)

}

↔

5⋃

i=1

{(zs, z
↔s
i), (zs, z

↫s)} ↔
2max(s)+2⋃

i=1

(ys, c
s
i)

3. Make a adjacent to every vertex of A. For each s ↓ S, we make a adjacent to every
vertex of As ↔ Bs ↔ Cs.

We now define

V↔ = A \ {a↫} ↔
k⋃

i=1

Vui↔ ↔

⋃

s↑S

Zs \ {z
↫s
}

and

V↫ = U ↔ {a, a↫} ↔
k⋃

i=1

Vui↫ ↔

⋃

s↑S

A↫
s ↔ B↫

s ↔ {zs, z
↫s
}.

We set r =
k∑

i=1
2
(∑

s↑S
s(i)↑ t(i) + 1

)
+

∑
s↑S

2(max(s) + 1) + 5n + 3 + k→. Observe that if we

remove the set U ↔ {a} of k+ 1 vertices from G, each connected component of the resulting
graph is a tree with height at most 5. Note that I → can be constructed in polynomial time.

It remains to show that I is a yes instance if and only if I → is a yes instance. Towards
showing the forward direction, let S → be a subset of S such that |S →

| → k→ and
∑
s↑S→

s ⇐ t. We

claim
R = V↔ ↔

⋃

s↑S→


As ↔Bs ↔ {xs}


↔

⋃

s↑S\S→

Cs

is a strong o"ensive alliance of G such that |R| → r, V↔ ↗ R, and V↫ ↘R = ≃. Observe that

N(R) = U ↔ {a} ↔
⋃

s↑S→


A↫

s ↔ {zs}

↔

⋃

s↑S\S→

{ys}.

Let ui ↓ U , then we show that dR(ui) ⇐ dRc(ui) + 2. The neighbours of ui in R are the

150

vertices of Vui↔ and s(i) vertices of As for each s ↓ S →. As
∑
s↑S→

s(i)↑ t(i) ⇐ 0, we get

dR(ui) =


s↑S→

s(i) + |Vui↔|

=


s↑S→

s(i) + 2


s↑S

s(i)↑ 2t(i) + 2

  
size of Vui↓

=
(

s↑S→

s(i)↑ t(i)
)

  
⇒0 by assumption

+


s↑S

s(i)↑ t(i) +


s↑S

s(i) + 2

⇐



s↑S

s(i)↑ t(i) +


s↑S

s(i) + 2

=


s↑S\S→

s(i) +
(

s↑S→

s(i)↑ t(i)
)

  
⇒0 by assumption

+


s↑S

s(i) + 2

⇐



s↑S\S→

s(i) +


s↑S

s(i)

  
size of Vui↭

+2 =


s↑S\S→

s(i) + |Vui↫|

  
the number of neighbours of uiin Rc

+2

= dRc(ui) + 2.

For the remaining vertices x in N(R), it is easy to see that dR(x) ⇐ dRc(x) + 2. Therefore,
R is a strong o"ensive alliance.

Towards showing the reverse direction of the equivalence, suppose G has a strong o"ensive

alliance R of size at most r such that V↔ ↗ R and V↫ ↘ R = ≃. As
k⋃

i=1
Vui↔ ↗ V↔, the

vertices of
k⋃

i=1
Vui↔ are in the solution R. On the other hand, as U ↗ V↫, the vertices

of U are not in R. Therefore it may be noted that U ↗ N(R). We know V↔ contains
k∑

i=1

(∑
s↑S

2s(i)↑ 2t(i)
)
+ 5n+ 3 vertices; thus besides the vertices of V↔, there are at most

∑
s↑S

2(max(s)+1)+k→ vertices in R. As the necessary vertices a↔1 , a
↔

2 , a
↔

3 are in R and a ↓ V↫

is not in R, we have a ↓ N(R). Note that N(a) = {a↔1 , a
↔

2 , a
↔

3 , a
↫
}
⋃
s↑S

(As ↔ Bs ↔ Cs) and

dG(a) =
∑
s↑S

4(max(s) + 1) + 4. As a is adjacent to three necessary vertices, it must have at

least
∑
s↑S

2(max(s)+1) many neighbours in R from the set
⋃
s↑S

(As↔Bs↔Cs). It is to be noted

that if a vertex from the set As ↔ Bs is in the solution then the whole set As ↔ Bs ↔ {xs}

151

lie in the solution. Otherwise v ↓ A↫
s ↗ N(R) will have dR(v) < dRc(v) + 2 which is a

contradiction as R is a strong o"ensive alliance. This shows that at most k→ many sets of the
form As ↔ Bs ↔ {xs} contribute to the solution as otherwise the size of solution exceeds r.
Therefore, any strong o"ensive alliance R of size at most r can be transformed to another
strong o"ensive alliance R0 of size at most r as follows:

R0 = V↔ ↔

⋃

xs↑R

(
As ↔ Bs ↔ {xs}

)
↔

⋃

xs↑V (G)\R

Cs

We define a subset S → =
{
s ↓ S | xs ↓ R0

}
. Clearly, |S →

| → k→. We claim that
∑
s↑S→

s(i) ⇐ t(i)

for all 1 → i → k. Assume for the sake of contradiction that
∑
s↑S→

s(i) < t(i) for some

i ↓ {1, 2, . . . , k}. Then, we have

dR0(ui) =


s↑S→

s(i) + |Vui↔| =


s↑S→

s(i) + 2


s↑S

s(i)↑ 2t(i) + 2

  
size of Vui↓

=


s↑S→

s(i)↑ t(i)

  
<0 by assumption

+


s↑S

s(i)↑ t(i) +


s↑S

s(i) + 2

<


s↑S

s(i)↑ t(i) +


s↑S

s(i) + 2

=


s↑S\S→

s(i) +
(

s↑S→

s(i)↑ t(i)
)

  
<0 by assumption

+


s↑S

s(i) + 2

<


s↑S\S→

s(i) +


s↑S

s(i)

  
size of Vui↭

+2 =


s↑S\S→

s(i) + |Vui↫|+ 2

= dRc
0
(ui) + 2

and we also know ui ↓ N(R0), which is a contradiction to the fact that R0 is a strong
o"ensive alliance. This shows that I is a yes instance.

We have the following corollaries from Lemma 7.2.2.

Corollary 7.2.3. Strong Offensive AllianceFN is W[1]-hard when parameterized by
the size of a vertex deletion set into trees of height at most 5, even when |V↔| = 1.

152

Proof. Given an instance I = (G, r, V↔, V↫) of Strong Offensive AllianceFN, we con-
struct an equivalent instance I → = (G→, r→, V →

↔
, V →

↫) with |V →

↔
| = 1. See Figure 7.2 for an

illustration.

x y

v1 v2 vϖ

V ↫
x

Figure 7.2: An illustration of the gadget used in the proof of Corollary 7.2.3.

The construction of G→ starts with G→ := G and then add the following new vertices and
edges. Let v1, v2, . . . , vϖ be vertices of V↔ where we assume that ↼ > 1. We introduce two
vertices x and y where x is a forbidden vertex and y is a necessary vertex; and make x and
y adjacent. We make x adjacent to all the vertices in V↔. We also introduce a set Vx↫ of
↼↑ 1 forbidden vertices and make them adjacent to x. Set r→ = r + 1. Define V →

↔
= {y} and

V →

↫ = {x} ↔ Vx↫ ↔ V↫. We define G→ as follows

V (G→) = V (G) ↔ {x, y} ↔ Vx↫

and
E(G→) = E(G) ↔

{
(x, y), (x,ϑ), (x, ϱ) | ϑ ↓ Vx↫, ϱ ↓ V↔

}
.

Let H be a vertex deletion set of G into trees of height at most 5. Clearly, if H has at most
k vertices then the set H ↔ {x} has at most k + 1 vertices and it is a vertex deletion set of
G→ into trees of height at most 5. We now claim that I and I → are equivalent instances.

Suppose G has a strong o"ensive alliance R of size at most r such that V↔ ↗ R and
V↫ ↘ R = ≃. Clearly R→ = R ↔ {y} is a strong o"ensive alliance of size at most r + 1 in G→

such that V →

↔
↗ R→ and V →

↫ ↘R→ = ≃. Note that x ↓ NG→(R→) and it satisfies dR→(x) = l+ 1 ⇐

dR→c(x) + 2 = (l ↑ 1) + 2.

Conversely suppose G→ has a strong o"ensive alliance R→ of size at most r + 1 such that
y ↓ R→ and V →

↫ ↘R→ = ≃. We claim {v1, v2, . . . , vl} ↗ R→. As y is in R→ but its neighbour x is

153

not in R→, we have x ↓ N(R→) and it satisfies the condition dR→(x) ⇐ dR→c(x) + 2. Note that
N(x) = {v1, v2, . . . , vl} ↔ {y} ↔ V ↫

x and NR→c(x) = V ↫
x . As x has l ↑ 1 neighbours outside

R→ and x satisfies the condition dR→(x) ⇐ dR→c(x) + 2 = (l ↑ 1) + 2 = l + 1, R→ includes
{v1, v2, . . . , vl} ↔ {y}. Define R = R→

\ {y}. Clearly R is a strong o"ensive alliance of size at
most r such that V↔ = {v1, v2, . . . , vl} ↗ R and R ↘ V↫ = ≃.

We can get an analogous result for the exact variant.

Corollary 7.2.4. Exact Strong Offensive AllianceFN is W[1]-hard when parame-
terized by the size of a vertex deletion set into trees of height at most 5 even when |V↔| = 1.

Next, we present an FPT reduction that eliminates necessary vertices.

Lemma 7.2.5. Offensive AllianceF is W[1]-hard when parameterized by the size of a
vertex deletion set into trees of height at most 5.

Proof. To prove this we reduce from the Strong Offensive AllianceFN problem, which
is W[1]-hard when parameterized by the size of a vertex deletion set into trees of height at
most 5, even when |V↔| = 1. See Corollary 7.2.3. Given an instance I = (G, r, V↔ =

{x}, V↫) of Strong Offensive AllianceFN, we construct an instance I → = (G→, r→, V →

↫)

of Offensive AllianceF the following way. See Figure 7.3 for an illustration. The
construction of G→ starts with G→ := G and then add some new vertices and edges. Let

x↫

v1 v2 vn→ f1 fn→→

G

V ↫
x

x

t1
t2

t4n

t↫
V ↫
t

Figure 7.3: The reduction from Strong Offensive AllianceFN to Offensive
AllianceF in Lemma 7.2.5. Note that the set {v1, . . . , vn→} may contain forbidden ver-
tices of degree greater than one.

n be the number of vertices in G. Suppose V (G) = {x, v1, v2, . . . , vn→ , f1, . . . , fn→→} where
F = {f1, . . . , fn→→} is the set of degree one forbidden vertices in V (G). Note that, we give
special consideration to degree one forbidden vertices f1, . . . , fn→→ in G. While constructing

154

G→ from G, we refrain from introducing any new neighbors for these vertices. In other words,
these vertices will retain their status as degree one forbidden vertices in G→ as well. This
is because, in each instance, we would like to maintain the property that each degree one
forbidden vertex is adjacent to another forbidden vertex and each forbidden vertex of degree
greater than one is adjacent to a degree one forbidden vertex. This structural property is
exploited in the proof of Theorem 8.2.1 to get rid of forbidden vertices. We introduce two
forbidden vertices t↫, x↫ into G→. We create a set V ↫

t of 4n forbidden vertices and a set V ↫
x

of n forbidden vertices into G→. Finally we create a set T = {t1, . . . , t4n} of 4n vertices into
G→. Make t↫ adjacent to every vertex of T ↔V ↫

t ↔ {x} and make x↫ adjacent to every vertex
of T ↔ V ↫

x ↔ V (G) \ F . Set r→ = r + 4n. We define G→ as follows:

V (G→) = V (G) ↔ T ↔ V ↫
t ↔ V ↫

x ↔ {t↫, x↫
}

and

E(G→) =E(G) ↔
{
(t↫,ϑ) : ϑ ↓ T ↔ V ↫

t ↔ {x}
}

↔

{
(x↫, ϱ) : ϱ ↓ T ↔ V ↫

x ↔ V (G) \ F
}

We define V →

↫ = V↫ ↔ V ↫
t ↔ V ↫

x ↔ {t↫, x↫
}. Observe that there exists a set of at most k + 2

vertices for G→ whose deletion makes the resulting graph a forest containing trees of height
at most 5. We can find such a set because there exists a vertex deletion set D of size at most
k for G into trees of height at most 5. We just add {x↫, t↫} to the set D, then the resulting
set is of size k+2 whose deletion from G→ makes the resulting graph a forest containing trees
of height at most 5.

We now claim that I is a yes instance if and only if I → is a yes instance. Assume first that
R is a strong o"ensive alliance of size at most r in G such that {x} ↗ R and V↫↘R = ≃. We
claim R→ = R ↔ T is an o"ensive alliance of size at most r + 4n in G→ such that V →

↫ ↘R→ = ≃.
Clearly, N(R→) = {t↫, x↫

} ↔ N(R). If v is an element of N(R), we know that dR(v) ⇐

dRc(v) + 2 in G. Therefore in graph G→, we get dR→(v) ⇐ dR→c(v) + 1 for each v ↓ N(R) due
to the vertex x↫. If v ↓ {x↫, t↫}, then the neighbours of v that are also in R→ consist of the
4n elements of T and the elements of R; thus dR→(v) ⇐ 4n + 1. The neighbours of x↫ that
are outside R→ consist of the n elements of V ↫

x and the elements of V (G) \ (F ↔R); thus we
get dR→c(x↫) < 2n. The neighbours of t↫ that are outside R→ consist of 4n elements of V ↫

t

155

only; thus dR→c(t↫) = 4n. Therefore dR→(v) ⇐ 4n + 1 ⇐ dR→c(v) + 1. This shows that I → is a
yes instance.

To prove the reverse direction of the equivalence, suppose R→ is an o"ensive alliance of
size at most r→ = r + 4n in G→ such that R→

↘ V →

↫ = ≃. We claim that T ↔ {x} ↗ R→. Since
R→ is non empty, it must contain a vertex from the set T ↔ V (G) \F . Then x↫

↓ N(R→) and
it satisfies the condition dR→(x↫) ⇐ dR→c(x↫) + 1. Due to n forbidden vertices in the set V ↫

x ,
node x↫ must have at least n + 1 neighbours in R→. This implies that R→ contains at least
one vertex from T . Then t↫ ↓ N(R→) and it satisfies the condition dR→(t↫) ⇐ dR→c(t↫) + 1.
Since |V ↫

t | = 4n, the condition dR→(t↫) ⇐ dR→c(t↫) + 1 forces the set {x} ↔ T to be inside
the solution. Consider R = R→

↘ V (G). Clearly |R| → r, x ↓ R, R ↘ V↫ = ≃ and we show
that R is a strong o"ensive alliance in G. For each v ↓ N(R→) ↘ V (G) = N(R), we have
NR→(v) ⇐ NR→c(v) + 1 in G→. Notice that we do not have x↫ in G which is adjacent to all
vertices in N(R). Thus for each v ↓ N(R), we get NR(v) ⇐ NRc(v) + 2 in G. Therefore R

is a strong o"ensive alliance of size at most r in G such that x ↓ R and R ↘ V↫ = ≃. This
shows that I is a yes instance.

We have the following corollaries from Lemma 7.2.5.

Corollary 7.2.6. Exact Offensive AllianceF is W[1]-hard when parameterized by the
size of a vertex deletion set into trees of height at most 5.

We are now ready to show our main hardness result for Offensive Alliance using a
reduction from Offensive AllianceF.

Theorem 7.2.7. Offensive Alliance is W[1]-hard when parameterized by the size of a
vertex deletion set into trees of height at most 7.

Proof. We give a parameterized reduction from Offensive AllianceF which is W[1]-hard
when parameterized by the size of a vertex deletion set into trees of height at most 5. See
Lemma 7.2.5. Let I = (G, r, V↫) be an instance of Offensive AllianceF. Let n = |V (G)|.
We construct an instance I → = (G→, r→) of Offensive Alliance the following way. We set
r→ = r. Recall that each degree one forbidden vertex is adjacent to another forbidden vertex
and each forbidden vertex of degree greater than one is adjacent to a degree one forbidden
vertex. Let u be a degree one forbidden vertex in G and u is adjacent to another forbidden
vertex v. For each degree one forbidden vertex u ↓ V↫, we introduce a tree Tu rooted at u

156

of height 2 as shown in Figure 7.4. The forbidden vertex v has additional neighbours from
the original graph G which are not shown in the figure. We define G→ as follows:

V (G→) = V (G) ↔
⋃

u↑V↭ & dG(u)=1

V (Tu)

and

E(G→) = E(G) ↔
⋃

u↑V↭ & dG(u)=1

E(Tu).

Clearly G→ can be constructed in polynomial time. Let D be a vertex deletion set in G into

v

u

u1 u4r

u1
1 u4r

1 u4r
4ru1

4r

Figure 7.4: Our tree gadget Tu for each degree one forbidden vertex u ↓ V↫

trees of height at most 5. Each component of G→
↑ D is a tree with height at most 7. It

remains to show the equivalence between I and I →. It is easy to verify that if R is an o"ensive
alliance of size at most r in G such that R ↘ V↫ = ≃, then it is also an o"ensive alliance of
size at most r→ = r in G→.

To prove the reverse direction of the equivalence, suppose that G→ has an o"ensive alliance
R→ of size at most r→ = r. We claim that no vertex from the set V↫

⋃
u↑V↭

V (Tu) is part of R→.

It is to be noted that if any vertex from the set V↫
⋃

u↑V↭
V (Tu) is in R→ then the size of R→

exceeds 2r. This implies that R = R→
↘G is an o"ensive alliance such that R ↘ V↫ = ≃ and

|R| → r. This shows that I is a yes instance.

We have the following consequences.

Corollary 7.2.8. Exact Offensive Alliance is W[1]-hard when parameterized by the
size of a vertex deletion set into trees of height at most 7.

Clearly trees of height at most seven are trivially acyclic. Moreover, it is easy to verify that

157

such trees have pathwidth [93] and treedepth [110] at most seven, which implies:

Theorem 7.2.9. Offensive Alliance and Exact Offensive Alliance are W[1]-hard
when parameterized by any of the following parameters:

• the feedback vertex set number,

• the treewidth and pathwidth of the input graph,

• the treedepth of the input graph.

7.3 FPT Lower Bound Parameterized by Solution Size

We know that Offensive Alliance admits an FPT algorithm when parameterized by the
solution size [50]. The algorithm in [50] uses branching technique and solves the problem in
O

↘(2O(k log k)) time. We prove that this running time is essentially optimal assuming ETH.
Hardness for Offensive Alliance follows from a reduction from k ↙ k (Permutation)
Hitting Set with Thin Sets. In k↙ k Hitting Set, we restrict the universe to a k↙ k

table. We define the problem as follows:

k ↙ k Hitting Set
Input: A family F of sets F1, F2, . . . , Fm ↗ [k]↙ [k].
Question: Is there a set X ↗ [k] ↙ [k] containing exactly one element from each row
such that X ↘ Fi ⇑= ≃ for any 1 → i → m?

In the k ↙ k (Permutation) Hitting Set problem, we are given a family F of subsets
of [k]↙ [k], and we would like to find a set X, consisting of one element from each row and
induces a permutation of [k], such that X ↘ F ⇑= ≃ for each F ↓ F . In the thin set variant
we assume that each F ↓ F contains at most one element from each row. In the proof, we
will use the fact that k ↙ k (Permutation) Hitting Set with Thin Sets cannot be
solved in time 2o(k log k), unless ETH fails [101].

Theorem 7.3.1. Unless ETH fails, Offensive Alliance cannot be solved in time O↘(2o(k log k)),
where k is the solution size.

Proof. We provide a polynomial-time algorithm that takes an instance (F , k) of k↙k (Per-
mutation) Hitting Set with Thin Sets, and outputs an equivalent instance (G, r) of

158

Offensive Alliance with r = 5k. We construct G the following way.

1. For every F ↓ F , we introduce a vertex vF into G. Let VF = {vF | F ↓ F}. We also
introduce a set of k2 vertices W = {wi,j : i ↓ [k], j ↓ [k]}. Make vF adjacent to wij if
(i, j) ↓ F .

2. We introduce a clique D↔ of size 4k into G. For every d ↓ D↔, we add a set of 10k
vertices and make them adjacent to d. For every F ↓ F , we make vF adjacent to every
vertex of D↔.

3. We introduce another clique D↫ of size 12k+ 1 into G. Let dF = dW (vF), the number
of neighbours of vF in W . As we are dealing with thin sets, we have dF → k for all
F ↓ F . For every F ↓ F , we make vF adjacent to any 4k ↑ dF + 1 vertices of D↫.

4. For every row i ↓ [k], create a vertex ri into G and make ri adjacent to wij for all
j ↓ [k]. Let R = {r1, . . . , rk}. For every r ↓ R, make r adjacent to every vertex of D↔

and any 3k + 1 vertices of D↫.

5. For every column j ↓ [k], create a vertex cj into G and make cj adjacent to wij for all
i ↓ [k]. Let C = {c1, . . . , ck}. For every c ↓ C, make c adjacent to every vertex of D↔

and any 3k + 1 vertices of D↫.

This completes the construction of G. Set r = 5k. We now formally argue that instances
(F , k) and (G, r) are equivalent. Assume first that X is a solution to the instance (F , k).
For each i ↓ [k], let ji be the unique index such that (i, ji) ↓ X. We claim that the set

S = D↔
↔ {w1j1 , w2j2 , . . . , wkjk}

is an o"ensive alliance of size exactly 5k in G. We see that N(S) = R↔C ↔ {vF : F ↓ F}.
Let v be an arbitrary element of N(S). We need to prove that dS(v) ⇐ dSc(v) + 1 for all
v ↓ N(S). If v is an element of R or C, the neighbours of v in S are the elements of D↔

and one element from W . Thus we have dS(v) = 4k + 1. The neighbours of v in Sc are
3k + 1 elements of D↫ and k ↑ 1 elements of W ; therefore we have dSc(v) = 4k. If v is an
element of {vF : F ↓ F}, the neighbours of v in S are the elements of D↔ and at least
one element from W as X is a hitting set; thus we have dS(v) ⇐ 4k + 1. The neighbours of
v in Sc are 4k ↑ d + 1 elements of D↫ and at most d ↑ 1 elements from W ; thus we have
dSc(v) → (4k ↑ d+ 1) + (d↑ 1) = 4k. This shows that S is indeed an o"ensive alliance.

159

r5

r4

r3

r2

r1

c1 c2 c3 c4 c5C

R

W

vF1 vF2 vF3

D↫

D↔

Figure 7.5: Example of the reduction in Theorem 7.3.1 applied to an instance (F =
{F1, F2, F3}, 5) of 5↙ 5 Permutation Hitting Set with Thin Sets that has three sets
F1 = {(1, 1), (2, 1), (4, 4), (5, 3)}, F2 = {(1, 4), (3, 4), (5, 1)}, F3 = {(1, 1), (2, 5), (3, 2), (5, 5)}
with each set containing at most one element from each row.

In the reverse direction, let S be an o"ensive alliance of size at most 5k in G. First we
show that it can be assumed that N(S) ↘ D↫ = ≃. Suppose, for the sake of contradiction,
that v ↓ N(S)↘D↫. Then v must satisfy the condition dS(v) ⇐ dSc(v) + 1. As v has degree
at least 12k, in order to satisfy the condition dS(v) ⇐ dSc(v)+1, the size of S must be at least
6k, a contradiction to the assumption that the size of S is at most 5k. Next we show that
it can be assumed that S ↘D↫ = ≃. Suppose that S contains an element of D↫. As D↫ is a
clique and D↫

↘N(S) = ≃, if S contains one element of D↫ then D↫
↗ S. This is not possible

as D↫ has 12k+1 elements and S has at most 5k elements. Therefore, we may assume that
(S ↔N(S))↘D↫ = ≃. This in turn implies that that (R↔C ↔ VF)↘ S = ≃. As the o"ensive
alliance S is non-empty, we have S ↘D↔

⇑= ≃ or S ↘W ⇑= ≃. Note that in either case, we get
N(S)↘(R↔C↔VF) ⇑= ≃. Let u be an arbitrary element of N(S)↘(R↔C↔VF). If S↘D↔ = ≃

then clearly we have dS(u) < dSc(u) + 1 which is not possible. Therefore S ↘D↔
⇑= ≃. We

observe that if S contains one element of D↔ then it contains all elements of D↔, that is,
D↔

↗ S. As D↔
↗ S and (R ↔ C ↔ VF) ↘ S = ≃, we get (R ↔ C ↔ VF) ↗ N(S). As S is an

o"ensive alliance, every element u of N(S) has to satisfy the condition dS(u) ⇐ dSc(u) + 1.
Consider an arbitrary vertex ri of R. If S ↘ {wij : j ↓ [k]} = ≃ then dS(ri) = 4k and
dSc(ri) = 4k which is not possible as ri does not satisfy the condition dS(ri) ⇐ dSc(ri) + 1.
This implies that, for each i ↓ [k], S contains at least one element from {wij : j ↓ [k]}

but since |S| → 5k and D↔
↗ S, S contains exactly one element from {wij : j ↓ [k]}.

160

Using the same argument for an arbitrary vertex cj ↓ C, we get that S contains exactly
one element from {wij : i ↓ [k]}. We claim that X = {(i, j) | wij ↓ S} is a permutation
hitting set of size k. Let us assume that there exists a set F ↓ F which is not hit by X.
In that case, we have dS(vF) = 4k and dSc(vF) = (4k ↑ dF) + dF = 4k. This means that
dS(vF) < dSc(vF) + 1 which is a contradiction. Therefore, X is a hitting set of size k. As X
has exactly one element in each row and in each column, X is a permutation hitting set.

An algorithm solving Offensive Alliance in time 2o(k log k) would therefore translate
into an algorithm running in time 2o(k log k) for k ↙ k (Permutation) Hitting Set with
Thin Sets and contradicts the ETH.

Corollary 7.3.2. Unless ETH fails, Exact Offensive Alliance problem cannot be
solved in time O

↘(2o(k log k)), where k is the solution size.

7.4 No polynomial kernel parameterized by solution size
and vertex cover

Parameterized by the solution size, the problem is FPT and in this section we show the
following kernelization hardness of Offensive Alliance.

Theorem 7.4.1. Offensive Alliance parameterized by the solution size and vertex cover
combined does not admit a polynomial compression unless coNP ↗ NP/poly.

To prove Theorem 7.4.1, we give a polynomial parameter transformation (PPT) from Clos-
est String to Offensive Alliance parameterized by the solution size. In the Closest
String problem we are given an alphabet #, a set of strings X = {x1, x2, . . . , xk} over #

such that |xi| = n and an integer d. The objective is to check whether there exists a string x

over # such that dH(x, xi) → d, i ↓ {1, . . . , k}, where dH(x, y) denotes the number of places
strings x and y di"er at. Let x be a string over alphabet #. We denote the letter on the
p-th position of x as x[p]. Thus x = x[1]x[2] . . . x[n] for a string of length n. We say string
x and y di!er on the p-th position if x[p] ⇑= y[p]. The following theorem is known:

Theorem 7.4.2. [8] Closest String parameterized by the distance d and the length of
the strings n, does not admit a polynomial kernel unless NP ↗ coNP/poly.

161

They also observe that the kernelization lower bound for Closest String works for any
fixed alphabet # of size at least two. Therefore, without loss of generality, we assume that
= {A1, A2}.

7.4.1 Proof of Theorem 7.4.1

We give a PPT from the Closest String problem. Given an instance (X , d) of the Clos-
est String problem, we construct an instance (G, r) of Offensive Alliance the following
way.

1. For every x ↓ X , we introduce a vertex vx into G. Let VX = {vx | x ↓ X}. We also
introduce a set of 2n vertices W = {wi,j : i ↓ [n], j ↓ [2]}. Make vx adjacent to wi1

if the letter on the ith position of x is A1; make vx adjacent to wi2 if the letter on the
ith position of x is A2.

2. We introduce a clique D↔ of size 3n + 2d + 1 into G. For every d ↓ D↔, we add a
set Vd of 12n vertices and make them adjacent to d. For every vx ↓ VX , we make vx

adjacent to every vertex of D↔.

3. We introduce another clique D↫ of size 12n + 1 into G. For every vx ↓ VF , we make
vx adjacent to any 4n vertices of D↫.

4. For every row i ↓ [n], create a vertex ri into G and make ri adjacent to wi1 and wi2.
Let R = {r1, . . . , rn}. For every r ↓ R, make r adjacent to any three vertices of D↔

and any two vertices of D↫.

This completes the construction of G. Note that the set R↔W ↔D↫
↔D↔ forms a vertex

cover of G of size 18n + 2d + 2. We set r = 4n + 2d + 1. It is easy to see that the above
construction takes polynomial time. We now formally argue that instances (X , d) and (G, r)

are equivalent. Assume first that y is a solution to the instance (X , d), that is, dH(xi, y) → d

for all i ↓ {1, 2, . . . , k}. We claim that

S = D↔
↔

{
wij | y[i] = Aj for i = 1, 2, . . . , n

}

is an o"ensive alliance of size at most r. We see that N(S) = R ↔ VX . We need to prove
that dS(v) ⇐ dSc(v) + 1 for every v ↓ R ↔ VX . If r is an element of R, the neighbours of

162

vx1 vx2 vx3

D↫

D↔
d

Vd

VX

R W

32

Figure 7.6: Example of reduction of Theorem 7.4.1 applied to an instance (↽, d) of Closest
String where ↽ contains three strings x1 = 1011100, x2 = 1101010, x3 = 1110001 and d = 3.
A solution string y = 1000000 is shown in red circles.

r in S are three elements of D↔ and one element from W . Thus we have dS(r) = 4. The
neighbours of r in Sc are two elements of D↫ and one elements of W ; therefore we have
dSc(r) = 3 and r satisfies the required condition. If vx is an element of VX , the neighbours
of vx in S are 3n+ 2d+ 1 elements of D↔ and n↑ dH(x, y) element from W . Thus we have
dS(vx) ⇐ (3n+ 2d+ 1) + (n↑ d) = 4n+ d+ 1. The neighbours of vx in Sc are 4n elements
of D↫ and dH(x, y) element from W ; hence dSc(vx) = 4n+ dH(x, y) → 4n+ d. Therefore vx

satisfies the required condition.

In the reverse direction, let S be an o"ensive alliance of size at most 4n + 2d + 1 in
G. First we show that it can be assumed that N(S) ↘ D↫ = ≃. Suppose, for the sake of
contradiction, that v ↓ N(S) ↘D↫. Then v must satisfy the condition dS(v) ⇐ dSc(v) + 1.
As v has degree at least 12k, in order to satisfy the condition dS(v) ⇐ dSc(v) + 1, the size
of S must be at least 6k, a contradiction to the assumption that the size of S is at most
4n+2d+1. Next we show that it can be assumed that S↘D↫ = ≃. Suppose that S contains
an element of D↫. As D↫ is a clique and D↫

↘N(S) = ≃, if S contains one element of D↫

then D↫
↗ S. This is not possible as D↫ has 12n+1 elements and S has at most 4n+2d+1

elements. Therefore, we may assume that (S ↔ N(S)) ↘D↫ = ≃. This in turn implies that
S does not contain any element from VX ↔ R. As the o"ensive alliance S is non-empty, we

163

have S ↘ D↔
⇑= ≃ or S ↘ W ⇑= ≃. Note that in either case, we get N(S) ↘ (R ↔ VX) ⇑= ≃.

Let u be an arbitrary element of N(S) ↘ (R ↔ VX). If S ↘ D↔ = ≃ then clearly we have
dS(u) < dSc(u) + 1 which is not possible. Therefore S ↘ D↔

⇑= ≃. We observe that if S

contains one element of D↔ then it contains all elements of D↔, that is, D↔
↗ S. As

D↔
↗ S and (R↔VX)↘S = ≃, we get (R↔VX) ↗ N(S). As S is an o"ensive alliance, every

element u of N(S) has to satisfy the condition dS(u) ⇐ dSc(u) + 1. Consider an arbitrary
vertex ri of R. If S ↘ {wi1, wi2} = ≃ then dS(ri) = 3 and dSc(ri) = 4 which is not possible
as ri does not satisfy the condition dS(ri) ⇐ dSc(ri) + 1. This implies that, for each i ↓ [n],
S contains at least one element from {wi1, wi2}. Since |S| → 4n + 2d + 1 and D↔

↗ S, S
contains exactly one element from {wi1, wi2} for each i. Define a string y = y[1]y[2] . . . y[n],
where y[i] = 1 if wi1 ↓ S and y[i] = 2 if wi2 ↓ S. We claim y is a central string. Assume,
for the sake of contradiction, that there exists a string xi such that dH(xi, y) > d. In this
case, we see that dS(vxi) < (3n+2d+1)+ n↑ d → 4n+ d and dSc(vxi) > 4n+ d. Therefore,
dS(vxi) < dSc(vxi) + 1, which is a contradiction.

7.5 Faster FPT algorithms parameterized by vertex cover
number

We know that both Offensive Alliance and Strong Offensive Alliance admit FPT
algorithms [92] when parameterized by the vertex cover number of the input graph. The
algorithms in [92] use Integer Linear Programming, and thus their dependency on
the parameter may be gigantic. The reason is this. The Offensive Alliance problem is
mapped to an ILP with at most 2vc(G) many variables where vc(G) is the vertex cover number
of the input graph. It is proved in [47] that p-Variable Integer Linear Programming
Optimization (p-Opt-ILP) can be solved using O(p2.5p+o(p)

· L · log(MN)) arithmetic
operations and space polynomial in L. Thus the algorithm in [92] requires O↘((2vc(G))

O(2vc(G))
)

time. The natural question would be whether they admit O
↘(vc(G)O(vc(G)) time algorithm.

We answer this question with the following theorem.

Theorem 7.5.1. Offensive Alliance can be solved in time O↘(vc(G)O(vc(G)) where vc(G)
is the vertex cover number of the input graph G.

Proof. Let C be a vertex cover of G of size vc(G). Note that C forms an o"ensive alliance.

164

This is because N(C) is an independent set and every vertex of N(C) has no neighbours
in Cc and has at least one neighbour in C. Therefore we have dC(v) ⇐ dCc(v) + 1 for all
v ↓ N(C), and hence C is an o"ensive alliance. This implies that the size of minimum
o"ensive alliance is at most vc(G). In [50], it was proved using branching technique that
Offensive Alliance problem parameterized by solution size admits a O(n2k(2k)k↓1).
This implies that, we have an algorithm with running time O

↘(vc(G))vc(G).

The arguments in the proof of Theorem 7.5.1 is also applicable to Strong Offensive
Alliance as long as the input graph G has minimum degree at least two. As a direct
consequence of Theorem 7.5.1, we have the following corollary.

Corollary 7.5.2. Strong Offensive Alliance can be solved in time O
↘(vc(G)O(vc(G))

where vc(G) is the vertex cover number of the input graph G with ω(G) ⇐ 2.

7.6 FPT algorithm parameterized by vertex integrity

In this section, we present an FPT algorithm for Offensive Alliance parameterized by
vertex integrity. Lets begin by recalling the definition of vertex integrity.

Definition 7.6.1. The vertex integrity of a graph G, denoted vi(G), is the minimum integer
k satisfying that there is X ↗ V (G) such that |X| + |V (C)| → k for each component C of
G↑X. We call such X a vi(k)-set of G.

Theorem 7.6.1. Offensive Alliance is fixed-parameter tractable when parameterized by
the vertex integrity.

Proof. Let G = (V,E) be a graph and X ↗ V be a vi(k)-set of G. Then C = G ↑ X is a
collection of disjoint components, that is C = {C1, C2, . . .} such that |X|+ |Ci| → k for all i.
We know C can be partitioned into equivalent classes C1, C2, Let Cl be a representative
of the equivalence class Cl and let v ↓ Cl. Note that v has neighbours only in X ↔ Cl, that
is, N(v) ↗ X ↔ Cl. We next guess P = S ↘ X and Q = X ↘ N(S), where S is a smallest
o"ensive alliance. There are at most 3|X|

→ 3k candidates for (P,Q) as each member of X
has three options: either in P , Q or X \ (P ↔Q). We reduce the problem of finding the rest
of S to an integer linear programming (ILP). We say Al ↗ Cl is a valid selection from Cl if

165

and only if each u ↓ N(P ↔ Al) ↘ Cl satisfies

|NP⇔Al
(u)| ⇐

d(u) + 1

2

N(Al) ↘ (X \ (P ↔Q)) = ≃.

Every component in Cl contributes some vertices in the solution S. We introduce a variable
y(Al) which denotes the number of components in the equivalence class Cl that contribute Al

(up to isomorphism) to S. In the following, we present ILP formulation of o"ensive alliance.
The objective is to minimize

|P |+


l



Al↖Cl

y(Al)|Al|.

For each equivalence class Cl, we have the following constraint
∑

Al↖Cl

y(Al) = |Cl| where |Cl|

denotes the number of components in Cl. Next we add constraints to make sure that each
vertex u ↓ Q satisfies |NS(u)| ⇐ |NSc(u)|+ 1, that is, NS(u) ⇐

d(u)+1
2 . Note that

|NS(u)| = |NP (u)|+


l



Al↖Cl

|NAl
(u)|↙ y(Al).

Therefore for each vertex u ↓ Q, we have the constraint:

|NP (u)|+


l



Al↖Cl

|NAl
(u)|↙ y(Al) ⇐

d(u) + 1

2
.

In the following, we present ILP formulation of o"ensive alliance problem, where P and Q

are given:

166

Minimize |P |+


l



Al↖Cl

y(Al)|Al|

Subject to


Al↖Cl

y(Al) = |Cl| ∈ l

N(Al) ↘ (X \ (P ↔Q)) = ≃ ∈ l, ∈ Al ↗ Cl

|NP⇔Al
(u)| ⇐

d(u) + 1

2
∈ l, ∈ Al ↗ Cl, ∈ u ↓ N(P ↔ Al) ↘ Cl,

|NP (u)|+


l



Al↖Cl

|NAl
(u)|↙ y(Al) ⇐

d(u) + 1

2
∈u ↓ Q

In the formulation for Offensive Alliance, we have at most 2O(k2) variables. The
value of objective function is bounded by n and the value of any variable y(Al) in the integer
linear programming is bounded by n. Each constraint can be represented using at most
O(2O(k2) log n) bits. Lemma 2.3.2 implies that we can solve the problem with the guess
(P,Q) in FPT time. There are at most 3k choices for (P,Q) and the ILP formula for a given
guess can be solved in FPT time. Thus Theorem 7.6.1 holds.

7.7 Classical lower bounds under ETH

The brute-force approach to find a minimum size o"ensive alliance is to evaluate all 2n ↑ 1

possible non-empty subsets and check for each one whether it is an o"ensive alliance or not.
Checking if a specific set of vertices is an o"ensive alliance takes O(n2) time. So the running
time of this algorithm is O↘(2n). We use O↘ notation to hide polynomial factors (in the
input size) in the running time. In this section, we give an algorithmic lower bound for
the Offensive Alliance problem using exponential time hypothesis. In computational
complexity theory, the exponential time hypothesis (ETH) is an unproven computational
hardness assumption that was formulated by Impagliazzo and Paturi (1999). The hypoth-
esis states that 3-SAT cannot be solved in subexponential time in the worst case. While
Offensive Alliance can be solved in time O

↘(2n) for general graphs on n vertices, we
now prove that the existence of algorithms with running time 2o(n) is unlikely. In order

167

to prove that a too fast algorithm for Offensive Alliance contradicts ETH, we give a
reduction from Vertex Cover in graphs of maximum degree 3 and argue that a too fast
algorithm for Offensive Alliance would solve Vertex Cover in graphs of maximum
degree 3 in time 2o(n). Johnson and Szegedy [85] proved that, assuming ETH, there is no
algorithm with running time 2o(n) to compute a minimum vertex cover in graphs of maximum
degree 3.

7.7.1 Offensive Alliance on bipartite graphs

Theorem 7.7.1. Unless ETH fails, Offensive Alliance does not admit a 2o(n) algorithm,
even when restricted to bipartite graphs.

Proof. We give a linear reduction from Vertex Cover in graphs of maximum degree 3
to Offensive Alliance, that is, a polynomial-time algorithm that takes an instance of
Vertex Cover and outputs an equivalent instance of Offensive Alliance whose size
is bounded by O(n). Let (G, k) be an instance of Vertex Cover, where G = (V,E) has
maximum degree 3. We construct an equivalent instance (G→, k→) of Offensive Alliance
the following way. See Figure 7.7 for an illustration. Take two distinct copies V0, V1 of

E0V0V1

v1

v2 v3

v01

v02

v03

v11

v12

v13

e1

e2

e3

a

e

b

d

c

Va
Vb

Vc

Vd

Ve

G→G

e1

e2

e3

Figure 7.7: An illustration of the reduction from Vertex Cover to Offensive Alliance
in Theorem 7.7.1.

V = {v1, v2, . . . , vn}, and let vi be the copy of v ↓ V in Vi. We introduce the vertex set E0

into G→, where E0 = {e1, . . . , em}, the edge set of G. We make v0i adjacent to ej if and only
if vi is an endpoint of ej in G. We make v0i adjacent to v1i for all i. Next, introduce five new
vertices a, b, c, d, e. For each x ↓ {a, b, c, d, e}, introduce a set Vx of 4k→ vertices and make x

adjacent to every vertex of Vx. Moreover, we make vertex a and e adjacent to every vertex of

168

E0 and make b and c adjacent to every vertex of V1. We also make d adjacent to every vertex
of {a, b, c, e}. Note that G→ is a bipartite graph with bipartition {d}↔ V1 ↔E0

⋃
x↑{a,b,c}

Vx and

{a, b, c, e} ↔ Vd ↔ V0. We set k→ = k + 5. Clearly, the size of G→ is bounded by O(n).

We claim that (G, k) is a yes-instance of Vertex Cover if and only if (G→, k→) is a yes-
instance of Offensive Alliance. Suppose G has a vertex cover S of size at most k. We
show that D = {v0 ↓ V0 | v ↓ S} ↔ {a, b, c, d, e} is an o"ensive alliance of size at most k→ in
G→. We see N(D) = E0 ↔ V1

⋃
x↑{a,b,c,d}

Vx. It is clear that for each v ↓ V1

⋃
x↑{a,b,c,d}

Vx, we have

dD(v) ⇐ dDc(v)+1. Each v ↓ E0 has at least three neighbours in D, more precisely, a, e and
at least one neighbour in V0. This implies that for each v ↓ E0, we have dD(v) ⇐ dDc(v)+ 1.

Conversely, assume that G→ admits an o"ensive alliance D of size at most k→ = k + 5.
Note that the vertices a, b, c, d and e cannot be part of the set N(D) as each of them has
degree 4k→; otherwise the size of D will exceed k→. We now show that {a, b, c, d, e} ↗ D. By
definition, o"ensive alliance cannot be empty; therefore it must contain a vertex from V (G→).
Case 1: Suppose D contains an arbitrary vertex of

⋃
x↑{a,b,c,d,e}

Vx. Without loss of generality,

assume that D contains an arbitrary vertex of Va. Since a ⇑↓ N(D), it implies that a ↓ D.
Since a ↓ D, we get b, c, d and e also lie in D as otherwise {b, c, d, e} ↗ N(D). Therefore, if
any vertex from the set {a, b, c, d, e} is in D, it implies that the whole set is in D.
Case 2: Suppose D contains an arbitrary vertex of V1. It implies that b, c are in D and
therefore {a, b, c, d, e} ↗ D. Suppose D contains an arbitrary vertex of E0. It implies that
{a, e} ↗ D and therefore {a, b, c, d, e} ↗ D. Suppose D contains v0 from V0. This implies that
v1 ↓ V1 is in N(D). If both b and c are outside D then we have dD(v1) < dDc(v1) + 1, which
is a contradiction. This implies that either b or c is in D and therefore {a, b, c, d, e} ↗ D.

Now since {a, b, c, d, e} ↗ D, a vertex e in E0 will be either in N(D) or D. If e ↓ D, then
we pick an arbitrary neighbour of e in V0 and put it in D and remove e from D. Therefore,
staring with an arbitrary o"ensive alliance D, we can transform it into another o"ensive
alliance such that D ↘ E0 = ≃, that is, E0 ↗ N(D). As each e ↓ E0 has to satisfy the
condition dS(e) ⇐ dSc(e) + 1, we must have a set S ↗ V0 of size at most k in D such that
every vertex in E0 has at least one neighbour in S. This implies that S is a vertex cover of
size at most k in G.

169

7.7.2 Strong Offensive Alliance on apex graphs

Recall that a planar graph is a graph that can be embedded in the plane, that is, it can be
drawn on the plane in such a way that its edges intersect only at their endpoints. In other
words, it can be drawn in such a way that no edges cross each other. An apex graph is a
graph that can be made planar by the removal of a single vertex. The deleted vertex is called
an apex of the graph.

Theorem 7.7.2. Strong Offensive Alliance admits a O
↘(2O(

↗
n logn)) algorithm on

apex graphs.

Proof. Note that the treewidth of any apex graph with n vertices is bounded by O(
⇒
n). In

[70], a polynomial time algorithm is given to solve o"ensive alliance problem on bounded
treewidth graphs with running time O

↘(2ϱnO(ϱ)) where ⇀ denotes the treewidth of the input
graph. This algorithm can be used to obtain an algorithm with running time O

↘(2O(
↗
n logn))

for apex graphs.

While Strong Offensive Alliance can be solved in time O↘(2O(
↗
n logn)) for apex graphs

on n vertices, we now prove that the existence of algorithms with running time 2o(
↗
n) is

unlikely.

Theorem 7.7.3. Unless ETH fails, the Strong Offensive Alliance problem does not
admit a 2o(

↗
n) algorithm even when restricted to apex graphs.

Proof. We give a linear reduction from Planar Dominating Set to Strong Offen-
sive Alliance, that is, a polynomial-time algorithm that takes an instance of Planar
Dominating Set on n vertices and m = O(n) edges, and outputs an equivalent instance of
Strong Offensive Alliance whose size is bounded by O(n). Let (G, k) be an instance of
Planar Dominating Set. Without loss of generality, we assume that G is connected. We
construct an equivalent instance (G→, k→) of Strong Offensive Alliance in the following
way. See Figure 7.9 for an illustration.

To construct graph G→, we start with graph G. For every edge e ↓ E(G), we add one
parallel edge e→ with the same endpoints. We subdivide each edge e ↓ E(G) and the sub-
division vertex for e is denoted by ve. For each e ↓ E(G), we introduce a new vertex he

170

v2 v3

v1

e1 e3

e2
v2 v3

v1

x x→

ve1he1 he3

he2

ve3

ve2

V ↫
x

Figure 7.8: The reduction from Planar Dominating Set to Strong Offensive Al-
liance in Theorem 7.7.3

and make it adjacent to ve. We introduce two new vertices x and x→. Finally, we add a
set V ↫

x of 4(m + k + 2) vertices and make x and x→ adjacent to every vertex of V ↫
x . Lastly,

we make x adjacent to every vertex of V (G) ↔
⋃

e↑E(G)

{ve, he}. This completes the construc-

tion of G→. Set k→ = m+k+2 We observe that G→
↑x is planar. Therefore, G→ is an apex graph.

Formally, we claim that G has a dominating set of size at most k if and only if G→ has a
strong o"ensive alliance of size at most k→. Suppose G admits a dominating set D of size at
most k. We claim that S = D ↔ {x, x→

} ↔
⋃

e↑E(G)

{ve} is a strong o"ensive alliance of size at

most k→. It is easy to see that |S| → k→. We note that N(S) =
⋃

e↑E(G)

{he}↔ (V (G) \D)↔ V ↫
x .

Let v be an arbitrary element of N(S). If v is an element of
⋃

e↑E(G)

{he} or V ↫
x , then it has

two neighbours in S and no neighbours in Sc, so we have NS(v) ⇐ NSc(v) + 2. Suppose v is
an element of V (G)\D. If v has degree d in G then dG→(v) = 2d+1. Since D is a dominating
set, v ↓ V (G) \D has at least one neighbour in D. Thus v has at least d+ 2 neighbours in
S and at most d↑ 1 neighbours outside S. This implies that NS(v) ⇐ NSc(v)+ 2. Therefore
S is a strong o"ensive alliance.
In the reverse direction, suppose now that S is a strong o"ensive alliance of size at most k→.
We first show that {x, x→

} ↗ S. As both x and x→ have degree more than 2k→, we claim that
x and x→ cannot be in N(S). Suppose, for the sake of contradiction, that x ↓ N(S). Then
x must satisfy the condition NS(x) ⇐ NSc(x) + 2. This implies that the size of S is greater
than k→, a contradiction to the assumption that S is a strong o"ensive alliance of size at

171

most k→. As S is a non-empty set it contains at least one vertex of G→. Case 1: S contains x;
then we are done. Case 2: S contains an element of V (G→) \ {x}. As x is adjacent to every
other vertex of G→, x ↓ N(S). Since we know x cannot be in N(S), so we must have x in S.
Once x is in S, the vertices of V ↫

x are in N(S). The vertices v of V ↫
x satisfy the condition

dS(v) ⇐ dSc(v) + 2, only if x→
↓ S.

Next we claim that for each e ↓ E(G) if ve is not in S then he must be in S. Suppose, for
the sake of contradiction, that he is not in S. Then he ↓ N(S) as he is adjacent to x and
x ↓ S. Note that he has one neighbour x in S and one neighbour ve in Sc. Therefore we
get NS(he) < NSc(he) + 2, a contradiction to the assumption that S is a strong o"ensive
alliance. This proves the claim.
Therefore for each e ↓ E(G), either ve ↓ S, he ↓ S or both ve, he are in S. Starting from
an arbitrary strong o"ensive alliance S, we can always construct another strong o"ensive
alliance S → such that

⋃
e↑E(G)

{ve} ↗ S → and |S →
| → |S|. We construct S → from S as follows. For

each e ↓ E(G) do the following: if S contains both ve and he, remove he; if S contains only he,
replace it by ve; if S contains ve, do not make any changes. Clearly |S →

| → |S|. We claim that
S → is also a strong o"ensive alliance. Note that N(S →) =

(
N(S)\

⋃
e↑E(G)

{ve}
)
↔

⋃
e↑E(G)

{he}. It

is easy to see that, for each e ↓ E(G), we have NS(he) ⇐ NSc(he) + 2. For any other vertex
v ↓ N(S →), we have NS→(v) ⇐ NS(v). This proves the claim that S → is a strong defensive
alliance. Therefore we obtain a strong o"ensive alliance S → of size at most k→ such that
{x, x→

} ↔
⋃

e↑E(G)

ve ↗ S →.

Now we claim that S →
↘ V (G) is a dominating set of size at most k in G. Note that |S →

↘

V (G)| → k as S → contains {x, x→
}↔

⋃
e↑E(G)

ve and |S →
| → k+m+2. Let us consider any vertex

u ↓ V (G). If dG(u) = d then dG→(u) = 2d + 1. If u ↓ S →
↘ V (G) then it is dominated

by itself. Therefore, let us assume that u ↓ V (G) \ S →. Suppose u has no neighbours in
S →

↘ V (G). Then it would imply that dS→(u) = d + 1 and dS→c(u) = d. In this case, we see
that dS→(u) < dS→c(u) + 2 which is a contradiction. This implies that u has a neighbour in
S →

↘ V (G). That is, every vertex of G is dominated by the set S →
↘ V (G).

7.8 NP-completeness results

In this section, we prove that the Offensive Alliance problem is NP-complete, even
when restricted to split, chordal and circle graphs.

172

7.8.1 Split and Chordal Graphs

A graph G is called chordal if it does not contain any chordless cycle of length at least four.
Split graphs are a subclass of chordal graphs, where the vertex set can be partitioned into
an independent set and a clique. We now prove the following theorem.

Theorem 7.8.1. The Offensive Alliance problem is NP-complete, even when restricted
to split or chordal graphs.

Proof. It is easy to see that the problem is in NP. To show that the problem is NP-hard
we give a polynomial reduction from Vertex Cover in graphs of maximum degree 3. Let
(G, k) be an instance of Vertex Cover, where G has maximum degree 3. We construct
an equivalent instance (G→, k→) of Offensive Alliance the following way. See Figure 7.9
for an illustration. The vertex set of G→ is defined as follows:

v1

v2 v3

e1 e2

e3

G

G→

e1
e2

e3

v1
v2
v3

y4

y3

y2

y1x1

x24

Vnode

X

Vedge

Y

Figure 7.9: An illustration of the reduction from Vertex Cover to Offensive Alliance
in Theorem 7.8.1.

1. For every v ↓ V (G), we introduce v into G→. Set Vnode = V (G).

2. For each e ↓ E(G), we introduce a vertex e into G→. Let Vedge = {ei | ei ↓ E(G)}.

3. We introduce a set Y = {y1, y2, . . . , ym+1} of m+ 1 new vertices into G→.

4. Moreover, introduce a set X = {x1, . . . , x4(n+m)} of 4(n+m) new vertices into G→.

173

We now create the edge set of G→.

1. For every vi ↓ Vnode and ej ↓ Vedge, make vi adjacent to ej if and only if vi is an
endpoint of ej in G.

2. Make the the set Vedge ↔ Y a clique in G→.

3. Finally, we make every vertex of X adjacent to every vertex of Y .

Note that Vnode↔X forms an independent set where as the vertices in Vedge↔Y form a clique.
Therefore, G is a split graph. We set k→ = k +m+ 1.

Formally, we claim that G has a vertex cover of size at most k if and only if G→ has an
o"ensive alliance of size at most k→. Assume first that G admits a vertex cover S of size at
most k. Consider D = S ↔ Y . Clearly, |D| → k→. We claim that D is an o"ensive alliance
in G→. Note that N(D) = Vedge ↔ X. For each x ↓ X, we have dD(x) ⇐ dDc(x) + 1 as all
its neighbours are inside D. Each e ↓ Vedge has at least m+ 2 neighbours in D and at most
m+ 1 neighbours, including itself, outside D. This implies that D is an o"ensive alliance of
size at most k→ in G→.

For the reverse direction, let D be an o"ensive alliance of size at most k→ in G→. We first
show that Y ↗ D. It is easy to note that Y ↘N(D) = ≃ as otherwise each v ↓ Y ↘N(D) has
to satisfy the condition dD(v) ⇐ dDc(v) + 1 which requires more than k→ vertices in D. Since
D is a non-empty o"ensive alliance, it must contain a vertex from the set Vnode↔Vedge↔X↔Y .

Case 1: Suppose D contains a vertex v from Vedge↔X↔Y . Then v has at least one neighbour
in Y . As Y ↘N(D) = ≃, therefore we get Y ↗ D.

Case 2: Suppose D contains a vertex v from Vnode. Let e ↓ Vedge be a neighbour of v

in G→. Then e could be either in D or in N(D). If e is in D, then Case 1 implies that
Y ↗ D. Suppose e is in N(D). Then e has to satisfy the condition dD(e) ⇐ dDc(e) + 1.
Note that the neighbours of e in G→ are the vertices of Y ↔ Vedge \ {e} and two endpoints
of e in Vnode, thus dG→(e) = 2m + 2. In order to satisfy the condition dD(e) ⇐ dDc(e) + 1,
vertex e requires at least one vertex from Y to be inside D. Again Case 1 implies that Y ↗ D.

174

Since the size of D is at most m + k + 1 and Y ↗ D, it can contain at most k vertices
besides the vertices in Y . Given an o"ensive alliance D, we can construct another o"ensive
alliance D→ such that |D→

| → |D| and D→
↘ (Vedge ↔ X) = ≃, in the following way. For each

e ↓ Vedge ↘ D, we replace e by an arbitrary neighbour of e in Vnode. If a neighbour of e is
already present in D then just remove e and do not add any new vertex. We also remove all
the vertices of X from D. The modified D is our D→. Next we argue that D→ is an o"ensive
alliance. Since Y ↗ D→ and D→

↘ (Ve ↔ X) = ≃, we have N(D→) = Vedge ↔ X. Let v be an
arbitrary element of N(D→).
Case 1: If v ↓ X then all its neighbours in G→ are in D→. So v trivially satisfies the condition
dD→(v) ⇐ dD→c(v) + 1.
Case 2: Suppose v ↓ N(D) ↘ Vedge. We know Vedge ↗ D ↔ N(D). We observe that for the
vertices in N(D)↘Vedge, we only increase their number of neighbours in D→. Therefore, every
vertex v of N(D) ↘ Vedge satisfy the condition dD→(v) ⇐ dD→c(v) + 1.
Case 3: Suppose v ↓ D ↘ Vedge. Every vertex v of Vedge ↘D has at least one neighbour from
Vnode inside D→ by the construction of D→. Clearly, each vertex of Vedge↘D has at least m+2

neighbours inside D→ and at most m+ 1 (including itself) outside D→.
This shows that D→ is an o"ensive alliance. Note that Vedge ↗ N(D→). Therefore, every
e ↓ Vedge satisfies the condition dD→(e) ⇐ dD→c(e) + 1, which requires at least one neighbour
of e from Vnode to be inside D→. Therefore D→

↘ Vnode forms a vertex cover of size at most k

in G. This proves that (G, k) is a yes instance.

7.8.2 Circle graphs

A circle graph is an undirected graph whose vertices can be associated with chords of a
circle such that two vertices are adjacent if and only if the corresponding chords cross each
other. Here, we prove that the Offensive Alliance problem is NP-complete even when
restricted to circle graphs, via a reduction from Dominating Set. It is known that the
Dominating Set problem on circle graphs is NP-hard [88].

Theorem 7.8.2. The Offensive Alliance problem on circle graphs is NP-complete.

Proof. It is easy to see that the problem is in NP. To show that the problem is NP-hard
we give a polynomial reduction from Dominating Set on circle graphs. Let (G, k) be an

175

b
a

d

c

a

c
(a) (b)

b d

a

C1
a

C2
a

c

C1
cC2

c

b

C1
b

C2
b

d

C1
d

C2
d

Figure 7.10: (a) Graph G and its circle representation. (b) The graph G→ produced by the
reduction algorithm. Note that every orange vertex is adjacent to a set of 2r vertices, which
are not shown here.

instance of Dominating Set, where G is a circle graph. Suppose we are also given the circle
representation C of G. Without loss of generality, we assume that there are no one degree
vertices in G. We construct an instance of (G→, r) of Offensive Alliance as follows (see
Figure 7.10). Set r = 2m+k, where m is the number of edges in G. For every v ↓ V (G), we
introduce two cliques C1

v and C2
v where C1

v has ′
d(v)
2 ∞ nodes and C2

v has ⇓
d(v)
2 ⇔ nodes; make

v adjacent to every vertex of C1
v ↔ C2

v ; for every x ↓ C1
v ↔ C2

v , introduce a set V ↫
v,x of 2r new

vertices and make x adjacent to every vertex of V ↫
v,x. The vertices of V ↫

v,x are not shown in
Figure 7.10b. We start at an arbitrary vertex of the circle representation C of G and then
traverse the circle in a clockwise direction. We record the sequence in which the chords are
visited. For example, in Figure 7.10a, if we start at the red vertex on the circle, then the
sequence in which the chords are visited, is a, b, d, c, a, d, b, c. Note that every vertex appears
twice in the sequence as every chord is visited twice while traversing the circle. Thus we get
a sequence S of length 2n where n is the number of chords in C. We use the sequence to
connect 2n newly added cliques. For every consecutive pair (u, v) in the sequence S, put an
edge between a vertex of C1

u (resp. C2
u) and a vertex of C1

v (resp. C2
v) if both u, v appear

for the first time (resp. second time) in the sequence; put an edge between a vertex of C1
u

and a vertex of C2
v if u appears for the first time and v appears for the second time in the

sequence. These edges are shown in orange in Figure 7.10b. This completes the construction
of graph G→. Now we show that G→ is indeed a circle graph.

176

(a) (b)

v x

Figure 7.11: (a) The circle representation for the first operation. Let d(v) = 6. For v, we
introduce C1

v in G→, and make v adjacent with every vertex of C1
v . The circle representation

of v, C1
v and their adjacency are shown here. (b) The circle representation for the second

operation with r = 1.

b
a

c

d

Figure 7.12: A circle representation of the graph G→ in Figure 7.10. We do not shown the
parallel chords correspond to 2r vertices adjacent to every vertex in each clique.

In the reduction algorithm, we have three operations: (i) For every v ↓ V (G), we introduce
two cliques C1

v and C2
v and make v adjacent to every vertex of C1

v and C2
v . This operation

can be incorporated in the circle representation by introducing ′
d(v)
2 ∞ intersecting chords at

one end of the chord corresponds to v and ⇓
d(v)
2 ⇔ intersecting chords at the other end of

the chord corresponds to v. See Figure 7.11a for an illustration. (ii) For every vertex x in
clique, we introduce a set of 2r new vertices and make x adjacent to each of them. This
operation can be easily incorporated in the circle representation by introducing 2r parallel
chords intersecting the chord corresponds to x. See Figure 7.11b. (iii) For every consecutive
pair (u, v) in the sequence S, we put an edge between a vertex of C1

u and a vertex of C1
v . This

is incorporated in the circle representation by making the last chord (in clockwise direction)
of C1

u intersect with the first chord (in clockwise direction) of C1
v . This is demonstrated in

Figure 7.12.

Formally, we claim that G has a dominating set of size at most k if and only if G→ has an
o"ensive alliance of size at most r. Assume first that G admits a dominating set S of size

177

at most k. Consider
D =

⋃

v↑V (G)

V (C1
v) ↔ V (C2

v) ↔ S.

Clearly |D| → r. We claim that D is an o"ensive alliance in G→. Clearly

N(D) = (V (G) \ S)
⋃

v↑V (G)

⋃

x↑C1
v⇔C

2
v

V ↫
v,x.

Each u ↓
⋃

v↑V (G)

⋃
x↑C1

v⇔C
2
v

V ↫
v,x satisfies dD(u) ⇐ dDc(u) + 1. For u ↓ V (G) \ S, if dG(u) = d

then in G→ we have dD(u) ⇐ d+1 and dDc(u) → d↑ 1. Thus D is an o"ensive alliance of size
at most r in G→.

Conversely, suppose G→ admits an o"ensive alliance D of size at most r. First, we claim
that ⋃

v↑V (G)

V (C1
v) ↔ V (C2

v) ↗ D.

It is to be noted that any o"ensive alliance D of size at most r cannot contain a vertex of
degree more than 2r in its neighbourhood N(D). As every vertex of

⋃
v↑V (G)

V (C1
v) ↔ V (C2

v)

has degree more than 2r, we have that N(D) ↘
⋃

v↑V (G)

V (C1
v) ↔ V (C2

v) = ≃. Since D is a

non-empty o"ensive alliance, it must contain a vertex from G→. Suppose D contains a vertex
x from V (C1

v). As x is adjacent to all other vertices in C1
v , the remaining elements of V (C1

v)

are in N(D). We know N(D) cannot contain any element of V (C1
v), therefore we have

V (C1
v) ↗ D. Similarly, as N(D) cannot contain any element of

⋃
v↑V (G)

V (C1
v) ↔ V (C2

v), it

implies that
⋃

v↑V (G)

V (C1
v) ↔ V (C2

v) ↗ D. This proves the claim.

Note that the total number of vertices in
⋃

v↑V (G)

V (C1
v) ↔ V (C2

v) is
∑
v↑V

d(v) = 2m and the

size of D is at most 2m+ k. Therefore, besides the vertices in
⋃

v↑V (G)

V (C1
v)↔ V (C2

v), D can

include at most k vertices from V (G). The remaining vertices of V (G) are in N(D). Each
v ↓ V (G)↘N(D) needs exactly one neighbour from V (G)↘D, in addition to its neighbours
in C1

v ↔ C2
v , in order to satisfy the condition dD(v) ⇐ dDc(v) + 1. Therefore, D ↘ V (G) is a

dominating set of size at most k in G.

178

7.9 Closing Remarks and Future Directions

In this work we proved that the Offensive Alliance problem is NP-complete even when
restricted to bipartite, chordal, split and circle graphs. We proved that the Offensive
Alliance problem is W[1]-hard parameterized by a wide range of fairly restrictive structural
parameters such as the feedback vertex set number, treewidth, pathwidth, and treedepth
of the input graph thus not FPT (unless FPT = W[1]). We thereby resolved an open
question stated by Bernhard Bliem and Stefan Woltran (2018) concerning the complexity of
Offensive Alliance parameterized by treewidth. This is especially interesting because
most “subset problems” that are FPT when parameterized by solution size turned out to be
FPT for the parameter treewidth [33], and moreover Offensive Alliance is easy on trees.
On the positive side we proved that it can be solved in time O

↘(vc(G)O(vc(G))) where vc(G)

is the vertex cover number of the input graph, and the problem admits an FPT algorithm
when parameterized by vertex integrity of input graph. We gave lower bound based on ETH
for the time needed to solve the Offensive Alliance problem; we proved that it cannot
be solved in time 2o(n) even when restricted to bipartite graphs, unless ETH fails. We list
some natural questions that arise from the results of this study:

• W[t]-membership of Defensive Alliance problem on graphs of bounded treewidth.

• Does Offensive Alliance parameterized by vertex cover number admit a single
exponential algorithm or can one show a lower bound with matching time complexity?

• Does Offensive Alliance admit polynomial-time algorithms on some special classes
of intersection graph family such as interval graphs, circular arc graphs, unit disk
graphs, etc?

• Determine parameterized complexity of Offensive Alliance problem when param-
eterized by other structural parameters such as twin cover, cluster vertex deletion
number and modular-width.

179

180

Chapter 8

F-Free Edge Deletion

8.1 Introduction

Given a graph G = (V,E) and a set F of forbidden subgraphs, we study the F-Free Edge
Deletion problem, where the goal is to remove a minimum number of edges such that the
resulting graph does not contain any F ↓ F as a (not necessarily induced) subgraph. Enright
and Meeks (Algorithmica, 2018) gave an algorithm to solve F-Free Edge Deletion whose
running time on an n-vertex graph G of treewidth tw(G) is bounded by 2O(|F|tw(G)r)n, if every
graph in F has at most r vertices. We complement this result by showing that F-Free Edge
Deletion is W[1]-hard when parameterized by tw(G) + |F|. We also show that F-Free
Edge Deletion is W[2]-hard when parameterized by the combined parameters solution
size, the feedback vertex set number and pathwidth of the input graph. This chapter is
based on the paper [62].

8.2 Hardness of F-Free Edge Deletion parameterized
by tw(G) + |F|

Enright and Meeks [44] gave an algorithm to solve F-Free Edge Deletion whose run-
ning time on an n-vertex graph G of treewidth tw(G) is bounded by 2O(|F|tw(G)r)n, if every

181

graph in F has at most r vertices. In this section, we complement this result by showing
that F-Free Edge Deletion is W[1]-hard when parameterized by tw(G) + |F|. To show
W[1]-hardness of F-Free Edge Deletion, we reduce from the following problem, which
is known to be W[1]-hard parameterized by the treewidth of the graph [123]:

Minimum Maximum Outdegree
Input: An undirected graph G = (V,E), an edge weighting w : E(G) ↖ Z+ given in
unary and a positive integer r.
Question: Is there an orientation of the edges of G such that, for each v ↓ V (G), the
sum of the weights of outgoing edges from v is at most r?

The weighted degree dw(u;G) of a vertex u ↓ V is defined as
∑

v↑NG(u)

w(u, v). The weighted

maximum degree ”w(G) of G is defined as max
u↑V

dw(u;G). In this section, we prove the
following theorem:

Theorem 8.2.1. The F-Free Edge Deletion problem is W[1]-hard when parameterized
by tw(G) + |F|.

Proof. Let I = (G = (V,E,w), r) be an instance of the Minimum Maximum Outdegree
problem.
Construction: We construct an instance I → = (G→, k,F) of F-Free Edge Deletion the
following way (see Figure 8.1).

1. For each edge (u, v) ↓ E(G), we introduce the following sets of new vertices Vuv =

{uv
1, . . . , u

v
w(u,v)}, V →

uv = {u→v
1 , . . . , u

→v
w(u,v)}, Vvu = {vu1 , . . . , v

u
w(u,v)} and V →

vu = {v→u1 , . . . , v
→u
w(u,v)}.

We make u (resp. v) adjacent to all the vertices in Vuv ↔ V →

uv (resp. Vvu ↔ V →

vu). Let
Eu,uv =

{
(u, x) | x ↓ Vuv

}
, E →

u,u→v =
{
(u, x) | x ↓ V →

uv

}
, Ev,vu =

{
(v, x) | x ↓ Vvu

}
and

E →

v,v→u =
{
(v, x) | x ↓ V →

vu

}
.

2. For every vertex u ↓ V (G), we also add a set V ↫
u of ”w(G) ↑ dw(u;G) many vertices

and make them adjacent to u.

3. Arrange the vertices of G in a linear order. We define two sets of pairs of vertices:

C1 =
{
{(u→v

i , v
→u
i)} | (u, v) ↓ E(G), 1 → i → w(u, v)

}

⋃{
(u→v

i , v
→u
i+1), (u

→v
w(u,v), v

→u
1) | (u, v) ↓ E(G), 1 → i → w(u, v)↑ 1

}
,

182

C2 =
{
{(uv

i , v
u
i)} | (u, v) ↓ E(G), 1 → i → w(u, v)

}

⋃{
(uv

i , v
u
i+1), (u

v
w(u,v), v

u
1) | (u, v) ↓ E(G), 1 → i → w(u, v)↑ 1

}
.

In the definition of C1 and C2, for each (u, v) ↓ E(G), consider u appears before v in
the linear ordering.

4. Let ⇀ =
∑

e↑E(G)

w(e) and N = n+ 3⇀ + 1. For every pair of vertices (u→v, v→u) ↓ C1, we

add a “blue" path Pu→v ,v→u of length 4N ↑ 2 joining u→v and v→u, whose internal vertices
are new. Similarly, for every pair of vertices (uv, vu) ↓ C2, we add a “red" path Puv ,vu

of length N joining uv and vu, whose internal vertices are new.

5. We set k = ⇀ and F = {S!w(G)+r+1, C5N+2} where C5N+2 is the cycle graph of order
5N + 2 and S!w(G)+r+1 is the star graph of order ”w(G) + r + 1.

a

Vad

Vbc

Vda

Vcb

V →
ad V →

da

V →
bc V →

cb

V →
cd

V →
dc

Vba

Vab

V →
ba

V →
ab

ad
1

ad
2

a→d
1

a→d
2

da1

da2

d→a1

d→a2

b

bc1

bc2

bc3

b→c1

b→c2

b→c3

ba1 b→a1

c

cb1

cb2

cb3

c→b1

c→b2

c→b3

cd1 cd2 c→d1 c→d2

d

dc1 dc2 d→c1 d→c2ab
1 a→b

1

a d

b c

2

3

1

2

(a) (b)

Figure 8.1: The reduction from Minimum Maximum Outdegree to F-Free Edge Dele-
tion in Theorem 8.2.1. (a) An undirected graph G with edge weights and r = 3. (b) The
graph G→ produced by the reduction algorithm. The red dashed lines represent red paths of
length N , and the blue dashed lines represent blue paths of length 4N ↑ 2.

Clearly I → can be computed in polynomial time. In the I → instance, we have |F| = 2. We now

183

show that the treewidth of G→ depends only on the treewidth of G. We do so by modifying
an optimal tree decomposition ⇁ of G as follows:

• For every edge (u, v) of G, there is a node t in ⇁ whose bag B contains u and v. We
observe that the gadget replacing the edge (u, v) ↓ E(G) is the union of two vertex-
disjoint cycles after removing the vertices u and v. As any cycle has treewidth two,
we can construct a tree decomposition ⇁uv of this gadget of width four. Now, we make
the node t adjacent to an arbitrary node of ⇁uv.

• For each u ↓ V (G), we take an arbitrary node in ⇁ whose bag B contains u; add to
this node a chain of nodes N1, N2, . . . , N|V ↭

u | such that the bag of Ni is B ↔ {xi} where
xi ↓ V ↫

u .

This implies that the treewidth of G→ is at most treewidth of G plus four.

Correctness: Now we show that our reduction is correct. That is, we prove that I =

(G = (V,E,w), r) is a yes instance of Minimum Maximum Outdegree if and only if
I → = (G→, k,F) is a yes instance of F-Free Edge Deletion. Let D be the directed graph
obtained by an orientation of the edges of G such that for each vertex the sum of the weights
of outgoing edges is at most r. We claim that the set of edges

E → =
⋃

(u,v)↑E(D)

Ev,vu =
⋃

(u,v)↑E(D)

{
(v, x) | x ↓ Vvu

}

is a solution of I →. Note that (u, v) or (v, u) is a directed edge of D. Clearly, we have
|E →

| = ⇀. We need to show that G→ = G→
\ E → does not contain any forbidden graph

F ↓ {S!w(G)+r+1, C5N+2} as a subgraph. We prove the following two claims:

Claim 8.2.1. G→ does not contain S!w(G)+r+1 as a subgraph.

Proof. We show that every vertex in G→ has degree at most ”w(G) + r. It is clear from
the construction that if v ↓ V (G→)\V (G) then dG̃→(v) → 3. Let wv

out and wv
in denote the

sum of the weights of outgoing and incoming edges of vertex v in D, respectively. Note
that dw(v;G) = wv

out + wv
in. If v ↓ V (G), then NG→(v) = V ↫

v

⋃
u↑NG(v)

Vvu ↔ V →

vu. Hence

184

dG→(v) = !w(G)→dw(v;G)+2dw(v;G) as |V ↭
v | = !w(G)→dw(v;G) and |

⋃
u→NG(v)

Vvu ↑ V ↑

vu| =
∑

v→NG(u)

2w(u, v) = 2dw(v;G). If the direction of the edge between u and v is from u to v in

D, then E ↑ includes edges between v and Vvu; in other words, in G̃↑ all edges between v and
Vvu are deleted. Therefore,

NG̃→(v) = V ↭
v ↑

⋃

u→NG(v)

(Vvu ↑ V ↑

vu) \
⋃

(u,v)→E(D)

Vvu.

Thus the degree of v in G̃↑ is given by

dG̃→(v) = !w(G)→ dw(v;G) + 2dw(v;G)→ wv
in

= !w(G) + dw(v;G)→ wv
in

= !w(G) + (wv
in + wv

out)→ wv
in

= !w(G) + wv
out

This implies that dG̃→(x) ↓ !w(G)+r as wx
out ↓ r. Therefore, G̃↑ does not contain S!w(G)+r+1

as a subgraph.

Claim 8.2.2. G̃↑ does not contain C5N+2 as a subgraph.

Proof. Targeting a contradiction, let us assume that G̃↑ contains C5N+2 as a subgraph. We
make two cases based on whether the cycle contains some original vertex u from V (G) or
not.
Case 1: Suppose the cycle includes at least one original vertex u ↔ V (G). Let u be adjacent
to v in G. Without loss of generality, we assume that the direction of the edge between u

and v is from u to v in D. Then the edges in Ev,vu =
{
(v, x) | x ↔ Vvu

}
are not present in

G̃↑. Further, we make two subcases based on whether the cycle contains a “blue" edge or a
“red" edge. It is easy to note that G̃↑ does not have a cycle that contains both red and blue
edges.

Subcase 1.1: Suppose the cycle starts at u ↔ V (G) and includes at least one blue edge from a
blue path Pu→v ,v→u . Then the cycle includes all blue edges of the path Pu→v ,v→u of length 4N → 2

and reaches the vertex v↑u. There are many ways to return to u from v↑u, but every path
from v↑u to u in G̃↑ includes another blue path, which makes the length of the cycle at least

185

u

uv
1

uv
2

uv
3

u↑v
1

u↑v
2

u↑v
3

v

vu1
vu2
vu3
v↑u1
v↑u2
v↑u3

Eu,uv

E ↑

u,u→v E ↑

v,v→u

Figure 8.2: The gadget corresponds to an edge (u, v) with weight 3 in G̃↑. The direction of the
edge between u and v is from u to v in D. Note that the edges of Ev,vu =

{
(v, x) | x ↔ Vvu

}

are included in E ↑ and hence not present in G̃↑.

8N → 2 > 5N + 2. This implies that a cycle of length 5N + 2 does not exist in this case.
Figure 8.2 shows a “blue" cycle of length 8N → 2 that contains one original vertex u and
a “blue" cycle of length 8N that contains two original vertices u and v. Clearly, there are
cycles of length larger than 8N that contains more than two original vertices.

Subcase 1.2: Suppose the cycle starts at u ↔ V (G) and includes at least one red edge. In this
case, the cycle begins with an edge e ↔ Eu,uv . Next, it must continue with a red edge. Observe
that if the cycle includes one red edge from Puv ,vu then it must include all the red edges of
the path Puv ,vu of length N and reaches vu. As edges in Ev,vu are not present in G̃↑, it must
take another red path of length N starting at vu, and reaches a vertex in Vu,uv , and finally
return to u. This way we can get cycles of length 2Ni+2 for i = 1, 2, . . . , w(u, v)→1. Figure
8.2 shows a cycle of length 4N +2. Note that 2Ni+2 ↗= 5N +1 for i = 1, 2, . . . , w(u, v)→ 1.
Thus we showed that a “red" cycle of length 5N + 2 does not exist.
Case 2: Suppose the cycle does not include any original vertex. Then it also does not include
any edge from

⋃
(u,v)→E(G)

Eu,uv ↑ Ev,vu ↑ E ↑

u,u→v ↑ E ↑

v,v→u . Further, we make two subcases based

on whether the cycle contains a blue edge or not.
Subcase 2.1: Suppose the cycle contains a blue edge. Since the original vertices of V (G) are
not allowed, the cycle must include 2w(u, v) many blue paths of length 4N → 2 each. In this
case, for each (u, v) ↔ E(G), one can get a “blue" cycle of length 2w(u, v)(4N →2) ↗= 5N +2,
where w(u, v) is the weight of (u, v) in G. Figure 8.3 shows a “blue" cycle of length 6(4N→2).
Therefore, a “blue" cycle of length 5N + 2 does not exist.

Subcase 2.2: Suppose the cycle does not contain any blue edges. Since the blue edges and

186

u

uv
1

uv
2

uv
3

u↑v
1

u↑v
2

u↑v
3

v

vu1
vu2
vu3
v↑u1
v↑u2
v↑u3

Eu,uv

E ↑

u,uv E ↑

v,v→u

Figure 8.3: The gadget corresponds to an edge (u, v) with weight 3 in G̃↑. Suppose the
direction of the edge between u and v is from u to v in D.

the original vertices in V (G) are not allowed, the cycle must contain only red edges. In this
case one can get a “red" cycle of length 2w(u, v)N ↗= 5N + 2. Therefore, a “red" cycle of
length 5N + 2 does not exist.

For the reverse direction, let E ↑
↘ E(G↑) be a solution for I ↑, that is, |E ↑

| = ω and G↑
\E ↑

dose not contain any F ↔ F = {S!w(G)+r+1, C5N+2} as a subgraph. We now prove a crucial
property of E ↑.

Claim 8.2.3. For each (u, v) ↔ E(G), the set E ↑ contains either Eu,uv , Ev,vu , E ↑

u,u→v or E ↑

v,v→u.

Proof. For each edge (u, v) ↔ E(G), there are u-v paths of length 4N through the blue edges.
We call such paths the paths of type blue. Similarly, for each edge (u, v) ↔ E(G), there are
u-v paths of length N + 2 through the red edges. We call such paths the paths of type red.
We observe that a path of type red and a path of type blue together form a cycle of length
5N +2. See Figure 8.4(a). Therefore, to avoid such a cycle, the solution must destroy either
all u-v paths of type red or all u-v paths of type blue for each (u, v) ↔ E(G). Since the
number of edge-disjoint u-v paths of type red (resp. blue) is w(u, v), the minimum number
of edges whose deletion destroys all u-v paths of type red (resp. blue) is w(u, v). We must
add at least w(u, v) many edges to E ↑ for each (u, v) ↔ E(G). As |E ↑

| = ω, it implies that
E ↑ includes exactly w(u, v) many edges for each (u, v) ↔ E(G).

Case 1: Suppose that the deletion of edges in E ↑ destroys all u-v paths of type red and it
uses exactly w(u, v) edges to destroy all u-v paths of type red. We make two important
observations about E ↑:

187

! "
u

uv
1

uv
2

uv
3

v

vu1
vu2
vu3

(a)

P1

P2

u

uv
1

uv
2

uv
3

v

vu1
vu2
vu3

(b)

!

u

uv
1

uv
1

uv
1

v

vu1
vu2
vu3

(d)

u

uv
1

uv
2

uv
3

v

vu1
vu2
vu3

(c)

Figure 8.4: The gadget corresponds to an edge (u, v) with weight 3.

1. The solution E ↑ does not include any red edge. The reason is this. If we delete a red
edge then, there will be still at least w(u, v) many edge disjoint u-v paths of type red
left. For example, deletion of a red edge of the path Puv

1 ,v
u
1

destroys the path Puv
1 ,v

u
1
, but

there are still 3 edge disjoint u-v paths of type red as shown in Figure 8.4(b). Thus,
deletion of three edges (including a red edge) is not enough to destroy all u-v paths of
type red. In general, deletion of w(u, v) edges (including a red edge) is not enough to
destroy all u-v paths of type red. Therefore, E ↑ does not include red edges. It implies
that a solution must contain edges from Eu,uv ↑ Ev,vu .

2. The solution E ↑ includes either (u, uv
i) or (v, vui) for all 1 ↓ i ↓ w(u, v). If we remove

both (u, uv
i) and (v, vui) for some i, we will still have w(u, v) → 1 many edge disjoint

u-v paths of type red. For example, after removing two edges (u, uv
1) and (vu1 , v), we

still have two edge disjoint u-v paths of type red as shown in Figure 8.4(c). Clearly,
deletion of 3 edges (including (u, uv

1) and (vu1 , v)) are not enough to destroy all u-v
paths of type red. In general, deletion of w(u, v) edges, including two edges (u, uv

i)

and (v, vui), are not enough to destroy all u-v paths of type red.

188

Without loss of generality, we assume that (u, uv
1) is not part of the solution, that is, we are

not deleting (u, uv
1) from the graph G↑. There are two paths P1 = (u, uv

1, Puv
1 ,v

u
1
, vu1 , v) and

P2 = (u, uv
1, Puv

1 ,v
u
2
, vu2 , v) that go through edge (u, uv

1). Figure 8.4(d) shows P1 and P2. Since
we do not delete (u, uv

1) from the graph G↑ and red edges cannot be deleted, we are forced
to delete both (v, vu1) and (v, vu2), in order to destroy P1 and P2. That is, edges (v, vu1) and
(v, vu2) are in E ↑. As (v, vu2) is in E ↑, by Observation 2 (u, uv

2) is not in E ↑. Again, it forces
(v, vu2) and (v, vu3) to be part of the solution. Applying this argument repeatedly, we see that
E ↑ contains Ev,vu . As |Ev,vu | = w(u, v), no edges from Eu,uv can be part of the solution. This
shows that E ↑ contains either Eu,uv or Ev,vu .
Case 2: Suppose that the deletion of edges in E ↑ destroys all u-v paths of type blue. Using
the same arguments, we can prove that E ↑ contains either E ↑

u,u→v or E ↑

v,v→u . This concludes
the proof of the claim.

We now define a directed graph D by V (D) = V (G) and

E(D) =
{
(u, v) | Ev,vu or E ↑

v,v→u ↘ E ↑

}⋃{
(v, u) | Eu,uv or E ↑

u,u→v ↘ E ↑

}
.

Suppose there is a vertex x in D for which wx
out > r. In this case, we observe that x is

adjacent to more than !w(G)+r vertices in graph G̃↑ = G↑
\E ↑. This is a contradiction as ver-

tex x and its neighbours form the star graph S!w(G)+r+1, which is a forbidden graph in I ↑.

8.3 Hardness of F-Free Edge Deletion parameterized
by k + fvs(G) + pw(G)

In this section we show that F-Free Edge Deletion is W[2]-hard parameterized by
k + fvs(G) + pw(G), via a reduction from Hitting Set. In the Hitting Set problem, we
are given a universe U = {1, 2, . . . , n}, a family A of sets over U , and a positive integer k.
The objective is to decide whether there is a subset H ↘ U of size at most k such that H

contains at least one element from each set in A. It is known that the Hitting Set problem
is W[2]-hard when parameterized by the solution size k [31]. We prove the following theorem:

189

Theorem 8.3.1. The F-Free Edge Deletion problem is W[2]-hard when parameterized
by k + fvs(G) + pw(G).

Proof. Let (U,A, k) be an instance I of the Hitting Set problem and let U = {1, 2, . . . , n}.
We construct an instance I ↑ = (G,F , k↑) of F-Free Edge Deletion as follows. We first
introduce a central vertex v. For every i ↔ U , we attach to this vertex a cycle Ci of length
2i + 2. See Figure 8.5. Note that C1, C2, . . . , Cn have only one vertex v in common. We

v C1

C3

C2

Figure 8.5: The graph G of the F-Free Edge Deletion problem instance constructed
in the reduction of Theorem 8.3.1 for n = 3.

define G as follows
V (G) =

⋃

i→U

V (Ci) and E(G) =
⋃

i→U

E(Ci).

We observe that the graph G contains a unique cycle Ci of length 2i + 2 for each i ↔ U .
Clearly, {v} is a feedback vertex set of G. The feedback vertex set number of G is 1. The
pathwidth of G is 2. As G→ v is disjoint union of paths, G→ v has a path decomposition P

of width 1. We add v in each bag of P to get a path decomposition of G of width 2. Thus
its pathwidth is less than or equal to 2. On the other hand, G contains cycle, thus pathwith
of G is greater than or equal to 2. Therefore the pathwidth of G is 2. Now, we define a
family F of forbidden subgraphs. For every set A ↔ A, we add a graph FA in F , where FA

is defined as follows:

V (FA) =
⋃

i→A

V (Ci) and E(FA) =
⋃

i→A

E(Ci).

We take k↑ = k. Next, we show that I is a yes instance if and only if I ↑ is a yes instance. Let
H be a solution for the instance I. We see that by deleting one arbitrary edge from every
cycle Ci, i ↔ H, we can avoid all the forbidden graphs in F . Therefore, we have a solution
E ↑

↘ E(G) for the instance I ↑ such that |E ↑
| ↓ k.

190

Conversely, suppose E ↑
↘ E(G) with |E ↑

| ↓ k is a solution for the instance I ↑. We see
that H = {i | E(Ci) ≃ E ↑

↗= ⇐} is a hitting set for the instance I. Furthermore, |H| ↓ k as
|E ↑

| ↓ k.

Observe that the constructed instance in the previous theorem is an outerplanar bipartite
graph. Therefore we get the following result:

Corollary 8.3.2. F-Free Edge Deletion is W[2]-hard when parameterized by k +

fvs(G) + pw(G), even when restricted to outerplanar bipartite graphs.

8.4 Closing Remarks

The main contributions in this chapter are that F-Free Edge Deletion is W[1]-hard
when parameterized by |F| + tw(G) and F-Free Edge Deletion is W[2]-hard when
parameterized by k + fvs(G) + pw(G).

191

192

Chapter 9

The Th+1-free edge deletion problem

9.1 Introduction

Given an undirected graph G = (V,E) and two integers k and h, we study Th+1-Free Edge
Deletion, where the goal is to remove at most k edges such that the resulting graph does
not contain any tree on h + 1 vertices as a (not necessarily induced) subgraph, that is, we
delete at most k edges in order to obtain a graph in which every component contains at
most h vertices. This is desirable from the point of view of restricting the spread of a disease
in transmission networks. Enright and Meeks (Algorithmica, 2018) gave an algorithm to
solve Th+1-Free Edge Deletion whose running time on an n-vertex graph G of treewidth
tw(G) is bounded by O((tw(G)h)2tw(G)n). However, it remains open whether the problem
might belong to FPT when parameterized only by the treewidth tw(G); they conjectured
that treewidth alone is not enough, and that the problem is W[1]-hard with respect to this
parameterization. We resolve this conjecture by showing that Th+1-Free Edge Deletion
is indeed W[1]-hard when parameterized by tw(G) alone. We resolve two additional open
questions posed by Enright and Meeks (Algorithmica, 2018) concerning the complexity of
Th+1-Free Edge Deletion on planar graphs and Th+1-Free Arc Deletion. We prove
that the Th+1-Free Edge Deletion problem is NP-complete even when restricted to
planar graphs. We also show that the Th+1-Free Arc Deletion problem is W[2]-hard
when parameterized by the solution size on directed acyclic graphs. This chapter is based
on the papers [66, 62].

193

9.2 Th+1-Free Edge Deletion parameterized by vertex
cover number

In this section, we present an FPT algorithm for the Th+1-Free Edge Deletion problem
parameterized by the vertex cover number. We prove the following theorem:

Theorem 9.2.1. Th+1-Free Edge Deletion is FPT when parameterized by the vertex
cover number of the input graph.

To prove this theorem we formulate the problem as an Integer Linear Programming prob-
lem and use an algorithm of Fellows et al. [47] that solves parameterized minimization ILPs
in FPT time when parameterized by the number of variables. Without loss of generality
we assume that the graph has no isolated vertices. Let S be a vertex cover of G = (V,E)

of size k. We denote by I the independent set V \ S. We partition the independent set
I into at most 2k twin classes I1, I2, . . . , I2k , where some of them can also be empty. Two
vertices u and v are in the same twin class if N(u) = N(v). Our goal is to minimize the size
of E ↑

↘ E(G) such that after deleting E ↑ from G, each connected component of the result-
ing graph has at most h vertices. First, we guess the intersection of S with the connected
components in G̃ = G \ E ↑. It is clear that the number of guesses is equal to the number
of di!erent partitions of the k-element set S, which is equal to the Bell number Bk. It is
known that Bk = 1

e

↓∑
i=0

ik

i! . See [104]. For every guess, we will reduce our problem to an

integer linear programming (ILP) where the number of variables is a function of the vertex
cover number k. Since integer linear programming is fixed-parameter tractable when param-
eterized by the number of variables, we will conclude that our problem is fixed-parameter
tractable when parameterized by the vertex cover number. Let us consider a particular par-
tition P = {S1, S2, . . . , Sω} of S where ε ↓ k. For a given partition P of S, we call an edge
a cross edge if both endpoints of that edge are in S but one endpoint in Si and the other
endpoint in Sj such that i ↗= j. We denote the number of cross edges of partition P by cr(P).

ILP Formulation: Given a partition P = {S1, S2, . . . , Sω} of S, let Ci be the component of
G̃ such that S ≃ Ci = Si for 1 ↓ i ↓ ε. Let Cω+1 be the collection of size one components
in G̃ such that S ≃ Cω+1 = ⇐. For each Ii and Cj, we associate a variable xij that indicates
|Ii ≃ Cj| = xij, that is, xij denotes the number of vertices in twin class Ii that go to Cj.

194

Because the vertices in Ii have the same neighbourhood, the variables xij determine the
components uniquely and hence determine the required set of edges E ↑

↘ E(G). We add
the following constraints to ILP. The vertices of each twin class Ii is distributed among the
components C1, C2, . . . , Cω and Cω+1. Thus we have the following constraints:

ω+1∑

j=1

xij = |Ii| for all 1 ↓ i ↓ 2k (9.1)

We want each connected component Cj in the resulting graph G̃ to have at most h vertices.
Thus we have the following constraint:

2k∑

i=1

xij + |Si| ↓ h for all 1 ↓ j ↓ ε (9.2)

Note that every vertex in Ii has the same set of neighbours in S. Thus if a vertex v ↔ Ii goes
to Cj then we have to remove all edges between v and S \Sj, so that C1, C2, . . . , Cω and Cω+1

remains distinct components. Therefore, if xij vertices of Ii go to Cj, then we need to remove
in total |NS\Sj(v)| ⇒ xij edges, where v is a vertex in Ii. Hence we want to minimize the
following objective function:

cr(P) +
2k∑

i=1

ω+1∑

j=1

|NS\Sj(vi)|⇒ xij (9.3)

where Sω+1 = ⇐, cr(P) is the number of cross edges of partition P and vi is a vertex in
the twin class Ii. In the following, we present an ILP formulation of the Th+1-Free Edge
Deletion problem, where a partition P = {S1, S2, . . . , Sω} of S is given:

195

Minimize cr(P) +
2k∑

i=1

ω+1∑

j=1

|NS\Sj(vi)|⇒ xij

Subject to
ω+1∑

j=1

xij = |Ii| for all 1 ↓ i ↓ 2k

2k∑

i=1

xij + |Si| ↓ h for all 1 ↓ j ↓ ε

In the formulation for Th+1-Free Edge Deletion, we have at most 2k(k+1) variables.
The value of objective function is bounded by n2 and the value of any variable in the integer
linear programming is bounded by n. The constraints can be represented using at most
O(2k log n) bits. Lemma 2.3.2 implies that we can solve the problem with the guess P in
FPT time. There are at most Bk choices for P , and the ILP formula for a guess can be
solved in FPT time. Thus Theorem 9.2.1 holds.
Now we make two important remarks:

Remark 9.2.1. We argue that the vertex cover number and the solution size are incompa-
rable. Let G be the disjoint union of n

h cliques of size h ⇑ 2 each, and an arbitrary vertex
a of the first clique is adjacent to an arbitrary vertex b of the second clique. Clearly E ↑

has to include only (a, b) so that each connected component in G \E ↑ has at most h vertex.
Thus the solution size is equal to 1, while the vertex cover number is n

h(h→ 1) = n→
n
h . On

the other hand consider the graph G = K1,n↔1. Clearly, the solution size is equal to n → h

while the vertex cover number is 1. As the vertex cover number and the solution size are
incomparable, the question of whether the Th+1-Free Edge Deletion problem is FPT
parameterized by the solution size remains open.

Remark 9.2.2. Usually, algorithms for the vertex cover number can be adapted for twin
cover. Here we observe that our algorithm for the vertex cover number cannot be adapted
to twin cover. Let X be a twin cover of G of size k. Then G \X is a disjoint collection of
cliques. We can partition G \X into at most 2k twin classes, where some of them can also
be empty. Two cliques are in the same twin class if they have the same neighbourhood in
X. While designing an FPT algorithm parameterized by the vertex cover number, for each
Ii and Cj, we associate a variable xij that indicates |Ii ≃ Cj| = xij, that is, xij denotes the

196

number of vertices in twin class Ii that go to Cj. Here as each twin class consists of cliques
of arbitrary sizes, we need to introduce a variable for each clique to denote the number of
vertices of the clique that go to the solution. As the number of cliques are arbitrary, the
number of variables would not be bounded by a function of k. Therefore, the question of
whether the Th+1-Free Edge Deletion problem is FPT parameterized by the twin cover
number remains open.

9.3 Th+1-Free Edge Deletion parameterized by treewidth

To show W[1]-hardness of Th+1-Free Edge Deletion, we reduce from Minimum Maxi-
mum Outdegree, which is known to be W[1]-hard parameterized by the treewidth of the
graph [123]. An orientation of an undirected graph is an assignment of a direction to each
of its edges. The Minimum Maximum Outdegree Problem (MMO) takes as input an
undirected, edge-weighted graph G = (V,E,w), where V , E, and w denote the set of vertices
of G, the set of edges of G, and an edge-weight function w : E ⇓ Z+, respectively, and asks
for an orientation of G that minimizes the resulting maximum weighted outdegree taken over
all vertices in the oriented graph. More formally

Minimum Maximum Outdegree
Input: An undirected edge-weighted graph G = (V,E,w), where w denote an edge-
weight function w : E ⇓ Z+ where the edge weights w are given in unary, and a positive
integer r.
Question: Is there an orientation of the edges of G such that, for each v ↔ V (G), the
sum of the weights of outgoing edges from v is at most r?

Theorem 9.3.1. The Th+1-Free Edge Deletion problem is W[1]-hard when parameter-
ized by the treewidth of the input graph.

Proof. Let I = (G = (V,E,w), r) be an instance of Minimum Maximum Outdegree. We
construct an instance I ↑ = (G↑, k) of Th+1-Free Edge Deletion the following way. See
Figure 9.1. The construction of G↑ starts with V (G↑) := V (G) and then add the following
new vertices and edges.

197

1. For each edge (u, v) ↔ E(G), create a set of w(u, v) vertices Vuv = {xuv
1 , . . . , xuv

w(u,v)}.
Make u and v adjacent to every vertex of Vuv. For every 1 ↓ i ↓ w(u, v)→ 1, introduce
an edge (xuv

i , xuv
i+1) and an edge (xuv

w(u,v), x
uv
1).

2. Let ω =
∑

e→E(G)

w(e) and h = 4ω. For each u ↔ V (G), we add a set Vu = {xu
1 , . . . , x

u
h↔r↔1}

of h→ r → 1 new vertices and make them adjacent to u.

3. We set k = ω.

a d

b c

2

3

1

2

(a)

(b)

a

Va

d

Vd

b

Vb

c

Vd

xab
1

xad
1 xad

2

xcd
1

xcd
2

xbc
1 xbc

2 xbc
3

Figure 9.1: The reduction from Minimum Maximum Outdegree to Th+1-Free Edge
Deletion in Theorem 9.3.1. (a) An instance (G, r) of Minimum Maximum Outdegree
with r = 3. The orientation (a, d), (d, c), (c, b), (b, a) satisfies the property that for each
v ↔ V (G), the sum of the weights of outgoing edges from v is at most 3. (b) The graph G↑

produced by the reduction algorithm.

Clearly I ↑ can be computed in time polynomial in the size of I. We now show that the
treewidth of G↑ is bounded by a function of the treewidth of G. We do so by modifying an
optimal tree decomposition T of G as follows:

• For every edge (u, v) of G, we take an arbitrary node in T whose bag X contains both
u and v; add to this node a chain of nodes 1, 2, . . . , w(u, v) → 1 such that the bag of
node i is

X ↑ {xuv
1 , xuv

i , xuv
i+1}.

198

• For every edge u ↔ V (G), we take an arbitrary node in T whose bag X contains u.
Add to this node a chain of nodes 1, 2, . . . h → (r + 1) such that the bag of node i is
X ↑ {xu

i } where xu
i ↔ Vu.

It is easy to verify that the result is a valid tree decomposition of G↑ and its width is at most
the treewidth of G plus three. Now we show that our reduction is correct. That is, we prove
that I = (G = (V,E,w), r) is a yes instance of Minimum Maximum Outdegree if and
only if I ↑ = (G↑, k) is a yes instance of Th+1-Free Edge Deletion. Let D be the directed
graph obtained by an orientation of the edges of G such that for each vertex the sum of the
weights of outgoing edges is at most r. We claim that the set of edges

E ↑ =
⋃

(u,v)→E(D)

{
(v, x) | x ↔ Vuv

}
↘ E(G↑)

is a solution of I ↑. In Figure 9.1, the orientation (a, d), (d, c), (c, b), (b, a) satisfies the prop-
erty that for each v ↔ V (G), the sum of the weights of outgoing edges from v is at most
3. Therefore E(D) = {(a, d), (d, c), (c, b), (b, a)} and E ↑ = {(d, x) | x ↔ Vad} ↑ {(d, x) | x ↔

Vdc}↑{(b, x) | x ↔ Vbc}↑{(a, x) | x ↔ Vab}. Note that the edges of D are directed. Clearly, we
have |E ↑

| = ω. We need to show that G̃↑ = G↑
\E ↑ does not contain any connected components

of size h+1. Observe that every connected component in G̃↑ contains exactly one vertex from
V (G). For each u ↔ V (G̃↑) ≃ V (G), let Cu be the component of G̃↑ that contains u. Then
Cu = {u}↑Vu↑

⋃
(u,v)→E(D)

Vuv. For each u ↔ V (D), let wu
out denote the sum of the weights of

outgoing edges of vertex u in D. Note that for every u ↔ V (G),
∣∣ ⋃
(u,v)→E(D)

Vuv

∣∣ = wu
out ↓ r

and |Vu| = h→ (r + 1). Therefore we have |Cu| ↓ 1 + h→ (r + 1) + r = h.

For the reverse direction, let E ↑
↘ E(G↑) be a solution for I ↑, that is, |E ↑

| = ω and G↑
\E ↑

does not contain any connected component of size more than h. We first claim that deletion
of E ↑ from G↑ destroys all paths between any pair of vertices u, v ↔ V (G) ≃ V (G̃↑). For the
sake of contradiction, let us assume that there is a path between u and v in G̃↑ = G↑

\ E ↑.
Note that u (resp. v) is adjacent to h→ (r + 1) vertices of Vu (resp. Vv) in G↑. If there is a
path between u and v in G↑

\E ↑ then we get a connected component Cuv consists of u, v and
at least |Vu|+ |Vv|→ω vertices of Vu↑Vv. The reason is this. If E ↑ contains s edges between u

and Vu or between v and Vv, then Cuv contains |Vu|+|Vv|→s vertices of Vu↑Vv. Thus, we have

199

|Cuv| ⇑ 2h→ 2(r + 1)→ ω + 2

= 8ω → 2r → ω

⇑ 8ω → 2ω → ω as r < ω

= 5ω

⇑ 4ω + 1

= h+ 1

This contradict the assumption that G↑
\ E ↑ does not contain any connected component of

size more than h. This concludes the proof of the claim.
As we delete at most ω edges, a solution E ↑ must contain either Euv =

{
(u, x) | x ↔ Vuv

}

or Evu =
{
(v, x) | x ↔ Vuv

}
for every edge (u, v) ↔ E(G); otherwise there will be a path

between u and v. We now define a directed graph D by V (D) = V (G) and

E(D) =
{
(u, v) | Evu ↘ E ↑

}⋃{
(v, u) | Euv ↘ E ↑

}
.

We claim that for each vertex x in D the sum of the weights of outgoing edges is at most
r. For the sake of contradiction, suppose there is a vertex x in D for which wx

out > r. In
this case, we observe that x is adjacent to h → (r + 1) + wx

out ⇑ h → (r + 1) + (r + 1) = h

vertices in graph G̃↑ = G↑
\E ↑. This is a contradiction as vertex x and its h neighbours form

a connected component of size at least h+ 1, which is a forbidden graph in G̃↑.

9.4 Th+1-Free Edge Deletion on planar graphs

Enright and Meeks [44] have discussed the importance of studying Th+1-Free Edge Dele-
tion on planar graphs. We show that Th+1-Free Edge Deletion remains NP-complete
even when restricted to planar graphs. To prove this, we give a polynomial time reduction
from Multiterminal Cut. The Multiterminal Cut problem can be defined as follows:
Given a graph G = (V,E), a set T = {t1, t2, ..., tp} of p specified vertices or terminals, and a
positive weight w(e) for each edge e ↔ E, find a minimum weight set of edges E ↑

↘ E such
that the removal of E ↑ from E disconnects each terminal from all the others. Dahlhaus et
al. [32] proved the following result:

Theorem 9.4.1. [32] If p is not fixed, the Multiterminal Cut problem for planar graphs

200

is NP-hard even if all edge weights are equal to 1.

Theorem 9.4.2. The Th+1-Free Edge Deletion problem is NP-complete even when re-
stricted to planar graphs.

Proof. It is easy to see that the problem is in NP. In order to obtain the NP-hardness result
for the Th+1-Free Edge Deletion problem, we obtain a polynomial reduction from the
Mutliterminal Cut problem on planar graphs with all edge weights equal to 1. Let
I = (G, T = {t1, t2, ..., tp}, ε) be an instance of Multiterminal Cut. The objective in
Multiterminal Cut is to find a set E ↑

↘ E of at most ε edges such that the removal of
E ↑ from E disconnects each terminal from all the others. We produce an equivalent instance
I ↑ = (G↑, k, h) of Th+1-Free Edge Deletion in the following way. Start with G = G↑

and then add the following new vertices and edges. For each t ↔ T , we introduce a set
Vt of h+1

2 + ε vertices and make them adjacent to t. We take h = 100n3. This completes
the construction of G↑. We set k = ε. Let us now show that I and I ↑ are equivalent instances.

Assume first that there exists a set E ↑
↘ E(G) of at most ε edges such that the removal

of E ↑ from E disconnects each terminal from all the others. We claim that the same set
E ↑

↘ E(G↑) is a solution of I ↑. That is, we show that

G̃↑ = G↑
\ E ↑

does not contain any connected component of size h + 1. For each t ↔ T , let Ct be the
component of G̃↑ that contains t. Note that t is adjacent to every vertex in Vt and some
vertices in V (G). Therefore the size of Ct is at most n + 100n3+1

2 + ε. This is true because
there is no path between t and any vertex in Vt→ ↑ {t↑} for all t↑ ↔ T , t ↗= t↑. Thus, we have

|Ct| ↓ n+
100n3 + 1

2
+ ε

↓ n+
100n3 + 1

2
+ |E(G)|

↓ n+
100n3 + 1

2
+

(
n

2

)

↓ 100n3

= h

201

Hence the size of each component in G̃↑ is at most h.

Conversely, suppose that there exists a set E ↑
↘ E(G↑) of k edges such that G̃↑ = G↑

\E ↑

does not contain any connected component of size h + 1. We claim that there is no path
between ti and tj in G̃↑ for all 1 ↓ i, j ↓ k and i ↗= j. For the sake of contradiction, assume
that there is a path between terminals ti and tj in G̃↑. Note that ti and tj are each adjacent
to h+1

2 + ε many pendent vertices in G↑, and we have deleted at most k = ε many edges.
Therefore the connected component containing ti and tj contains at least h + 1 vertices,
which is a contradiction. This concludes the proof of the claim.
We now claim S = E ↑

≃ E(G) is a solution of I. That is, we claim that G \ S disconnects
each terminal from all the others. Note that |S| ↓ |E ↑

| ↓ ε. For the sake of contradiction,
assume that there is a path between two terminals ti and tj in G \ S. Then there is also a
path between ti and tj in G↑

\ E ↑. Note that if there exists a path between two terminals ti

and tj in G↑
\ E ↑ then clearly we get a connected components of size h+ 1, a contradiction.

Therefore G \ S disconnects each terminal from all the other terminals, and hence I is a
yes-instance.

9.5 Th+1-Free Arc Deletion parameterized by solution
size

Enright and Meeks [44] explained the importance of studying Th+1-Free Arc Deletion.
A directed acyclic graph (DAG) is a directed graph with no directed cycles. One natural
problem mentioned in [44] is to consider whether there exists an e"cient algorithm to solve
this problem on directed acyclic graphs. In this section, we show that the problem is W[2]-
hard parameterized by the solution size k, even when restricted to directed acyclic graphs
(DAG). We prove this result via a reduction from Hitting Set. In the Hitting Set
problem we are given as input a family F over a universe U , together with an integer k, and
the objective is to determine whether there is a set B ↘ U of size at most k such that B has
nonempty intersection with all sets in F . It is proved in [31] (Theorem 13.28) that Hitting
Set problem is W[2]-hard parameterized by the solution size.

Theorem 9.5.1. The Th+1-Free Arc Deletion problem is W[2]-hard parameterized by

202

vx1

Vx1

vx2

Vx2

vx3

Vx3

vx4

Vx4

vF1

VF1

vF2

VF2

vF3

VF3

v↑x1
v↑x2

v↑x3
v↑x4

Figure 9.2: The graph in the proof of Theorem 9.5.1 constructed from Hitting Set instance
U = {x1, x2, x3, x4}, F = {{x1, x2}, {x2, x3}, {x3, x4}} and k = 2.

the solution size k, even when restricted to directed acyclic graphs.

Proof. Let I = (U,F , k) be an instance of Hitting Set where U = {x1, x2, . . . , xn}. We
create an instance I ↑ = (G↑, k↑, h) of Th+1-Free Arc Deletion the following way. For every
x ↔ U , create two vertices vx and v↑x and add a directed edge (vx, v↑x). For every F ↔ F ,
create one vertex vF . Next, we add a directed edge (vF , vx) if and only if x ↔ F . For each
x ↔ U , we add a set Vx of h

n many new vertices and add a directed edge from v↑x to every
vertex of Vx. We specify the value of h at the end of the construction. For each vertex
F ↔ F , we add a set VF of (h + 1)→

∑
x→F

|Vx| new vertices and add a directed edge from vF

to every vertex of VF . Finally, we set k↑ = k and h = nc for some large constant c. This
completes the construction of G↑. Next, we show that I and I ↑ are equivalent instances.

Let us assume that there exists a subset S ↘ U such that |S| ↓ k and S ≃ F ↗= ⇐ for all
F ↔ F . We claim that every vertex in G̃↑ = G↑

\
⋃
x→S

(vx, v↑x) can reach at most h vertices.

Let us assume that there exists a vertex in G̃↑ which can reach more than h vertices. Clearly
that vertex must be vF for some F ↔ F . Without loss of generality assume that x1 ↔ S ≃F .
As we have removed the edge (vx1 , v

↑

x1
) from G↑, clearly vF cannot reach any vertex in Vx1 .

203

Note that in such a case vF cannot reach more than h vertices as h = nc for some large
constant. In particular, vF can reach at most h+1→ (

∑
x→F

|Vx|)+ (
∑

x→F\{x1}

|Vx|) < h vertices.

In the other direction, let us assume that there exists a set E ↑
↘ E(G↑) such that |E ↑

| ↓ k

and every vertex in G̃↑ = G↑
\ E ↑ can reach at most h vertices. First we show that, given a

solution E ↑ we can construct another solution E ↑↑ such that E ↑↑
↘

⋃
x→U

(vx, v↑x) and |E ↑↑
| ↓ |E ↑

|.

To do this, we observe that the only vertices that can possibly reach more than h vertices
are vF . Note that if E ↑ contains an edge of the form (vF , u) for some u ↔ VF then we can
replace it by an arbitrary edge (vx, v↑x) for some x ↔ F . This will allow us to disconnect at
least h

n vertices from vF rather than just 1. Similar observation can be made for edges of
type (vF , vx) for some x ↔ F by replacing it with edge (vx, v↑x). Therefore, we can assume

that E ↑↑
↘

n⋃
x→U

(vx, v↑x). Next, we show that if there exists a vertex vF such that for every

x ↔ F we have (vx, v↑x) ↗↔ E ↑↑ then vF can reach h + 1 vertices. Clearly, vF can reach VF ,
{vx | x ↔ F} and also {Vx | x ↔ F}. Due to construction, this set is of size more than h. This
implies that for every F ↔ F , there exists an edge (vx, v↑x) for some x ↔ F which is included
in E ↑↑. As |E ↑↑

| ↓ k, we can define S = {x | (vx, v↑x) ↔ E ↑↑
}. Due to earlier observations, S is

a hitting set of size at most k.

9.6 Closing Remarks and Future Directions

The main contributions is that the Th+1-Free Edge Deletion problem is W[1]-hard when
parameterized by the treewidth of the input graph. Thus we resolved a conjecture stated
by Enright and Meeks [44] concerning the complexity of Th+1-Free Edge Deletion pa-
rameterized by the treewidth of the input graph. We also studied the following important
open questions stated in [44]: The Th+1-Free Edge Deletion problem is NP-complete
even when restricted to planar graphs; and the Th+1-Free Arc Deletion problem is
W[2]-hard parameterized by the solution size k, even when restricted to directed acyclic
graphs. However, it remains open whether Th+1-Free Edge Deletion problem is FPT
when parameterized by the solution size k. See Figure 9.3 for a schematic representation
of the relationship between selected graph parameters [94]. Note that A ⇓ B means that
there exists a function f such that for all graphs, f(A(G)) ⇑ B(G); therefore the exis-
tence of an FPT algorithm parameterized by B implies the existence of an FPT algorithm

204

vc

fvs pw nd tc

mwtw

cw

Figure 9.3: Relationship between vertex cover (vc), neighbourhood diversity (nd), twin cover
(tc), modular width (mw), feedback vertex set (fvs), pathwidth (pw), treewidth (tw) and
clique width (cw). Arrow indicate generalizations, for example, treewidth generalizes both
feedback vertex set and pathwidth.

parameterized by A, and conversely, any negative result parameterized by A implies the
same negative result parameterized by B. Gaikwad and Maity [61] proved that the Th+1-
Free Edge Deletion problem is fixed-parameter tractable when parameterized by the
vertex cover number of the input graph. Here we have proved that the Th+1-Free Edge
Deletion problem is W[1]-hard when parameterized by the treewidth of the input graph.
The parameterized complexity of the Th+1-Free Edge Deletion problem remains open
when parameterized by other structural parameters such as feedback vertex set, pathwidth,
treedepth, neighbourhood diversity, cluster vertex deletion set, modular width etc.

205

206

Chapter 10

MaxMin Separation Problems

In this chapter, we study the parameterized complexity of the MaxMin versions of two fun-
damental separation problems: Maximum Minimal st-Separator and Maximum Mini-
mal Odd Cycle Transversal (OCT), both parameterized by the solution size. In the
Maximum Minimal st-Separator problem, given a graph G, two distinct vertices s and t

and a positive integer k, the goal is to determine whether there exists a minimal st-separator
in G of size at least k. Similarly, the Maximum Minimal OCT problem seeks to deter-
mine if there exists a minimal set of vertices whose deletion results in a bipartite graph, and
whose size is at least k. We demonstrate that both problems are fixed-parameter tractable
parameterized by k. Our FPT algorithm for Maximum Minimal st-Separator answers
the open question by Hanaka, Bodlaender, van der Zanden & Ono [TCS 2019].

In contrast to MaxMin variants of several other deletion problems on graphs, where
proving the existence of an FPT algorithm is not very di"cult and treewidth-based win-win
approaches usually work, the problems considered in this work pose great di"culties even
if one does not care about the explicit running times of the FPT algorithm. We showcase
several barriers that both these problems pose and show how a clever combination of di!erent
combinatorial ideas finally work in overcoming them.

One unique insight from this work is the following. We use the meta-result of Loksh-
tanov, Ramanujan, Saurabh & Zehavi [ICALP 2018] that enables us to reduce our problems
to highly unbreakable graphs. This is interesting, as an explicit use of the recursive under-
standing and randomized contractions framework of Chitnis, Cygan, Hajiaghayi, Pilipczuk

207

& Pilipczuk [SICOMP 2016] to reduce to the highly unbreakable graphs setting (which is
the result that Lokshtanov et al. tries to abstract out in their meta-theorem) does not seem
obvious because certain “extension” variants of our problems are W[1]-hard.

Another interesting feature of these results is that in the MaxMin setting, it is not
straight-forward to use an FPT algorithm for the st-Separator problem to design an FPT
algorithm for the OCT problem (unlike in many other settings). In fact, our FPT algorithms
for both the problems are independent of each other. This chapter is based on the paper
[59].

10.1 Challenges and Our Approach

Problem 1: MaxMin st-Sep. In this work, for the first time, we use the power of highly
unbreakable instances to show fixed-parameter tractability of some MaxMin separation
problems. For two positive integers q, k, a graph G is called (q, k)-unbreakable if no vertex
set of size at most k can disconnect two (large) sets of size at least q each. For the purposes
of an informal discussion, we say a graph is unbreakable if it is (q, k)-unbreakable for some
values of q and k.

Chitnis et al. [28] developed a win-win approach based on this unbreakable structure of the
graph. The approach has two parts: recursive understanding and randomized contractions.
In the first part, a large enough part of the input graph is detected that is unbreakable and
has small boundary to the rest of the graph. In the second part, a family of “partial solutions”
are computed for this unbreakable part of the graph depending on how the solution for the
whole graph interacts with its boundary. If the unbreakable part is large enough, then there
exists an irrelevant edge/vertex that does not participate in the computed partial solutions,
which helps in reducing the size of the graph.

Unfortunately, at the first glance it looks impossible to use this approach for solving
any of the two problems MaxMin st-Sep and MaxMin OCT. The problem is that in the
above approach one needs to find partial solutions on unbreakable graphs for a more general
“extension-kind” of problem. In particular, the family of partial solutions should be such
that if there exists a solution for the whole graph, then one should be able to replace the
part of this solution that intersects with the unbreakable part, with one of the computed

208

partial solutions. To do so, for example, it seems necessary to, in some implicit way at
least, guess how an optimum solution of the whole graph intersects with the boundary of
this unbreakable part and the partial solution should at least try to be “compatible” with
this guess. The bottleneck here is that given a vertex v, finding whether the graph G has
any minimal st-separator containing v is NP-hard (see Section 10.3). Thus, the problem
of determining, given a subset of vertices X, whether G has a minimal st-separator of size
at least k, that contains X, is W[1]-hard (it is in fact para-NP-hard) (see Section 10.3).
Therefore, a first glance suggests that computing “partial solutions” may be W[1]-hard in
general. One can ask if the hardness holds even when the graph is unbreakable (which is our
scenario). It turns out yes, because a result by Lokshtanov et al. [103], shows that the FPT
algorithm for unbreakable graphs can be lifted to an FPT algorithm on general graphs for
problems definable in Counting Monadic Second Order (CMSO) Logic. Since the extension
version is also CMSO definable, there should not be an FPT algorithm for the extension
version even on unbreakable graphs.

Despite this issue, we show that the core lies in solving the problem on unbreakable
graphs, and in fact the problem on unbreakable graphs is FPT using non-trivial insights. In
fact the result of Lokshtanov et al. [103] comes to rescue. In [103] Lokshtanov et al. show that,
in order to show fixed-parameter tractability of CMSO definable problems parameterized by
the solution size (say k), it is enough to design FPT algorithms for such problems when
the input graph is (q, k)-unbreakable, for some large enough q that depends only on k.
The highlight of this result, compared to explicitly doing the above-mentioned approach
of recursive understanding and randomized contractions is that, this results says that it is
enough to solve the same problem on unbreakable graphs. This allows us to skip taking the
provably hard route of dealing with extension-kind problems.

After overcoming the above issues, we can safely say that the core lies in designing an
FPT algorithm for the unbreakable case, which itself is far from obvious. We give a technical
overview of this phase in Section 10.2.

Problem 2: MaxMin OCT. The challenges continue for the MaxMin OCT prob-
lem. In parameterized complexity, the first FPT algorithm for the classical Odd Cycle
Transversal (OCT) problem parameterized by the solution size, introduced the tech-
nique of Iterative Compression [115]. Using this, it was shown that OCT reduces to solving
at most 3k · n instances of the polynomial-time st-Separator problem. Most algorithms

209

for di!erent variants of the OCT problem, like Independent OCT, use the same frame-
work and reduce to essentially solving the variant of st-Separator, like Independent
st-Separator [102].

For the MaxMin variant, unfortunately this is not the case. In fact our FPT algorithm
for MaxMin OCT is independent of our FPT algorithm for MaxMin st-Sep. The reason
is again that finding a minimal odd cycle transversal set (oct) that extends a given vertex
is NP-hard (see Section 10.6). At the core of the Iterative Compression based approach for
OCT, a subset of vertices X is guessed to be in the solution, and after deleting X, the
problem reduces to finding an st-separator, for some s, t. In particular, the final solution is
this set X union a minimum st-separator. For the MaxMin case, this amounts to finding a
minimal st-separator that together with X forms a minimal oct. Since the extension version
of both the MaxMin st-Separator and MaxMin OCT are para-NP-hard, this leaves
little hope to use the same approach for MaxMin versions.

Having eliminated this approach, we again go back to the approach via unbreakable
graphs. This time again the core lies in designing an FPT algorithm when the graph is
highly unbreakable and this algorithm require lot more insights than that of the MaxMin
st-Sep. We give a technical overview of this stage in Section 10.2.

10.1.1 The Sunflower Lemma

Now, we state the Sunflower Lemma. We first define the terminology used in the statement
of the next lemma. Given a set system (U,F), where U is a set and F is a family con-
taining distinct subsets of U , a sunflower with k petals and a core Y is a collection of sets
S1, S2, . . . , Sk ↔ F such that Si ≃ Sj = Y for all i ↗= j. The sets Si \ Y are called the petals
of this sunflower. If the sets in F are distinct and k ⇑ 2, then none of the petals of the
sunflower are empty. Note that a family of pairwise disjoint sets is a sunflower (with an
empty core).

Theorem 10.1.1 (Sunflower Lemma, [45, 31]). Let F be a family of distinct sets over a
universe U , such that each set in F has cardinality exactly d. If |F| > d!(k → 1)d, then F

contains a sunflower with k petals and such a sunflower can be computed in time polynomial
in |F|, |U |, and k.

210

10.2 Our Results and Technical Overview

Below we state two main theorems of this work.

Theorem 10.2.1. Maximum Minimal st-Separator parameterized by k is FPT.

Theorem 10.2.2. Maximum Minimal OCT parameterized by k is FPT.

As discussed earlier, to prove both our theorems we first show that both MaxMin st-
Sep and MaxMin OCT are CMSO definable. We then use Proposition 10.2.3, to reduce to
solving the problem on unbreakable graphs.

Theorem 10.2.3 (Theorem 1, [103]). Let ϑ be a CMSO formula. For all c ↔ N, there
exists s ↔ N such that if there exists an algorithm that solves CMSO[ϑ] on (s, c)-unbreakable
structures in time O(nd) for some d > 4, then there exists an algorithm that solves CMSO[ϑ]
on general structures in time O(nd).

In particular, to prove Theorems 10.2.1 and 10.2.2, it is enough to prove Theorems 10.2.4
and 10.2.5.

Theorem 10.2.4. For positive integers q, k ⇑ 1, Maximum Minimal st-Separator on
(q, k)-unbreakable graphs on n vertices can be solved in time (k → 1)2q · nO(1).

Theorem 10.2.5. For any positive integers q, k ⇑ 1 Maximum Minimal OCT on (q, k)-
unbreakable graphs is FPT parameterized by q + k.

MaxMin st-Sep on (q, k)-unbreakable graphs. To prove Theorem 10.2.4, we develop a
branching algorithm which exploits the unbreakability of the input graph. The key observa-
tion behind the algorithm is that for any two vertex sets S and T such that s ↔ S, t ↔ T and
G[S] and G[T] are connected, every minimal ST -separator is also a minimal st-separator. As
we are working on (q, k)-unbreakable graphs, if we manage to find such sets where |S| > q

and |T | > q, then every minimal ST -separator has size at least k. In this case, we can
construct a minimal ST -separator greedily in polynomial time, which can then be returned
as a solution. Therefore, the goal of our branching algorithm is to construct such sets S and
T .

The algorithm begins with S = {s} and T = {t}. We use a reduction rule which ensures
that at any point N(S) and N(T) (the neighborhoods of S and T) are minimal ST -separators

211

in G. Clearly, we can assume that |N(S)| < k and |N(T)| < k; otherwise, we have already
found a solution. A crucial observation is that if there exists a minimal ST -separator Z of
size at least k, then there exists a vertex u ↔ N(S) \ N(T) (resp. u ↔ N(T) \ N(S)) such
that u /↔ Z. This implies that such a vertex u remains reachable from S even after removing
the solution Z. This observation allows us to grow the set S to S ↑{u} (resp. T to T ↑{u}).
Since |N(S)| < k (resp. |N(T)| < k), one can branch on all possible vertices u ↔ N(S)

(resp. u ↔ N(T)) and in each branch grow S (resp. T). Based on whether min(|S|, |T |) is |S|
or |T |, we branch on the vertices in N(S) \N(T) or N(T) \N(S), respectively, to increase
the size of these sets. Once both S and T have sizes of at least q, we can greedily construct
and output a minimal ST -separator (which is also a minimal st-separator) of size at least k.

MaxMin OCT on (q, k)-unbreakable graphs. The algorithm for this case uses two key
lemmas, both of which provide su"cient conditions for a yes instance. Here the input is a
(q, 2k)-unbreakable graph.

Our first key lemma (Lemma 10.7.4) says that if there exists an induced odd cycle of
length at least 2q + 2 in G, then there always exist a minimal oct in G of size at least k.
The proof of this result is based on a branching algorithm, which works similarly to the
branching algorithm for the MaxMin st-Separator problem on (q, k)-unbreakable graphs,
by carefully selecting the sets S and T at the beginning of the algorithm. Note that we
cannot use this lemma, on its own as a a stopping criterion, because one does not know how
to find a long induced odd length cycle e"ciently. Nevertheless, as we see later it becomes
useful together with our second su"cient condition.

Our second key lemma (Lemma 10.7.5), which states a second su"cient condition, says
that if there exists a large enough family of distinct (and not necessarily disjoint) induced
odd cycles in G of lengths at most 2q+1, then there always exists a minimal oct in G of size
at least k. The proof of this result relies on the Sunflower Lemma [45, 31], along with the
observation that the subgraph induced by the core of the sunflower must be bipartite. Such
a large sunflower then serves as a certificate that any oct which is disjoint from the core of
the sunflower is large. Also since the core is bipartite, there exists an oct that is disjoint
from it.

Another simple, yet important observation is that, if a vertex is not part of any induced
odd cycle, then deleting this vertex from the graph does not a!ect the solution. Again, the

212

problem here is that determining whether a vertex passes through an induced odd cycle is
NP-hard (see Section 10.6), therefore we cannot use it as a reduction rule.

Finally, using these two su"cient conditions and the observation above, we provide an
FPT algorithm that, given a vertex x, either outputs an induced odd cycle containing x if it
exists, or concludes correctly that one of the two scenarios mentioned above occurs. In the
later situation we are done. Also if the induced odd cycle containing x, which is returned,
is long, then also we are done because of the first su"cient condition. If the algorithm
outputs, that there is no induced odd cycle through x, then we can safely delete x from the
graph and reduce its size. Because of deleting such vertices, the new graph may no longer
be unbreakable, in which case we start solving the problem on the reduced graph completely
from scratch.

By running this algorithm for each x ↔ V (G), we reduce the graph to one where each
vertex is contained in some small induced odd cycle. If such a graph contains a su"ciently
large number of vertices, it guarantees the existence of a large family of distinct small induced
odd cycles in G, each of length at most 2q + 2, in which case we can return a yes instance
because of the second su"cient condition. This result finally allows us to bound the number
of vertices in the graph by (qk)O(q). We can then solve the problem using a brute-force
algorithm on this graph.

10.3 Para-NP-hardness for extending a vertex to a min-
imal st-separator

We begin by providing a characterization for vertices that can be a part of a minimal st-
separator.

Lemma 10.3.1. Let G be a graph containing vertices s and t. A vertex v ↔ V (G) is in some
minimal st-separator Z if and only if there is an induced path between s and t containing v.

Proof. For the first part, assume there exists a minimal st-separator Z that contains v. By
the minimality of Z, there must be a path P between s and t in the graph G → (Z \ {v}),
which passes through v. In other words, path P is such that no vertex in Z other than
v appears on it. However, since there is no induced path between s and t through v, two

213

vertices, say a and b, on P must be adjacent, with a lying between s and v, and b lying
between v and t. This creates a new path between s and t that does not include any vertex
from Z, contradicting the assumption that Z is an st-separator.

For the second part, if there exists an induced path between s and t passing through v,
we can construct a minimal st-separator Z that includes v. According to Definition 10.4.1,
let S be the set of all vertices on the induced path from s to a, and T the set of all vertices
on the induced path from b to t, where a is a predecessor of v and b a successor of v. These
sets, S and T , serve as a certificate for the st-separator minimality for v. By Lemma 10.4.2,
we can then construct a minimal st-separator that contains v.

Lemma 10.3.2 ([80]). Given a graph G and any three arbitrary vertices s, t and v, deter-
mining if there exist an induced path between s and t through v is NP-hard.

Lemma 10.3.1 and Lemma 10.3.2 together shows that given a vertex v, it is NP-hard to
determine if there is a minimal st-separator containing v.

10.4 Maximum Minimal st-Separator parameterized
by the solution size

The goal of this section is to prove Theorem 10.2.1.

Let (G, k) be an instance of MaxMin st-separator. The goal is to reduce the task to de-
signing an algorithm for (q, k)-unbreakable graphs. For this we first show that the problem
can be expressed in CMSO (in fact in MSO). Since MaxMin st-Separator is a maximiza-
tion problem, the size of the solution can potentially be as large as O(n). To formulate a
CMSO sentence that is bounded by a function of k, we focus on a k-sized subset of the solu-
tion and encode the minimality of each of its vertices in a way that allows for its extension
to a “full-blown” minimal solution.

Lemma 10.4.1. Maximum Minimal st-Separator is CMSO-definable with a formula of
length O(k).

Proof. The instance (G, k) is a yes instance of MaxMin st-Sep if there exists Z ↘ V (G) of

214

size at least k such that G→Z has no st-path (equivalently s and t are in di!erent connected
components of G→Z), and for each v ↔ Z, G→ (Z \ {v}) has an st-path (that is s and t are
in the same connected component of G→ (Z \ {v})).

Alternately, suppose Z ↘ V (G) (of arbitrarily large size) such that G→Z has no st-path,
and Z contains k distinct vertices v1, . . . , vk such that for each i ↔ [k], G→(Z \{vi}) contains
an st-path. Then Z may not be a minimal st-separator but it always contains a minimal
st-separator of size at least k. In fact, (G, k) is a yes instance if and only if such a set Z

exists. These properties of Z can be incorporated as a CMSO formula ϑ as follows, where
conn(U) is a CMSO sentence that checks whether a vertex set U induces a connected graph.
The CMSO description of CMSO can be, for example, found in [31].

ϑ =⇔Z ↘ V (G)

(
⇔v1, v2, . . . , vk ↔ Z

(
∧

1↗i<j↗k

vi ↗= vj



↖ ⇔U ↘ V (G) \ Z

(
(s ↔ U) ↖ (t ↔ U) ↖ conn(U)



k∧

i=1

¬⇔U ↔ V (G) \ (Z \ {vi})

(
(s ↔ U) ↖ (t ↔ U) ↖ conn(U)



It is clear that the size of the above formula ϑ depends linearly on k.

From Lemma 10.4.1 and Proposition 10.2.3, to prove Theorem 10.2.1, it is enough to
prove Theorem 10.2.4.

Theorem (Theorem 10.2.4). For positive integers q, k > 1, Maximum Minimal st-separator
on (q, k)-unbreakable graphs on n vertices can be solved in time (k → 1)2q.nO(1).

We prove Theorem 10.2.4 in Section 10.5. As mentioned earlier, given a vertex set V ↑, it
may not always be possible to extend it to a minimal st-separator. Below, we give a definition
for a certificate for the st-separator minimality of a set V ↑

↘ V (G), which guarantees the
existence of a minimal st-separator that contains (extends) the set V ↑.

Definition 10.4.1. Let G be a graph, s, t ↔ V (G) and V ↑
↘ V (G). We say that two sets of

vertices S and T serve as a certificate for the st-separator minimality for V ↑ if the following

215

conditions hold: s ↔ S and t ↔ T , S ≃ T = ⇐, G[S] and G[T] are connected subgraphs,
EG(S, T) = ⇐, and for every v ↔ V ↑, the subgraph G[S ↑ T ↑ {v}] is connected. Note that
V ↑

≃ (S ↑ T) = ⇐.

Lemma 10.4.2. Let G be a graph, and let s, t ↔ V (G). If there exists a certificate for the
st-separator minimality of V ↑

↘ V (G), then there exists a minimal st-separator in G that
includes all the vertices of V ↑.

Proof. Let S and T serve as a certificate for the st-separator minimality of V ↑. We will
construct a set V ↑

↘ Z ↘ V (G) \ (S ↑ T) which is a minimal st-separator in G. The set Z

is constructed iteratively. Initialize Z := ⇐ and G↑ := G[S ↑ T]. Fix an arbitrary ordering of
the vertices in V (G) \ (S ↑ T).

For each vertex v in the prescribed order:

• if G[S ↑ T ↑ {v}] is connected, then update Z := Z ↑ {v};

• if G[S ↑ T ↑ {v}] is not connected, then update G↑ := G[V (G↑) ↑ {v}], update S to
be the vertices reachable from old S in G↑, and update T to be the vertices reachable
from old T in G↑.

The process continues until all vertices in V (G) \ V (G↑) have been processed. The final
set Z is then returned as a minimal st-separator of G. Note that if the initial sets S and
T served as a certificate for the minimality of the st-separator V ↑, then V ↑

↘ Z, as the
subgraph G[S ↑ T ↑ {v}] will always be connected for each v ↔ V ↑ during every stage of the
above process.

10.5 Maximum Minimal st-Separator on (q, k)-unbreakable
graphs

In this section, we prove Theorem 10.2.4. To prove Theorem 10.2.4 we design a branching
algorithm that maintains a tuple (G,S, T, k, q) where G is a (q, k)-unbreakable graph, S, T ↘

V (G) and q, k are positive integers. Additionally the sets S, T satisfy the following properties.

216

1. s ↔ S and t ↔ T ,

2. S ≃ T = ⇐,

3. both G[S] and G[T] are connected and

4. E(S, T) = ⇐.

An instance (G,S, T, k, q) satisfying the above properties is called a valid instance. Given
a valid instance, we design a branching algorithm that outputs a minimal ST -separator of
G, which is disjoint from S ↑ T , and has size at least k, if it exists. The algorithm initializes
S := {s} and T := {t}. Note that the above-mentioned properties of the sets S, T ensure that
at each stage of the algorithm, every minimal ST -separator is also a minimal st-separator.

The algorithm has one reduction rule (Reduction Rule 3), four stopping criteria (Reduc-
tion Rules 1, 2, 4 and 5) and one branching rule (Branching Rule 1). The branching rule
is applied when neither the reduction rule nor the three stopping criterion can be applied.
The overall idea is the following. Observe that N(S) ≃ N(T) is a part of any minimal ST -
separator. Therefore, if |N(S) ≃ N(T)| ⇑ k, then we can correctly report that G has a
minimal ST -separator of size at least k. Reduction Rule 3 ensures that N(S) (resp. N(T))
is a minimal ST -separator. Therefore when Reduction Rule 3 is no longer applicable, if
|N(S)| ⇑ k (resp. |N(T)| ⇑ k), then we can correctly report that G has a minimal ST -
separator of size at least k. In fact, |N(S)| (resp. |N(T)|) is a minimal ST -separator of
size at least k. Otherwise, we have that both |N(S)| < k and |N(T)| < k. In this case,
we use the branching rule. Say, without loss of generality that |S| ↓ |T |. Since N(S) is a
minimal ST -separator, but its size is strictly less than k and every minimal ST -separator
contains N(S) ≃ N(T), there exists a vertex in N(S) \ N(T) that does not belong to the
solution (if there exists a solution of size at least k). In this case we branch on the vertices
of N(S) \ N(T). If we guess that a vertex v ↔ N(S) does not belong to the solution, since
v ↔ N(S), v remains reachable from S after removing the solution. In this case, we update
S := S ↑ {v}. Therefore, each application of the branching rule increases the size of the
smaller of the two sets S or T . When both |S| ⇑ q and |T | ⇑ q, from the (q, k)-unbreakability
of G, we know that every ST -separator of G has size at least k. And hence there is a minimal
st-separator of size at least k.

Below we formalize the above arguments. Given I = (G,S, T, k, q), we define its measure

217

µ(I) = q→min(|S|, |T |). We state the reduction rules and a branching rule below. We apply
the reduction rules in order exhaustively before applying the branching rule.

Lemma 10.5.1. Let I = (G,S, T, k, q) where G is (q, k)-unbreakable. If µ(I) ↓ 0, then
every minimal ST -separator, which is disjoint from S ↑ T , is of size at least k.

Proof. If µ(I) ↓ 0, then q ↓ min(|S|, |T |). For the sake of contradiction, let us assume
that there exists a minimal ST -separator Z in G, which is disjoint from S ↑ T , and has size
strictly less than k. Note that G \ Z contains two connected components of size at least
q each: one containing S, say CS, and the other containing T . Consider the separation
(CS ↑ Z, V (G) \ CS) of G. This is a witnessing separation that G is (q, k)-breakable, which
is a contradiction.

The safeness of Reduction Rule 1 is immediate from Lemma 10.5.1.

Reduction Rule Max Min st-sep 1. If µ(I) ↓ 0, then report a yes instance.

Reduction Rule Max Min st-sep 2. If |N(S) ≃N(T)| ⇑ k, then report a yes instance.

Lemma 10.5.2. Reduction Rule 2 is safe.

Proof. The above reduction rule is safe because the sets S and T serve as a certificate for
the st-separator minimality of the vertex set N(S)≃N(T). From Lemma 10.4.2, there exists
a minimal st-separator in G that contains N(S) ≃ N(T). Since |N(S) ≃ N(T)| ⇑ k, we
conclude that G contains a minimal st-separator of size at least k.

Lemma 10.5.3. If there exists v ↔ N(S) (resp. v ↔ N(T)), such that every path from v to
any vertex of T (resp. S) intersects N(S) \ {v} (resp. N(T) \ {v}), or there is no path from
v to any vertex of T (resp. S), then there is no minimal ST -separator which is disjoint from
S ↑ T and that contains v.

Proof. When v has no path to any vertex of T , then such a vertex cannot lie on any ST -path
and hence, is not a part of any minimal ST -separator.

Suppose now that v ↔ N(S) and every path from v to any vertex of T intersects N(S) \

{v}. The other case when v ↔ N(T) is symmetric. For the sake of contradiction, say there
exists a minimal ST -separator Z such that v ↔ Z and Z ≃ (S ↑ T) = ⇐. This implies that in

218

the graph G→Z, there is no path from any vertex in S to any vertex in T , but in the graph
G → (Z \ {v}), such a path, say P , exists. Let P be a path from s↑ to t↑ in G → (Z \ {v}),
where s↑ ↔ S and t↑ ↔ T .

Since v cannot reach any vertex of T (in particular t↑) in G, without traversing another
vertex, say u, in N(S), consider the u to t↑ subpath of P (which does not contain v). Since
u ↔ N(S), let s↑↑ ↔ N(u) ≃ S. Since Z ≃ (S ↑ T) = ⇐, there exists a path P ↑ from s↑↑ to t↑ in
G→ (Z \ {v}) that does not contain v (take the edge (s↑↑, u), followed by the u to t↑ subpath
of P). This contradicts that Z is an ST -separator.

The following reduction rule ensures that both N(S) and N(T) are minimal ST -separators.

Reduction Rule Max Min st-sep 3. If there exists v ↔ N(S) (resp. v ↔ N(T)), such that
every path from v to any vertex of T (resp. S) intersects N(S) (resp. N(T)), or there is no
path from v to any vertex of T (resp. S), then update S := S ↑ {v} (resp. T := T ↑ {v}).

Lemma 10.5.4. Reduction Rule 3 is safe.

Proof. From Lemma 10.5.3, no minimal ST -separator, that is disjoint from S ↑ T , contains
v. Since v ↔ N(S) (resp. v ↔ N(T)), for any minimal ST -separator Z, v is reachable from S

in G→ Z, since Z ≃ S = ⇐ (resp. Z ≃ T = ⇐). Thus, Z is also a minimal separator between
S ↑ {v} and T .

Lemma 10.5.5. When Reduction Rule 3 is no longer applicable, N(S) (resp. N(T)) is a
minimal ST -separator.

Proof. First note that N(S) (resp. N(T)) is an ST -separator in G which is disjoint from
S ↑ T , since N(S) ≃ T = ⇐ because E(S, T) = ⇐.

For the sake of contradiction, say N(S) is not a minimal ST -separator in G. In particular,
there exists v ↔ N(S) such that N(S) \ {v} is also an ST -separator. Since Reduction Rule 3
is no longer applicable, there exists a path from v to a vertex of T , say t↑, which has no
other vertex of N(S). Such a path together with an edge from v to a vertex of S, gives an
ST -path, which intersects N(S) only at v.

From Lemma 10.5.5, the safeness of Reduction Rule 4 is immediate.

219

Reduction Rule Max Min st-sep 4. If |N(S)| ⇑ k or |N(T)| ⇑ k then report a yes
instance.

Reduction Rule Max Min st-sep 5. If N(S) \ N(T) = ⇐ or N(T) \ N(S) = ⇐, then
report a no instance.

Lemma 10.5.6. Reduction Rule 5 is safe.

Proof. Suppose N(S) \ N(T) = ⇐. The other case is symmetric. Then any ST -path uses
only the vertices of S ↑T ↑ (N(S)≃N(T)). In this case there is a unique ST -separator in G

which is disjoint from S ↑ T . This separator is N(S) ≃N(T). Since Reduction Rule 2 is no
longer applicable, |N(S) ≃N(T)| < k. Thus G has no ST -separator of size at least k.

Branching Rule 1. If |S| ↓ |T | (resp. |T | < |S|) and N(S)\N(T) ↗= ⇐ (resp. N(T)\N(S) ↗=

⇐), then for each vertex x ↔ N(S) \N(T) (resp. x ↔ N(T) \N(S)), we recursively solve the
instance (G,S ↑ {x}, T, k, q) (resp. (G,S, T ↑ {x}, k, q)).

First observe that the new instances created in this branching rule are all valid, that is,
the sets S ↑ {x}, T (respectively S, T ↑ {x}) satisfy the desired properties: the two sets
S ↑ {x} and T (resp. S and T ↑ {x}) are disjoint, G[S ↑ {x}] (resp. G[T ↑ {x}]) is connected
and EG(S ↑ {x}, T) = ⇐ (resp. EG(S, T ↑ {x})) because x ↔ N(S) \N(T).

Lemma 10.5.7. Branching Rule 1 is exhaustive, that is, G has a minimal ST -separator
of size at least k which is disjoint from S ↑ T if and only if there exists x ↔ N(S) \ N(T)

(resp. x ↔ N(T) \ N(S)) such that G has a minimal separator of size at least k between
S ↑ {x} and T (resp. S and T ↑ {x}), which is disjoint from S ↑ T ↑ {x}.

Proof. Assume that |S| ↓ |T |. The other case is symmetric. Since Reduction Rule 4 is no
longer applicable, |N(S)| < k. Since Reduction Rule 3 is no longer applicable and because
of Lemma 10.5.5, N(S) is a minimal ST -separator. Also because N(S)≃N(T) is contained
in every minimal ST -separator in G (from the proof of Lemma 10.5.2), for any minimal
ST -separator in G of size at least k, say Z, which is disjoint from S↑T , there exists a vertex
x ↔ N(S) \N(T) such that x ↗↔ Z. Since x ↔ N(S), x remains reachable from S in G→ Z.
In particular, Z is also a minimal separator between S ↑ {x} and T .

220

In the other direction say the instance (G,S ↑ {x}, T, k, q) reports a minimal separator,
say Z, between S ↑ {x} and T of size at least k. Since S ↑ {x} and T satisfy the desired
properties of a valid instance, Z is also a minimal ST -separator in G.

Proof of Theorem 10.2.4. Initialize an instance I = (G,S, T, k, q) where S = {s} and T =

{t}. Note that µ(I) = q → 1. Apply Reduction Rules 1-5 exhaustively in-order. Without
loss of generality, say |S| ↓ |T |, the other case is analogous. Since none of the reduction
rules are applicable, 1 ↓ |N(S) \ N(T)| < k. Now apply Branching Rule 1. After every
application of the Branching Rule 1, µ(I ↑), where I ↑ is the new instance, strictly decreases
if |S| ↗= |T |. If |S| = |T |, then after every two applications of the Branching Rule 1, the
measure µ decreases by 1. From Reduction Rule 1, if µ of an instance is at most 0, then we
stop and report a yes instance. The correctness of this algorithm follows from the safeness
of the Reduction Rules 1-5 and Branching Rule 1. We now argue about the running time.

Note that all reduction rules can be applied in polynomial time. Also all reduction
rules, except Reduction Rule 3, is applied only once throughout the algorithm. Reduction
Rule 3 is applied at most 2q times (or until both S and T grow to a size of q each). Thus
only polynomial time is spent on all applications of all reduction rules. The branching rule
branches in at most k → 1 instances and has depth bounded by 2q. Therefore the overall
running time is (k → 1)2q · nO(1).

10.6 NP-hardness of Maximum Minimal OCT

Lemma 10.6.1. Maximum Minimal OCT is NP-hard.

Proof. It was shown in [81] that Maximum Weight Minimal st-Separator is NP-hard
on bipartite graphs, even when all vertex weights are identical. This implies that Maximum
Minimal st-Separator is NP-hard on bipartite graphs. We provide a polynomial-time
reduction from the Maximum Minimal st-Separator to the Maximum Minimal OCT.
Given an instance I = (G, s, t, k) of the Maximum Minimal st-Separator, we construct
an instance I ↑ = (G↑, k↑ = k) of the Maximum Minimal OCT as follows. We assume that
k > 1. We consider two cases based on the bipartition of G:

221

Case 1: If s and t are on the same side of the bipartition, we add an edge between s and t,
and subdivide it by adding two vertices u and v, creating a new graph G↑.

Case 2: If s and t are on opposite sides of the bipartition, we add a subdivided edge between
s and t with one new vertex u↑, resulting in G↑.

In both cases, the newly added path between s and t in G↑ is denoted by P ↑.

We now prove that the instances I and I ↑ are equivalent.

In the forward direction, let Z be a minimal st-separator in G of size at least k. We claim
that Z is a minimal oct in G↑. Since G is bipartite, any odd cycle in G↑ must involve s and
t. Removing Z from G separates s and t, meaning G↑

→ Z contains only the newly added
path P ↑, ensuring no odd cycles in G↑. Thus, Z is an oct in G↑.

Next, we show that Z is minimal. For every z ↔ Z, the graph G→ (Z \ {z}) contains a
path between s and t. Lets call it P . In Case 1, this path is even-length, and in Case 2, it
is odd-length. In both cases, the graph G↑

→ (Z \ {z}) contains two vertex-disjoint paths P

nad P ↑ between s and t of di!erent parities, forming an odd cycle. Therefore, Z is a minimal
oct in G↑.

In the backward direction, let Z ↑ be a minimal oct in G↑ of size at least k. Since k > 1,
Z ↑ does not include the newly added vertices u, v (in Case 1) or u↑ (in Case 2). We claim
that Z ↑ is a minimal st-separator in G.

If Z ↑ were not an st-separator in G, then there would exist a path between s and t in
G → Z ↑, implying the presence of an odd cycle in G↑

→ Z ↑ involving the path P ↑. Since Z ↑

is a minimal oct in G↑, for every z ↔ Z ↑, the graph G↑
→ (Z ↑

\ {z}) contains an odd cycle.
Therefore, G↑

→ (Z ↑
\ {z}) must contain a path P which is a vertex-disjoint st-path from P ↑.

This implies that G→(Z ↑
\{z}) contains an st-path, proving that Z ↑ is a minimal st-separator

in G. Thus, I and I ↑ are equivalent, completing the proof.

Lemma 10.6.2. Given a graph G and a vertex v ↔ V (G), determining whether there is an
induced odd cycle containing a given vertex is NP-complete.

Proof. We know that given two vertices a and b, determining if a graph contains an induced
path of odd length between a and b is NP-complete [15]. Construct a graph G↑ by adding a

222

new vertex x to G and making it adjacent to vertices a and b. It is clear that there exists
an induced odd cycle through x in G↑ if and only if there is an induced path of odd length
between a and b in G. This finishes the proof.

Note that the Lemma 10.6.2 also shows that given a vertex x ↔ V (G), it is NP-hard to
determine if there exists a minimal odd cycle transversal containing x.

10.7 Maximum Minimal OCT parameterized by solution
size

In this section, we prove Theorem 10.2.2.

Throughout this section, we call a set of vertices of G whose deletion results in a bipartite
graph, an oct of G. To prove Theorem 10.2.2, we first show that the problem is CMSO
definable (Lemma 10.7.1). Using Proposition 10.2.3, one can reduce to solving this problem
on (q, 2k)-unbreakable graphs. On (q, 2k)-unbreakable graphs, we then list and prove two
su"cient conditions (Lemmas 10.7.5 and 10.7.4) which always imply a yes instance (in fact
the first one implies a yes instance even when the input graph is not (q, 2k)-unbreakable).
We also make an observation about irrelevant vertices that can be deleted without changing
the solution of the instance (Observation 10.7.1). Even though checking whether any one
of these su"cient conditions hold or finding these irrelevant vertices, may not be e"cient,
nonetheless we design an FPT algorithm that correctly concludes that at least one of the
su"cient conditions is met, or outputs an irrelevant vertex, whenever the number of vertices
in the graph is strictly more than a number with is a function of q and k (Theorem 10.7.3).
In the case when an irrelevant vertex is outputted, deleting them reduces the size of the
graph but the resulting graph may not be (q, 2k)-unbreakable. In this case, we start from
the beginning and solve the problem from scratch (on general graphs). If none of the above
hold, then the number of vertices in the graph is bounded, and we can solve the problem
using brute-force.

Lemma 10.7.1. Maximum Minimal OCT is CMSO-definable by a formula of length O(k).

Proof of Lemma 10.7.1. Let (G, k) be an instance of Maximum Minimal OCT. Then

223

(G, k) is a yes instance if there exists Z ↘ V (G) of size at least k such that G → Z is
bipartite and for each v ↔ Z, G→ (Z \ {v}) is not bipartite.

Alternately, let Z ↘ V (G) such that Z contains k distinct vertices v1, . . . , vk, such that
G→ Z is bipartite and for each i ↔ [k], G→ (Z \ {v}) is not bipartite. Observe that if such
a set Z exists, it may not be a minimal oct of G, but it definitely contains a minimal oct of
size at least k. In fact, (G, k) is a yes instance if and only if such a set Z exists. We phrase
this description of Z as the CMSO formula ϑ as defined below.

ϖ ↙ ⇔Z ↘ V (G)

(
⇔v1, v2, . . . , vk ↔ Z

(∧

1↗i<j↗k

vi ↗= vj

)

↖ bipartite(V (G) \ Z)

↖

(
k∧

i=1

¬bipartite(V (G) \ (Z \ {vi})



where bipartite(W) is a CMSO sentence given below, which checks whether the graph
induced by the vertices in W is bipartite.

bipartite(W) ↙⇔X ↘ W, ⇔Y ↘ W
(
(X ≃ Y = ⇐) ↖ (X ↑ Y = W)

↖ ∝u, v ↔ W (E(u, v) =′ (u ↔ X ∞′ v ↔ Y))


.

It is clear that the size of the above formula ϖ depends linearly on k.

Because of Lemma 10.7.1 we can invoke Proposition 10.2.3. We invoke Proposition 10.2.3
with c = 2k. Let q be the s from this proposition that corresponds to this choice of c. We
conclude that to prove Theorem 10.2.2 it is enough to prove Theorem 10.2.5.

Theorem (Theorem 10.2.5). For any positive integers q, k > 1 Maximum Minimal OCT

224

on (q, k)-unbreakable graphs is FPT parameterized by q + k.

We prove Theorem 10.2.5 in Section 10.7.1. Next we define a certificate for minimality
of oct for a vertex set V ↑. The existence of such certificates guarantees the existence of a
minimal oct which contains V ↑.

Definition 10.7.1. Given a graph G and a set of vertices V ↑
↘ V (G), we say that an induced

subgraph G↑ of G is a certificate for the oct-minimality of V ↑, if G↑ is bipartite and for every
v ↔ V ↑, G[V (G↑) ↑ {v}] contains an odd cycle.

Lemma 10.7.2. Given a graph G and a set of vertices V ↑, if there is a certificate for the
oct-minimality of V ↑ then there exists a minimal oct of G that contains all the vertices in V ↑.

Proof. Let G↑ be a certificate for minimality of V ↑. First observe that V ↑
≃V (G↑) = ⇐ because

G↑ is bipartite, but G[V (G↑)↑{v}], for any v ↔ V ↑, contains an odd cycle. We now construct
a minimal oct of G, say Z, iteratively as follows. Initialize Z = ⇐. Fix an arbitrary ordering
of the vertices in V (G) \ V (G↑) (note that V ↑

↘ V (G) \ V (G↑)). Traverse the vertices of
V (G) \ V (G↑) in this order. For any vertex v ↔ V (G) \ V (G↑) in the chosen order:

• if G[V (G↑) ↑ {v}] is bipartite, update G↑ := G[V (G↑) ↑ {v}], that is add v to G↑,
otherwise

• G[V (G↑) ↑ {v}] contains an odd cycle, in which case add v to the set Z.

When all the vertices in V (G) \ V (G↑) have been processed as stated above, then the set Z

is a minimal oct of G. Moreover, one can observe that if we start with G↑ which a certificate
for minimality of V ↑ then V ↑

↘ Z.

10.7.1 Maximum Minimal OCT on (q, 2k)-unbreakable graphs

The goal of this section is to prove Theorem 10.2.5. Let (G, k) be an instance of MaxMin
OCT. A vertex v ↔ V (G) is called irrelevant if (G, k) is equivalent to (G → v, k). To prove
Theorem 10.2.5 it is enough to prove Theorem 10.7.3.

Theorem 10.7.3. For positive integers q, k ⇑ 1, given as input a graph G which is (q, 2k)-
unbreakable on at least (2q + 2)2(2q + 2)!(k → 1)2q+2 + 1 vertices, there exists an algorithm

225

that runs in time (qk)O(q)
· nO(1), and either returns a minimal oct of G of size at least k or,

outputs an irrelevant vertex v.

To see the proof of Theorem 10.2.5 assuming Theorem 10.7.3, observe that if the number
of vertices is at most (2q + 2)2(2q + 2)!(k → 1)2q+2, then the problem can be solved using
brute-force. Otherwise, the algorithm of Theorem 10.7.3 either reports a yes instance, or
finds an irrelevant vertex v, in which case, delete v from the graph and solve the problem
on G → v (which is not necessarily (q, 2k)-unbreakable). The rest of the section is devoted
to the proof of Theorem 10.7.3.

Irrelevant vertices.

Observation 10.7.1. If v does not participate in any induced odd cycle, then v is irrelevant.

Proof. For the forward direction, let Z be a minimal oct of G of size at least k. Then G→Z

is bipartite. Additionally, for any z ↔ Z, the graph G → (Z \ {z}) contains an odd cycle
through z, implying the existence of an induced odd cycle Cz containing z. As the cycle is
an induced odd cycle, we know that the vertex v does not lie on this cycle. We will show
that Z is also a minimal oct in G→ v. Clearly, G→ (Z ↑{v}) is a bipartite graph. Therefore,
Z is an oct of G→v. For any vertex z ↔ Z, there is an induced odd cycle Cz in G→(Z↑{v}).
Therefore, Z is also a minimal odd cycle traversal of G→ v.

Note that we cannot explicitly design a (polynomial-time) reduction rule based on the
above observation, because determining whether there is an induced odd cycle containing a
given vertex is NP-complete (see Section 10.6).

Su!cient condition 1 [Long induced odd cycle in G].

Lemma 10.7.4. For any positive integers q, k, if G is (q, 2k)-unbreakable and there exists
an induced odd cycle in G of length at least 2q+2, then G has a minimal oct of size at least
k.

Proof. Let C be an induced odd cycle of length at least 2q + 2 in G. Let x, y ↔ V (C) be
arbitrarily chosen vertices such that C \ {x, y} contains exactly two paths S and T each of
length at least q each. Moreover since C is an odd cycle one of these two paths is odd and

226

the other is even. Without loss of generality, we can assume that S is a path of even length
and T is a path of odd length. Let Zx := {x} and Zy := {y}.

Below we define a procedure that iteratively grows the sets in (S, T, Zx, Zy) while main-
taining the following invaraints.

• The sets S, T and Zx ↑ Zy are pairwise disjoint.

• G[S] is connected, bipartite and |S| ⇑ q.

• G[T] is connected, bipartite and |T | ⇑ q.

• G[S ↑ T ↑ {y}] is a certificate for the oct-minimality for Zx (and in particular, G[S ↑

T ↑ {y}] is bipartite).

• G[S ↑ T ↑ {x}] is a certificate for the oct-minimality for Zy (and in particular, G[S ↑

T ↑ {x}] is bipartite).

• N(x) ≃ S ↗= ⇐, N(x) ≃ T ↗= ⇐, N(y) ≃ S ↗= ⇐ and N(y) ≃ T ↗= ⇐.

Observe that the starting sets (S, T, Zx, Zy) defined earlier satisfy these invariant. Since
the iterative procedure grows these sets, the last property always hold. Also G[S↑T ↑{x}↑

{y}] contains the odd cycle C. The idea is to grow these sets until Zx or Zy has size at least
k. If this happens then we can use Lemma 10.7.2, to conclude that G has a minimal oct of
size at least k.

Since G is (q, 2k)-unbreakable and |S|, |T | ⇑ q, we have that every ST -separator in G

has size at least 2k + 1. In particular, |N(S) ↑N(T)| ⇑ 2k + 1. Thus, if we guarantee that
(N(S) ↑N(T)) ↘ (Zx ↑ Zy), then |Zx ↑ Zy| ⇑ 2k + 1. Hence either |Zx| ⇑ k or |Zy| ⇑ k.

Towards this we grow the sets in (S, T, Zx, Zy) as follows. Let us call the vertices in
S ↑ T ↑ Zx ↑ Zy as marked.

Claim 10.7.1. Let v ↔ N(S) ≃ N(T) be an unmarked vertex. Either G[S ↑ T ↑ {y, v}] or
G[S ↑ T ↑ {x, v}] contains an odd cycle.

Proof. Since both G[S] and G[T] are connected bipartite graphs, there exists a unique bi-
partition, say S = AS ↑ BS and T = AT ↑ BT of S and T respectively. Recall that x has

227

neighbours in both the sets S and T . Since the graph G[S ↑ {x}] is bipartite, without loss
of generality, assume that (N(x) ≃ S) ↘ BS. Since G[T ↑ {x}] is also bipartite, without
loss of generality assume that N(x) ≃ T ↘ BT . Since the graph G[S ↑ T ↑ {x}] is con-
nected and bipartite, we know that there is an unique bipartition of G[S ↑ T ↑ {x}] which
is G[S ↑ T ↑ {x}] = ((AS ↑ AT ↑ {x}) ↑ (BS ↑BT)).

Now, let us focus on the connected graph G[S↑T ↑{y}]. Because G[S↑{y}] is bipartite,
without loss of generality, we can assume that (N(y) ≃ S) ↘ BS.

We now show that (N(y) ≃ T) ↘ AT . For the sake of contradiction, assume that this is
not the case. This implies that there are two possibilities. If y has neighbours in both the
sets AT and BT then it leads to a contradiction as G[T ↑ {y}] is bipartite. If the neighbours
of y are contained in the set BT then it leads to a contradiction as it would imply that
G[S ↑ T ↑ {x, y}] is bipartite.

Therefore, we get an unique bipartition G[S↑T ↑{y}] = ((AS ↑BT ↑ {y}) ↑ (BS ↑ AT))

of G[S ↑ T ↑ {y}]. As the vertex v has neighbours in both the sets S and T , there are four
possibilities.

• If v has a neighbour in AS and AT then G[S ↑ T ↑ {y, v} contains an odd cycle.

• If v has a neighbour in AS and BT then G[S ↑ T ↑ {x, v} contains an odd cycle.

• If v has a neighbour in AT and BS then G[S ↑ T ↑ {x, v} contains an odd cycle.

• If v has a neighbour in AT and BT then G[S ↑ T ↑ {y, v} contains an odd cycle.

This finishes the proof of the claim. !

Case 1: v ↔ N(S) ≃N(T). From Lemma 10.7.1, either G[S↑T ↑{x, v}] or G[S↑T ↑{y, v}]

or both contain an odd cycle. If G[S ↑ T ↑ {x, v}] contain an odd cycle, then update
Zy := Zy ↑ {v}. If G[S ↑T ↑ {y, v}] contain an odd cycle, then update Zx := Zx ↑ {v}.
If both are true then update Zx := Zx ↑ {v} and Zy := Zy ↑ {v}. The sets S, T remain
the same. Observe that in either case, the updated sets satisfy all the invariants.

228

Case 2: v ↔ N(S) \N(T). In this case, if G[S↑{v}] is bipartite, then update S := S↑{v}.
The other sets T, Zx, Zy remain the same. Note that the updated sets (in particular
S) maintains the invariant. Otherwise G[S ↑ {v}] contain an odd cycle. In this case
update Zx := Zx ↑ {v} and Zy := Zy ↑ {v}.

Case 3: v ↔ N(T) \N(S). This case is symmetric to Case 2.

We repeat the above process until we have sets (S, T, Zx, Zy) such that all vertices in
N(S)↑N(T) are marked. In particular, in this case (N(S)↑N(T)) ↘ (Zx ↑Zy). As argued
earlier, this implies either |Zx| ⇑ k or |Zy| ⇑ k. In both cases, we report that G has a
minimal oct of size at least k from Lemma 10.7.2.

Su!cient condition 2 [Large family of short induced odd cycles].

Lemma 10.7.5. Let (G, k) be an instance of Maximum Minimal OCT. Let d be any
positive integer. If F is a family containing distinct induced odd cycles of G of length at
most d and |F| > d(d!)(k → 1)d then G has a minimal oct of size at least k.

Proof. From the Sunflower Lemma (Theorem 10.1.1), we can conclude that there exist at
least k induced odd cycles {F1, F2, . . . , Fk} ↘ F such that V (Fi)≃V (Fj) = Y for all i, j ↔ [k].
As the cycles in F are induced odd cycles, the graph induced by the set of vertices in Y must
be bipartite. Note that Y could possibly be empty. We claim that G has a minimal odd
cycle transversal of size at least k. Such a minimal odd cycle transversal can be obtained
by the greedy algorithm described in the proof of Lemma 10.7.2. We start with the induced
subgraph G[Y]. Clearly, any minimal odd cycle transversal obtained by this algorithm will
contain at least one vertex from V (Fi) \ Y for each i ↔ [k]. Since the sets V (Fi) \ Y for each
i ↔ [k] are disjoint, a minimal odd cycle transversal must have a size of at least k.

The combination lemma.

Lemma 10.7.6. Given a graph G, a vertex x ↔ V (G) and positive integers d, k, there is an
algorithm that runs in (kd)O(d)

· nO(1) time, and correctly outputs one of the following:

1. an induced odd cycle containing x,

229

2. an induced odd cycle of length at least d,

3. a family F of distinct induced odd cycles, each of length at most d → 1, such that
|F| ⇑ d · d! · (k → 1)d,

4. a determination that there is no induced odd cycle containing x in G.

Proof. Suppose G contains an induced odd cycle containing x. Let Cx be one such cycle. We
design an iterative algorithm that maintains a pair (G↑,F), where G↑ is an induced subgraph
of G and F is a family of induced odd cycles of length at most d→ 1 in G, with the following
additional properties. The graph G↑ is guaranteed to contain the cycle Cx, if Cx existed in
the first place in G, and every induced odd cycle in G↑ is distinct from any cycle in the family
F .

Initialize G↑ := G and F = ⇐. In each iteration, the algorithm finds an arbitrary induced
odd cycle of G, say F , in polynomial time, if it exists. The following cases can now arise.

1. The algorithm fails to find the cycle F . That is G↑ has no induced odd cycle. In this
case, report that G has no induced odd cycle passing through x.

This is correct because if G had such an induced odd cycle passing through x, then
Cx exists in G and by the invariants of the algorithm Cx also exists in G↑, which is a
candidate for the cycle F .

2. If F contains x, then return F as the induced odd cycle containing x.

3. If the length of F is at least d, then return F as an induced odd cycle of length at least
d in G.

4. Otherwise, F exists but does not contain x and has a length of at most d→ 1.

By the invariants of the pair (G↑,F), F is distinct from all the cycles in F . Update F

by adding F to it. Then the updated F satisfies the required invariants.

To update G↑ proceed as follows. Guess the intersection of V (F) with V (Cx) (in G↑).
Let this be F ↑. The number of guesses is bounded by 2|F |

↓ 2d↔1. Since F does not
contain x, F is not equal to Cx. Hence, F \F ↑ is non-empty. Update G↑ := G↑

→(F \F ↑).
Observe that the updated G↑ contains Cx if the old Gx contained it. Also every induced
odd cycle in the updated G↑ is distinct from F (that has been newly added to F) because

230

a non-empty subset of V (F) (that is V (F) \ V (F ↑)) has been deleted in the updated
G↑.

If the first, second or third condition mentioned above does not apply in each of the first
d · d! · (k → 1)d iterations, then at the end of the i-th iteration where i = d · d! · (k → 1)d,
|F| = d · d! · (k → 1)d. In this case, we return F as a large family of induced odd cycles of
length at most d→ 1 of G.

This finishes the description and correctness of the algorithm. For the running time
observe that in each iteration, the algorithm runs in polynomial time to find F and check
the first three conditions. The fourth condition in each iteration makes 2d↔1 guesses and
the number of iterations is at most d · d! · (k → 1)d. Therefore the overall running time is
(kd)O(d)

· nO(1).

Proof of Theorem 10.7.3. The algorithm for Theorem 10.7.3 proceeds as follows. Recall that
G is a (q, k)-unbreakable graph. For each x ↔ V (G), run the algorithm of Lemma 10.7.6 on
input (G, x, 2q + 2, k).

If for some x ↔ V (G), the algorithm returns an induced odd cycle of length at least
2q + 2 or a family F of distinct induced odd cycles of length at most 2q + 1 such that
|F| ⇑ (2q + 2)(2q + 2)!(k → 1)2q+2 then we return a yes instance due to Lemma 10.7.4
or 10.7.5, respectively. If the algorithm returns that there is no induced odd cycle containing
x in G then we can delete x from G and solve the problem on the reduced graph. This is
safe because of Observation 10.7.1. Finally, if the algorithm returns an induced odd cycle
containing x of length at least 2q + 2, then again report that it is a yes instance because of
Lemma 10.7.4.

If none of the above conditions hold, then for each x ↔ V (G), the algorithm of Lemma 10.7.6
returns an induced odd cycle containing x, say Cx, of length at most 2q + 1. Note that the
cycles returned for each x ↔ V (G) in this case may not be distinct.

The following claim shows that if the number of vertices in G is large (and there is an
induced odd cycle of small length for each vertex of the graph), then there exists a large
family containing distinct induced odd cycles of small length in G, in which case we can
report a yes instance by Lemma 10.7.5.

231

Claim 10.7.2. If the number of vertices in G is at least (2q + 2)2(2q + 2)!(k → 1)2q+2 + 1,
then G contains a minimal oct of size at least k.

Proof. We will construct a F of distinct induced odd cycles in G of length at most 2q+1. For
every vertex x ↔ V (G), we take a cycle Cx. Unless the cycle Cx is already in F , we will update
F = F ↑ {Cx}. As the length of cycles in Cx returned by the above algorithm is bounded
by 2q + 1, if the number of vertices in G is more than (2q + 1)(2q + 2)(2q + 2)!(k → 1)2q+2

then |F| ⇑ (2q + 2)(2q + 2)!(k → 1)2q+2. Due to Lemma 10.7.5, we return a yes instance. !

This finishes the proof of Theorem 10.7.3.

10.8 Closing Remarks and Future Directions

In this work, we established that both Maximum Minimal st-Separator and Maximum
Minimal Odd Cycle Transversal (OCT) are fixed-parameter tractable parameter-
ized by the solution size. Instead of using treewidth-based win-win approaches, we design
FPT algorithms for highly unbreakable graphs for both these problems. While we have
demonstrated the FPT nature of these problems, the challenge of developing e"cient FPT
algorithms remains open. Additionally, the edge-deletion version of the Maximum Mini-
mal OCT can be shown to be FPT using similar techniques, but with much simpler ideas.
But designing an faster/explicit FPT algorithm even for this version remains an interesting
direction for future research. Finally, the parameterized complexity of the weighted version
of Maximum Minimal st-Separator and Maximum Minimal Weight OCT remain
open as very large weights cause problems while formulating the problem in CMSO, in order
to reduce it to the unbreakable case.

232

Chapter 11

Conclusions and Open Problems

This thesis explores the parameterized complexity of several graph problems, including
Harmless Set, Defensive Alliance, Offensive Alliance, Locally and Glob-
ally Minimal Defensive Alliances, F-Free Edge Deletion, Th+1-Free Edge
Deletion, and MaxMin Separation Problems. These problems are not only of theo-
retical interest but also have practical relevance in areas like social networks, epidemiology,
and optimization.

A key highlight of this thesis is the resolution of several open problems mentioned in the
literature. Specifically:

• We resolved an open question posed by Enright and Meeks [44] by proving that the
Th+1-Free Edge Deletion problem is W[1]-hard when parameterized by treewidth.

• We addressed an open question raised by Hanaka et al. [81] regarding the fixed-
parameter tractability of the Maximum Minimal st-Separator problem, demon-
strating that it is FPT when parameterized by solution size.

• We resolved an open problem posed by Bazgan et al. [10] regarding the parameterized
complexity of Harmless Set parameterized by treewidth, showing that it is W[1]-
hard.

• We answered an open question by Bernhard Bliem and Stefan Woltran [16] concerning
the complexity of the Offensive Alliance problem parameterized by treewidth,

233

proving its W[1]-hardness.

This thesis presents new FPT algorithms, complexity classifications, and kernelization
results. For example:

• We provided FPT algorithms for Harmless Set under parameters such as vertex
integrity, twin cover and neighborhood diversity.

• We developed kernelization techniques for Locally Minimal Defensive Alliance
on specific graph classes and subexponential algorithm on planar graphs.

• We demonstrated the W[1]-hardness of problems like Harmless set, Defensive
Alliance and Offensive Alliance under restrictive structural parameters such as
treedepth, feedback vertex set, pathwidth etc. showcasing the inherent complexity of
these problems.

This thesis not only advances the theoretical understanding of these problems but also
lays the groundwork for future research. Potential directions include designing faster algo-
rithms for MaxMin Separation problems, addressing the weighted versions of Harmless
Set and considering Maximum Minimal st-separator on directed graphs, and exploring
complexity of Th+1-Free Edge Deletion parameterized by restrictive structural parame-
ters along with solution size as a parameter.

In summary, this thesis significantly contributes to the landscape of parameterized com-
plexity, o!ering a deeper understanding of fundamental graph problems, resolving long-
standing open questions, and providing new tools and techniques for tackling challenging
computational problems.

234

Bibliography

[1] A. Aazami and K. Stilp. Approximation algorithms and hardness for domination with
propagation. SIAM Journal on Discrete Mathematics, 23(3):1382–1399, 2009.

[2] H. AbouEisha, S. Hussain, V. V. Lozin, J. Monnot, B. Ries, and V. Zamaraev. Up-
per domination: Towards a dichotomy through boundary properties. Algorithmica,
80(10):2799–2817, 2018.

[3] J. Araújo, M. Bougeret, V. Campos, and I. Sau. Introducing lop-kernels: A framework
for kernelization lower bounds. Algorithmica, 84(11):3365–3406, nov 2022.

[4] J. Araújo, M. Bougeret, V. A. Campos, and I. Sau. Parameterized complexity of
computing maximum minimal blocking and hitting sets. Algorithmica, 85(2):444–491,
sep 2022.

[5] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–297,
1999.

[6] K. Bagga, L. Beineke, W. Goddard, M. Lipman, and R. Pippert. A survey of integrity.
Discrete Applied Mathematics, 37-38:13–28, 1992.

[7] C. A. Barefoot, R. Entringer, and H. C. Swart. Vulnerability in graphs—a compar-
ative survey. Journal of Combinatorial Mathematics and Combinatorial Computing,
1(38):13–22, Sept. 1987.

[8] M. Basavaraju, F. Panolan, A. Rai, M. S. Ramanujan, and S. Saurabh. On the ker-
nelization complexity of string problems. Theoretical Computer Science, 730:21–31,
2018.

[9] C. Bazgan, L. Brankovic, K. Casel, H. Fernau, K. Jansen, K. Klein, M. Lampis,
M. Liedlo!, J. Monnot, and V. T. Paschos. The many facets of upper domination.
Theoretical Computer Science, 717:2–25, 2018.

[10] C. Bazgan and M. Chopin. The complexity of finding harmless individuals in social
networks. Discret. Optim., 14(C):170–182, Nov. 2014.

235

[11] C. Bazgan, M. Chopin, A. Nichterlein, and F. Sikora. Parameterized approximability
of maximizing the spread of influence in networks. In D.-Z. Du and G. Zhang, edi-
tors, Computing and Combinatorics, pages 543–554, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[12] C. Bazgan, H. Fernau, and Z. Tuza. Aspects of upper defensive alliances. Discrete
Applied Mathematics, 266:111 – 120, 2019.

[13] R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi. Grundy distinguishes
treewidth from pathwidth. SIAM J. Discret. Math., 36(3):1761–1787, 2022.

[14] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. Treewidth governs the com-
plexity of target set selection. Discrete Optimization, 8(1):87–96, 2011. Parameterized
Complexity of Discrete Optimization.

[15] D. Bienstock. On the complexity of testing for odd holes and induced odd paths.
Discrete Mathematics, 90(1):85–92, 1991.

[16] B. Bliem and S. Woltran. Defensive alliances in graphs of bounded treewidth. Discrete
Applied Mathematics, 251:334 – 339, 2018.

[17] H. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21, 1993.

[18] H. L. Bodlaender, G. Cornelissen, and M. van der Wegen. Problems hard for treewidth
but easy for stable gonality. CoRR, abs/2202.06838, 2022.

[19] N. Boria, F. Della Croce, and V. T. Paschos. On the max min vertex cover problem.
Discrete Applied Mathematics, 196:62–71, 2015. Advances in Combinatorial Optimiza-
tion.

[20] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171 – 176, 1996.

[21] A. Cami, H. Balakrishnan, N. Deo, and R. Dutton. On the complexity of finding
optimal global alliances. Journal of Combinatorial Mathematics and Combinatorial
Computing, 58:23–31, 2006.

[22] C. C. Centeno, M. C. Dourado, L. D. Penso, D. Rautenbach, and J. L. Szwarcfiter.
Irreversible conversion of graphs. Theoretical Computer Science, 412(29):3693–3700,
2011.

[23] C.-W. Chang, M.-L. Chia, C.-J. Hsu, D. Kuo, L.-L. Lai, and F.-H. Wang. Global
defensive alliances of trees and cartesian product of paths and cycles. Discrete Applied
Mathematics, 160(4):479 – 487, 2012.

236

[24] J. Chaudhary, S. Mishra, and B. S. Panda. Minimum maximal acyclic matching in
proper interval graphs. In A. Bagchi and R. Muthu, editors, Algorithms and Discrete
Applied Mathematics - 9th International Conference, CALDAM 2023, Gandhinagar,
India, February 9-11, 2023, Proceedings, volume 13947 of Lecture Notes in Computer
Science, pages 377–388. Springer, 2023.

[25] M. Chellali and T. W. Haynes. Global alliances and independence in trees. Discussiones
Mathematicae Graph Theory, 27(1):19–27, 2007.

[26] N. Chen. On the approximability of influence in social networks. SIAM Journal on
Discrete Mathematics, 23(3):1400–1415, 2009.

[27] C.-Y. Chiang, L.-H. Huang, B.-J. Li, J. Wu, and H.-G. Yeh. Some results on the target
set selection problem. Journal of Combinatorial Optimization, 25(4):702–715, 2013.

[28] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk. Designing
fpt algorithms for cut problems using randomized contractions. SIAM Journal on
Computing, 45(4):1171–1229, 2016.

[29] M. Chopin, A. Nichterlein, R. Niedermeier, and M. Weller. Constant thresholds can
make target set selection tractable. Theory of Computing Systems, 55(1):61–83, 2014.

[30] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1):77 – 114, 2000.

[31] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[32] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894,
1994.

[33] M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger. Capacitated domination and
covering: A parameterized perspective. In M. Grohe and R. Niedermeier, editors,
Parameterized and Exact Computation, pages 78–90, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[34] M. Doucha and J. Kratochvíl. Cluster vertex deletion: A parameterization between
vertex cover and clique-width. In Proceedings of the 37th International Conference
on Mathematical Foundations of Computer Science, MFCS’12, page 348–359, Berlin,
Heidelberg, 2012. Springer-Verlag.

[35] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness i:
Basic results. SIAM Journal on Computing, 24(4):873–921, 1995.

[36] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer, 1999.

237

[37] P. G. Drange, M. Dregi, and P. van ’t Hof. On the computational complexity of vertex
integrity and component order connectivity. Algorithmica, 76(4):1181–1202, 2016.

[38] P. G. Drange, I. Muzi, and F. Reidl. Harmless sets in sparse classes. In C. Bazgan and
H. Fernau, editors, Combinatorial Algorithms, pages 299–312, Cham, 2022. Springer
International Publishing.

[39] P. A. Dreyer and F. S. Roberts. Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Applied Mathematics,
157(7):1615–1627, 2009.

[40] G. L. Duarte, H. Eto, T. Hanaka, Y. Kobayashi, Y. Kobayashi, D. Lokshtanov, L. L. C.
Pedrosa, R. C. S. Schouery, and U. S. Souza. Computing the largest bond and the
maximum connected cut of a graph. Algorithmica, 83(5):1421–1458, 2021.

[41] L. Dublois, T. Hanaka, M. Khosravian Ghadikolaei, M. Lampis, and N. Melissinos.
(in)approximability of maximum minimal fvs. Journal of Computer and System Sci-
ences, 124:26–40, 2022.

[42] L. Dublois, M. Lampis, and V. T. Paschos. Upper dominating set: Tight algorithms
for pathwidth and sub-exponential approximation. Theoretical Computer Science,
923:271–291, 2022.

[43] R. Enciso. Alliances in graphs: Parameterized algorithms and on partitioning series
-parallel graphs. PhD thesis, University of Central Florida, USA, 2009.

[44] J. Enright and K. Meeks. Deleting edges to restrict the size of an epidemic: A new
application for treewidth. Algorithmica, 80(6):1857–1889, 2018.

[45] P. Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, 1(1):85–90, 1960.

[46] M. R. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameterized com-
plexity of multiple-interval graph problems. Theoretical Computer Science, 410(1):53–
61, 2009.

[47] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In S.-H. Hong, H. Nagamochi, and
T. Fukunaga, editors, Algorithms and Computation, pages 294–305, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[48] H. Fernau. Extremal kernelization: A commemorative paper. In L. Brankovic, J. Ryan,
and W. F. Smyth, editors, Combinatorial Algorithms, pages 24–36, Cham, 2018.
Springer International Publishing.

238

[49] H. Fernau and D. Raible. Alliances in graphs: a complexity-theoretic study. In Pro-
ceeding Volume II of the 33rd International Conference on Current Trends in Theory
and Practice of Computer Science, 2007.

[50] H. Fernau and D. Raible. Alliances in graphs: a complexity-theoretic study. In
J. van Leeuwen, G. F. Italiano, W. van der Hoek, C. Meinel, H. Sack, F. Plásil, and
M. Bieliková, editors, SOFSEM 2007: Theory and Practice of Computer Science, 33rd
Conference on Current Trends in Theory and Practice of Computer Science, Har-
rachov, Czech Republic, January 20-26, 2007, Proceedings Volume II, pages 61–70.
Institute of Computer Science AS CR, Prague, 2007.

[51] H. Fernau and J. A. Rodriguez-Velazquez. A survey on alliances and related parameters
in graphs. Electronic Journal of Graph Theory and Applications, 2(1), 2014.

[52] H. Fernau, J. A. Rodríguez, and J. M. Sigarreta. O!ensive r-alliances in graphs.
Discrete Applied Mathematics, 157(1):177 – 182, 2009.

[53] F. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Pa-
rameterized Preprocessing. Cambridge University Press, 2019.

[54] F. V. Fomin, P. Golovach, and D. M. Thilikos. Contraction obstructions for treewidth.
Journal of Combinatorial Theory, Series B, 101(5):302–314, 2011.

[55] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, 2019.

[56] G. Fricke, L. Lawson, T. Haynes, M. Hedetniemi, and S. Hedetniemi. A note on defen-
sive alliances in graphs. Bulletin of the Institute of Combinatorics and its Applications,
38:37–41, 2003.

[57] T. Fujito. A unified approximation algorithm for node-deletion problems. Discrete
Applied Mathematics, 86(2):213 – 231, 1998.

[58] F. Furini, I. Ljubi#, and M. Sinnl. An e!ective dynamic programming algorithm for the
minimum-cost maximal knapsack packing problem. European Journal of Operational
Research, 262(2):438–448, 2017.

[59] A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma. MaxMin Separation
Problems: FPT Algorithms for st-Separator and Odd Cycle Transversal. In O. Bey-
ersdor!, M. Pilipczuk, E. Pimentel, and N. K. Thng, editors, 42nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2025), volume 327 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1–36:21, Dagstuhl,
Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[60] A. Gaikwad and S. Maity. On structural parameterizations of the o!ensive alliance
problem. In D.-Z. Du, D. Du, C. Wu, and D. Xu, editors, Combinatorial Optimization
and Applications, pages 579–586, Cham, 2021. Springer International Publishing.

239

[61] A. Gaikwad and S. Maity. Defensive alliances in graphs. Theoretical Computer Science,
928:136–150, 2022.

[62] A. Gaikwad and S. Maity. Further parameterized algorithms for the F -free edge dele-
tion problem. Theoretical Computer Science, 933:125–137, 2022.

[63] A. Gaikwad and S. Maity. Globally minimal defensive alliances. Information Processing
Letters, 177:106253, 2022.

[64] A. Gaikwad and S. Maity. Globally minimal defensive alliances: A parameterized
perspective. CoRR, abs/2202.02010, 2022.

[65] A. Gaikwad and S. Maity. On the harmless set problem parameterized by treewidth.
In P. Mutzel, M. S. Rahman, and Slamin, editors, WALCOM: Algorithms and Com-
putation, pages 227–238, Cham, 2022. Springer International Publishing.

[66] A. Gaikwad and S. Maity. Parameterized complexity of the Th+1-free edge deletion
problem. In H. Fernau and K. Jansen, editors, Fundamentals of Computation Theory
(FCT 2023), volume 14052 of Lecture Notes in Computer Science, pages 221–233,
Cham, 2023. Springer Nature Switzerland.

[67] A. Gaikwad and S. Maity. O!ensive alliances in graphs. Theoretical Computer Science,
989:114401, 2024.

[68] A. Gaikwad and S. Maity. On structural parameterizations of the harmless set problem.
Algorithmica, 86(5):1475–1511, 2024.

[69] A. Gaikwad, S. Maity, and S. Saurabh. Parameterized algorithms for locally minimal
defensive alliance. CoRR, abs/2208.03491, 2022.

[70] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of defensive and
o!ensive alliances in graphs. In D. Goswami and T. A. Hoang, editors, Distributed
Computing and Internet Technology, pages 175–187, Cham, 2021. Springer Interna-
tional Publishing.

[71] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of locally minimal
defensive alliances. CoRR, abs/2105.10742, 2021.

[72] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized intractability of defensive
alliance problem. In N. Balachandran and R. Inkulu, editors, Algorithms and Discrete
Applied Mathematics, pages 279–291, Cham, 2022. Springer International Publishing.

[73] R. Ganian. Improving Vertex Cover as a Graph Parameter. Discrete Mathematics &
Theoretical Computer Science, Vol. 17 no.2, Sept. 2015.

[74] R. Ganian, F. Klute, and S. Ordyniak. On structural parameterizations of the bounded-
degree vertex deletion problem. Algorithmica, 2020.

240

[75] E. Ghosh, S. Kolay, M. Kumar, P. Misra, F. Panolan, A. Rai, and M. S. Ramanujan.
Faster parameterized algorithms for deletion to split graphs. Algorithmica, 71(4):989–
1006, 2015.

[76] J. C. Gibbens, J. W. Wilesmith, C. E. Sharpe, L. M. Mansley, E. Michalopoulou,
J. B. M. Ryan, and M. Hudson. Descriptive epidemiology of the 2001 foot-and-mouth
disease epidemic in great britain: the first five months. Veterinary Record, 149(24):729–
743, 2001.

[77] T. Gima, T. Hanaka, M. Kiyomi, Y. Kobayashi, and Y. Otachi. Exploring the gap
between treedepth and vertex cover through vertex integrity. In T. Calamoneri and
F. Corò, editors, Algorithms and Complexity, pages 271–285, Cham, 2021. Springer
International Publishing.

[78] L. Gourvès, J. Monnot, and A. T. Pagourtzis. The lazy bureaucrat problem with
common arrivals and deadlines: Approximation and mechanism design. In L. G$sieniec
and F. Wolter, editors, Fundamentals of Computation Theory, pages 171–182, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[79] J. Guo. Problem kernels for np-complete edge deletion problems: Split and related
graphs. In T. Tokuyama, editor, Algorithms and Computation, pages 915–926, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[80] R. Haas and M. Ho!mann. Chordless paths through three vertices. Theoretical Com-
puter Science, 351(3):360–371, 2006. Parameterized and Exact Computation.

[81] T. Hanaka, H. L. Bodlaender, T. C. van der Zanden, and H. Ono. On the maximum
weight minimal separator. Theoretical Computer Science, 796:294–308, 2019.

[82] K. Hassan Shafique and R. D. Dutton. Partitioning a graph in alliances and its ap-
plication to data clustering. PhD thesis, University of Central Florida, USA, 2004.
AAI3163605.

[83] L. H. Jamieson. Algorithms and Complexity for Alliances and Weighted Alliances of
Various Types. PhD thesis, Clemson University, USA, 2007.

[84] L. H. Jamieson, S. T. Hedetniemi, and A. A. McRae. The algorithmic complexity of
alliances in graphs. Journal of Combinatorial Mathematics and Combinatorial Com-
puting, 68:137–150, 2009.

[85] D. S. Johnson and M. Szegedy. What are the least tractable instances of max inde-
pendent set? In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’99, page 927–928, USA, 1999. Society for Industrial and Applied
Mathematics.

[86] M. Kami%ski, V. V. Lozin, and M. Milani&. Recent developments on graphs of bounded
clique-width. Discrete Applied Mathematics, 157(12):2747 – 2761, 2009.

241

[87] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of Operations Research, 12(3):415–440, 1987.

[88] J. Keil. The complexity of domination problems in circle graphs. Discrete Applied
Mathematics, 42(1):51–63, 1993.

[89] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’03, page 137–146, New York, NY,
USA, 2003. Association for Computing Machinery.

[90] B. Kerr, L. Danon, A. P. Ford, T. House, C. P. Jewell, M. J. Keeling, G. O. Roberts,
J. V. Ross, and M. C. Vernon. Networks and the epidemiology of infectious disease.
Interdisciplinary Perspectives on Infectious Diseases, 2011:284909, 2011.

[91] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-epsilon.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

[92] M. Kiyomi and Y. Otachi. Alliances in graphs of bounded clique-width. Discrete
Applied Mathematics, 223:91 – 97, 2017.

[93] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes
in Computer Science. Springer, 1994.

[94] D. Knop, T. Masa’ík, and T. Toufar. Parameterized complexity of fair vertex evalua-
tion problems. In MFCS, 2019.

[95] P. Kristiansen, M. Hedetniemi, and S. Hedetniemi. Alliances in graphs. Journal of
Combinatorial Mathematics and Combinatorial Computing, 48:157–177, 2004.

[96] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

[97] M. Lampis. Minimum stable cut and treewidth. In N. Bansal, E. Merelli, and J. Wor-
rell, editors, 48th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 92:1–92:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[98] M. Lampis, N. Melissinos, and M. Vasilakis. Parameterized Max Min Feedback Vertex
Set. In J. Leroux, S. Lombardy, and D. Peleg, editors, 48th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:15, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[99] H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8(4):538–548, 1983.

242

[100] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS, pages 41–71, 2011.

[101] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized
problems. SIAM Journal on Computing, 47(3):675–702, 2018.

[102] D. Lokshtanov, F. Panolan, S. Saurabh, R. Sharma, and M. Zehavi. Covering small
independent sets and separators with applications to parameterized algorithms. ACM
Transactions on Algorithms, 16(3):32:1–32:31, 2020.

[103] D. Lokshtanov, M. S. Ramanujan, S. Saurabh, and M. Zehavi. Reducing CMSO Model
Checking to Highly Connected Graphs. In I. Chatzigiannakis, C. Kaklamanis, D. Marx,
and D. Sannella, editors, 45th International Colloquium on Automata, Languages, and
Programming (ICALP 2018), volume 107 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 135:1–135:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[104] L. Lovász. Combinatorial Problems and Exercises. Amsterdam, Netherlands: North-
Holland, 2nd edition, 1993.

[105] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41(5):960–981, Sept. 1994.

[106] L. M. Mansley, P. J. Dunlop, S. M. Whiteside, and R. G. H. Smith. Early dissemination
of foot-and-mouth disease virus through sheep marketing in february 2001. Veterinary
Record, 153(2):43–50, 2003.

[107] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1):189–241, 1999.

[108] J. Monnot, H. Fernau, and D. F. Manlove. Algorithmic aspects of upper edge domi-
nation. Theoretical Computer Science, 877:46–57, 2021.

[109] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge mod-
ification problems. Discrete Applied Mathematics, 113(1):109 – 128, 2001.

[110] J. Nesetril and P. O. de Mendez. Sparsity: Graphs, Structures, and Algorithms.
Springer Publishing Company, Incorporated, 2014.

[111] A. Nichterlein, R. Niedermeier, J. Uhlmann, and M. Weller. On tractable cases of
target set selection. Social Network Analysis and Mining, 3(2):233–256, 2013.

[112] D. Peleg. Local majorities, coalitions and monopolies in graphs: a review. Theoretical
Computer Science, 282(2):231 – 257, 2002.

[113] C. R., M. M., R. I., and S. N. Small alliances in graphs. In Ku!era L., Ku!era A.
(eds) Mathematical Foundations of Computer Science, MFCS 2007, Lecture Notes in
Computer Science, volume 4708, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

243

[114] T. Reddy and C. Rangan. Variants of spreading messages. Journal of Graph Algorithms
and Applications, 15(5):683–699, 2011.

[115] B. A. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

[116] N. Robertson and P. Seymour. Graph minors. iii. planar tree-width. Journal of Com-
binatorial Theory, Series B, 36(1):49 – 64, 1984.

[117] J. Rodríguez-Velázquez and J. Sigarreta. Global o!ensive alliances in graphs. Electronic
Notes in Discrete Mathematics, 25:157 – 164, 2006.

[118] K. H. Shafique. Partitioning a graph in alliances and its application to data clustering.
PhD thesis, University of Central Florida, 2004.

[119] J. Sigarreta, S. Bermudo, and H. Fernau. On the complement graph and defensive
k-alliances. Discrete Applied Mathematics, 157(8):1687 – 1695, 2009.

[120] J. Sigarreta and J. Rodríguez. On defensive alliances and line graphs. Applied Mathe-
matics Letters, 19(12):1345 – 1350, 2006.

[121] J. Sigarreta and J. Rodríguez. On the global o!ensive alliance number of a graph.
Discrete Applied Mathematics, 157(2):219 – 226, 2009.

[122] P. K. Srimani and Z. Xu. Distributed protocols for defensive and o!ensive alliances in
network graphs using self-stabilization. In 2007 International Conference on Comput-
ing: Theory and Applications (ICCTA’07), pages 27–31, 2007.

[123] S. Szeider. Not so easy problems for tree decomposable graphs. CoRR, abs/1107.1177,
2011.

[124] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular decomposi-
tion via recursive factorizing permutations. In Automata, Languages and Programming,
pages 634–645, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[125] M. Thorup. All structured programs have small tree width and good register allocation.
Information and Computation, 142(2):159 – 181, 1998.

[126] T. Watanabe, T. Ae, and A. Nakamura. On the np-hardness of edge-deletion and
-contraction problems. Discrete Applied Mathematics, 6(1):63 – 78, 1983.

[127] D. B. West. Introduction to Graph Theory. Prentice Hall, 2000.

[128] M. Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 253–264,
New York, NY, USA, 1978. Association for Computing Machinery.

244

[129] M. Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM
Journal on Discrete Mathematics, 31(4):2440–2456, 2017.

[130] Édouard Bonnet, M. Lampis, and V. T. Paschos. Time-approximation trade-o!s for
inapproximable problems. Journal of Computer and System Sciences, 92:171–180,
2018.

245

	fb17c0183a95974c78a787ccb6d1ca830cc83abd3b6b1880e4f4c9292733bf1e.pdf
	3c43ae8d847280a35a9debd4974843f4220d7e99eed0d8af02298db988f6b46e.pdf

