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Abstract

Coronal images of the Sun reveal the presence of dark region on the solar surface. This
region of reduced emissivity is known as coronal holes, and they are surrounded by a region
of higher emissivity called quiet Sun. Coronal hole intensity is not significantly reduced in the
transition region. Many studies suggested that magnetic field is responsible for the unusual ap-
pearance of coronal holes in the transition region. This study aims to understand the properties
of the coronal hole and quiet Sun in the transition region. We analysed the coronal hole and
quiet Sun using Si IV 1394 Å spectral line observations taken by Interface Region Imaging
Spectrograph (IRIS) and compared its intensity, Doppler velocity, and non-thermal width for
the region with similar magnetic field strength. We found quiet Sun is brighter in transition
region with respect to coronal holes and their non-thermal width and Doppler velocity were
similar at these heights.

Magnetic field is a fundamental quantity to understand various phenomenon occurring on
the Sun. The magnetic field can only be measured at photospheric height. Thus extrapola-
tion techniques are necessary to calculate and model coronal magnetic field. The extrapolation
methods are based on the force-free assumption in Corona, which means the non-magnetic
forces like pressure gradient and gravity are neglected. The underlying mathematical problem
behind the force-free field, which is the relationship between electrical current and the magnetic
field, is non-linear. Thus numerical techniques are necessary to solve this non-linear force-free
field. Potential and linear force-free fields are also reviewed in this work, they can be used as
the first step to the model corona. These two methods cannot accurately reconstruct the coronal
magnetic field because they are derived by linearising the underlying non-linear mathematical
problem. Thus nonlinear force-free fields are essential for the modelling. Here we reviewed
the non-linear techniques including optimization procedure and Aschwanden’s vertical current
approximation code. The knowledge of observed loop structure can be used to test the accuracy
of these extrapolation methods. The extrapolation techniques shall be applied to the quiet Sun
and coronal hole regions to understand the structure of the magnetic field in these regions and
their possible effects on the heating shall be studied.
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Chapter 1

Introduction

Sun is our closest star, a giant ball of hot plasma which maintains life on earth. It is the
ultimate source of energy in the solar system. The solar energy is created in the core of the
sun via thermonuclear fusion. The temperature of the core is about 15 million K [1]. The en-
ergy generated in the core is then transferred to the surface of the Sun and to the atmosphere.
The interior region of the Sun above the core is devided into two based on how the energy is
transported in these regions. The layer above the core is known as the radiative zone where the
energy is transported from a region of high temperature to low temperature by random walking
of the photons [2]. In the convective zone, which is the layer above the radiative zone, energy is
transported via convection. So the bubbles of gases which is hotter than the surrounding region
will rise, and the gas bubble which is cooler than the surroundings will sink [2]. This process
helps to transport energy to the visible surface of the Sun, the Photosphere.

Photosphere is the region we see with our naked eyes. It is the lower part of the solar
atmosphere. The photosphere appears in a granular pattern because of the convection devel-
oped beneath this layer. Most important feature in the photosphere is the sunspots, where the
temperature is lower than the surroundings and appear dark in the intensity images. The layer
above the photosphere is the chromosphere, which is the primary supplier of mass and energy
to the uppermost atmospheric layer of the Sun (Corona). The temperature in the corona is about
a million K. The existence high-temperature corona above cooler atmospheric layer is one of
the major Solar Physics problems. The region between chromosphere and corona is known as
transition region. Here the temperature and number density of electron shows drastic changes
with the height. The temperature increases rapidly and the electron number density decreases
sharply with the height [3]. Thus the transition region is very important in understanding the
coronal heating problem.

Various phenomenon happening in our closest star sun can be understood using solar spec-
troscopy. Spectroscopy is one of the brilliant techniques to study every form of matter in
the universe. It is the study of the interaction between matter and electromagnetic radiation.
Mostly used in astronomy to study stars and other stellar objects. Both the terrestrial based
and space-based solar observation technique has helped us to explore solar atmosphere in great
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detail. Satellites like Solar and Heliospheric Observatory(SOHO), Hinode, Transition Region
and Coronal Explorer (TRACE), Ulysses are used in obtaining the images of the sun in the dif-
ferent wavelength band including optical, Infrared, X-ray, UV. Recent satellite missions such
as Interface Region Imaging Spectrograph (IRIS) and Solar Dynamic Observatory (SDO) has
improved a lot in the temporal and spatial resolution of the images. Helioseismic Magnetic Im-
ager (HMI) onboard SDO provides the magnetic field map of the Solar photosphere. HMI has
much better accuracy and resolution in magnetic field measurement compared to the previous
mission Michelson Doppler Imager (MDI) onboard SOHO. High-resolution images obtained
by IRIS provides an excellent opportunity to study the transition region. Spectral line intensi-
ties of some ions are sensitive to temperature and density of the emitting plasma, by analysing
intensity data we can derive the temperature and density map of emitting plasma. It can also
provide information about Doppler velocity. All these local plasma parameters along with
magnetic field data help to understand the physical condition of Solar atmosphere and various
dynamic processes occurring on the Sun.

Figure 1.1: Full disk AIA 193 Å image of the Sun.
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Figure 1.1 displays the 193 Å channel full disc image of the Sun. This is an extreme
ultraviolet image which represents the corona. The bright region represents the Solar active
region (AR) where the loop structures are found. These structures are tubes of magnetic field
lines. Dynamic processes such as plasma heating, flares, and coronal mass ejection occur in
the active region. The dark region in this coronal image is the coronal holes (CH), and it is sur-
rounded by a region of higher emissivity known as quiet Sun (QS). Previous studies suggested
that the intensity images of the coronal holes are indistinguishable from the surrounding quiet
Sun. If they are distinguishable at coronal height then why not in the transition region? This
question needs to be answered. We may be able to solve this problem by studying magnetic
field structure in the coronal hole and quiet Sun because the field structures are different in both
region. This requires the modelling of magnetic field lines.

The magnetic field modelling is carried out by a different type of extrapolation methods,
which uses photospheric magnetogram as the boundary value. All these methods assume that
corona is in force-free condition. To solve force-free field, various numerical techniques are
necessary because of the non-linearity of the underlying mathematical problem. The numerical
technique requires higher computational power, and it is time-consuming compared to analyti-
cal methods. Potential and linear force-free field are the simpler versions of the force-free field,
they are derived from linearising the non-linear equation. These two force-free fields can be
solved easily using analytical methods. But they cannot accurately represent the coronal mag-
netic field. Thus nonlinear force-free fields are essential for the modelling. Two well-known
techniques to solve non-linear force-free field (NLFFF) are the optimization procedure and As-
chwanden’s non-linear force-free code. The optimization procedure requires the photospheric
vector magnetogram to compute NLFFF. Aschwanden code which is based on vertical current
approximation only need line of sight magnetogram and observed coronal images to compute
NLFFF.

Detailed study of similarities and difference between coronal hole and quiet Sun in transi-
tion region are presented in chapter 2, where we analysed their intensity, Doppler velocity and
non-thermal width for the region with similar magnetic field strength using Si iv 1394 Å line.
In chapter 3 we described three different type of force-free extrapolation methods including
potential, linear, and non-linear force-free extrapolation method.
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Chapter 2

Quiet Sun and Coronal Hole in Transition
Region

2.1 Introduction

Coronal holes (CH) are the dark region (reduced emissivity) on the solar surface at radia-
tion corresponding to the coronal temperature, and they are surrounded by a region of higher
emissivity and the weak magnetic field called Quiet sun (QS). At coronal height number den-
sity of electron is significantly lower in the coronal hole as compared to the surrounding area
[4]. Coronal holes can be observed in a wide range of spectra including UV, X-ray, and Infrared
wavelength, they are seen as dark areas on x-ray and EUV images, but they look brighter in He
I 1083 nm image [5]. He I 1083 nm absorption line is extremely useful in identifying coronal
holes. The advantage of this infrared line is, it can be observed using ground-based telescopes.
Coronal Holes are easily distinguishable from surrounding quiet sun and the active region at
radiation above 106K. There are two types of coronal holes, polar coronal holes and equatorial
coronal holes. Large Polar coronal holes are present in the southern and northern pole during
solar minimum with opposite polarity. As the sun approaches the solar maximum, they become
smaller and finally vanish. But during these period isolated coronal holes are observed in lower
latitude reaching till equator called equatorial coronal holes.

Magnetic field structures in coronal holes are different from the quiet sun. In coronal
holes, a large fraction of field lines are open and extend into interplanetary space [6]. So the
hot plasma can escape along the open field lines. But in quiet sun field lines are mainly closed,
and the hot gas trapped in the loops radiate, causing the quiet sun to be brighter [7]. Coronal
holes are indistinguishable from surrounding quiet sun and the active region at radiation below
6×105K [7]. This indicates that at lower transition region and chromosphere coronal holes and
quiet Sun look similar.

The present work describes the similarities and difference between coronal holes and quiet
sun at lower transition region in Si iv 1394 Å line using the Interface Region Imaging Spec-
trometer(IRIS). IRIS obtains UV spectra and images in two main pass-bands around 1400Å
and 2800Å at high resolution in space(0.33-0.4 arcseconds), time(1s) and spectrally(40 and
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CH QS
Date of observa-
tion

FOV(arcsec) Exposure
time(s)

Date of observa-
tion

FOV Exposure
time(s)

2016/12/05 33′′ ×175 ′′ 30 2016/12/05 33′′ ×175 ′′ 30
2017/01/03 33′′ ×175 ′′ 30 2016/12/16 33′′ ×175 ′′ 30
2017/01/05 33′′ ×175 ′′ 30 2017/02/05 33′′ ×175 ′′ 30
2017/01/12 33′′ ×175 ′′ 30 2017/02/05 33′′ ×175 ′′ 30
2017/02/05 33′′ ×175 ′′ 30 2017/02/14 33′′ ×175 ′′ 30
2017/02/14 33′′ ×175 ′′ 30 2017/02/14 33′′ ×175 ′′ 30

Table 2.1: Details of all CH and QS rasters

80mÅ respectively) [8]. High-resolution spectra obtained by IRIS provides us with an excel-
lent opportunity to study the coronal hole and quiet sun in the transition region. In this work
we have analysed the intensity, Doppler velocity, non-thermal width of the line Si IV 1394 Å
for the region with similar magnetic field strength. Rest of the chapter is structured as follows.
The details of the observation and data analysis are presented in section 2.3. In sections 2.4,
we have described the observational findings of the present work. Conclusions are outlined in
section 2.5.

2.2 Methods

In this study, we have observed six coronal holes and six neighbouring QS using IRIS. All
the coronal hole observed in this study are equatorial coronal holes seen within three month
period starting from 2016 December to 2017 February. So instrumental degradation does not
affect the intensity measurement much. CHs and QS are observed in Si IV 1394 Å emission
line. This line is a perfect candidate to study transition region, and its maximum emission
temperature (Tmax) is 63000 K [9]. All the IRIS rasters used in this study are dens rasters
covering the field of view 33′′ ×175 ′′ in 96 steps, and the raster cadence is 3044 seconds. The
details of all six coronal holes and quiet Sun rasters are shown in table 2.1. The standard SSW
routine eis auto fit.pro was used to derive integrated spectral line intensities. This routine uses
mpfit.pro algorithm to fit single Gaussian to each pixel in the raster.

2.2.1 Identifying Coronal Holes and Quiet sun

Coronal hole rasters contain a small part of quiet Sun also (see figure 2.1). For the anal-
ysis, it is important to find out a proper boundary between coronal holes and quiet sun, and this
was done by using full disk 193 Å channel image observed by Atmospheric Imaging Assembly
on board Solar Dynamic Observatory (SDO). By manual inspection, we defined coronal holes
as the region with intensity value less than 50 DN/pix and quiet sun as the region with intensi-
ties greater than 50 DN/pix in 193 Å image. To do this, it is mandatory to have a near perfect
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co-alignment between IRIS raster and AIA 193 Å image, and this is a difficult task because
the images are taken at two different height in solar atmosphere by different instruments. To
obtain IRIS-AIA co-alignment, IRIS SJI 1400 Å channel and AIA 1600 Å channels are used,
because they both show similar structures due to strong continuum contribution. First, we co-
aligned IRIS raster with IRIS Si IV 1400 Å Slit-jaw image (SJI). Co-alignment was performed
using standard SSW routine coreg map.pro and correl offset.pro. Next, we co-aligned IRIS SJI
1400 Å with AIA 1600 Å image. After that, shift the AIA 193 Å image using the offset ob-
tained with respect to IRIS raster. Co-alignment between IRIS raster and AIA(193Å) channel
is shown in figure 2.2 . Figure 2.2(a) displays the Si IV 1394 Å intensity image observed by
IRIS on 2017/02/05, and its co-aligned IRIS SJI 1400 Å, AIA 1600 Å, AIA 193 Å intensity
images are shown in figure 2.2(b), figure 2.2(c), figure 2.2(d), respectively. White contour in
figure 2.2(d) represents the boundary between CH and QS.

Figure 2.1: Large FOV of AIA 193Å channel image. Over plotted white box represent the
rastering area of CH raster observed on 2017/02/05.

2.2.2 Co-aligning IRIS rasters with HMI magnetogram

This project aims to compare the intensities, velocity and non-thermal width derived us-
ing Si IV 1394 Å spectral line of coronal holes and quiet sun with its underlying photospheric
magnetic field. So we will have an idea about how these quantities behave in QS and CH for
the magnetic field with similar strength. To measure magnetic field values at the photosphere,
observation recorded with Helioseismic and Magnetic Imager (HMI) onboard SDO is used. To
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Figure 2.2: Co-aligned IRIS, SJI, AIA images for CH observed on 2017/02/05. (a): IRIS Si IV
1394 intensity image. (b): SJI 1400 Å image corresponding to IRIS raster. (c): AIA 1600 Å
channel image corresponding to IRIS raster. (d): AIA 193 Å channel image with white contour
showing the boundary of QS and CH. (e): IRIS Si iv 1394 intensity image with over plotted
contour, representing the boundary between CH and QS.

compare HMI data with IRIS, we have to have a perfect co-alignment between them. Each
raster composed of 96 vertical slices taken at different time. These vertical slices are the one-
dimensional array of 548 pixels. HMI full disk magnetograms are available with cadence 45
seconds. All the HMI magnetogram taken during the IRIS rastering period are co-aligned with
IRIS intensity image using the help of SJI 1400 Å and AIA 1600 Å channel. Next, we created
an artificial raster of HMI by cutting down each vertical slices of HMI magnetogram corre-
sponding to the time and space of IRIS rasters. This is called artificial rastering, an extremely
useful technique to compare HMI magnetograms with IRIS rasters. Co-alignment between
IRIS raster and HMI images are shown in figure 2.3. Figure 2.3(a) displays the Si IV 1394
Å intensity image observed by IRIS on 2017/02/05, and its co-aligned IRIS SJI 1400 Å, AIA
1600 Å intensity images are shown in figure 2.3(b), figure 2.3(c), respectively. Figure 2.3(d)
represents the artificial rasters and co-aligned HMI magnetogram.
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Figure 2.3: IRIS HMI co-alignment using IRIS SJI 1400Å, AIA 1600 Å images

2.2.3 Study of velocity in QS and CH for the region with similar magnetic
field strength

Doppler velocities for Si IV 1394 Å line in QS and CH are calculated by using stan-
dard SSW routine eis get fitdata.pro. Before doing this, we have binned the windata using
eis bin windata.pro routine. This routine decreases the resolution of the image but helps to
reduce error in velocity measurement. Wavelength calibration was done by using Fe II photo-
spheric line. We calculated centroid value λFeII obs of the observed wavelength for Fe II line by
single Gaussian fitting using well-known mpfit.pro routine. The reference wavelength of Si IV
1394 Å line was calculated using the formula,

λre f SiIV = λSiIV lab− (λFeII lab−FeII obs) (2.1)

λSiIV lab is the laboratory wavelength of Si IV 1394 Å line (1393.755 Å)[10] and λFeII lab is the
laboratory wavelength of Fe II line (1392.817 Å)[10]. Next, we identified the centre of observed
Si IV line λSiIV obs using the eis auto fit procedure. And performed eis get fitdata.pro routine
to obtain Doppler velocity. This routine uses the formula given below to calculate line of sight
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(LOS) velocities.

v =
(λSiIV obs−λre f SiIV )× c

λre f SiIV

above steps repeated for each QS and CH and compared the velocity in the quiet sun and coro-
nal hole region with very similar magnetic field strength using co-aligned HMI magnetograms.

2.2.4 Study of non-thermal width in QS and CH for the region with sim-
ilar magnetic field strength

Non-thermal width for Si IV 1394 spectral line in CH and QS are calculated by the
formula,

δλ =
λ0

c

√
4ln2

(
2KBTi

m
+ ε2

)
+σ2

I

Where δλ is the observed line width, λ0 is the line centroid (1393.755 Å), KB is the Boltz-
manns constant, Ti is the ion temperature (63000 K), m is the mass of the ion (28.085 u), ε is
non-thermal velocity, and σI is the instrumental full width half maximum (FWHM). Instrument
width is measured in the laboratory before the launch of IRIS mission, which is 31.8 mA [11].
Observed line width (δλ ) was calculated using standard SSW routine eis get fitdata.pro, which
calculates the FWHM width in wavelength unit.

2.3 Results and Discussion

2.3.1 Intensity comparison in CH and QS

Using LOS magnetogram we calculated the radial component of the magnetic field by
dividing LOS component of the field by corresponding µ angle, where mu is defined as the
cosine of the heliographic longitude. Next we performed a pixel to pixel correlation between
Si IV 1394 Å intensity image and the absolute value of radial magnetic field map. This method
helps to compare the intensity of CH and QS for the region with similar magnetic field strength.
Pixels with LOS magnetic field values less than 10 G are excluded in this calculation because
HMI has an error of 10 G [12]. We have excluded higher magnetic field (i.e. more than 80 G)
location as those locations were rare and can potentially mislead.

To compare the intensity of Si IV 1394 Å line in CH and QS for the region with similar
magnetic field strength, the whole region of QS and CH was divided into various bin based
on the strength of the radial magnetic field. If we choose a constant bin size, the number of
data points in each bin will decrease with increase in the magnetic field, because locations with
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Figure 2.4: Si IV 1394 Å intensity in each magnetic field bin averaged over 6 CH and 6 QS

higher magnetic strength are rare. One way to avoid this problem is to select bin size such
that, it increases with the magnetic field. Here we have chosen bin size which increases expo-
nentially with the field. Average intensity and average absolute radial magnetic field are then
computed for each magnetic field bin and plotted.

Figure 2.4 displays the average intensity as a function of radial magnetic field bin in six
coronal holes and six quiet suns. From the figure, it is clear that QS (blue) intensity in differ-
ent magnetic field bin are larger than CH (red) intensity, which means the quiet sun is always
brighter than the coronal hole for the region with similar magnetic field strength. Also, the
intensity difference between CH and QS increases with the magnetic field. Normalised inten-
sity histogram of CH (red) and QS (blue) displayed figure2.6. Intensity bin size chosen here
was 0.5 DN. This histogram indicates that for the coronal hole, there is a sharp decrease in the
number of pixels as intensity increases as compared to quiet Sun.

These results can be explained by the work of Wiegelmann and Solanki. The large fraction
of field line in coronal holes are open, but in the quiet sun, most of the field lines are closed. We
have seen that in transition region quiet sun is brighter than coronal holes. The number of long
and short loops can be used to explain this result. According to RTV scaling law, long loops
are hot and short loops are cool. The number long closed loops that are reaching transition
region in coronal holes are lesser compared to the quiet sun, and the short loops are closing
down further below the transition region.
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Figure 2.5: Intensity histogram of the coronal hole and quiet Sun

2.3.2 Doppler velocity comparison in CH and QS

The intensity, velocity, LOS magnetic field maps of coronal hole observed on 2017/02/05
are shown in figure 2.6 (a), (b), (c) respectively. The resolution of these images is reduced to
decrease the error in Doppler velocity calculation. Figure 2.7 displays the variation of abso-
lute radial velocity with the absolute radial magnetic field in coronal hole and quiet Sun. As
mentioned before the radial component of velocity is calculated by dividing LOS velocity by
corresponding µ angle. As earlier, the bin size increases exponentially with the magnetic field,
to avoid the problem of the lesser number of data points at the higher magnetic field bins. The
radial magnetic field below 10G is not plotted because HMI has approximately 10 Gauss error
in LOS measurement. This figure shows that radial velocity increases with increasing radial
magnetic field strength. The average QS and CH velocities are similar in different magnetic
field bins, which means CH and QS velocity for the Si IV 1394Å line are similar for the region
with similar magnetic field strength. Larger uncertainty in velocity at the higher magnetic field
is due to the lesser number pixel with large magnetic field values.
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Figure 2.6: Comparison of Si iv 1394 line velocity with magnetic field in CH observed on
2017/02/05. (a): Si IV 1394 Å intensity image. (b): Doppler velocity image of Si IV 1394 Å
line. (c): Co-aligned HMI magnetogram. Over plotted white contour on each image represents
the boundary between CH and QS.

Figure 2.7: Absolute radial velocity in each magnetic field bin averaged over six coronal holes
and six quiet Suns
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Figure 2.8: Comparison of Si iv 1394 line non-thermal width with magnetic field. (a): Si IV
1394 Å intensity image of a coronal hole observed on 2017/02/05. (b): non-thermal width map
of Si IV 1394 Å line. (c): Co-aligned HMI magneto gram. Over plotted white contour on each
image represents the boundary between CH and QS.

2.3.3 Non-thermal width comparison in CH and QS

Non-thermal width map of CH observed on 2017/02/05 are shown in figure 2.8. Fig-
ure 2.8(a) displays the Si IV 1394 Å intensity IRIS raster, and its corresponding non-thermal
width map, co-aligned HMI magnetogram are shown in figure 2.8(b), figure 2.8(c), respec-
tively. Overplotted white contour in each image represents the boundary between CH and QS.
From intensity and non-thermal width image, it is clear that there is a good positive correlation
between intensity and non-thermal width. Figure 2.9 displays the FWHM non-thermal width
in each magnetic field bin averaged over six coronal holes and six quiet suns. The graph shows
that non-thermal width increases with increasing magnetic field strength. Here the bin size
increases exponentially with the magnetic field, to avoid the problem of the lesser number of
data points at the higher magnetic field. The radial magnetic field below 10G is not plotted
because HMI has approximately 10 Gauss error in LOS field measurement. The average QS
and CH non-thermal width are similar in each magnetic field bins, which means CH and QS
non-thermal width for the Si IV 1394Å line are almost equal for the region with similar mag-
netic field strength. Thus the process that is responsible for non-thermal width is both common
in coronal hole and quiet Sun. Larger uncertainty in non-thermal width at the higher magnetic
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Figure 2.9: Non-thermal width averaged over six coronal holes and six quiet Suns

field is due to the lesser number pixel with large magnetic field values.

2.4 Conclusions

Quiet sun is brighter than coronal holes corresponding to coronal temperature radiation.
In the transition region, they look similar. One way to explain this problem is by using the
number of short and long loops. According to RTV scaling law, long loops are hot and short
loops are cooler. In coronal holes, the number of long-closed loops is lesser compared to the
quiet sun. But they have an equal number of short loops. Due to the almost complete absence
of closed loops at coronal temperatures in the coronal hole, there is hardly any emission in lines
formed at high temperatures [7]. In this study, we found that in transition region the quiet sun
is brighter than the coronal hole for the region with similar magnetic field strength. This result
can be explained based on the number of long and short closed loops. The number of long
loops that are extending till transition region is lesser in the coronal hole compared to quiet
Sun, and the short loops are closing down far below the transition region. Thus the quiet Sun
is expected to be brighter than the coronal hole even in the transition region. The difference
between CH and QS intensity increases with the magnetic field. The non-thermal width and
Doppler velocity are almost equal in CH and QS for the region with similar magnetic field
strength. So we can conclude that the process that responsible for the non-thermal broadening
of the line are common in both QS and CH. A possible reason for such a broadening could be
Alfven wave turbulence.

Magnetic field structure in coronal holes and quiet Sun are completely different. By mod-
elling magnetic field structures, we may be able to understand the coronal hole and quiet Sun
in great detail. This can be done with the help of various magnetic field extrapolation methods.
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Height and length of these field lines can then be calculated, and we can compare how these
quantities vary in coronal hole and quiet Sun. To do extrapolation, it is crucial to know the state
of the magnetic field in the region of interest. It can be potential, linear force-free, non-linear
force-free fields. Detailed theoretical analysis of each extrapolation methods is explained in
next chapter.
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Chapter 3

Magnetic field Extrapolation

3.1 Introduction

Magnetic field plays an essential role in governing various physical processes occurring in
the atmosphere of the Sun. Sun has a complex magnetic topology that continually changes with
time, unlike the Earth’s simple dipole. Thus, magnetically driven phenomenon, such as solar
wind, coronal mass ejection (CME), solar flare, coronal heating and sunspots etc. can only be
studied with accurate measurement of magnetic field on the surface and atmosphere of the Sun.
The recent mission, Helioseismic Magnetic Imager (HMI) onboard Solar Dynamic Observa-
tory (SDO) provides us high resolution (temporal and spatial) full disk vector magnetograph
on the visible surface of the Sun (Photosphere), using Stokes polarimetry technique[13]. The
basic technique behind the magnetic field measurement on the Sun’s surface is the Zeeman
effect, which is the splitting of spectral lines into multiple closely spaced line in the presence
of magnetic field, due to the interaction between the magnetic field and the magnetic dipole
moment associated with the orbital and spin angular momentum. Unfortunately, these methods
are only applicable to the lower atmosphere of the Sun. So we cannot measure the coronal (up-
per atmosphere) magnetic field using direct methods. One of the reasons behind the difficulty
in measurement of coronal magnetic field is the lack of a suitable spectral line. The spectral
line with high Landau g factor may not be available at this height, even if there is a line the
lower density of corona makes the problem even more difficult, because of the lower intensity
of the spectral line. The next problem strength of magnetic field is lesser in corona compared to
the photosphere, which makes splitting of spectral line smaller. Another major problem is the
temperature of the corona. The temperature of the corona is very high (106 K) as compared to
the photospheric temperature, which is around 5000 K. Due to the high temperature the thermal
width of the spectral line increases and it will reduce the Stokes V signal [14]. The measure-
ment of coronal magnetic field strength is very important to understand the phenomenon such
as Solar flare and CMEs in great detail.

The measurement of coronal magnetic field is carried out by a different type of extrapola-
tion methods, which uses photospheric magnetogram as the boundary value. All these methods
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assume that corona is in force-free condition ( j×B = 0), the proof is given below.
The equation of motion of plasma can be described by,

ρ
Dv
Dt

=−∇P+ j×B+ρg (3.1)

Where ρ is the mass density, P is the plasma pressure, j×B is the Lorentz force. The inertial
term can be neglected if the flow speed is smaller compared to Alfven speed, sound speed, and
gravitational free-fall speed [15]. Then equation 3.1 become,

0 =−∇P+ j×B+ρg (3.2)

Which is the magnetohydrostatic equation. The corona is strongly dominated by the magnetic
field, the plasma β parameter, which is the ratio of gas pressure to magnetic pressure, is small
compared to unity. Thus any pressure gradient is dominated by Lorentz force, and the equation
3.2 reduces to,

j×B = 0 (3.3)

The magnetic field that satisfies above equation is called the force-free field, which implies that
magnetic field and current density (j) are parallel to each other. Force free field satisfies the
following equations.

j×B = 0 (3.4)

µ0 j = αB (3.5)

∇×B = µ0 j (3.6)

∇.B = 0 (3.7)

Equation 3.5 is derived from force-free condition, here α is the force free parameter. Equation
3.6 is the Amperes law where µ0 is the magnetic permeability in vacuum and equation 3.7 is
the divergence free condition. Using equation 3.5 and 3.6 we can write,

∇×B = αB (3.8)

Taking divergence on both side of the equation yield,

B.∇α = 0 (3.9)

Which implies that the value of α is constant along the magnetic field lines. But it may vary
from one field line to another.

Mainly there are three different type of extrapolation technique based on the values of α .
The simplest method is the potential field extrapolation, where the current density vanishes
everywhere. The second method is the linear force-free (LFF) extrapolation, in which the field
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lines takes the constant value of the force-free parameter. The third method is the non-linear
force-free (NLFF) extrapolation, where the value of α is a function of space. Unlike potential
and linear force-free field, numerical techniques are necessary to solve the NLLFF field. The
theoretical background for each method is explained in the next section.

3.2 Methods

3.2.1 Potential Field Extrapolation

The Magnetic field that satisfies the following condition is known as potential field or
current free field.

∇×B = 0 (3.10)

Taking the divergence of equation 3.10 and using divergence free condition gives,

∇
2B = 0 (3.11)

which tells us that the potential field satisfies the Laplacian equation. From equation 3.10, it is
clear that the potential field can be written as a gradient of scalar potential (Φ) which satisfies
the Laplacian equation.

B = ∇Φ (3.12)

∇
2
Φ = 0 (3.13)

This is a Neumann boundary value problem for which a unique solution is guaranteed. Once
Φ is found the field component can be calculated using equation 3.12. The solution of this
equation is easy to compute, only requires the normal component of magnetic field at the lower
boundary. The potential field can be calculated using Green functions [16], and Fourier trans-
form technique [17, 18] either in Cartesian or spherical coordinates. As compared to green
function method Fourier transform method is computationally easier, takes only less amount of
time depending on the size of the region of interest. The Fourier method is explained below.

First we have chosen a Cartesian coordinate system with positive z-axis towards the ob-
server. The z = 0 plane represent the photosphere of the sun, where the magnetic field measure-
ment available. The general solution to equation 3.12 and 3.13 that decays to zero as z tends to
infinity and is periodic in x and y plane has the form,

Φ = Φk× exp(ikxx+ ikyy− kz) (3.14)

Where kx,ky are real and k2 = k2
x +k2

y and Φk is unknown constant. The solution is obtained by
the method of separation of variable. If the magnetic field vanishes at the side planes x=0, x=a,
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y=0, y=b, the general solution is [15],

Φ =
∞

∑
n=0

∞

∑
m=0

Φnmsin(
2nπx

a
)sin(

2mπy
a

)exp(−knmz) (3.15)

In spherical polar coordinate (r,θ ,φ ) the general solution to Laplacian equation is,

Φ =
∞

∑
l=0

l

∑
m=−l

[almrl +blr−(l+1)]Pm
l (cosθ)exp(imφ) (3.16)

Where Pm
l (cosθ) is the associated Legendre polynomial. The unknown constant in general so-

lution can be computed by applying boundary condition. The magnetic field values (Bz(x,y,z =

0)) over a given rectangular domain are known from photospheric magnetogram. Thus (Bz(x,y,z=

0)) can be used as a boundary condition to calculate magnetic field values above photosphere
(B(x,y,z)). The value of Φk in equation 3.14 is calculated using equation 3.12 at z=0 plane,
which yield, [18]

Bz(x,y,z = 0) = ∑
kx

∑
ky

−kΦkexp(ikx + iky) (3.17)

Or taking Fourier transform gives,

−kΦk = ∑
kx

∑
ky

Bz(x,y,z = 0)exp(−ikx− iky) (3.18)

= Bz(k) (3.19)

Bz(k) is the two dimensional Fourier transform of Bz(x,y,z = 0). From equation 3.18 and 3.19,

Φk =
−1
k

Bz(k) (3.20)

3.2.2 Linear Force-Free Extrapolation

The magnetic field that satisfies the following equation is known as Linear force-free field.

∇×B = αB (3.21)

Where α is a constant along the field lines and it does not change from one field line to another.
Taking curl on equation 3.21 and using divergence free condition gives,

(∇2 +α
2)B = 0 (3.22)
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Thus linear force free field satisfies the Helmholtz equation. Using poloidal and toroidal de-
composition magnetic field can be written in terms of two scalar functions [19],

B = ∇×T z+∇×∇×Pz (3.23)

Where z is some constant vector. T and P are the toroidal and poloidal scalar respectively.
Relation between scalar function T and P are shown below.

T = αP (3.24)

Thus it can be easily shown that poloidal scalar also satisfies the Helmholtz equation.

(∇2 +α
2)P = 0 (3.25)

The numerical techniques to solve this linear problem are the Green function [20, 21], vertical
integration [22], Fourier expansion [17] methods in Cartesian and spherical coordinates. The
Cartesian coordinate system chosen here has positive z-axis directing towards the observer and
z=0 plane on the surface (photosphere) of the Sun. The general solution to equation 3.24 and
3.25 that decays to zero as z tends to infinity and periodic in x and y has the form,

P(x,y,z) = ∑
kx

∑
ky

Pkexp(ikxx+ ikyy− (k2
x + k2

y −α
2)z) (3.26)

Where kx and ky are real. Pk is an unknown constant which can be computed using the bound-
ary condition. The solution is computed using the method of separation of variable. General
solution to linear force free field in spherical coordinate(r,θ ,φ ) is shown below [15].

P(r,θ ,φ) =
∞

∑
n=0

∞

∑
m=0

AnmJn+1/2(αr)Pm
n (cosθ)exp(imφ) (3.27)

where Pm
n (cosθ) is the associated Legendre polynomial and Jn+ 1

2
is the spherical Bessel func-

tion of order n+ 1
2 . Anm is a complex constant.

The value of Pk in equation 3.26 is calculated by including boundary condition. The bound-
ary condition here is the horizontal distribution of the line of sight component of of magnetic
field measured at photospheric height (Bz(x,y,z = 0)). From equation 3.23 the value of LOS
component of field is given below.

Bz(x,y,z) =−
∂ 2P
∂ 2x
− ∂ 2P

∂ 2y
(3.28)

Applying equation 3.28 on 3.26 at z=0 gives, [18]

B(x,y,z = 0) = ∑
kx

∑
ky

(k2
x + k2

y)Pkexp(ikxx+ ikyy) (3.29)
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Or taking Fourier transform

(k2
x + k2

y)Pk = ∑
kx

∑
ky

B(x,y,z = 0)exp(−ikxx− ikyy) (3.30)

= Bz(k) (3.31)

Bz(k) is the two dimensional Fourier transform of observed line of sight magnetic field. From
equation 3.30 and 3.29 we can write,

Pk =
Bz(k)

k2
x + k2

y
(3.32)

By substituting equation 3.32 in general solution the value of P can be obtained. But the
problem here is the value of α , it can only be obtained from vector magnetogram.

α =
1
Bz

(
∂By

∂x
− ∂Bx

∂y

)
(3.33)

The above equation is used to create the α map of the region of interest and used the average
value of α as an input in equation 3.29.

3.2.3 Non-Linear Force-Free Extrapolation

Potential and linear force-free field can be used as a first step to model solar corona. They
are the solution to an oversimplified underlying mathematical problem. The actual problem is
non-linear, we linearised the equation to reduce mathematical difficulty in solving the equation.
So the potential and linear force-free field, which are based on linearised equation cannot rep-
resent the real physical situation. Also, the value of α in an active region is a strong function of
space; we found this in deriving α map from equation 3.33. From these arguments, it is clear
that force-free models are necessary to reconstruct the coronal magnetic field.

∇×B = α(r)B (3.34)

The field that satisfies the above condition is known as the non-linear force-free field. For
the non-linear force-free field the α value varies from one field line to another [23]. Solving
above equation is a difficult task, analytic techniques cannot be used due to the non-linearity of
the equation. So we have to use the numerical technique to solve the problem. Semi-analytic
solution to equation 3.34 can be calculated assuming axis symmetric magnetic field [24]. In
spherical polar coordinate axis-symmetric magnetic field can be expressed as

B =
1

rsinθ

(
1
r

∂A
∂θ

r̂− ∂A
∂ r

θ̂ +Qφ̂

)
(3.35)
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Where A is the flux function and Q is strict function of A with

α =
dQ
dA

(3.36)

0 =
∂ 2A
∂ r2 +

1−µ2

r2
∂ 2A
∂ µ2 +Q

dQ
dA

(3.37)

Where µ = cosθ . Equation 3.37 is the Grad-Shafranov equation, and its separable solutions
are,

A = P(µ)rn (3.38)

Q(A) = aA1+1/n (3.39)

Where a and n are constants. Substituting equation 3.38 and 3.39 in 3.37 gives,

0 = (1−µ
2)

d2P
dµ2 +n(n+1)P+a2 1+n

n
P1+2/n (3.40)

The boundary condition applied here are, the magnetic field will go to zero for very large values
of r and Bθ and Bφ vanish along the axis µ =1, -1. These conditions yield,

P = 0 at µ = 1,−1 (3.41)

Solution to non linear differential equation 3.40 with boundary condition given by equation
3.41 will generate non linear force free field. Only some particular values of n and a can lead
to the solution of equation 3.40 that satisfies the boundary condition. This is an eigenvalue
problem, so technique like shooting method can be used to generate the solution. Semi analytic
solution to non linear force free fields developed by B.C.Low and Lou are now used for testing
various NLFF extrapolation methods.

Two main technique used for NLFF extrapolation are the optimization [23] method and
Aschwanden code [28]. Optimization procedure need vector magnetogram as input, but for
Aschwanden code which is based on vertical current approximation to extrapolate magnetic
field from photospheric LOS magnetogram. In the following section we will explain the theo-
retical background behind these methods.

Optimization Method

Optimization method involves the minimisation of the quantity

L =
∫

V
[B−2|(∇×B)×B|2 + |∇.B|2]dV (3.42)
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by an evolutionary procedure [25]. Reducing the value of L to zero implies that,

(∇×B)×B = 0 (3.43)

∇.B = 0 (3.44)

in the volume V. Thus a force free field is obtained by minimising the quantity L. Differentiating
L with respect to iteration parameter t and applying a number of vector identity yield,

1
2

dL
dt

=−
∫

V

∂B
∂ t

.FdV −
∫

S

∂B
∂ t

.GdS (3.45)

where

F = ∇× (Ω×B)−Ω× (∇×B)−∇(Ω.B)+Ω(∇.B)+Ω
2B (3.46)

G = n̂× (Ω×B)− n̂(Ω.B) (3.47)

Ω = B−2[(∇×)×B− (∇.B)B] (3.48)

Here S is a surface bounding the volume V and n̂ is the normal unit vector pointing towards
the interior of the surface. The detailed derivation of these quantities are shown in [25]. From
equation 3.45 it is clear that the value of L will decrease if we choose following conditions.

∂B
∂ t

= µF (3.49)

∂B
∂ t

= 0 on the sur f ace S (3.50)

µ in equation 3.49 is an arbitrary function which is greater than zero and it helps to speed up
the convergence of iteration step. Applying equation 3.49 and 3.50 in 3.45 gives,

∂B
∂ t

=−µF2 (3.51)

One of the problems with this optimization method is that all three components of the
magnetic field have to be prescribed on the six boundaries of the computational box. This
complication is arrived from equation 3.50. Magnetic field values at the lower boundary are
already known from photospheric vector magnetogram. For the remaining five boundaries,
we have to use potential or linear force-free extrapolation method to calculate all components
magnetic field. Another issue with this procedure is that the quantity L may not necessarily
be reduced to zero, or close to zero. In this case, the field inside the volume is not force-free
and does not satisfy the divergence-free condition. This difficulty arrives from the force-free
assumption, where we assumed that photosphere is also force-free. Solar photosphere is not in
a force-free condition [26]. So force-free extrapolation from photospheric magnetogram is not
a good way reconstruct the coronal field. One way to overcome this problem is to preprocess
the photospheric vector magnetic field data. The detailed description preprocessing routine is

24



shown in [27]. The method involves the minimisation of the quantity

L = µ1L1 +µ2L2 +µ3L3 +µ4L4 (3.52)

where

L1 =

(∑
p

BxBz

)2

+

(
∑
p

ByBz

)2

+

(
∑
p

B2
z −B2

x−B2
y

)2
 (3.53)

L2 =

(∑
p

x(B2
z −B2

x−B2
y)

)2

+

(
∑
p

y(B2
z −B2

x−B2
y)

)2

+

(
∑
p

yBxBz− xByBZ

)2
 (3.54)

L3 =

[
∑
p
(Bx−Bxobs)

2 +∑
p
(By−Byobs)

2 +∑
p
(Bz−Bzobs)

2

]
(3.55)

L4 =

[
∑
p
(∇Bx)

2 +(∇By)
2 +(∇Bz)

2

]
(3.56)

Here the summation is over entire pixels p of the photospheric magnetogram. Minimisation
of the quantity L1 and L2 leads to vanishing of total force and torque on the lower boundary
respectively. The preprocessed magnetogram cannot deviate largely from the observed one,
this is taken care by minimisation of L3. The term L4 controlls the smoothing. Simultaneous
minimisation of the above terms will give magnetogram that satisfies the force free condition.

Non-Linear Force-Free Code by Vertical Current Approximation

Uni polar magnetic charges that are buried below the solar surface is a simple example
of the potential field which satisfies Maxwell’s divergence-free condition [28]. Thus potential
field in the region of interest can be constructed by the superposition of nmag uni-polar magnetic
charges. Theoretical construction of field is done in a Cartesian coordinate system, where the
origin is at the centre of the Sun. The magnetic field at arbitrary location x=(x,y,z) in corona
which falls with the square of the distance is given by [28],

B(x) =
nmag

∑
m=1

Bm

(
dm

rm

)2 rm

rm
(3.57)

Where Bm is the magnetic field strength at the solar surface(photosphere) above mth buried
charge. rm is the distance between location of the buried charge(xm,ym,zm) and arbitrary loca-
tion in corona. dm represents the depth of the magnetic charge,

dm = 1−
√

x2
m + y2

m + z2
m (3.58)

Potential field is parameterized by four quantities Bz, xm, ym, zm. The location and the
strength of magnetic charges are unknown; this can be computed using an iterative method
using photospheric magnetogram (see [28, 29]). Once we know all four parameters, the volume
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filling potential field is generated using equation 3.57. We aim to generate the non-linear force-
free field (NLFFF) in 3-dimensional space; this is done by introducing vertical current above
magnetic charges. Now the magnetic field is not potential because vertical current adds an
azimuthal magnetic field component, which introduces twist around the vertical axis. The
solution for a twisted field of magnetic charge in the spherical coordinate system is obtained by
comparing the exact analytical solution for uniformly twisted flux tube in cylindrical geometry
[15]. This was done using coordinate transformation. Solutions are given below,

Br(r,θ) = B0

(
d2

r2

)
1

(1+b2r2sin2θ)
(3.59)

Bφ (r,θ) = B0

(
d2

r2

)
brsinθ

(1+b2r2sin2θ)
(3.60)

Bθ (r,θ) = 0 (3.61)

α(r,θ =
2bcosθ

(1+b2r2sin2θ)
) (3.62)

where

b =
2πntwist

l
(3.63)

which represent the number of full twisting turn ntwistover loop length l. Br(r,θ) is the radial
potential potential field component and Bφ (r,θ) is the azimuthal non potential component. α

in equation 3.62 is the force free parameter, which reduces to zero in the limit of vanishing
twist. Like potential field space filling non potential field at any arbitrary location in corona
x = (x,y,z) can be represented by the superposition of nmag magnetic charges.

Bnp(x) =
nmag

∑
m=1

Bnp
m (x) (3.64)

Once we know parameter Bz, xm, ym, zm, αm for each buried magnetic charges, the space
filling non linear force free field can be generated. First four parameter are already obtained in
potential field calculation and the αm for each charge is computed by iterative procedure. The
main advantage of this code is that, it uses observed intensity images to track the loop coor-
dinate. So it is a steroscopically constrained magnetic modelling. The main task of NLFFF
code is to calculate non-potential parameter (αm) for each buried magnetic charges by min-
imising the misalignment angle between theoretical magnetic model (Btheo) and observed loop
direction (Bobs) [28]. 3D miss-alignment angle is defined as,

µ3 = cos−1
(

(Btheo.Bobs)

|Btheo|.|Bobs|

)
(3.65)
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3.3 Results and Discussion

3.3.1 Potential field extrapolation

Magnetic field map of an active region generated using the potential field extrapolation
method are shown figure 3.1. Each image represents different height in the solar atmosphere.
Figure 3.1(a) is the line of sight magnetogram observed by HMI onboard SDO. The magnetic
field is then extrapolated to different height in solar atmosphere from photospheric LOS mag-
netogram. LOS component of extrapolated field at height 5, 19 px are shown in figure 3.1 (b),
(c) respectively. Here 1 px represents 362.5 km height above the photosphere. Here we can see
that the field strength decreases with height, that is expected from potential field solution. But
one problem here is that the field is getting diffused as height increases.

Figure 3.1: Potential field extrapolation. (a): Photospheric LOS magnetogram (b): LOS com-
ponent of extrapolated magnetic field map at height z= 5 px. (c): LOS component of extrapo-
lated magnetic field map at height z= 19 px

3.3.2 Linear force-free field extrapolation

Figure 3.2 displays the magnetic field map of an active region generated using the linear
force-free extrapolation method. The left panel shows the x, y, z component map of pho-
tospheric magnetic field observed by HMI and the corresponding extrapolated field maps at
height z=10 px are shown in right panel. As mentioned before 1 px corresponds to 362.5 km
height above the photosphere. The value of force-free parameter α is necessary to calculate
linear force-free field, this is the only reason, why vector magnetogram is needed in linear
force-free field computation. The computed α value was 0.03 which is very close zero. From
Figure 3.2 it is clear that the field is getting diffused as height increases. Also, the strength of
the field decreases with height. If the non-linearity in the active region is less, then the linear
force-free extrapolation is a good way to reconstruct the coronal magnetic field.
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Figure 3.2: Linear force free field extrapolation. (a): x component of photospheric magnetic
field (b): y component of photospheric magnetic field (c): Photospheric LOS magnetogram.
(d): x component of extrapolated field at height z=10 px. (e): y component of extrapolated
field at height z=10 px. (f): LOS component of extrapolated field at height z=10 px

3.3.3 Non-linear force-free extrapolation
Optimization method

3D magnetic field model of a coronal hole generated using Wiegelmann’s optimization
procedure is displayed in figure 3.3. The yellow line represents the magnetic field line, and the
bottom boundary is the LOS magnetogram. First, the magnetic field data was preprocessed to
make it force free at the photosphere. Flux balancing of observed magnetogram was carried out
by adding an extra layer of pixels around it. To perform optimization, it is necessary to know
the magnetic field values on the six boundaries of the computational box. All 3 component of
the field on the lower boundary is already known from photospheric vector magnetogram; here
the remaining five are calculated using potential field extrapolation.

NLFF code using vertical current approximation

We performed magnetic modelling for the active region NOAA 12230 using the NLFFF code
that is based on vertical current approximation. The magnetic field of this particular active
region was represented by the superposition of 200 uni-polar magnetic sources (nmag). This
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Figure 3.3: Magnetic modelling of the coronal hole using optimization method

specific value of nmag depends on the topological complexity of the magnetic field in the active
region and the field of view (0.35× .35 solar radii). The detection of coronal loops is performed
only using AIA 193 Å and 171 Å channel images. The automated tracing of loop coordinate is
carried out by the method of Oriented Coronal Curved Loop Tracing (OCCULT-2) (Aschwan-
den 2013 a). The code then performs the task that fits the nonlinear force-free solution to the
geometry of the traced loops, by minimising the 3D misalignment angle, which is done by the
sufficient number of iteration steps. The minimum number of iteration (nitmin) used here was
30, and we set the maximum number of iteration (nitmax) at 100.

The result of non-linear force-free magnetic field extrapolation of NOAA 12230 data corre-
sponds to 2014 December 12, 19:30 UT is shown in figure 3.4. The upper left image shows the
3D loop trajectories, and the field lines and the lower left represent the 2D line of sight view of
the field line overlaid on HMI LOS magnetogram. In each image, the red line represents mag-
netic field line, and yellow represents the observed loops. Magnetic field lines shown in these
images are the field line which intersects the midpoint of traced loop segments. Various input
parameters used for codes and output parameters obtained are shown in right panel. The ex-
trapolated magnetic field lines of active region NOAA 12230 observed on 2014/12/12 at 19:30
UT overlaid on 171 Å image are shown in figure 3.5. The field lines are shown in red colour.
We selected a rectangular grid of foot points in a 20 x 20 grid with minimum magnetic field
strength 50 Gauss. This image showed an excellent co-alignment between observed loops and
extrapolated magnetic field lines, which proves the success of NLLFF extrapolation method.
But there were few field lines that are not aligned with obsreved loop structures.
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20141212_193000, time step=13, Catalog=noaa_12230_run.txt

INPUT:
Instrument =AIA
NOAA =12230, S02W10
Wavelengths =171,193 A
fov, hmax =0.350, 0.20
amis =  90.0
nsm1 =   1
nmag_p,np = 200,  200
nstruc =2000
nitmin,nitmax =  35,  100
prox_min =10.0
lmin,rmin =   5,    5
qthresh1,2 = 0.00,  1.00

OUTPUT:
[x1,x2] =-0.0015,  0.3485
[y1,y2] =-0.2431,  0.1069
dpix HMI =0.0005,  0.50 arcsec
dpix AIA =0.0006,  0.59 arcsec
nloop,ndet = 171 /  171
nloop/ndet = 1.000
misalign =  8.4,  15.8 deg
div-free = 2.0e-05
force-free = 6.2e-05
weight curr = 4.6e-01
qe_rebin = 0.941
qe_model = 0.953
qiso_corr = 2.467
E_P =  892.4 x 1030 erg
E_free =  59.8 x 1030 erg
E_NP/E_P = 1.067
Iterations = 39
CPU =  1175.7 s

Figure 3.4: NLFF modelling of active region NOAA-12230 by vertical current approximation.

30



Figure 3.5: Non linear force free extrapolation: Extrapolated magnetic field lines of active
region NOAA 12230 observed on 2014/12/12 at 19:30 UT overlaid on 171 Å image

3.4 Conclusions

Most of the phenomenon occurring on the Sun are driven by the magnetic field, it connects
the interior of the Sun with its atmosphere. So the accurate measurement of the magnetic field
is crucial to understand the Sun. Recent mission HMI onboard SDO and various ground-based
telescopes provide high-resolution magnetograms. These measurements are only possible at
photospheric height. To measure coronal magnetic field, extrapolation techniques are required.
The potential and linear force-free field can be used as the first step to model coronal struc-
ture. But these methods are developed from, linearising the underlying non-linear mathemati-
cal problem. Thus non-linear force-free extrapolation methods are necessary to model coronal
structure.

Different NLFF codes have been proposed, to compute coronal magnetic field from photo-
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spheric magnetogram. The problem here is that the photosphere is not force-free. Extrapolation
of the force-free field from a non-force-free boundary condition is not correct. Another prob-
lem is about the accuracy of photospheric magnetic field measurement. Compared to LOS
component of the field the measurement of the transverse component is less accurate. All
these problems have to be taken into account before extrapolating from the photospheric data.
Preprocessing the magnetogram is the best way to avoid these problems, which is done using
Wigelmann’s optimization procedure. One of the well known NLFF code is Aschwanden code
which is based on the vertical current approximation. This method deconvolves the line of sight
magnetogram into a specified number of potential field magnetic sources, and the non-potential
field is constructed by introducing a vertical current above magnetic charges. The primary task
of NLFFF code is to calculate non-potential parameter (αm) for each buried magnetic charges
by minimising the misalignment angle (µ3). Inclusion stereoscopic data in force-free mod-
elling is the main advantage of the Aschwanden code over optimization procedure. Compared
to Aschwanden code optimization procedure is computationally complicated and far too time-
consuming.

Magnetic field is responsible for the loop-like structures in the solar atmosphere. From the
results Aschwanden code we have seen that there is good co-alignment between loop structure
and extrapolated field lines. This proves that NLFF code based on vertical current approxima-
tion is a right way to reconstruct the coronal force-free field despite some differences in the
observed and extrapolated field.

Having understood the QS and CH as well as extrapolation techniques, we shall perform
the extrapolations in QS and CH using the data from HMI and study the differences.
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