A torsion correspondence for
non-compact arithmetic hyperbolic
3—manifolds

A Thesis

submitted to
Indian Institute of Science Education and Research Pune
in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Kushtagi Sri Rama Chandra

IISER PUNE

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,
Pashan, Pune 411008, INDIA.

April, 2018

Supervisor: Debargha Banerjee
(© Kushtagi Sri Rama Chandra 2018

All rights reserved






Certificate

This is to certify that this dissertation entitled A torsion correspondence for non-compact
arithmetic hyperbolic 3—manifoldstowards the partial fulfilment of the BS-MS dual degree
programme at the Indian Institute of Science Education and Research, Pune represents
study/work carried out by Kushtagi Sri Rama Chandraat Indian Institute of Science
Education and Research under the supervision of Debargha Banerjee, Assistant Professor,

Department of Mathematics, during the academic year 2017-2018.

Debar 8‘ - Barojee

Debargha Banerjee

Committee:
Debargha Banerjee

Diganta Borah






To
Mother.






Declaration

I hereby declare that the matter embodied in the report entitled A torsion correspondence
for non-compact arithmetic hyperbolic 3—manifolds are the results of the work carried out
by me at the Department of Mathematics, Indian Institute of Science Education and
Research, Pune, under the supervision of Debargha Banerjee and the same has not been

submitted elsewhere for any other degree.

‘ i L
\ v o .
s . .

Kushtagi Sri Rama Chandra






Acknowledgments

I would like to thank the faculty at [ISER-Pune for the nurturing they provided and Dr.
Debargha Banerjee for taking me under his wing and giving me direction to pursue. I would
also like to thank Vishakh, Vishrut, Vaikunth, Vyshnav, Vimanshu and Himanshu for the
long interactive sessions in which we all learned something new.

Lastly I would like to thank my parents for being understanding and supportive my whole
life.

X






Abstract

The Cheeger-Miiller theorem (formerly Ray-Singer conjecture) is one of the seminal
results for closed orientable Riemannian manifolds. It implies that for a compact
hyperbolic 3—manifold, the analytic torsion and Reidemeister torsion coincide. An
analogous result does not exist for non-compact hyperbolic 3—manifolds. We explore
a result that compares non-compact these torsions in arithmetic manifolds of a special
kind.
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Chapter 1

Introduction

We try to understand generalisations of classical modular forms, in particular, Bianchi
modular forms. We follow [EGM] in order to do this and understand some interesting
results emerging from such extension. For the rest of the work, our main reference is

[CV]. In this chapter. we give the prerequisites for the forthcoming theory.

1.1 3—dimensional hyperbolic space

The upper half-space
H: {(z,y,7) € R® :r >0}

as a subspace of R? models the 3-dimensional hyperbolic space. We shall often think

of a point P in H as a quaternion
P=z+yi+rj=z+ry.

This viewpoint helps us make several observations, as shall be seen later. We equip

H with the hyperbolic metric

2 dx? + dy? + dr?
— =

ds
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which gives the hyperbolic Laplace-Beltrami operator as

0 0 0 0
A=r —=+4+—=+—|-r—.
" (83:2 * 0y? * 87"2) "

Throughout this body of work, Laplacian shall mean the above operator.

1.1.1 Action on H

The group PSLs(C) acts naturally on H via

a b P‘_aP+b_(az+b)(cz+d)+aér2+7“j
¢ d " cP+d lcz + d|? + |c|?r?

In fact, it is the group of orientation preserving isometries on H:
Theorem 1. Iso™(H) = PSLy(C).

Definition 1. If v € SLy(C), v # +1 we call

Parabolic  if and only if |tr(y)| =2,tr(y) € R
Hyperbolic if and only if |tr(y)] > 2,tr(y) € R
Elliptic ~ if and only if |tr(y)| < 2,tr(y) € R

and we say vy 1S loxodromic otherwise.

Definition 2 (cusp). A point P € PY(C) is called a cusp of T' < PSLy(C) if T'p, the

stabiliser subgroup of P in ', contains parabolic elements.
Suppose I' < PSLy(C) is discrete. We have
Theorem 2 (Poincaré). I' is discontinuous if and only if it is discrete in PSLy(C)

Definition 3 (Kleinian group). A discrete subgroup I' of PSLo(C) is called a Kleinian

group.

To understand T'\H when T" is Kleinian, we define a fundamental domain.
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1.1.2 Fundamental domain

Definition 4 (Fundamental domain). A fundamental domain of the discontinuous

group T' < Iso™(H) is a closed subset F C H such that the following hold:
1. each I'—orbit meets F at least once,
2. the interior of F meets each I'—orbit at most once,
3. the Lebesque measure of the boundary of F is zero.

Every discrete I' < PSLy(C) has a fundamental domain. One construction is

given by the Dirichlet domain or the Poincaré normal polyhedron.

Definition 5 (Poincaré polyhedron). Let I' be Kleinian. Let Q € H be such that
vQ # Q for every v € T\{I}. Then the Poincaré normal polyhedron with center Q

is defined as
FoI'):={PeH: :d(P,Q) <d(yP,Q) VyeTl}

Since I' is countable, there always exists a () € H such that vQ # @ for every
v € IM{/} (If not, there exists a surjection I' — H, which can not happen).

Definition 6. We say that a Kleinian group I' has finite covolume, or that it is
cofinite, if
vol(T') := / dv < o0,
F(T)

where dv is the hyperbolic volume element given by

_ dxdydr

r3

dv

Theorem 3. For a hyperbolic manifold M = T\H and a large constant T, each

connected component of M; fort < T is isometric to one of the following
1. The quotient T1\HT where T'y := (z — z + 1).

2. The quotient Ty\HT where Ty := (2 — z+ 1,2+ 2+7), where 7 > 0, |7| > 1.
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3. The quotient (y)\U, which is a torus, where v is lozodromic, U is a tubular

neighbourhood

Definition 7. A Kleinian group I" is called geometrically finite if for some Q) € H,
Fo(T') has finitely many faces.

Theorem 4. (Garland, Raghunathan) If T is a cofinite Kleinian group then it is

geometrically finite

In general a discontinuous group I' need not be geometrically finite. Every geo-
metrically finite group is finitely generated. However a finitely generated group need

not be geometrically finite.

Theorem 5 (Kazhdan,Marghulis). Let T' is a cofinite Kleinian group. Then, T' is

not cocompact if and only if it contains a parabolic element.

Proposition 1. A cofinite Kleinian group I' has only finitely many I'—classes of

CUSPS.

That is, the fundamental domain for I'\H has finitely many I"'—inequivalent cusps.

Given a cofinite Kleinian group I', choose Ay, ..., A, € PSLy(C) so that

m = Ajco,...m, = Apoo € PHC)

represent the I'—classes of cusps. Also choose fundamental sets P; for the action of
A7, A; on PYH(C)\{c} = C.
For Y > 0, define

]:"Z(Y) ={z4+rjeH:zeP,r>Y}

Now let Y3, ... ,Y), € R be large enough so that F;(Y;) := AZ]:"Z(Y;) are contained in
A;H,, for \; such that A, TNA' € T, where Hy == {z+rj € H: 2 € C, |r| > A}

Proposition 2. With the above notations, for i # j AHy, N A;H,, = @.
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Thus F,(Y;) N F;(Y;) = @. We call F;(Y;) the cusp end for the cusp 7; and write
(¥ = P

Theorem 6. With above notations, there exists a compact set Fy in H such that

.FZ:FOUFB.

1.2 Bianchi modular forms

In this section we give the notion of an extension of the definition of classical modular

forms.

Definition 8. Let F' be an imaginary quadratic field Q[v/—d] and O be its ring of
integers. A Kleinian group PSLo(Op) is called a Bianchi group.

Definition 9. Suppose i # 0 is an ideal in Op.

I'G) :={y€ PSLy(Op):y=1 mod i}

is called the principal congruent subgroup of PSLs(OF) of level i.
A finite index subgroup of PSLy(OF) containing a principal congruent subgroup

15 called a congruent subgroup.

a b
Given v = € PSLy(C) and P =z+rj =z +yi +rj € H, we introduce
c d

the multiplier system

cz+d —cr
T P) = ( c cz—i—d) '

Given a function f : H — C*! and v € PSL,(C), we define the "slash operator”

(fley)(P) := Sym*(J (v, P)"") f(vP),
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where SymF is the symmetric k—th power of the standard representation of PSLy(C)

on C2.

Definition 10. Let F' be an imaginary quadratic field and Of be its ring of integers.
Let T be a congruence subgroup of the Bianchi group PSLo(Op). A Bianchi modular

form for T with weight k is a real analytic function f : H — C**! such that
1. fley=fVyer,
2. f is harmonic,
3. f has, at worst a polynomial growth.

Note that as there is no complex structure on H as the notion of holomorphicity

is unavailable in this setting.
We shall see that as in the case of classical modular forms, the set M(I', k) of

Bianchi modular forms for I' with weight k& is a finite dimensional vector space.

For k = 2,
52 25t 12
Sym?J(v,P) = ——— | —st |s|> = |t|* st |,
om0, P) = T | 5t Iol? < 1 st
t —2st S

where s =cz+d and t = cr.

1.3 Eisenstein Series

The first examples in the classical case for modular forms were the Eisenstein series.
In the same spirit, we define Eisenstein series for the 3—dimensional case. Before

that, we define a Dirichlet series which shall be of technical convenience for us.
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1.3.1 Poincaré series

Given a function h(P) on H, (P = z 4+ rj), a Poincaré series is defined as

f(P)=) _h(rP),
~yer
whenever the series converges absolutely. A simple case of this is when we take
h(P,Q) = §(P,Q)~'7%, § := coshd where d is the hyperbolic distance function. &
is a point pair invariant under action of PSLy(C), meaning §(P,Q) = §(vP, Q)
Vv € PSLy(C). We define

H(P,Q;s) = 6(P,MQ)~""". (1.1)

yer
This series will help us in the discussion of Eisenstein series that follows.

Proposition 3. (1.1) converges absolutely and uniformly on compact subsets of

H x H x {s|Rs > 1}.

Proof. Let K C H x H x {s|®s > 1} be compact and ¢ > 1 be the minimum of real
parts of s in K. For (P,Q;s) € K,y

APAQ) T = olPaQ) T <4 (5(130,7@) "o TR
v [ 0(@,Q0) )
<4T6(P, Py)4 ((5(7—11307 Qo)

1+o
_ 42+2U(5(P, PO) (5(2(Pi27$53))) _ 42+20(5(P, P())H_J(S(Q, QO)H_U(S(PO, ’YQO)_l_U-

Thus, it suffices to show that H(Fy, Qo; o) converges for some Py, )y € H. Suppose
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F is a fundamental domain for I'. Fix Qg = j and Py = P

/HP;, )dv(P /ZéPw )" odu(P Z/éPw )17 du(P)

'yEF vyerl’

_Z/ (vP, ) dv(P)

vyel

_ / S(vP. )1 do(P) = / 5(P, )"~ dv(P).
UyeryF H

Thus we have

2 2 2 1 *1*O'd dud 22+0 ) d
[ iar) = (R e 2 T
F H 2r r 200 Jy (141r2)ltop2—o

As o > 1, the right hand side is finite, implying that H(P,j; o) is finite for almost
every P € H. Thus, 3F, such that H(F, j;s) converges. O]

The o in the above proof is called the abscissa of convergence for T'.

1.3.2 Eisenstein series

A point ¢ € OH is a cusp if A = oo for some A € PSLy(C) if 3 a lattice A € C so
that
AF&Ail = {T*\ € A}

Define

E(P,s) := > r(MP)"*.
MEAT,A=1\ATA~1

If M, T*M represent the same coset, r(MP) = r(T*MP). Thus, E%(P,s) is inde-
pendent of the choice of representatives M. If S € ATA™!, then writing ATA™! =: T
and AIGA™! =: f’o we have I'S = I. Thus, with

JTiMs =rs =T
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if M runs over the said system of representatives, so does MS. Thus, so long as

E% (P, s) converges absolutely,

Ey(P,s)=> r(MP)"** =) "r(MSP)""* = r(MSP)'** = E4(SP,s),
M MS M

namely, E%(—, s) is T —invariant.
Consider E%(AP,s) = >, r(MAP)™*. Suppose M = ALA™', then with
r(MAP) =r(ALP)

E5(APs)= Y r(MAP)"™* = Y~ r(ALP)""* = E4(P,s).

Mel/\I LET,\I

As E%(—,s) is T—invariant, E4(—, s) is I'—invariant

Suppose S € PSLy(C) and G = S7I'S. Then, n = S~ is a cusp of G and
ASn = co. L runs through a system of representatives for right cosets of G} in G if
and only if M = SLS™! runs correspondingly for F/C in I'. Thus,

Exs(P,s) = Ea(SP, s)

where Eag(—, s) is the Eisenstein series for G,7. When S € I, then, we have

EAs(P, S) = EA(P,S)

Proposition 4. Suppose T' < PSLy(C) is a Kleinian subgroup and { = A~ oo be a
cusp of I' for some A € PSLy(C).

1. If T =T'¢, the Eisenstein series E4(P,s) is a finite sum and equals a constant

multiple of r(AP)*. The abscissa of convergence is —oo.

2. If ' # T'¢, the Eisenstein series Ea(P,s) converges if and only if H(P,Q;s)

converges for some Q € H (A necessary condition is Rs > 0).

Proof. (1.) is obvious since [['¢ : I';] < oo. For (2.) we may, without loss of generality,
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consider ¢ = oo, A = 1. Let A C C be the lattice corresponding to I\ C I',. For

s €R,

. N l—s 2r(vP s
Hpgio) = 300" =3 (o) 09

vyel vyel

ot ST P) S (s P) + AR + (PR 1)

~ETL A\ AEA
The z in the inner sum may be seen as an element z* of the fundamental parallelogram

P of A. Suppose
P = {alwl + Oégbdg‘ 2|Oék‘ < 1, k= 1,2},

with minimal |w;| and |ws|. Tt can be seen that for z*(yP) € P,

A
L—‘g]z*(”yp)—l—)\] VO#MNeA.
Note that there exists a C' such that for a fixed P and for any M € ' r(MP) < C,

|z*(vP)| < C. We may thus write

(207 + 1)1 < Z(|z*(7P) + AP +r(yP)?2 + 1)1 (1.3)
AeA

)\|2 —1-—s
< 1 * 2\—1—s < |_
ST (0P + AT <14+ Y ()
AEA AEA
Substituting (1.3) in (1.2), we see that if H(P,j;s) converges for s € R, then s > 0

and the Eisenstein series

E(P,s)= > r(yP)'** (1.4)

YETLAT
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converges. Now assume (1.4) converges. Notice that fory= [ | €T, A€ A
c d
. . TA — . . E F'
c d c cA+d
Since I' # 'y, IM = | | € T with ¢ # 0. With P = 2+ rj, E(P,s) is a
c d
convergent majorant to
> r(MTAP)*,
AeA

The above series majorizes » o\, |IA[727%5. As E(P,s) converges, we have s > 0
and substituting (1.3) in (1.2), we see that if H(P,j;s) converges. Since H(P,j;s)

converges if and only if H(P,Q;s) converges for every () € H, we are done. ]

Proposition 5. Suppose I' < PSLy(C) is Kleinian and ( = A~'co, n = B~ oo be
cusps of T' for some A,B € PSLy(C). Also assume o > 0,3 > og; 09 being the

abscissa of convergence. Then

F(P) T EAPs) = S (T(f(l}if)) (1.5)

YETLAT

converges uniformly for (P,s) € BY{z+r'j € H|r' > a} x {s|Rs > B}. Define

1 n=¢ modTl
0 n#¢ modT

On,¢ =

Ifn=C mod T (i.e;n and ¢ are I'—equivalent cusps) choose Ly € T" so that ¢ = Lgn.

Let ALB~Y= | " |. Then
0 do

Ea(B™! (2 +15),8) = (n¢[T¢ : Tldo| ™7 + o(1))r'* (1.6)
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as r — oo, uniformly in {z+rj € Hlr > a},s € C,Rs > .

Proof. Writing P = z + 1, ||cP + d||* = |cz + d|* + |c|*r?

r T EA(Ps) = Y (lleP )T

YETAT

with Ay = [ |. Suppose P € B~z +7'jlr' > a}, Q € {z+7"j|r' > a} so that
c d

P = B'Q. Then
EA(P7 S) = EA(B_1Q7 S) = EAB*1<Q7 S))

where E -1 is the Eisenstein series for B B~! at cusp B(. Thus we may just prove
the first part of the proposition for ( = oo and B = I.

Suppose K C C is a compact subset, P = z +rj with 2z € K, r > «a. Fix
Py =z +19j € K. For (c,d) € C*\{(0,0)} put

(€,0) := V/(le]* + [d[*)~} (¢, ).

By compactness arguments

[Pyt dlP IR+l _ Jezo+ P + Iefrd _
llcP +d||>  [leP+0||> ~ |ez+ 6>+ |¢|*a?

where C' is independent of (¢,d),z € K,r > a. Thus (1.5) is uniformly convergent
for (P,s) € {z+rjeH|z € K,r > a} x {s|Rs > f}. With = oo and invariance of
(1.5) under I'’_, K can be replaced by C.

For the second part we consider arbitrary B, 7. By the above part,

D ez ) +d|[*7 =0

YELT

as 7 — oo for AyB~' = [ | with ¢ # 0. Now we want to get all elements so that
c d
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AyB~' = | " |. But this happens if and only if AyB~" fixes co and thus ¢ and
0 d

n are I'—equivalent. Choose Ly as in the proposition. Then, for any v € I', AyB~1

looks like 0 d . Thus, v € I'¢Ly and we have [['¢ : I'] choices for v € I \I'. For

ut b
every such v there is an S = A~} A € T'¢ so that v = SLy where u is a
0 wu

root of unity. Thus,

.o ut b . .
= AyB™! = ALyB™' = .
0 d 0 wu 0 wudy

Thus, |d| = |dy| and the result (1.6) follows. O
We have the following result from the Proposition[5]:

Corollary 1. IfI' < PSLy(C) is Kleinian with cusps, then all Eisenstein series for
I' are of polynomial growth at all cusps of T'.

Also, for Laplace-Beltrami operator A, since Ar® = —(1—s?)r*, we have AE4(P, s)
—(1 — s?)E4(P, s), whenever E4(P,s) is absolutely convergent. Thus, E4(—,s) is a
modular function on H. The following gives a Fourier expansion of the Eisenstein

series.

Theorem 7. Suppose T is a Kleinian subgroup of PSLy(C). Let ( = A~'oo and n =
B 'oo for some A, B € PSLy(C) be cusps of T'. For P € H, Rs > 0y, A—invariant

EA(B7'P,s) has the Fourier expansion

EA(B7'P,s) =(6,¢[Tc : T¢]|do| 7272)r'* + ﬁ(z | 7272 )t e
R
2mi{p,d/c) ) (17)

e 2 (2
AJD(T+5) 8 RS

0£uEA? R
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with | | € R, ¢#0, where R is a double coset representative system
c d

AL{A"NATB! /BT, B~

Proof. Since E 4 is A—invariant with polynomial growth and satisfies

AEA(P,s) = —AEA(P, s) we have

EA(B7'P,s) = ) au(r,s)e”™

HEAY

where with P being the fundamental parallelogram for A:
1 .
a,(r,s) = —/ EA(B7P, s)e 7 2) dady.
Al Jp
When E, is uniformly convergent

a,(r,s) = Z / (AyB~LP) s 22 dady.
’ YELLT
We reduce ATB~" mod BT} B~ from the right. Notice that by Proposition[5] we
have the coefficient for r'**. We compute the rest, that is, for u # 0, ¢ # 0.

Note that for A\e A [ | T*= | ' . By arguments of Proposition|[5]
c d c cA+d

different A give different coset representatives for AT A"\ AT'B~'. Thus we have

1+s
—2mi(u,z)
I m S [ (rappms) o

R AeA

1+s
_ r —27r7j<u,z)d d
|A| ;/(c (\cz + A2+ |c]2r2) ‘ v
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The integral can be rewritten as

r 1+s
=276 (152) (e (]
/(C (]cz+c)\|2—|— ]c|2r2) ¢ vy
1+s
_ / ‘C|—2—23627ri<,u,,d/c) r e—zmm,z)dxdy
c |z|% + 2r2

1+s
. r
_ |C|—2—2562m<u,d/6)/ (m) 6_2”|“|“”dxdy
C

Straightforward evaluations alongside standard formulae for I'" function and K

give us (1.7). O

1.3.3 Eisenstein series for PSLy(Op)

Suppose F = Q(v/d) ( with d < 0, discriminant of F < 0). 9% be the set of all
fractional ideals in F'. Write Or = 0 For every m € 91, there exist a, b € o so that

m = ab~!. Define norm of m:
B Na

Nm = 2
= Nb

We know the class group for F is Cp = Fﬁx For m € 91, we have the corresponding

equivalence class m* € Cp.

Definition 11. Forme M, P=z2+rj € H, s € C Res > 0; we define

1+s
,
En(P,s) := Nm'** <—) (1.8)
%:F ||cP + d|[?
<c,d>=m
r 1+s
En(P,s) := Nm'*® —_— 1.9
(o) c%(ucde?) )

One can verify that both En(P,s) and Ey(P,s) depend only on m#. Later we
give explicit relations between Ey (P, s) and Ey(P, s) and En(P, s) and E4(P, s) which
establish that Ey (P, s) and En(P,s) are also automorphic functions.
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Definition 12. For m,n € 9 let

C(m,n,s) = (mn')* Z NA™° (1.10)

A€mn—1
and

((m* s):= > Na™* (1.11)

acm#
acCo

Lemma 1. For m,n € 9N,

¢(m,n,s) = [o*|¢((nm™1)7, 5) (1.12)

Proof. We see from definition that ¢(m,n,s) = ((mn~!,0,s). Thus, we may prove
the statement for n = 0. Since ( depends only on the equivalence class of m in Cp,

we may also assume that m C o. Thus all that is left to show is
C(mv 0, 8) = |0>< |C((m_1)#7 8)7

which is a known result. See [Lan] pp 254. O

Proposition 6. Form € M, P € H, Rs > 1 we have

0" |En(P,s) =Y ¢(m,n, s+ 1)Ey(P, s) (1.13)

neC

Proof. Let n run through a representative system V of Cr. Suppose (v,0) generate

some n € V and for A € mn~! consider the map
(A, (7,9)) = (¢,d) := (A, A0) € mdm\{(0,0)}.

It is easy to see that this map is surjective and thus every (c,d) has |0*| preimages.

Putting this in the right hand side of (1.13) gives the assertion. O

Now we show that Fy,(P,s) agrees with E4(P,s) (upto elementary factors). For
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a
this, we introduce a notation For A = g € PSLy(F) write the o—modules
v 0
uy = (y,0) €M (1.14)
vy = (o, f0) €M (1.15)

The maps A — uy and A — by are surjective.

Theorem 8. If ( € OH is a cusp for T' = PSLy(0) and A = oo for some A €
PSLy(F) then
1
E4(P,s) = §(NuA)*1*SEuA(P,s) (1.16)

Proof. Let L := {(c,d) € F?(c,d) = us}. From the above notation we see that for

d J
each (¢,d) € L there exists an M € SLy(0) so that M = . Thus we
have a well defined map
¢:L—TAT
where (c,d)— I/ M.If(c,d)€ L, ¢(c,d) = T;M(M €T) then AM = | ;1 . Con-
c
versely for I''M € T\T', AM = ' d we have ¢~ (T, M) = {£(c,d)}. Putting
c

these in the definitions of EF4 and E,, yields the assertion.

Fourier expansion

Explicitly writing the Fourier expansion for E,, is difficult as we do not have a simple
description for the representative system. For E, we can give an explicit Fourier

expansion as an analogue of Theorem[7] as shown in the below theorem

Theorem 9. Let m € MM and n = B~ 1oo be a cusp of I'. Let A be the corresponding
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lattice for n. Then, Em(B_lP, s) (P € H,Rs > 1) has Fourier expansion

R leJrs
En(B7'P,s) = Nup™¢(m,ug, s)r' ™ + T Z || 7272 pl=s

|Als
(C,d)ERo
olts Nml+s . 627ri(,ud/c) il
L N (D PR
IAIT(1+ s) |c|
0#pEAY (e,d)ERo

(1.17)

where Ryq is a mazimal set of representatives (c,d), ¢ # 0 of (m@®m)B~' /BT, B~

Looking at the system of representatives in (1.17), writing u := up and v := vp

we define
L:=(maem)B! (1.18)

and for 0 # ¢y € mu™!

L(co) :={(co,d) € L}. (1.19)
Note that £ C mu @ mu.

Lemma 2. 1. A=u"2
2. If (c,d) € L and w € A, then (c,cw+d) € L.
3. If 0 7£ co € mu, then ,C(C()) 7é 0.

4. mu~! C mo.

Thus the group A = u=2 acts on £ by

(¢,d) = (c,cw+d) ((e,d) € Lyw € N). (1.20)

The following lemma gives the number of orbits for this action restricted to L£(c).

Lemma 3. If 0 # ¢y € mu, then

. NCO
~ NmNu’

[£(co) /A (1.21)
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Proof. Consider the homomorphism of o—modules
¢ :mo — (mup G muv)/mem

x> (yx,0r) + mHm.
By Lemma|2,d], we se that

ker¢ =moNmu~! = mu?,

hence, cou™2 C ker ¢. Thus ¢ induces a homomorphism

2

¢ :mo/cou”? — (muov & muv)/m S m.

Notice that
Ao = (coar, coff) +m @ m € (muv & muv)/m e m

is an element of the range of q~5 and the map
L(co)/u™? = $(o)
{(co, cow + d|w € u™?} = —d + cou™?
is a bijection. Thus

NCO

[L(co)/u?| = [67} (No) = | ker ¢| = [mu~" : cu™]

Lemma 4. In Theorem/[9], we have

TNm!ts o 27 _ B
T A, Z |C| = Nu]lB Sc(mqulas)

|A|$ (e,d)ERo \% |dF|S

~ NmNu

19

(1.22)

Proof. Let Ry be a maximal set of representatives (c,d) € L,c¢ # 0 for the action
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(1.20). For a fixed co, a first entry of an element of R, the number of different d so
that (co,d) € Ry is given by Lemmal[3]. Hence

Nm1+5 Z |C|—2—28 _ Nm1+5 Z ‘E(C)/A’

Ncl-i-s
(e, d)ERo 0#cemu
Nm?® s (1.23)
= Nu Z Nc
0#cemu

= Nu '7%C(m,u"'; 5).

With the Z—basis of 0 as {1, %}, the discriminant of o is \/|dp|/2, thus

1
A= 5V/IdrINu (1.24)

Equations (1.23) and (1.24) yield the desired result. O

Before giving explicit computation of higher Fourier coefficients, we state a few

auxiliary results.

Definition 13. For a fixred 0 # ¢y € mu, we define the following sum in the third
term of right hand side of (1.17)

Shco) = > D (0 £ 0 e A, (1.25)

(Co,d)ERU

Lemma 5. If 0 # w’ € A, 0 # ¢y € mu, then
v . w"’ —1\v
S(w’ ) =0 if — ¢ (mu )" (1.26)
€o

Proof. Let (co,d) € £ and x € mu~!. Then (cy,d+x)B € m@m since zu C m. Thus,
if (co,d) runs over a system of representatives for L£(cp)/A, then so does (¢, + d)

for every fixed x € mu~!. Hence

214U

S(w’, co) = ™) (W ¢g) Vo € mul,
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Thus, S(w?,co) = 0 or e”™“"%! = 1. The latter is true if and only if “ e (muh).

]

Lemma 6. Suppose 0 # w' € AY, 0 # ¢y € mu, %: € (mu™)Y and (co,dy) €
(m@m)B~L. Then

(1.27)
with the exponential being a root of unity.

Proof. If (cy,d) € Ry, then, ((co,do) — (co,d))B € m & m, that is dy — d € mu~’.

Thus, all terms in the sum (1.25) are equal and Lemmal3] implies the result. O

Lemma 7. Ifn € O, then

n’ = nl (1.28)

wm particular,

(1.29)

Proof. By definition
1. - 1 -
n={\e K|(\z) = 5()\3: + A\z) = étr()\x) € ZVx € n}

Thus, n¥ = 2n*, where n' is the compliment of n with respect to trace form. It is
known that nt = D~In"! (see [Lan], p. 57 ), where D is the different of K, which is
V/|dr|o and rest follows. O

The choice of B in (1.17) is arbitrary; for example T*B and B give the same
lattice. We now define a normalisation condition on B to bypass this technicality.

Recall that uv O o (Lemmal2](d)).

Definition 14. A matriz B € PSLy(F') is called quasi integral if

upbp = 0.
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a f
With B = , it is easy to see that B is quasi integral if and only if
v 0
ay,ad, B € o.
Lemma 8.

1. If v*,0% € F, (v*,0%) # (0,0), then there ezists a quasi integral matriz B* €

SLy(K) such that B* =
AN

2. For everyn € P1(F) there exists a quasi integral matriv B € PSLy(F) such that
Bn = oo.
3. For every n € M there exists a quasi integral matriv B € PSLy(F) such that
n=ug.
Proof. 1. The o—module q := (7*,§*) is not {0} by hypothesis. Hence, q" = o
for some 0 # A\ € F', with h being the class number of F. We choose a pair of

generators ayg, 3y for g"~'. Then there exist a,b,c,d € o such that
(ZOZQ’Y* + baoé* + Cﬁo’}/* + dﬁgé* =\

Hence, with
Aa* = bag + dfy, \FF = —aay — By,

a* *
B* = satisfies our requirements.
,}/* 6*
2. For n = oo take B = I and for n € F there exists a quasi integral matrix
a f
B € PSLy(F)of the form B =
L =
3. Immediate from 1.
m
Definition 15. Fora,b € M, s € C and w € F* let
os(a,b,w) := Na™* Z NX° (1.30)

AE€ab
weXa~ b
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Remark 1. 1. The sum (1.30) is finite. It is empty unless w € b%.
2. If p e F*, then
os(pa,b,w) = og(a, b, w) (1.31)

3. The sum (1.50) satisfies the reciprocity formula
w| " Poy(a,b,w) = [w|*c_s(at b,w). (1.32)

Theorem 10. Suppose m € M and n € P(F) is a cusp of T'. Choose a quasi integral

«

matric B € PSLy(F), B = b such that n = B~ loo and let u := (~y,d). Then
v 6

Em(B_lP, s) where P = z+rj € H,Rs > 1, has the Fourier expansion

2T

VIde|s

En(B7'P,s) = Nu"**¢(m,u, 14 s)r'*s + Nul~*¢(m,u™t s)r'*

22+s 1+5N 4 i 2% 2 (133)
§ 2N S (T 2
dp| T T(1+5) S V|

Proof. From (1.17) and Lemma[4], we get the coefficients of '™ and 77, We com-
pute the higher coefficients. Let 0 # w’ € A”,0 # ¢ € mu. If £ ¢ (mu™!)”,
by Lemmal[5], S(w,c) = 0. Assume < € (mu™!)” and (¢c,d) € Ro. Then since
d € mv =mu~! (As B is quasi integral), (w”, ¢) = (%, d) € Z. Thus, all terms in the

sum (1.25) are one and we have by Lemmal6]

B Nc
 NmNu’

S(w?,c)
By (1.29), we can define a bijection between u? and A® by

2
Wowe— w:i=——ne A’

Vdp
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Putting %(IJ in place of w’, we have

2mi(w?, 4)
1+s € ¢ _ 1+s v —1—s
Nm Z W—Nm Z S(W,C)NC
(c,d)ERo 0#cemu
Nm?
L R
Nu cemu
%:(mu*)“ (134)
Nm? s
= Nu Z Ne
cemu
weem™ 1y
o (m,uw)
= 7 0_; W, W).
Nu
Inserting this and the result of Lemmal4] into (1.17) gives (1.33). O

Meromorphic continuation

We can give a meromorphic continuation of Ey (P, s) to the whole s—plane via (1.33).

Theorem 11. With notation as in Theorem[10] and B = I, the Eisenstein series

A

En(P,s) satisfies the following functional equation

2

NI

)_(1+8)F(1 + $)Bn(P,s) = ( )—(1—s)r(1 — §)Ey-1(P,—s) (s eC),

VIdF|
(1.35)

and has a meromorphic continuation to the whole s—plane. The FEisenstein series is

holomorphic everywhere except at s = 1, where it has a simple pole with residue

472

rese En(P,s) = — (1.36)
|dF|
and
En(P,—n) =0 Yn>2, (1.37)
whereas

A

En(P,—1) = —1. (1.38)
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Proof. Define

) T(s)¢(m,u, 5) (1.39)
and rewrite (1.33) as

2T

S

)7(1“)1“(1 + 5)En(B7'P,s) = Z(m,u, 1 + s)Nu**r'*s 4 Z(m, u™", s)Nul=*r1—*

2mi( 22 7)

5

4
+2Nu Y fwlfo, (m,u,w)rK,( mllry,

0#£weu? \% ‘dF’

(1.40)

It is known that (1.39) has a meromorphic continuation to the whole s—plane and

satisfies the functional equation

Z(mu, 1 —s)=Z(u,m,s) (1.41)

Also, by (1.12) we have
Zm ™ u Tt s) = Z(u,m, s). (1.42)

Thus, the zeroth coefficients in (1.40) satisfy (1.35). Now, since K,(t) is an even
entire function of s € C, (1.32) implies that the infinite series in (1.40) term-wise
satisfies (1.35) and (1.35) follows for the Eisenstein series.

The points of interest are s = 0,1 since otherwise, Em(P, s) is holomorphic. The
factor of 717* in (1.33) has a simple pole at s = 1 while the other terms are holomor-

phic at s = 1. Thus, by (1.12) we have

2T

Vdr|

rese En(P,s) = 0% [ress—1C((m™")#, 5).

From [Lan], p. 259 we have

res—1C((m™ )%, s) = _m

0| /]d|

and (1.36) follows.
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At s =0, since (((m~1)*,0) = — 7, the poles of the factors r'** and 7'~* cancel
and thus, the Eisenstein series has no pole at s = 0. Now (1.37) and (1.38) are
directly computed from (1.35) and (1.36). O

1.3.4 Kronecker limit formula

As the points of interest in the above theorem were s = 0 and s = 1 (as they are
poles for the zeta function) and the formulae (1.37) and (1.38) do not deal with these
points, we give the following theorems. The first one gives us an explicit computation

of En(B~'P,0) and the second is a limit formula for E,(B~'P,s) as s — 1.

Theorem 12. Let the notation be as in Theorem[10] and for a € M define
g(a) = (2m) P Na®|Aa)| = (2m) N (L, 7)°|A(7)],

where a = N1,7) with A € F* and 7 € C,37 > 0 and A = g3 — 2793 is the

discriminant (from the theory of elliptic functions). Then

4rNu

Vdr|

. 1 1
En(B7'P0) = 'r(log(rNu) + v —log 27 — log |dp|? — 5 log(g(mu ") g(m u™1)

(1.43)
where v is Euler’s constant.

Proof. 1t is known that

2
C(mu,1+4s) = n

1 1
T (g +2v —log |dF| — glogg(mu_l) + O(s)) as s — 0 (1.44)
F

Thus

B 2rNu

Vldr|

1 1
T(log(rNu)+g+27—log |dF|—6 log g(mu~'4+0(s)) ass— 0.
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Also, we have a functional equation for the zeta function from which we have

2 -1 gy 2w er(l—s) 1 g
Vs ™ = ) )

Putting (1.44) with —s, expanding % as an exponential and expanding the
Fls

Gamma functions we have

o7 47r2 l+vs+... 27
C(mut, 1+ slog — + .. .
Vde|s ( 5)=( |dFy )1—78+---«/\dpl

1 1
(=5 +2y—logds| = Zlogg(m™'u™") + O(s))

2 1 1
_ _W( — = +2log2m — —logg(m~'u"") + O(s)) as s — 0
V]de| s 6
Thus
2 2rN 1 1
i Nul=s¢(m,ut, s)rt™s = " ur(log(rNu) — — +2log 27 — — logg(m™'u™') + 0(3))
V0drls |dp| 5 6
as s — 0.
Putting these results in (1.33), the assertion follows. O

Theorem 13. With notation as in Theorem[12]

lim (En(B P, 5) =7 1 ) = [0 IC((m ), 2) Nt
s—1 |d |
47T
!d |

4
+2Nu Y fwlo (m,u,w)rK( Tlolr

2w
f)ew@’”) .
0#Aweu? ‘dF’

1
(27 — 1 —log|dp| —log(rNu) — clogg(mu)  (1.45)
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Proof. From proof of Theorem[12]

2m 4% 1
Nu' = ¢(mu b s)rt s — ————
VIdg|s < ) |dp| s —1

4mr?
:m((l—(s—l)+...)(1—(s—l)log(rNu)—l—...)
.<$+27—10g|dp| —%logg(mu)—l—O(s—l)) — sil)
42

1
= 2] (27 —1—log|dp| —log(rNu) — g logg(mu)) +0(s—1)ass—1.
F

The assertion follows. O

Theorem[13] is an analogue of Kronecker’s first limit formula.

1.4 Noncompact hyperbolic 3—manifolds

Suppose M is a hyperbolic 3—manifold of finite volume with cusps Cy,...,C;. For a

cusp C, we have an isometry
o:Cp={r+yi+rjeH:r>1}/Tc.

o is not unique. We choose a 0. We call a cusp C relevant if I'p acts on = + yi by
translation. We are only concerned with such singularities. The nonrelevant cusps
are singularities from the orbifold structure (they arise for orbifold primes, which in
our case are primes above 2 and 3.

We may assume that the cusps are disjoint.

We define the height of a point as a measure of how high in a cusp.

1 P ¢ U

Ht(P) :=
r(c(P) P ec,.
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We drop o for notational convenience. A choice of o is assumed. We also define

Mp models the geometry of M at its cusps. Define the height truncation My of M

Mp={PeM:r(P)<T}

and set its boundary My for sufficiently large T" as OM.

1.4.1 Eigenfunctions and eigenforms
For a function f on a hyperbolic 3—manifold M, we define its constant term fy via

1 / 1
foo (P)dxdy
CLT(CZ'> (z,y)€C/T¢, ( )

where o; are isometries of cusps. The constant term fy is a function on Mp and we

fnoo H(P) =

say f is cuspidal if fy = 0.

Lemma 9. If f is an eigenfunction of the Laplacian with eigenvalue —\2, then there

exist constants A, by such that
1/(P) = In(P)| < (I F[lezame ™, A(L+N°) < HH(P) < T)/2.

1+s

Denote the space of functions that are multiples of '™ on connected components

of Mp by C*(s). The spaces of 1—forms that are multiples of 7**(dz +idy) by Q*(s)
respectively.
From the theory of Eisenstein series, we see that for f € C*°(0) and ¢ # 0, there

is a unique eigenfunction of the Laplacian F such that
E(f.s) fy'+gy™°

where g = U(¢t)f, ¥(t) : C>*(0) — C*(0) being the scattering matrix.
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The Maass-Selberg relations for s,t¢ € iR imply, for f € C*(s) and f' € C>(t)

() () —

T—s-t Tt+s
+(U(s)f, f) + (f, \If(t)f’>t —

(NTE(f,8), ANTE(f', 1) = (f. f)

—s—1t
As s — t, this reduces to

| AT E(f, )| = 21og T(f, ') = (= T(s)""¥'(s) [, f)

2s —2s (1.46)
FE) L) = (Y6

where ®'(s) = d®(s)/ds.

A similar result holds for 1—forms in Q%(0) considering

E(w,s) r*w +r “®* (s)w

where ®7(s) is the scattering matrix on Q7 (0).

By Maass-Selberg relations, as above we get

> B, s)|* = 2hqlog T — Tr (@ (s) "' (s)') (1.47)

where w runs over an orthonormal basis for Q(0). Similar result holds for Q7(0).
For 2 and 3— forms, one can apply the Hodge star to the above forms and deduce

similar results.

1.5 Noncompact arithmetic manifolds

We work with arithmetic manifolds of a particular kind.

Let G be an algebraic group over QQ given by

G= R€SF/QGL1 (D)/Gm
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where D is a quaternion algebra over F' ramified at a set S that contains all real

places. Define

with Ky = II, K,, where under the identification of D¢ with GLy(F),) and G(F,) with
PGLs(F,):

(PGLQ((’L,) vEg X

K, =< To(m,) veX—S

\]m(Bj — G(F,)) else

where B, is a maximal order in D,,.

* ok I *
We denote by B = a Borel subgroup and by N = its unipotent

0 = 01
radical. A(F') denotes the diagonal torus.

We define the height Ht(x) of x € Y (K) as the maximal height of a lift g, € G(A).
Define Y35 as

Vp(Ks) = B(F)\H x G(Ay)/Ks.
This models Y (Ky) at its cusps.

Proposition 7. If[J is a finite set of finite places disjoint from ¥ and K' = Ky NKpq,

then
Yp(K') =2 {1,2}7 x Y(Ky). (1.49)

1.6 Some homology

In subsequent chapters, a lot of theory involves homology. This section gives a quick

introduction to the relevant topics.

Definition 16 (simplex). The n—simpler, A", is the simplest geometric figure de-
termined by a collection of n + 1 points in Euclidean space R™.
Geometrically, it can be thought of as the complete graph on (n+1) vertices, which

18 solid in n dimensions
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Definition 17 (singular simplex). Given a topological space X that can be seen as a

subset of R™, a singular n—simplex in X is a continuous map o : A™ — X.

Definition 18 (n—chain). Let C,,(X) be the free abelian group with the set of singular
n—simplices of X as basis. Elements of C,,(X) are called singular n—chains and are

finite formal sums: P; = g;0;, where g; € Z.

Definition 19 (boundary map). The map 0, : C,,(X) — Cp—1(X) defined as
5(0-) = Z(_l)n0-|[Uo,...,vi71,vi+1...,vn]
where v; are O—simplices is called the boundary map.

We usually drop the subscript of 9,,.
Notice that

1<J

+ Z(_ly(_l)jilay (V05 V§ =1,V 4100 ,Vi—1,Vidg1 o-,0n]

i>j
and the right hand side is zero. Thus we have
Proposition 8. §,,_16, =0

Definition 20 (singular homology). The n—th homology group for a topological space
X is defined as H,(X) = ker(d,)/Im(0p41).

If the coefficients of C,, are from an abelian ring R instead of Z, we write H, (X, R)

for the n—th homology group.

Definition 21 (exact sequence). A sequence of homomorphisms d,, of abelian groups

Ch

5n+l N 571,

. % Cn+1 4 Cn

o

y Ch_1

with ker(d,) = Im(d,y1) for each n is called an exact sequence.
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Definition 22 (chain complex). A sequence of homomorphisms (called boundaries)

0, of abelian groups C.,

e}

5n+1
— Chyg > C), y Ch_1 > ...

with 8,410, = 0 for each n is called a chain complex. We denote it by (C,d0¢)
Homology thus measures how off a chain complex is from being exact.

Definition 23 (chain map). A chain map between two complexes (A,d4) and (B, dp)

is a collection of maps f, : A, — B, such that f commutes with d4 and dp as follows:

On41 On
A A s A ——

lfn+1 lfn lfnl (150)

6n+1 )
. —— B,y —— B, — B,y —— ...

Theorem 14. A chain map between two chain complexes induces homomorphisms

between homology groups.

Proof. From the commutative diagram (1.50) fd4 = dpf. Thus f maps cycles to cy-
cles and boundaries to boundaries and hence induces a homomorphism f, : H,(A) —

H,(B). O
Definition 24 (relative homology). Given a space X and a subspace A C X, define
Ch(X,A) := Cn(X)/C,(A). The natural boundary map 6 : Cp(X, A) = Cp_1(X, A)
gies the chain complex

D Ot (XL A) 2 O (XL A) = O (XL A) —— . — 0

Homology of this chain complex is called relative homology.
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Relative homology fits in the exact sequence

. —— Hy(A) — H,(X) — H,(X,A) > » Hy(X,A) —— 0

Consider the diagram

00— Cp(A) —— Cp(X) —2— Co(X,A) —— 0

l(; l(; | lg (1.51)

0 —— Cpq(A) —— Cry(X) —L= C (X, A) —— 0

where 7 and j are inclusion and quotient maps respectively.

Write C,,(A) = A,, Co(X) = B, C(X,A) = C,. Then, from (1.50), we see
that ¢ and j are chain maps. Thus they induce homomorphisms 7, and j, as in
Theorem|[14]. As j is surjective for a cycle ¢ € C,, we have ¢ = j(b) for some b € B,,.
For 6b € B,,_1, j(db) = 6(j(b)) = d(c) = 0 since ¢ is a cycle. Thus 6b € ker(j). As the
rows are exact, ker(j) = Im(i). Thus db = i(a) for some a € A,_;. Commutativity
gives i(d(a)) = d(i(a)) = §(6(b)) = 0, which implies 6(a) = 0. Thus, a is a cycle
representing [a] € H,_1(A). Define

Now,
e Since 7 is injective, a is uniquely determined by db.

e For a ¢, suppose we choose b instead of b. Then, j(b) = j(b') implies that
j(b) —j(t') = 0. That is, j(b — V') = 0, namely b — V' € ker(j). So, b — V' =i(a)
and 0(b+i(a’)) = 0(b) + 0(i(a’)) = i(a) +i0(a’) = i(a + da’) for some a’ € A,.

Now, a' is a cycle (da’ = 0) and thus a + dd’ = a
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e Choosing a ¢, from the coset of ¢, we have ¢, = c+0dc, ¢ = j(b') for some V' € B,,.

So, c+6c = j(b)+(j (b)) = j(b+ V). Changing c is the same as changing b to

a homologous element, and hence does not affect a.

The map H,(C) — H,_1(A) is a homomorphism.

Theorem 15. The sequence

Jx Jx

. —— H,(A) —* H,(B) —> H,(C) —— H,_1(A) —“— H,_(B) —Z— ...

18 exact.

Proof. We have the following inclusions from left to right:

1.
2.

3.

Im(iy) Cker(j,): ji=0 = jd.=0.

Im(j.) Cker(d): 6j=0 = §j.=0.

Im(6) C ker(iy) : ix0[c] = [0b] =0 = i.6 = 0.

ker(j.) C Im(i) : A cycle b € B, represents a homology class in ker(j.) such

that j(b) = () for some ¢ € C, ;. j is surjective implies ¢ = j(b') for some

b € Bhy1. Now, j(b) = (') = 65(V') implies j(b — 6b') = 0 and b — 60’ = i(a).

Also, id6(a) = di(a) = 6(b— d(V')) = 6b = 0 since i is injective and b is a cycle.

Thus, i.[a] = [b].

ker(6) C Im(j.) : Suppose c represents a homology class in ker(d). Then, with
= dd’ for some a' € A,, §(b—i(a')) = §(b) — (i(a")) = 6(b) — i(a) = 0.

Thus, b — i(a’) is a cycle. Also, j(b—i(a’)) = j(b) — ji(a') = j(b) = c¢. Thus

ker(d) < Im(j.)

ker(i,) C Im(d) : Consider a cycle a € A,,_; such that i(a) = §(b) for some

b e B,. Now 6(j(b)) = j(6(b)) = ji(a) = 0. Thus, jb is a cycle and §[jb] = [a].

The above six inclusions prove the theorem. O
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One might wonder what happens if we reverse the arrows in a chain complex.

This gives us cohomology.

Definition 25 (cochain complex). A cochain complez is a sequence (C,dc):

dn++1
e o

02"y o0 y on 4", on+

~

where C™ are abelian groups and the maps d* are homomorphisms such that d"*d" =

0. C™ are called cochains and d™ are called coboundary maps.

Definition 26 (cohomology). In the above sequence, we define H"(C) := ker(d"*™)/Im(d™)

as the cohomology group for the cochain complex (C,d¢).

We call a chain map f : C — C’ between two chain complexes a cochain map.
Like chain maps for homology, cochain maps induce homomorphisms of cohomology
f*: H(C) — H™(C").

Given a topological space with chain complex (Cj, d;, fix an abelian group G, and
replace each group C; with its dual group C* := ¢Cf = hom(C;,G) and §; with
d': C*' — C". The n—th cohomology of this cochain complex (C?, d’) is called the
n—th cohomology of X, H"(X,G).

Two homotopic maps from X to Y induce the same homomorphism on cohomology
(just as on homology).

Given a topological space X, its subspace A a group G, dualize the short exact

sequence
0 —— Ch(A) — Cp(X) —— Co(X,4A) —L— 0

via group G to get

0 +— C"(A,G) «——— C"(X,G) — C"(z,A) «—— 0 .

This sequence is exact.
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Definition 27 (relative cohomology). Define the relative coboundary map, d : C" (X, A, G) —
C™"(X, A, Q) as the map induced by the restrictions of the maps d : C" Y X,G) —
C™"(XG@). This defines the relative cohomology groups H"(X, A,G). When G = Z,

we write H"(X, A).

As in homology, we have the following long exact sequence for cohomology:
L HY(X,A,G) —Z HY(X,G) — H(A,G) —= ... (152)

Definition 28 (compactly supported cohomology). We define compactly supported

cohomology as the direct limat

H*(X) := lim H*(X, X\K)

Ke
where K denote compact subsets of X.

If X is compact, H"(X) = H"(X) since X has a unique maximal compact subset
(itself).
Compactly supported cohomology H. is not homotopy invariant.

Consider the long exact sequences

o= HI(M,Z) — H)(M,Z) — H"'(M,Z) — .. ..

We define cuspidal cohomology as

H{(M,Z) = Im(H(M,Z) — H'(M,Z)).
Theorem 16 (Poincaré duality). Let M be an orientable manifold of dimension n.
Then, H:(M) = H,_;(M).

Consider the groupoid whose objects are given by G(Af)/K with morphisms com-
ing from left multiplication by G. Define the space classifying this as Y (K)".
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Definition 29 (congruence homology). For an abelian group A, we define Hy cong(Y (K), A)
as the quotient of H1(Y (K), A) under

H1<Y(K)7A) - Hl(Y(K)AvA)'

Dualizing this, we define H. (Y (K), A) as the image of

cong
H\(Y(K)", A) — H\(Y(K), A).
We write hy;f(2) for the order of the cokernel of

H, (Y(E))tom — H, (Y(E))cong'

For a prime ideal q with norm N(q) > 3, we define hy;;(X;q) as the order of
cokernel of the quotient of H1(Y(X),Z)cong by span of [q]'Hi(Y (X), Z)iors, where [q]
is an automorphism of Hy (Y (X),Z)cong (via left multiplication).



Chapter 2

Borel-Moore homology

We introduce the notion on Borel-Moore homology in this chapter. In the later
chapters, it is a powerful tool that reduces results nicely.

There are a few equivalent definitions of Borel-Moore homology.

Definition 30 (locally finite chain). Let o = ). n;0; be an element of the complex
C!(X) of a topological space X. We say o is locally finite if for every x € X, there
exists a neighbourhood of x, U C X such that

is finite.

Definition 31 (Borel-Moore homology).

1. Consider the chain complex

5n—1

L O (X)) 2L (X)) s o (X)) 2 (2.1)

The n—th Borel-Moore homology group is HPM := ker 6,,/Imd, .

2. Suppose X=XU {o0} is the one point compactification of X (if it exists). Then
HBPM .— H, (X, 0).

39
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3. (Borel-Moore duality) Suppose M is an orientable manifold of dimensionn. Then

HEM(M, Z)"~ (M, Z).

It is clear by one or more of the above definitions that H?M(X) = H,(X) if X is
compact. The definitions also suggest the embedding H, (X) — HPM(X).

2.1 Homology and Borel-Moore homology of hy-
perbolic 3—manifolds

Suppose M is a hyperbolic 3—manifold. We have a long exact sequence

. Hi 1 (M,Z) < Hy(OM,Z) < HP™(M,Z) « H(M,Z) ...

via the following isomorphisms.
H)M,7Z) = H,(M,Z)

H*"™(M,Z) = HPM (M, 7)
H*"(0M,7Z) = H,(0M,Z).

Definition 32 (cuspidal homology). We define n—th cuspidal homology as

|
,

H; (M, Z) = Im(H;(M,Z) — HM (M, Z)).

If p is an orbifold prime, as we are concerned with only relevant cusps, we localise
Z away from p.
Suppose Y (K) is a noncompact arithmetic manifold as in (1.48). Consider the

long exact sequence

oo HYOY(K),—) = H(Y(K),—) — H(Y(K),—) = H(0Y(K),—) ...,

where 0Y = 0Y7 for a chosen T'. Thus, for homology we have corresponding exact
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sequence

s Hy(OY(K), =) — H (OY (K), —) — H(Y(K),—) = HPM(Y(K),—)...

In particular, we have cuspidal cohomology H; (Y (K), Z) as the quotient of H;(0Y (K),Z)
by the image of H,(0Y (K),Z).



Chapter 3

Modular Symbols

The methods used here allow us to have a bound on the Eisenstein torsion. These are
not necessary for main discussion of the report but are included for the interesting
segues into several other topics they lead to.

In this chapter, we work with an arbitrary open compact subgroup K C G(Ay).

Let Z denote the ring of algebraic integers.

Theorem 17. Let s € H'(0Y (K),Q) be a Hecke eigenclass that lies in the image of

HY Y (K),Q). If s is integral, namely, it lies in the image of H' (Y (K),Z), then s
is in the image of a Hecke eigenclass § € H'(Y (K), Z[1/€]).

We define e later.

3.0.1 Defining ¢

For a Grossencharacter x : A*/F* — C*| let
I(x) = {f : G(A) = C |f(bg) = x(b)|[ol[1.f(g) for b€ B(A)}.

If «v is algebraic, define num(«) as the product of primes dividing the numerator of

a. Let S be the finite set of places where K is not maximal, that is, the set of places

42
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v such that PGLy(O,) ¢ K. Set e; = 30hp[],cq (g —1). Now e is defined as

e=e H num (L™ (1, x?)),

X

where L9 is the algebraic part of L—function omitting places in S and y is a

Grossencharacter in X (K) := {x|I(x)* # 0}.

3.1 Modular Symbols as Borel-Moore homology

Let o, B € P(F) and g € G(A;). The geodesic from « to 8 (with the points seen as
elements of P*(C) translated by g gives a class in HPM (Y (K)), denoted by («, 3; g).

It is easy to see that modular symbols satisfy
(o, By9) +(B,7:9) + {1, 59) = 0.

We say the triple (a, 3;g) is admissible if there exists an € € G(F') such that
ca = B, egK = gK. The image of (o, 3; K) under HPM (Y (K)) — Hy(9Y (K)).
Thus, (o, 8; K) can be lifted to a class |o, ; K| in H (Y (K)),Z).

Lemma 10. The classes [a, 5; K| for admissible triples along with H,(0Y (K),7Z)
generate H1(Y (K),Z)

Proof. For T' = G(F) U gKg!, the connected component of Y (K) containing 1 x ¢
is isomorphic to M := I'\H. It is sufficient to show the lemma for M.

Fix zp € H. Then H;(M,Z) is generated by the geodesic between zy and 7z,
projected onto M.

Let C be a horoball around co and D = yC'. Let G be the geodesic between oo
and yoo. Let zg € C such that yz5 € D. Let wg € GUC and wy; € GU D.

Let P, be a path from zy to wq entirely in C'. Let P, be the geodesic from wy to w;
along G. Let P53 be a path from w; to vz entirely in D. The path P, + P, + P3 gives
a path between zpand vz, whose projection to M represents [y] € H,(M,Z) = T'®.
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But Py, Pj lie entirely in cusps of M and P, differs from G by segments in these cusps.
Thus, both P, + P, + P; and (00, y00; g) represent the same BM-homology class.
Now, admissible triples generate a subgroup L < H;(M,Z) so that

Im(L — HPM(M, Z)) > Im(H,(M,Z) — H™ (M, 2)).

That is, Hy(M,Z) is generated by L along with H,(0OM,Z). O

Thus modular symbols generate the Borel-Moore homology for compact manifolds.

3.2 Denominator avoidance

We define ”denominator of a modular symbol”, a notion that corresponds to bad
primes in Eisenstein integral over it.

Before that we introduce the notion of Bruhat-Tits buildings.

G)p = SLy(Q,), for prime p.

Definition 33 (Bruhat-Tits building). The simplicial complex X,,, called the Bruhat-
Tits building of G, is such that:

(1) there is a continuous action of G, on X,, by simplicial automorphisms and
this action is proper,

(2) X, is contractible,

(3) X, is finite-dimensional: dim X, = n — 1 = rankg,G)

(4) X, is locally finite.

We say a finite place v is in the denominator of («, 3;g) if the geodesic between
Q, B, € PYF,) inside the Bruhat-Tits building of G(F,) does not pass through
gPGLy(0O,).

For v € G(F), v is in the denominator of o, 8, € P}(F,) if and only if it is in the

denominator of yay, 3, € P*(F,). Thus, ”denominator” is invariant under G(F).
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Now, since G(F') acts 2—transitively on P!(F), we have v € G(F) such that
v(a, B) = (0,00). Thus, a modular form is equivalent to (0, c0; g) for suitable g.

It is easy to see that v is not in the denominator if and only if g € A(F,).PGLy(O,).

Theorem 18. Suppose p 1 e. The Fisenstein series, integrated over modular forms

falls in, Z,, the set of all the algebraic numbers that are integral at all primes above

p.
The following lemma helps in establishing Theorem[18].

Lemma 11. For prime p > 5, («, 8;g) can be written as a sum of modular symbols
with denominators not containing any place v such that p does not divide q, or q, — 1

That is, for any integer q, pt q, or pt q, — 1, at all places v.



Chapter 4

Analytic torsion and Reidemeister

torsion

In this chapter, we give a result comparing analytic and Reidemeister torsions for

noncompact arithmetic manifolds.

4.1 Analytic torsion

4.1.1 Regularized trace

A and its analogues

For a noncompact manifold M and the Laplacian operator A, e~
for i—forms on M are generally not trace class. but there is a fairly natural way of

regularizing trace. in fact we know that its ”regularization”

67Atp[f] = (‘7 P7 t)f(p)dp

Mp

46
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where K is the heat kernel. p[f](r) = %fp f(z,y,r)dzdy, P being a fundamental
parallelogram.
The regularized trace tr*(e~*?) is characterized by the constant term of the unique

linear function of logT" such that
/ AT K (2, 5 t)da ~ kolog T + tr*(e™'2) (4.1)
M

where K is the integral kernel of e 7', (The notation A ~ B means A(T)— B(T) — 0
as T — o0).

Then, an application of Selberg trace formula gives

tr* (™) ~at ™2 4 btV 4 etV logt + d + O(t'/?).

We define the regularized determinant as

dlket(A) ‘= exp (i . (T'(s) /Ooo(lim tr(e”t8) — tr*(e‘m))ts%)).

dS t—00

Definition 34 (analytic torsion). The regularized analytic torsion is defined as

1

Tan(M) = exp(5 Y (=17 log det(A,).

with A; being the regularized determinants on the j—forms.

4.1.2 Comparing regularized traces

Consider two hyperbolic 3—manifolds M and M’. Then, one can compute the differ-

ence between their regularized trace.Suppose C and C’ are cusps of M, M’ respectively
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such there is an isometry o : C — C’. Then

tr(e7IAM) — ¥ (e7tAMr) = K(z,z;t) — K'(2,2;t)

M-C M-C’ (42)
—l—/K(x,x;t) — K'(o(x),0(x); ).
¢

This is immediate if we write

tr*(e”**) = lim K(z,z;t)+ | K(x,x;t)) — ko(t) logT
T—00 M—C Cr

where Cr = M7pUC and ko(t) is as in (4.1). It is clear that (4.2) leads to a comparision

of analytic torsions of manifolds M, M’.

4.2 Reidemeister torsion

Reidemeister torsion was the first 3-manifold invariant able to distinguish between
manifolds which are homotopy equivalent but not homeomorphic. The Reidemeister

torsion of an exact complex (homology) generalizes the volume of a linear transform.

4.2.1 Regulator

We define a particular subgroup H of harmonic forms and via homomorphism between
homology and these forms we define regulators.

Let M be a hyperbolic 3—manifold of finite volume, with a choice of height Ht.
We define inner product on forms on a particular space H* of harmonic forms (i=0,1,2)
so that

H' — H'(M,C) (4.3)

is an isomorphism.
e 7° contains constant functions.

e H! contains cuspidal harmonic 1—forms alongside Eis(w) for w € Q7(0).
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e H? contains cuspidal harmonic 2—forms alongside forms of type *F(f, 1) (* being
the Hodge star) for f € C'°(0) is such that f lies in the kernel of residue of ¥(s)

at s = 1.

It is easy to see (direct computation) that (4.3) is an isomorphism. For i = 1,2,
we have

H = Q) (M) & Qi (M),

cusp

that is, H* decomposes into space of cuspidal j—forms Q. (M)(wy = 0) and its
orthogonal compliment under standard L? inner product.
Qi (M) maps to H{(M) isomorphically under (4.3).

cusp

We define an inner product via the norm

Jll? = tim [ (w105 T
o a1y

on QL. (M), where (.,.) comes from Riemannian structure. We define an inner prod-
uct on H! as direct sum of the two inner products. Similarly, we define an inner

product on H?, using the following norm on Q%, (M) :
ol =t [ (w72
T—o0 My

(The choice of norms is more or less arbitrary for Q7. (M)).

Definition 35 (regulator). We define the regulator of a homology H;+ of a hyperbolic
3—manifold M (? marks BM —homology and cuspidal homology) as

det / (Uj
i

7

reg(Hi»(M)) =

where 7; and w; are chosen as follows:
Fori =0 orl, v; € H;(M,Z) projects to a basis of H;(M,Z)s. w; form an
orthonormal basis for H:.

For i = 2, v € H;(M,Z) projects to a basis of the torsion free quotient of
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H;y(M,Z). w; form an orthonormal basis for Q2,,(M).
For i = 3, v, € H;(M,Z) projects to a basis of the torsion free quotient of
HPM(M,Z). wj form an orthonormal basis for the space of harmonic 3—forms (which

are precisely multiples of the volume form on each component)

We define the requlator of M as

reg(Hy)reg( HPM)

reg(M) = reg(Ho)reg(Haz,)

Definition 36 (Reidemeister torsion). We define Reidemeister torsion as

TR = |H1 (M, Z)tors\*lreg(M).

We now give a relation between the regulators of Hy(M) and Ho (M). Consider

the sequence

HPM(M,7) — Hy(OM,Z) — Hy(M,Z) — Hy)(M, 7).

All these groups are torsion free (away from orbifold singularities). Suppose there are

no orbifold singularities. Let d1,...,d, be the generators of

Hy(OM,Z) ) Im(HZM — Hy(0M, 7))
and fix v1,...,7 € Ha(M,Z) such that their images span Hy ). Then,

Hy(M,Z) = P Z; & EP Zs:.
i A

Now, fix orthonormal bases wy,...,w, for Q*(M).s and 1, ..., n, for Q*(M)gis.
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Notice that |, 5. Wi = 0 since cuspidal forms vanish at cusps. We thus have

reg() = |t | wy).den( [ )
= reg(H271).|det(/ n;)|-

4.2.2 Comparision of regulators

Comparing regulators of two manifolds leads to a comparision of Reidemeister torsions
of the manifolds. We have the following result which helps in the proof of the main

theorem.

Proposition 9. Suppose q is a prime in the level set 3. Also suppose that

H\(Y(S - q,C) = H,(Y(Z,C).

Then away from orbifold singularities:

reg(Hi(Y (£ —q) x{1,2}) _ vD
reg(Hy (Y (X)) |hiif (2 — q;9)]

reg(Ha (Y (X —q) x{1,2})  |hig(X — q;9)]
(

reg(Hy (Y (X)) - VD
reg(Ho(Y (X —q) x {1,2}) _ vol(Y (%)

reg(Ho(Y (X)) vol(Y(X — q))
reg(HZ" (V(Z —q) x {1,2}) _ vol(Y(Z — q)

reg(HZM (Y (X)) ol (Y (%))

where D is det(T7? — (14 N(q))*| (v (5-q).0)), Ty being the Hecke operator.

4.3 Main theorem

The following result was conjectured by Ray and Singer [RS| and was proved by
Cheeger [Chl] and Miiller [M].
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Theorem 19. For a closed orientable Riemannian manifold M

Tan(M) = TR(M).

This is the Cheeger-Miiller theorem. The main theorem of this report is a result

that considers
Tan(M)

a() = ",

(which is 1 if M is compact) for a noncompact hyperbolic 3—manifold M and com-
pares this quantity for different manifolds arising from level raising.

For level sets ¥, Y U {p}, XU {q} and ¥ U {p, q} set
Y =Y(Ky) x {1,2}2Y, = Y(Kx N K{g) x {1,2};
Yo =Y (Kn N Kgy) x {1,2}, Ypq = Y(Kx N Kgpgy)-
Given a choice of height functions on Y (K,,) and Y (K), since we have isometries
Y(Kq)B = Y(K)B X {1, 2}
Y(KPCI)B = Y<KP)B X {172}7
fix height functions on Y and Y, so that they preserve these isometries at cusps.

Theorem 20 (main theorem). With the above notations and height functions, upto

orbifold primes
a(Yyg)a(Y) = a(Yy)a(Y,)

In the following section we list a few results that enable us in proving Theorem|[20]
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4.3.1 Proof of main theorem

Theorem 21 (truncation invariance). Suppose M and M’ are two hyperbolic mani-

folds (of form Y(K)) such that Mg and My are isometric. Then

lim log (M) + log a(M') — log a(Mp) — log a(Mp) =0

T—o0

Suppose M and M’ are true manifolds (they have no orbifold singularities). With
some modifications, the following lines (due to Cheeger [Ch2]) hold true for the orb-
ifolds.

a(M) depends only on germ of metric on M near the boundary. As the metric
germs of Y and Y; are the same and so are the metric germs of Y, and Y4, we have
a(¥r) = a(Yyz) and a(Ypq, T) = al¥, 7).

Now Theorem[21] implies, that by taking limits we get Theorem][20].

Theorem 22. Put
f(s) =det(Id — Y_4SCI)_(—S)(I)+(S)).

Let 0 < a3 < ag < ... be the non-negative real roots of t — f(it). Set 5\j = a?. Let
E be the set of eigenvalues a cuspidal co-closed 1—form can take. Consider the set
{t € RY|t? € &} with multiplicity. Let Ep be the set of eigenvalues of Laplacian on
co-closed 1— forms on M.

Set Trnaw := (log T)'°. There exists a > 0 such that, with 6 = e~*T, for sufficiently

large T
1. Ifb=dim HY(M,C), then \y = --- = Ny = 0 and N\py1 > 0. The same holds for

A
2. For any j, with \/|\j| < Thnax we have |\; — Aj| < 6.
3. Assertions (1),(2) hold for eigenvalues of Laplacian on (co-closed) 0—forms re-

placing f(s) by
1—s5
= det(Id — Y s
gls) = det(Td - TV W),
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taking only strictly positive roots of t — g(it), 5\j =1- a? and replacing b by
dim HO(M, C).
4. Assertions (1), (2) hold for eigenvalues of Laplacian on (co-closed) 2— forms (equiv-

alently 1—forms) replacing f(s) by

g (s) = det(Id + T *U(s)),

replacing b by dim H*(M,C) (equivalently dim H'(M,C)) and taking \; as fol-
lows:
Let 0 < uy < uyp < -+ < uy < 1 be the roots of ¢'(t) (with multiplicity) for

t € (0,1], with parameters of cusp forms

{t € [0,1]]1 — t* is an eigenvalue of a cuspidal 3 — form on M}

and let a; = iu; for 1 < j < h. Let 0 < apy1 < apye < ... be the positive real

roots of t — ¢'(it) that are parameters of cusp forms. Put \j =1+ a?.

Write A(s) = @& (—s)®T(s) : QT (s) : = Q7 (s). We have the following result

regarding the solutions of the form s =it (t € R) to

f(it) := det(1 — T~ A(it)) = 0 (4.4)

Let v; : R — R/Z be such that ¢™i(® is an eigenvalue for A(it) for 1 < j < h.

Lemma 12. There exists Ty such that for T' > Ty:
1. The number of solutions to (4.4) in the interval 0 < t < B is [W].
(I-] is the greatest integer function.)
2. If |f(it)| < € and |t| < Thax, there ezists t € R with f(it') =0 and |t' — t| <

61/h'rel 3

3. Suppose ty € R with |to| < Thax- Let [x,y] be the positive definite inner product
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on QT (0) defined as
A'(itg)
Alit) Y

where A'(s) = dA(s)/ds. Let t; # ty be such that |t; —to] < € for j = 1,2 and
v1, vy be such that T~ A(it;)v; = v; for j =1,2. Then,

[x7y]ito = <410gT -

[0, w5lits = O(ellvj||l|w;| (log T)%)).

4. Suppose |t| < Thaz, and v with ||v]| = 1 are such that ||T~* " A(it)v — v|| < e.
Then there exist pairs (t; € R,w;Q7(0)) for 1 < j < m for some m < hyq and
an absolute constant M such that

o T4 A(it))w; = wy;
o ||t —tif| < /M,
o [[v = w|l < Tawe™;

i ||wJH < Tmax

It is easy to see that reg(Ho(Mr)) approaches reg(Hy(M)) as T — oo. We also

have

Proposition 10.
reg(Ho(Mr)) ~ reg(Ho(M)),

reg(Hy(Mz)) ~ reg(Hi(M))(log T) hret,
reg(Hy(Mr)) ~ reg(Hy(M))(log T) ",

reg(Hs(Mr)) ~ reg(Hy™

1
O]

where A ~ B means that the ratio A/B approaches 1 as T — oo and N runs over

connected components of M.
Taking suitable ratios in Proposition[10] for manifolds M and M’ yields

reg(M).reg(M}) N (det’(2R’/T2)) ) 1/2
reg(Mr).reg(M’) det'(2R/T?)
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where R is the residue of ¥ at s = 1 and det(A) is the product of nonzero eigenvalues

of A.

4.3.2 Proof of Theorem[21]

Fix two truncation parameters T,7" (0 < 7" < T). Let K(x,y;t) be the heat kernel
of j—forms on M and k,(z) := K(z,z;t). Similarly define Ky, kyp for Mp. Set
koo(x) = limy_, o0 kt(x). Define koo 1 as for kyp. Similarly define K', k', k. for M’ and
Ko, ki, kil 1 for M.

Set 0;(x) = (ki(x) —ker(2)) for x € My, with My seen as a subset of M. Similarly
define ¢;.

Set

]j(T, t) = (tr*@_tAM —tr e—tAMT) _ (tT*e_tAM/ —tr e_tAMé“)7

where Laplacians are taken on j—forms and [;(7, 00) := limy_,o, [;(T, t)
Writing 1,(T,t) := %ij(—l)Hle(T, t), one can see that the part concerning

the analytic torsion in Theorem|21] is

_d%!s:or(s)l /OOO([*(T, t) — I(T, Oo)ﬁs%

For some j, write [;(7',t) = I(T,t). Then the discussion in section 4.1.2 gives

](T,t):/MT/ 5t(x)—/M 5(x)

!
T!

n /M (he() — K@) — (k) — K p(2))) (4.6)

(7/,7]

+ [ (ko) = ki),
Cr
We get (T, 00) by putting k., for k; everywhere.

lim tr*e_tAM _ bo = dim H()(M, (C) j = 0, 3
=00 dim H;,(M, C) j=1,2
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and lim,_, tr e *Mr = dim H;(Mr,C)). Similar results hold for M’ M}.. Now,

+ dim Hy (OM) j=1

dim H,;(M,C) — dim H,,(M,C) =
dim Hy(OM) — by(M) j = 2.

Now boundaries OM and OMy are homotopy equivalent. Thus I(7,00) = 0 for
Jj#2,3. We get

(log T +7)(bo(M) — bo(M"))  j=2,3
0 7=0,1.

d (" B
Sl [ (o) -

The functions v; are real analytic away from a discrete set of points. Also, by (1.46)
—v, = —dv;/dt is bounded below whenever differentiable. If v; is an eigenvalue

1

corresponding to \; = ™, then

)\, _ i<A/’Ui, Uz’>
<Uiav’i>

(2

where A\, = d\;/dt. Now iv] = N,/ \; = i% implies that —v] = (—(A"/A)v;, v;) /] |vi] |-

This is bounded below (By (1.46)). Note that

> v =tr(—A'JA) = —(det A)'/ det A.

We claim that for any fixed B > 0,

B
lim [ I(T, t)% =0.

T—o00 0

Proving this involves seeing that each of the the integrands in (4.6) is uniformly

approaching zero as T" — oo.



CHAPTER 4. ANALYTIC TORSION AND REIDEMEISTER TORSION 58

By (4.5), we see that

(log 7r(M) — logp(Mr)) — (log Tr(M') — log Tr(Mr)

1 , (4.7)
+ =(log det(T’2R) —logdet(T2R')) — 0,

[\)

where R, R are residues of scattering matrices ¥ and W’ for M, M’ respectively.

For t € [B, o0), thus, showing that

d S dt

_%ls OF( ) /B ([*<T7 t) - I*(Tv OO))t 7
%(log det(T2R) — log det(T2R')) — —%(logB ) (bo(M) — bo(M"))

(4.8)

as T — oo proves Theorem[21].
Now each term of I;(T',t) can be written as a summation of e=* over eigenvalues
of j—forms on one of M, My, M’, and M. We define If to be the restriction of these

summations to co-closed forms. This is helpful as via

one can reduce the analysis of (4.8) to co-compact case.

Suppose N (x) is the number of eigenvalues on co-closed 1—forms on My in (0, 2%].
Suppose the eigenvalues are 0 < A; < Ay.... Define N5, as the number of eigenval-
ues of co-closed cusplidal 1—forms on M.

Set an "error term” as

4xh7"el log T — Z?:1 Vi (I‘)
2w '

(4.9)

Writing w(s) := det(®(—s)P"(s)), it is easy to see that w(s)w(—s) = 1 and thus,
w'/w is an even function.

By Lemma[12](1) and Theorem[22], E(x) is bounded when = < T),..(T), Tp for
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some Ty. Indeed
X+1
4xlogT —
/ Z{ BTN < ae) (4.10)
X

for some absolute constants a,b whenever X < T,,,,. Here {-} is the fractional part

function.

Ze_)‘it :/ e " tAN (z)

N0 0

:(a)/ N(z).2zte ™ dx
0

—V; 1 [~ ! dN,
=) Z i(0) + —/ P (4hype log T — i(z:c) + 2r——2)dx
2m 2m Jo dx (4.11)

+ E(z) 2ate™™"
0

o0
=) o /Oo e e 2hTellogT—; i) —1—2

A£0

+/ E(z) 2axte™".

0

In (4.11), equality (a) is integration by parts. Equality (b) is by expanding N (x) via
(4.9). Equality (c) uses the facts that ;(0) = 0 for every 7 (follows from (1.46) and
(1.47)) and that w'/w is even.

To proceed further, we need the following lemma

Lemma 13. Suppose I is an open interval in R and m be a monotonically increasing
piecewise differentiable function I — (—1/2,1/2) so that m’' € [A, B] where B—A > 1.
Suppose f: 1 — R is smooth and |f|+ |f'| < M for some constant M. Then

/f BAA

In view of (4.11) and its analogue for M., with E’(x) as the error term for M7,
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we may write [ (I¢(T,t) — I{(T, 00))dt/t as

/oo(/ooo E(x) — E'(z))2ze " tdadt = 2/OOO(E(x) B () Bdrjr. (412)

B

Fix 0 < e < 1. We estimate the right hand side of (4.12) by splitting the integral

into
1 1

U
100 logT) 00 log T’

[07 6) U [67 Tma:v) U [Tmaxa OO)

— The integral fTi’;M: It is easy to see by the definition that E(z) — E'(z) is
bounded by a polynomial in x, with coefficients that have at worst, polyno-
mial growth in logT". Now, meM e ’B decays faster than any polynomial

in logT'.

— The integral in [€, T},42 |, under the approximation for F(z)(equivalently E'(x))
given by (4.10) looks like

/T 7T Z {491; logT iy

upto an exponentially small error.

Split the integral as a unioncup(a;, a;1)so that {261} lies in (—1/2,1/2)
as x goes from a; to a;41). The number of such intervals in O(T,q, logT).
An application of Lemma[13] gives that the integral is O(()~'/?), depending

on € and B.

1
_ 100log T 1
For |, , note that, for v < 55—

|E(x) — E'(z)] < Z il + ;]

from definition of E(z) and the fact that M has no cuspidal eigenvalues
and My has no eigenvalues 2 for this range of . Now, in this interval,
v;i(z)/x is bounded and independent of T'. Thus, the integral is bounded by
O((log T)~72).
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— We are left with [© ;. Due to (4.10) it suffices to bound

100 log T

’Z{@clogT 1/1} Z{4xlogT }‘

1
1001log T

To bound this, it is enough to consider the greatest integer function instead
of the fractional part function in the above integral. This is bounded upto

constants by |v;(x)/z|. The integral of |v;(x)/z| is bounded by O(e).
The above bounds show that

& dt
B

T—o0

e (0—forms) Here &~ (—it)®*(it) is replaced by W(it).
e (2—forms) Here, the analysis is a bit different owing to the formulation in Theorem[4.11](4).

The same analysis give above shows that

/ dt(IC(T £) = I3(T, 50)) = o(1) + log det(2T2R) — log det(2T2R’)
T

+ (bo(M) — bo(M"))(log T' + )

as T — oo.

e (3—forms) The coclosed 3—forms are exactly the multiples of the volume form

and have all eigenvalues zero. Hence their contribution is zero.

This proves Theorem[21] and hence the main theorem.



Appendix A

Spectral theory of the Laplacian

operator

Here we analyse the Laplace-Beltrami operator A, which in (z,y,r) coordinates is

0? 0? o 0

20 7 o N
A_T(83:2+8y2+8r2) T@r’

in its natural domain within the Hilbert space L*(T'\H).

A.0.1 Essential self adjointness of A

Let I' < PSLy(C) be discrete. We know that L*(T'\H) is the set of all Borel measur-

able functions f : H — C that are I'— invariant satisfying

[ v < o
f

where F is a fundamental domain of I'. For f, g € L*(I'\H) we have an inner product
(1) = [ foae (A1)

f
We want to define A on an appropriate domain D C L*(T'\H) so as to make it self

62
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adjoint. We know that for a C*—function f, (Af)o M = A(fo M) = Af. Thus Af
is automatically I'— invariant (but not necessarily in L*(T'\H)) and we are motivated

to define the following domains.

Definition 37. Let I' < PSLy(C) be discrete. Define
D= {f € LAT\H) N C2(H)|Af € LA(T\H)}, (A.2)
D> .= {f € L*(T\H) N C*>°(H)|rr(supp(f)) is compact inI'\H}. (A.3)
Here mp : H — I'\H is the natural projection map and supp(f) is the support of f.

Note that D> C D and that D>, D are dense in L?(T'\H). We prove the following

version of partition of unity lemma.

Lemma 14. Let I' < PSLy(C) be discrete. Then there exist C°°—functions with
compact support h, : H — [0,1] for v € N such that 0 < h,, < 1. Furthermore there

are relatively compact open neighbourhoods U, with supp(h,) C U, such that the sets
MU, for M € I';v € N form a locally finite covering of H and

1:ZhVoM.

MeT
veN

That is, there exists a I'—invariant C'>°—partition of unity on H.

Proof. Suppose (U,),en is a family of relatively compact open subsets of H such that
(MU,)mpyerxn is a locally finite open covering of H. Also assume that for every U,,
there exists an open subset V,, with V,, C U, such that (MU,)(mp)erxn is a covering
for H. For every v € N choose a C*°—function g, > 0 such that g,(z) > 0 for all

x €V, and supp(g,) C U,. It is known that such functions exist. Then

g:= > goM

MeT,veN
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is strictly positive, I'—invariant C*°—function on H. Hence h, := g,/g has the re-
quired properties.
To complete the proof, we construct the families (U,) and (V). Consider a fixed

Poincaré polyhedron F and write

Fn=FN B(j’, n) (n>1),

where B(j,n) is the hyperbolic ball centred at j with radius n. Cover F; by finitely
many open hyperbolic unit balls, call them Vj,..., Vi, 1. Proceed inductively as
follows: Suppose for n € N with n > 1, the hyperbolic unit balls Vi,..., Vi 1 are
such that they cover F,. If F,, .1 — F, is empty, set

Vi, =0, Knot = kp + 1.

If F..1 — F, is non empty, cover F,,1 — F, by finitely many hyperbolic unit balls
Vins -5 Vi1—1 such that their centres are in F,,41 — F,. Let U, be the hyperbolic
ball of radius 2 concentric with V,,. Put U, := (0 if V, = (). Then U, and V,, are as

required. O
The elements of D> can be represented as below.

Lemma 15. D> is the set of functions g : H — C such that

g=>Y hoM (A.4)

Mer
where h € C*(H).

Proof. 1t is easy to see that any g of the form (A.4) is in D*°. We prove the other
direction. Let g € D> be given, h, (v € N be as in Lemma[14]. Since 7mr(supp(g)) is
compact in I'\H, there exists a finite F* C N such that

supp(g) N M~ supp(h,) = 0
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foralv e N— F, M € T. Then g.(hyuo M) =0 for allv € N— F, M € I". Thus,

g = Z g nqu ZhOM

MeT veF MeT
where

h —Zgh e C(H).

veF

We give the following result (without proof)

Proposition 11. Let A : D4 — H be an operator defined on a dense subspace D4 of

the complex Hilbert space H. The following are equivalent.
1. A is essentially self adjoint.

2. A is symmetric, and (A+1)Da and (A —1i)Dy4 are dense in H.

We want to show that —A : D — L*(T\H) and —A : D* — L*(I'\H) are

essentially self adjoint. We give the following results first.

Lemma 16. Let f,g € C'(H) and put
Gr(f,g) = TQ(fmgx + fygy + frgr),

where fy, fy, fr are partial derivatives for f in (z,y,r) coordinates. Then

Gr(f,g)oT =Gr(foT,goT)

for all isometries T' on H.
Lemma 17. Let T € PSLy(C) and let h € C'(H) be T—invariant. Then

8h 18h 10h

18 T'—invariant.

(A.5)

(A.6)

(A7)
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Theorem 23. Let I' < PSLy(C) be discrete and let F be a fundamental domain
for T'. Then for all f,g € D Gr(f,q) is '—invariant and v—integrable over F and

satisfies

(“Af.g) = /f Gr(f. g)dv. (A5)

In particular, —A : D — L*(T\H) is symmetric and positive, that is, (—Af,g) =
(f,—Ag), (=Af, f) =0 for every f,g € D.

We prove this result only for groups of finite covolume.

Proof. Firstly, as the statement is independent of choice of the fundamental domain,
choose it to be a Poincaré normal polyhedron if I' is cocompact and FoUMp in case I'
is of finite covolume but not cocompact. where Mp is the union of all cusp ends and
Fo is a compact set (here, a polyhedron). Such choice exists. Denote the fundamental
domain by F. By Lemma[A.5], Gr(f, g) is '—invariant for f,g € D. We are to show
that Gr(f,g) is v—integrable and (A.8) holds. It suffices to show this for f = ¢ as
applying polarisation (alongside Cauchy-Schwarz inequality) gives the desired result.

Let f € D. Consider the I'—invariant differential form
1, - 1, - 1., -
W= ;fxfdy/\drjt;fyfdr/\d:v—l—;frfdx/\dy. (A.9)

We have
dw = (Af) fdv + Gr(f, f)dv. (A.10)

Now, we have, for sufficiently large R

= [ (BN + Gr(f A= / o= / L (A11)

where Fp is F truncated at height r = R.
Now, on 0Fg, the contributions from I'—equivalent pairs are in opposite orienta-
tions and hence cancel out. We are left with the contributions of cross sections at

cusps. Writing Q,(R) := {z + Rj|z € P,}, where P, is a fundamental domain in C
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for the action of B,I',, B, ! on P'C — 0o = C, (1, being a cusp for I" in H) we get

h

J(R) =) /Bu_lguw

nu=1

Writing P = (z,y,r) and BP = P’ = (2/,y,r") and dropping index v we have

R
-1/ Qtwfw’))f@')dﬁdy ) T/:;»
<(/ o (PP 1/2( / o ) " (A12)

1/2 1/2
- ( / Gr(f, f)dv> ( / |f!2dv> |
FIY,R] FlY,R]

where F,[Y, R] := B, '(P, x [Y, R]). Now from Cauchy-Schwarz inequality, we have

FRCKE o [ e f)dv)m\lfH (A13)

If we show limpg_,o J(R) = 0, we are done. This follows if we have

/}_Gr(f, f)dv < oo, (A.14)

Since we’ll have that limg_,o J(R) exists and is finite (f € D) and if this limit is
nonzero, the left hand side of (A.13) is infinite while the right hand side is finite, a
contradiction.

Now, we show (A.14) . Assume the contrary

/ Gr(f, f)dv — 400, R — oc.
r
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Define
d(R) =R J(r)—.

Ro r
Then ¢(R) — oo as R — oo (From (A.11)).
We have R¢'(R) = RJ(R). In (A.11), first term of the right hand side is bounded,

hence, there exist constants ¢ > 0, R; > Y such that

RY(R)=RJI(R) >c | Gr(f,f)dv>0

Fr
for all R > Ry. Thus, ¢/(R) > 0 for all R > R;. From (A.13) we can infer that there
is a constant C' > 0 such that 0 < ¢(R) < C'y/R¢'(R) for all R > R;. Hence s
¢'(R)

1 2
RO (R)2 VR Rl

This implies that

1 1
) e TR

log R —log Ry < C*(

a contradiction to limpg_, ¢(R) is infinite. O

Theorem 24. Let I' € PSLy(C) be discrete. Then the operators

—A:D® — L*(T\H), ~A:D— L*T\H)

are essentially self adjoint and have the same self adjoint extension.

Proof. An essentially self adjoint operator in a Hilbert space has a unique self adjoint
extension. Thus, A with domain D> and A with domain D have the same self adjoint
extension if both the operators are essentially self adjoint. As A is symmetric in both
domains,and D>* C D, we only have to show that (A + ¢)D* and (A — ¢)D*> are
dense subspaces of L*(T'\H). But A has only real coefficients and D> is conjugation
invariant. Hence it suffices to show that (A + 7)D> is dense in L*(T'\H). Let u €
L*(T\H) and assume (u, Af +if) =0 for all f € D*. If we show that u = 0, it will
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imply that the closure of (A +7)D> is L*(I'\H).

Using Lemma[15] any f € D> can be written as

f=>Y hoM (A.15)

Mer
for some h € C*(H). Conversely, for any h € C°(H), (A.15) defines an f € D*.

The sum in (A.15) is finite if the variables range over a compact set. Thus,

Af = (Ah)oM.

Mel

By dominated convergence theorem and I'—invariance of u, we write

0= /; (PSR T i) o M(P)du(P) / WA ¥ D)hdo. (A.16)

Mer H

By assumption this is true for all h € C°(H). By Weyl’s lemma, u is almost every-
where equal to a C?—function. Applying Green’s formula and Stokes’ theorem to a

ball B such that B ¢ H

/ (—Auh — uAh)dv = / Z(U}_l;c — uzh) dy A dr. (A.17)
B oB

r
‘T7y)r

Choosing B such that supp(h) C B, the right hand side of (A.17) vanishes and we

/uA_hdv = /(Au)hdv.
H H

are left with

Thus, from (A.16)
/((A —d)u)hdv =0 VYh € C>(H).
H

Hence, Au = iu. But by Theorem[23] A : D — L*(T'\H) has only real eigenvalues
((AS, f) = (\f, f) <0, thus X is real.) and thus u = 0. O
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Definition 38. Define

A:D — L*T\H) (A.18)
to be the unique self adjoint extension of —A : D*® — L*(T\H) and of —A : D —
L3(T\H).

An element g € L2(I'\H) belongs to D iff there exists a sequence (f,)p>1 in D>
(correspondingly in D) converging to g such that (Af,),>1 converges in L*(T'\H). In

this case,

Ag:= lim Af,.
n—oo

Lemma 18. If f € D is twice continuously differentiable, then f is in D.

Proof. Take an arbitrary g € D> and write ¢ as in Lemma[15] with h € C°(H). Let

F be a fundamental domain of I'. Then,

/f (Af)ado = (Af,g) = (f, Ag) = (f, Ag)

- /Hf(ﬂ)dv:/H(Af)i‘zdv:/fmf)gdu (A.19)

Since g € D™ is arbitrary this implies Af = Af € L*(T\H). ]



Appendix B

Some special values of Eisenstein

series

We choose m = o0 and restrict ourselves to the case P =rj € H, r > 0. Then,

[[cP +d|)* = |d|* +r*|c)* (c,d € o). (B.1)

If r2 € N, then E,(r7j, s) is the following summation

o0 2
. o= (T
E,(rj,s) =r'" E nfﬂ)’ (B.2)

n=1

where a,(r?) is the number of ways of writing n as the sum m? + m2 + r?(m3 + m3)

where my, ..., my are integers. We define for n,k € N

o1(n, k) := Z d. (B.3)

0<d|n,kin

The Dirichlet series associated with (B.3) is

S 2R _ (1= s+ o) (B.4)
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((s) being the Riemann zeta function. For the rest of the section we take K = Q[i],
and thus o = Z[i]

Example 1.

A

Eo(j, 5) = 8(1 = 27)((s)¢(1 + 5). (B.5)

By Jacobi’s four square formula, we have
an,(1) = 801(n,4)

and (B.4) implies the result.

Example 2

Ey(V2),8) = 27 (2(1 — 27%) — (275 — 272))¢(s)C (1 + s). (B.6)

The following result is due to Liouville and Pepin:

do1(n)  nis odd

an(2) = { 801(m) m=1%is odd (B.7)

2401(m) m = 3% is odd, v > 2

v

One can see

. , g (1-279%) —271(27¢ — 27%) =\ 01(2k + 1)
E 2
o(\/_ja ) (1_2 5)(1_2_1_5) kz:% (2]€+1)1+5
and
> o1 = 2k+1
(1 (1—27° — 2 1=yt a2k +1)

Here o1(n) is the usual divisor sum. The result follows.
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