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Abstract

We give three results concerning the distribution of eigenvalues of Hecke operators acting on

spaces of modular cusp forms of weight k with respect to Γ0(N) by attaching some weights

to them. These results extend some classical results. In the 1960s, M. Sato and J. Tate

made a conjecture regarding the distribution laws for the Fourier coefficients at primes of a

fixed Hecke eigenform. In 1997, J-P Serre considered a vertical analogue of the Sato-Tate

conjecture: he fixed a prime p and considered the set of p-th Fourier coefficients of all Hecke

eigenforms of weight k with respect to Γ0(N). He then derived a distribution law for such

families as N + k →∞. Serre’s theorem was made effective by M. R. Murty and K. Sinha,

who found explicit error terms in Serre’s theorem. His theorem was also generalized by C.

C. Li in 2004 to derive an equidistribution law for Serre’s families by attaching some suitable

weights to the elements. In our first theorem, we extend the work of Murty and Sinha and

find the error term in Li’s weighted equidistribution theorem.

In 2006, H. Nagoshi proved two theorems. In his first theorem, he showed that by

varying the primes p and the weights k, the Sato-Tate distribution law holds and in his

second theorem, he proves a type of central limit theorem for the Fourier coefficients at

primes of Hecke eigenforms with respect to Γ0(1) and weights k →∞. Our second and third

results are the weighted analogues of Nagoshi’s first and second theorems respectively, with

the weights as defined by Li.
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Notations

• N,Z,Q and R denote the sets of natural number, integers, rational numbers and real

numbers respectively.

• C denotes the set of complex numbers given by {z ∈ C : z = x+iy, x, y ∈ R, i =
√
−1}.

For a complex number z, Re(z) will denote the real part, that is, x, Im(z) will denote

the imaginary part, that is, y, |z| its absolute value and z its complex conjugate.

• H denotes the upper-half complex plane.

• Let S be a finite set. |S| or #S will denote the cardinality of S.

• Let a, b ∈ Z, a|b denotes that a is a divisor of b. The greatest common divisor of a and

b is denoted by gcd(a, b).

• π(x) denotes the number of primes less than equal to x.

• πN(x) denots the number of primes coprime to N and less than equal to x, that is,

πN(x) := |{p ≤ x : (p,N) = 1}|.

• ordpr denotes the highest power of p which can divide r.

• Let f and g be real valued functions with g(x) 6= 0 for |x| ≥ a.

f ≈ g

denotes

lim
x→∞

f(x)

g(x)
→ 1.

• Let g(x) be a positive function. We say

f = OK(g) or f �K (g)

if there exists a non-negative real number a and a positive constant C = C(K), de-

pending on some quantity K, such that, |f(x)| ≤ C(K)g(x) for all x such that |x| ≥ a;

if the constant C(K) is absolute then we simply say

f = O(g) or f(x)� g(x).

xiii



• We write

f = o(g)

if

lim
x→∞

f(x)

g(x)
→ 0.

• Let n be a positive integer. The Euler-φ function is given by

φ(N) = N
∏
p|N

(
1− 1

p

)

where the product runs over primes p dividing N.

• Let n be a positive integer. Then

ψ(N) = N
∏
p|N

(
1 +

1

p

)

where the product runs over primes p dividing N.
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Organization of chapters

In the first chapter, we describe the concepts related to equidistribution. In the second

chapter, we define fundamental notions in the theory of modular forms.

In Chapter 3, we state classical results about the distribution of families of Hecke

eigenvalues. We also state the primary results of this thesis which constitute original

research, namely Theorems 3.3.1, 3.3.2 and 3.3.3.

In Chapter 4, we describe the Kuznietsov trace formula which forms a primary tool in

the proofs of the new theorems mentioned above.

In Chapter 5, we prove Theorems 3.3.1, 3.3.2 and 3.3.3. Lemmas 5.1.1, 5.1.2, 5.2.4 and

5.2.5 are subsidiary results that are required to prove the main theorems.
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Chapter 1

Equidistribution

Let x be any real number. Let {x} denotes the fractinal part of x, that is, {x} = x − [x],

where [x] represents the greatest integer less than equal to x.

1.1 Uniform distribution modulo 1

1.1.1 Definitions

Definition 1.1.1. A sequence of real numbers (xn)∞n=1 is uniformly distributed (u.d.) mod

1 if, for every a, b ∈ [0, 1] with a < b, we have

lim
N→∞

|{n ≤ N : {xn} ∈ [a, b]}|
N

= b− a (1.1)

(This condition tells us that the proportion of the fractional part of the sequences {xn}
lying in the interval [a, b] is asymptotic to the length of the interval [a, b], b− a.

Remark 1.1.2. Without changing the above definition, [a, b] could be replaced by (a, b],

[a, b) or (a, b).

For convenience, we will assume that each term of the sequence (xn)∞n=1 lies between 0
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and 1, that is, 0 ≤ xn < 1.

Let χ[a,b] be the characteristic function of an interval [a, b] ⊂ [0, 1).

Then, equation (1.1) can be written as:

lim
N→∞

1

N

N∑
n=1

χ[a,b](xn) =

∫ 1

0

χ[a,b](x)dx (1.2)

Lemma 1.1.3. Let the sequence of real numbers (xn)∞n=1 be uniformly distributed mod 1.

Then, for any a ∈ [0, 1), we have

#{n ≤ N : {xn} = a} = o(N)

Proof. Let us take b = a+ ε for ε > 0.

Now,

|{n ≤ N : {xn} ∈ [a, b]}| ≤ 2N(b− a) = 2Nε (1.3)

for all N ≥ N0(ε).

Thus,

lim
N→∞

|{n ≤ N : {xn} ∈ [a, b]}|
N

≤ 2ε

and as ε can be arbitrarily small, we get the desired result. �

We now let T denote the unit circle R/Z.

Theorem 1.1.4. The following are equivalent:

(a) The sequence of real numbers (xn)∞n=1 is uniformly distributed mod 1.

(b) For any real valued, continuous functions f : T→ R, we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
T
f(x)dx (1.4)

Proof. We first show that (a) implies (b).

2



Let us now consider a partition 0 ≤ a0 < a1 < ... < ak < 1 and define a step function

s(x) =
k−1∑
i=0

siχ[ai,ai+1](x), si ∈ R (1.5)

By (a), we have

lim
N→∞

1

N

N∑
n=1

s(xn) =

∫ 1

0

s(x)dx

Now, let us take some ε > 0. We can always find step functions f1 and f2 such that

f1(x) ≤ f(x) ≤ f2(x) for all x ∈ T and
∫ 1

0
(f2(x)− f1(x)) ≤ ε.

Thus, ∫ 1

0

f(x)dx− ε ≤
∫ 1

0

f(x)dx−
∫ 1

0

(f2(x)− f1(x))dx

=

∫ 1

0

((f(x)− f2(x)) + f1(x))dx

≤
∫ 1

0

f1(x)dx (since f(x) ≤ f2(x) for all x ∈ T)

But, f1 is a step function, hence applying (1.5), we have

∫ 1

0

f1(x)dx = lim
N→∞

1

N

N∑
n=1

f1(xn)

≤ lim
N→∞

1

N

N∑
n=1

f(xn)

≤ lim
N→∞

1

N

N∑
n=1

f2(xn)

But, again f2 is a step function, hence we can apply (1.5) and get,

lim
N→∞

1

N

N∑
n=1

f2(xn) =

∫ 1

0

f2(x)dx

=

∫ 1

0

(f2(x)− f(x))dx+

∫ 1

0

f(x)dx

≤
∫ 1

0

f(x)dx+ ε

3



So, finally we have

∫ 1

0

f(x)dx− ε ≤ lim
N→∞

1

N

N∑
n=1

f(xn) ≤
∫ 1

0

f(x)dx+ ε

Since this is true for any ε > 0, we have,

∫ 1

0

f(x)dx = lim
N→∞

1

N

N∑
n=1

f(xn)

Conversly, assuming (b) we need to show that the sequence (xn) is uniformly distributed

mod 1. Let us consider the interval [a, b] ⊂ T. Let ε > 0. Then there exists two continuous

functions f1 and f2 on T such that f1(x) ≤ χ[a,b](x) ≤ f2(x) for x ∈ T and
∫ 1

0
(f2(x) −

f1(x))dx < ε.

Now, by (b), ∫ 1

0

fj(x)dx = lim
N→∞

1

N

N∑
n=1

fj(xn), j = 1, 2

Thus,

b− a− ε =

∫ 1

0

χ[a,b](x)dx− ε

≤
∫ 1

0

f2(x)dx− ε ≤
∫ 1

0

f1(x)dx

= lim
N→∞

1

N

N∑
n=1

f1(xn) ≤ lim
N→∞

1

N

N∑
n=1

χ[a,b](xn)

≤ lim
N→∞

1

N

N∑
n=1

f2(xn) =

∫ 1

0

f2(x)dx

≤
∫ 1

0

f1(x)dx+ ε ≤ b− a+ ε

As ε is arbitrary, we have

limN→∞
1

N

N∑
n=1

χ[a,b](xn) = b− a

Therefore (xn)∞n=1 is uniformly distributed mod 1. �
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We can more generally consider a continuous, complex valued function f : T → C.

Applying Theorem 1.1.4 to real and imaginary parts of f , we deduce the following theorem.

Theorem 1.1.5. The following are equivalent:

1. The sequence of real numbers (xn)∞n=1 is uniformly distributed mod 1.

2. For any complex valued, continuous functions f : T→ C, we have

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
T
f(x)dx (1.6)

Now, we would like to state Weyl’s Criterion which allows us to reduce equidistribution

questions to bounds on exponential sums. Before that, we would like to recall a theorem

from analysis which will be required in proving Weyl’s Criterion.

1.1.2 Weierstrass approximation theorem

Let us first recall what Fourier series are.

Let f : R→ T be a continuous function. Then, the Fourier coefficient of f for any integer s

is given by

f̂(s) =

∫ 1

0

f(t)e−2πistdt

The Fourier series of f is given by
∑

s f̂(s)e2πisx.

Now, let us state and prove Fejér’s Theorem which will eventually lead us to the Weierstrass

approximation theorem.

Theorem 1.1.6. (Fejér) If f : T→ C is continuous, then

σn(f, t) =
n∑

s=−n

n+ 1− s
n+ 1

f̂(s)e2πist → f(t)

uniformly as n→∞.
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Before proceeding further, we first prove some properties of Fejér’s kernel which would

help us in proving Fejér’s theorem.

Fejér’s Kernel is expressed in either of the following two equivalent ways:

Kn(t) =
n∑

s=−n

n+ 1− s
n+ 1

e2πist for any real t. (1.7)

Kn(t) =
1

n+ 1

(
sin(n+ 1)πt

sin(πt)

)2

for t /∈ Z. (1.8)

Properties of Fejér’s Kernel

i
∫ 1

0
Kn(t)dt = 1

ii Kn(t) ≥ 0

iii For any fixed 0 < δ < 1/2,

lim
n→∞

∫
|t|>δ

Kn(t)dt = 0

i.e. Kn(t)→ 0 uniformly outside [−δ, δ].

Proof. (i) Using 1.7 , we have∫ 1

0

Kn(t)dt =

∫ 1

0

n∑
s=−n

n+ 1− s
n+ 1

e2πistdt

=
1

n+ 1

n∑
s=−n

(n+ 1− s)
∫ 1

0

e2πistdt

=
1

n+ 1

∑
s=0

(n+ 1− s)

The inner integral takes the value 1 only when s = 0 and is zero for rest all values. Thus we

get the desire result.

(ii) It follows from equation 1.8 directly.

(iii) For 0 < t < 1, |sin(πt)| ≥ 2t. Thus

Kn(t) ≤ 1

(n+ 1)(2t)2
=

1

(n+ 1)(4t2)

6



Thus, ∫ 1/2

δ

Kn(t)dt ≤
∫ 1/2

δ

1

(n+ 1)(4t2)
dt <

∫ ∞
δ

1

(n+ 1)(4t2)
dt =

1

4(n+ 1)δ

Since, Kn(t) = Kn(−t), we have,∫ −δ
−1/2

Kn(t)dt <
1

4(n+ 1)δ
.

Thus,
∫
δ<|t|<1/2

Kn(t)dt < 1
2(n+1)δ

⇒
∫
δ<|t|Kn(t)dt < 1

2(n+1)δ

So, as n→∞,
∫
δ<|t|Kn(t)dt converges to 0 uniformly.

�

We observe that as n→∞,

σn(f, t) =
n∑

s=−n

n+ 1− s
n+ 1

f̂(s)e2πist

=
n∑

s=−n

n+ 1− s
n+ 1

e2πist

∫ 1/2

−1/2

f(x)e−isxdx( by definition of f̂(s))

=

∫ 1/2

−1/2

f(x)Kn(t− x)dx

=

∫ 1/2

−1/2

f(t− x)Kn(x)dx

≈
∫ δ

−δ
f(t− x)Kn(x)dx (for large n and small δ and using property (iii))

≈ f(t)

∫ δ

−δ
Kn(x)dx (as f is continuous)

= f(t) (using property (i))

Thus, σn(f, t) ≈ f(t) for large value of n.

Proof of Theorem 1.1.6: As f is a continuous and periodic function, it is bounded. Let

us say |f(x)| ≤ M for all x. Now, for any ε > 0 there exist δ > 0 depending on ε such that

|f(x) − f(t)| ≤ ε/2 whenever |x − t| < δ. Also, there exist a positive N depending on δ by

7



property (iii), such that for all n ≥ N,

Kn(x) ≤ ε/4M for all x 6∈ [−δ, δ].

Then, we have

|σn(f, t)− f(t)| =
∣∣∣∣∫ 1

0

f(t− x)Kn(x)dx− f(t)

∣∣∣∣
=

∣∣∣∣∫ 1

0

f(t− x)Kn(x)dx− f(t)

∫ 1

0

Kn(x)dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

f(t− x)Kn(x)dx−
∫ 1

0

f(t)Kn(x)dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

(f(t− x)− f(t))Kn(x)dx

∣∣∣∣
≤
∣∣∣∣∫
x∈[−δ,δ]

(f(t− x)− f(t))Kn(x)dx

∣∣∣∣+

∣∣∣∣ 1

2π

∫
x 6∈[−δ,δ]

(f(t− x)− f(t))Kn(x)dx

∣∣∣∣
Now, we will use property (i) and the fact that (f(t − x) − f(t)) ≤ ε/2 so that the first

integral is bounded by ε/2. And, in the second integral, we bound (f(t− x)− f(t)) by 2M

and the fact that Kn(x) ≤ ε/4M , the second integral too is bounded by ε/2.

Thus |σn(f, t)− f(t)| ≤ ε and our proof is complete.

Now, let us state and prove Weierstrass approximation theorem.

Theorem 1.1.7. Weierstrasss theorem :

Let f : T→ C be continuous and periodic with period 1. Then, for every ε > 0, there exists

a trigonometric polynomial φ such that

sup
t∈[0,1]

|f(t)− φ(t)| < ε (1.9)

Proof. We observe that σn(f, t) =
∫ 1/2

−1/2
f(t − x)Kn(x)dx =

∫ 1

0
f(t − x)Kn(x)dx (as f is a

periodic function of period 1, we can change the limit from (-1/2 to 1/2) to (0 to 1)). Kn(t)

is a trigonometric polynomial. Hence, taking φ(t) = σn(f, t), we get the desired result. �

Thus, we see that, any periodic, continuous function f : R→ C can be approximated by

8



a sequence of trigonometric polynomials.

Now, we are ready to state and prove Weyl’s Criterion.

1.1.3 Weyl’s Criterion

Theorem 1.1.8. [Weyl, 1916] A sequence (xn)∞n=1 is uniformly distributed mod 1 if and

only if

lim
N→∞

1

N

N∑
n=1

e2πilxn = 0, for all integers l 6= 0 (1.10)

Proof. Let (xn)∞n=1 be a sequence which is u.d. mod 1. Let us take g(x) = e2πilx, then using

Theorem 1.1.5 we have,

lim
N→∞

1

N

N∑
n=1

e2πilxn =

∫ 1

0

e2πilxdx = 0, for l ∈ Z and l 6= 0.

For the converse, let (xn)∞n=1 satisfy (1.10). Let g : T → C be a complex valued continuous

function. We need to show that limN→∞
1

N

∑N
n=1 g(xn) =

∫ 1

0
g(x)dx. Now let us take some

arbitrary ε > 0. So, by Weierstrass approximation theorem, there exists a trignometric

polynomial φ(x) that is, a finite linear combination of functions of the type e2πilx, l ∈ Z,

with complex coefficients, such that

sup
0≤x≤1

|g(x)− φ(x)| ≤ ε (1.11)

Thus,∣∣∣∣∣
∫ 1

0

g(x)dx− 1

N

N∑
n=1

g(xn)

∣∣∣∣∣ ≤
∣∣∣∣∫ 1

0

(g(x)− φ(x))dx

∣∣∣∣+

∣∣∣∣∣
∫ 1

0

φ(x)dx− 1

N

N∑
n=1

g(xn)

∣∣∣∣∣
≤
∣∣∣∣∫ 1

0

(g(x)− φ(x))dx

∣∣∣∣+

∣∣∣∣∣
∫ 1

0

φ(x)dx− 1

N

N∑
n=1

φ(xn)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

(φ(xn)− g(xn))

∣∣∣∣∣
But by 1.11, the first term and the last term are ≤ ε.
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Now, as we have limN→∞
1

N

∑N
n=1 e

2πilxn = 0, so if we take N large enough then we would

have

∣∣∣∣ 1

N

∑N
n=1 e

2πilxn

∣∣∣∣ less than arbitrarily small number. By choosing this arbitrarily small

number suitably, we can have
1

N

∑N
n=1 φ(xn) less than ε as φ is a finite linear combination

of functions of the type e2πilx, l ∈ Z, with complex coefficients. Therefore, the second term

is less than ε. Therefore, by Theorem 1.1.5, (xn)∞n=1 is u.d. mod 1. �

Now, we would like to introduce an important branch of trigonometric polynomials which

provide a good approximation to the characteristic functions of intervals on R, known as the

Selberg-Beurling Polynomials.

1.2 Selberg-Beurling Polynomials

Selberg-Beurling Polynomials reduce the estimation of counting functions to evaluating finite

exponential sums. Interested reader may look for detailed exposition by Montgomery (see

[6], Chapter 1) or may look into the paper of Vaaler [16].

Let I = [α, β] ⊂
[
−1

2
,
−1

2

]
and M ≥ 1 be an integer. One can construct trigonometric

polynomials S−M(x) and S+
M(x) of degree less than or equal to M , respectively called the

minorant and majorant Beurling-Selberg Polynomials for the interval I,

S±M(x) =
∑
|m|≤M

Ŝ
±
M(m)e(mx),

such that

• For all x ∈ R, S−M(x) ≤ χI(x) ≤ S+
M(x)

• ∫ 1/2

−1/2

S±M(x)dx = β − α± 1

M + 1
.

• For 0 ≤ |m| ≤M,

| Ŝ±M(m)− χ̂I(m)| ≤ 1

M + 1
(1.12)
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Henceforth, we will use the following notation: for an interval I = [A,B] ⊂ [−2, 2], we choose

a subinterval

I1 = [α, β] ⊂
[
0,

1

2

]
such that

θ ∈ I1 ⇐⇒ 2cos(2πθ) ∈ I

For M ≥ 1, let

S±M,1(x) =
∑
|m|≤M

Ŝ±M,1(m)e(mx)

denote the majorant and minorant Beurling-Selberg Polynomials for the interval I1.

With view towards calculation in later sections, we denote, for 0 ≤ |m| ≤M ,

Ŝ±M(m) = Ŝ±M,1(m) + Ŝ±M,1(−m).

We have, for 1 ≤ |m| ≤M ,

Ŝ±M,1(m) = χ̂I(m) +O(
1

M + 1
) =

e(−mα)− e(−mβ)

2πim
+O(

1

M + 1
)

Thus,

Ŝ±M(m) = χ̂I(m) + χ̂I(−m) +O(
1

M + 1
) =

sin(2πmβ)− sin(2πmα)

πm
+O(

1

M + 1
) (1.13)

1.3 van der Corput’s Inequality

We now review an important inequality which is useful in the study of uniform distribution.

It was introduced by Weyl and van der Corput.

In order to prove van der Corput’s Inequality, we would need the following lemma:

Lemma 1.3.1. (Cauchy-Schwarz inequality) Let a1, a2, ..., an ∈ C and b1, b2, ..., bn ∈ C
, then, ∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣
2

≤
n∑
k=1

|ak|2
n∑
i=1

|bj|2

11



Proof. Let us expand the term
∑n

i=1

∑n
j=1(aibj − ajbi)2. We get

n∑
i=1

n∑
j=1

(aibj − ajbi)2 =
n∑
i=1

a2
i

n∑
j=1

b2
j +

n∑
i=1

b2
i

n∑
j=1

a2
j − 2

n∑
i=1

aibi

n∑
j=1

bjaj

= 2

(
n∑
i=1

a2
i

)(
n∑
j=1

b2
j

)
− 2

(
n∑
i=1

aibi

)2

The left hand side of the above equation is greater than 0. Hence,(
n∑
i=1

aibi

)2

≤

(
n∑
i=1

a2
i

)(
n∑
j=1

b2
j

)
.

�

Theorem 1.3.2. (van der Corput, 1931) Let N be a positive integer and yn be a complex

number for 1 ≤ n ≤ N and let yn = 0 if n < 1 or n > N . Let H be an integer with

1 ≤ H ≤ N . Then∣∣∣∣∣
N∑
n=1

yn

∣∣∣∣∣
2

≤ (N +H)

(H + 1)

N∑
n=1

|yn|2 +
2(N +H)

(H + 1)

H∑
h=1

(
1− h

(H + 1)

) ∣∣∣∣∣
N−h∑
n=1

yn+hyn

∣∣∣∣∣
Proof. Let us try to expand the term (H + 1)2 |

∑
n yn|

2. Clearly,

(H + 1)2

∣∣∣∣∣∑
n

yn

∣∣∣∣∣
2

=

∣∣∣∣∣
H∑
r=0

∑
n

yn

∣∣∣∣∣
2

=

∣∣∣∣∣
H∑
r=0

∑
n

yn+r

∣∣∣∣∣
2

=

∣∣∣∣∣∑
n

H∑
r=0

yn+r

∣∣∣∣∣
2

Since 0 ≤ r ≤ H and yn = 0 if n < 1 or n > N , then when r = 0, yn+r = 0 if n < 1 or

n > N and when r = H, yn+r = 0 if n < 1−H or n > N −H. Thus the interval for n such

that yn+r 6= 0 for 0 ≤ r ≤ H is n ∈ [−H + 1, N ]. Thus, using Cauchy-Schwarz inequality by

taking ai = 1 and bi =
∑H

r=0 yi+r we have∣∣∣∣∣
N∑

n=−H+1

H∑
r=0

yn+r

∣∣∣∣∣
2

=
N∑

k=−H+1

1
N∑

n=−H+1

∣∣∣∣∣
H∑
r=0

yn+r

∣∣∣∣∣ = (N +H)
N∑

n=−H+1

∣∣∣∣∣
H∑
r=0

yn+r

∣∣∣∣∣
12



(H + 1)2

∣∣∣∣∣∑
n

yn

∣∣∣∣∣
2

≤ (N +H)
∑
n

∣∣∣∣∣
H∑
r=0

yn+r

∣∣∣∣∣
2

= (N +H)
∑
n

(
H∑
r=0

yn+r

H∑
k=0

yn+k

)

= (N +H)
∑
n

H∑
r=0

H∑
k=0

yn+ryn+k

= (N +H)

[∑
n

H∑
r=k=0

|yn+r|2 +
∑
n

∑
r 6=k

yn+ryn+k

]

= (N +H)

[
(H + 1)

∑
n

|yn|2 +
∑
n

∑
r 6=k

yn+ryn+k

]

Now, let us combine the terms corresponding to (r, k) and (k, r) to get second term in the

inner sum as ∑
n

∑
r 6=k

yn+ryn+k = 2Re

∑
n

H∑
r=0

∑
(r,k);k<r

yn+ryn+k


Now, taking m = n+ k, the above term can be written as

2Re

(∑
m

H∑
r=0

∑
k<r

ym−k+rym

)
= 2Re

(∑
m

H∑
h=1

ym+hym
∑

k<r;r−k=h

1

)

But, the innermost sum is H + 1− h. Hence,

(H + 1)2

∣∣∣∣∣∑
n

yn

∣∣∣∣∣
2

≤ (N +H)

[
(H + 1)

∑
n

|yn|2 + 2Re

(∑
m

H∑
h=1

ym+hym(H + 1− h)

)]

= (N +H)

[
(H + 1)

∑
n

|yn|2 + 2

(∑
m

H∑
h=1

ym+hym(H + 1− h)

)]

⇒

∣∣∣∣∣∑
n

yn

∣∣∣∣∣
2

≤ (N +H)

(H + 1)2

[
(H + 1)

∑
n

|yn|2 + 2

(∑
m

H∑
h=1

ym+hym(H + 1− h)

)]

=
(N +H)

(H + 1)

∑
n

|yn|2 + 2
(N +H)

(H + 1)

H∑
h=1

(
1− h

H + 1

)∑
m

ym+hym

=
(N +H)

(H + 1)

∑
n

|yn|2 + 2
(N +H)

(H + 1)

H∑
h=1

(
1− h

H + 1

)∑
n

yn+hyn
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Thus we get the desired result. �

Corollary 1.3.3. (van der Corput, 1931) Let h be any positive integer. If the sequence

xn+r − xn is u.d. mod 1, the the sequence xn is uniformly distributed mod 1.

Proof. Let us take yn = e2πimxn ,m 6= 0. By using Theorem 1.3.2, we have∣∣∣∣∣ 1

N

N∑
n=1

e2πimxn

∣∣∣∣∣
2

≤ 1 +H/N

H + 1
+

2(N +H)

N2(H + 1)

H∑
h=1

(
1− h

(H + 1)

) ∣∣∣∣∣
N−h∑
n=1

e2πim(xn+r−xn)

∣∣∣∣∣
The second term in the above equation can be written as:

2(N +H)

N2(H + 1)

H∑
h=1

(
1− h

(H + 1)

) ∣∣∣∣∣
N−h∑
n=1

e2πim(xn+r−xn)

∣∣∣∣∣
=

2(1 +H/N)

(H + 1)

H∑
h=1

(
1− h

(H + 1)

) ∣∣∣∣∣ 1

N

N−h∑
n=1

e2πim(xn+r−xn)

∣∣∣∣∣
We are given that xn+r − xn is u.d. mod 1. Thus, the inner-

most term, that is,
∣∣∣ 1
N

∑N−h
n=1 e

2πim(xn+r−xn)
∣∣∣ → 0 as N → ∞. Hence

2(N+H)
N2(H+1)

∑H
h=1

(
1− h

(H+1)

) ∣∣∣∑N−h
n=1 e

2πim(xn+r−xn)
∣∣∣ vanishes as N → ∞. Therefore, for

sufficiently large N , we have, ∣∣∣∣∣ 1

N

N∑
n=1

e2πimxn

∣∣∣∣∣
2

<<
1

H

Thus, taking H large enough, we get the desired result. �

1.4 Examples of uniformly distributed sequences

Example 1.4.1. If θ is an irrational number, the the sequence xn = nθ is u.d.

This can be seen easily using Weyl’s criteria. We need to show that

limN→∞
1
N
|
∑N

n=1 e
2πimnθ| → 0 for m = 1, 2, 3, ... We can see that

N∑
n=1

e2πimnθ =
e2πim(N+1)θ − 1

e2πimθ − 1

14



which is bounded by 2/|e2πimθ|. The denominator is nonzero as θ is irrational. Thus,

limN→∞
1
N
|
∑N

n=1 e
2πimnθ| → 0

Example 1.4.2. If θ is a rational number, the the sequence xn = nθ is not u.d.

Let θ =
a

b
with a, b coprime integers. Then for m = b, we have

N∑
n=1

e2πib(na/b) = N

Thus Weyl’s criterion fails in this case.

Example 1.4.3. If the sequence (xn)∞n=1 is u.d. mod 1, then the sequence (mxn)∞n=1 is u.d.

mod 1 for a non-zero integer m.

This is a simple consequence of Weyl’s Criterion. We have , for l 6= 0, and m 6= 0

lim
N→∞

1

N

N∑
n=1

e2πilmxn = lim
N→∞

1

N

N∑
n=1

e2πikxn for k = lm 6= 0

Since (xn)∞n=1 is u.d. mod 1, limN→∞
1
N

∑N
n=1 e

2πikxn = 0.

Thus, we are done.

Example 1.4.4. If the sequence (xn)∞n=1 is u.d. mod 1, then the sequence (xn + c)∞n=1 is u.d.

mod 1 for some constant c.

This is again a consequence of Weyl’s Criterion. We see that

lim
N→∞

1

N

N∑
n=1

e2πil(xn+c) = lim
N→∞

1

N

N∑
n=1

e2πilxnC

where C = e2πilc.

As (xn)∞n=1 is u.d. mod 1, C limN→∞
1
N

∑N
n=1 e

2πilxn = 0. Hence, (xn + c)∞n=1 is u.d. mod 1

for some constant c.

Example 1.4.5. If the sequence (xn)∞n=1 is u.d. mod 1 and (yn) → c as n → ∞, then

(xn + yn)∞n=1 is u.d. mod 1.

Let us assume that c = 0. As for any other case we can refer to example 1.4.4. Let [a, b]

15



be any interval. Let us now take ε > 0 such that 2ε < b− a and |yn| < ε for all n > N0.

Then,

|n ≤ N : (xn + yn) ∈ [a, b]| ≥ |n ≤ N : (xn) ∈ [a+ ε, b− ε]| −N0

and

|n ≤ N : (xn + yn) ∈ [a, b]| ≤ |n ≤ N : (xn) ∈ [a+ ε, b− ε]|+N0

Since (xn) is u.d. mod 1, limN→∞
1
N
|n ≤ N : (xn) ∈ [a+ ε, b− ε]| = b− a− 2ε

Thus

b− a− 2ε− lim
N→∞

N0

N
≤ lim

N→∞

1

N
|n ≤ N : (xn + yn) ∈ [a, b]| ≤ b− a− 2ε+ lim

N→∞

N0

N

⇒ b− a− 2ε ≤ lim
N→∞

1

N
|n ≤ N : (xn + yn) ∈ [a, b]| ≤ b− a− 2ε

Therefore, limN→∞
1
N
|n ≤ N : (xn + yn) ∈ [a, b]| = b− a.

Hence, (xn + yn)∞n=1 is u.d. mod 1 for (yn)→ c.

Example 1.4.6. The sequence (m2θ)∞m=1 is u.d. mod 1 for θ irrational.

Let us consider the sequence (m+ k)2θ −m2θ = 2kmθ + k2θ. Here we see that the first

term 2kmθ is mod 1 by example 1.4.3. Also, k2θ is a constant term, hence by example 1.4.4,

2kmθ + k2θ is u.d. mod 1. Therefore, using corollary 1.3.3 we get the desire result.

1.5 Equidistribution

While many sequences are uniformly distributed with respect to the Lebesgue measure, we

do come up with important sequences which are not distributed with respect to the Lebesgue

measure but are distributed with respect to a different probablity measure dµ.

Definition 1.5.1. Let X be a compact Hausdorff space with a measure dµ. Let S1, S2, . . .

be a sequence of finite nonempty subsets of X, such that each subset Si has cardinality |Si|.
We say that {Si} is equidistributed in X with respect to dµ (or µ-equidistributed) if for any

16



continuous complex-valued function f on X,

lim
i→∞

∑
x∈Si f(x)

|Si|
=

∫
X

f(x)dµ(x). (1.14)

Remark 1.5.2. If we take a sequence {xn}∞n=1 in X and denote Si to be the set

{x1, x2, . . . xi}, then Definition 1.5.1 gives us a notion of equidistribution for a sequence

Si in X.

Note: For the families of interest to us, we will take X = [0, 1].

Let (xn) be a sequence which is not uniformly distributed mod 1( that is not equidis-

tributed with respect to the Lebesgue measure), then the Weyl’s Criterion would fail for the

given sequence. Therefore,

lim
N→∞

1

N

N∑
n=1

e2πimxn 6= 0 for some m ∈ Z,m 6= 0.

If limN→∞
1

N

∑N
n=1 e

2πimxn exists, then let us denote it by cm, known as the Weyl limits.

cm = lim
N→∞

1

N

N∑
n=1

e2πimxn (1.15)

Let us suppose cm exists for every integer m. Then, a theorem of Schoenberg and Wiener

(see [4], Theorem 7.5) gives us a technique to construct a measure µ such that the sequence

(xn) is equidistributed with respect to µ. We have the following theorem which help us to

find the measure µ.

Theorem 1.5.3. If the limits cm exist for every integer m and

lim
M→∞

M∑
m=1

|cm|2 = 0,

then the sequence (xn) is equidistributed with respect to the measure

dµ(x) = g(−x)dx, where g(x) =
∑
m∈Z

cme
2πimx.
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1.6 Weighted equidistribution

In this section, we introduce the concept of weighted equidistribution. We attach some

positive weights to each element in the sequence and see how the sequence is distributed.

1.6.1 Definition

Definition 1.6.1. Let X be a compact Hausdorff space with a measure dµ. Let S1, S2, ...

be a sequence of finite nonempty subsets of X, such that each subset Si has cardinality |Si|.
Suppose each x in Si has a real, positive weight ωix assigned to it. The sequence {Si} is

ω-distributed with respect to a measure dµ if for any continuous complex valued function f

on X,

lim
i→∞

∑
x∈Si ωixf(x)∑

x∈Si ωix
=

∫
X

f(x)dµ(x). (1.16)

By taking ωix = 1 for each x, we recover Definition 1.5.1 without weights.

Proposition 1.6.2. Let X = [0, 1]. For any interval A ⊆ X, let χA(x) denote the charac-

teristic function of A. With the same notation as above, the sequence {Si} is ω-distributed

with respect to the measure dµ if and only if for every interval I = [a, b] ⊆ X,

lim
i→∞

∑
x∈Si ωixχI(x)∑

x∈Si ωix
=

∫
I

dµ(x). (1.17)

Theorem 1.6.3. [Weighted version of Weyl’s criterion] For an integer m, let us define

the weighted m-th Weyl limits, Cm as

Cm := lim
i→∞

∑
x∈Si ωixe(mx)∑

x∈Si ωix
.

A sequence of finite nonempty subsets S1, S2, . . . in [0, 1] is ω-distributed with respect to a

measure dµ if and only if the limit Cm exists for all integers m and

Cm := lim
i→∞

∑
x∈Si ωixe(mx)∑

x∈Si ωix
=

∫ 1

0

e(mx)dµ(x).
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In this case, the sequence {Si} is ω-distributed with respect to the measure

dµ(x) = g(−x)dx, where g(x) =
∑
m∈Z

Cme(mx).
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Chapter 2

Modular forms

In this section, we review some basic properties of modular forms and Hecke operators. The

family of sequences for which we study the distribution properties in this thesis arises using

the concept of modular forms. Thus, these form the backbone of the problems in this thesis.

This chapter is based on ([7], chapter 2-6).

2.1 Modular group

Definition 2.1.1. (General Linear Group) Let R be a commutative ring with 1. Then

the set GL2(R) denotes the ring of 2× 2 matrices which are invertible.

Definition 2.1.2. (Special Linear Group) Let R be a commutative ring with 1. Then the

set SL2(R)=

{[
a b

c d

]
: a, b, c, d ∈ R; ad− bc = 1

}
forms a group with matrix multiplication

called the special linear group.

There is an action of SL2(R) on C, given by

γz =
az + b

cz + d
; γ ∈ SL2(R)

Definition 2.1.3. (Full Modular Group) Let us take R = Z in the Special linear group.
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Then, the set

SL2(Z) =

{[
a b

c d

]
: a, b, c, d ∈ Z; ad− bc = 1

}
forms a group with matrix multiplication called the full modular group.

Let us define two matrices S and T as S =

[
0 −1

1 0

]
and T =

[
1 1

0 1

]
We have the following theorem:

Theorem 2.1.4. The matrices S and T generates SL2(Z).

Proof. We see that whenever S or T n is multiplied to any matrix

[
a b

c d

]
, we get the

following:

S

[
a b

c d

]
=

[
−c −d
a b

]
, the rows get interchanged with some sign change

,

T n

[
a b

c d

]
=

[
a+ nc b+ nd

c d

]
the first row gets added by n times the second row

Now, let

[
a b

c d

]
∈ SL2(Z). Let us assume |a| ≥ |c|, if not then using S, we can interchange

the row with a sign change. Now, using division formula, we have a = cq+r, where 0 ≤ r < c.

So, we have,

[
a b

c d

]
=

[
cq + r b

c d

]
.

Now multiplying T−q to the above matrix we get the matrix

[
r b− dq
c d

]
. Again using S,

we interchange the rows and follow the above steps till we get the lowermost left entry as 0

and get a matrix of the form

[
p q

0 r

]
∈ SL2(Z). So, we have pq = 1 ⇒ p = q = ±1. But,
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then S2 = 1. Hence, [
p q

0 r

]
=

[
±1 q

0 ±1

]
= T q or S2T−q

Thus, S and T generates SL2(Z). �

2.1.1 Subgroups of the modular group

In this section, we define some important subgroups of SL2(Z).

Definition 2.1.5. (Principal congruence subgroup)

A principal congruence subgroup of level N is the group given by :

Γ(N) :=

{[
a b

c d

]
∈ SL2(Z) :

[
a b

c d

]
≡

[
1 0

0 1

]
( mod N)

}
(2.1)

We see that it is a group of matrices in SL2(Z) which are congruent to the identity matrix

modulo N .

Definition 2.1.6. (Congruence Subgroup)

A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if Γ(N) ⊂ Γ for some N . Since

Γ(N) is of finite index in SL2(Z), it follows that any congruence subgroup is also of finite

index in SL2(Z).

Definition 2.1.7. (Level of a Congruence Group)

Let N be the smallest positive integer such that Γ(N) ⊂ Γ. Then, Γ is said to be of level N.

Let us now define two special subgroups of SL2(Z).

Definition 2.1.8. (Hecke Subgroup)

Hecke subgroup is defined as a subgroup of SL2(Z)of the form

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
(2.2)

for some N ≥ 1. It can be seen that, this is a group, and Γ(N) ⊂ Γ0(N), so these are

congruence subgroups.
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Another special subgroup of SL2(Z)is given by:

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z) : c ≡ 0 (mod N) and d ≡ 1 (mod N)

}
(2.3)

We note that Γ1(N) ⊂ Γ0(N). The function Γ0(N) 7→ (Z/NZ)x sending

[
a b

c d

]
7→

d (mod N) is a surjective group homomorphism with kernel Γ1(N). Therefore, Γ1(N) is

a normal subgroup of Γ0(N) and Γ0(N)/Γ1(N) ∼= (Z/NZ)x.

Lemma 2.1.9. For any given N , Γ(N) is a normal subgroup of Γ1(N) and Γ1(N) is a

normal subgroup of Γ0(N). The following inclusion is satisfied:

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z)

We also have

• [Γ1(N) : Γ(N)] = N

• [Γ0(N) : Γ1(N)] = φ(N) where φ(N) = N
∏

p|N(1 − 1
p
) is the Eulers totient function,

and

• [SL2(Z) : Γ0(N)] = N
∏

p|N

(
1 + 1

p

)
where the product is taken over all primes p

dividing N.

For proofs one can refer to ([7], Section 2.2 and 2.3)

Definition 2.1.10. (Upper half plane)

The upper half plane denoted by H is the set given by

H = {z ∈ C : Im(z) > 0}

It is an open subset of C with usual topology.

The action of the group

GL+
2 (R) =

{[
a b

c d

]
: a, b, c, d ∈ R, ad− bc => 0

}
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on H is given by [
b b

c d

]
z =

az + b

cz + d

Definition 2.1.11. (Extended Upper half plane)

The extended Upper half plane (H∗) is given by

H∗ = H ∪Q ∪ {i∞}

That is, by adjoining all rational points and {i∞}, known as the cusps, to the upper half

plane we get the extended upper half plane.

Let Γ be a congruence subgroup. A cusp of Γ is a Γ−equivalence class of elements in

Q ∪ {i∞} under the action of Γ. There is only one cusp of SL2(Z)as it acts transitively on

Q ∪ {i∞}. There are only finitely many cusps of Γ as every congruence subgroup has finite

index.

The topology on H∗ is given in the following way. For z ∈ H, the usual fundamental system

of neighborhoods is taken. For any cusp y 6= i∞, all the sets given by {y} ∪ C0 is taken,

where C0 is the interior of the circle in H, which is tangent to the real axis at y. Finally, for

y = i∞ the set {i∞} ∪ {z ∈ H : Im(z) > c} is taken as a fundamental open neighborhood

of ı∞ for all c > 0.

If γ ∈ SL2(Z) and z ∈ Q ∪ {i∞} then γz ∈ Q ∪ {i∞}.

2.2 Fundamental Domain

Definition 2.2.1. Let Γ be a subgroup of SL2(Z) and F ⊂ H be a closed set with connected

interior. Then, F is said to be a fundamental domain of Γ if

1. any z ∈ H is Γ-equivalent to a point in F ;

2. no two interior points of F are Γ-equivalent;

3. the boundary of F is a finite union of smooth curves.

25



Theorem 2.2.2. The fundamental domain for the action of SL2(Z)on H is given by

F =

{
z ∈ H :| Re(z) |6 1

2
, | z |> 1

}

Before proving the theorem, let us state and prove the following lemma which we will be

required in proving above theorem.

Lemma 2.2.3. The set of (a, b) ∈ Z × Z such that (a, b) 6= (0, 0) and for some z ∈ H if

|az + b| ≤ 1, then the set is finite and non empty.

Proof. The second condition, i.e. the set is non empty can be seen easily by taking

(a, b) = (0, 1).

Now let us write z = x+ iy. Then we have

|az + b| ≤ 1⇔ (ax+ b)2 + a2y2 ≤ 1⇒ |a| ≤ 1/y

Hence a can only take finite values.

Again, for |ax + b| ≤ 1 ⇒ −1 ≤ (ax + b) ≤ 1 ⇒ −1 − ax ≤ b ≤ 1 + ax. Hence, b can also

take only finitely many values. �

Proof of Theorem 2.2.2 : In order to prove this, we need to show that the given F
satisfies all the three condition which are there in the definition of fundamental domain.

(1) Let γ =

[
a b

c d

]
∈ SL2(Z). Then γz = az+b

cz+d
and Im(γz) = Im(z)

|cz+d|2. From the above

lemma we know that there are only finite values of (c, d) such that |cz + d| ≤ 1. Hence, let

us choose γ ∈ SL2(Z)such that |cz + d| would attain a positive minimum value and thus,

Im(γz) = Im(z)
|cz+d|2 would attain the maximal value.

We can adjust any z ∈ H by translationg by:

[
1 n

0 1

]
z = z + n for n ∈ Z

Thus we can normalize z such that |Re(z)| ≤ 1/2

Now, we will show that γz ∈ F .
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If not, then we have |γz| < 1 and S(γz) = −1
γz

. Thus, Im(S(γz)) = Im(γz)
|γz|2 > Im(γz), which

contradicts the fact that Im(γz) was maximal. Hence |γz| ≥ 1. Therefore, every element of

Z is SL2(Z)-equivalent to some points in F .

(2) Now we have to show that if z, w ∈ interior of F , then ther does not exist any γ ∈
SL2(Z)such that γz = w.

Let us prove this by the method of contradiction. So let γ =

[
a b

c d

]
∈ SL2(Z)such that

γz = w. We may assume that Im(w) ≥ Im(z). Therefore,

Im(w) ≥ Im(z)⇒ Im(z)

|cz + d|2
≥ Im(z)

⇒ |cz + d| ≤ 1

⇒ Im(cz + d) = |c|Im(z) ≤ 1

Now, since for any z = x+ iy ∈ F , x can take maximum value of |1/2| so |y| ≥
√

3/2. Hence

|c| ≤ 2/
√

3. Thus, c = 0 or ±1. Without loss of generality let us assume c = 1. Now,

|cz + d|2 ≤ 1

⇒ (x+ d)2 + y2 ≤ 1

⇒ (x+ d)2 + 3/4 ≤ 1

⇒ (x+ d)2 ≤ 1/2

and as |x| ≤ 1/2, we have d = 0. Hence |cz + d| = |z| ≤ 1, which contradicts the fact that

z ∈ F . Therefore, no two interior points of F are Γ−equivalent.

(3) The boundary of F is clearly union of smooth curves.

2.3 Modular forms

Let us define few of the following concepts which will be later required in our section.
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Definition 2.3.1. (Holomorphic and Meromorphic function):

Let T be open subset of C, then a function f : T → C is a holomorphic function if f is

complex differentiable for all point z ∈ T , i.e. if

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists, and h→ 0 from any direction.

A function f : T → C ∪ {∞} is a meromorphic function if f is holomorphic at all except

(possibly) at a discrete set D ⊂ T , and at each w ∈ D there is a positive integer n such that

(z − w)nf(z) is holomorphic at w. We call n the order of f at w and is denoted by vw(f).

For example, f(z) = ez is a holomorphic function on C and f(z) = 1
z−i is not holomorphic

but is meromorphic.

Definition 2.3.2. (j function):

Let γ =

[
a b

c d

]
∈ GL2(R)and z ∈ H, then

j(γ, z) = cz + d (2.4)

Slash notation”:

Let γ =

[
a b

c d

]
∈ GL2(R)and for any holomorphic function f ∈ H, we have

(f |γ)(z) := (detγ)k/2j(γ, z)−kf(γz) (2.5)

where k is the is related to the function f and we will get to know about it soon.

Definition 2.3.3. Weakly modular function:

It is is a holomorphic function f(z) : H→ C such that

f

(
az + b

cz + d

)
= (cz + d)kf(z), for all

[
a b

c d

]
∈ SL2(Z) (2.6)

We will use the topology on the extended upper half plane H∗.
Fourier expansion:

Let z = x + iy ∈ H and ley y be fixed, then the function e2πiz = e−2πye2πix takes the line
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Im(z) = y in H to a circle centered at 0 of radius e−2πy. We can extend this map by

sending i∞ to 0. Thus, we see that the fundamental neighborhoods of i∞ are mapped to

the fundamental neighborhoods of the origin.

We see that from definition 2.6 f(z + 1) = f

([
1 1

0 1

]
z

)
= f(z)∀z ∈ H. Thus, there exists

a well defined map f from the unit disc to C such that e2πiz 7→ f(z) where z ∈ H. Therefore,

if f(z) : H→ C is holomorphic, then f(q) is holomorhic on punctured unit disc.

Therefore we obtain a Laurent series expansion f(q) =
∑∞

n=−∞ anq
n where an ∈ C. This is

called the q-expansion, of f .

We can write the Fourier series at i∞ as f(z) =
∑∞

n=−∞ ane
2πizn.

The function f is said to be holomorphic at i∞ if an = 0 for all n < 0. And, we say f

vanishes at i∞ if an = 0 for all n ≤ 0.

Definition 2.3.4. (Modular forms of weight k):

A modular form of weight k ∈ Z for the full modular group SL2(Z)is a holomorphic function

f(z) : H→ C such that

• f
(
az+b
cz+d

)
= (cz + d)kf(z), for all

[
a b

c d

]
∈ SL2(Z).

• it is holomorphic at {i∞}, that is, vi∞(f) ≥ 0.

The set of all modular forms of weight k on SL2(Z)is denoted by Mk(SL2(Z)).

Definition 2.3.5. (Cusp forms of weight k):

It is a modular form of weight k ∈ Z for the full modular group SL2(Z)such that the constant

term a0 is 0 in the Fourier expansion of the function at {i∞}.
The set of all cusp forms of weight k on SL2(Z)is denoted by Sk(SL2(Z)).

Proposition 2.3.6. If f : H 7→ C is holomorphic which satisfies

• f(z + 1) = f(z)

• f(−1

z
) = zkf(z)

for all z ∈ H, and is holomorphic at i∞, then f is a modular form of weight k of SL2(Z).
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Lemma 2.3.7. For k ∈ Z and odd Mk(SL2(Z)) = {0}.

Proof. By using equation 2.6, we have

f(z) = f

([
−1 0

0 −1

]
z

)
= (−1)kf(z) = −f(z)

Hence, we get Mk(SL2(Z)) = {0} for k odd. �

2.3.1 Examples of modular forms

Definition 2.3.8. Eisenstein series of weight k ≥ 4:

The Eisenstein series of weight k > 2 and k even integer is a function on H as

Gk(z) =
′∑

m,n

1

(mz + n)k
, z ∈ H (2.7)

where summation is over all (m,n) ∈ Z2, with (m,n) 6= (0, 0).

Lemma 2.3.9. Let B(m,n) = am2 + 2bmn + cn2; a, b, c ∈ R be a binary quadractic form

which is positive definite i.e. a > 0 and ac−b2 > 0. Then B(m,n) ≥ µ(m2 +n2) for µ ∈ R+.

Proof. We see that B(m,n) = (m,n)

[
a b

b c

][
m

n

]
and we can diagonalize

[
a b

b c

]
as it is a

real symmetric matrix. Thus there exist a matrix P such that

P

[
a b

b c

]
P t =

[
µ1 0

0 µ2

]

Let us put

[
x

y

]
= P

[
m

n

]
. So B(m,n) = µ1x

2 + µ2y
2 and µ1, µ2 are real and positive as B

is positive definite.

Let µ = min(µ1, µ2) > 0. Then, B(m,n) ≥ µ(x2 + y2). But (x2 + y2) = (m2 + n2) since P

is orhtonormal. Hence, B(m,n) ≥ µ(m2 + n2). �
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Lemma 2.3.10. For any z ∈ H, equation 2.7 is absolutely convergent and converges uni-

formly on compact subsets of H. Therefore, Gk is a holomorphic function on H.

Proof. Let z = x + iy ⇒ |mz + n|2 = |m(x + iy) + n|2 = (x2 + y2)m2 + 2xmn + n2.

We see that this is a binary quadractic form with respect to the matrix

[
(x2 + y2) x

x 1

]
and since z ∈ H, y > 0, so this is a positive definite. Thus, using above lemma we have

|mz + n|2 ≥ µ(m2 + n2) for some positive µ ∈ R. Therefore,

′∑
m,n

1

(mz + n)k
≤

′∑
m,n

1

(m2 + n2)k/2
=
∞∑
s=1

r2(s)

sk/2

where r2(s) counts the number of ways s can be written as sum of two squares. Thus,

r2(s) = O(sε) for ε > 0. Thus the series converges. Therefore, by Weierstrass M-test the

series i.e. Gk(z) is a holomorphic function. �

Lemma 2.3.11. The holomorphic function Gk satisfies Proposition 2.3.6.

Proof. We need to prove that Gk(z + 1) = Gk(z) and Gk(−1/z) = zkGk(z). Also, Gk(z) is

holomorphic at i∞.
Now,

Gk(z + 1) =
′∑

m,n

1

(m(z + 1) + n)k
=

′∑
m,n

1

(mz + (m+ n))k

and since (m,n) ∈ Z2, with (m,n) 6= (0, 0), so (m,m+n) 6= (0, 0). Hence Gk(z+1) = Gk(z).

Now again,

Gk(−1/z) =
′∑

m,n

1

(−m/z + n)k
= zk

′∑
m,n

1

(−m+ nz)k
= zkGk(z)

as (m,n) ∈ Z2 \ {(0, 0)} ⇒ (n,−m) ∈ Z2 \ {(0, 0)}.
Now, the behavior of Gk(z) at z = i∞ come from the term when m = 0. So,

Gk(i∞) =
∑
n∈Z\0

1

nk
.

Thus, for all odd values of k,Gk(i∞) = 0 as we can pair up the summands corresponding to
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(m,n) with (−m,−n). And, for k even we have Gk(i∞) = 2ζ(k), where ζ is the Riemann

zeta function. �

Thus from lemma 2.3.10 and lemma 2.3.11, we see that Gk(z) is a modular form of weight

k. Hence it will have a Fourier expansion, which is given by the following proposition.

Proposition 2.3.12. For every even k ≥ 4, the Fourier expansion for Gk(z) is given by

Gk(z) = 2ζ(k) +
2(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn (2.8)

where q = e2πiz and σs(n) =
∑

d|n d
s.

Before going into the details of the proof let us first state and prove Lipschitz formula.

For k ≥ 1 and z ∈ H, we have

∑
n∈Z

1

(z + n)k
=

(−2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinz (2.9)

The above formula can be derived by using the definition of πcotπz. We know that πcotπz =
1
z

+
∑∞

n=1

(
1

(z+n)
+ 1

(z−n)

)
=
∑

n∈Z
1

(z+n)
. Also,

πcotπz = π
cosπz

sinπz
= πi

eiπz + e−iπz

eiπz − e−iπz
= πi

e2πiz + 1

e2πiz − 1
(2.10)

= πi
e2πiz − 1 + 2

e2πiz − 1
= πi− 2πi

1− e2πiz
= πi− 2πi

∞∑
n=0

e2πinz (2.11)

Thus,
∑

n∈Z
1

(z+n)
= πi − 2πi

∑∞
n=0 e

2πinz and the successive differentiation of this equation

gives us the Lipschitz formula.

Proof of Proposition 2.3.12:

We have

Gk(z) =
′∑

m,n

1

(mz + n)k
= 2ζ(k) +

∑
m 6=0

∑
n∈Z

1

(mz + n)k
= 2ζ(k) + 2

∞∑
m=1

∑
n∈Z

1

(mz + n)k
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We use Lipschitz formula in the inner sum to get

Gk(z) = 2ζ(k) + 2
∞∑
m=1

∞∑
n=1

(−2πi)k

(k − 1)!
nk−1e2πimnz = 2ζ(k) + 2

(−2πi)k

(k − 1)!

∞∑
m=1

∞∑
n=1

nk−1qmn

Now, let us collect the term such that mn = s. Thus, the coefficient of qs is σk−1(s).

Therefore,

Gk(z) = 2ζ(k) +
2(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

Now, to make the coefficient of Gk(z) equals to 1, we need to divide Gk(z) by 2ζ(k) and we

get

Ek(z) =
Gk(z)

2ζ(k)
= 1 +

2(−2πi)k

2ζ(k)(k − 1)!

∞∑
n=1

σk−1(n)qn = 1 +
2k(−2πi)k

2ζ(k)k!

∞∑
n=1

σk−1(n)qn

But, 2ζ(k) = − (−2πi)kBk
k!

, where Bk is the Bernoulli number. Therefore,

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

which is a modular form of weight k for the full modular group SL2(Z). Also, Ek(i∞) = 1.

We see that,

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn

E6(z) = 1− 504
∞∑
n=1

σ5(n)qn

Now, we prove the following lemma.

Lemma 2.3.13. For k ≥ 4, Mk(SL2(Z)) = CEk⊕Sk(SL2(Z)). Therfore, dim Mk(SL2(Z)) =

1+ dim Sk(SL2(Z)).

Proof. Let g ∈ dimMk(SL2(Z)) and µ = g(i∞) be the constant term in the Fourier

expansion of g.
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Now, g = µEk − µEk + g = µEk + (g − µEk). As the g(i∞) = µ and constant term of

µEk = µ, (g − µEk) ∈ Sk(SL2(Z)).

Therefore, Mk(SL2(Z)) = CEk ⊕ Sk(SL2(Z)) and dim Mk(SL2(Z)) = 1+ dim Sk(SL2(Z)). �

Definition 2.3.14. Tha Ramanujan delta function is given by

∆(z) =
E3

4(z)− E2
6(z)

1728
= q − 24q2 + 252q3 + ... =

∞∑
n=1

τ(n)qn (2.12)

∆(z) is a non trivial cusp form of weight 12 for SL2(Z).

2.3.2 Eisenstein series of weight k = 2

For k = 2, Gk(z) does not satisfy Proposition 2.3.12 since
∑′

m,n

1

(m(z + 1) + n)2
fails to

converge. But for k = 2, we have the following Proposition.

Proposition 2.3.15. The function G2 and E2 satisfy the following:

G2(−1/z) = z2G2(z)− 2πiz (2.13)

and

E2(−1/z) = z2E2(z) +
6z

πi
(2.14)

To prove the proposition, we need the following lemma.

Lemma 2.3.16. For all z ∈ H,

∞∑
n=−∞

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)
=
−2πi

z
(2.15)

and ∑
m 6=0

∞∑
n=−∞

(
1

mz + n
− 1

mz + n+ 1

)
= 0 (2.16)
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Proof. Since, πcotπz = 1
z

+
∑∞

n=1

(
1

(z+n)
+ 1

(z−n)

)
,

∞∑
n=−∞

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)
=

1

z

∞∑
n=−∞
n6=0,1

(
π cot

(
π(n− 1)

z

)
− z

n− 1
− π cot

(πn
z

)
+
z

n

)

+
∑
m 6=0

(
1

mz − 1
− 1

mz

)
+
∑
m 6=0

(
1

mz
− 1

mz + 1

)

We have∑
m 6=0

(
1

mz − 1
− 1

mz

)
+
∑
m 6=0

(
1

mz
− 1

mz + 1

)
=
∑
m 6=0

(
1

mz − 1
− 1

mz + 1

)
= −1

z

∑
m 6=0

(
1

(1/z) +m
− 1

(1/z)−m

)
= −2

z

(
π cot

(π
z

)
− z
)

= −2π

z
cot
(π
z

)
+ 2

and

1

z

∞∑
n=−∞
n6=0,1

(
π cot

(
π(n− 1)

z

)
− z

n− 1
− π cot

(πn
z

)
+
z

n

)

=
1

z
lim
N→∞

N∑
n=−N
n6=0,1

(
π cot

(
π(n− 1)

z

)
− π cot

(πn
z

)
+
z

n
− z

n− 1

)

=
1

z
lim
N→∞

{
2π cot

(π
z

)
− π cot

(
π(N + 1)

z

)
− π cot

(
πN

z

)
+

z

N

z

N + 1
− 2z

}
=

2π

z
cot
(π
z

)
− 2− 2π

z
cot

(
πN

z

)
As, z ∈ H, by (2.10) we have

lim
N→∞

cot
(π
z

)
= i lim

N→∞

e2πi(N/z) + 1

e2πi(N/z) − 1
= 2i lim

N→∞

1

e2πi(N/z) − 1
= i

Putting everything together, we have

∞∑
n=−∞

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)
=
−2πi

z
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Now,

∑
m6=0

∞∑
n=−∞

(
1

mz + n
− 1

mz + n+ 1

)
=
∑
m 6=0

lim
N→∞

N∑
n=−N

(
1

mz + n
− 1

mz + n+ 1

)
=
∑
m 6=0

0 = 0

�

Proof.of Proposition 2.3.15 Let us first observe that,

1

(mz + n)2
−
(

1

mz + n
− 1

mz + n+ 1

)
=

−1

(mz + n)2(mz + n− 1)

The series, ∑
(m,n)6=

∑
(0,0),(0,1)

−1

(mz + n)2(mz + n− 1)

converges absolutely. Therefore,

G2(z) = 2ζ(2) +
∑
m6=0

∞∑
n=−∞

1

(mz + n)2

= 2ζ(2) +
∑
m6=0

∞∑
n=−∞

{
1

(mz + n)2
−
(

1

mz + n
− 1

mz + n+ 1

)
+

(
1

mz + n
− 1

mz + n+ 1

)}

Using (2.16), we have,

G2(z) = 2ζ(2) +
∑
m6=0

∞∑
n=−∞

{
1

(mz + n)2
−
(

1

mz + n
− 1

mz + n+ 1

)}

We can interchange the double summation as it is absolutely convergent. Thus we get,

G2(z) = 2ζ(2) +
∞∑

n=−∞

∑
m 6=0

{
1

(mz + n)2
−
(

1

mz + n
− 1

mz + n+ 1

)}
(2.17)
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Now,

G2(−1/z) = 2ζ(2) +
∑
m 6=0

∞∑
n=−∞

z2

(nz −m)2

= 2ζ(2)(1 + z2) +
∑
m6=0

∑
n=6=0

z2

(nz −m)2

= 2ζ(2)z2 +
∞∑

m=−∞

∑
n6=0

z2

(nz −m)2

= 2ζ(2)z2 +
∞∑

n=−∞

∑
m 6=0

z2

(nz −m)2

By (2.17), we have

G2(z) = 2ζ(2) +
(
G2(−1/z)− 2ζ(2)z2

)
z−2 −

∞∑
n=−∞

∑
m 6=0

(
1

mz + n
− 1

mz + n+ 1

)

Using (2.15), we get G2(−1/z) = z2G2(z)− 2πiz

(G2(z) is not a modular form, but ia an example of quasi-modular form.)

By definition of E2(z) and by equation (2.13), we get the desired value for E2(1/z). �

Theorem 2.3.17. The cusp form ∆ =
E3

4−E2
6

1728
∈ S12(SL2(Z)) is Ramanujan’s infinite product

∆ = q
∞∏
n=1

(1− qn)24

For proof one can refer to ([7], Theorem 5.1.4).

The Fourier coefficients of this series are denoted by τ(n), so ∆ =
∑∞

n=1 τ(n)qn.

Remark 2.3.18. Ramanujan in 1916 conjuctured the following properties of τ

• τ(mn) = τ(m)τ(n) for (m,n) = 1 and m,n ∈ Z+

• if p is prime, then τ(pα+1) = τ(p)τ(pα)− p11τ(pα−1), α ∈ N

• if p is a prime, then |τ(p)| ≤ 2p11/2
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The first two properties were already proven by Mordell in 1917 and the last by Deligne in

1974.

2.4 Valence Formula

Let f be a modular form of weight k for SL2(Z). Then for any γ =

[
a b

c d

]
∈ SL2(Z),

vw(f) = vγw(f), since f(z) = (cz + d)−kf
(

(az+b)
cz+d

)
, where vw(f) is the order of f at w.

We note that vw(f) depends only on the orbit of w under SL2(Z), so we need to study order

of f, vz(f) only for z in fundamental domain of SL2(Z).

Theorem 2.4.1. Let 0 6= f be a modular function of weight k for the full modular group

SL2(Z). Then,

vi∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∑
w∈F
w 6=i,ρ

vw(f) =
k

12

where ρ = −1
2

+ i
√

3
2

For proof one can refer to ([7], Section 4.3).

2.5 Dimension Formula

It is an immediate application of valence formula.

Theorem 2.5.1. For, k ≥ 0,

dimMk(SL2(Z)) =

b k12
c if k ≡ 2 mod 12

b k
12
c+ 1 if k 6≡ 2 mod 12

To prove this, we need the following lemma.

Lemma 2.5.2. The following statements are true.
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(i) Mk(SL2(Z)) = 0 for all k < 0 and k = 2;

(ii) Mk(SL2(Z)) is one-dimensional for k = 0, 4, 6, 8, and 10 and is spanned by 1, E4, E5, E8

and E10 respectively;

(iii) Multiplication by ∆ gives an isomorphism of Mk−12(SL2(Z)) onto Sk(SL2(Z)) for all

k ∈ Z.

Proof.

(i) By applying valence formula, we get that for f whose weight is k < 0 and k = 2, is

identically zero.

(ii) We see that for k ≤ 10 the right hand side of valence formula is less than 1. Thus,

if there was a non trivial cusp form of weight k ≤ 10, then there would have been

a contribution 1 from the zero of i∞, which is not possible as right hand side is less

than 1. Therefore, Sk(SL2(Z)) = 0 for k ≤ 10. Now by using lemma 2.3.13, we have

Mk(SL2(Z)) = CEk for k ≤ 10.

(iii) Let f ∈ Ek−12(SL2(Z)), then f∆ ∈ Sk(SL2(Z)). Now for the converse, let g ∈
Sk(SL2(Z)). Since, ∆(z) is a non trivial cusp form of weight 12 which does not vanishes

on the upper half plane, we can define an analytic function f(z) = g(z)/∆(z) which is

of weight k − 12. Therefore, this proves (iii).

�

Proof.of Theorem 2.5.1: The dimension formula is true for k ≤ 10 by (i) and (ii) of

Lemma 2.5.2. By part (iii) of Lemma 2.5.2 and Lemma 2.3.13, for k ≥ 12 we have

dimMk(SL2(Z)) = 1 + dimSk(SL2(Z))

= 1 + dimMk−12(SL2(Z))

Thus, by induction, we get the dimension formula. �

Corollary 2.5.3. For k ≥ 4, we have

dimSk(SL2(Z)) =

b k12
c − 1 if k ≡ 2 mod 12

b k
12
c if k 6≡ 2 mod 12
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2.6 Hecke operators of level 1

A family of operators mapping each space Mk of modular forms onto itself are called Hecke

operators. We define the m− th Hecke operator Tm for f ∈Mk(SL2(Z)) as

Tm(f) := mk/2−1
∑
ad=m
d>0

∑
b(modd)

f |

[
a b

0 d

]
(2.18)

An eigenform is a modular form which is an eigen vector for all the Hecke operators.

Properties of Hecke operator:

(i) Let m be any positive integer. Let f ∈ Mk(SL2(Z)), then Tm(f) ∈ Mk(SL2(Z)).

Similarly for g ∈ Sk(SL2(Z)), then Tm(g) ∈ Sk(SL2(Z)).

(ii) Let f ∈Mk(SL2(Z)) has a Fourier expansion as

f(z) =
∞∑
n=0

µ(n)e2πinz

at i∞, then the Fourier expansion of Tm(f) at i∞ is given by

Tm(f(z)) =
∞∑
n=0

∑
d|m,n

dk−1µ(
mn

d2
)

 e2πinz

(iii) For any prime p and r ∈ N,

TpTpr = Tpr+1 + pk−1Tpr−1

and

TmTn = Tmn whenever (m,n) = 1

In particular, we note that all Hecke Operator commute.

Remark 2.6.1. If f is a normalized eigenform we have :

Tn(f) = λnf for some λn
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but

an(f) = a1(Tn(f)) = a1(λnf) = λna1(f) = λn

since a1(f) = 1.

Hence we can recover the Fourier coefficients of a normalized eigenform by considering

the associated eigenvalues of Hecke Operators : λn = an(f). Thus, we see that for our

previous example,

Tm(∆) = τ(m)∆

2.7 Modular forms of level N

So far we have discussed modular forms of level 1. Now in this section, we will generalize

the concept of modular forms to a higher level.

For more detail, the reader can look at ([7], Chapter 6-8).

For the purposes of this thesis, we will be concerned with Hecke congruence subgroup (Γ0(N))

of level N , so our definition would be with respect to Γ0(N).

Definition 2.7.1. (Modular forms of level N)

A modular form of weight k with respect to Γ0(N) is a function f : H→ C, such that

• f is holomorphic on H.

• f |γ = f for all γ ∈ Γ0(N).

• f is holomorphic at the cusps, that is if a is a cusp then va(f) ≥ 0.

f is called a cusp form of weight k with respect to Γ0(N), if f vanishes at the cusps.

The space of modular forms of weight k and level N is denoted by M(N, k) and the space

of modular forms of weight k and level N is denoted by S(N, k).

We now define the Petersson Inner Product for f, g ∈ S(N, k).

Definition 2.7.2. (Petersson Inner Product)

Let f, g ∈ S(N, k). The Petersson inner product of f and g is given by

(f, g) =

∫ ∫
F

ykf(z)g(z)
dxdy

y2
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where z = x+ iy.

2.8 Hecke operators of level N

Hecke operators are family of linear operators that preserve the spaces M(N, k) and S(N, k)

for each weight k and level N. We will study the distribution of eigenvalues of these operators.

Let us define,

∆n(N) =

{[
a b

0 d

]
∈ GL2(Z) : a, b, d ∈ Z, 0 ≤ b < dad = n, gcd(a,N) = 1

}
.

Now, let us define the n− th Hecke operator for level N.

Definition 2.8.1. Let f ∈ M(N, k) and n be a positive integer. The, the n − th Hecke

operator Tn is given by:

Tn(f) = n
k
2
−1

∑
γ∈∆n(N)

f |γ

Definition 2.8.2. Let f ∈ M(N, k). We say f to be a Hecke eigenform if, for each n

such that gcd(n,N) = 1, there exists a complex number λn, such that

Tn(f) = λn.f
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Chapter 3

History and Motivation of the

problem

3.1 Introduction

Let S(N, k) be the space of cusp forms of weight k (k ≥ 2 is an even integer) with respect to

Γ0(N) and for any integer n ≥ 1, let Tn(N, k) be the n-th Hecke operator acting on S(N, k).

Let s(N, k) be the dimension of S(N, k). Let p be a prime such that (p,N) = 1. Let E(N, k)

denote a basis of Hecke eigenforms of S(N, k). An eigenform h ∈ E(N, k) will have a Fourier

expansion of the form

h(z) =
∞∑
n=1

an(h)e(nz).

where e(x) = e2πix.

Let T ′n denote the normalised Hecke operator

T ′n =
Tn

n(k−1)/2

and λh(n), an eigenvalue of h(z) corresponding to T ′n.

Let r be a fixed positive integer. Let p be a fixed prime and rp = ordp r. For h(z) ∈ E(N, k),

we define the weight

ωrh :=
|ar(h)|2e−4πr

||h||2
,
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where ||h|| denotes the Petersson norm of h.

Let p be a prime number such that gcd (p,N) = 1 By a theorem of Deligne [2], the

eigenvalues λh(p) lie in [−2, 2]. We consider the following families formed by these Hecke

eigenvalues:

(a) (Sato-Tate family) Let N and k be fixed and h ∈ E(N, k). We consider the sequence

{λh(p)} as p→∞.

(b) (Vertical Sato-Tate family) For a fixed prime p, we consider the families {λh(p) : h ∈
E(N, k)} as N →∞.

(c) (Average Sato-Tate family) We consider the families {λh(p) : p ≤ x, h ∈ E(N, k)} as

N →∞, x→∞.

We can also study the distribution of these family by attaching weights ωrh.

3.2 Equidistribution theorems for Hecke eigenvalues

The Sato-Tate conjecture (now proved by the work of Richard Taylor et al) states that for

h(z) ∈ E(N, k), the sequence {λh(p)} p→∞
(p,N)=1

is equidistributed in [−2, 2] with respect to the

measure

dµ∞(x) =

 1
π

√
1− x2

4
dx if x ∈ [−2, 2]

0 otherwise.

That is, by Definition 1.5.1, for any continuous function f : [−2, 2]→ R,

lim
x→∞

1

πN(x)

∑
p≤x

(p,N)=1

f(λh(p)) =

∫ 2

−2

f(x)dµ∞(x).

Equivalently, for any interval I = [A,B] ⊂ [−2, 2],

lim
x→∞

1

πN(x)

∑
p≤x

(p,N)=1

χI(λh(p)) =

∫ B

A

dµ∞(x).
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Here, πN(x) denotes the number of primes p less than or equal to x such that (p,N) = 1.

In 1997, Serre [14] proved a vertical analogue of the Sato-Tate conjecture by fixing a

prime p and varying the Hecke eigenforms. Let p be a fixed prime. He showed that as

N + k →∞ with the restrictions that (p,N) = 1 and k ≥ 2 is an even integer, the sequence

of multisets

SN := {λh(p), h ∈ E(N, k)}

is equidistributed with respect to the measure

dµp(x) =
p+ 1

(p1/2 + p−1/2)2 − x2
dµ∞(x).

That is, for any continuous function f : [−2, 2]→ R,

lim
N+k→∞
(p,N)=1
k even

1

s(N, k)

∑
h∈E(N,k)

f(λh(p)) =

∫ 2

−2

f(x)dµp(x).

Equivalently, for any interval I = [A,B] ⊂ [−2, 2],

lim
N+k→∞
(p,N)=1
k even

1

s(N, k)

∑
h∈E(N,k)

χI(λh(p)) =

∫ B

A

dµp(x).

In 2004, Charles Li [5] obtained an interesting generalisation of Serre’s equidistribution

theorem. He observed that by attaching suitable weights to each element in the multiset

SN , one can derive a weighted distribution measure for the sequence {SN}. He proved the

following theorem:

Theorem 3.2.1. Let k ≥ 3 be an even integer. Let r be a fixed positive integer. Let p be a

fixed prime and rp = ordp r. Define, for h(z) ∈ E(N, k), the weight

ωrh :=
|ar(h)|2e−4πr

||h||2
,

where ||h|| denotes the Petersson norm of h. The family of sets {SN : (p,N) = 1} is ωrh-

distributed with respect to the measure

rp∑
i=0

X2i(x)dµ∞(x), as N →∞
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where Xn(x) is the n-the Chebychev polynomial defined by

Xn(2 cosφ) =
sin(n+ 1)φ

sinφ
.

That is, for a continuous function f : [−2, 2]→ R,

lim
N→∞

(p,N)=1

1

s(N, k)

∑
h∈E(N,k)

ωrhf(λh(p)) =

∫ 2

−2

f(x)

(
rp∑
i=0

X2i(x)

)
dµ∞(x).

Equivalently, for any interval I = [A,B] ⊂ [−2, 2],

lim
N→∞

(p,N)=1

1

s(N, k)

∑
h∈E(N,k)

ωrhχI(λh(p)) =

∫ B

A

(
rp∑
i=0

X2i(x)

)
dµ∞(x).

Remark 3.2.2. We note that in Serre’s theorem, we may vary N as well as k. However, in

the above theorem, the weight k is fixed and the levels N vary.

This gives us the corollary:

Corollary 3.2.3. If p does not divide r, the family of sets {SN : (p,N) = 1} is ωrh-distributed

with respect to the Sato-Tate measure dµ∞(x), as N →∞.

In 2009, the error terms in Serre’s theorem were obtained by M. R. Murty and Sinha

([9]). They proved the following theorem which describes the rate of convergence to the

measure dµp(x) effectively:

Theorem 3.2.4. Let N be a positive integer, k be a positive even integer and p be a prime

number coprime to N. For an interval [a, b] ⊂ [−2, 2],

1

s(N, k)
# {h ∈ E(N, k) : λh(p) ∈ [α, β]} =

∫ b

a

dµp(x) + O

(
log p

log kN

)
,

where the implied constant is effectively computable.

In 2006 Nagoshi [10] investigated the following and proved two theorems which tell us

the following:
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Theorem 3.2.5. Let k = k(x) such that log(k)
log(x)

→ ∞ as x → ∞. Then for any continuous

real valued function g on [−2, 2], we have

1

π(x)s(1, k)

∑
p≤x

h∈E(1,k)

g(λh(p))→
1

2π

∫ 2

−2

g(t)
√

4− t2dt

as x→∞.

The second main result is the following:

Theorem 3.2.6. Let k = k(x) such that log(k)
log(x)

→ ∞ as x → ∞. Then for any bounded

continuous real valued function g on R, we have

1

s(1, k)

∑
h∈E(1,k)

g

(∑
p≤x λh(p)√
π(x)

)
→ 1√

2π

∫ ∞
−∞

g(t)e
−t2
2 dt

as x→∞.

Cho and Kim in their paper ([1], Theorem 4.1) generalized Nagoshi’s theorem for higher

level N and proved the following theorem.

Theorem 3.2.7. Suppose that log(N)
log(x)

→∞ as x→∞. For a continuous real valued function

g on R,

1

s(N, k)

∑
h∈E(N,k)

g

(∑
p≤x

(p,N)=1
λh(p)√

πN(x)

)
→ 1√

2π

∫ ∞
−∞

g(t)e
−t2
2 dt

as x→∞.

3.3 Overview of new results.

We now state the new results proved in this thesis.

3.3.1 Weighted analogue of Murty and Sinha’s theorem

Let Wr(N, k) =
∑

h∈E(N,k) ω
r
h.

We prove the following theorem which is the weighted analog of Theorem 3.2.4.
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Theorem 3.3.1. Let k ≥ 3 be a fixed even integer. Let p be a fixed prime. Then for any

interval I = [a, b] ⊆ [−2, 2] and with notations as defined above, we have,

1

Wr(N, k)

∑
h

ωrhχI(λh(p)) =

∫
I

rp∑
i=0

X2i(x)µ∞(x)dx+ O

(
log p

logN

)

3.3.2 Weighted analogue of Nagoshi’s Theorems

We also prove the following two theorems which are the weighted analogues of Nagoshi’s

theorems 3.2.5 and 3.2.6.

Theorem 3.3.2. Let N = N(x) such that logN
log x
→ ∞ as x → ∞. Let p be prime such that

(p,N) = 1.Then for any continuous real valued function g on [−2, 2], we have

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrhg(λh(p))→
1

2π

∫ 2

−2

g(t)
√

4− t2dt

as x→∞.

The second theorem is the following:

Theorem 3.3.3. Let N = N(x) such that logN
log x

→ ∞ as x → ∞. Then for any bounded

continuous real valued function g on R, we have

1

Wr(N, k)

∑
h∈E(N,k)

ωrhg

(∑
p≤x λh(p)√
πN(x)

)
→ 1√

2π

∫ ∞
−∞

g(t)e
−t2
2 dt

as x→∞.
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Chapter 4

Trace Formula

4.1 Introduction

The Hecke eigenvalues carry a lot of important and interesting arithmetical information.

However, it is difficult to get these eigenvalues directly. Thus, we study the trace of Hecke

operators. In this chapter, we study about two important class of Trace formula mainly the

Eichler-Selberg trace formula and Kuznietsov trace formula.

4.2 The Eichler-Selberg Trace Formula

Eichler-Selberg trace formula gives the formula for the trace of nth Hecke operator Tn in

terms of class numbers of binary quadratic forms. For level N = 1, it was discovered

by Selberg in the year 1956 on the trace formula for SL2(Z). In the same year, Eichler

obtained a formula for k = 2 and square free level. Hijikata gave the trace formula for Tn

for the level N , such that gcd(n,N) = 1. Oesterlé in his thesis [11], gave a more generalized

formula for the space S(N, k) and Nebentypus χ, where χ is a Dirichlet character mod (N)

valid for all n and N . This formula is known as the Eichler-Selberg trace formula. When we

take χ as the trivial character in this formula, we get a formula for the trace of Tn on S(N, k).

49



For a negative integer ∆ congruent to 0 or 1 (mod 4), let

B(∆) = {ax2 + bxy + cy2 : a, b, c ∈ Z, a > 0, b2 − 4ac = ∆}.

Let b(∆) denotes the set of primitive forms, that is,

b(∆) = {f(x, y) ∈ B(∆) : gcd(a, b, c) = 1}.

The right action of the group SL2(Z)on B(∆) is given by,

f(x, y)

[
α β

γ δ

]
:= f(αx+ βy, γx+ δy), for f(x, y) ∈ B(∆).

It is known fact that this action has only finitely many orbits. Let the number of orbits of

b(∆) be given by h(∆). Let hw be defined as follows :

hw(3) = 1/3,

hw(4) = 1/2,

hw(∆) = h(∆) for ∆ < −4.

Theorem 4.2.1. (Eichler-Selberg Trace Formula)

Let n be a positive integer coprime to N . The trace Tr of Tn acting on S(N, k) is given by

Tr Tn =
4∑
i=1

Ai(n),

where Ai(n)′s are as follows:

A1(n) =
k − 1

12
ψ(N)

n(k/2−1), if n is a square,

0 otherwise

A2(n) =
−1

2

∑
t∈Z,t2<4n

Qk−1 −Qk−1

Q−Q

∑
f

hw

(
t2 − 4n

f 2

)
µ(t, f, n)
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A3(n) = −
∑

d|n,0<d≤
√
n

dk−1
∑
c|N

φ
(
gcd

(
c,
c

N

))
and

A4(n) =


∑

t|n,t>0 t if k = 2,

0 otherwise

In the above terms,

• Q and Q are the complex zeroes of the polynomial x2 − tx+ n.

• The inner sum for A2(n) runs over all positive divisors f of t2−4n such that (t2−4n)
f2

∈ Z
is congruent to 0 or 1 (mod 4).

• We have

µ(t, f, n) =
ψ(N)

ψ(N/Nf )
M(t, n,NNf ),

where Nf = gcd(N, f) and M(t, n,NNf ) denotes the number of elements of (Z/NZ)∗

which lift to solutions of x2 − tx+ n ≡ 0 mod NNf .

• In A3(n), in the first summation, if there is a contribution from the term d =
√
n,

it should be multiplied by 1/2. In the inner sum, we also need the condition that

gcd(c,N/c) divides gcd(N, n/d− d).

Now we state some results involving estimates of the trace formula.

For any general N , Serre [14] proved the following:

Proposition 4.2.2. If n is a square,∣∣∣∣Tr Tn − k − 1

12
nk/2−1ψ(N)

∣∣∣∣�n n
k/2N1/2d(N)

where d(N) is the number of positive divisors of N .

Corollary 4.2.3. The Eichler-Selberg trace formula to the case n = 1 gives us a formula

for the dimension of s(N, k). Thus,

s(N, k) =
k − 1

12
ψ(N) + O(N1/2d(N)),
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where d(N) is the number of divisor of N .

In order to prove Theorem 3.2.1, the primary tool used was the Kuznietsov trace formula.

We now state a consequence of this formula as derived by Li ([5], Thm. 4.8).

4.3 Kuznietsov Trace Formula

Bessel functions are defined as solutions y(x) of the differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

for a complex number α. Bessel functions of the first kind Jα(x) have the following series

expansion around x = 0 :

Jα(x) :=
∞∑
m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

.

For positive integers r, n and u, the Kloosterman sums are defined as follows:

Klu(n, r) :=
∑

s1,s2∈Z/uZ
s1s2≡nmod u

e
2πi
u

(rs1+rs2).

Using the above defined notation, we are now ready to state a consequence of the Kuznietsov

trace formula as derived by Li ([5], Theorem 4.8):

Theorem 4.3.1. Let k be an even number ≥ 3. Let n, N, r be positive integers such that

(n,N) = 1. Suppose n can be factorized as n =
∏

p|n p
np . With the above notation,

∑
h∈E(N,k)

∏
p|n

Xnp(λh(p))

 |ar(h)|2e−4πr

||h||2

=


e−4πr(4πr)k−1

(k−2)!
ψ(N) if n is a square and n1/2|r

0 otherwise.
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+
e−4πr(4πi)krk−1

2(k − 2)!
ψ(N)

∞∑
v=1

1

Nv
Jk−1

(
4πn1/2r

Nv

)
KlvN(n, r).

For λh(p) ∈ SN , we choose θhp ∈ [0, π] so that 2 cos θhp = λh(p). We consider the families

FN :=

{
±
θhp
2π

(mod 1) : h ∈ SN

}
.

In order to calculate the weighted m-th Weyl limit with the weight ωrh, we first observe that

for m ≥ 2,∑
t∈FN

e(mt) =
∑

h∈E(N,k)

2 cos(mθhp )

=
∑

h∈E(N,k)

(
sin(m+ 1)θhp

sin θhp
−

sin(m− 1)θhp
sin θhp

)
=

∑
h∈E(N,k)

Xm(λh(p))−Xm−2(λh(p))

=
∑

h∈E(N,k)

λh(p
m)− λh(pm−2).

From this, we deduce that for m ∈ Z,∑
h∈E(N,k) ω

r
h(2 cos(mθhp ))∑

h∈E(N,k) ω
r
h

=


1, if m = 0,∑

h∈E(N,k) ω
r
hλh(p)∑

h∈E(N,k) ω
r
h

, if |m| = 1,∑
h∈E(N,k) ω

r
h(λh(pm)−λh(pm−2))∑
h∈E(N,k) ω

r
h

, if |m| ≥ 2.

To simplify our expressions, henceforth, we denote

Wr(N, k) :=
∑

h∈E(N,k)

ωrh.

From Theorem 4.3.1, we deduce that for a prime power pm with m ≥ 2,

∑
h∈E(N,k)

(Xm(λh(p))−Xm−2(λh(p)))
|ar(h)|2e−4πr

||h||2
=
e−4πr(4πr)k−1

(k − 2)!
ψ(N)(A1(m) + A2(m)),
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where

A1(m) =

−1 if m is even, p
m−2

2 ||r,

0, otherwise

and

A2(m) = 2π
∞∑
v=1

1

Nv

{
Jk−1

(
4πpm/2r

Nv

)
KlvN(pm, r)− Jk−1

(
4πpm/2−1r

Nv

)
KlvN(pm−2, r)

}
.

Now, we state the following lemmas which would be required later in our calculation.

Lemma 4.3.2. From ([3], equation (5.16)), we have

Jk(x) ≤ min{xk, x−1/2}

where Jk(x) is the Bessel function of first kind.

Lemma 4.3.3. ([5], Lemma 5.1)

Klu(n, r) ≤ un
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Chapter 5

Proofs of the main theorems

In this chapter we prove Theorems 3.3.1, 3.3.2 and 3.3.3.

5.1 Proof of Theorem 3.3.1

Now, we use the technique used by Murty and Sinha in their paper ([9]) to derive similar

results by attaching weights.

For h ∈ E(N, k) and (p,N) = 1 we choose θhp ∈ [0, π] so that 2 cos θhp = λh(p). For a positive

even integer k ≥ 3 and for N ≥ 1, we define the family

FN,k :=

{
±
θhp
2π

(mod 1) : h ∈ E(N, k)

}
.

Let I = [a, b] be a fixed subinterval contained in [−2, 2]. We choose a subinterval

I1 = [α, β] ⊆
[
0,

1

2

]
so that

θhp
2π
∈ I1 ⇐⇒ 2 cos θhp ∈ I.

We also denote I2 = (α, β].
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We define

NI(N, k) =
∑

h∈E(N,k)

ωrhχI(λh(p)).

We observe that, for h ∈ E(N, k),

ωrhχI(λh(p)) = ωrh

[
χI1

(
θhp
2π

)
+ χI2

(
−θhp
2π

)]
.

Let S±M,1(x) be the Selberg-Beurling approximating polynomials for χI1(x). We have

∑
h∈E(N,k)

ωrh

[
S−M,1

(
θhp
2π

)
+ S−M,1

(
−
θhp
2π

)]
≤

∑
h∈E(N,k)

ωrh

[
χI1

(
θhp
2π

)
+ χI2

(
−θhp
2π

)]

≤
∑

h∈E(N,k)

ωrh

[
S+
M,1

(
θhp
2π

)
+ S+

M,1

(
−
θhp
2π

)]
.

(5.1)

We observe, for any M ≥ 1,

NI(N, k) ≤
∑

h∈E(N,k)

ωrh

[
S+
M,1

(
θhp
2π

)
+ S+

M,1

(
−
θhp
2π

)]

=
∑

h∈E(N,k)

ωrh
∑
|m|≤M

Ŝ +
M,1(m)

(
e

(
m
θhp
2π

)
+ e

(
−m

θhp
2π

))
=

∑
h∈E(N,k)

ωrh
∑
|m|≤M

Ŝ +
M,1(m)(2 cosmθhp)

= Ŝ+
M(0)

∑
h∈E(N,k)

ωrh +
M∑
m=1

Ŝ+
M(m)

∑
h∈E(N,k)

ωrh(2 cosmθhp).

(5.2)

By considering the lower bound for NI(N, k), we have

Ŝ–
M(0)

∑
h∈E(N,k)

ωrh +
M∑
m=1

Ŝ–
M(m)

∑
h∈E(N,k)

ωrh(2 cosmθhp) ≤
∑

h∈E(N,k)

ωrhχI(λh(p))

≤ Ŝ +
M,1(0)

∑
h∈E(N,k)

ωrh +
M∑
m=1

Ŝ+
M(m)

∑
h∈E(N,k)

ωrh(2 cosmθhp).

(5.3)
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We observe that for h ∈ E(N, k), if m = 1, then

2 cos(mθhp ) = λh(p),

and if m ≥ 2,

2 cos(mθhp ) =

(
sin(m+ 1)θhp

sin θhp
−

sin(m− 1)θhp
sin θhp

)
= Xm(λh(p))−Xm−2(λh(p)) = λh(p

m)− λh(pm−2).

(5.4)

From Theorem 4.3.1, we deduce that for a prime power pm with m ≥ 2,∑
h∈E(N,k)

ωrh
(
λh(p

m)− λh(pm−2)
)

=
e−4πr(4πr)k−1

(k − 2)!
ψ(N)A1(m) +

e−4πr(4πi)krk−1

2(k − 2)!
ψ(N)A2(m),

(5.5)

where

A1(m) =

−1 if m is even, p
m−2

2 ||r,

0, otherwise

and

A2(m) = 2π
∞∑
v=1

1

Nv

{
Jk−1

(
4πpm/2r

Nv

)
KlvN(pm, r)− Jk−1

(
4πpm/2−1r

Nv

)
KlvN(pm−2, r)

}
.

Let m ≥ 2 be an even integer. In equation (5.5), we observe that there is a non-zero

contribution from the first term on the right hand side if and only if

m

2
= rp + 1.

This contribution is
e−4πr(4πr)k−1

(k − 2)!
ψ(N).
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We now choose a positive integer M ≥ 2(rp + 1). Thus, from equation (5.2), we deduce

NI(N, k) ≤ Ŝ+
M(0)Wr(N, k)− Ŝ+

M(2rp + 2)
e−4πr(4πr)k−1

(k − 2)!
ψ(N)

+ ψ(N)
e−4πr(4πi)krk−1

2(k − 2)!

M∑
m=2

Ŝ+
M(m)A2(m) + Ŝ+

M(1)
∑

h∈E(N,k)

ωrhλh(p).

(5.6)

By ([5], Corollary 5.3), we have

e−4πr(4πr)k−1

(k − 2)!
ψ(N) =

∑
h∈E(N,k)

ωrh + O

(
ψ(N)

Nk−1

)
. (5.7)

Substituting equation (5.7) in (5.6), we have

NI(N, k) ≤ Ŝ +
M,1(0)Wr(N, k)− Ŝ+

M(2rp + 2)

 ∑
h∈E(N,k)

ωrh + O

(
ψ(N)

Nk−1

)
+ ψ(N)

e−4πr(4πi)krk−1

2(k − 2)!

M∑
m=1

Ŝ+
M(m)A2(m).

(5.8)

We recall, from Section 1.2,

Ŝ±M(0) = 2(β − α)± 2

M + 1

and for m ≥ 1,

Ŝ±M(m) =
sin(2πmβ)− sin(2πmα)

mπ
+O

(
1

M

)
.

Thus, by (5.8),

∑
h

ωrhχI(λh(p))−
[
2(β − α)− sin(2π(2rp + 2)β)− sin(2π(2rp + 2)α)

(2rp + 2)π

]

= O

(
|Wr(N, k)|

M

)
+ O

(
| Ŝ±M(2rp + 2)|ψ(N)

Nk−1

)
+ O

(
1

M

(
Wr(N, k) +

ψ(N)

Nk−1

))

+ O

(
ψ(N)

e−4πr(4π)krk−1

2(k − 2)!

M∑
m=1

| Ŝ±M(m)A2(m)|

)
.

(5.9)
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But,

2(β − α)− sin(2π(2rp + 2)β)− sin(2π(2rp + 2)α)

(2rp + 2)π

= 2

∫ β

α

(1− cos 2π(2rp + 2)t)dt.

(5.10)

Also, with the substitution x = 2 cos 2πt,

rp∑
i=0

X2i(x)µ∞(x)

= 4

rp∑
i=0

sin(2i+ 1)(2πt)

sin 2πt
sin2 2πt = 2(1− cos 2π(2rp + 2)t).

(5.11)

We deduce

∑
h

ωrhχI(λh(p))−
∫
I

rp∑
i=0

X2i(x)µ∞(x)dx

= O

(
|Wr(N, k)|

M

)
+ O

(
| Ŝ±M(2rp + 2)|ψ(N)

Nk−1

)
+ O

(
1

M

(
Wr(N, k) +

ψ(N)

Nk−1

))

+ O

(
ψ(N)

e−4πr(4π)krk−1

2(k − 2)!

M∑
m=1

| Ŝ±M(m)A2(m)|

)
.

(5.12)

We now state the following two lemmas:

Lemma 5.1.1. With the notations as above, we have

|A2(m)| � p(k+1)(m
2

)

Nk+1
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Proof. Using Lemma 4.3.2 and 4.3.3 we have,

A2(m) = 2π
∞∑
v=1

1

Nv

{(
4πpm/2r

Nv

)k−1

vNpm −
(

4πpm/2−1r

Nv

)k−1

vNpm−2

}

= 2π

(
4πr

N

)k−1 ∞∑
v=1

{
p
m
2

(k+1) − p(m
2
−1)(k+1)

vk−1

}
�
(
p
m
2

(k+1)

Nk−1

)

Thus A2(m) = O
(
p
m
2 (k+1)

Nk−1

)
�

Lemma 5.1.2. With the same notations as used above, we have

ψ(N)
M∑
m=1

| Ŝ±M(m)A2(m)| = O

(
ψ(N)

Nk−1
(pk+1)

M
2

)

Proof. Using the fact that Ŝ±M(m) ≤ 1

m
, we have

ψ(N)
M∑
m=1

| Ŝ±M(m)A2(m)| � ψ(N)
M∑
m=1

∣∣∣∣ 1

m

(
p
m
2

(k+1)

Nk−1

)∣∣∣∣ < ψ(N)
M∑
m=1

∣∣∣∣∣p
M
2

(k+1)

Nk−1

∣∣∣∣∣
Thus, ψ(N)

∑M
m=1 | Ŝ

±
M(m)A2(m)| = O

(
ψ(N)

Nk−1
(pk+1)

M
2

)
�

Thus, by using Lemma 5.1.2 and (5.12) , we are now ready to prove Theorem 3.3.1.

Proof. Using (5.12) we have,

1

|Wr(N, k)|

[∑
h

ωrhχI(λh(p))−
∫
I

rp∑
i=0

X2i(x)µ∞(x)dx

]

= O

(
1

M

)
+ O

(
(pk+1)

M
2

Nk−1

) (5.13)

Now taking p(k+1)(M
2

) ≈ N
k−1
2 , we have k+1

2
M log p ≈ k−1

2
logN.

Thus M ≈
k−1
2

logN
k+1
2
M log p

.
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Therefore, taking M =
⌊

k−1
2

logN
k+1
2
M log p

⌋
, we get the desired result. �

Thus, we found a bound for the weighted analog of Murty and Sinha’s work ([9], Theorem

2).

5.2 Proof of Theorem 3.3.2 and 3.3.3

Before going into the proof of Theorems 3.3.2 and 3.3.3, we state the following lemmas.

Lemma 5.2.1. (Corollary 5.3, [5])

Let r be a fixed integer and ωrh be the weight as defined before. Let k ≥ 3 and h ∈ E(N, k).

Then

Wr(N, k) =
∑

f∈E(N,k)

ωrh = ψ(N)
e−4πr(4πr)k−1

(k − 2)!
+ O

(
ψ(N)

Nk−1

)
.

Lemma 5.2.2. Let n = pj11 p
j2
2 ...p

ju
u , r be a fixed integer and ωrh be the weight as defined

before. Let h ∈ E(N, k), then

∑
h∈E(N,k)

ωrhλh(p
j1
1 p

j2
2 ...p

ju
u ) = True

(
j′is are even,

ji
2
≤ rpi

)
Wr(N, k) + O

(
ψ(N)

Nk−1
n
k+1
2

)

Lemma 5.2.3. (Lemma 2, [10])

Suppose p is prime. For any n ≥ 1, we have

(λh(p))
n =

n∑
j=0

bn(j)λh(p
j)

where,

bn(j) :=
2n+1

π

∫ π

0

cosn θ sin(j + 1)θ sin θdθ (5.14)

Also, bn(j) = 0 if n is odd and j is even or if n is even and j is odd.
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5.2.1 Proof of Theorem 3.3.2

We use the technique used by Nagoshi ([10], Section 3).

By Weierstrass approximation theorem there exists polynomial function p(t) such that for

a given continuous real valued function g(t) on compact set [−2, 2] and for ε > 0, we have

|g(t)− p(t)| < ε. So, it will be sufficient to prove Theorem 3.3.2 for g = Xn, that is, the nth

Chebychev polynomial. Then, Xn(λh(p)) = λh(p
n). Thus,

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrhXn(λh(p)) =
1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrh(λh(p
n)).

We note that in the summation we take all primes p less than equal to x such that (p,N) = 1.

Now, we need to show

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrh(λh(p
n))→ 1

2π

∫ 2

−2

Xn(t)
√

4− t2dt

as x→∞.
Let us change the variable t 7→ 2 cos(2πx), then, for n ≥ 1.

1

2π

∫ 2

−2

Xn(t)
√

4− t2dt =

∫ 1/2

0

sin((n+ 1)2πx)

sin(2πx)
2 sin2(2πx)dx = 0 (5.15)

Now, using Lemma 5.2.2, we have, for n ≥ 1,

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrh(λh(p
n)) =

1

πN(x)Wr(N, k)

∑
p≤x

(
True

(
n is even,

n

2
≤ rp

)
Wr(N, k)

)

+ O

(
1

πN(x)Wr(N, k)

∑
p≤x

ψ(N)

Nk−1
pn

k+1
2

)

<
1

πN(x)

∑
p≤x

(
True

(
n is even,

n

2
≤ rp

))
+ O

(
xn

k+1
2

Nk−1

)
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rp is equals to the highest power of p dividing the fixed integer r. So, as p increases, after

a certain point rp would be zero for all p greater than some particular value. So, as x→∞,

the first term would be zero in the above equation.

Now, for the second term to tend to zero as x→∞, we need to have N > xn
(k+1)
2(k−1) .

Thus, for logN
log x
→∞,

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrhXn(λh(p))→ 0 (5.16)

as x→∞.

Now, for h ∈ E(N, k), we choose θhp ∈ [0, π] so that 2 cos θhp = λh(p). For a positive even

integer k ≥ 3 and for N ≥ 1, we define the family

FN,k :=

{
±
θhp
2π

(mod 1) : h ∈ E(N, k)

}

as in Section 5.1.

Now, we calculate the weighted Weyl’s limit for m ∈ Z, that is,

Cm = lim
x→∞

1

2πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrh2 cos(mθhp )

Thus, for m = 0,

C0 = lim
x→∞

1

2πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

2ωrh = 1.

For |m| = 1,

Cm = lim
x→∞

1

2πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrhλh(p)→ 0
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For |m| = 2,

Cm = lim
x→∞

1

2πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrh(λh(p
2)− 1) = −1/2

ALso, for |m| > 2, Cm = 0. Thus, by Theorem 1.6.3, we obtain the following measure:

µ(x) =
∑
m∈Z

Cme(mx) = 1− 1

2
(e(2x) + e(−2x)) = 2 sin2(2πx)

Thus, by using Equation (5.15) and (5.16), we have the following:

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrhXn(λh(p))→
1

2π

∫ 2

−2

Xn(t)
√

4− t2dt

as x→∞.
Thus, Theorem 3.3.2 is proved, that is, for any continuous real valued function g on [−2, 2],

N = N(x) such that logN
log x
→∞ and for primes p such that (p,N) = 1, we have

1

πN(x)Wr(N, k)

∑
p≤x

h∈E(N,k)

ωrhg(λh(p))→
1

2π

∫ 2

−2

g(t)
√

4− t2dt

as x→∞.

5.2.2 Proof of Theorem 3.3.3

We use the technique used by Nagoshi ([10], Section 4).

By Weierstrass approximation theorem there exists polynomial function p(t) such that for

a given continuous real valued function g(t) on compact set [−2, 2] and for ε > 0, we have

|g(t)−p(t)| < ε. So, it is sufficient for getting Theorem 3.3.3 to prove for each positive integer

l ≥ 0,

1

Wr(N, k)

∑
h∈E(N,k)

ωrh

(∑
p≤x λh(p)√
πN(x)

)l

→ 1√
2π

∫ ∞
−∞

tle
−t2
2 dt as x→∞. (5.17)
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We note that in the above equation and in what follows, the sum
∑

p≤x runs over ptimes p

which are coprime to N.

By the multinomial formula,

wrh

(∑
p≤x

λh(p)

)l

= wrh

l∑
u=1

(1)∑
(l1,l2,...,lu)

l!

l1!l2!...lu!

1

u!

(2)∑
(p1,p2,...,p3)

λh(p1)l1λh(p2)l2 ...λh(pu)
lu ,

where
∑(1)

(l1,l2,...,lu) means sum over u-tuples (l1, l2, ..., lu) of positive integer satisfying

l1 + l2 + ...+ lu = l, and
∑(2)

(p1,p2,...,pu) is the sum over u-tuples (p1, p2, ..., p3) of distinct primes

which are not greater than x and (pi, N) = 1 for i = 1, 2, ..., u.

Since, λh(mn) =
∑

d|(m,n) λh(
mn
d2

) and by using Lemma 5.2.3, we have,

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu =

∑
h∈E(N,k)

ωrh

[
l1∑

j1=0

bl1(j1)λh(p
j1
1 )

]
...

[
lu∑

ju=0

blu(ju)λh(p
ju
u )

]

(5.18)

=
∑

h∈E(N,k)

ωrh
∑

0≤j1≤l1
0≤ju≤lu

bl1(j1)...blu(ju)λh(p
j1
1 ...p

ju
u ) (5.19)

=
∑

0≤j1≤l1
0≤ju≤lu

bl1(j1)...blu(ju)
∑

h∈E(N,k)

ωrhλh(p
j1
1 ...p

ju
u ) (5.20)

We have the following lemmas under this setting.

Lemma 5.2.4. Let k be fixed and N ≥
(
x
l
2

+l2 k+1
2 (log x)

l
2

) 1
k−1

. Assume the u-tuple

(l1, l2, ..., lu) such that lm is odd for some m. Then

1

πN(x)
l
2

1

Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu 7→ 0

as x 7→ ∞.

Proof. Let
∑(3)

(j1...ju) be the sum of u-tuples (j1, ..., ju) of integers satisfying ji’s even and

0 ≤ ji ≤ 2rpi for each 0 ≤ i ≤ u. Let n = pl11 ...p
lu
u .
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Using Lemma 5.2.2 in equation (5.20), we have

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu =

(3)∑
(j1...ju)

[
bl1(j1)...blu(ju)Wr(N, k) + O

(
Wr(N, k)

Nk−1
n( k+1

2
)

)]

The first term in the left hand side is zero since, each j′is are even and lm is odd for some

m. Thus,

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu =

(3)∑
(j1...ju)

O

(
Wr(N, k)

Nk−1
n( k+1

2
)

)

Now,

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu =

(2)∑
(p1,p2,...,p3)

(3)∑
(j1...ju)

O

(
Wr(N, k)

Nk−1
n( k+1

2
)

)

=
Wr(N, k)

Nk−1

(2)∑
(p1,p2,...,p3)

Ol(x
ul k+1

2 )

≤ Wr(N, k)

Nk−1
πN(x)u Ol(x

ul k+1
2 )

�l
Wr(N, k)

Nk−1
πN(x)lxl

2 k+1
2 � Wr(N, k)

Nk−1
xl+l

2 k+1
2

Thus,

1

πN(x)
l
2

1

Wr(N, k)

Wr(N, k)

Nk−1
xl+l

2 k+1
2 =

1

πN(x)
l
2

1

Nk−1
xl+l

2 k+1
2

Therefore, for N ≥
(
x
l
2

+l2 k+1
2 (log x)

l
2

) 1
k−1

,

1

πN(x)
l
2

1

Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu 7→ 0

as x 7→ ∞. �

Lemma 5.2.5. Let k be fixed. Let N = N(x). Assume that an u-tuple (l1, l2, ..., lu) such

that lm is even for each 0 ≤ m ≤ u. If lm = 2 for all m, then we have,
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1

πN(x)
l
2

1

Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu 7→ 1

as x 7→ ∞ and N ≥ x
l2(k+1)
4(k−1) ;

if not then, we have,

1

πN(x)
l
2

1

Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu 7→ 0

as x 7→ ∞ and N ≥
(

log x x( l
2

)l( k+1
2

)−1
) 1
k−1

.

Proof. Let us first consider the case when lm = 2 for all m. Since l1 + ...+ lu = l, we have,

u =
l

2
.

As b2(0) = b2(2) = 1, it follows that∑
h∈E(N,k)

∑
ji=0,2
0≤i≤u

ωrhbl1(j1)...blu(ju)λh(p
j1
1 ...p

ju
u ) =

∑
h∈E(N,k)

∑
ji=0,2
0≤i≤u

ωrhλh(p
j1
1 ...p

ju
u )

=
∑

h∈E(N,k)

ωrhλh(1) +

(4)∑
(j1,...,ju)

∑
h∈E(N,k)

ωrhλh(p
j1
1 ...p

ju
u )

= Wr(N, k) +

(4)∑
(j1,...,ju)

[
True(

ji
2
≤ rpi)Wr(N, k)) + O

(
Wr(N, k)

Nk−1
n
k+1
2

)]

where n = pj11 ...p
ju
u and

∑(4)
(j1,...,ju) is the sum over u-tuple (j1, ..., ju) satisfying ji = 0 or 2

and that (j1, ..., ju) 6= (0, ..., 0).
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Now,using ([10], equation (25)), we have

(2)∑
(p1,p2,...,p3)

Wr(N, k) +

(4)∑
(j1,...,ju)

[
True(

ji
2
≤ rpi)Wr(N, k) + O(

Wr(N, k)

Nk−1
n
k+1
2 )

]
= Wr(N, k)

πN(x)
l
2 + Ol(πN(x)

l
2
−1) +

(2)∑
(p1,p2,...,p3)

(4)∑
(j1,...,ju)

True(
ji
2
≤ rpi)


+

(2)∑
(p1,p2,...,p3)

(4)∑
(j1,...,ju)

O

(
Wr(N, k)

Nk−1
(pj11 ...p

ju
u )

k+1
2

)

= Wr(N, k)

πN(x)
l
2 + Ol(πN(x)

l
2
−1) +

(2)∑
(p1,p2,...,p3)

(4)∑
(j1,...,ju)

True(
ji
2
≤ rpi)

+ Ol

(
Wr(N, k)

Nk−1
πN(x)

l
2x

l2

2
k+1
2

)

Now,

1

Wr(N, k)πN(x)
l
2

Wr(N, k)

πN(x)
l
2 + Ol(πN(x)

l
2
−1) +

(2)∑
(p1,p2,...,p3)

(4)∑
(j1,...,ju)

True(
ji
2
≤ rpi)


+

1

Wr(N, k)πN(x)
l
2

[
Ol

(
Wr(N, k)

Nk−1
πN(x)

l
2x

l2

2
k+1
2

)]

=
1

πN(x)
l
2

πN(x)
l
2 + Ol(πN(x)

l
2
−1) +

(2)∑
(p1,p2,...,p3)

(4)∑
(j1,...,ju)

True(
ji
2
≤ rpi) + Ol

(
πN(x)

l
2x

l2

2
k+1
2

Nk−1

)
= 1 + Ol

(
x
l2

2
k+1
2

Nk−1

)

Thus, for N ≥ x
l2(k+1)
4(k−1) ,

1

πN(x)
l
2

1
Wr(N,k)

∑(2)
(p1,p2,...,p3)

∑
h∈E(N,k) ω

r
hλh(p1)l1λh(p2)l2 ...λh(pu)

lu 7→ 1 as x 7→ ∞.

Now coming to second case (l1, l2, ..., lu) 6= (2, 2, ..., 2). We have

u ≤ l

2
− 1.
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Now,

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu =

(5)∑
(j1,...,ju)

bl1(j1)...blu(ju)
∑

h∈E(N,k)

ωrhλh(p
j1
1 ...p

ju
u )

=

(5)∑
(j1,...,ju)

bl1(j1)...blu(ju)

[
True(

ji
2
≤ rpi)Wr(N, k)) + O(

Wr(N, k)

Nk−1
n
k+1
2 )

]

where
∑(5)

(j1,...,ju) denotes the sum over the u−tuple (j1, ..., ju) of even integers satisfying

0 ≤ ji ≤ li for each i = 1, ..., u. Hence,

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu =

(2)∑
(p1,p2,...,p3)

(5)∑
(j1,...,ju)

bl1(j1)...blu(ju)(True(
ji
2
≤ rpi)Wr(N, k))

+

(2)∑
(p1,p2,...,p3)

(5)∑
(j1,...,ju)

bl1(j1)...blu(ju) O

(
Wr(N, k)

Nk−1
n
k+1
2

)

Here the first part will vanish as x 7→ ∞. Therefore we need to consider only the second

part, that is,
∑(2)

(p1,p2,...,p3)

∑(5)
(j1,...,ju) bl1(j1)...blu(ju) O

(
Wr(N, k)

Nk−1
n
k+1
2

)
.

Using steps from ([10], first equation in page number 305), we have,

(2)∑
(p1,p2,...,p3)

(5)∑
(j1,...,ju)

bl1(j1)...blu(ju) O

(
Wr(N, k)

Nk−1
n
k+1
2

)
<<l πN(x)u

Wr(N, k)

Nk−1
x( l

2
−1)l k+1

2

Therefore,

1

πN(x)
l
2

1

Wr(N, k)
πN(x)u

Wr(N, k)

Nk−1
x( l

2
−1)l k+1

2 ≤ 1

πN(x)

1

Nk−1
x( l

2
−1)l k+1

2

Thus for N ≥
(

log x x( l
2

)l( k+1
2

)−1
) 1
k−1

,

1

πN(x)
l
2

1

Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu 7→ 0

as x 7→ ∞.
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From Lemma 5.2.4 and 5.2.5, for an u−tuple (l1, l2, ..., lu), we have

1

πN(x)
l
2

1

Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

ωrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu →

1 if (l1, ..., lu) = (2, ..., 2)

0 otherwise,

(5.21)

for logN
log x
→∞ as x→∞.

Let x be a positive integer and l be odd. Then by l1 + l2 + ...+ l3 = l and (5.21) all the

terms of

1

πN(x)l/2Wr(N, k)

∑
h∈E(N,k)

wrh

(∑
p≤x

λh(p)

)l

=
l∑

u=1

(1)∑
(l1,l2,...,lu)

l!

l1!l2!...lu!

1

u!

1

πN(x)l/2Wr(N, k)

(2)∑
(p1,p2,...,p3)

∑
h∈E(N,k)

wrhλh(p1)l1λh(p2)l2 ...λh(pu)
lu

goes to zero as x→∞.
Now, let l be even. Then by (5.21), as x→∞, all terms of

1

πN(x)l/2Wr(N, k)

∑
h∈E(N,k)

wrh

(∑
p≤x

λh(p)

)l

go to 0 except for u = l
2

and l1 = l2 = ... = lu = 2, which goes to l!/(l1!...lu!u!) = l!

2
l
2 (l/2)!

.

Therefore, 1
πN (x)l/2Wr(N,k)

∑
h∈E(N,k) w

r
h

(∑
p≤x λh(p)

)l
goes to l!

2
l
2 (l/2)!

.

But then it is known that

1√
2π

∫ ∞
−∞

tle
−t2
2 dt =


l!

2
l
2 (l/2)!

, if l is even,

0, otherwise
(5.22)
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Thus Theorem 3.3.3 is proved.
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Chapter 6

Conclusion

In this thesis, we proved the weighted analog of Murty and Sinha’s work [9] as well as

Nagoshi’s work [10].

6.1 Future Goals

In future, we would like to investigate the following related questions. Following some recent

results of Prabhu and Sinha [12], we would like to answer the following questions in the

context of Li’s weighted equidistribution theorem. Let I be a fixed subinterval of [−2, 2].

For such an I,

• What does the asymptotic variance

1

|Wr(N, k)|
∑

h∈E(N,k)

[
ωrhχI(λh(p))−

∫
I

rp∑
i=0

X2i(s)dµ∞(x)

]2

converge to as N + k →∞?

• If the asymptotic variance exists, then let it be denoted by V ar(I). Our next goal
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would be to find how does the following expression

1

|W r(N)|
∑

h∈E(N,k)

g

(
wrhχI(x

h
p)−

∫
I

∑rp
i=0X2i(s)dµ∞(x)√

V ar(I)

)

behave for any bounded, continuous, real valued function g on R. That is, does there

exist a distribution measure µ(t) such that

1

|W r(N)|
∑

h∈E(N,k)

g

(
wrhχI(x

h
p)−

∫
I

∑rp
i=0X2i(s)dµ∞(x)√

V ar(I)

)
7→
∫
R
g(t)dµ(t)?
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[12] Prabhu N. and Sinha K., “Fluctuations in the distribution of Hecke eigenvalues about
the Sato-Tate measure”, to appear in International Mathematics Research Notices.

75



[13] Prabhu N., “Fluctuations in the distribution of Hecke eigenvalues”, PhD thesis, Indian
Institute of Science Education and Research, Pune,2017.
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