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Abstract

Fluctuations play a crucial role in the operation of small-scale devices, where thermal
and quantum effects significantly influence the efficiency, power output, and stability
of machines. This thesis investigates performance constraints of small-scale thermo-
dynamic machines, focusing on the impact of fluctuations in both autonomous and
non-autonomous setups, as well as in continuous and discrete cycles.

For autonomous absorption refrigerators operating in the linear response regime,
we uncover a hierarchy among the relative fluctuations in the currents associated
with the cold, hot, and work terminals. This hierarchy, established using Onsager
reciprocity and refrigeration conditions, reveals that the tightest bound on cooling
power is governed by the fluctuation of the work current. These universal bounds can
be stricter than those predicted by standard thermodynamic uncertainty relations
(TURs) and converge in the tight-coupling limit. The results are demonstrated
using two models: a four-level system in the weak coupling regime and a two-level
system with strong system-bath interactions.

We then extend our analysis to non-autonomous continuous machines, where
time-reversal symmetry is broken. By symmetrizing the operational regime, we
derive a universal relationship between the relative fluctuations of input and output
currents, even in the absence of Onsager reciprocity. These results are illustrated
with a periodically driven classical Brownian heat engine.

For discrete machines, specifically the quantum Otto cycle, we examine work and
heat fluctuations for asymmetrically driven engines. First, we analyze Otto cycles
with specific working fluids, such as a single qubit and a harmonic oscillator, noting
that unlike continuous machines, these cycles lack a well-established linear response
formalism. We establish bounds on non-equilibrium fluctuations for both engine and
refrigerator regimes, revealing distinct relationships between the fluctuations of work
and heat in different reservoirs compared to continuous machines. Additionally, we

xii
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derive generalized thermodynamic uncertainty relations (GTURs) for the qubit-Otto
cycle, which remain valid even under far-from-equilibrium driving.

Finally, we develop a rigorous linear response framework for generic Otto cycles
using the Schwinger-Keldysh nonequilibrium Green’s function (NEGF) technique.
This approach uncovers that the fluctuation-dissipation relation (FDR) for the work
current breaks down in the quantum domain due to external driving, while it re-
mains valid for heat. This leads to important consequences for fluctuation bounds
and thermodynamic performance in different operational regimes (engine and re-
frigerator). The violation of the work-FDR in the Otto cycle explains the observed
differences in fluctuation bounds between discrete and continuous machines.
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1

Introduction

Thermodynamic machines have profoundly shaped modern society—from the steam
engines of the Industrial Revolution in 1760 to the internal combustion engines that
power modern automobiles, and the advanced refrigeration systems and everyday
devices we often take for granted. Converting energy from one form to another,
these machines power the very infrastructure of contemporary civilization.

Traditionally, thermodynamics provides a framework for understanding energy
conversion in terms of bulk or macroscopic properties of systems by focusing pri-
marily on averages or mean values of thermodynamic quantities [1–4]. However, in
recent decades, technological advancements have opened new frontiers, where the
principles of thermodynamics are no longer confined to large-scale systems. Today,
we possess the capability to fabricate thermodynamic machines at the mesoscopic
scale, where quantum effects and stochastic fluctuations become crucial. These
small-scale thermal machines–realized in experimental platforms such as quantum
dots, molecular junctions, optomechanical systems, cold atoms, NV centers, and
NMR setups–demand a reassessment of traditional assumptions of thermodynamics
[5–27]. The inherent randomness dominates at this scale because the system is
open—interacting with an environment (e.g., a heat bath) whose microscopic de-
tails are unresolved, leading to unpredictable energy exchanges. Quantum mechan-
ics introduces additional uncertainty; for instance, conjugate variables cannot be
measured precisely simultaneously. Thus, fluctuations—not just averages—govern
behavior.

1
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Cold
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driving

Hot
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driving

Continuous Discrete

Figure 1.1: Schematic for (Left) Continuous machine: A working medium (S) cou-
ples simultaneously to multiple baths (B1, B2, B3), with an optional external drive
(faded arrow) for non-autonomous operation, and (Right) Discrete machine: The
working medium alternates between hot and cold reservoirs through driven expan-
sion/compression strokes, requiring mandatory external control (solid arrow).

Over recent decades, new disciplines such as stochastic thermodynamics and
quantum thermodynamics have emerged [28–44], which incorporate fluctuations into
their theoretical frameworks. One of the central themes of these disciplines is to un-
derstand and quantify how random variations in energy and particle flows influence
the performance of nanoscale thermal devices [33, 42, 45–63]. Moreover, thermal and
quantum fluctuations can either enhance or hinder performance, so understanding
them is essential for developing a comprehensive theory of nanoscale thermodynam-
ics and for designing devices that operate reliably in fluctuating environments [10,
17, 26, 64–71].

This thesis focuses on deriving bounds on the performance of a wide class of
small-scale thermal machines, with fluctuations serving as a central theme of our
analysis. A generic thermal machine typically consists of a working medium, heat
and/or particle reservoirs, and a work source that drives energy consumption or
extraction. In general, regardless of the underlying dynamics, thermal machines
can be broadly classified into two categories [72, 73] (see Fig. 1.1):

(i) Continuous thermal machines–where all components are coupled to the
working medium simultaneously, allowing the machine to operate in a nonequi-
librium steady state (NESS). Examples include thermoelectric setups, work-
to-work converters, and absorption refrigerators.
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Figure 1.2: Schematic for different operational regimes of a generic thermal machine.

(ii) Discrete thermal machines–where not all components are coupled to the
working medium simultaneously. Instead, the machine operates in a limit-
cycle, as exemplified by different thermodynamic cycles such as Carnot, Otto,
Stirling, Brayton, and Diesel cycles.

A thermal machine, whether continuous or discrete, operating between two heat
reservoirs (hot and cold) and a work source (which could be an external drive or
another heat bath), can operate in four distinct regimes, dictated by the first and
second laws of thermodynamics. We follow a sign convention where energy entering
the working medium is positive, and define the average heat and work fluxes as
〈jh〉, 〈jc〉 and 〈jw〉, which correspond to the hot reservoir, cold reservoir, and work
source, respectively. Each of these fluxes can, in principle, take positive or negative
values, giving 23 = 8 possible sign combinations. However, the first and second law
of thermodynamics allow four permissible operational regimes [74, 75] (see Fig. 1.2):

Table 1.1: Operational Regimes of a Thermal Machine

Operational Regime Sign Convention for Fluxes

Engine 〈jh〉 > 0, 〈jc〉 < 0, 〈jw〉 < 0

Refrigerator 〈jh〉 < 0, 〈jc〉 > 0, 〈jw〉 > 0

Pump 〈jh〉 < 0, 〈jc〉 < 0, 〈jw〉 > 0

Accelerator 〈jh〉 > 0, 〈jc〉 < 0, 〈jw〉 > 0

These regimes describe the various ways energy can be transferred between the
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reservoirs and the work source. The most widely studied types of machines are
engines and refrigerators, and in this thesis, we focus our discussions primarily on
these two operational modes.

1.1 Background
Thermodynamic machines operate in nonequilibrium conditions. Although equi-

librium thermodynamics has a well-established and elegant structure, much less is
known about universal laws governing nonequilibrium systems or processes, which
are ubiquitous in nature. In fact, over the last two decades, the development of
stochastic thermodynamics has substantially enriched our understanding of the ther-
modynamic structure of nonequilibrium mesoscopic systems. Below we describe
some of the key discoveries made by stochastic thermodynamics.

1.1.1 Fluctuation-Dissipation theorem

Small systems are susceptible to fluctuations. The universal fluctuation-
dissipation relation (FDR) states that the response of a mesoscopic system, initially
prepared in thermal equilibrium, to external perturbations near equilibrium is di-
rectly related to its intrinsic equilibrium fluctuations in the absence of perturbation
[76–91]. The first antecedent of this fundamental theorem was provided indepen-
dently by Sutherland [92, 93], Einstein [94] and Smoluchowski [95] over a century
ago, demonstrating that (the Einstein version), in the presence of an external force,
the mobility µ of a Brownian particle (dissipation) is related to its diffusion con-
stant D (fluctuation), D = µkBT . Another significant finding in line with the FDR
emerged in 1928 from Johnson and Nyquist, who showed that the resistance (dissi-
pation) of a circuit is related to the current fluctuations in the absence of a voltage
bias [96, 97]. However, a formal proof of the FD theorem came in the 1950s through
the work of Callen and Welton [76], and was further expanded by Green and Kubo
[77–80].

1.1.2 Linear Response theory

In the 1930s, Lars Onsager developed his theory of linear response, showing that
under small nonequilibrium constraintsAα—also known as thermodynamic affinities
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or biases—the thermodynamic fluxes 〈jα〉 can be expressed as linear expansions of
these biases, allowing the formulation of the linear equation [98, 99]

〈jα〉 =
∑
γ

LαγAγ. (1.1.1)

The matrix L, known as the Onsager matrix, contains the transport or response
coefficients, Lαγ = ∂Aγ〈jα〉

∣∣
{A}=0

. In his seminal work, Onsager established that
when time reversal symmetry is preserved, the Onsager matrix is symmetric, leading
to the famous Onsager reciprocity relation, Lαγ = Lγα. Moreover, positivity of
entropy production, 〈σ〉 =

∑
α,γ LαγAγAα ≥ 0, asserts that L is positive semi-

definite,

Lαα ≥ 0, and det(L) ≥ 0. (1.1.2)

The FD theorem, furthermore, connects these response coefficients to equilibrium
fluctuations [88–91, 100–103] (a detailed proof is given in the formalism section
1.2.3),

2Lαγ = 〈〈jαjγ〉〉. (1.1.3)

1.1.3 Fluctuation theorems

One of the most significant achievements of stochastic thermodynamics is the
discovery of the fluctuation theorems (FTs), which have substantially extended our
understanding of non-equilibrium fluctuations beyond the linear response regime
[104–123].

Within the framework of stochastic thermodynamics, a system evolves along
random trajectories through its phase space (in classical systems) or state space (in
systems with discrete states) [44, 115]. These trajectories represent the microscopic
evolution of the system under the influence of both deterministic forces (arising
from potentials or external fields) and stochastic forces (such as thermal noise).
To each trajectory, one can consistently assign thermodynamic quantities such as
energy, entropy, work and heat [115, 117]. For every forward trajectory Υ, there is
a corresponding time-reversed trajectory Υ̃, where the system evolves backward in
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time with time-reversed forces and initial conditions. The universal FTs compare
the probability of a trajectory producing heat, work, or entropy to that of its time-
reversed counterpart absorbing the same quantities. One such example is

PΥ(∆stot)

PΥ̃(−∆stot)
= e∆stot , (1.1.4)

where PΥ(∆stot) represents the probability of total entropy production ∆stot along
the forward-trajectory Υ. In general, FTs take the form [36, 124]:

Pf (x)

Pr(−x)
= eαx (1.1.5)

where α is a real constant related either to the equilibrium properties of the system’s
initial state or to nonequilibrium constraints determining a NESS. Pf (x) and Pr(x)

denote the probabilities of observing a given quantity x along the forward and the
backward/reverse processes, respectively. These relations are known as detailed FTs
[35, 119].

By utilizing the normalization the reverse process probability,
∫
dxPr(x) = 1, we

arrive at integral fluctuation theorems [35, 119], which can be written as

〈e−αx〉 = 1. (1.1.6)

Applying Jensen’s inequality, 〈eX〉 ≥ e〈X〉, leads to a second law-type inequality:
〈αx〉 ≥ 0. The integral FTs are considered a major breakthrough in modern ther-
modynamics, as they refine traditional second law inequalities into equalities.

In addition to the general form of the fluctuation theorems presented, several
specific FTs have been pivotal in shaping our understanding of nonequilibrium ther-
modynamics. For instance, the Jarzynski equality [104, 105] links nonequilib-
rium work to equilibrium free energy changes, while Crooks FT [106, 107] pro-
vides a detailed relationship between forward and reverse work distributions. The
Evans–Searles FT [108] highlights the probabilistic nature of entropy production
during transient processes, and the Gallavotti-Cohen FT [112] extends this to
systems in NESS, establishing a relationship between entropy production and its
fluctuations. The Hatano-Sasa FT [110] refines the second law for systems driven



Chapter 1: Introduction 7

between nonequilibrium steady states, quantifying the excess entropy produced dur-
ing these transitions. These theorems provide a robust framework for understanding
fluctuations across a wide range of nonequilibrium processes.

However, the problems discussed in this thesis are primarily quantum in nature.
Extending the trajectory-based derivations of FTs to the quantum regime is not
straightforward for several reasons: (i) the lack of a clear trajectory picture in
quantum systems, and (ii) the difficulty in defining quantities like work and heat,
due to the noncommutative nature of quantum operators at different times. Despite
these challenges, the two-time projective measurement (TPM) scheme has proven
useful in obtaining probability distributions for fluctuating quantities in quantum
systems, leading to various quantum FTs [35, 125–128]. We will explore this issue
in more detail in the formalism section 1.2.2.

1.1.4 Thermodynamic Uncertainty Relations

Another crucial discovery of Stochastic thermodynamics is the Thermodynamic
Uncertainty Relations (TURs), introduced relatively recently [129–131]. The TURs
establish a fundamental trade-off between the precision of a thermodynamic current
and the associated dissipation [42, 43, 129–144]. Precision is quantified by the rela-
tive fluctuation of a current, defined as the ratio 〈〈j2

α〉〉
/
〈jα〉2, where 〈jα〉 is the mean

current and 〈〈j2
α〉〉 represents the variance, or fluctuation around this mean value.

Dissipation, on the other hand, is given by the average total entropy production
rate 〈σ〉. The TUR, proposed by Barato and Seifert [129], is stated as

〈σ〉 〈〈j
2
α〉〉
〈jα〉2

≥ 2kB ∀α. (1.1.7)

Here, we explicitly show the Boltzmann constant kB for dimensional clarity.
Throughout this work, we set kB = 1, unless otherwise noted. This inequality
was first derived in the context of biochemical networks [129], and later rigorously
proved using large deviation theory [130, 145]. However, this traditional form of
the TUR has limited applicability, as it assumes the system follows continuous-time
Markovian dynamics and operates in or near a NESS [145, 146]. Importantly, in the
linear response regime–when time reversal symmetry is preserved–the original TUR
inequality (1.1.7) holds [132].
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In recent years, substantial efforts have been made to generalize the TURs to
various contexts, such as discrete-time Markov chains [147, 148], Bayesian networks
[149], deterministic chemical reaction networks [150], first-passage times [151, 152],
finite-time statistics [145, 146, 153, 154], periodically driven systems [155, 156], mea-
surement and feedback control [157–159], broken time-reversal symmetric systems
[160], active matter systems [161, 162], and quantum Markovian dynamics [143,
163]. Particularly, the fluctuation theorems have been shown to impose bounds on
precision by involving exponentiated entropy production [133–136],

〈〈j2
α〉

〈jα〉2
≥ 2

e〈σ〉 − 1
. (1.1.8)

1.2 Formalism

1.2.1 Two-time projective measurements and Full Counting

Statistics

We consider a isolated system, possibly driven, initialized at ρ(0). Its dynamics
is governed by von Neumann equation:

d

dt
ρ(t) = −i[H(t), ρ(t)]. (1.2.1)

The formal solution is given by

ρ(t) = U(t, 0)ρ(0)U †(t, 0), (1.2.2)

where the unitary propagator is

U(t, 0) = T+ exp
[
− i

~

∫ t

0

H(t′) dt′
]
. (1.2.3)

Here, T+ is the time-ordering operator that arranges the operators from left to right
with decreasing time.

Let O(t) be an observable of interest in the Schrödinger picture. The explicit
time dependence in O(t) solely originates from an external driving. The operator
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O(t) in its eigenbasis can be written as

O(t) =
∑
ot

ot|ot〉〈ot| =
∑
ot

otΠot , (1.2.4)

where ot are the instantaneous eigenvalues and Πot = |ot〉〈ot| are the projection
operators.

(I) The first projective measurement of O(t) occurs at t = 0. According to the
measurement postulate of quantum mechanics, the possible outcomes of this
measurement come from the set of eigenvalues {o0} of the operator O(0). The
probability of obtaining an outcome o0 is given by

P (o0) = Tr[Πo0ρ(0)Πo0 ]. (1.2.5)

The post-measurement state will be an eigenstate of O(0)

ρ′(0) =
Πo0ρ(0)Πo0

Tr[Πo0ρ(0)Πo0 ]
(1.2.6)

(II) The post-measurement state ρ′(0) is then allowed to evolve according to (1.2.2)
up to time t when a second projective measurement of O(t) is performed.
The outcome of this second measurement will be an eigenvalue of O(t). The
conditional probability of obtaining ot given that the first outcome was o0 is
given by

P (ot|o0) = Tr
[
ΠotU(t, 0)ρ′(0)U †(t, 0)Πot

]
(1.2.7)

From (1.2.5) and (1.2.7) we construct the joint probability to measure o0 at time 0

and ot at time t as

P (ot; o0) = P (ot|o0)P (o0)

= Tr
[
ΠotU(t, 0)Πo0ρ(0)Πo0U

†(t, 0)Πot

]
. (1.2.8)

From now on, we will consider the case [ρ(0), O(0)] = 0.
The probability distribution (PD) for the difference ∆o = ot − o0 between the
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outputs of the two consecutive measurements is given by

P (∆o) =
∑
o0,ot

δ{∆o− (ot − o0)}P (ot; o0) (1.2.9)

The characteristic function (CF) is given by the Fourier transformation of the PD
in (1.2.9),

G(χ) =

∫
d(∆o) eiχ∆o P (∆o)

=
∑
o0,ot

eiχ(ot−o0)P (ot; o0)

=
∑
o0,ot

eiχ(ot−o0) Tr
[
U †(t, 0)ΠotU(t, 0)Πo0ρ(0)Πo0

]
=
∑
o0,ot

Tr
[
U †(t, 0)Πote

iχO(t)U(t, 0)e−iχO(0)Πo0ρ(0)Πo0

]
= 〈eiχOH(t)e−iχO(0)〉ρ(0), (1.2.10)

where OH(t) = U †(t, 0)OU(t, 0) is the observable O in the Heisenberg picture, and
χ is known as the counting field. To reach the final form of the characteristic
function (CF) in (1.2.10), we utilized the properties of the projection operators (i)
Π2
o0,t

= Πo0,t , (ii)
∑

o0
Πo0 =

∑
ot

Πot = 1, and (iii) [ρ(0),Πo0 ] = 0.

The Full Counting Statistics (FCS) framework allows us to analyze the com-
plete probability distribution of the observable ∆o, capturing not only the average
quantities but also the higher-order moments and fluctuations. The characteristic
function G(χ) serves as a generating function for these moments. Specifically, the
nth moment 〈∆on〉 of the distribution P (∆o) is obtained via

〈∆on〉 = (−i)n ∂
n

∂χn
G(χ)

∣∣∣
χ=0

(1.2.11)

However, to describe the fluctuations more effectively, it is convenient to work with
the cumulants rather than moments. The cumulant generating function (CGF) is
defined as the natural logarithm of the CF, lnG(χ). The nth cumulant 〈〈∆on〉〉 is
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then given by

〈〈∆on〉〉 = (−i)n ∂
n

∂χn
lnG(χ)

∣∣∣
χ=0

(1.2.12)

The first cumulant coincides with the first moment, providing the mean 〈∆o〉. Of
particular interest in this thesis is the second cumulant, or the variance, 〈〈∆o2〉〉 =

〈∆o2〉 − 〈∆o〉2, which quantifies the fluctuations around the mean.

1.2.2 Quantum fluctuation theorems

Time-reversed probability : In the time-reversed evolution, the ‘final’ density
matrix from the forward quantum evolution in (1.2.2) is mapped back to its initial
state. The initial condition of the time-reversed evolution is given by ρ̃(0). It
is important to avoid the assumption that ρ̃(0) = ρ(t) because the initial state
of the reverse process depends on the specific physical scenario being considered.
This distinction will be clarified at the end of this section, and also with particular
physical scenarios in the subsequent subsections: such as when work is performed
on an isolated system initially in a thermal state, or when heat and matter are
exchanged between systems initially prepared in product equilibrium states.

The evolution of the system in the reverse process is described by ρ̃(t) =

Ur(t, 0)ρ̃(0)U †r (t, 0), where Ur(t, 0) = ΘU †(t, 0)Θ† with Θ being the antiunitary time
reversal operator. Additionally, we will consider the case where [O(t), ρ̃(0)] = 0,
ensuring the same compatibility between the observable and the initial condition of
the reverse process as was assumed for the forward process above.

The joint PD for measuring ot at time 0 and o0 at time t in the reverse process
is denoted by Pr(o0; ot). In the previous section, while we discussed two-point mea-
surements and joint probability distributions, we did not explicitly associate them
with the forward process. To clarify, we now designate those quantities as part of
the forward process by adding the subscript f .

Similar to the forward evolution, we define the probability to measure the differ-
ence ∆o = o0 − ot between the two successive measurements in the reverse process
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by

Pr(∆o) =
∑
o0,ot

δ{∆o− (o0 − ot)}Pr(o0; ot), (1.2.13)

which we refer to as the time-reversed probability. The Fourier transform of this
probability distribution yields the time-reversed CF:

Gr(χ) =

∫
d(∆o) eiχ∆o Pr(∆o)

=
∑
o0,ot

e−iχ(ot−o0)Pr(o0; ot). (1.2.14)

General quantum FT : We define the associated irreversible entropy change
for the forward process as

Ξf (ot; o0) = ln
Pf (ot; o0)

Pr(o0; ot)
= ln

〈o0|ρ(0)|o0〉
〈ot|ρ̃(0)|ot〉

, (1.2.15)

and for the reverse process as

Ξr(o0; ot) = ln
Pr(o0; ot)

Pf (ot; o0)
= −Ξf (ot; o0) (1.2.16)

These results follow from (1.2.8) by noting that (i) Joint probabilities factorize
as Pf (ot; o0) = Pf (ot|o0)P (o0) and Pr(o0; ot) = Pr(o0|ot)P (ot); (ii) Microreversibility
ensures Pf (ot|o0) = Pr(o0|ot), reducing the entropy production to the logarithm of
ratio of initial probabilities.

Similar to (1.2.9) and (1.2.13), we define the probabilities

Pf (Ξ) =
∑
o0,ot

δ{Ξ− Ξf (ot; o0)}Pf (ot; o0) (1.2.17)

Pr(Ξ) =
∑
o0,ot

δ{Ξ− Ξr(o0; ot)}Pr(o0; ot) (1.2.18)

This leads to the detailed fluctuation theorem

Pf (Ξ) =
∑
o0,ot

δ{Ξ− Ξf (ot; o0)} eΞf (ot;o0)Pr(ot; o0)
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= eΞ
∑
o0,ot

δ{Ξ + Ξr(o0; ot)}Pr(o0; ot)

= eΞ Pr(−Ξ), (1.2.19)

or equivalently

Pf (Ξ)

Pr(−Ξ)
= eΞ. (1.2.20)

From this detailed FT (1.2.20) we can derive the integral FT,

〈e−Ξ〉f = 1, (1.2.21)

which, according to Jensen’s inequality, leads to a second law-type inequality 〈Ξ〉f ≥
0.

It should be noted that the FTs expressed in equations (1.2.20) and (1.2.21) are
physically meaningful only if the quantity Ξ is a measurable physical observable. In
this context, the assumptions [O(0), ρ(0)] = 0 and [O(t), ρ̃(0)] = 0 play a crucial
role. For example, under these assumptions, we find that

〈Ξ〉f =
∑
o0,ot

Ξf (ot, o0)Pf (ot, o0)

=
∑
o0,ot

ln
〈o0|ρ(0)|o0〉
〈ot|ρ̃(0)|ot〉

|〈ot|U(t, 0)|o0〉|2〈o0|ρ(0)|o0〉

=
∑
o0

〈o0|ρ(0)|o0〉 ln 〈o0|ρ(0)|o0〉 −
∑
ot

〈ot|ρ(t)|ot〉 ln 〈ot|ρ̃(0)|ot〉

= Tr[ρ(0) ln ρ(0)]− Tr[ρ(t) ln ρ̃(0)]

= Tr[ρ(t){ln ρ(t)− ln ρ̃(0)}]

≥ 0, (1.2.22)

which is recognized as the Kullback-Leibler divergence, or relative entropy, between
ρ(t) and ρ̃(0). Since relative entropy is always non-negative, this ensures the second
law of thermodynamics is satisfied.
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Crooks FT and Jarzynski equality

The stochastic work done on an isolated driven quantum system, initialized at a
thermal state with respect to inverse temperature β, is determined by measuring
the energy of the system H(t) at the initial time t = 0 and then at the final time
t, yielding w = Et − E0. In this context, the observable O(t) coincides with H(t).
The initial density matrices for the forward and the reverse processes are given by

ρ(0) =
e−βH(0)

Tr[e−βH(0)]
= e−β[H(0)−F (0)] and ρ̃(0) =

e−βH(t)

Tr[e−βH(t)]
= e−β[H(t)−F (t)],

(1.2.23)

where the free energy F (t) = −β−1 lnZ(t)and the partition function is Z(t) =

Tr[e−βH(t)]. Given that [H(0), ρ(0)] = 0 and [H(t), ρ̃(0)] = 0, the CF corresponding
to the work-PD is is derived from (1.2.10),

G(χ) = 〈eiχHH(t) e−iχH(0)〉ρ(0) (1.2.24)

Additionally, from (1.2.15), we can identify

Ξf (Et;E0) = β[(Et − E0)−∆F ] = βwd, (1.2.25)

where, the free energy difference is ∆F = F (t)−F (0), and wd = w−∆F represents
the dissipated work. The Crooks FT [106, 107] follows from (1.2.20),

Pf (+βwd)

Pr(−βwd)
= eβwd . (1.2.26)

This relation can be reformulated in terms of the total work w [126],

Pf (+w)

Pr(−w)
= eβ(w−∆F ). (1.2.27)

The corresponding integrated FT, as presented in (1.2.21), is known as the Jarzynski
equality [104, 125, 128],

〈e−β(w−∆F )〉f = 1, (1.2.28)
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Furthermore, by applying Jensen’s inequality, we obtain a second law-type inequal-
ity: 〈w〉f ≥ ∆F . Note that for a cyclic process, where ∆F = 0, this result reduces
to the standard Kelvin statement of the second law.

Quantum exchange FT

We consider a system with the total Hamiltonian H = HA + HB + V , where the
total system is partitioned into two subsystems A and B, and V represents a weak
interaction between them. No external driving is present. The energy EA and the
number of particles NA of subsystem A are measured at times 0 and t. Initially,
both subsystems are assumed to be in grand canonical equilibrium, with βi and µi
being their respective inverse temperatures and chemical potentials (i = A,B). The
initial density matrix for both forward and reverse processes is given by:

ρ(0) = ρ̃(0) =
e−βA(HA−µANA)

Tr[e−βA(HA−µANA)]
· e−βB(HB−µBNB)

Tr[e−βB(HB−µBNB)]
. (1.2.29)

This assumption is valid when the interaction V is initially negligible. At time t = 0,
the first measurement is performed, then the interaction V is turned on, allowing
for energy and particle exchange between the subsystems. After evolving under the
total Hamiltonian H for a time t, the interaction V is turned off, and the second
measurement is made.

In the absence of interaction, the particle numbers in each subsystems are con-
served, allowing simultaneous measurement of energy and particle number. When
measuring both subsystems, the joint PDs for the forward and reverse processes are:

Pf (Φ
{A,B}
t ; Φ

{A,B}
0 ) = |〈Φ{A,B}t |U(t, 0)|Φ{A,B}0 〉|2〈Φ{A,B}0 |ρ(0)|Φ{A,B}0 〉, (1.2.30)

and

Pr(Φ
{A,B}
0 ; Φ

{A,B}
t ) = |〈Φ{A,B}0 |ΘU †(t, 0)Θ†|Φ{A,B}t 〉|2〈Φ{A,B}t |ρ̃(0)|Φ{A,B}t 〉

= |〈Φ{A,B}t |U(t, 0)|Φ{A,B}0 〉|2〈Φ{A,B}t |ρ̃(0)|Φ{A,B}t 〉 (1.2.31)

where Φ{A,B} represents the measurement outcomes {EA, NA, EB, NB}. The irre-
versible entropy exchange between subsystems, as follows from (1.2.15), is given



16 1.2. Formalism

by
Ξ[Φ

{A,B}
t ; Φ

{A,B}
0 ] =− βA

[
E0
A − Et

A − µA(N0
A −N t

A)
]

− βB
[
E0
B − Et

B − µB(N0
B −N t

B)
] (1.2.32)

Under the weak coupling assumption, energy conservation holds approximately, al-
lowing the change in energy of each subsystem to be interpreted as heat,

E0
A − Et

A ≈ −(E0
B − Et

B). (1.2.33)

For strong couplings, this interpretation breaks down as system-environment corre-
lations become non-negligible. Additionally, particle number conservation,

N0
A +N0

B = N t
A +N t

B (1.2.34)

holds true.

Using these conservation laws, the entropy production given in (1.2.32) can be
further simplified in terms of the measured quantities EA and NA for subsystem A,

Ξ[Φ
{A}
t ; Φ

{A}
0 ] ≈− (βB − βA)(Et

A − E0
A)− (µAβA − µBβB)(N t

A −N0
A)

=−Ah(Et
A − E0

A)−Am(N t
A −N0

A)

=−Ah∆EA −Am∆NA, (1.2.35)

where ∆EA = Et
A − E0

A and ∆NA = N t
A − N0

A denote the changes in energy and
particle number of subsystem A, and Ah = βB − βA, Am = µAβA − µBβB are
the nonequilibrium constraints for heat and particle exchange, respectively. These
correspond to the thermodynamic affinities in response theory. From this, using
(1.2.20), the detailed fluctuation theorem follows:

P (∆EA,∆NA)

P (−∆EA,−∆NA)
= eAh∆EA+Am∆NA (1.2.36)

The above relation is known as quantum exchange FT [114]. The f and r subscripts
are dropped because the forward and reversed probabilities are identical in this case,
Pf (∆EA,∆NA) = Pr(∆EA,∆NA). Note that, Ah = Am = 0 corresponds to an equi-
librium situation, where the detailed balance P (∆EA,∆NA) = P (−∆EA,−∆NA)
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is satisfied. In terms of CF, the exchange FT is expressed as

G(χh, χm) = G(−χh + iAh,−χm + iAm), (1.2.37)

where χh and χm are the counting fields for heat and matter exchange, respectively.

Steady-state FT

We now present some qualitative arguments to show how the quantum exchange
fluctuation theorem (FT) derived in equation (1.2.36) can be extended to obtain a
quantum steady-state FT for heat and particle exchange between two macroscopic
reservoirs through a mesoscopic system.

To this end, we consider subsystems A and B as macroscopic reservoirs, with
their respective Hamiltonians denoted by HA and HB. The interaction term V now
consists of V = HS +HAS +HBS, where HS represents a finite mesoscopic system,
and HAS and HBS are weak interaction terms coupling the system to reservoirs A
and B, respectively. The energy EA and the number of particles NA of reservoir A
are measured at times 0 and t.

In the t → ∞ limit, the system S is assumed to reach a NESS. Due to the
finiteness of the system S and the weak system-bath couplings HAS and HBS, the
energy and particles lost (or gained) by the reservoir A are transferred to (or lost
from) the reservoir B, with negligible contribution from the system itself. Therefore,
for the total irreversible entropy production, equation (1.2.32) approximately holds:

Ξ[Φ
{S,A,B}
t ; Φ

{S,A,B}
0 ] ≈− βA

[
E0
A − Et

A − µA(N0
A −N t

A)
]

− βB
[
E0
B − Et

B − µB(N0
B −N t

B)
]

+O(Et
S − E0

S) +O(N t
S −N0

S), (1.2.38)

Since energy and particle number conservation approximately hold [cf. (1.2.33) and
(1.2.34)], the irreversible entropy production can be further simplified in terms of
the measured quantities EA and NA for reservoir A [cf. (1.2.35)], leading to

Ξ[Φ
{A}
t ; Φ

{A}
0 ] ≈ −Ah∆EA −Am∆NA +O(Et

S − E0
S) +O(N t

S −N0
S) (1.2.39)
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where ∆EA = Et
A − E0

A and ∆NA = N t
A − N0

A denote the changes in energy and
particle number of reservoir A, and Ah = βB − βA, Ah = µAβA − µBβB are the
nonequilibrium constraints for heat and particle exchange, respectively.

For long times, a universal steady-state FT for the heat and particle currents
emerges, which is independent of system-specific properties [35, 164]:

lim
t→∞

1

t
ln

P (∆EA,∆NA)

P (−∆EA,−∆NA)
= Ah jh +Am jm (1.2.40)

where jh = ∆EA/t and jm = ∆NA/t are the heat and matter fluxes flowing between
the system and reservoir A. The corresponding scaled cumulant generating function
(SCGF), defined as

Q(χh, χm) = lim
t→∞

1

t
lnG(χh, χm), (1.2.41)

satisfies the symmetry relation

Q(χh, χm) = Q(−χh + iAh,−χm + iAm). (1.2.42)

It should be noted that cumulants of steady state currents can be directly computed
from Q(χh, χm) by taking derivatives with respect to the counting fields χh and χm,

〈〈jkhjlm〉〉 =
∂k∂l

∂(iχh)k∂(iχm)l
Q(χh, χm)

∣∣∣
{χ}=0

. (1.2.43)

1.2.3 Linear response and Fluctuation-Dissipation from Fluc-

tuation Theorem

In this section, we provide a straightforward derivation of Onsager’s linear re-
sponse theory using the steady-state fluctuation theorem (FT), leading to Onsager’s
reciprocity relations and the fluctuation-dissipation theorem.

We begin with an abstract formulation of the symmetry relation given by equation
(1.2.42),

QA1,A2(χ1, χ2) = QA1,A2(−χ1 + iA1,−χ2 + iA2), (1.2.44)
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which directly reflects a steady-state FT of the form

lim
t→∞

1

t
ln

PA1,A2(∆I1,∆I2)

PA1,A2(−∆I1,−∆I2)
= A1 j1 +A2 j2, (1.2.45)

where j1 = ∆I1/t and j2 = ∆I2/t are two independent currents and A1, A2 are the
two corresponding nonequilibrium constraints–or affinities. ∆I1 and ∆I2 are the net
amount of charges of type 1 and 2 transferred through the system during time t [cf.
(1.2.40)]. The SCGF Q(χh, χm) in (1.2.44) is defined as

QA1,A2(χ1, χ2) = lim
t→∞

1

t
lnGA1,A2(χ1, χ2)

= lim
t→∞

1

t
ln

∫
d(∆I1)

∫
d(∆I2)eiχ1∆I1eiχ2∆I2PA1,A2(∆I1,∆I2)

(1.2.46)

We note down some important properties of this SCGF:

(i) QA1,A2(0, 0) = 0, arises from the normalization of the probability distribution
PA1,A2(∆I1,∆I2) in (1.2.46).

(ii) QA1,A2(iA1, iA2) = 0, arises from the symmetry relation (1.2.44).

(iii) In equilibrium (i.e. in absence of the affinities) Q0,0(χ1, χ2) = Q0,0(−χ1,−χ2).

(iv) The cumulants of the currents are calculated via via

〈〈jk1 jl2〉〉 =
∂k∂l

∂(iχ1)k∂(iχ2)l
QA1,A2(χ1, χ2)

∣∣∣
{χ}=0

, (1.2.47)

which is abbreviated as

〈〈jk1 jl2〉〉 = (−i)k+l∂kχ1
∂lχ2
QA1,A2(0, 0). (1.2.48)

Differentiating both sides of equation (1.2.44) with respect to counting field χα
(α can take values 1 and 2) and using the definition given in (1.2.46) and the FT in
(1.2.45) yields

∂

∂χα
QA1,A2(χ1, χ2) = − ∂

∂χα
QA1,A2(−χ1 + iA1,−χ2 + iA2), . (1.2.49)
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In the equilibrium limit, this leads to the expected result ∂χαQ0,0(0, 0) = 0, indicat-
ing that, on average, no current flows.

In the small affinity limit (linear response), we can express the average current
as a Taylor expansion:

〈jα〉 = −i∂χαQA1,A2(0, 0)

= −i∂χαQ0,0(0, 0)− i
∑
γ=1,2

Aγ ∂χα∂AγQ0,0(0, 0) +O(A2)

=
∑
γ=1,2

LαγAγ, (1.2.50)

where we identify the response coefficients as

Lαγ = −i∂χα∂AγQ0,0(0, 0). (1.2.51)

The right hand side of the above identity should be interpreted as (i) first, differ-
entiate with respect to Aγ, (ii) then take the limit {A} ≡ {A1,A2} → 0 (iii) next,
differentiate with respect to χα, and (iv) finally, take the limit {χ} ≡ {χ1, χ2} → 0.
Steps (ii) and (iii) are interchangeable.

Now, differentiating equation (1.2.44) with respect to affinity Aγ (where γ = 1, 2)
yields

∂

∂Aγ
QA1,A2(χ1, χ2) =

∂

∂Aγ
QA1,A2(−χ1,−χ2)− i ∂

∂χγ
QA1,A2(−χ1,−χ2). (1.2.52)

The above relation we have exploits the definition of SCGF in (1.2.46) and the FT
in (1.2.45).

Next, we differentiate equation (1.2.52) with respect to χα, while taking into
account (1.2.49), and then we take the limit {χ} → 0:

2
∂2

∂χα∂Aγ
Q0,0(0, 0) = −i ∂2

∂χα∂χγ
Q0,0(0, 0), (1.2.53)

Therefore, we can establish that the response coefficients are symmetric and can be
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expressed as follows:

Lαγ = Lγα =− i ∂2

∂χα∂Aγ
Q0,0(0, 0)

=
(−i)2

2

∂2

∂χα∂χγ
Q0,0(0, 0)

=
1

2
〈〈jαjγ〉〉 (1.2.54)

This concludes our proof.

These results establish the foundational framework for analyzing nonequilibrium
quantum systems in this thesis. The derived fluctuation relations and response coef-
ficients will underpin our investigation of performance bounds for quantum thermal
machines (Chapters 2 to 5) in diverse operating regimes.

1.3 Main Research Questions Addressed

The central aim of this thesis is to quantify the constraints on the performance
of a broad class of small-scale thermodynamic machines by examining fluctuations.
Specifically, we explore how nonequilibrium fluctuations influence the efficiency,
power, and reliability of thermal machines, and provide universal bounds on these
fluctuations. In Chapter 2, we investigate autonomous continuous thermal ma-
chines, focusing on quantum absorption refrigerators with time-reversal symmetry.
In Chapter 3, we extend our study of continuous machines where time-reversal sym-
metry is broken, exemplified by non-autonomous continuous machines, specifically,
a Brownian heat engine. In both cases, we work within the linear response regime
and apply the principles of linear irreversible thermodynamics to derive universal
bounds on fluctuations. In Chapter 4 and Chapter 5, we delve into the study of dis-
crete four-stroke Otto cycles. First, we analyze asymmetrically driven Otto cycles
with specific working fluids such as a single qubit and a harmonic oscillator, noting
that these cycles lack a well-established linear response formalism, unlike continuous
machines. We explore the bounds on fluctuations far from equilibrium, revealing
distinctive behavior compared to their continuous counterparts. In Chapter 5, we
address the absence of a linear response framework for generic Otto cycles by em-
ploying the Schwinger-Keldysh nonequilibrium Green’s function (NEGF) technique.
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This allows us to explain the observed differences in fluctuation bounds between dis-
crete and continuous machines.

Our analysis establishes connections between various proposed bounds, such
as thermodynamic uncertainty relations (TURs), and evaluates their applicability
across different scenarios for both quantum and classical thermal machines.

Key contributions of this thesis include:

• Deriving new bounds on the cooling efficiency and power of a continuous ab-
sorption refrigerator in the linear response regime, with a focus on how fluc-
tuations limit performance.

• Extending these bounds to systems where time-reversal symmetry is broken.

• Investigating a discrete four-stroke Otto cycle with a two-level system and har-
monic oscillator working medium, showing that bounds on fluctuation behave
differently compared to continuous machines.

• Developing a rigorous linear-response formalism for the discrete Otto cycle
using the Schwinger-Keldysh nonequilibrium Green’s function (NEGF) tech-
nique, explaining the distinct behavior of discrete machines compared to con-
tinuous ones.

This work advances our understanding of the performance of nanoscale machines,
providing theoretical insights that may inform the design and optimization of next-
generation thermodynamic devices.

1.3.1 Outline

This thesis is organized as follows:

Chapter 2: We begin with a study of three-terminal quantum absorption refrigerators,
that falls into the category of autonomous continuous machines, operating in
the linear response regime. We derive bounds on cooling power and efficiency
by exploring the hierarchy in current fluctuations. Our analysis relies on the
principles of linear irreversible thermodynamics and Onsager reciprocity. Fur-
thermore, we establish a hierarchy in the TURs of different currents. As a
consequence of this hierarchy, the seemingly independent bounds on cooling
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power derived from the TURs are, in fact, interconnected and follow a similar
hierarchy. Publication related to this project– (iii).

Chapter 3: We extend our study to continuous machines with broken time-reversal sym-
metry, by focusing on non-autonomous continuous machines, specifically Brow-
nian heat engines. The chapter establishes universal bounds on fluctuations
even in the absence of Onsager reciprocity. Crucially, a proper symmetrization
of the operational regime is pivotal for understanding performance limitations.
Publication related to this project– (iv).

Chapter 4: We transition to discrete machines, investigating the quantum Otto cycle with
a single qubit and a harmonic oscillator as working fluids. We consider the
case of broken time-reversal symmetry for the sake of generality. Unlike con-
tinuous machines, these systems lack a robust linear response formalism. We
explore the bounds on fluctuations far from equilibrium and highlight how
these bounds behave differently compared to continuous machines. Addition-
ally, we derived generalized thermodynamic uncertainty relations (GTURs) for
the qubit-Otto cycle valid in far from equilibrium regime. Publication related
to this project– (ii).

Chapter 5: We address the lack of a linear response framework for Otto cycles by sys-
tematically applying the Schwinger-Keldysh nonequilibrium Green’s function
(NEGF) technique. Importantly, we report robust Onsager reciprocity even
when drivings are asymmetric. This is a distinctive feature of the Otto cy-
cle, attributed to the clear separation between the work and heat exchange
strokes. This chapter also explains the observed differences in bounds on fluc-
tuation between discrete and continuous machines, linking them to violation of
the work-fluctuation-dissipation relation due to presence of external drivings.
Publication related to this project– (i).

Chapter 6: Finally, we conclude this thesis with closing remarks and discussing some
future prospects.
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Bounds on performance for autonomous
absorption refrigerators

The second law of thermodynamics forbids spontaneous heat flow from a cold to a
hot reservoir. Refrigerators, however, remove heat from the cold reservoir and dump
heat into the hot reservoir by utilizing external work. The absorption refrigerators
(ARs) are a special type of autonomous cooling system that transfer heat from a
cold reservoir to a hot reservoir, utilizing a third thermal reservoir, often referred to
as the “work reservoir”, instead of relying on a mechanical work source. A typical
autonomous AR is a three-terminal setup that operates in a non-equilibrium steady
state, continuously directing energy flow from the cold (c) terminal to the hot (h)

terminal by absorbing energy from the work (w) terminal [73, 165–182], and there-
fore, fall into the class of continuous thermal machines (see Fig. 2.1). It should be
noted that in order to achieve refrigeration, the temperature of the work reservoir
must be the highest among the three. In other words, the inverse temperatures
(βα = 1/kBTα) of the three reservoirs must follow the sequence βc > βh > βw.

The first useful absorption refrigerator (AR) for industrial applications was real-
ized in the 19th century by the Carré brothers [183, 184]. With rapid advancements
in quantum technologies, intense efforts are now directed toward understanding and
realizing the smallest possible ARs [166–172, 178, 179, 181] that can operate with
maximum cooling efficiency and power by leveraging quantum resources. Various
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Figure 2.1: Schematic for a generic three-terminal quantum autonomous absorption
refrigerator. The inverse temperatures of three reservoirs follow the sequence βc >
βh > βw.

proposals to realize quantum ARs using platforms such as superconducting qubits,
arrays of quantum dots have been put forward [185–188], with one successful exper-
imental implementation using trapped ions achieved very recently [11].

Notably, as the system size shrinks, fluctuations—both quantum and ther-
mal—can significantly impact the performance of thermal machines. In this context,
thermodynamic uncertainty relations (TURs) [42, 129, 130, 132, 134–139, 142–144],
which represent a trade-off between the relative fluctuations of currents (precision)
and the entropy production rate (cost), have provided universal upper bounds on
the performance of thermal machines in terms of current fluctuations. For multi-
affinity-driven thermal machines, it has been demonstrated that TURs for different
currents can impose distinct bounds on output power [42]. However, the relationship
between these different bounds has not been clearly established.

In this chapter, we show that for time-reversal symmetric ARs, the relative fluctu-
ations of the three different currents (cold, hot and work) are not truly independent
but follow a strict hierarchy in the linear response regime. Consequently, the differ-
ent universal bounds on cooling power (i.e., the cold current) derived from TURs
also follow a similar hierarchy. Furthermore, we report novel bounds on both cooling
power and its associated efficiency (quantified as the ratio of cold–to–work currents),
which can be tighter than those derived from the TURs.

We organize this chapter as follows: In section 2.1, we introduce a generic AR
setup and provide a proof for the hierarchy in the relative fluctuations of currents.
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In section 2.2, we discuss the bounds on cooling efficiency and cooling power derived
from the TURs and connect these findings with bounds derived from the hierarchy.
In sections 2.4 and 2.5, we provide numerical results and discuss these bounds for
two paradigmatic quantum AR models.

2.1 Hierarchy in the relative fluctuations of cur-

rents

A generic setup for an autonomous AR consists of a working medium (classical
or quantum) connected to three thermal reservoirs, namely the cold (c), hot (h)

and work (w) reservoirs. The inverse temperatures (βα = 1/kBTα) of the three
reservoirs follow the sequence βc > βh > βw. The average current from reservoir
α is denoted as 〈jα〉, and the fluctuation of current about the mean is denoted by
〈〈j2

α〉〉 = 〈j2
α〉−〈jα〉

2. We adhere to the sign convention: Energy flowing into the
working medium is considered positive. Since, the purpose of an AR is to cool
down the cold reservoir by absorbing energy from the work reservoir and dumping
heat into the hot reservoir, we characterize the refrigeration operational regime as
〈jc〉 > 0, 〈jw〉 > 0 and 〈jh〉 < 0. In this section we will show that the relative
fluctuations of the three different currents, defined as 〈〈j2

α〉〉/〈jα〉
2 for α = c, h, w,

follow a strict hierarchy in the linear response regime,

〈〈j2
c 〉〉
〈jc〉2

≥ 〈〈j
2
h〉〉
〈jh〉2

≥ 〈〈j
2
w〉〉
〈jw〉2

. (2.1.1)

The equality in the above relation corresponds to the tight-coupling limit, i.e., all
mean currents are proportional to each other.

First, we will prove the first inequality in equation (2.1.1). For this, we focus on
the cold and the hot currents, i.e., jc and jh. In the linear response limit, we can
express the currents in terms of the Onsager’s response coefficients as

〈jc〉 = LccAwc + LchAwh ,

〈jh〉 = LhcAwc + LhhAwh ,
(2.1.2)

where Awα = (βw−βα), α = c, h, represent the thermodynamic affinities, defined
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with respect to the inverse temperature of the work reservoir βw, which is set as the
reference in this particular case. Notice that these affinities can be identified from
the expression of average entropy production rate,

〈σ〉 = −
∑

i=c,h,w

βi〈ji〉

= (βw − βc)〈jc〉+ (βw − βh)〈jh〉

=
∑
α=c,h

Awα〈jα〉, (2.1.3)

where, in order to go from first to second line, we used the first law of thermody-
namics,

∑
α=c,h,w 〈jα〉 = 0. We focus on time-reversal symmetric scenario. There-

fore, Onsager raciprocity holds true, i.e., the off-diagonal Onsager coefficients satisfy
Lch = Lhc. To prove the first inequality given in (2.1.1), we consider an alternative
expression 〈jh〉2〈〈j2

c 〉〉 − 〈jc〉
2〈〈j2

h〉〉.

〈jh〉2〈〈j2
c 〉〉 − 〈jc〉

2〈〈j2
h〉〉 = 2Lcc〈jh〉2 − 2Lhh〈jc〉2

= 2(LccLhh − L2
ch)
(
LhhAwh

2 − LccAwc
2
)

= 2 det(L)
(
〈jh〉Awh − 〈jc〉Awc

)
≥ 0. (2.1.4)

Here, in the first line we have used fluctuation-dissipation relation (FDR), 〈〈j2
i 〉〉 =

2Lii, for i = c, h, and for the last line we have used:

(i) The determinant of Onsager matrix is non-negative, det(L) ≥ 0, reminiscent
of second law of thermodynamics,

(ii) In the refrigeration operational regime, 〈jc〉 > 0 and 〈jh〉 < 0, and Awα < 0 for
both α = c and h (since βc > βh > βw). Therefore, both 〈jh〉Awh and −〈jc〉Awc
are positive (non-negative) quantities.

We emphasize that the above argument is independent of the sign convention taken;
e.g., if one chooses the convention that current flowing into the reservoirs be positive,
both the signs of fluxes, 〈jc〉, 〈jh〉, and the (revised) affinities, Aαc ′ = (βα − βw),
α = c, h, will be reversed and as a result the signs of the products 〈jc〉Awc and
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〈jh〉Awh will remain the same. From (2.1.4), we conclude

〈〈j2
c 〉〉
〈jc〉2

≥ 〈〈j
2
h〉〉
〈jh〉2

. (2.1.5)

Notice that the equality in the above relation corresponds to vanishing determinant
of the Onsager’s matrix, which is achieved in the tight-coupling limit (when all mean
currents are proportional to each other).

Next, we prove the second inequality in equation (2.1.1). For this, we take inverse
temperature of the cold reservoir βc as reference and write down the expressions for
average hot and work currents, 〈jh〉, 〈jw〉, up to linear order in affinities

〈jh〉 = L̃hhAch + L̃hwAcw
〈jw〉, = L̃whAch + L̃wwAcw,

(2.1.6)

where Acα = (βc−βα), α = h,w, are the thermodynamic affinities identified from
the expression of total entropy production rate, 〈Σ〉=

∑
α=h,wAcα〈jα〉. The symbol

tilde on the response coefficients indicate that these are now computed with respect
to the affinities Acα (i.e., cold reservoir as reference). Similar to the steps followed
to prove the first inequality in (2.1.1), we will consider an alternative expression
〈jw〉2〈〈j2

h〉〉 − 〈jh〉
2〈〈j2

w〉〉,

〈jw〉2〈〈j2
h〉〉 − 〈jh〉

2〈〈j2
w〉〉 = 2L̃hh〈jw〉2 − 2L̃ww〈jh〉2

= 2(L̃hhL̃ww − L̃2
hw)
(
L̃wwAcw

2 − L̃hhAch
2
)

= 2 det(L̃)
(
〈jw〉Acw − 〈jh〉Ach

)
≥ 0, (2.1.7)

where we used:

(i) The standard FDR, 〈〈j2
i 〉〉 = 2L̃ii, i = h,w.

(ii) The non-negativity of determinant of the onsager matrix, det(L̃) ≥ 0.

(iii) The refrigeration operational regime condition: 〈jh〉 < 0 and 〈jw〉 > 0, and
Acα > 0 for both α = h and w (since βc > βh > βw). Thus, both 〈jw〉Acw and
−〈jh〉Ach are positive (non-negative) quantities.
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From (2.1.7), we conclude

〈〈j2
h〉〉
〈jh〉2

≥ 〈〈j
2
w〉〉
〈jw〉2

. (2.1.8)

It is important to note that the above inequality is valid independent of the direction
of current from the cold reservoir, as in this case, imposing the conditions 〈jh〉 < 0

and 〈jw〉 > 0 does not fix a definite direction for 〈jc〉. Therefore, this particular
inequality concerning the work and hot currents, as given in equation (2.1.8), is valid
even in the heat pump operational regime, which is characterized by 〈jc〉 < 0, 〈jw〉 >
0 and 〈jh〉 < 0. However, focusing only in the refrigerator regime, equations (2.1.5)
and (2.1.8) provide the required hierarchy given in (2.1.1). This hierarchy in the
relative fluctuations of currents, as given in equation (2.1.1), represents the first
central result of this chapter.

We note an immediate consequence of this hierarchy in (2.1.1): The inequality
involving cold and work currents provides a completely different universal upper
bounds for the cooling efficiency, defined as 〈ε〉 = 〈jc〉/〈jw〉, and average cooling
power 〈jc〉,

〈ε〉 :=
〈jc〉
〈jw〉

≤

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
, (2.1.9)

〈jc〉 ≤

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
〈jw〉. (2.1.10)

Next, we demonstrate that this newly defined upper bound on cooling efficiency
[cf. (2.1.9)] is tighter than the standard three-terminal version of maximum cooling
efficiency εc = (βh−βw)

(βc−βh)
. Note that εc reduces to the well-known two-terminal cooling

efficiency version (1− ηc)/ηc, with ηc = βh/(βc − βh), in the limit βw � βh.√
〈〈j2

c 〉〉
〈〈j2

w〉〉
≤ εc. (2.1.11)

To prove this inequality in (2.1.11), we will consider the cold and work currents,
〈jc〉 and 〈jw〉, taking inverse temperature of the hot reservoir βh as the reference.
In the linear response regime, the currents 〈jc〉 and 〈jw〉 are expressed in terms
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of the Onsager’s coefficients L̄αγ, with α, γ = w, c, and thermodynamic affinities
Ahα = (βh − βα), with α = c, w,

〈jc〉 = L̄ccAhc + L̄cwAhw,

〈jw〉 = L̄wcAhc + L̄wwAhw.
(2.1.12)

We notice that

〈jw〉Ahw − 〈jc〉Ahc ≥ 0. (2.1.13)

This is because (i) 〈jc〉 > 0 and 〈jw〉 > 0 in the refrigerator operational regime,
and (ii) due to the inverse temperature sequence βc > βh > βw, we obtain Ahw > 0,
Ahc < 0. Now,

〈jw〉Ahw − 〈jc〉Ahc ≥ 0

⇒ L̄ccAhc
2 ≤ L̄wwAhw

2

⇒ L̄cc
L̄ww

≤
(
−A

h
w

Ahc

)2

⇒ 〈〈j
2
c 〉〉

〈〈j2
w〉〉
≤ ε2

c, (2.1.14)

where, in the last line, we have used the standard FDRs, 〈〈j2
i 〉〉 = 2L̄ii, for i =

c, w. This concludes our proof for the inequality given in (2.1.11). The inequalities
in equations (2.1.9) and (2.1.10), together with equation (2.1.11), constitute the
another central result of this chapter:

〈ε〉 ≤

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
≤ εc, (2.1.15)

〈jc〉 ≤

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
〈jw〉 ≤ εc 〈jw〉. (2.1.16)

We have derived new tighter bounds on cooling efficiency and cooling power in terms
of fluctuations of the cold and work currents, valid in the linear response regime.
The equality in the above relations corresponds to the tight-coupling situation
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2.2 Bounds on cooling efficiency and cooling power

derived from TURs

For an out-of-equilibrium system in steady-state, subjected to multiple thermody-
namic affinities, the TURs [42, 129, 130, 132, 134–139, 142–144] represent trade-off
relation between the relative fluctuations of individual currents (such as heat, work
and particle currents) and the net eRtuations and the dissipation arbitrarily. For
the AR setup, the TURs can be can be expressed as

〈σ〉〈〈j
2
α〉〉
〈jα〉2

≥ 2, α = c, h, w. (2.2.1)

Note that the above TURs hold true in the linear response regime. We now provide a
simple proof for the TUR corresponding to the cold current by utilizing the onsager
relation given in (2.1.2):

〈σ〉〈〈j
2
c 〉〉
〈jc〉2

=
2Lcc

〈jc〉2
∑
i,j=c,h

LijAwi Awj

= 2 +
2Awh 2

〈jc〉2
det(L)

≥ 2. (2.2.2)

Here, the equality corresponds to the tight-coupling limit, i.e., when the determinant
of the Onsager’s matrix vanishes. A similar approach can be applied to derive the
other two TURs.

First, we note that the entropy production rate 〈σ〉 = −
∑

α=c,h,w βα〈jα〉 can be
expressed as

〈σ〉 = (βc − βh)
[ εc

〈ε〉
− 1
]
〈jc〉

≡ −(βc − βh)
εc − 〈ε〉
1 + 〈ε〉

〈jh〉

≡ (βc − βh)
[
εc − 〈ε〉

]
〈jw〉,

(2.2.3)

where we recall that εc = (βh−βw)
(βc−βh)

, and 〈ε〉 = 〈jc〉/〈jw〉. Therefore, the TURs in
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(2.2.1) can be exprressed in the following alternative forms:

(βc − βh)
[ εc

〈ε〉
− 1
] 〈〈j2

c 〉〉
〈jc〉

≥ 2, (2.2.4)

(βc − βh)
εc − 〈ε〉
1 + 〈ε〉

[
〈〈j2

h〉〉
−〈jh〉

]
≥ 2, (2.2.5)

(βc − βh)
[
εc − 〈ε〉

] 〈〈j2
w〉〉
〈jw〉

≥ 2. (2.2.6)

In the refrigerator operational regime, characterized by 〈jc〉 > 0, 〈jw〉 > 0 and
〈jh〉 < 0, we highlight that these alternative expressions of the TURs enable us to
derive novel upper bounds on cooling efficiency 〈ε〉, which are tighter than εc.

〈ε〉 ≤ εc

/(
1 +

2 〈jc〉
(βc−βh) 〈〈j2

c 〉〉

)
:= Ecold, (2.2.7)

〈ε〉 ≤
(
εc +

2 〈jh〉
(βc−βh) 〈〈j2

h〉〉

)/(
1− 2 〈jh〉

(βc−βh) 〈〈j2
h〉〉

)
:= Ehot, (2.2.8)

〈ε〉 ≤ εc −
2 〈jw〉

(βc−βh) 〈〈j2
w〉〉

:= Ework. (2.2.9)

One can alternatively express the above bounds on the cooling efficiency as bounds
on the cooling power,

〈jc〉 ≤ (βc−βh)
εc−〈ε〉

2〈ε〉
〈〈j2

c 〉〉 := Pcold, (2.2.10)

〈jc〉 ≤ (βc−βh)
εc−〈ε〉

2(1 + 〈ε〉)2
〈ε〉 〈〈j2

h〉〉 := Phot, (2.2.11)

〈jc〉 ≤ (βc−βh)
εc−〈ε〉

2
〈ε〉 〈〈j2

w〉〉 := Pwork. (2.2.12)

Next, we study the implication of the hierarchy of the relative fluctuations, as
given in equation (2.1.1) on the the above-mentioned bounds on cooling efficiency
and cooling power, derived from the TURs.

2.3 Comparison of the bounds
First of all, we notice that, (2.1.1) immediately indicates that the TURs for

different currents [cf. (2.2.1)] are not truly independent of each other but follow
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a strict hierarchy. Therefore, we infer that in the linear response regime, among
the three different currents, the work current provides the best estimate for entropy
production rate compared to the other two currents [189, 190].

As a consequence, the three separate and seemingly independent bounds on cool-
ing power derived from TURs [cf. (2.2.10) to (2.2.12)], are also not truly independent
but follow a similar strict hierarchy. Since

〈〈j2
w〉〉 ≤

〈〈j2
h〉〉

(1 + 〈ε〉)2
≤ 〈〈j

2
c 〉〉
〈ε〉2

, (2.3.1)

we obtain,

〈jc〉 ≤Pwork ≤ Phot ≤ Pcold, (2.3.2)

We conclude that, due to this hierarchy, the cooling power gets most tightly bounded
when the bound is derived from the work-TUR. However, the bound on cooling
power given in (2.1.16) does not fall within this hierarchy, and potentially can be-
come tighter compared to the bounds derived from the TURs, making it important
to consider.

Finally, we also notice that the bounds on cooling efficiency derived from the
TURs [cf. (2.2.7) to (2.2.9)], and as well as the bound given in (2.1.15) do not
follow such a hierarchy. However, we can prove that

〈ε〉 ≤

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
≤ Ecold ≤ εc. (2.3.3)

To prove the above relation, we note that in the linear response regime, we can
express the currents 〈jc〉 and 〈jw〉 in terms of the Onsager’s coefficients L̄αγ, with
α, γ = w, c.

〈jc〉 =L̄cc (βh − βc) + L̄cw (βh − βw) ,

〈jw〉 =L̄wc (βh − βc) + L̄ww (βh − βw) .
(2.3.4)

We recall that in the refrigeration regime we must have 〈jc〉 ≥ 0. Notice that, be-
cause of the temperature sequence βc > βh > βw, and the fact that L̄cc = 〈〈j2

c 〉〉/2 ≥
0, we can conclude that L̄cw ≥ 0. We will need this for our proof. Next, we express



Chapter 2: Bounds on performance for autonomous absorption refrigerators 35

(2.2.7) as

Ecold =
βh − βw
βc − βh

/(
1 +

L̄cc (βh − βc) + L̄cw (βh − βw)

(βc−βh) L̄cc

)
=
L̄cc
L̄cw

(2.3.5)

Now, √
〈〈j2

c 〉〉
〈〈j2

w〉〉
=

√
L̄cc
L̄ww

=

√
L̄2
cc

L̄wwL̄cc
≤

√
L̄2
cc

L̄2
cw

= Ecold (2.3.6)

where, in the last step, we have utilized the constraint on time-reversal symmetric
Onsager coefficients steaming form the non-negativity of the entropy production
rate, det(L̄) = L̄ccL̄ww − L̄2

cw ≥ 0. This completes our proof for equation (2.3.3).
Equality in tight-coupling– It should be noted that, as the equality for the

TURs and the hierarchy of relative fluctuations is achieved in the tight-coupling
limit, all the above mentioned bounds saturate, and we can write

〈ε〉 =

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
= Ecold = Ehot = Ework ≤ εc,

〈jc〉 =

√
〈〈j2

c 〉〉
〈〈j2

w〉〉
〈jw〉 = Pcold = Phot = Pwork.

(2.3.7)

In what follows, we test the validity of these bounds for two paradigmatic absorption
refrigerator setups.

2.4 Example I: Weak (additive) system-reservoir

coupling

2.4.1 Four-level working medium

As a first model example, we consider a four-level working medium which is
weakly connected to three thermal reservoirs (c, h, w) (see Fig. 2.2). We restrict our
discussion to the weak system-bath coupling regime with Markovian bath dynamics,
described by the quantum maser equation (QME) for the reduced density matrix
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[174]. Under the secular/rotating wave approximation and assuming non-degenerate
energy levels, the coherence and population dynamics decouple.

The joint dynamics of populations and energy transfers can be compactly repre-
sented by the counting-field dressed population vector |Z(χ, t)〉, where the count-
ing fields χ = (χw, χh, χc) track energy exchange with each reservoir. Note that,
|Z(χ = 0, t)〉 corresponds to the standard population vector, while finite χ encodes
the full counting statistics of energy quanta exchanged with reservoir α = w, h, c.

Mathematically, |Z(χ, t)〉 generates the statistics of energy transfers via:

d|Z(χ, t)〉
dt

= Ŵ(χ)|Z(χ, t)〉, (2.4.1)

where Ŵ(χ) generalizes the standard rate matrix Ŵ(0). The cumulant generating
function

G(χ) = lim
t→∞

1

t
ln〈I|Z(χ, t)〉 (2.4.2)

then extracts all current statistics through derivatives at χ = 0. Here, the unit
vector 〈I| = 〈1, . . . , 1| performs the trace over system states.

Notice that, although the three-level setup is the minimal model to realize a
Quantum AR in the weak-coupling limit [73, 169, 170], it always satisfies the tight-
coupling condition. This condition corresponds to the equality in the bounds.

Three-level AR and the tight-coupling situation:
The dressed rate matrix corresponding to a three-level AR is given by

Ŵ(χ) =

−k
c
1→2 − kh1→3 kc2→1e

−iχcωc kh3→1e
−iχhωh

kc1→2e
iχcωc −kc2→1 − kw2→3 kw3→2e

−iχwωw

kh1→3 e
iχhωh kw2→3e

iχwωw −kw3→2 − kh3→1

 , (2.4.3)

with kαi→j being the transition rates between states i and j due to presence of
reservoir α = w, h, c. However, for this three level setup, we obtain analytical
forms for the mean currents and the fluctuations of currents, without requiring
the explicit forms for the incoherent transition rates induced by the baths. The
energy states are labeled from bottom to top by 1,2,3, with energies ε1,2,3 =
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(0, ωc, ωc + ωw). The statistics for all three currents is determined by the (real
part) largest eigenvalue of the characteristic polynomial. Notice that, the largest
eigenvalue satisfies the characteristic polynomial,

λ3
max − a1 λ

2
max + a2 λmax − a3(χ) = 0 (2.4.4)

with the condition that λmax(χ = 0) = 0. Here,

a1 =w0,0 + w1,1 + w2,2,

a2 =w0,0w1,1 + w0,0w2,2 + w1,1w2,2 − w0,1(χc)w1,0(χc)

− w0,2(χh)w2,0(χh)− w1,2(χw)w2,1(χw),

a3(χ) =w0,0w1,1w2,2 − w0,0w1,2(χw)w2,1(χw)

− w0,1(χc)w1,0(χc)w2,2 + w0,1(χc)w1,2(χw)w2,0(χh)

+ w0,2(χh)w2,1(χw)w1,0(χc)− w0,2(χh)w2,0(χh)w1,1,

(2.4.5)

where wi,j are the elements of the rate matrix Ŵ(χ) [174]. Notice that, a1

is counting field independent. Moreover, the counting field dependent phase
factors exactly cancels out in a2. As a result, a3 is the only counting field
dependent term in (2.4.4). We can obtain analytical expression for the mean
current corresponding to reservoir α as

〈jα〉 =
1

a2

∂a3

∂(iχα)

∣∣∣
χ=0

, α = h, c, w. (2.4.6)

The obtained currents are proportional to each other:

〈jc〉 =
ωc
a2

[
w0.2w2,1w1,0 − w0,1w1,2w2,0

]
,

〈jw〉 =
ωw
ωc
〈jc〉,

〈jh〉 =− ωc + ωw
ωc

〈jc〉.

(2.4.7)

Therefore, tight-coupling always holds for this three-level quantum AR setup in
the weak system-bath coupling limit. The fluctuation of current corresponding
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to bath α is given by

〈〈j2
α〉〉 =

1

a2

[ ∂2a3

∂(iχα)2
+

2a1

a2
2

( ∂a3

∂(iχα)

)2]
χ=0

. (2.4.8)

As a result, the relative fluctuations simplify to

〈〈j2
α〉〉
〈jα〉2

=
2 a1

a2

+ a2
a
′′
3(0)

[a
′
3(0)]2

, (2.4.9)

where the primes indicate the order of the derivative with respect to the respec-
tive counting field χα. Notice that, a1 and a2 remains the same for any current.
Interestingly, it turns out that a′′3(0)/[a

′
3(0)]2 is also the same for any current,

a
′′
3(0)

[a
′
3(0)]2

=
w0,2w2,1w1,0+w0,1w1,2w2,0(
w0,2w2,1w1,0−w0,1w1,2w2,0

)2 . (2.4.10)

Therefore, we conclude that the relative fluctuations of currents for all three
baths are the same:

〈〈j2
c 〉〉
〈jc〉2

=
〈〈j2

h〉〉
〈jh〉2

=
〈〈j2

w〉〉
〈jw〉2

. (2.4.11)

Because of the above relation, the bounds on cooling efficiency and cooling power
coalesce, as given in (2.3.7).

The four-level model was recently studied in Refs [53, 176] by employing full-
counting analysis for cold and work currents. This analysis can be easily extended
to study statistics of all three currents involved. The dressed rate matrix Ŵ(χ) is
given as

Ŵ(χ)=


−kc1→2−kc1→3−kh1→4 kc2→1e

−iχc(ωc−g) kc3→1e
−iχc(ωc+g) kh4→1e

−iχh(ωc+ωw)

kc1→2e
iχc(ωc−g) −kc2→1−kw2→4 0 kw4→2e

−iχw(ωw+g)

kc1→3e
iχc(ωc+g) 0 −kc3→1−kw3→4 kw4→3e

−iχw(ωw−g)

kh1→4e
iχh(ωc+ωw) kw2→4e

iχw(ωw+g) kw3→4e
iχw(ωw−g) −kh4→1−kw4→2−kw4→3

,
(2.4.12)

with kαi→j being the transition rates between states i and j due to presence of reser-
voir α = w, h, c. Due to the weak system-bath coupling, these transition rates
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Figure 2.2: Schematic of a four-level AR coupled weakly with all the three reservoirs.
Bath-induced incoherent transitions are shown by the solid arrows. Energy gaps
between the states are indicated by dotted lines.

appear additively in the population dynamics. The energy levels are labeled from
bottom to top as 1 to 4, with energies given by ε1,2,3,4 = (0, ωc − g, ωc + g, ωc + ωw).
For simplicity, in this example, we ignore the possible presence of quantum coher-
ence in the system. This, however, does not affect the main message presented in
this chapter.

In Fig. 2.3, we display the different bounds for cooling power and cooling ef-
ficiency. We choose the transition rates as kαi→j = Γα(εj − εi)nα(εj − εi), with
nα(∆) =

(
eβα∆ − 1

)−1 being the Bose-Einstein distribution function at inverse tem-
perature βα and Γα(∆) = γα ∆ e−|∆|/Λ being the Ohomic spectral density function
of reservoir α [53], with Λ being the cutoff frequency, which is assumed to be large,
Λ� ωα, 1/βα. Figs. 2.3 (a) and (b) shows results beyond the tight-coupling regime,
which corresponds to values of g comparable to ωα. The hierarchy in the bounds
for cooling power ( Pwork < Phot < Pcold ) is clearly observed with the tightest
bound being Pwork. Notice that, as mentioned earlier, the additional bound given in
(2.1.16) do not follow the above hierarchy and can become a tighter bound, which
can be clearly seen for ωc > 0.4. Notice that, the additional bound for cooling
efficiency, as given in (2.1.15), is also tighter than the bound predicted from the
cold-TUR in (2.2.7). Figs. 2.3 (c) and (d) shows results in the tight-coupling limit
corresponding to closing of the gap between the states 2 and 3 (g = 1×10−4 � ωα).
In this case, as predicted in (2.3.7), all the bounds on cooling efficiency and cooling
power saturate and coalesce with their respective exact mean values.
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Figure 2.3: Comparison between different bounds on cooling efficiency 〈ε〉 [(a) and
(c)], and cooling power 〈jc〉 [(b) and (d)] for the four-level AR as a function of
ωc. The parameters chosen here are: Tc = 0.14, Th = 0.15, Tw = 0.16, ωw = 0.6,
γc = γh = γw = 10−3, Λ = 50. For (a) and (b) g = 5 × 10−2. For (c) and
(d) g = 1 × 10−4, which correspond to the tight-coupling situation. For these
parameters, εc = 0.8750.
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Figure 2.4: Schematic of a two-level AR coupled strongly with all the three baths.
The bath-induced incoherent transitions are shown by the solid arrows. In the
population dynamics, the different baths induced transition rates contribute in a
multiplicative manner.

2.5 Example II: Strong (multiplicative) system-

reservoir coupling

2.5.1 Two-level working medium

The bounds on cooling efficiency and cooling power obtained in our study are not
limited to the nature of the system-bath coupling. In order to see this, we choose
another central model for quantum AR, where the working medium consists of a
two-level system coupled strongly to all three reservoirs (see Fig. 2.4) as a second
example. We note that, a qubit coupled weakly to three reservoirs fails to work as a
quantum AR [172] , thanks to the non-additive nature of the transition rates in the
rate equations, leading to a collective and simultaneous effect involving all the three
reservoirs. The full Hamiltonian, which mimics a strong system-bath interaction,
can be written as [172],

H =
ω0

2
σz +

σx
2
⊗
(
Bc ⊗Bh ⊗Bw

)
+
∑

α=c,h,w

HB,α, (2.5.1)

where the crucial second term involves the bath operators in a multiplicative manner
and is responsible for inducing a collective effect. This term induces transition
between the system states with energy being shared or supplied by all three baths
simultaneously. Here, σz = |1〉〈1| − |0〉〈0| and σx = |1〉〈0|+ |0〉〈1| are the standard
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Pauli spin operators with |0〉 (|1〉) representing the ground (excited) state of the
qubit, and

Bα =
∑
j

gα,j
ωα,j

(b†α,j + bα,j) (2.5.2)

is the bath operator with coupling strength gα,j, corresponding to reservoir α.
HB,α =

∑
j ωα,jb

†
α,jbα,j is the standard bosonic bath Hamiltonian. The individ-

ual baths are in equilibrium with a fixed temperature. Note that the Hamiltonian
appearing in (2.5.1) can be rigorously derived by performing a polaron transforma-
tion to the standard spin-boson Hamiltonian, which is bilinearly coupled to bosonic
baths [172]. Similar to previous method, one can obtain the mean currents and as-
sociated fluctuations using a full-counting statistics approach. Following Ref. [172],
the counting field dressed rate matrix can be written as,

Ŵ(χ) =

(
−k0→1 kχ1→0

kχ0→1 −k1→0

)
, (2.5.3)

with the dressed transition rates given by

kχ1→0 =

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dω′

2π
Mh(ω)Mc(ω

′)Mw(ω0−ω−ω′)

e−iχhω e−iχcω
′
e−iχw(ω0−ω−ω′),

(2.5.4)

where kχ0→1 = kχ1→0(ω0 → −ω0). Here, Mα(t) = 〈Bα(t)Bα(0)〉 is the two-time
bath correlation function, with Bα(t) = eiHB,αtBα e

−iHB,αt being the bath operator
in the interaction picture. Mα(ω) =

∫∞
−∞ dsMα(s) eiws is the Fourier transformed

two-time bath correlation function, which satisfies the detailed balance condition
Mα(−ω) = e−βαωMα(ω). As shown in Ref. [172], various possible choices of Mα(ω)

can give rise to refrigeration, and the optimal cooling efficiency εc is achieved in
the tight-coupling limit, which corresponds to highly engineered baths with Mα(ω)

being described by a single frequency component. Here, we make the following
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Figure 2.5: Comparison between different bounds for (a) cooling efficiency 〈ε〉 and
(b) cooling power 〈jc〉 for two-level quantum AR operating under strong system-
bath coupling as a function of δ, as defined in (2.5.5) . The parameters chosen here
are ω0 = 0, Tc = 1, Th = 1.3, Tw = 1.6, ωc = 0.5, ωw = 1.1, ωh = ωc + ωw = 1.6,
γh = γw = 10−2 and γc = 1. For these set of parameters, εc = 0.6250.

choice for Mα(ω) for ω > 0,

Mc(ω) =γc δ(ω − ωc),

Mh(ω) =
γh
2δ

[
Θ(ω−ωh+δ)−Θ(ω−ωh−δ)

]
,

Mw(ω) =
γw
2δ

[
Θ(ω−ωw+δ)−Θ(ω−ωw−δ)

]
.

(2.5.5)

The negative frequency parts for the rates are fixed by the detailed balance equa-
tions. Here, γα > 0 is a dimensionless parameter, Θ(x) (δ(x)) is the Heaviside step
(Dirac Delta) function. ωα is the central characteristic frequency for the reservoir
α. We set the central frequencies such that the resonant condition ωc + ωw = ωh is
satisfied. The parameter δ appearing in Mh and Mw in (2.5.5) is the width param-
eter around central frequencies ωh and ωw. Notice that, δ → 0 corresponds to the
tight-coupling or the optimal cooling limit. In Fig. 2.5 we display our results for the
bounds on cooling efficiency and cooling power as a function of δ. For small values
of δ (δ � ωα), corresponding to the tight-coupling limit, all the bounds saturate
and exactly predict the values for both the mean cooling power and mean cooling



44 2.6. Summary

efficiency. For large δ, i.e., beyond the tight-coupling limit, the hierarchy in the
bounds on cooling power become transparent, and within this hierarchy Pwork pro-
vides the tightest bound for the power. Moreover, for these choice of parameters,
the additional bounds in equations (2.1.15) and (2.1.16) for the cooling power and
the cooling efficiency become tighter than the bounds obtained from the TURs.

2.6 Summary
In this chapter, we have demonstrated that for three-terminal autonomous ab-

sorption refrigerators operating in the linear response regime, a strict hierarchy exists
in the relative fluctuations of the three currents involved. This result stems from
the Onsager’s reciprocity relations, with the additional requirement that direction
of the mean currents aligns with the refrigeration conditions. As a consequence,
the seemingly independent bounds on cooling power derived from the TURs are,
in fact, interconnected and follow a similar hierarchy. Within this framework, the
most accurate estimate of cooling power is achieved when the bound is derived from
the work-TUR. However, the bounds on cooling efficiency derived from TURs do
not adhere to this hierarchy.

Additionally, we provide independent, universal bounds on both cooling efficiency
and cooling power, expressed in terms of ratio of output to input current fluctua-
tions. In the example section, through the analysis of two paradigmatic absorption
refrigerators, we have shown that these universal bounds can be tighter than those
obtained from the TURs.



3

Fate of bounds on fluctuations for continuous
machines with broken time-reversal symmetry

In the previous chapter, we studied linear response regime of autonomous ARs,
which fall into the continuous thermal machine category, and reported a strict hier-
archy in the relative fluctuation of the three different currents involved. Let us first
highlight two crucial points:

(i) Since, the purpose of an AR is to extract heat from the cold reservoir by
absorbing energy from the work reservoir, we identify the output current as
〈jout〉 = 〈jc〉, and the input current as 〈jin〉 = 〈jw〉 of this setup. From the
hierarchy in (2.1.1), it is evident that

〈〈j2
out〉〉
〈jout〉2

≥ 〈〈j
2
in〉〉
〈jin〉2

. (3.0.1)

The above inequality concerning the relative fluctuation of output and input
currents was first reported in Ref. [53], and was shown to be valid for any
continuous thermal machine ( e.g., engine, refrigerator and heat pump) that
respects time-reversal symmetry, and operates in the linear response regime.
An intriguing outcome of the above relation is that

〈η〉2 ≤ η(2) :=
〈〈j2

out〉〉
〈〈j2

in〉〉
≤ η2

C, (3.0.2)

45
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where, 〈η〉 = |〈jout〉|/〈jin〉 represents the efficiency of the machine, and ηC

denotes the maximum efficiency permissible under the second law of ther-
modynamics [such as Carnot efficiency for engines and Carnot coefficient of
performance (COP) for refrigerators]. Notice that, equation (2.1.15) in the
previous chapter is equivalent to (3.0.2). The profound implication of the
above relation is that it offers a stricter universal bound on the performance
(efficiency) of a small-scale continuous thermal machine in terms of fluctuation
of the currents.

(ii) We observe that the underlying time-reversal symmetry played a pivotal role
in deriving the results presented both in the previous chapter and in Ref. [53].
To be more specific, in the linear response regime where Onsager formalism
is applicable, this symmetry leads to the famous Onsager reciprocity relation
Lij = Lji, indicating that the off-diagonal elements of the Onsager matrix are
equal. Our derivations heavily relied on these reciprocity relations.

A natural question that immediately arises is what happens to the aforementioned
results when the time-reversal symmetry is not respected. In fact, breakdown of
time-reversal symmetry is quite common in many scenarios, such as thermoelectric
transport in presence of magnetic field B [38, 191–195] and cyclic heat engines driven
in a time-asymmetric manner [196, 197] (see Fig. 3.1). In this chapter, we address
this gap by generalizing the earlier findings to cases where time-reversal symmetry
is broken.

The structure of this chapter is as follows: In Section 3.1, we extend the time-
reversal symmetric results [cf. (3.0.1) and (3.0.2)] to the broken time-reversal sym-
metry scenario. We also explore the implications of our findings on the recently re-
ported generalized thermodynamic uncertainty relations (GTURs) for time-reversal
symmetry-broken systems [160]. In Section 3.2, we illustrate these results with a
paradigmatic example: a classical cyclic Brownian heat engine.

3.1 Broken time-reversal symmetry: Bounds on

symmetrized fluctuations
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Forward

Reverse

Figure 3.1: Schematic for broken time-reversal symmetric situation in a thermo-
electric transport set up in presence of magnetic field B. Note that in the reverse
process sign of B is altered, B → −B.

3.1.1 Distinct forward and reverse processes

In systems where time-reversal symmetry is broken, it is essential to distinguish
between forward (f) and reverse (r) processes. The (f) process typically refers to
the system’s evolution in the presence of external driving forces (such as magnetic
field B and other time-dependent parameter in the system Hamiltonian), while the
(r) process is its evolution when these forces are reversed (see Fig. 3.1). Notice, this
distinction can lead to different statistical properties and fluctuation behaviors, ne-
cessitating a more comprehensive framework to describe systems where time-reversal
symmetry is broken.

We consider here a generic out-of-equilibrium setup with broken time-reversal
symmetry, characterized by two independent stochastic currents. For notational
convenience, we denote these currents as j1 and j2, with the corresponding conju-
gate affinitiesA1 andA2, respectively. Without any loss of generality, the thermody-
namic affinities are assumed to be time-reversal symmetric, and positive, A1,A2 > 0.
In our context, j1 refers to the input current (jin), and j2 refers to the output current
(jout). Similar to previous chapter, we restrict our discussions to the linear response
regime. In this regime, the currents in f and r processes can be expressed as

〈jα〉f =
∑
γ=1,2

LfαγAγ, (3.1.1)
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〈jα〉r =
∑
γ=1,2

LrαγAγ, (3.1.2)

with α = 1, 2 [98, 99]. It is important to note that when time-reversal symmetry is
preserved, the forward and reverse processes become identical.

3.1.2 Breakdown of Onsager reciprocity: Onsager-Cashimir

relation

In the presence of time-reversal symmetry, the Onsager reciprocity states that
the off-diagonal elements of the Onsager matrix are equal (Lαγ = Lγα). However,
when time-reversal symmetry is broken, this relation no longer holds. Instead,
the Onsager-Casimir relations come into play, which generalizes the reciprocity to
Lαγ(B) = Lγα(−B), where B represents the magnetic field [198]. This modification
accounts for the effects of external magnetic fields or other time-reversal symmetry-
breaking factors. In our context, this relation translates to Lfαγ = Lrγα [38, 193, 194,
199], or equivalently, Lf = (Lr)T , where T denotes the transpose of the matrix. We
notice that, the non-negativity of the entropy production rate for individual f and r
processes ensures that the determinant of the symmetric part of the Onsager matrix
is non-negative,

Li11, L
i
22 ≥ 0, det(Ls) = Li11L

i
22 −

(Li12 + Li21)2

4
≥ 0, (3.1.3)

for i = f, r, where Ls = [Lf + (Lf )T ]/2 = [Lr + (Lr)T ]/2 = [Lf + Lr]/2.

3.1.3 Symmetrization of the operational regime conditions

An immediate consequence of the breakdown of conventional Onsager reciprocity
is that (3.0.2) may not hold for individual forward or reverse processes. Moreover,
we recall specifying the operational regime of the machine was crucial when deriv-
ing (3.0.2). In the case of broken time-reversal symmetry, however, the forward
and reverse cycles can operate in different operational regimes. We observe that
specifying operational regime for individual forward or reverse processes does not
lead us to a useful bound like the one given in (3.0.2). Instead, by constraining both
the forward and reverse process es to operate in the same operational regime, we
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derive the following inequality between the symmetrized relative fluctuation of the
two currents

〈〈j2
2〉〉f + 〈〈j2

2〉〉r(
〈j2〉f + 〈j2〉r

)2 ≥
〈〈j2

1〉〉f + 〈〈j2
1〉〉r(

〈j1〉f + 〈j1〉r
)2 . (3.1.4)

3.1.4 Generalized thermodynamic uncertainty relations

Before presenting the proof for (3.1.4), we motivate the choice of this particular
form of symmetrized relative fluctuation. Recently, in Ref. [160] a generalized ver-
sion of the conventional TURs was reported, which is applicable in the scenario of
broken time-reversal symmetry. In the linear response regime, the generalized ther-
modynamic uncertainty relations (GTURs) provide universal lower bounds on the
symmetrized relative fluctuation of individual currents in terms of the symmetrized
entropy production rate,

(
〈σ〉f + 〈σ〉r

) 〈〈j2
α〉〉f + 〈〈j2

α〉〉r(
〈jα〉f + 〈jα〉r

)2 ≥ 2, for α = 1, 2. (3.1.5)

Here, the entropy production rate is denoted as 〈σ〉i =
∑

α=1,2 〈jα〉iAα ≥ 0, with
i = f, r representing the forward and reverse processes, respectively [38, 116]. The
proof of GTURs in the linear response regime relies solely on the non-negativity
condition of the determinant of the symmetric part of the Onsager matrix. From
the inequality in (3.1.4), it is evident that under the condition that both the forward
and reverse processes operate in the same regime, the GTURs for different currents
exhibit a strict hierarchy:

(
〈σ〉f + 〈σ〉r

) 〈〈j2
2〉〉f + 〈〈j2

2〉〉r(
〈j2〉f + 〈j2〉r

)2 ≥
(
〈σ〉f + 〈σ〉r

) 〈〈j2
1〉〉f + 〈〈j2

1〉〉r(
〈j1〉f + 〈j1〉r

)2 ≥ 2,

or equivalently, GTUR(jout) ≥ GTUR(jin) ≥ 2. (3.1.6)

3.1.5 Bounds on symmetrized efficiency

Let us first demonstrate a brief proof for (3.1.4). Notice that:

〈jα〉f + 〈jα〉r = 2
∑
γ=1,2

LsαγAγ, 〈〈j2
α〉〉f + 〈〈j2

α〉〉r = 4Lsαα, (3.1.7)
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where we have used the modified Onsager reciprocity Lf = (Lr)T , and the standard
fluctuation-dissipation relation 〈〈j2

α〉〉f = 〈〈j2
α〉〉r = 2Lsαα ≡ 2L

f(r)
αα [76, 80, 85–87]. We

adhere to the sign convention introduced in the previous chapter: Energy flowing
into the working fluid is positive. Using a similar method as in the previous chapter,
we obtain

(
〈〈j2

2〉〉f + 〈〈j2
2〉〉r
)(
〈j1〉f + 〈j1〉r

)2 −
(
〈〈j2

1〉〉f + 〈〈j2
1〉〉r
)(
〈j2〉f + 〈j2〉r

)2

= 8 det(Ls)
[(
〈j1〉f + 〈j1〉r

)
A1 −

(
〈j2〉f + 〈j2〉r

)
A2

]
≥ 0 (3.1.8)

Here, to reach the inequality in the last line, we used:

(i) det(Ls) ≥ 0, which manifests from the second law, as given in (3.1.3).

(ii) Under the symmetrized operational regime condition, where both the forward
and reverse processes operate in the same regime, we argue that 〈j1〉fA1 and
〈j1〉rA1 are both positive, while 〈j2〉fA2 and 〈j2〉rA2 are both negative. Here,
note that j1 represents the input current and j2 represents the output current
of the thermal machine. To physically endorse this claim, we observe that
thermodynamic currents and affinities appear in such product form in the ex-
pression for the entropy production rate, 〈σ〉i =

∑
α=1,2 〈jα〉iAα, with i = f, r.

According to the second law of irreversible thermodynamics, any spontaneous
energy flow (such as the dissipation of electrical, mechanical, or chemical en-
ergy into a heat bath, or the transfer of heat from a hot to a cold body) is
accompanied by a positive entropy production. Thermodynamic machines,
however, are designed to perform tasks that are not spontaneous in nature.
For example, engines convert heat into useful work, refrigerators extract heat
from a cold reservoir, and heat pumps transfer heat to a hot bath. These pro-
cesses involve channeling energy in a non-spontaneous manner. Consequently,
the entropy production rate 〈j2〉A2 associated with the output current is ex-
pected to be negative, reflecting the non-spontaneous nature of the output of
a thermal machine. Conversely, the entropy production rate 〈j1〉A1 associ-
ated with the input current is expected to be positive, ensuring that the total
entropy production rate remains positive.
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(3.1.8) concludes the proof for (3.1.4). A straightforward outcome of (3.1.4) is a
symmetrized version of (3.0.2), applicable for the time-reversal symmetry-broken
case,

〈η〉2s :=

(
|〈j2〉f + 〈j2〉r|
〈j1〉f + 〈j1〉r

)2

≤ η(2) =
〈〈j2

2〉〉f + 〈〈j2
2〉〉r

〈〈j2
1〉〉f + 〈〈j2

1〉〉r
≡
〈〈j2

2〉〉f(r)

〈〈j2
1〉〉f(r)

≤ η2
C, (3.1.9)

where 〈η〉s represents the symmetrized efficiency of the machine.

3.1.6 Symmetrized tight-coupling condition

The equality in equations (3.1.4) and (3.1.6) corresponds to the symmetrized
tight-coupling condition:

(
〈j1〉f+〈j1〉r

)
∝
(
〈j2〉f+〈j2〉r

)
. When time-reversal sym-

metry is preserved, this symmetrized tight-coupling condition reduces to the usual
tight-coupling limit, 〈j1〉 ∝ 〈j2〉. Notably, for individual forward or reverse processes,
the usual tight-coupling limit cannot be attained. To substantiate this claim, we
present a proof by contradiction. First, we assume that the usual tight-coupling con-
dition holds in the forward process, 〈j1〉f = c〈j2〉f , with c being a proportionality
constant. From (3.1.1), this condition implies: (i) Lf11 = cLf21, and (ii) Lf12 = cLf22.
Using conditions (i) and (ii), one can show that det[Ls] = −(Lf12 − L

f
21)

2
/

4 ≤ 0,
which directly contradicts the second law of thermodynamics, as given in (3.1.3).
Therefore, we conclude that, in the time-reversal symmetry-broken case, the tight-
coupling limit for individual forward (or reverse) processes is an impossible situation.

In what follows, we illustrate the results obtained in this section using a paradig-
matic example that exhibits broken time-reversal symmetry: a classical cyclic Brow-
nian heat engine, which falls into the class of non-autonomous continuous thermal
machine.

3.2 Example: Cyclic Brownian heat engine

We consider a one-dimensional cyclic heat engine, consisting of an overdamped
Brownian particle in a harmonic trap with a periodically varying trap strength κ(t).
The particle diffuses within a thermal bath whose temperature T (t) also varies
periodically with the same cycle duration τcyc. In the overdamped limit, where
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inertial effects are negligible, the Hamiltonian governing the system is given by

H(x, t) =
1

2
κ(t)x2 =

1

2

(
κ0 + ∆κγw(t)

)
x2

= H0(x) + ∆Hgw(x, t), (3.2.1)

where κ0 is the static component of the trap strength, and ∆κ represents the mod-
ulation amplitude. The dimensionless periodic function γw(t) modulates the trap
strength, satisfying 0 ≤ γw(t) ≤ 1. The characteristic length scale of the system is
x0 =

√
2Tc/κ0, where Tc refers to the minimum temperature of the temperature pro-

file. The static part of the Hamiltonian is H0(x) = κ0x
2
/

2. We define ∆H = ∆κx2
0

as an energy scale corresponding to the strength of time-dependent perturbation,
while the dimensionless function gw(x, t) = γw(t)x2

/
2x2

0 encodes both spatial and
temporal dependencies.

The time-dependent temperature profile T (t) is parameterized in terms of its
inverse:

1

T (t)
=

1

Tc
−
(

1

Tc
− 1

Th

)
γq(t),

or equivalently,

β(t) = βc −∆βγq(t). (3.2.2)

The dimensionless function γq(t), controlling the temperature modulation, satisfies
0 ≤ γq(t) ≤ 1.

The change in the internal energy U(x, t) =
∫
dxH(x, t)p(x, t), where p(x, t)

denotes the probability density to find the system at x at time t, is partitioned into
work-done on the system and heat input from the reservoir,

U̇ =

∫
dxḢ(x, t)p(x, t) +

∫
dxH(x, t)ṗ(x, t)

≡ ẇ + q̇. (3.2.3)

Given that both the Hamiltonian H(x, t) and the temperature T (t) are periodic
with cycle time τcyc, we expect the system’s probability density function p(x, t) to
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eventually reach a periodic steady state after many cycles. In this periodic steady
state, the probability distribution ppss(x, t) is expected to share the same periodicity
as the external driving, ppss(x, t) = ppss(x, t + τcyc). Assuming that ppss(x, t) is
reached, and, therefore, no entropy generation in the system in a full cycle, the total
entropy production rate per cycle is given by

Σ̇ = − 1

τcyc

∫ τcyc

0

dt
q̇(t)

T (t)

= βc∆H
1

τcyc

∫ τcyc

0

dt

∫
dx ġw(x, t) ppss(x, t)

+ ∆β
1

τcyc

∫ τcyc

0

dt

∫
dx γq(t)H(x, t) ṗpss(x, t)

= Aw〈jw〉f +Aq〈jq〉f . (3.2.4)

Here, to in the second line we have used (3.2.2) and (3.2.3), and carried out in-
tegration by parts with respect to time. In the last line, we have identified the
thermodynamic affinities Aw = βc∆H and Aq = ∆β, and the corresponding ther-
modynamic fluxes 〈jw〉f and 〈jq〉f , respectively. Note that the angular bracket 〈 · 〉
stands for both spacial averaging and time averaging over one cycle. In the follow-
ing, we focus in the linear response regime and seek for a linear expansion of the
fluxes with respect to the affinities:

〈jw〉f = LwwAw + LwqAq,

〈jq〉f = LqwAw + LqqAq.
(3.2.5)

The time-dependent driving protocols γw(t) and γq(t) in this model are chosen
to be sinusoidal,

γw(t) = sin
(
2πt/τcyc + φ

)
,

γq(t) =
(
1 + sin (2πt/τcyc)

)
/2,

(3.2.6)

where the phase φ introduces asymmetry between the driving protocols and breaks
the underlying time-reversal symmetry.

The time evolution of the probability density p(x, t) is governed by the Fokker-
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Planck equation

∂

∂t
p(x, t) =

1

γ

(
[κ0 + ∆κγw(t)]∂xx+ β−1(t)∂2

x

)
p(x, t)

≡ L(x, t) p(x, t), (3.2.7)

where γ is the friction. The Fokker-Planck generator L(x, t) is expressed as the
following expansion:

L(x, t) = γ−1
(
κ0∂xx+ β−1

c ∂2
x

)
+ βc∆H

κ0

2γ
γw(t)∂xx

+ ∆ββ−2
c γ−1γq(t) ∂

2
x +O(∆2)

≈ L0(x) +AwLw(x, t) +AqLq(x, t). (3.2.8)

The free (unperturbed) Fokker-Planck generator L0 results in equilibrium situation
in the long time,

L0(x) peq(x) = 0, with peq(x) =
e−βcH0(x)∫
dx e−βcH0(x)

. (3.2.9)

Moreover, it obeys detailed balance:

L0(x)[· peq] = peqL†(x)[·], (3.2.10)

where the adjoint generator is given by

L†0(x) = γ−1
(
− κ0x∂x + β−1

c ∂2
x

)
. (3.2.11)

Next, using standard procedure we expand ppss(x, t) as

ppss(x, t) = peq(x) +
∑
α=w,q

Aα
∫ t

−∞
dt′ eL0(x)(t−t′)Lα(x, t′) peq(x). (3.2.12)

From (3.2.8) and (3.2.9), noticing that

Lα(x, t)peq(x) = ζαγα(t)
κ0

2γ

(
1− βcκ0x

2
)
peq(x), (3.2.13)
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with α = w, q, and ζw = 1 and ζq = −2/βc, and using the detailed balance condition
(3.2.10), we obtain

ppss(x, t) = peq(x) +
∑
α=w,q

Aαζα
κ0

2γ

∫ t

−∞
dt′ γα(t′) peq(x)eL

†
0(x)(t−t′)(1− βcκ0x

2
)

= peq(x) +
∑
α=w,q

Aαζα
κ0

2γ

∫ ∞
0

dt′ γα(t− t′) e−2κ0γ−1t′ peq(x)
(
1− βcκ0x

2
)
.

(3.2.14)

In the last line, we have used the fact that
(
1− βcκ0x

2
)
is a right eigenvector of L†o

with eigenvalue −2κ0γ
−1, and changed the variable of the integration t′ as t′ → t−t′.

Finally, we insert (3.2.14) into the expressions of 〈jα〉 given in (3.2.4), and obtain
the desired expansion (3.2.5). For example,

〈jw〉 =
1

τcyc

∫ τcyc

0

dt

∫
dx ġw(x, t) ppss(x, t)

=
∑
α=w,q

Aαζα
κ0

2γ

1

τcyc

∫ τcyc

0

dt

∫ ∞
0

dt′ γ̇w(t) γα(t− t′) e−2κ0γ−1t′

×
∫
dx

x2

2x2
0

(
1− βcκ0x

2
)
peq(x)

=
∑
α=w,q

Aαζα
(
− κ0

4γ

) 1

τcyc

∫ τcyc

0

dt

∫ ∞
0

dt′ γ̇w(t) γα(t− t′) e−2κ0γ−1t′

=
∑
α=w,q

AαLwα. (3.2.15)

In the second line we have exploited that for our chosen protocols
∫ τcyc

0
γ̇α(t)dt = 0.

Next we compute the time integrals using the explicit forms of γw(t) and γq(t), as
given in (3.2.6). Similar analysis can be done for 〈jq〉. Finally, we obtain(
〈jw〉f
〈jq〉f

)
=

λΩ2

16(λ2 + Ω2)

(
1 −β−1

c (cosφ+ λ
Ω

sinφ)

−β−1
c (cosφ− λ

Ω
sinφ) β−2

c

)(
Aw
Aq

)
,

(3.2.16)
where λ = 2κ0/γ , Ω = 2π/τcyc.

The reverse process is realized either by substituting t → −t or φ → −φ. The
effect on the Onsager matrix is simply to swap the off-diagonal elements.



56 3.2. Example: Cyclic Brownian heat engine

Figure 3.2: Results for a classical cyclic Brownian heat engine: (a) Plot for the
difference between GTURs for output work current and GTUR for input heat cur-
rent, GTUR(jw)−GTUR(jq), in the engine regime as a function of the asymmetry
parameter φ for three different cycle times τcyc = 1, 3, and 10. The inset shows
the difference between the off-diagonal elements of Onsager matrix (Lwq − Lqw)
for the same cycle times. (b) Plot for time-averaged work and heat currents
in the engine regime for both F and R processes for τcyc = 1. As both ∆H
and ∆β are chosen positive here, following our convention an engine is realized
when 〈jw〉f , 〈jw〉r < 0, and 〈jq〉f , 〈jq〉r > 0. The parameters considered here are
βc = 1, κ0 = 1, γ = 2, ∆β = 0.3, ∆H = 0.1.

Results in the engine regime

We demonstrate the results in Fig. 3.2 by focusing on the engine regime and dis-
play the GTUR bounds [see Fig. 3.2 (a)] as a function of φ for three different cycle
times. Fig. 3.2 (b) shows the currents (shown only for τcyc = 1) satisfying the en-
gine conditions in both f and r processes, i.e., 〈jw〉f,r < 0, 〈jq〉f,r > 0, for small
∆H and ∆β. As expected, the GTUR for output work current is always upper
bounded by the corresponding GTUR for input heat current with the difference
(GTUR(jw)−GTUR(jq)) gets reduced with increasing cycle time τcyc, corresponds
to approaching the generalized tight-coupling limit. Following the positivity of the
entropy production rate, it is easy to check that the standard thermodynamic effi-
ciency for the engine, defined as, 〈η〉s := −β−1

c Aw 〈jw〉s
〈jq〉s

≤ ηC = ∆β
βc

is bounded by the
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Carnot value. Similarly, following (3.2.16), we receive for η(2),

η(2) :=
β−2
c A2

w〈〈j2
w〉〉s

〈〈j2
q 〉〉s

. (3.2.17)

Note that here we have used the simplified notations 〈 · 〉s ≡ 〈 · 〉f + 〈 · 〉r, and
similarly 〈〈·〉〉s ≡ 〈〈·〉〉f + 〈〈·〉〉r.

Results in the refrigerator regime

The cyclic Brownian machine in suitable parameter regime can work as a refrigera-
tor. So-far, in our set-up, we have considered only one bath. The thermal affinity
Aq, defined in the main text, is the consequence of a periodically varying tempera-
ture of the bath β(t) = βc + ∆βγq(t), where 0 ≤ γq(t) ≤ 1. However, this particular
situation can also be looked upon as Aq created by thermal gradient of two distinct
baths: a cold one with inverse temperature βc and a hot bath with inverse tempera-
ture βh. Then, by definition 〈jq〉 provides us the heat flux from the hot bath and the
heat flux from the cold reservoir is then given as 〈jc〉 = −β−1

c Aw〈jw〉 − 〈jq〉. Now
to realise a refrigeration regime we should extract heat from the cold reservoir, i.e.,
〈jc〉f ≥ 0 and 〈jc〉r ≥ 0 by applying power from the mechanical controller, 〈jw〉f ≥ 0

and 〈jw〉r ≥ 0 in both the forward and reversed processes. However, in linear re-
sponse, the cooling flux becomes 〈jc〉f,r ≈ −〈jq〉f,r. Note that the angular bracket
here denotes a combined average over the cycle time τcyc and over the phase-space.

The coefficient of performance(COP) of the refrigerator, 〈ε〉s := 〈jc〉s
β−1Aw〈jw〉s =

− 〈jq〉s
β−1Aw〈jw〉s ≤ εc ≈ βc

∆β
is upper bounded by the corresponding Carnot value for the

refrigerator. Analogous to our engine treatment, one can obtain a tighter bound on
COP, given by the ratio of fluctuations of output current to input current.

ε(2) :=
〈〈j2

q 〉〉s
β−2A2

w〈〈j2
w〉〉s

.

In Fig. 3.3 we display the results in the refrigerator regime. In panel (a) we show
that in this regime, the GTUR for extracted heat current for the cold bath (output)
is always larger than the input work current. Note that, in the linear response
regime, as 〈jc〉s ≈ −〈jq〉s, the GTURs for both the cold and hot currents are the
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Figure 3.3: (Color o nline:) Results for a classical cyclic Brownian machine in the
refrigerator regime: (a) Plot for the difference between GTURs for output heat
current extracted from the cold bath and the input work current, GTUR(jq) −
GTUR(jw), in the refrigerator regime as a function of φ for three different cycle
times τcyc = 1, 2, and 3. The inset shows the difference between the off-diagonal
elements of Onsager matrix (Lwq − Lqw) for the same cycle times. (b) Plot for
time-averaged work and heat currents in the refrigerator regime for both f and r
processes for τcyc = 1. As both ∆H and ∆β are chosen positive here, following our
convention a refrigerator is realized when 〈jw〉f , 〈jw〉r > 0, and 〈jq〉f , 〈jq〉r < 0. The
parameters considered here are βc = 1, κ0 = 1.5, γ = 2,∆β = 0.1, ∆H = 0.5.

same. In panel (b) we display that the currents satisfy the refrigeration conditions.

3.3 Summary
In summary, we have generalised the previous study on universal bounds on fluc-

tuations for machines in a significant way by incorporating time-reversal symmetry
breaking situation. We show that even in this general situation non-trivial universal
upper and lower bounds for η(2) exist whenever a setup operates as a useful machine.
However in order to receive such bounds the relative fluctuations of the sum of for-
ward and reversed currents must be taken into account. As a consequence of this
bound, we further able to establish the hierarchy in the GTURs between the output
and input currents. Future work can be directed towards analysing the validity of
these bounds beyond the linear response regime.



4

Bounds on nonequilibrium fluctuations for
asymmetrically driven quantum Otto cycle

In the previous two chapters, we explored continuous thermal machines in the linear
response regime, deriving novel upper bounds on efficiency in terms of fluctuations.
We also extended our analysis to scenarios with broken time-reversal symmetry,
highlighting the need to take into account both forward and reverse processes.

In this chapter and the next, we shift our focus to discrete thermal machines,
with particular attention to the Otto cycle. The Otto cycle, named after Nikolaus
August Otto, consists of four distinct strokes–two isentropic and two isochoric–
making it especially suitable for our study of fluctuations in small-scale discrete
thermal machines [5, 50, 57, 59, 67, 75, 157, 200–212].

In open-quantum description of a thermodynamic cycle, distinguishing between
work and heat can be challenging, particularly when they occur simultaneously
(as seen in isothermal processes in Carnot or Stirling cycles). The Otto cycle,
however, offers a unique advantage: its isentropic strokes involve no heat exchange,
and its isochoric strokes involve no work done. This clear separation allows us
to unambiguously distinguish between work and heat, even at the quantum level,
enabling us to construct the joint probability distribution of work and heat in a
quantum Otto cycle by performing successive projective energy measurements at
the start and end of each stroke [47, 54, 128]. We notice that such a treatment

59
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is not feasible in other thermodynamic cycles, where the overlap of work and heat
exchange processes complicates their separation.

In this chapter, we focus on the paradigmatic qubit-Otto cycle, which has re-
cently been experimentally realized using NMR techniques [5]. We investigate the
fundamental relationships between nonequilibrium fluctuations of work and heat
across various operational regimes of the Otto cycle and examine their implications
for bounding the cycle’s performance. Our study addresses the general case of bro-
ken time-reversal symmetry, where asymmetric driving is applied during the two
unitary (isentropic) work strokes of the Otto cycle. As established in the previous
chapter, the results for time-reversal symmetric situation can be viewed as a special
limiting case of the broader broken time-reversal symmetry scenario. Additionally,
we explore similar constraints on fluctuations in the Otto cycle when a harmonic
oscillator serves as the working medium [12, 57, 213].

We organize this chapter as follows: In Section 4.1, we give a brief introduction
to the four-stroke quantum Otto cycle that is asymmetrically driven. In Section 4.2,
we summarize the two-time measurement scheme to obtain the joint heat and work
statistics. In Section 4.3, we consider a single qubit as the working medium and
derive bounds on non-equilibrium fluctuations of heat and work, independent of its
regime of operation. Following this, we obtain the bounds for the engine regime of
operation as well as make connections of the derived bounds with the TURs. In
addition, we also discuss the bounds for the refrigerator regime of operation and
supplement our analytical calculations with numerical results for better illustration.
In Section 4.4, we briefly discuss the results for the parametrically driven harmonic
oscillator working medium. Finally we summarize our central results in Section 4.5.
Certain details of the calculations are provided in the Appendix A1.

4.1 Four-stroke quantum Otto cycle

We begin with a brief overview of the four distinct strokes of an Otto cycle (see
Fig. 4.1). The working medium is described by the time-dependent Hamiltonian Ht.
Initially, at t= 0, the system Hamiltonian is H0, and the initial state is a thermal
state with inverse temperature βc. The system then progresses through the following
four steps:
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Figure 4.1: Schematic for a four-stroke quantum Otto cycle. The asymmetric driving
during the unitary work strokes, UC 6= ΘU †EΘ

†, breaks the time-reversal symmetry,
and results in distinct (a) forward and (b) reverse processes.

(i) Unitary expansion (A→B). In the first step, the energy levels of the system
are expanded through an external drive. The system Hamiltonian evolves
unitarily from H0 to Hτ over a duration τ , governed by the unitary operator
UE . During this stroke, the system performs stochastic work w1.

(ii) Hot isochore (B→C). In the second step, the system is brought into weak
contact with a hot reservoir at inverse temperature βh. During this stroke,
the system Hamiltonian Hτ remains constant, and the system absorbs heat qh
from the hot reservoir over a duration τh.

(iii) Unitary compression (C→D). During the third step, the system is decoupled
from the hot reservoir, and an external drive causes the system Hamiltonian
to transition from Hτ back to H0 over the time duration τ ′. The unitary
generator of this stroke is UC. During this stroke, the system’s energy levels
contract stroke, resulting in stochastic work w3.

(iv) Cold isochore (D→ A). In the final step, the system is brought into weak
contact with a cold reservoir, at inverse temperature βc, while keeping the
system Hamiltonian H0 fixed. During this stroke, the system thermalizes over
a time τc, and heat qc is exchanged.

Throughout our discussion, we adhere to the sign convention that energy entering
the system is positive. We assume that during the heat exchange strokes, the time
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duration τh and τc are sufficiently long to allow for complete thermalization of the
working medium. Additionally, we assume that the energy required to couple and
decouple the system from the reservoirs is negligibly small compared to the other
energy scales involved in the problem.

It is important to note that the compression stroke in this context is not executed
by simply time-reversing the expansion stroke, meaning that UC 6= ΘU †EΘ

†, where Θ

is the anti-unitary time-reversal operator. This breaks the underlying time-reversal
symmetry, making the forward and reverse cycles distinct, as illustrated in Figs. 4.1
(a) and (b). In the reverse cycle, the expansion and compression strokes are accom-
plished by ŨE = ΘU †CΘ

† and ŨC = ΘU †EΘ
†, respectively. This distinction results in

different joint probability distributions of work and heat in the forward and reverse
cycles.

4.2 Joint probability distribution of work and heat

To construct the joint probability distribution (PD) of total work output w =

w1 + w3 and heat input qh from the hot bath for the forward process [see Fig. 4.1
(a)], we employ the projective measurements of the energy of the system at the
endpoints of each stroke, i.e., at A, B, C, and D, respectively [47]. The joint PD
for the forward process is expressed as:

Pf (w) =
∑
n,m,k,l

δ{w − (ετm−ε0n)− (ε0l −ετk)} δ{qh − (ετk−ετm)}

T En→m T Ck→l
e−βhε

τ
k

Zτh
e−βcε

0
n

Z0
c

.

(4.2.1)

Here, Z0
c =

∑
n exp(−βcε0n) and Zτh =

∑
k exp(−βhετk) are the canonical partition

functions, where the energy eigenvalues {ε0n} and {ετk} correspond to Hamiltonians
H0 and Hτ , respectively. The transition probabilities are given by

T En→m =
∣∣〈m; τ |UE |n; 0〉

∣∣2,
T Ck→l =

∣∣〈l; 0|UC|k; τ〉
∣∣2. (4.2.2)
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Similarly, the joint PD for the reverse cycle can be constructed by following the
successive projective energy measurements at D, C, B and A,

Pr(w) =
∑
n,m,k,l

δ{w − (ετk−ε0l )− (ε0n−ετm)} δ{qh − (ετm−ετk)}

T̃ El→k T̃ Cm→n
e−βhε

τ
m

Zτh
e−βcε

0
l

Z0
c

.

(4.2.3)

4.2.1 Fluctuation symmetry

Given that the expansion and compression strokes in the reverse cycle are gov-
erned by the operators ŨE = ΘU †CΘ

† and ŨC = ΘU †EΘ
†, respectively, the transition

probabilities for the forward and reverse cycles are related by

T̃ El→k =
∣∣〈k; τ |ŨE |l; 0〉

∣∣2 =
∣∣〈k; τ |ΘU †CΘ

†|l; 0〉
∣∣2 =

∣∣〈k; τ |U †C |l; 0〉∗
∣∣2 =

∣∣〈l; 0|UC|k; τ〉
∣∣2

=T Ck→l,

T̃ Cm→n =T En→m.
(4.2.4)

Using these relationships, one can show that the PDs for the forward and reverse
cycles are consistent with the fluctuation symmetry,

Pf (w, qh)

Pr(−w,−qh)
= exp (Σ), (4.2.5)

where Σ = βcw+(βc−βh)qh is the stochastic entropy production in the forward cycle.
This detailed fluctuation relation, also known as the heat engine fluctuation relation,
was previously reported in Ref. [214]. In the time-reversal symmetric situation,
when UC = ΘU †EΘ

†, the forward and reverse cycles become identical, leading to
Pf (w, qh) = Pr(w, qh) for the PDs.

4.2.2 Statistics of work and heat: The cumulant generating

function

Since we are interested in the statistics of work and heat, it is more convenient
to work with characteristic function (CF) of the total work and heat defined by the
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Fourier transformation of joint PD,

Gf(r)(χw, χh) =

∫ ∫
dw dqh Pf(r)(w, qh) e

iχwweiχhqh , (4.2.6)

where χw and χh are the conjugate counting parameters for work w and heat qh,
respectively. The fluctuation relation in (4.2.5) can be expressed in terms of the
CF as Gf(χw, χh) = Gr(−χw + iβc,−χh + i(βc−βh)). All the cumulants (denoted
by double angular brackets) can be obtained from the natural logarithm of this
CF in (4.2.6), also known as the cumulant generating function, by taking partial
derivatives with respect to χw and χh,

〈〈wn qmh 〉〉f(r) =
∂n∂m

∂(iχw)n∂(iχh)m
lnGf(r)(χw, χh)

∣∣∣
{χ}=0

. (4.2.7)

In this broken time-reversal symmetric situation, similar to the previous chapter,
we define the symmetrization of averages, fluctuations, and relative fluctuations
(RF) of work and heat in the following way:

〈φ〉s :=
1

2
(〈φ〉f + 〈φ〉r), (4.2.8)

〈〈φ2〉〉s :=
1

2
(〈〈φ2〉〉f + 〈〈φ2〉〉r), (4.2.9)

R(φ) :=
〈〈φ2〉〉s
〈φ〉2s

, (4.2.10)

where φ = w, qh, qc and 〈·〉f(r) and 〈〈·〉〉f(r) denote the first and second cumulants
corresponding to the forward (reverse) PD. In Appendix A1, we demonstrated that,
under the perfect thermalization assumption for the heat exchange strokes, statistics
of qc can be obtained from P (w, qh)

In what follows, we start with our first model– asymmetrically driven Otto cy-
cle with single qubit as working medium, and discuss bounds on nonequilibrium
fluctuations for heat and work.

4.3 Single qubit as a working medium:
We consider a single qubit as the working medium in an Otto cycle. Dur-

ing the unitary expansion stroke (A→ B), the system Hamiltonian changes from
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H0 = H[ω0], with energy level spacing ω0, to Hτ = H[ω1], with increased level spac-
ing ω1 over time τ . The compression stroke (C→D) returns the Hamiltonian to
H[ω0] in time τ ′. The cycle reaches the quasistatic limit when these unitary strokes
are driven quantum-adiabatically, meaning no transitions occur between the instan-
taneous energy eigenstates |0;ωt〉, |1;ωt〉. From here on, we use "quasistatic" and
"quantum-adiabatic" interchangeably. Any deviation from this ideal cycle can be
quantified by the transition probabilities between states. For the expansion stroke,
we define u = |〈0;ω1|UE |0;ω0〉|2 = |〈1;ω1|UE |1;ω0〉|2 as the probability of no transi-
tion between energy states, and similarly, v = |〈0;ω0|UC|0;ω1〉|2 = |〈1;ω0|UC|1;ω1〉|2

for the compression stroke. Note that u, v ∈ [0, 1], and u = v corresponds to the
time-reversal symmetric case, with the quasistatic limit at u = v = 1.

For the qubit-Otto cycle, the CF for the forward process expressed in a compact
form as

Gf (χw, χh) =
(
u cos

[1

2

(
χw(ω0−ω1) + χhω1 − iβcω0

)]
+ (1−u) cos

[1

2

(
χw(ω0+ω1)− χhω1 − iβcω0

)])
×
(
v cos

[1

2

(
χw(ω0−ω1) + χhω1 + iβhω1

)]
+ (1−v) cos

[1

2

(
− χw(ω0+ω1) + χhω1 + iβhω1

)])
× sech

(βcω0

2

)
sech

(βhω1

2

)
. (4.3.1)

As indicated by (4.2.4), the CF for the reverse cycle, Gr(χw, χh), can be directly
obtained by swapping the probabilites u and v in (4.3.1).

4.3.1 Expressions for averages and fluctuations of heat and

work

With the CF in (4.3.1), the analytical expressions of the first and second cumu-
lants of work and heat can be expressed as follows:

〈qh〉f = −ω1

2

[
tanh

(βhω1

2

)
+ (1−2u) tanh

(βcω0

2

)]
, (4.3.2)

〈〈q2
h〉〉f =

ω2
1

4

[
2− tanh2

(βhω1

2

)
− (1−2u)2 tanh2

(βcω0

2

)]
, (4.3.3)
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〈w〉f = 〈w1〉f + 〈w3〉f

=
1

2
[ω0 + (1−2u)ω1] tanh

(βcω0

2

)
+

1

2
[ω1 + (1−2v)ω0] tanh

(βhω1

2

)
, (4.3.4)

〈〈w2〉〉f =
(ω0 + ω1)2

2
− (u+v)ω0 ω1 − 〈w1〉2f − 〈w3〉2f , (4.3.5)

〈qc〉f = −ω0

2

[
tanh

(βcω0

2

)
+ (1−2v) tanh

(βhω1

2

)]
, (4.3.6)

〈〈q2
c 〉〉f =

ω2
0

4

[
2− tanh2

(βcω0

2

)
− (1−2v)2 tanh2

(βhω1

2

)]
. (4.3.7)

Similarly, the first and second cumulants for the reverse cycle can be obtained by
interchanging u and v.

Depending on the values of u and v, the Otto cycle (forward or reverse) can
operate in four different regimes: engine, refrigerator, heater, and accelerator [75].
In this time-reversal symmetry-broken scenario, as demonstrated in the previous
chapter, we will focus on the symmetrized operational regime condition, where both
the forward and reverse cycles operate within the same regime.

4.3.2 GTURs in the far-from-equilibrium regime

As our first central result, we present a modified version of the generalized thermo-
dynamic uncertainty relations (GTURs) for the asymmetrically driven qubit-Otto
cycle, which remains valid even in the far-from-equilibrium regime. Recently, in
the context of a two-qubit swap engine, a modified version of the traditional TUR
[42, 129, 130, 134, 157] was derived under time-reversal symmetry, as reported in
Ref. [215]:

〈〈w2〉〉
〈w〉2

≥ 2

〈Σ〉
− 1. (4.3.8)

We will show that this modified TUR also holds for a symmetrically driven four-
stroke qubit-Otto cycle. More generally, we prove a version of this TUR for the
asymmetrically driven scenario, leading to a generalized TUR (GTUR):

GTUR(φ) := 〈Σ〉s
(〈〈φ2〉〉s
〈φ〉2s

+ 1
)
≥ 2, (4.3.9)
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with φ can represent the total work w or the heats qh and qc. In the time-reversal
symmetric limit: u = v, these GTURs take the form of (4.3.8). To prove (4.3.9), we
will consider an alternative expression:

〈Σ〉s
(
〈〈φ2〉〉s + 〈φ〉2s

)
− 2 〈φ〉2s ≥ 0, (4.3.10)

and demonstrate the proof for φ = qc. The same reasoning can be extended to the
cases of φ = w and qh.

Detailed proof :
We begin by expressing the left hand side of (4.3.10), as a two-variable func-

tion f(p, q), where the two variables are defined as p = 2− u− v ∈ [0, 2], and
q = u − v ∈ [−1, 1]. This formulation corresponds to working with center-of-
mass (p) and relative (q )coordinates, where q quantifies the asymmetry between
the two unitary work strokes of the qubit-Otto cycle, becoming zero in the sym-
metric driving case.

To streamline the proof, we introduce simplified notations xc = βcω0/2 and
xh = βhω1/2, and define tc = tanh(xc) and th = tanh(xh). These simplified no-
tations are particularly useful for this part of the analysis, but will be discarded
later for broader generality. Using these, the function f(p, q) (apart from the
positive factor 2ω2

0) is written as

f(p, q) = c + b p+ a p2 − g q2 − h pq2, (4.3.11)

where

c = (xc−xh) (tc−th) (1−tcth)− (tc−th)2,

b = (xc−xh) tcth (tc−th) + (1−tcth) (xcth+xhtc)− 2 th (tc−th),

a = tcth (xcth+xhtc)− t2h,

g =
1

2
(xc−xh) (tc−th) t2h

h =
1

2
(xcth+xhtc) t

2
h.

(4.3.12)

The allowed domain of the function f(p, q) is a square in the pq–plane: D =
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{(p, q) ∈ R2 | 0 ≤ p ≤ 2 and −1 ≤ q ≤ 1} (see Fig. 4.2). Our goal is to show
that f(p, q) is non-negative for all allowed values of p and q.

Figure 4.2: The allowed domain of the function f(p, q), where p = 2−u−v and
q = u−v, with u, v ∈ [0, 1].

First, we analyze the signs of the coefficients.
Sign of c: Notice that the term c = f(p = 0, q = 0) corresponds to the

quasistatic situation, where u = v = 1. By rearranging the expression for c, we
obtain

c = (tc−th)2
[
(xc−xh) coth (xc−xh)− 1

]
≥ 0, (4.3.13)

since x cothx ≥ 1.
Sign of b: The first two terms in the expression of b are always non-negative.

Moreover, for xc ≤ xh, it is straightforward to see that b ≥ 0. However, deter-
mining the sign of b when xc > xh, requires a more involved analysis:

b ≥(1−tcth) (xcth+xhtc)− 2 th (tc−th)

=(tc−th)
[

coth (xc−xh) (xcth + xhtc)− 2 th
]

=(tc−th)
[

coth (xc−xh) (xcth−xhth) + 2
(

coth (xc−xh)xh tc − th
)]

=(tc−th) tcth
[

coth (xc−xh)(xc cothxc − xh cothxh)

+ 2
(

coth (xc − xh) (xh cothxh)− cothxc
)]

≥0. (4.3.14)
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In the first step, we omitted the first term of b, which is always positive. In
the last step, we utilize the fact that we are considering the xc > xh case, and
used the following identities: (i) tc ≥ th, (ii) xc cothxc ≥ xh cothxh ≥ 1, and
(iii) coth (xc−xh) ≥ cothxc ≥ 1. Thus, from (4.3.14), we conclude that b ≥ 0,
regardless of the operational regime.

It is clear from their expressions that both g and h are always non-negative.
Unfortunately, the coefficient a does not have any definite sign, which ne-

cessitates a second step in our analysis: performing a local minima/maxima
analysis to determine the minimum value of the function f(p, q) within the al-
lowed domain D in the pq–plane. To carry out this analysis, we first compute
the first and second partial derivatives of f(p, q) with respect to p and q:

f (p) = b + 2a p− h q2, f (q) = −2 q(g + h p),

f (pp) = 2a, f (qq) = −2(g + h p) ≤ 0, f (pq) = f (qp) = −2h q. (4.3.15)

To find the local extrema (maxima/minima/saddle point), we solve f (p) = 0

and f (q) = 0 simultaneously. The solution to f (q) = 0 is q∗ = 0, since g, h ≥ 0

and p ≥ 0. Substituting q∗ = 0 in f (p) = 0, yields p∗ = −b/(2a).
If a > 0, then p∗ ≤ 0 since b ≥ 0, implying that there are no extrema within

the allowed region D. Moreover, this extrema corresponds to a local minima,
f (pp) > 0 and f (pp)f (qq) − f (pq)2

> 0. Therefore, if a > 0,

f(p, q) ∀ p, q ∈ D > f(p∗, q∗) = c +
b2

4a
> 0. (4.3.16)

If a < 0, then f (pp) < 0 and f (pp)f (qq) − f (pq)2 ≥ 0, which indicates the
presence of maxima. Therefore, if a < 0, the function f(p, q) achieves its
minimum value on the boundary of D.

Next, we analyze f(p, q) on the boundary of D. We consider one boundary
segment (0, 0)→ (1, 1), where p = q. Thus, on this segment

f(p) ≡ f(p, q = p) = c + b p+ (a− g) p2 − h p3. (4.3.17)
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The first and second derivatives of f(p) are:

f ′(p) = b + 2(a− g)p− 3h p2, f ′′(p) = 2(a− g)− 6h p. (4.3.18)

To find minima/maxima on this boundary we solve f ′(p) = 0, which is quadratic
in p. Since negative values of p are not allowed, the only feasible solution is

p∗ =
(a− g) +

√
(a− g)2 + 3hb

3h
. (4.3.19)

For this p∗, we find that

f ′′(p∗) = −2
√

(a− g)2 + 3hb < 0, (4.3.20)

indicating a maxima. Thus, the function f(p) reaches its minimum value at one
of the endpoints of this segment, (0, 0) or (1, 1). Repeating the same analysis
for the other three boundary segments, we confirm that finding the minimum
value of this two-variable function ultimately reduces to evaluating its values at
the vertices of the allowed square D in the pq–plane. It is straightforward to
show that

f(0, 0) =(tc−th)2
[
(xc−xh) coth (xc−xh)− 1

]
≥ 0, (4.3.21)

f(1, 1) =f(1,−1) =
1

2
(xctc + xhth)(2−t2h)− t2c ≥ 0, (4.3.22)

f(2, 0) =(tc+th)
2
[
(xc+xh) coth (xc+xh)− 1

]
≥ 0, (4.3.23)

where we have used the identity x ≥ tanhx for x > 0. We also note that
f(2, 0) ≥ f(0, 0), with f(0, 0) representing the quasistatic situation. How-
ever, f(1, 1), though positive, can become smaller than f(0, 0) under certain
parameter values. This contrasts with the symmetric driving case, where non-
quasistatic TUR values can never fall below the quasistatic TUR value.

In conclusion, the function f(p, q) achieves its minimum value either at (0, 0)

or at (1, 1) and (1,−1), with this minimum value being non-negative. This
completes our proof for (4.3.10).
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4.3.3 General bounds on work to heat fluctuations

We now introduce novel bounds on the nonequilibrium fluctuations of work and
heat in a qubit-Otto cycle. Specifically, we derive the following lower bounds on
the, which hold regardless of the operational regime of the cycle:

〈〈w2〉〉s
〈〈q2

h〉〉s
≥
(ω1−ω0

ω1

)2

, (4.3.24)

〈〈w2〉〉s
〈〈q2

c 〉〉s
>
(ω1−ω0

ω1

)2

. (4.3.25)

Here, we notice that the ratios of nonequilibrium fluctuations of work and heat (from
both hot and cold reservoirs) are not arbitrary but constrained by the parameters
of the qubit-Otto cycle. We now provide a proof for these results.

To prove (4.3.24), our strategy will be to consider a modified version of (4.3.24):
ω2

1〈〈w2〉〉s− (ω1−ω0)2〈〈q2
h〉〉s ≥ 0. The left hand side of this inequality can be written

as

ω2
1〈〈w2〉〉s − (ω1−ω0)2〈〈q2

h〉〉

=
ω0ω

3
1

2

(
2−u−v

)[
2−tanh2

(βcω0

2

)
−tanh2

(βhω1

2

)]
+
ω0ω

2
1

2

[
ω0 tanh2

(βhω1

2

)
+ (2ω1−ω0) tanh2

(βcω0

2

)][
u(1−u) + v(1−v)

]
≥ 0. (4.3.26)

Noticing that u, v ∈ [0, 1] and ω1 > ω0, we immediately conclude that both the
terms on the right hand side of the above equation are individually non-negative.
The equality occurs in the quasistatic limit: u=v=1.

Repeating the same approach for (4.3.25), we obtain:

ω2
1〈〈w2〉〉s − (ω1−ω0)2〈〈q2

c 〉〉s

=
1

2

[(ω1−ω0)3

2
(ω1+ω0) + ω0 ω

3
1 (2−u−v)

][
2−tanh2

(βcω0

2

)
−tanh2

(βhω1

2

)]
+

1

2

[
u(1−u) + v(1−v)

][
ω4

1 tanh2
(βcω0

2

)
+ ω3

0 (2ω1−ω0) tanh2
(βhω1

2

)]
> 0, (4.3.27)
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where both terms on the right hand side of the above equation are individually
always greater than zero, since u, v ∈ [0, 1] and ω1>ω0.

In what follows, we will show that once we specify that the qubit-Otto cycle
operates in the symmetrized engine or refrigerator regime, the fluctuations of heat
and work receive additional universal bounds.

4.3.4 Engine regime: Bounds on symmetrized efficiency

The symmetrized engine operational regime, where both the forward and reverse
cycles of the qubit-Otto cycle function as engines, is characterized by the conditions
〈w〉f(r) ≤ 0, 〈qh〉f(r) ≥ 0 and 〈qc〉f(r) ≤ 0. These conditions impose specific con-
straints on the parameters u and v. In the quasistatic limit, when u= v = 1, the
engine condition simplifies to βcω0 ≥ βhω1.

A previous study in Ref. [54] has shown that for a symmetrically driven qubit-
Otto cycle operating as an engine, the square of the average efficiency is up-
per bounded by the ratio of work fluctuation to input heat fluctuation: η(2) =

〈〈w2〉〉/〈〈q2
h〉〉 ≥ 〈η〉

2, where 〈η〉=−〈w〉/〈qh〉 represents the average efficiency.

For asymmetric work protocols (u 6= v), we symmetrize the quantities η(2) and
〈η〉 by taking into account both the forward and reverse cycles as

〈η〉s := − 〈w〉s
〈qh〉s

, (4.3.28)

η(2) :=
〈〈w2〉〉s
〈〈q2

h〉〉s
, (4.3.29)

and report the following sequence of bounds on the symmetrized average efficiency:

1 > η(2) ≥ η2
O ≥ 〈η〉2s, (4.3.30)

where the “Otto efficiency” ηO = (ω1−ω0)/ω1 is achieved in the quasistaic limit
u = v = 1.

Notice that, the inequality η(2) ≥ η2
O directly follows from (4.3.24). Notably,

η2
O establishes a tighter lower bound on η(2) compared to what was reported in
Ref. [54]. This bound is determined entirely by the chosen parameter values for the
engine-cycle. In the quasistatic limit, the lower bounds on η(2) converge, resulting
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in η(2) = η2
O = 〈η〉2s.

The upper bound on η(2) reveals another fundamental relationship between the
symmetrized fluctuations: the fluctuation of input heat is always greater than that
of output work, 〈〈q2

h〉〉s > 〈〈w2〉〉s. To prove this upper bound, we begin with a
modified version of this inequality: 〈〈q2

h〉〉s − 〈〈w2〉〉s > 0. The left hand side of this
inequality can be expressed as

〈〈q2
h〉〉s − 〈〈w2〉〉s = ω0

[
2−tanh2

(βcω0

2

)
−tanh2

(βhω1

2

)]
C + B1−B2, (4.3.31)

where
C = −

[
ω0 + (1−2u)ω1

]
−
[
ω0 + (1−2v)ω1

]
,

B1 = ω2
0

[
2−tanh2

(βcω0

2

)
−tanh2

(βhω1

2

)]
,

B2 = 2ω2
0

[
u(1−u) + v(1−v)

]
tanh2

(βhω1

2

)
.

(4.3.32)

To establish that 〈〈q2
h〉〉s − 〈〈w2〉〉 is strictly positive in the symmetrized engine oper-

ational regime, we will demonstrate that C > 0 and B1 − B2 ≥ 0.

First, we note that min(1 − 2u) = min(1 − 2v) = −1, since u, v ∈ [0, 1]. Given
that ω1 > ω0, from (4.3.4), we can conclude that 〈w3〉f(r) > 0, irrespective of the
operational regime. Thus, to satisfy the symmetrized engine condition 〈w〉f(r) =

〈w1〉f(r) + 〈w3〉f(r) ≤ 0, we must have 〈w1〉f(r) < 0. This immediately implies that(
ω0 + (1−2u)ω1

)
< 0 and

(
ω0 + (1−2v)ω1

)
< 0. These are precisely the terms

appearing in the expression for C, with an additional negative sign. Therefore, we
conclude that quantity C is always positive.

Next, to show that B1 − B2 ≥ 0, we first maximize B2 under the symmetrized
engine condition 〈qh〉f(r) ≥ 0. Notice that, these constraints impose stricter lower
limits on u and v, where 0 ≤ u, v ≤ 1. These lower limits are expressed as

1

2
+

1

2

tanh
(
βhω1

2

)
tanh

(
βcω0

2

) ≤ u, v ≤ 1. (4.3.33)

These lower bounds, in turn, set an upper limit on the quantity u(1−u) + v(1−v),
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Figure 4.3: Results for (a) lower and (b) upper bounds on η(2) for an asymmetrically
driven qubit-Otto cycle. ω0, ω1, Tc and Th were chosen from uniform distribution
between the interval [0,5]. u, v were chosen between [0,1]. Simulations done over
2.5 million points. The ‘white color regions’ correspond to situations where the
symmetrized engine conditions 〈w〉f(r) ≤ 0, 〈qh〉f(r) ≥ 0 and 〈qc〉f(r) ≤ 0 are not
satisfied.

which can be expressed as

u(1−u) + v(1−v) ≤ 1

2
− 1

2

tanh2
(
βhω1

2

)
tanh2

(
βcω0

2

) ≤ 1

2

tanh2
(
βcω0

2

)
tanh2

(
βhω1

2

) − 1

2
. (4.3.34)

Using this inequality to maximize B2, we finally obtain

B1 − B2 ≥ B1 −
[
B2

]
max

= 2ω2
0

[
1− tanh2

(βhω1

2

)]
≥ 0. (4.3.35)

Since we have established that C > 0 and B1 − B2 ≥ 0, we immediately infer
〈〈q2

h〉〉s − 〈〈w2〉〉s > 0. This completees the proof of (4.3.30).

In Fig. 4.3, we present a contour plot displaying the upper and lower bounds
on η(2) with various parameters chosen arbitrarily from uniform distributions. The
plot confirms that both bounds are respected in the asymmetrically driven case,
consistent with our theoretical predictions.
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4.3.5 Engine regime: Hierarchy in the symmetrized relative

fluctuations

In the symmetrized engine operational regime of the asymmetrically driven qubit-
Otto cycle, we now establish a strict hierarchy among the symmetrized relative
fluctuations of work and heat from both hot and cold reservoirs. This hierarchy is
stated as

〈〈w2〉〉s
〈w〉2s

≥ 〈〈q
2
h〉〉s
〈qh〉2s

≥ 〈〈q
2
c 〉〉s
〈qc〉2s

≡ R(w) ≥ R(qh) ≥ R(qc).

(4.3.36)

Notice that the first inequality, R(w) ≥ R(qh), directly follows from the bound
η(2) ≥ 〈η〉2s provided in (4.3.30).

Next, we will prove the second inequality, R(qh) ≥ R(qc), by demonstrating the
following modified inequality:

〈qc〉2s
〈qh〉2s

≥ 〈〈q
2
c 〉〉s

〈〈q2
h〉〉s

. (4.3.37)

As the first step, using the bound ηO ≥ 〈η〉s provided in (4.3.30), along with the
symmetrized engine constraints 〈qc〉f(r) ≤ 0, we derive

〈qc〉2s
〈qh〉2s

≥ ω2
0

ω2
1

. (4.3.38)

Next, we show that

ω2
0

ω2
1

≥ 〈〈q
2
c 〉〉s

〈〈q2
h〉〉s

. (4.3.39)

The proof for a modified version the above inequality, ω2
0〈〈q2

h〉〉s − ω2
1〈〈q2

c 〉〉s ≥ 0,
proceeds as follows

ω2
0〈〈q2

h〉〉s − ω2
1〈〈q2

c 〉〉s =ω2
0ω

2
1

[
u(1−u) + v(1−v)

][
tanh2

(βcω0

2

)
−tanh2

(βhω1

2

)]
≥ 0, (4.3.40)

since βcω0 ≥ βhω1 within the engine operational regime. Combining equations
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(4.3.38) and (4.3.39) we obtain

〈qc〉2s
〈qh〉2s

≥ ω2
0

ω2
1

≥ 〈〈q
2
c 〉〉s

〈〈q2
h〉〉s

. (4.3.41)

This concludes our proof for R(qh) ≥ R(qc). The equality in equation (4.3.36)
corresponds to the quasistatic limit of the qubit-Otto cycle, when u = v = 1.

4.3.6 Engine regime: Bounds on efficiency derived from the

GTURs

In the symmetrized engine operational regime, because of the emerging hierarchy
between the relative fluctuations of work and the heat exchanges with both the hot
and cold reservoirs, as described by (4.3.36), we infer that a similar hierarchy applies
to the GTURs, introduced in (4.3.9):

GTUR(w) ≥ GTUR(qh) ≥ GTUR(qc) ≥ 2. (4.3.42)

This hierarchy in (4.3.42) is exclusive to the engine operational regime. Numerical
investigations reveal that in other operational regimes, no such hierarchy among
the relative fluctuations is observed. In Fig. 4.4 (a) we display the hierarchy in the
GTURs in the engine regime, with each GTUR lower bounded by the value 2.

Importantly, in the symmetrized engine regime, each of the GTURs offers ther-
modynamically consistent bounds on the symmetrized efficiency, 〈η〉s. To derive
these bounds, we begin by expressing the symmetrized average entropy production
as follows:

〈Σ〉s =− βc〈w〉s
(
1− ηc

/
〈η〉s

)
,

≡ βc〈qh〉s
(
ηc − 〈η〉s

)
,

≡− βc〈qc〉s
(

1− 1− ηc

1− 〈η〉s

)
,

(4.3.43)

where ηc = 1 − βh/βc denotes the Carnot efficiency. Now, by substituting the
appropriate expression for thr entropy production from (4.3.43) into (4.3.9), we can
derive independent upper bounds on the symmetrized efficiency. These bounds are
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Figure 4.4: (a) Plot for the hierarchy between the three GTURs in the symmetrized
engine regime. The black dashed line represents the lower bound 2. (b) Comparison
between different bounds on symmetrized efficiency derived from the GTURs. Pa-
rameters chosen: Tc=0.5, Th=5.5, ω0 =0.5, u=0.99 and v=0.9. The black dashed
line represents the quasistatic Otto efficiency ηO.

listed below:

〈η〉s ≤ ηc

/(
1− 2 〈w〉s

βc
(
〈〈w2〉〉s + 〈w〉2s

)) := ηwork, (4.3.44)

〈η〉s ≤ ηc −
2 〈qh〉s

βc
(
〈〈q2

h〉〉s + 〈qh〉2s
) := ηhot, (4.3.45)

〈η〉s ≤ 1− βh
βc

(
1 +

2 〈qc〉s
βc
(
〈〈q2

c 〉〉s + 〈qc〉2s
))−1

:= ηcold. (4.3.46)

Although the values of GTUR(φ), with φ = w, qh and qc, follow a strict hierarchy
within the engine regime, as indicated in (4.3.42), the efficiency bounds derived from
these GTURs do not necessarily respect this hierarchical structure. Nevertheless,
numerical tests, as shown in Fig. 4.4 (b), reveal that depending on the parameter
regime, the bound ηcold, derived from the tightest GTUR in the engine regime, can,
in some cases, be tighter than ηO [see equations (4.3.30) and (4.3.46)].

4.3.7 Refrigerator regime: Bounds on fluctuation

We now briefly discuss the refrigerator operational regime of the qubit-Otto cycle.
The symmetrized refrigerator operational regime, where both the forward and re-
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Figure 4.5: Results for (a) upper and (b) lower bounds on ε(2) in the refrigeration
regime for asymmetrically driven qubit-Otto cycle. ω0, ω1, Tc and Th were chosen
randomly from uniform distribution between the interval [0,5]. u, v were chosen
between [0,1]. Simulations done over 2.5 million points.

verse cycles of the qubit-Otto cycle function as refrigerators, is characterized by the
conditions 〈qc〉f(r) ≥ 0, 〈w〉f(r) ≥ 0 and 〈qh〉f(r) ≤ 0. In the context of refrigeration,
the key quantity to examine is ε(2) := 〈〈q2

c 〉〉s/〈〈w2〉〉s. It is important to note that
(4.3.25) already provides an upper bound on ε(2). Under symmetrized refrigeration
conditions, numerical results further suggest a lower bound on ε(2):

ω2
1

(ω1−ω0)2
> ε(2) >

ω2
0

ω2
1

. (4.3.47)

In Fig. 4.5, we illustrate the validity of both the lower and upper bounds in the
refrigeration regime of the qubit-Otto cycle. Note that, unlike the hierarchy of
symmetrized relative fluctuations observed in the engine regime as described in
(4.3.36), no such hierarchy is found in the refrigerator regime. This absence indicates
fundamental differences in nonequilibrium fluctuations across different operational
regimes.

In the next section, we consider a parametrically driven harmonic oscillator as
the working medium and investigate bounds on fluctuations.
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4.4 Harmonic oscillator as a working medium

We consider a harmonic oscillator (HO), with unit mass, as the working fluid of
the Otto cycle operating between the two thermal reservoirs with inverse tempera-
tures βc and βh, with βc > βh. The parametric time-dependent Hamiltonian of the
HO-working fluid is given by

H[ωt] =
p2

2
+

1

2
ω2
t x

2 (4.4.1)

For the cycle, during the unitary expansion stroke A→B, the time-dependent trap-
ping frequency ωt goes from ω0 at t = 0 to ω1 at time t = τ1, governed by the
expansion protocol UE . During the compression stroke C → D, the compression
protocol UC drives ω1 back to ω0 in the time interval τ3. The heat exchange strokes
take place in between and perfect thermalization is achieved in both the heat ex-
change strokes. To assure time-asymmetric driving, we again consider U †E 6= ΘUCΘ

†.
For HO-Otto cycle, the exact joint CF of output work and input heat can be ob-
tained and much like the qubit case, the non-adiabaticity of asymmetric drivings
are captured by the parameters Q and Q∗. The exact expression of the characteris-
tic function of joint probability distribution of output work and input heat for the
time-forward process is given by [216],

GHOf (χw, χh) =2(1−e−βcω0)(1−e−βhω1)

×
[
Q(1−x2

1)(1−y2
1) + (1+x2

1)(1+y2
1)−4x1y1

]− 1
2

×
[
Q∗(1−x2

2)(1−y2
2) + (1+x2

2)(1+y2
2)−4x2y2

]− 1
2 , (4.4.2)

where,

x1 = exp
[
−ω0(βc + iχw)

]
,

y1 = exp
[
iω1(χw−χh)

]
,

x2 = exp
[
−ω1(βh + i(χw−χh))

]
,

y2 = exp
[
iω0χw

]
,
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and Q,Q∗ ∈ [1,∞] are the so called adiabaticity parameters for the expansion and
compression unitary strokes, respectively. Q and Q∗ serve as a qualitative indicator
of the degree of non-adiabaticity (in the quantum sense) introduced into the unitary
work strokes (see Ref. [217] for details). Q=Q∗ corresponds to the time-symmetric
driving case with Q=Q∗=1 is the quasi-static limit.

Bellow, we list the expressions of the averages and fluctuations of work and heat
for the forward cycle.

〈qh〉f =
ω1

2

[
coth

(βhω1

2

)
−Q coth

(βcω0

2

)]
, (4.4.3)

〈〈q2
h〉〉f = −ω

2
1

4

[
2− coth2

(βhω1

2

)
− (2Q2 − 1) coth2

(βcω0

2

)]
, (4.4.4)

〈w〉f = 〈w1〉f + 〈w3〉f

=
1

2
(Qω1 − ω0) coth

(βcω0

2

)
+

1

2
(Q∗ω0 − ω1) coth

(βhω1

2

)
, (4.4.5)

〈〈w2〉〉f = 〈w1〉2f + 〈w3〉2f −
(ω1 − ω0)2

2
+
ω0ω1

2
(Q+Q∗ − 2)

+
ω2

1

4
(Q2 − 1) coth2

(βcω0

2

)
+
ω2

0

4
(Q∗2 − 1) coth2

(βhω1

2

)
, (4.4.6)

〈qc〉f =
ω0

2

[
coth

(βcω0

2

)
−Q∗ coth

(βhω1

2

)]
, (4.4.7)

〈〈q2
c 〉〉f = −ω

2
0

4

[
2− coth2

(βcω0

2

)
− (2Q∗2 − 1) coth2

(βhω1

2

)]
. (4.4.8)

For the reverse cycle, similar expressions for averages and fluctuations of work and
heat can be obtained by swapping Q and Q∗.

In the symmetrized engine operational regime, 〈w〉f ≤ 0 and 〈w〉r ≤ 0, the
numerical results in Fig. 4.6 suggest that the lower and upper bounds for η(2) are
given as 1 > η(2) ≥ 〈η〉2s. Contrary to (4.3.30) for qubit-Otto cycle, numerical
studies suggested that for the HO-Otto engine η2

O =
(
1 − ω0/ω1

)2 fails to provide
a lower bound on η(2) at very low temperatures of the heat reservoirs, specifically
for Tc < 1.0. This discrepancy in results is caused by the different dimensionalities
(number of energy levels) of the working fluids. Note that, ηO corresponds to the
quantum-adiabatic (quasistatic) cycle’s efficiency in both scenarios: u = v = 1 for
the qubit-Otto cycle and Q = Q∗ = 1 for the HO-Otto cycle. However, as there
are an infinite number of energy levels available for HO-working medium, quantum
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Figure 4.6: For an asymmetrically driven HO-Otto cycle (a) upper and (b) lower
bounds on η(2) in the engine regime. ω0, ω1, Tc and Th were chosen randomly from
uniform distribution between the interval [0,5]. Q,Q∗ were chosen between [1,6].
Simulations done over 2.5 million points.

non-adiabaticity (transitions between the instantaneous eigen basis) plays a more
significant role in determining the fluctuations and diminishes the usefulness of the
adiabatic (quasistatic) value of efficiency ηO in establishing bound on η(2).

4.5 Summary
In summary, we provide a study of bounds on non-equilibrium fluctuations of

heat and work for asymmetrically driven four stroke quantum Otto engine with
working fluid consisting of a qubit, or a harmonic oscillator. We show that the
non-equilibrium fluctuations are not arbitrary but are restricted. In the engine
regime, the ratio of non-equilibrium fluctuations of work and heat from hot reservoir
η(2) receive both upper and lower bounds. For both the qubit and oscillator case,
the upper bound for η(2) remains the same whereas the tighter lower bound η2

otto,
found in qubit-Otto engine, is violated for the oscillator case. For the qubit-Otto
cycle, we further make an important connection of our result with the TURs and
observe that in the engine regime, the TURs of work and heat for both cold and hot
reservoirs follow a strict hierarchy and further lower bounded by the value 2. These
results further indicate an interesting possibility to receive a tighter estimate for
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the thermodynamic efficiency. While preliminary results [212] indicate that some of
these bounds may also be satisfied with HO and qubit-Otto engines with finite-time
thermalization, it will be interesting to explore the universality of these bounds for
more complex working fluids and for other class of finite-time engines.



5

Full statistics of nonequilibrium heat and work for
many-body quantum Otto cycle and universal
bounds: a NEGF approach

In this work, we consider a generic four-stroke quantum Otto cycle [59, 75, 200–208,
218, 219] consisting of an arbitrary many-body working medium and derive an an-
alytical expression for the joint cumulant generating function (CGF) of total work
and input heat, valid up to the second order of the driving amplitude, by employing
the rigorous Schwinger-Keldysh nonequilibrium Green’s function (NEGF) formalism
[220–223]. The CGF obtained for an arbitrary many-body working medium satis-
fies the nonequilibrium fluctuation relation [214]. Furthermore, we demonstrate the
linear response limit characterized by a small driving amplitude and small temper-
ature difference and obtain the expressions for the Onsager’s transport coefficients.
Notably, we reveal a breakdown of the traditional fluctuation-dissipation relation
(FDR) [80, 224–226] for the total work, while, the traditional FDR remains intact
for heat. Our findings have remarkable implications for the generic Otto cycle: when
operating as an engine, the ratio of output (work) to input (heat from the hot reser-
voir) fluctuations is bounded from below, while in the refrigerator regime, a similar
quantity is bounded from above. Additionally, we also establish connections to the
TURs. Finally, we compare the obtained bounds for the discrete Otto cycle with
those of autonomous steady-state machines [53, 54, 63, 227].

83
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We organize the paper as follows: Sections 5.1 and 5.2 briefly describes the
quantum Otto cycle and the two-point measurement protocol to construct the CGF
corresponding to the joint probability distribution of total work and heat. We then
demonstrate how to map the CGF on the modified Keldysh contour. In Section 5.3,
we obtain the expression for the CGF valid up to the second order of the external
driving amplitude. We validate that the CGF respects the fluctuation symmetry.
In Sections 5.4 to 5.7, we discuss the linear response limit, obtain the Onsager
transport coefficients, and derive universal bounds on nonequilibrium fluctuations
in both engine and refrigerator operational regimes. We illustrate the obtained
results with a paradigmatic model in Section 5.8. Finally, we summarize our main
findings and provide an outlook in Section 5.9.

5.1 Quantum Otto cycle with generic many-boday

working medium

We consider a generic many-body working medium for the quantum Otto cycle
and treat the many-body interaction part as a time-dependent perturbation. The
total Hamiltonian of the working medium is given by

H(t) = H0 + λ(t)H1, (5.1.1)

where H0 is the non-interacting part, often referred to here as the free Hamiltonian,
and H1 represents an arbitrary many-body interaction term. λ(t) is an arbitrary
driving protocol that drives the system away from equilibrium. Importantly, λ(t)

serves the purpose of a perturbation parameter, and the values it can take are
significantly smaller than those of other dimensionally comparable free parameters.
The working medium performs a four-stroke Otto cycle consisting of two unitary and
two thermalization strokes with respect to the cold and hot thermal reservoirs with
fixed inverse temperatures βc and βh, respectively, as illustrated Fig. 5.1. Below we
briefly describe these four strokes: (i) Unitary expansion (A→B). The system
starts at time t = 0 from the initial thermal state A characterized by the cold inverse
temperature βc and Hamiltonian H(0) = H0+λ(0)H1, where λ(0) = λ0. The system
is then decoupled from the reservoir and λ(t) drives the system out of equilibrium.
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Figure 5.1: Schematic of a four-stroke Otto cycle. We are considering symmetric
driving case: UC = ΘU †EΘ

†. The final states of the unitary strokes at B and D are
non-thermal ones.

The first unitary stroke ends at time t = τ with λ(τ) = λ1. At the end of this
stroke, the state of the system B is a non-thermal one. (ii) Hot isochore (B→C).
During the first heat exchange stroke, the system is brought into weak contact with
the hot reservoir while keeping λ1 fixed. The system then waits until it reaches
a thermal state C, parameterized by (λ1, βh) at time t = τ + τh. (iii) Unitary
compression (C→D). The system is then decoupled from the hot reservoir and
the interaction strength λ(t) is decreased unitarily from λ1 to λ0. Consequently,
the system ends up in a non-thermal state D at time t = τ + τh + τ ′. (iv) Cold
isochore (D→A): In the final step, the system is placed in weak contact with the
cold reservoir while keeping λ0 fixed until it reaches the thermal state parametrized
by (λ0, βc) at time t = τ + τh + τ ′ + τc = τcyc. Here, we assume that the system
achieves full thermalization during both hot and cold isochores. This assumption
is valid when the heat exchange stroke times τh and τc are much larger than the
system relaxation time. Additionally, we consider here the symmetric driving case,
meaning the unitary evolution operators, represented by UE and UC, governing the
expansion and compression strokes, respectively, are mirror images of each other,
UC = ΘU †EΘ

†, where Θ is the anti-unitary time-reversal operator. As a result, the
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two unitary stroke duration are equal, τ ′ = τ .

Under the complete thermalization assumption, we construct the joint probability
distribution (PD) of total work and heat exchange in the hot isochore P (w, qh) by
employing the projective measurements of the energy of the system at the end points
of each stroke, i.e., at A, B, C, and D, respectively [50]. The characteristic function
(CF) corresponding to the joint distribution is given by the Fourier transform of the
PD:

G(χw, χh) =

∫∫
dw dqh P (w, qh) e

iχww eiχhqh

=
Tr
[
U †E e

(iχw−iχh)H(τ) UE e
(−iχw−βc)H(0)

]
Zc[H(0)]

Tr
[
U †C e

iχwH(0) UC e
(−iχw+iχh−βh)H(τ)

]
Zh[H(τ)]

,

(5.1.2)

where χw, χh are the counting variables associated to the total work w = w1+w3 and
the heat exchange with the hot reservoir qh, respectively. In (5.1.2), H(0) =H0 +

λ0H1 and H(τ) = H0 + λ1H1. Zc[H(0)] = Tr[e−βcH(0)] and Zh[H(τ)] = Tr[e−βhH(τ)]

represent the canonical partition functions with respect to the cold and hot inverse
temperatures βc and βh, and Hamiltonians H(0) and H(τ), respectively. We observe
that, due to the complete thermalization assumption, the joint PD in (5.1.2) takes
a product form. More importantly, under this assumption, the joint PD of total
work and heat from the hot reservoir alone suffices to determine the statistics of
heat exchange with the cold reservoir qc (see Appendix A1).

5.2 Characteristic function on modified Schwinger-

Keldysh contour

In order to obtain a perturbative expression of the CF given in (5.1.2), we uti-
lize the Schwinger-Keldysh formalism. This is a standard approach for systematic
calculation of nonequilibrium Green’s functions and correlation functions under the
influence of time-dependent perturbations by casting the problem on a closed time-
ordered contour in the complex time plane, famously known as the Keldysh con-
tour. For the problem considered here, all the unitary evolution operators and the
exponential operators, e.g., e(iχw−iχh)H(τ), appearing in (5.1.2) are mapped on two
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(b)(a)

Figure 5.2: The modified Keldysh contour to compute joint work and heat statistics
for a generic quantum Otto cycle. (a) Contour C corresponds to the numerator of
the first term in (5.1.2). The denominator of this term runs only on the vertical tail.
(b) Contour C ′ corresponds to the numerator of the second term in (5.1.2). The
denominator of this term runs only on the vertical tail. In the symmetric driving
scenario: λ̃(s) = λ(τ − s). Note that, none of the modified contours C and C ′

return to Re(s) = 0, and get closed, because of the presence of the non-unitary heat
exchange stroke.

modified Keldysh contours. The first trace in (5.1.2) corresponds to the modified
contour C, as shown in Fig. 5.2 (a), and the second trace gives rise to another
modified contour C ′, as shown in Fig. 5.2 (b). It is important to note that, in the
Schwinger-Keldysh formalism, one typically expects closed contours while dealing
with time-dependent perturbations. However, here, none of our modified contours
are closed, only articulating the fact that both the traces, that are mapped, contain
partial information about the non-unitary heat exchange stroke. The tails represent
the presence of interaction H1 in the thermal states at A and C (see Fig. 5.1). We
express the joint CF on the Keldysh contour in a compact form as

G(χw, χh) =

〈
TC e−

i
~
∫
CλC(s1)HI

1 (s1)ds1
〉
β̃c〈

TC e−
i
~
∫ ~χh−i~βc
~χh

λ0HI
1 (s1)ds1

〉
βc

〈
TC′ e−

i
~
∫
CλC′ (s2)HI

1 (s2)ds2
〉
β̃h〈

TC′ e−
i
~
∫ τ−~χh−i~βh
τ−~χh

λ1HI
1 (s2)ds2

〉
βh

× 〈e−iχhH0〉βc 〈eiχhH0〉βh
≡ GC(χw, χh)GC′(χw, χh) 〈e−iχhH0〉βc 〈eiχhH0〉βh .

(5.2.1)

Here, crucially, the averages in both the numerators are taken with respect to shifted
inverse temperatures β̃c = βc + iχh and β̃h = βh − iχh, which are counting-field
dependent. TC and TC′ are the contour-time ordered operators defined on the con-
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tours C and C ′, respectively, which orders the time-dependent operators according
to their contour-time argument: sorting the operators from left to right with their
contour-time arguments decreasing.

Details of mapping the joint CF on Keldysh contour :
We present the details of obtaining the joint CF given in (5.2.1). In time-

dependent perturbation theory, we express all the evolution operators in the
interaction picture with respect to the free Hamiltonian H0. Here, we consider
the first trace of (5.2.1) only. A similar analysis applies to the second trace as
well. Exclusively for this proof, we are dropping the E subscript from UE . In
the interaction picture, we obtain

UI(t) = T+ exp
[
− i

~

∫ t

0

λ(s)HI
1 (s) ds

]
, (5.2.2)

U
(0)
I (t) = T+ exp

[
− i

~

∫ t

0

λ0H
I
1 (s) ds

]
, (5.2.3)

U
(τ)
I (t) = T+ exp

[
− i

~

∫ t

0

λ1H
I
1 (s) ds

]
, (5.2.4)

where the superscripts (0) and (τ) in equations (5.2.3) and (5.2.4) indicate in-
teraction picture evolution operator with fixed λ0 and λ1, respectively. Here
T+ is the time-ordering operator which arranges the operators from left to
right with decreasing time. Note that, HI

1 (s) = U †0(s)H1 U0(s), where U0(t) =

exp (−iH0t/~) represents the free evolution operator. We express the first trace
in (5.2.1) as,

Tr
[
e−iχwH(0) U †(τ) e(iχw−iχh)H(τ) U(τ) e−βcH(0)

]
= Tr

[
U (0)†(−~χw)U †(τ)U (τ)(−~χw + ~χh)U(τ)U (0)(−i~βc)

]
= Tr

[
U

(0)
I

†
(−~χw)U †0(−~χw)U †I (τ)U †0(τ)U0(−~χw + ~χh)U (τ)

I (−~χw + ~χh)

U0(τ)UI(τ)U0(−i~βc)U (0)
I (−i~βc)

]
= Tr

[ ︷ ︸︸ ︷
U †0(~χh)U (0)

I (−i~βc)U0(~χh) U †0(~χh)U (0)
I

†
(−~χw)U0(~χh)︸ ︷︷ ︸
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︷ ︸︸ ︷
U †0(−~χw + ~χh)U †I (τ)U0(−~χw + ~χh) U †0(τ)U

(τ)
I (−~χw + ~χh)U0(τ)︸ ︷︷ ︸︷ ︸︸ ︷

UI(τ) U0(−i~βc)U0(~χh)
]

=
〈
T+e

− i
~
∫ ~χh−i~βc
~χh

λ0HI
1 (s) ds T−e−

i
~
∫ ~χh
−~χw+~χh

λ0HI
1 (s) ds

T−e−
i
~
∫−~χw+~χh
τ−~χw+~χh

λ(s+χw−χh)HI
1 (s) ds T+e

− i
~
∫ τ−~χw+~χh
τ λ1HI

1 (s) ds

T+e
− i

~
∫ τ
0 λ(s)HI

1 (s) ds
〉
β̃c

× Tr
[
e(−βc−iχh)H0

]
=
〈
Tce−

i
~
∫
c λC(s)HI

1 (s) ds
〉
β̃c

Tr
[
e(−βc−iχh)H0

]
. (5.2.5)

In the last line, we map the real-time evolution onto a modified Keldysh contour
C [see Fig. 5.2 (a)] by introducing the contour-time ordered operator TC with
contour-time dependent driving parameter λC(s). Similarly, we can map the
partition function Zc[H(0)] appearing in (5.2.1) onto the same contour C. For
the partition function, we obtain

Zc[H(0)] = Tr
[
e−βcH(0)

]
= Tr

[
U0(−i~βc)U (0)

I (−i~βc)
]

= Tr
[
U0(−i~βc) U †0(~χh)U (0)

I (−i~βc)U0(~χh)︸ ︷︷ ︸ ]
=
〈
Tc e−

i
~
∫ ~χh−i~βc
~χh

λ0HI
1 (s) ds

〉
βc

Tr
[
e−βcH0

]
, (5.2.6)

where the contour-time dependent first term is mapped onto a Keldysh contour
which runs only on the vertical line of Fig. 5.2 (a). The same prescription
also applies for the second trace and the partition function Zh[H(τ)] in (5.2.1),
resulting in the second modified contour [see Fig. 5.2 (b)].

Next, we expanded the exponential operators in (5.2.1) up to the second order
in driving protocol λ(s) [220]. Here, we will demonstrate the series expansion for
GC(χw, χh), mapped on the first contour:

GC(χw, χh) :=

〈
TC e−

i
~
∫
C λC(s1)HI

1 (s1) ds1
〉
β̃c〈

TC e−
i
~
∫ ~χh−i~βc
~χh

λ0HI
1 (s1) ds1

〉
βc
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=
1 +

∑∞
n=1

[∏n
j=1

∫
C
dsjλC(sj)ΘC(sj−sj+1)

(
− i
~

)n 〈HI
1 (s1) · · ·HI

1 (sn)〉β̃c
]

1 +
∑∞

n=1

[∏n
j=1

∫ ~χh−i~βc
~χh

dsjλC(sj) ΘC(sj−sj+1)
(
− i
~

)n 〈HI
1 (s1) · · ·HI

1 (sn)〉βc
] ,

(5.2.7)

where, the contour step function ΘC(sj − sj+1) is appearing because of the contour-
time ordering. A more convenient way is to consider the expansion of the cumulant
generating function (CGF) ln[GC(χw, χh)], where the series expansion is expressed in
terms of n-point connected correlation functions (cumulant correlation functions),

ln GC(χw, χh) =
∞∑
n=1

[ n∏
j=1

∫
C

dSjG̃c(s1, ..., sn)−
n∏
j=1

∫ ~χh−i~βc

~χh
dSjGc(s1, ..., sn)

]
,

(5.2.8)

where, dSj = dsjλC(sj)ΘC(sj − sj+1) and

G̃c(s1, ..., sn) =

(
− i
~

)n
〈〈HI

1 (s1)...HI
1 (sn)〉〉β̃c ,

Gc(s1, ..., sn) =

(
− i
~

)n
〈〈HI

1 (s1)...HI
1 (sn)〉〉βc . (5.2.9)

Note that, the double angular bracket 〈〈·〉〉 represents cumulant correlation function.
The CGF is a very useful quantity as it enables us to calculate all the cumulants
of total work and heat exchange with the hot reservoir by taking partial derivatives
with respect to χw and χh, respectively,

〈〈wkqlh〉〉 =
∂k∂l

∂(iχw)k∂(iχh)l
lnG(χw, χh)

∣∣∣
{χ}=0

. (5.2.10)
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5.3 Cumulants of work and heat

In this section, we first write down the final expression for the CGF valid up to
the second order of the driving protocol λ(s):

lnG(χw, χh) =
[
−iχw(λ1−λ0) + iχhλ1

] [
〈H1〉β̃h−〈H1〉β̃c

]
+
[
−i~χw(λ2

1−λ2
0) + i~χhλ2

1

] ∫ dω

2π

G̃>
h (ω)− G̃>

c (ω)

ω

− βcλ0

[
〈H1〉β̃c−〈H1〉βc + ~λ0

∫
dω

2π

G̃>
c (ω)−G>

c (ω)

ω

]
− βhλ1

[
〈H1〉β̃h−〈H1〉βh + ~λ1

∫
dω

2π

G̃>
h (ω)−G>

h (ω)

ω

]
+

∫
dω

2π

1−ei~ω(χw−χh)

ω2
A(ω)G̃>

c (ω) +

∫
dω

2π

1−ei~ωχw
ω2

A(ω)G̃>
h (ω)

+ ln 〈e−iχhH0〉βc + ln 〈eiχhH0〉βh .
(5.3.1)

Equation (5.3.1) is the first central result of this chapter. It describes the statistical
properties of total work and input heat fluctuations in a generic (many-body) Otto
cycle in terms of one-point and two-point correlators of the interaction Hamiltonian
H1. In this expression, we suppress the integration limits for ω, which ranges from
−∞ to +∞. Here, the nonequilibrium Green’s functions are defined as connected
two-point correlators of H1 in the interaction picture,

G̃>
α (s) =

(
− i
~

)2

〈〈HI
1 (s)H1〉〉β̃α , (5.3.2)

G>
α (s) =

(
− i
~

)2

〈〈HI
1 (s)H1〉〉βα , (5.3.3)

where α = c, h. Here, the two-point connected correlation function or cumulant
correlation function is given by

〈〈XI(s1)Y I(s2)〉〉β = 〈XI(s1)Y I(s2)〉β−〈X〉β〈Y 〉β. (5.3.4)

Notably, the shifted inverse temperatures β̃α, α= c, h, appearing in (5.3.1) play a
crucial role in calculating the cumulants of the heat exchange. Here, we adopt the
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Fourier transformation convention:

G>
α (ω) =

∫ +∞

−∞
dsG>

α (s) eiωs. (5.3.5)

Crucially, all the information about the time-dependent driving protocol is encap-
sulated in the quantity A(ω), defined as

A(ω) =

∣∣∣∣∫ τ

0

λ̇(t)eiωtdt

∣∣∣∣2 . (5.3.6)

The CGF in (5.3.1) satisfies the normalization condition, lnG(0, 0) = 0. More
importantly, it satisfies the universal heat engine fluctuation symmetry [114, 214,
228],

lnG
[
iβc, i(βc−βh)

]
= 0. (5.3.7)

This fluctuation symmetry is a direct consequence of the Kubo-Martin-Schwinger
(KMS) boundary condition satisfied by the Green’s functions introduced in equa-
tions (5.3.2) and (5.3.3) [79, 229–231],

G̃>(s−i~β̃c) = G̃>(−s), (5.3.8)

G>(s−i~βc) = G>(−s). (5.3.9)

Details of the calculation of joint CGF :
Let us begin from (5.2.8). The contour-time dependent driving parameter

λC(s) is piece-wise defined along the contour C:

λ(s) =



λ(s) Part 1 : s ∈ [0, τ),

λ1 Part 2 : s ∈ [τ, τ−~χw + ~χh),

λ(s+ ~χw−~χh) Part 3 : s ∈ [τ−~χw + ~χh,−~χw + ~χh),

λ0 Part 4 : s ∈ [−~χw + ~χh, ~χh−i~βc].
(5.3.10)

Our goal is to calculate the right-hand side of (5.2.8) up to the second order of
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the driving parameter λ(s).
The contribution to the first order of λ(s) is given by

O(λ)⇒ i
[
χw(λ1−λ0)− χhλ1

]
〈H1〉β̃c − βcλ0

[
〈H1〉β̃c−〈H1〉βc

]
. (5.3.11)

Next, for the contribution to the second order in λ(s) we have to calculate
double integrals given by

O(λ2)⇒
∫
C

ds1 λC(s1)

∫
C

ds2 λC(s2) ΘC(s1−s2) G̃c(s1, s2)

−
∫ ~χh−i~βc

~χh
ds1 λC(s1)

∫ ~χh−i~βc

~χh
ds2 λC(s2) ΘC(s1−s2)Gc(s1, s2)

=

∫
C

ds1 λC(s1)

∫
C

ds2 λC(s2) ΘC(s1−s2) G̃>
c (s1−s2)

−
∫ ~χh−i~βc

~χh
ds1 λC(s1)

∫ ~χh−i~βc

~χh
ds2 λC(s2) ΘC(s1−s2)G>

c (s1−s2).

(5.3.12)

Due to (5.3.10), the double integral along the contour C is expressed as a sum
of double integrals of parts (i, j), where i, j ∈ {1, 2, 3, 4}. Importantly, once
we take into account the contour step function Θ(s1 − s2), only 10 out of the
possible 16 terms survive in this sum:

(i, j) =



(1, 1),

(2, 1), (2, 2),

(3, 1), (3, 2), (3, 3),

(4, 1), (4, 2), (4, 3), (4, 4).

(5.3.13)

Bellow we show details of calculating a few of these double integrations:
(i) For (i, j) = (4, 1)∫

dω

2π

∫ ~χh−i~βc

−~χw+~χh
ds1 λ0 e

−iωs1
∫ τ

0

ds2 λ(s2) eiωs2G̃>
c (ω)
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=

∫
dω

2π
λ0
e−~ω(βc+iχh)G̃>

c (ω)

−iω

∫ τ

0

ds2 λ(s2) eiωs2

−
∫
dω

2π
λ0
G̃>
c (ω)

−iω
ei~ω(χw−χh)

∫ τ

0

ds2 λ(s2) eiωs2

=

∫
dω

2π
λ0
G̃>
c (−ω)

−iω

∫ τ

0

ds2λ(s2)eiωs2

+

∫
dω

2π
λ0
G̃>
c (ω)

iω
ei~ω(χw−χh)

∫ τ

0

ds2 λ(s2) eiωs2

=

∫
dω

2π

G̃>
c (ω)

iω
λ0

∫ τ

0

ds2 λ(s2) e−iωs2

+

∫
dω

2π

G̃>
c (ω)

iω
λ0 e

i~ω(χw−χh)

∫ τ

0

ds2 λ(s2) eiωs2 . (5.3.14)

where to go from the second step to the third step we have used the KMS
relation given in (5.3.8).
(ii) For (i, j) = (4, 2)∫

dω

2π

∫ ~χh−i~βc

−~χw+~χh
ds1 λ0 e

−iωs1
∫ τ−~χw+~χh

τ

ds2 λ1 e
iωs2G̃>

c (ω)

= −
∫
dω

2π
λ0λ1

e−~ω(βc+iχh)G̃>
c (ω)

ω2

(
1− e−i~ω(χw−χh)

)
eiωτ

−
∫
dω

2π
λ0λ1

G̃>
c (ω)

ω2

(
1− ei~ω(χw−χh)

)
eiωτ

= −
∫
dω

2π
λ0λ1

G̃>
c (−ω)

ω2

(
1− e−i~ω(χw−χh)

)
eiωτ

−
∫
dω

2π
λ0λ1

G̃>
c (ω)

ω2

(
1− ei~ω(χw−χh)

)
eiωτ

=

∫
dω

2π

G̃>
c (ω)

ω2

[
− 2λ0λ1

(
1− ei~ω(χw−χh)

)
cos (ωτ)

]
, (5.3.15)

(iii) For (i, j) = (4, 3)∫
dω

2π

∫ ~χh−i~βc

−~χw+~χh
ds1 λ0 e

−iωs1
∫ −~χw+~χh

τ−~χw+~χh
ds2 λ(s2 + ~χw − ~χh) eiωs2G̃>

c (ω)
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= −
∫
dω

2π

∫ ~χh−i~βc

−~χw+~χh
ds1 λ0 e

−iωs1
∫ τ

0

ds2 λ(s2) eiω(s2−~χw+~χh)G̃>
c (ω)

= −
∫
dω

2π

G̃>
c (ω)

iω
λ0 e

i~ω(χw−χh)

∫ τ

0

ds2 λ(s2) e−iωs2

−
∫
dω

2π

G̃>
c (ω)

iω
λ0

∫ τ

0

ds2 λ(s2) eiωs2 . (5.3.16)

The intermediate steps are similar to the (4,1) case.
(iv) For (i, j) = (4, 4)∫

dω

2π

∫ ~χh−i~βc

−~χw+~χh
ds1 λ0 e

−iωs1
∫ s1

−~χw+~χh
ds2 λ0 e

iωs2G̃>
c (ω)

−
∫
dω

2π

∫ ~χh−i~βc

~χh
ds1 λ0 e

−iωs1
∫ s1

~χh
ds2 λ0 e

iωs2G>
c (ω)

=

∫
dω

2π

G̃>
c (ω)

ω2
λ2

0

[
− i~ωχw − βc~ω + 1− e−βc~ωe−i~ωχw

]
−
∫
dω

2π

G>
c (ω)

ω2
λ2

0

[
− βc~ω + 1− e−βcω

]
=

∫
dω

2π
λ2

0

[G̃>
c (ω)

ω2

(
− i~ωχw − βc~ω + 1

)
− e−i~ω(χw−χh) G̃>

c (−ω)

ω2

]
−
∫
dω

2π
λ2

0

[G>
c (ω)

ω2

(
− βc~ω + 1)− G

>
c (−ω)

ω2

]
=

∫
dω

2π

G̃>
c (ω)

ω2
λ2

0

[
− i~ωχw − βc~ω + 1− ei~ω(χw−χh)

]
+

∫
dω

2π

G>
c (ω)

ω
λ2

0βc~.

(5.3.17)

Note that, the second term here is stemming from the canonical partition func-
tion Zc[H(0)] [second term in (5.3.12)]. The rest of the terms in (5.3.13) can
be calculated analogously. Now, following Ref. [220], we will categorize the 10
non-zero terms given in (5.3.13) in 6 groups:

1. {(2, 2)}:∫
dω

2π
G̃>
c (ω)

[λ2
1

ω2

(
i~ω(χw − χh) + 1− ei~ω(χw−χh)

)]
. (5.3.18)
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2. {(1, 1) + (3, 1) + (3, 3)}∫
dω

2π
G̃>
c (ω)

(
1− ei~ω(χw−χh)

)∫ τ

0

ds1

∫ τ

0

ds2 λ(s1)λ(s2)eiω(s1−s2).

(5.3.19)

3. {(2, 1) + (3, 2)}∫
dω

2π
G̃>
c (ω)

[
− 2λ1

ω

(
1− ei~ω(χw−χh)

)∫ τ

0

ds λ(s) sin [ω(τ − s)]
]
.

(5.3.20)

4. {(4, 3) + (4, 1)}∫
dω

2π
G̃>
c (ω)

[
− 2λ0

ω

(
1− ei~ω(χw−χh)

)∫ τ

0

ds λ(s) sin (ωs)
]
. (5.3.21)

5. {(4, 2)}∫
dω

2π
G̃>
c (ω)

[
− 2λ0λ1

ω2

(
1− ei~ω(χw−χh)

)
cos (ωτ)

]
. (5.3.22)

6. {(4, 4)} ∫
dω

2π
G̃>
c (ω)

[λ2
0

ω2

(
− i~ωχw−βc~ω + 1− ei~ω(χw−χh)

)]
+

∫
dω

2π
G>
c (ω)

~βcλ2
0

ω
. (5.3.23)

Next, we collect all the terms with
(
1− ei~ω(χw−χh)

)
∫
dω

2π
G̃>
c (ω)

1− ei~ω(χw−χh)

ω2

[
λ2

1 + λ2
0 − 2λ0λ1 cos (ωτ)

+ ω2

∫ τ

0

ds1

∫ τ

0

ds2 λ(s1)λ(s2)eiω(s1−s2)

− 2ωλ1

∫ τ

0

ds λ(s) sin [ω(τ − s)]− 2ωλ0

∫ τ

0

ds λ(s) sin (ωs)
]
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=

∫
dω

2π
G̃>
c (ω)

1− ei~ω(χw−χh)

ω2

∣∣∣∣λ1e
iωτ − λ0 − iω

∫ τ

0

ds λ(s) eiωs
∣∣∣∣2

=

∫
dω

2π
G̃>
c (ω)

1− ei~ω(χw−χh)

ω2

∣∣∣∣ ∫ τ

0

ds λ̇(s) eiωs
∣∣∣∣2

=

∫
dω

2π
G̃>
c (ω)

1− ei~ω(χw−χh)

ω2
A(ω), (5.3.24)

Finally, summing all the terms given in equations (5.3.18) to (5.3.23), we obtain∫
dω

2π
G̃>
c (ω)

[
1

ω

(
i~χw(λ2

1 − λ2
0)− i~χhλ2

1 − ~βcλ2
0

)
+

1− ei~ω(χw−χh)

ω2
A(ω)

]
+

∫
dω

2π
G>
c (ω)

~βcλ2
0

ω
. (5.3.25)

Therefore, the right-hand side of Eq. (5.2.8) up to second order of driving pa-
rameter λ(s) is given by

i
(
χw(λ1−λ0)− χhλ1

)
〈H1〉β̃c − βcλ0

(
〈H1〉β̃c−〈H1〉βc

)
+
(
i~χw(λ2

1 − λ2
0)− i~χhλ2

1 − ~βcλ2
0

)∫ dω

2π

G̃>
c (ω)

ω
+ ~βcλ2

0

∫
dω

2π

G>
c (ω)

ω

+

∫
dω

2π
G̃>
c (ω)

1− ei~ω(χw−χh)

ω2
A(ω) +O(λ3). (5.3.26)

Notice that the contour C corresponding to the first trace in (5.1.2), contains
the contributions to the statistics of total work and input heat that are solely
connected to the cold reservoir inverse temperature βc. An analogous calculation
can be done for the second contour C ′, which captures all the contributions that
are connected to the hot reservoir inverse temperature βh.

In the following, we present the formal expressions of the first and second cumu-
lants of total work w and heat exchange with the hot reservoir qh. The average total
work is given by

〈w〉 =− (λ1−λ0)
[
〈H1〉βh−〈H1〉βc

]
− ~(λ2

1−λ2
0)

∫
dω

2π

1

ω
[G>

h (ω)−G>
c (ω)]

− ~
∫
dω

2π

A(ω)

ω
[G>

c (ω) +G>
h (ω)] . (5.3.27)
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The first two terms on the right-hand side represent the boundary terms that depend
on the end values of the driving protocol. They are associated with the total change
in free energy during the two unitary work strokes.

The corresponding variance (second cumulant) of total work is given by

〈〈w2〉〉 = −~2

∫
dω

2π
A(ω) [G>

c (ω) +G>
h (ω)] . (5.3.28)

We notice that calculating the cumulants of heat exchange qh requires more
involved calculations due to the presence of shifted inverse temperatures β̃c and β̃h.
This results in connected correlators of the form 〈〈H1H0〉〉, 〈〈HI

1 (s)H1H0〉〉, and so
on. Note that, for an arbitrary operator X,

d

d(iχh)
〈X〉β̃α =∓〈〈XH0〉〉β̃α , (5.3.29)

d2

d(iχh)2
〈X〉β̃α =〈〈XH2

0 〉〉β̃α , (5.3.30)

where (−) corresponds to α = c, and (+) corresponds to α = h, respectively. Below
we list the expressions for the average heat exchange with the hot reservoir and its
variance,

〈qh〉 =〈H0〉βh−〈H0〉βc + λ1

[
〈H1〉βh−〈H1〉βc

]
+ ~λ2

1

∫
dω

2π

G>
h (ω)−G>

c (ω)

ω

+ βcλ0

[
〈〈H0H1〉〉βc+ ~λ0

∫
dω

2π

G′c(ω)

ω

]
−βhλ1

[
〈〈H0H1〉〉βh+ ~λ1

∫
dω

2π

G′h(ω)

ω

]
+ ~

∫
dω

2π

A(ω)G>
c (ω)

ω
, (5.3.31)

〈〈q2
h〉〉 =〈〈H2

0 〉〉βc+〈〈H
2
0 〉〉βh+ 2λ1

[
〈〈H0H1〉〉βc+〈〈H0H1〉〉βh

]
+ 2~λ2

1

∫
dω

π

G′c(ω) +G′h(ω)

ω

− βcλ0

[
〈〈H2

0H1〉〉βc+ ~λ0

∫
dω

2π

G′′c (ω)

ω

]
−βhλ1

[
〈〈H2

0H1〉〉βh+ ~λ1

∫
dω

2π

G′′h(ω)

ω

]
+ 2~

∫
dω

2π

G′c(ω)A(ω)

ω
+ ~2

∫
dω

2π
A(ω)G>

c (ω), (5.3.32)
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where we have introduced a compact notation,

G′α(ω) = − ∂

∂βα
G>
α (ω), (5.3.33)

G′′α(ω) =
∂2

∂β2
α

G>
α (ω), (5.3.34)

with α = c, h.

In the following section, we focus on establishing the linear response formalism
for the generic quantum Otto cycle.

5.4 Linear response: Onsager coefficients

Let us first parameterize the driving protocol λ(t) as

λ(t) = λ+ ∆λ f(t), (5.4.1)

where, λ = λ0 and ∆λ = λ1 − λ0. The function f(t) is defined such that f(0) = 0

and f(τ) = 1 to ensure that λ0 and λ1 are the boundary values of the protocol λ(t)

at time t = 0 and time t = τ , respectively. To identify the proper thermodynamic
affinities and the corresponding conjugate fluxes, we begin with the definition of the
stochastic entropy production in a single cycle:

Σ =βcw + (βc − βh) qh = (βc∆λ)
w

∆λ
+ (βc − βh) qh. (5.4.2)

From this expression, we identify the thermodynamic affinities as Aw = βc∆λ and
Aq = βc−βh, and the corresponding integrated work and heat fluxes as w/∆λ and
qh, respectively. One can further define the heat and work currents by dividing the
integrated heat and work fluxes with total cycle time τcyc = 2τ + τh + τc:

jw =
1

τcyc

w

∆λ
and jq =

qh
τcyc

. (5.4.3)
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Consequently, the average entropy production rate in one complete cycle 〈σ〉 =

〈Σ〉/τcyc can be expressed as

〈σ〉 =
∑
α=w,q

〈jα〉Aα. (5.4.4)

From this point onwards, we adopt βc = β and βc − βh = ∆β, and focus on the
linear response regime where ∆β � β. In this regime, we can effectively utilize the
following Taylor expansion:

〈X〉β−∆β = 〈X〉β −∆β
∂

∂β
〈X〉β = 〈X〉β + ∆β〈〈XH0〉〉β. (5.4.5)

Note that the appearance of the free Hamiltonian H0 in the second term arises
from the derivative with respect to β over a canonical distribution characterized by
e−βH0/Tr [e−βH0 ]. To proceed with our linear response analysis for the generic Otto
cycle, we calculate the average work and heat fluxes, 〈jw〉 and 〈jq〉, using equations
(5.3.27) and (5.3.31), respectively, which are accurate up to the second order of the
driving protocol λ(t). Finally, carrying out the Taylor expansion given in (5.4.5)
and keeping terms up to the linear order of the affinities, Aw and Aq, we derive
the following relation between the currents and affinities, connected via the Onsager
matrix: (

〈jw〉
〈jq〉

)
=

(
Lww Lwq

Lqw Lqq

)(
Aw
Aq

)
, (5.4.6)

where the Onsager transport coefficients Lαγ, with α, γ = w, q, are given by

Lww = − 1

τcyc
~
∫
dω

2π

2F (ω)G>(ω)

β ω
, (5.4.7)

Lwq = Lqw =
1

τcyc

∂

∂β

[
〈H1〉β + 2~λ

∫
dω

2π

G>(ω)

ω

]
, (5.4.8)

Lqq = − 1

τcyc

∂

∂β

[
〈H0〉β + λ

∂

∂β

(
β〈H1〉β + ~λβ

∫
dω

2π

G>(ω)

ω

)]
. (5.4.9)
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Here, note that

F (ω) =

∣∣∣∣∫ τ

0

ḟ(t)eiωtdt

∣∣∣∣2 =
A(ω)

∆λ2 (5.4.10)

encodes the information of driving where ∆λ and f(t) are defined in (5.4.1). The
Green’s function G>(ω) is evaluated at the equilibrium temperature β.

The Onsager reciprocity relation, Lwq = Lqw, holds even for asymmetric drivings
(i.e., when time-reversal symmetry is broken) [cf. (5.4.8)], unlike systems with asym-
metric time-dependent drivings, where this relation generally breaks down [232].
The Otto cycle preserves Onsager reciprocity due to the separation of work and
heat exchange strokes.

The derived expressions for the Onsager transport coefficients, characterizing
the behavior of an arbitrary working medium executing the Otto cycle in the linear
response regime, constitute another central result of this chapter. With these results
in hand, we proceed to provide some important insights and remarks.

5.5 Fluctuation-Dissipation relations: violation of

work–FDR
The traditional “Fluctuation-Dissipation relations" (FDRs) typically connect the

diagonal elements of the Onsager matrix to equilibrium fluctuations [80].

FDR for heat current jq

In our analysis, we precisely recover the traditional FDR for the heat current jq,

Lqq =
〈〈j2

q 〉〉
2

∣∣∣∣
{A}=0

, (5.5.1)

where 〈〈j2
q 〉〉 = 〈〈q2

h〉〉/τcyc. In order to prove the above heat-FDR, we start from
(5.3.32), and take the limit of Aw = 0 and Aq = 0. This immediately hands over
the following expression for heat-fluctuation:

〈〈j2
q 〉〉
∣∣∣
{A}=0

=
1

τcyc

[
〈〈H2

0 〉〉βc+ 〈〈H
2
0 〉〉βh+ 2λ1

[
〈〈H0H1〉〉βc+ 〈〈H0H1〉〉βh

]
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+ 2~λ2
1

∫
dω

π

G′c(ω) +G′h(ω)

ω
− βcλ0

[
〈〈H2

0H1〉〉βc + ~λ0

∫
dω

2π

G′′c (ω)

ω

]
− βhλ1

[
〈〈H2

0H1〉〉βh+ ~λ1

∫
dω

2π

G′′h(ω)

ω

]
+ 2~

∫
dω

2π

G′c(ω)A(ω)

ω
+ ~2

∫
dω

2π
A(ω)G>

c (ω)

]
{A}=0

=
2

τcyc

{
− ∂

∂β

[
〈H0〉β + 2λ〈H1〉β + 2~λ2

∫
dω

2π

G>(ω)

ω

]
− βλ ∂2

∂β2

[
〈H1〉β + ~λ

∫
dω

2π

G>(ω)

ω

]}
= 2Lqq, (5.5.2)

where we have used λ = λ0 and β = βc, as adopted in the previous section.

FDR for work current jw

Importantly, the same is not true for the case of work current. In fact, for the work
current fluctuation, following (5.3.28), we obtain

〈〈j2
w〉〉
2

∣∣∣∣
{A}=0

= − 1

τcyc
~2

∫
dω

2π
F (ω)G>(ω), (5.5.3)

which does not match the diagonal Onsager coefficient Lww. To investigate this
discrepancy further, let us rewrite the expressions for Lww and 〈〈j2

w〉〉 as follows:

Lww = − 1

τcyc

~2

2

∫
dω

2π
F (ω)

tanh
(
β~ω

2

)
β~ω

2

[
G>(ω) +G>(−ω)

]
. (5.5.4)

〈〈j2
w〉〉
2

∣∣∣∣
{A}=0

= − 1

τcyc

~2

2

∫
dω

2π
F (ω)

[
G>(ω) +G>(−ω)

]
, (5.5.5)

Here, we have utilized an important identity involving the Green’s functions,

G>(ω)−G>(−ω) = tanh
(β~ω

2

)[
G>(ω) +G>(−ω)

]
. (5.5.6)

which arises from the KMS condition in the Fourier space, e−β~ωG>(ω) = G>(−ω).
Now, considering the fact that tanh (x)/x≤ 1, we infer from equations (5.5.5) and
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(5.5.4) that

Lww ≤
〈〈j2

w〉〉
2

∣∣∣∣
{A}=0

, (5.5.7)

highlighting a breakdown of the traditional FDR for work current. Importantly, this
breakdown is purely of quantum origin. The equality is restored in the quantum-
adiabatic limit, i.e., when [H0, H1] = 0. This observation aligns with the recent
findings of Ref. [233, 234] where a similar breakdown was reported.

The obtained results for the Onsager coefficients and the FDR breakdown for
work current have non-trivial implications in determining universal bounds on the
performance of the quantum Otto cycle operating as an engine or a refrigerator.

Thermodynamic Uncertainty Relations

Additionally, it is noteworthy that the standard thermodynamic uncertainty relation
[215, 235] holds for the currents jw and jq,

TUR(jα) := 〈σ〉〈〈j
2
α〉〉
〈jα〉2

≥ 2, (5.5.8)

for α = w, q. These TURs remain valid independently of the mode of the Otto cycle’s
operation–engine, refrigerator, heater, or accelerator [75]. Bellow, we demonstrate
a proof for TUR(jw). Using equations (5.4.4), (5.4.6) and (5.5.7) we obtain,

TUR(jw) = 〈σ〉〈〈j
2
w〉〉
〈jw〉2

≥
[
Aw〈jw〉+Aq〈jq〉

]2Lww
〈jw〉2

= 2
[
L2
wwA2

w + 2LwwLwqAwAq + LwwLqqA2
q

] 1

〈jw〉2

= 2
[
〈 jw〉2 +A2

q

(
LwwLqq − L2

wq

)] 1

〈jw〉2

= 2 +
2A2

q

〈jw〉2
· det(L)

≥ 2. (5.5.9)
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Here, we have used the positive semi-definiteness of the Onsager matrix, which
implies that det(L) ≥ 0. The proof corresponding to TUR(jq) follows analogously.

5.6 Engine regime: Universal lower bound on the

ratio of output to input fluctuations

Let us now focus on understanding bounds on nonequilibrium fluctuations when
the Otto cycle works as an engine. To quantify the engine’s performance, we intro-
duce the output power as

〈P〉 = −〈w〉/τcyc = −Aw〈jw〉/β, (5.6.1)

and the input heat current is given by 〈jq〉. The engine operational regime of
the Otto cycle is characterized by 〈P〉 > 0, and 〈jq〉 > 0, where, as per our sign
convention, energy flowing into the working medium is considered positive. To
achieve this, the necessary requirement is Aq > Aw. Following the second law of
thermodynamics, 〈σ〉 ≥ 0, it is straightforward to show that the average efficiency
of the Otto engine, 〈η〉 := 〈P〉/〈jq〉, is universally upper bounded by the the Carnot
bound ηc = ∆β/β [1, 4], 〈η〉 ≤ ηc. In order to derive bounds on nonequilibrium
fluctuations, following Ref. [53], we construct the quantity η(2), which is the ratio of
power fluctuation to the fluctuation of input heat current,

η(2) =
〈〈P2〉〉
〈〈j2

q 〉〉
. (5.6.2)

Recently, it was shown that in the case of a continuously coupled autonomous steady-
state heat engine operating in the linear response regime, where both the work and
heat FDRs are valid, the ratio of output power to input heat current fluctuations is
subject to both universal lower and upper bounds [53],

η2
c ≥

[
η(2)
]

auto
≥ 〈η〉2, (5.6.3)

where the subscript ‘auto’ stands for the autonomous steady-state heat engine. How-
ever, in our case of a generic finite-time Otto engine operating in the linear response
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limit, we obtain the following inequality,

η2
c ≥
A2
wLww
β2Lqq

≥ 〈η〉2. (5.6.4)

Detailed proof :
Let us consider the first inequality in (5.6.4). We will consider a modified

version: η2
cβ

2Lqq−LwwA2
w ≥ 0. Noticing that ηc = ∆β/β = Aq/β, this modified

inequality can be expressed as

η2
cβ

2Lqq − LwwA2
w =LqqA2

q − LwwA2
w

=Aq〈jq〉 − Aw〈jw〉

=Aq〈jq〉
[
1 +
〈η〉
ηc

]
≥0. (5.6.5)

In the above steps, we used the engine condition: 〈jw〉 < 0, and 〈jq〉 > 0.
Next, we focus on a modified version the second inequality in (5.6.4):

Lww〈jw〉2 − Lqq〈jq〉2≥0. We observe

Lww〈jw〉2 − Lqq〈jq〉2 =
(
LwwLqq − L2

wq

)[
LqqA2

q − LwwA2
w

]
= det(L)

[
Aq〈jq〉 − Aw〈jw〉

]
= det(L)Aq 〈jq〉

[
1 +
〈η〉
ηc

]
≥ 0, (5.6.6)

where, in the above steps, we have used (i) det(L) ≥ 0, and (ii) the engine
condition: 〈jw〉 < 0 and 〈jq〉 > 0.

A key point to note here is that, contrary to the autonomous steady-state engine,
we observe a violation of the traditional work-FDR in the discrete Otto cycle, as
given in (5.5.7). This FDR breakdown for the work current leads to the following
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inequality:

η(2) ≥ A
2
wLww
β2Lqq

. (5.6.7)

Importantly, the equality is restored in the quantum-adiabatic driving limit, when
the driving Hamiltonian commutes with the free Hamiltonian [H1, H0] = 0. As an
immediate consequence of the inequality in (5.6.7), the lower bound on η(2) remains
robust,

η(2) ≥ 〈η〉2. (5.6.8)

However, the upper bound on η(2) may not always hold true, η(2) � η2
c , the reason

being purely of quantum origin. This distinction is a significant departure from the
autonomous case, where both the lower and upper bounds remain intact. In the
discrete Otto cycle, due to the violation of the traditional work FDR, the upper
bound is not guaranteed. This constitutes another central result of this work. As
a direct consequence of the lower bound for η(2) in (5.6.8), a hierarchical relation
between the TURs is observed. This follows from the fact that

η(2)≥〈η〉2 ⇒ 〈〈j
2
w〉〉
〈jw〉2

≥
〈〈j2

q 〉〉
〈jq〉2

. (5.6.9)

As a result, in the engine regime, a strict hierarchy between the TURs of work
(output) and heat (input) currents is obtained:

〈σ〉〈〈j
2
w〉〉
〈jw〉2

≥ 〈σ〉
〈〈j2

q 〉〉
〈jq〉2

≥ 2. (5.6.10)

5.7 Refrigerator regime: Universal upper bound on

the ratio of output to input fluctuations

After our exploration of the engine regime, we now shift our focus to the refrig-
erator regime. In this mode of operation, the primary objective is to extract heat
from the cold reservoir by utilizing external work. Following our sign convention:
energy entering the working fluid is considered positive, the refrigerator regime is



Chapter 5: ... Otto cycle and universal bounds: a NEGF approach 107

characterized by a positive current flowing out of the cold reservoir, 〈jc〉 > 0, and
work is performed on the system, 〈jw〉 > 0. To achieve refrigeration, it is necessary
that the affinities satisfy Aw > Aq. The performance of the refrigerator is quantified
by its coefficient of performance (COP), also known as cooling efficiency, denoted as
〈ε〉. Notably, the COP of a refrigerator is universally upper bounded by the Carnot
COP [1, 236],

〈ε〉 :=
β〈jc〉
Aw〈jw〉

≤ εc, (5.7.1)

where εc = (1− ηc)/ηc ≈ β/∆β. Let us now investigate the quantity ε(2) defined as

ε(2) :=
β2〈〈j2

c 〉〉
A2
w〈〈j2

w〉〉
. (5.7.2)

The CF for qc is obtained by setting χh = χw = −χc in (5.1.2). The new counting
variable χc corresponds to the stochastic variable (−w− qh), which shares the same
statistical properties as qc (see Appendix A1),

G(χc) =

∫∫
dw dqh P (w, qh) e

iχc(−w−qh). (5.7.3)

Finally, setting χh = χw = −χc in (5.3.1), we obtain the CGF for qc,

lnG(χc) =− iχcλ0

[
〈H1〉β̃h−〈H1〉β̃c

]
− iχc~λ2

0

∫
dω

2π

G̃>
h (ω)−G̃>

c (ω)

ω

− βcλ0

[
〈H1〉β̃c−〈H1〉βc + ~λ0

∫
dω

2π

G̃>
c (ω)−G>

c (ω)

ω

]
− βhλ1

[
〈H1〉β̃h−〈H1〉βh + ~λ1

∫
dω

2π

G̃>
h (ω)−G>

h (ω)

ω

]
+

∫
dω

2π

1−e−i~ωχc
ω2

A(ω)G̃>
h (ω) + ln〈eiχcH0〉βc + ln〈e−iχcH0〉βh . (5.7.4)

A crucial point to note here is that now the shifted inverse temperatures become
β̃c=βc−iχc and β̃h=βh+ iχc, and consequently, G̃>

h (ω) and G̃>
c (ω) are redefined ac-

cordingly. From (5.7.4), we can obtain the expressions for the average heat extracted
and its variance using (5.2.10).



108
5.7. Refrigerator regime: Universal upper bound on the ratio of output to input

fluctuations

For steady-state autonomous refrigerators operating in the linear response regime,
the quantity ε(2) was reported to possess both universal upper and lower bounds [55],

ε2
c ≥

[
ε(2)
]

auto
≥ 〈ε〉2, (5.7.5)

where, recall that the subscript ‘auto’ denotes autonomous steady-state refrigerators.
In our case of a discrete Otto cycle operating as a refrigerator, we derive the following
inequality:

ε2
c ≥

β2Lqq
A2
wLww

≥ 〈ε〉2. (5.7.6)

Detailed proof :
Here, we demonstrate the proof for the inequalities in (5.7.6). To prove

the first inequality, we start with the modified version of the first inequality
LwwA2

w − β2Lqq/ε
2
c ≥ 0:

LwwA2
w − β2Lqq/ε

2
c =LwwA2

w − LqqA2
q

=Aw〈jw〉 − Aq〈jq〉

≈Aw〈jw〉+ Fq〈jc〉

=Aw〈Aw〉
[
1 +
〈ε〉
εc

]
≥0. (5.7.7)

Here, we have used the refrigerator condition: 〈jc〉 > 0, and 〈jw〉 > 0. For the
second inequality,

Lqq〈jc〉2 − Lww〈jw〉2 =
(
LwwLqq − L2

wq

)[
LwwA2

w − LqqA2
q

]
= det(L)

[
Aw〈jw〉+Aq〈jc〉

]
= det(L)Aw〈jw〉

[
1 +
〈ε〉
εc

]
≥ 0. (5.7.8)



Chapter 5: ... Otto cycle and universal bounds: a NEGF approach 109

The two ingredients required for this proof are–

1. The positive semi-definiteness of the Onsager matrix, det(L) ≥ 0, and

2. Refrigerator operational regime condition: 〈jc〉 > 0 and 〈jw〉 > 0.

Importantly, the breakdown of the traditional work-FDR leads to the following
inequality for the quantity ε(2):

ε(2) ≤ β2Lqq
A2
wLww

, (5.7.9)

where it is worth noting that the opposite inequality arises due to the presence of
〈〈j2

w〉〉 in the denominator of the definition of ε(2). As a consequence, we observe a
contrasting trend compared to what was observed the engine regime. Specifically,
in the refrigeration regime, the lower bound may not always be valid,

ε(2) � 〈ε〉2 ⇒ 〈〈j
2
c 〉〉
〈jc〉2

�
〈〈j2

w〉〉
〈jw〉2

, (5.7.10)

whereas the upper bound remains intact,

ε(2) ≤ ε2
c. (5.7.11)

Furthermore, the potential violation of the lower bound for ε(2), as can be seen
in (5.7.10), leads to the loss of the hierarchy in the TURs within the refrigerator
regime. A similar observation was recently reported for a specific model-dependent
periodically driven system [63].

5.8 Example

To illustrate our findings, we now examine a specific model example. Our work-
ing medium consists of N non-interacting bosons confined in a one-dimensional
parabolic trap with frequency ω0. During the unitary strokes, the potential is per-
turbed with time. The unperturbed and the perturbing Hamiltonians of the working
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medium are given by

H0 =
N∑
i=1

p2
i

2m
+

1

2
mω2

0x
2
i , (5.8.1)

H1 =
N∑
i=1

mω2
0x

2
i , (5.8.2)

respectively, such that H(t) =H0 + λ(t)H1, where, λ(0) =λ and λ(τ) =λ + ∆λ. In
the second-quantized formulation, we have

H0 =
∑

m
εma

†
mam, (5.8.3)

H1 =
~ω0

2

∑
m

√
(m+ 1)(m+ 2)

(
a†mam+2 + a†m+2am

)
+ (1 + 2m)a†mam, (5.8.4)

where m ∈ N. Here εm = ~ω0(m+ 1
2
) represents the single-particle energy-spectrum

ofH0 and am (a†m) is the bosonic annihilation (creation) operator for them-th energy
level. Due to the number conservation,

∑
m a
†
mam = N , we are restricted to work

with the canonical ensemble description. The central repercussion of this constraint
is that it induces correlations between the occupation numbers of different single-
particle occupation states. However, one can still compute the canonical partition
function ZN for N bosonic particles via a set of recursion relations starting from
N = 1 [237–243],

ZN =
1

N

N∑
k=1

Z1(kβ)ZN−k. (5.8.5)

Here, Z1(kβ) =
∑

m e
−kβεm represents the partition function for a single-particle

state. For our model example, the Green’s function G>(ω) depends on the two-
point correlation involving the occupation number operator. Let nm = a†mam be
the occupation number operator corresponding to the m-th energy level, and ··(N)

represents thermal averaging with respect to the canonical N -particle density matrix

ρN =
1

ZN
e−β

∑
m εmnmδ∑

m nm,N . (5.8.6)
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The average occupation of m-th level can be computed using the following recursion
relations [237]

n(N)
m =

1

ZN

N∑
k=1

e−βεmkZN−k, (5.8.7)

n(N+1)
m =

ZN
ZN+1

e−βεm
(
1 + n(N)

m

)
. (5.8.8)

starting from Z0 = 1 and n(0)
m = 0.

In order to calculate the Onsager transport coefficients, the key non-trivial quan-
tity required is the greater Green’s function, given by

G>
N(ω) = −2π

ω2
0

4

∑
m

(m+1)(m+2)
[
δ(ω−2ω0)

(
n(N)
m + nmn

(N)
m+2

)
+ δ(ω+2ω0)

(
n

(N)
m+2 + nm+2n

(N)
m

)]
− 2π

1

~2

∑
m,m′

εmεm′
(
nmn

(N)
m′ − n

(N)
m n

(N)
m′

)
δ(ω).

(5.8.9)

The challenge of calculating the two-level occupation correlation can be circum-
vented by using the relation [237–243]

nmn
(N)
m′ = −e

βεmn(N)
m − eβε

′
mn

(N)
m′

eβεm − eβε′m
, (5.8.10)

which simplifies the expression for the Green’s function in (5.8.9),

G>
N(ω) = −2π

ω2
0

4

∑
m

(m+1)(m+2)
(
n(N)
m − n

(N)
m+2

)
[{

1 + nB(2ω0)
}
δ(ω−2ω0) + nB(2ω0)δ(ω+2ω0)

]
− 2π

1

~2

∑
m,m′

εmεm′
(
nmn

(N)
m′ − n

(N)
m n

(N)
m′

)
δ(ω)

= −2π
ω0

~
∑

m
εmn

(N)
m

[{
1 + nB(2ω0)

}
δ(ω−2ω0)

+ nB(2ω0)δ(ω+2ω0)
]

− 2π
1

~2

∑
m,m′

εmεm′
(
nmn

(N)
m′ − n

(N)
m n

(N)
m′

)
δ(ω), (5.8.11)

where nB(ω) = [eβ~ω−1]−1 is the Bose-Einstein distribution function. The two sum-
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mations in the above expression correspond to the average energy and the variance
of energy of the unperturbed Hamiltonian H0.

Finally, we derive the formal expressions for the Onsager transport coefficients
as follows,

Lww =
1

τcyc

[
〈〈E2〉〉+

〈E〉
β
F (2ω0)

]
, (5.8.12)

Lwq =Lqw = − 1

τcyc

[
〈〈E2〉〉 − λβ〈〈E3〉〉

]
, (5.8.13)

Lqq =
1

τcyc

[
(1 + 2λ)〈〈E2〉〉 − λβ

{
〈〈E3〉〉+

λ

2

(
β〈〈E4〉〉 − 3〈〈E3〉〉

)}]
, (5.8.14)

where the n-th cumulant of energy 〈〈En〉〉 corresponding to H0 is given by

〈〈En〉〉 = (−1)n
∂n

∂βn
lnZN . (5.8.15)

Additionally, the variance of the total work current can be computed following
(5.5.3):

〈〈j2
w〉〉
2

=
1

τcyc

[
〈〈E2〉〉+

〈E〉
β

(β~ω0) coth
(
β~ω0

)
F (2ω0)

]
. (5.8.16)

Notice that the breakdown of the traditional work-FDR in this model is evident
from the fact that coth(x) > 1

x
for x > 0, as reported in (5.5.7). The appearance of

the higher order cumulant of energy 〈〈En〉〉 is a consequence of the presence of the
interaction term λH1 in the initial total Hamiltonian H(0).

In the following, we present numerical results for N = 5 bosons confined
in a harmonic trap. Starting from the single particle partition function Z1 =

csch
(
β~ω0/2

)
/2, we use the recursion relation given in (5.8.5) to calculate Z5. The

various Onsager coefficients are computed numerically using equations (5.8.12) to
(5.8.14). We investigate bounds on the quantities η(2) [defined in (5.6.7)] in the en-
gine operational regime, and ε(2) [defined in (5.7.2)] in the refrigerator operational
regime. In Fig. 5.3 (a) we display the ratio η(2)/〈η〉2, which validates the existence of
the lower bound, and in contrast to the autonomous continuous engine, the violation
of the upper bound on η(2) is observed in Fig. 5.3 (b). Furthermore, we observe the
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Figure 5.3: Engine regime: 〈jw〉 < 0, 〈jq〉 > 0 (necessary requirement: Aq >Aw).
Parameters chosen from uniform distributions: β ∈ [0, 4], ω0 ∈ [0, 3], ∆β ∈
[0, 0.3 β], λ ∈ [0, 0.3], and ∆λ ∈ [0, 0.1]. Simulations were performed over one
million points. (a) Validity of the lower bound, η(2) ≥ 〈η〉2 and (b) Violation of the
upper bound, η(2) � η2

c , can be observed.

Figure 5.4: Refrigerator regime: 〈jc〉 > 0, 〈jw〉 > 0 (necessary requirement: Aw >
Aq). Parameters chosen from uniform distributions: β ∈ [0, 4], ω0 ∈ [0, 3], ∆β ∈
[0, 0.3 β], λ ∈ [0, 0.3], and ∆λ ∈ [0, 0.1]. Simulations were performed over one
million points. (a) Violation of the lower bound, ε(2) � 〈ε〉2, and (b) validity of the
upper bound, ε(2) ≤ ε2

c, can be observed.
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opposite trend in the refrigerator regime: the violation of the lower bound, and the
existence of the upper bound, as shown in Fig. 5.4 (a) and (b), respectively. These
observations precisely match our analytical predictions.

5.9 Summary
In this work, we utilized the Schwinger-Keldysh nonequilibrium Green’s function

formalism to derive an analytical expression for the joint CGF for total work and
heat from the hot reservoir in the quantum Otto cycle with an arbitrary many-body
working medium. The derived CGF is valid up to the second order of the driv-
ing protocol λ(t) and satisfies the heat engine fluctuation relation. This CGF is
applicable to arbitrary perturbative protocols and interaction Hamiltonians. Fur-
thermore, we developed a consistent linear response framework by focusing on the
first and second cumulants of total work and heat in the limit of small driving am-
plitude and small temperature difference. Our analysis revealed the violation of the
traditional FDR for the work current as a consequence of quantum non-adiabatic
driving during the work strokes. However, for the heat current, the traditional FDR
remains valid since the heat exchange stroke in the Otto cycle does not directly
experience external driving. These findings have significant implications as they
establish different universal bounds on fluctuations for the engine and refrigerator
regimes. Specifically, in the engine regime, we observed that the ratio of output to
input fluctuations is bounded from below, whereas in the refrigerator regime, the
opposite trend is observed–the ratio of fluctuations is bounded from above.

These results stand in stark contrast to the behavior observed for autonomous
steady-state engines in earlier studies. Moreover, we found that the bounds on
the ratio of fluctuations become similar for the two different families of machines
only when the Otto cycle is driven in a quantum-adiabatic manner. This highlights
the role of quantum effects in determining the bounds on fluctuations for thermal
machines.



6

Closing Remarks and Outlook

In this chapter, we conclude the thesis by summarizing key findings and discussing
future research directions.

6.1 Results

In Chapter 2, we investigated three-terminal quantum absorption refrigerators
operating in the linear response regime. By analyzing the current fluctuations among
the cold, hot, and work terminals, we uncovered an emergent hierarchy among these
fluctuations. This allowed us to derive novel bounds on cooling power and efficiency,
going beyond traditional thermodynamic uncertainty relations (TURs). We demon-
strated that the tightest bound on cooling power is determined by the fluctuation of
the work current, which can lead to stricter bounds than those predicted by standard
TURs, particularly in systems with tight coupling between currents.

In Chapter 3, we extended our focus to continuous machines with broken time-
reversal symmetry. By symmetrizing the operational regime, we derived universal
bounds on current fluctuations even in the absence of Onsager reciprocity. Our anal-
ysis was applied to a classical example of a non-autonomous continuous machine,
the overdamped Brownian heat engine. We found that the output current fluctu-
ations are constrained by those of the input current, offering new perspectives on
nonequilibrium fluctuation relations for systems that lack time-reversal symmetry.
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In Chapter 4, we turned our attention to discrete thermodynamic machines, par-
ticularly the quantum Otto cycle. We examined specific working fluids—a single
qubit and a harmonic oscillator—due to the absence of a general linear response for-
malism for Otto cycles. In this far-from-equilibrium regime, we established bounds
on work and heat fluctuations in both engine and refrigerator modes, revealing that
these fluctuation bounds behave differently from those of continuous machines. Ad-
ditionally, we derived generalized thermodynamic uncertainty relations (GTURs) for
the qubit-Otto cycle, which remain valid even under far-from-equilibrium driving.

In Chapter 5, we developed a linear response framework for Otto cycles using
the Schwinger-Keldysh nonequilibrium Green’s function (NEGF) technique. Our
analysis revealed the presence of robust Onsager reciprocity, despite asymmetric
driving, due to the separation of work and heat exchange strokes in the Otto cycle.
Moreover, we observed a violation of the fluctuation-dissipation relation (FDR)
for work, while the heat FDR remained intact. This discrepancy explained the
differences in fluctuation bounds between discrete and continuous machines.

6.2 Future Research Directions

Problem 1: Multi-terminal Quantum Devices– Our study in Chapter 2 was confined
to three-terminal setups. Extending this analysis to multi-terminal configura-
tions offers a compelling direction for future work. Specifically, investigating
the bounds on the relative fluctuations of individual currents in multi-terminal
systems could uncover new performance limits in in hybrid operational regimes
[244].

Problem 2: Far-from-equilibrium Continuous Machines– In Chapters 2 and 3, our
analysis was restricted to the linear response regime. A natural extension of
this work involves exploring continuous machines far from equilibrium using
driven-dissipative dynamics. Incorporating the Floquet formalism for period-
ically driven systems could provide new insights into their long-term stability
and performance under time-periodic driving, especially in the presence of
time-dependent fluctuations.
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Problem 3: Finite-time Quantum Otto Cycles– In Chapter 4 (and 5), our results as-
sumed complete thermalization during the heat exchange strokes of the quan-
tum Otto cycle. A future direction would be to relax this assumption and
explore finite-time effects on work and heat fluctuations. By incorporating
non-adiabatic corrections, it would be possible to analyze how these effects
manifest across different working fluids, providing a more comprehensive un-
derstanding of discrete machines.

Problem 4: Exploring Other Trap Potentials in Quantum Otto Cycles– In Chapter
5, we used a model ofN bosons trapped in a harmonic potential to demonstrate
our findings. A future research direction could involve studying other types
of trap potentials, such as square or triangular traps, or considering particles
that obey different symmetries (e.g., bosons versus fermions) [69, 245]. These
investigations would offer further insights into nonequilibrium fluctuations in
diverse quantum setups operating under Otto cycles.

Problem 5: Universality of Fluctuation Bounds across Different Cycles– While
our study focused on the quantum Otto cycle, it would be valuable to inves-
tigate whether the fluctuation bounds we derived are universal across other
thermodynamic cycles, such as the Carnot or Stirling cycles. This could lead
to a broader understanding of the performance constraints of both quantum
and classical machines.





Appendix

A1 Statistics of heat from the cold bath qc from

P (w,qh)

**Appendix for Chapters 4 and 5**

In this appendix, we provide a concise demonstration of how to calculate the cumu-
lants of qc using the joint probability distribution P (w, qh). In cases of perfect ther-
malization, we show that the stochastic variable qc and its counterpart q̃c = −w−qh
share identical statistical properties. To capture the statistics of the stochastic vari-
ables w1, qh, w3, and qc, we introduce quantum projective measurements after each
stroke and at the beginning of each cycle [246].

Let the successive energy measurement results be denoted as E0, E1, E2, E3,
and E0′ , which take values from the sets of energy eigenvalues εk[λi] and εj[λf ],
corresponding to the initial Hamiltonian H[λi] =

∑
k εk[λi]Π

λi
k (for E0, E3, and E0′)

and the final Hamiltonian H[λf ] =
∑

j εj[λf ]Π
λf
j (for E1 and E2). Here, Π

λi(f)
k(j) =

|k(j);λi(f)〉〈k(j);λi(f)| represents the eigen-projectors.
The heat exchanged with the cold bath is determined by

qc = E0′ − E3, (A1)

where E0′ refers to the energy measured after the final thermalization with the cold
bath. We now aim to understand the relationship between qc and the variable

q̃c = −(w1 + w3 + qh) = E0 − E3. (A2)
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For perfect thermalization (or even in a limit cycle with imperfect thermaliza-
tion), energy conservation—through the First Law of Thermodynamics—implies
that 〈q̃c〉 = 〈qc〉. We extend this reasoning by asking whether the stronger condition
〈q̃rc〉 = 〈qrc〉 holds for any positive integer r. If so, we conclude that qc and q̃c share
identical statistics.

The conditional probability for the forward process, giving the outcomes E0 =

εn[λi], E1 = εm[λf ], E2 = εk[λf ], E3 = εl[λi], and E0′ = εn′ [λi], is given by

pf (n
′, l, k,m, n) = T βcl→n′T

II
k→lT

βh
m→kT

I
n→mpβc(n), (A3)

where pβc(n) = exp(−βcεn[λi])/Zc[λi] is the Gibbs distribution. The transition
probabilities for the two work strokes were introduced in (4.2.2) in Chapter 4. For
the heat strokes, the general transition matrix for the hot bath stroke is:

T βhm→k = Tr
{

Π
λf
k Φβh

[
Π
λf
m

]}
, (A4)

where Φβh [·] represents the completely positive trace-preserving (CPTP) map asso-
ciated with the thermalization process governed by the Lindblad equation. In the
case of perfect thermalization, this map yields a thermal density matrix independent
of the initial state, leading to:

T βhm→k = pβh(k), (A5)

where pβh(k) = exp(−βhεk[λf ])/Zh[λf ]. Similarly, the cold bath heat stroke transi-
tion matrix is:

T βcl→n′ = Tr
{

Πλi
n′Φβc

[
Πλi
l

]}
, (A6)

and under perfect thermalization, it simplifies to:

T βcl→n′ = pβc(n
′). (A7)
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With this, the marginal probability distributions for qc and q̃c are:

Pf (qc) =
∑

n′,l,k,m,n

δ (qc − εn′ [λi] + εl[λi]) pf (n
′, l, k,m, n), (A8)

Pf (q̃c) =
∑

n′,l,k,m,n

δ (q̃c − εn[λi] + εl[λi]) pf (n
′, l, k,m, n). (A9)

Using these distributions and the joint probability from (A3), we compute the r-th
raw moments as:

〈qrc〉f =
∑

n′,l,k,m,n

(εn′ [λi]− εl[λi])r T βcl→n′T
II
k→lT

βh
m→kT

I
n→mpβc(n), (A10)

〈q̃rc〉f =
∑

n′,l,k,m,n

(εn[λi]− εl[λi])r T βcl→n′T
II
k→lT

βh
m→kT

I
n→mpβc(n). (A11)

For imperfect thermalization, where the transition probabilities depend on the initial
state as in (A4) and (A6), we generally find:

〈qrc〉f 6= 〈q̃
r
c〉f . (A12)

However, in the case of perfect thermalization, we use (A5) and (A7), leading to
simplified expressions:

〈qrc〉f =
∑

n′,l,k,m,n

(
εn′ [λi]− εl[λi]

)r
pβc(n

′)T IIk→lpβh(k)T In→mpβc(n), (A13)

〈q̃rc〉f =
∑

n′,l,k,m,n

(
εn[λi]− εl[λi]

)r
pβc(n

′)T IIk→lpβh(k)T In→mpβc(n). (A14)

Finally, applying the normalization condition
∑

n pβc(n) =
∑

n′ pβc(n
′) = 1 and the

property: ∑
m

T In→m =
∑
m

∣∣〈m;λf |UE |n;λi〉
∣∣2

=
∑
m

〈n;λi|U †E |m;λf〉〈m;λf |UE |n;λi〉

= 〈n;λi|U †E(τ1)UE(τ1)|n;λi〉

= 1, (A15)
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of the transition probabilities, we find that under perfect thermalization:

〈qrc〉f =
∑
n′,l,k

(
εn′ [λi]− εl[λi]

)rT IIk→lpβh(k)pβc(n
′), (A16)

〈q̃rc〉f =
∑
l,k,n

(
εn[λi]− εl[λi]

)rT IIk→lpβh(k)pβc(n), (A17)

giving the clear result

〈qrc〉f = 〈q̃rc〉f . (A18)

For the reverse process, using similar analogy for the perfect thermalization in the
two heat exchange strokes, it can be shown that

〈qrc〉r = 〈q̃rc〉r. (A19)

This is indeed the formal justification for the result that four consecutive measure-
ments during the quantum Otto are enough to get the statistics of all three energy
exchanges, as mentioned in the main text.



Bibliography

1H. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed.
(Wiley, New York, 1985).

2M. Zemansky, Heat and Thermodynamics: An Intermediate Textbook (McGraw-
Hill, New York, 1968).

3Y. A. Çengel and M. A. Boles, Thermodynamics : an engineering approach,
McGraw-Hill series in mechanical engineering (McGraw-Hill, Boston, 2002).

4E. H. Lieb and J. Yngvason, “The physics and mathematics of the second law of
thermodynamics”, Phys. Rep. 310, 1–96 (1999).

5J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S.
Oliveira, and R. M. Serra, “Experimental characterization of a spin quantum heat
engine”, Phys. Rev. Lett. 123, 240601 (2019).

6N. M. Myers, O. Abah, and S. Deffner, “Quantum thermodynamic devices: from
theoretical proposals to experimental reality”, AVS Quantum Science 4, 027101
(2022).

7V. Blickle and C. Bechinger, “Realization of a micrometre-sized stochastic heat
engine”, Nat. Phys. 8, 143–146 (2012).

8I. A. Martínez, É. Roldán, L. Dinis, D. Petrov, J. M. Parrondo, and R. A. Rica,
“Brownian Carnot engine”, Nat. Phys. 12, 67–70 (2016).

9I. A. Martínez, É. Roldán, L. Dinis, and R. A. Rica, “Colloidal heat engines: a
review”, Soft Matter 13, 22–36 (2017).

10Q. Bouton, J. Nettersheim, S. Burgardt, D. Adam, E. Lutz, and A. Widera, “A
quantum heat engine driven by atomic collisions”, Nat. Commun. 12, 1–7 (2021).

123

https://doi.org/https://doi.org/10.1016/S0370-1573(98)00082-9
https://doi.org/10.1103/PhysRevLett.123.240601
https://doi.org/10.1116/5.0083192
https://doi.org/10.1116/5.0083192
https://doi.org/10.1038/nphys2163
https://doi.org/https://doi.org/10.1038/nphys3518
https://doi.org/https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1038/s41467-021-22222-z


124 Bibliography

11G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai,
V. Scarani, and D. Matsukevich, “Quantum absorption refrigerator with trapped
ions”, Nat. Commun. 10, 202 (2019).

12O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E.
Lutz, “Single-ion heat engine at maximum power”, Phys. Rev. Lett. 109, 203006
(2012).

13J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler,
and K. Singer, “A single-atom heat engine”, Science 352, 325–329 (2016).

14J.-W. Zhang, J.-Q. Zhang, G.-Y. Ding, J.-C. Li, J.-T. Bu, B. Wang, L.-L. Yan,
S.-L. Su, L. Chen, F. Nori, Ş. K. Özdemir, F. Zhou, H. Jing, and M. Feng, “Dy-
namical control of quantum heat engines using exceptional points”, Nat. Commun.
13, 6225 (2022).

15S. Bhattacharjee and A. Dutta, “Quantum thermal machines and batteries”, Eur.
Phys. J. B 94, 239 (2021).

16F. Carollo, F. M. Gambetta, K. Brandner, J. P. Garrahan, and I. Lesanovsky,
“Nonequilibrium quantum many-body Rydberg atom engine”, Phys. Rev. Lett.
124, 170602 (2020).

17Y.-Y. Chen, G. Watanabe, Y.-C. Yu, X.-W. Guan, and A. del Campo, “An
interaction-driven many-particle quantum heat engine and its universal behav-
ior”, npj Quantum Inf. 5, 88 (2019).

18K.-W. Sun, R. Li, and G.-F. Zhang, “A quantum heat engine based on Tavis-
Cummings model”, Eur. Phys. J. D 71, 230 (2017).

19F. Altintas, A. U. C. Hardal, “Quantum correlated heat engine with spin squeez-
ing”, Phys. Rev. E 90, 032102 (2014).

20G. Thomas and R. S. Johal, “Coupled quantum otto cycle”, Phys. Rev. E 83,
031135 (2011).

21X. L. Huang, H. Xu, X. Y. Niu, and Y. D. Fu, “A special entangled quantum
heat engine based on the two-qubit Heisenberg XX model”, Phys. Scr. 88, 065008
(2013).

https://doi.org/10.1038/s41467-018-08090-0
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1038/s41467-022-33667-1
https://doi.org/10.1038/s41467-022-33667-1
https://doi.org/10.1140/epjb/s10051-021-00235-3
https://doi.org/10.1140/epjb/s10051-021-00235-3
https://doi.org/10.1103/PhysRevLett.124.170602
https://doi.org/10.1103/PhysRevLett.124.170602
https://doi.org/10.1038/s41534-019-0204-5
https://doi.org/10.1140/epjd/e2017-80101-3
https://doi.org/10.1103/PhysRevE.90.032102
https://doi.org/10.1103/PhysRevE.83.031135
https://doi.org/10.1103/PhysRevE.83.031135
https://doi.org/10.1088/0031-8949/88/06/065008
https://doi.org/10.1088/0031-8949/88/06/065008


Bibliography 125

22N. M. Myers, F. J. Peña, O. Negrete, P. Vargas, G. D. Chiara, and S. Deffner,
“Boosting engine performance with bose–einstein condensation”, New J. Phys.
24, 025001 (2022).

23M. J. Henrich, G. Mahler, and M. Michel, “Driven spin systems as quantum
thermodynamic machines: Fundamental limits”, Phys. Rev. E 75, 051118 (2007).

24X. L. Huang, L. C. Wang, and X. X. Yi, “Quantum Brayton cycle with coupled
systems as working substance”, Phys. Rev. E 87, 012144 (2013).

25S. Singh and S. Rebari, “Multi-level quantum diesel engine of non-interacting
fermions in a one-dimensional box”, Eur. Phys. J. B 93, 150 (2020).

26J Jaramillo, M Beau, and A del Campo, “Quantum supremacy of many-particle
thermal machines”, New J. Phys. 18, 075019 (2016).

27T. Denzler, J. F. G. Santos, E. Lutz, and R. M. Serra, “Nonequilibrium fluctua-
tions of a quantum heat engine”, Quantum Sci. Technol. 9, 045017 (2024).

28K. Sekimoto, Stochastic energetics (Springer Berlin, Heidelberg, 2010).
29L. Peliti and S. Pigolotti, Stochastic thermodynamics: An introduction (Princeton
University Press, 2021).

30N. Shiraishi, An introduction to stochastic thermodynamics: from basic to ad-
vanced (Springer, Singapore, 2023).

31C. V. den Broeck, “Stochastic thermodynamics: A brief introduction”, in Physics
of complex colloids , edited by C. Bechinger, F. Sciortino, and P. Ziherl (IOS Press,
Amsterdam, 2013), pp. 155–194.

32U. Seifert, “From stochastic thermodynamics to thermodynamic inference”, Annu.
Rev. Condens. Matter Phys. 10, 171–192 (2019).

33S. Vinjanampathy and J. Anders, “Quantum thermodynamics”, Contemp. Phys.
57, 545–579 (2016).

34R. Kosloff, “Quantum thermodynamics: a dynamical viewpoint”, Entropy 15,
2100–2128 (2013).

35M. Esposito, U. Harbola, and S. Mukamel, “Nonequilibrium fluctuations, fluctu-
ation theorems, and counting statistics in quantum systems”, Rev. Mod. Phys.
81, 1665–1702 (2009).

https://doi.org/10.1088/1367-2630/ac47cc
https://doi.org/10.1088/1367-2630/ac47cc
https://doi.org/10.1103/PhysRevE.75.051118
https://doi.org/10.1103/PhysRevE.87.012144
https://doi.org/10.1140/epjb/e2020-10217-0
https://doi.org/10.1088/1367-2630/18/7/075019
https://doi.org/10.1088/2058-9565/ad6287
https://doi.org/10.3254/978-1-61499-278-3-155
https://doi.org/10.3254/978-1-61499-278-3-155
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.81.1665


126 Bibliography

36M. Campisi, P. Hänggi, and P. Talkner, “Colloquium: quantum fluctuation rela-
tions: foundations and applications”, Rev. Mod. Phys. 83, 771–791 (2011).

37C. Jarzynski, “Equalities and inequalities: irreversibility and the second law of
thermodynamics at the nanoscale”, Annu. Rev. Condens. Matter Phys. 2, 329–
351 (2011).

38G. Benenti, G. Casati, K. Saito, and R. S. Whitney, “Fundamental aspects of
steady-state conversion of heat to work at the nanoscale”, Phys. Rep. 694, 1–124
(2017).

39J. Anders and M. Esposito, “Focus on quantum thermodynamics”, New J. Phys.
19, 010201 (2017).

40J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, “The role of quantum
information in thermodynamics—a topical review”, J. Phys. A: Math. Theor. 49,
143001 (2016).

41N. Shiraishi, K. Saito, and H. Tasaki, “Universal trade-off relation between power
and efficiency for heat engines”, Phys. Rev. Lett. 117, 190601 (2016).

42P. Pietzonka and U. Seifert, “Universal trade-off between power, efficiency, and
constancy in steady-state heat engines”, Phys. Rev. Lett. 120, 190602 (2018).

43G. Benenti, G. Casati, and J. Wang, “Power, efficiency, and fluctuations in steady-
state heat engines”, Phys. Rev. E 102, 040103 (2020).

44K. Sekimoto, “Langevin Equation and Thermodynamics”, Prog. Theor. Phys.
Suppl. 130, 17–27 (1998).

45V. Holubec and A. Ryabov, “Fluctuations in heat engines”, J. Phys. A: Math.
Theor. 55, 013001 (2021).

46M. Campisi, J. Pekola, and R. Fazio, “Nonequilibrium fluctuations in quantum
heat engines: theory, example, and possible solid state experiments”, New J. Phys.
17, 035012 (2015).

47T. Denzler and E. Lutz, “Efficiency fluctuations of a quantum heat engine”, Phys.
Rev. Res. 2, 032062 (2020).

48G. Watanabe and Y. Minami, “Finite-time thermodynamics of fluctuations in
microscopic heat engines”, Phys. Rev. Res. 4, L012008 (2022).

https://doi.org/10.1103/RevModPhys.83.771
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/https://doi.org/10.1146/annurev-conmatphys-062910-140506
https://doi.org/https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1088/1367-2630/19/1/010201
https://doi.org/10.1088/1367-2630/19/1/010201
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1103/PhysRevLett.117.190601
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.1103/PhysRevE.102.040103
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1088/1751-8121/ac3aac
https://doi.org/10.1088/1751-8121/ac3aac
https://doi.org/10.1088/1367-2630/17/3/035012
https://doi.org/10.1088/1367-2630/17/3/035012
https://doi.org/10.1103/PhysRevResearch.2.032062
https://doi.org/10.1103/PhysRevResearch.2.032062
https://doi.org/10.1103/PhysRevResearch.4.L012008


Bibliography 127

49K. Ito, C. Jiang, and G. Watanabe, Universal bounds for fluctuations in small
heat engines, 2019, arXiv:1910.08096 [cond-mat.stat-mech].

50T. Denzler and E. Lutz, “Efficiency fluctuations of a quantum heat engine”, Phys.
Rev. Res. 2, 032062 (2020).

51G. Jiao, S. Zhu, J. He, Y. Ma, and J. Wang, “Fluctuations in irreversible quantum
Otto engines”, Phys. Rev. E 103, 032130 (2021).

52T. Kamijima, S. Otsubo, Y. Ashida, and T. Sagawa, “Higher-order efficiency
bound and its application to nonlinear nanothermoelectrics”, Phys. Rev. E 104,
044115 (2021).

53S. Saryal, M. Gerry, I. Khait, D. Segal, and B. K. Agarwalla, “Universal bounds
on fluctuations in continuous thermal machines”, Phys. Rev. Lett. 127, 190603
(2021).

54S. Saryal and B. K. Agarwalla, “Bounds on fluctuations for finite-time quantum
Otto cycle”, Phys. Rev. E 103, L060103 (2021).

55S. Mohanta, S. Saryal, and B. K. Agarwalla, “Universal bounds on cooling power
and cooling efficiency for autonomous absorption refrigerators”, Phys. Rev. E 105,
034127 (2022).

56O. Abah and E. Lutz, “Optimal performance of a quantum Otto refrigerator”,
EPL 113, 60002 (2016).

57R. Kosloff and Y. Rezek, “The quantum harmonic Otto cycle”, Entropy 19, 032102
(2017).

58S. Lee, M. Ha, J.-M. Park, and H. Jeong, “Finite-time quantum Otto engine:
Surpassing the quasistatic efficiency due to friction”, Phys. Rev. E 101, 022127
(2020).

59B. Lin and J. Chen, “Performance analysis of an irreversible quantum heat engine
working with harmonic oscillators”, Phys. Rev. E 67, 046105 (2003).

60J. Wang, J. He, and Y. Xin, “Performance analysis of a spin quantum heat engine
cycle with internal friction”, Phys. Scr. 75, 227–234 (2007).

61S. Chand, S. Dasgupta, and A. Biswas, “Finite-time performance of a single-ion
quantum Otto engine”, Phys. Rev. E 103, 032144 (2021).

https://arxiv.org/abs/1910.08096
https://doi.org/10.1103/PhysRevResearch.2.032062
https://doi.org/10.1103/PhysRevResearch.2.032062
https://doi.org/10.1103/PhysRevE.103.032130
https://doi.org/10.1103/PhysRevE.104.044115
https://doi.org/10.1103/PhysRevE.104.044115
https://doi.org/10.1103/PhysRevLett.127.190603
https://doi.org/10.1103/PhysRevLett.127.190603
https://doi.org/10.1103/PhysRevE.103.L060103
https://doi.org/10.1103/PhysRevE.105.034127
https://doi.org/10.1103/PhysRevE.105.034127
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1103/PhysRevE.90.032102
https://doi.org/10.1103/PhysRevE.90.032102
https://doi.org/10.1103/PhysRevE.101.022127
https://doi.org/10.1103/PhysRevE.101.022127
https://doi.org/10.1103/PhysRevE.67.046105
https://doi.org/10.1088/0031-8949/75/2/018
https://doi.org/10.1103/PhysRevE.103.032144


128 Bibliography

62M. Kloc, P. Cejnar, and G. Schaller, “Collective performance of a finite-time
quantum Otto cycle”, Phys. Rev. E 100, 042126 (2019).

63A. Das, S. Mahunta, B. K. Agarwalla, and V. Mukherjee, “Precision bound
and optimal control in periodically modulated continuous quantum thermal ma-
chines”, Phys. Rev. E 108, 014137 (2023).

64M. Beau, J. Jaramillo, and A. del Campo, “Scaling-up quantum heat engines
efficiently via shortcuts to adiabaticity”, Entropy 18, 168 (2016).

65H. Vroylandt, M. Esposito, and G. Verley, “Collective effects enhancing power
and efficiency”, EPL 120, 30009 (2018).

66W. Niedenzu and G. Kurizki, “Cooperative many-body enhancement of quantum
thermal machine power”, New J. Phys. 20, 113038 (2018).

67V. Mukherjee and U. Divakaran, “Many-body quantum thermal machines”, J.
Phys.: Condens. Matter 33, 454001 (2021).

68G. Watanabe, B. P. Venkatesh, P. Talkner, M.-J. Hwang, and A. del Campo,
“Quantum statistical enhancement of the collective performance of multiple
bosonic engines”, Phys. Rev. Lett. 124, 210603 (2020).

69N. M. Myers and S. Deffner, “Bosons outperform Fermions: The thermodynamic
advantage of symmetry”, Phys. Rev. E 101, 012110 (2020).

70D. Gelbwaser-Klimovsky, A. Bylinskii, D. Gangloff, R. Islam, A. Aspuru-Guzik,
and V. Vuletic, “Single-atom heat machines enabled by energy quantization”,
Phys. Rev. Lett. 120, 170601 (2018).

71M. Boubakour, T. Fogarty, and T. Busch, “Interaction-enhanced quantum heat
engine”, Phys. Rev. Res. 5, 013088 (2023).

72A. Levy and D. Gelbwaser-Klimovsky, “Quantum features and signatures of quan-
tum thermal machines”, in Thermodynamics in the quantum regime: fundamental
aspects and new directions , edited by F. Binder, L. A. Correa, C. Gogolin, J.
Anders, and G. Adesso (Springer International Publishing, Cham, 2018), pp. 87–
126.

73R. Kosloff and A. Levy, “Quantum heat engines and refrigerators: continuous
devices”, Annu. Rev. Phys. Chem. 65, 365–393 (2014).

https://doi.org/10.1103/PhysRevE.100.042126
https://doi.org/10.1103/PhysRevE.108.014137
https://doi.org/10.3390/e18050168
https://doi.org/10.1209/0295-5075/120/30009
https://doi.org/10.1088/1367-2630/aaed55
https://doi.org/10.1088/1361-648x/ac1b60
https://doi.org/10.1088/1361-648x/ac1b60
https://doi.org/10.1103/PhysRevLett.124.210603
https://doi.org/10.1103/PhysRevE.101.012110
https://doi.org/10.1103/PhysRevLett.120.170601
https://doi.org/10.1103/PhysRevResearch.5.013088
https://doi.org/10.1007/978-3-319-99046-0_4
https://doi.org/10.1007/978-3-319-99046-0_4
https://doi.org/https://doi.org/10.1146/annurev-physchem-040513-103724


Bibliography 129

74L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M. Campisi, “Quantum
measurement cooling”, Phys. Rev. Lett. 122, 070603 (2019).

75A. Solfanelli, M. Falsetti, and M. Campisi, “Nonadiabatic single-qubit quantum
Otto engine”, Phys. Rev. B 101, 054513 (2020).

76H. B. Callen and T. A. Welton, “Irreversibility and generalized noise”, Phys. Rev.
83, 34–40 (1951).

77M. S. Green, “Markoff Random Processes and the Statistical Mechanics of Time-
Dependent Phenomena”, J. Chem. Phys. 20, 1281–1295 (1952).

78M. S. Green, “Markoff Random Processes and the Statistical Mechanics of Time-
Dependent Phenomena. II. Irreversible Processes in Fluids”, The Journal of Chem-
ical Physics 22, 398–413 (1954).

79R. Kubo, “Statistical-mechanical theory of irreversible processes. i. general theory
and simple applications to magnetic and conduction problems”, J. Phys. Soc. Jpn.
12, 570–586 (1957).

80R Kubo, “The fluctuation-dissipation theorem”, Rep. Prog. Phys. 29, 255 (1966).
81R. Kubo, M. Toda, and N. Hashitsume, Statistical physics ii: nonequilibrium sta-
tistical mechanics, Springer Series in Solid-State Sciences (Springer Berlin Hei-
delberg, 2012).

82S. de Groot and P. Mazur, Non-equilibrium thermodynamics, Dover Books on
Physics (Dover Publications, 1984).

83R. Zwanzig, Nonequilibrium statistical mechanics (Oxford University Press, 2001).
84U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, “Fluctuation–dissipation:
response theory in statistical physics”, Physics Reports 461, 111–195 (2008).

85H. Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev. 32,
110–113 (1928).

86U. M. B. Marconi, A. Puglisi, L. Rondoni, and A. Vulpiani, “Fluctuation–
dissipation: response theory in statistical physics”, Phys. Rep. 461, 111–195
(2008).

87M. Baiesi, C. Maes, and B. Wynants, “Fluctuations and response of nonequilib-
rium states”, Phys. Rev. Lett. 103, 010602 (2009).

https://doi.org/10.1103/PhysRevLett.122.070603
https://doi.org/10.1103/PhysRevB.101.054513
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1103/PhysRevLett.103.010602


130 Bibliography

88G. S. Agarwal, “Fluctuation-dissipation theorems for systems in non-thermal equi-
librium and applications”, Z. Phys. 252, 25–38 (1972).

89U. Seifert and T. Speck, “Fluctuation-dissipation theorem in nonequilibrium
steady states”, EPL 89, 10007 (2010).

90J. Mehl, V. Blickle, U. Seifert, and C. Bechinger, “Experimental accessibility
of generalized fluctuation-dissipation relations for nonequilibrium steady states”,
Phys. Rev. E 82, 032401 (2010).

91J.-T. Hsiang and B.-L. Hu, “Fluctuation-dissipation relation for open quantum
systems in a nonequilibrium steady state”, Phys. Rev. D 102, 105006 (2020).

92W. Sutherland, “Xviii. ionization, ionic velocities, and atomic sizes”, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3, 161–177
(1902).

93W. Sutherland, “Lxxv. a dynamical theory of diffusion for non-electrolytes and the
molecular mass of albumin”, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 9, 781–785 (1905).

94A. Einstein, “Über die von der molekularkinetischen theorie der wärme geforderte
bewegung von in ruhenden flüssigkeiten suspendierten teilchen”, Ann. Phys. 322,
549–560 (1905).

95M. von Smoluchowski, “Zur kinetischen theorie der brownschen molekularbewe-
gung und der suspensionen”, Ann. Phys. 326, 756–780 (1906).

96J. B. Johnson, “Thermal agitation of electricity in conductors”, Phys. Rev. 32,
97–109 (1928).

97H. Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev. 32,
110–113 (1928).

98L. Onsager, “Reciprocal relations in irreversible processes. i.”, Phys. Rev. 37, 405–
426 (1931).

99L. Onsager, “Reciprocal relations in irreversible processes. ii.”, Phys. Rev. 38,
2265–2279 (1931).

100L. Onsager and S. Machlup, “Fluctuations and irreversible processes”, Phys. Rev.
91, 1505–1512 (1953).

https://doi.org/10.1007/BF01391621
https://doi.org/10.1209/0295-5075/89/10007
https://doi.org/10.1103/PhysRevE.82.032401
https://doi.org/10.1103/PhysRevD.102.105006
https://doi.org/10.1080/14786440209462752
https://doi.org/10.1080/14786440209462752
https://doi.org/10.1080/14786440209462752
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1080/14786440509463331
https://doi.org/https://doi.org/10.1002/andp.19053220806
https://doi.org/https://doi.org/10.1002/andp.19053220806
https://doi.org/https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1103/PhysRev.32.97
https://doi.org/10.1103/PhysRev.32.97
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1103/PhysRev.91.1505


Bibliography 131

101S. Machlup and L. Onsager, “Fluctuations and irreversible process. ii. systems
with kinetic energy”, Phys. Rev. 91, 1512–1515 (1953).

102S. Berber, Y.-K. Kwon, and D. Tománek, “Unusually high thermal conductivity
of carbon nanotubes”, Phys. Rev. Lett. 84, 4613–4616 (2000).

103H. U. Baranger and A. D. Stone, “Electrical linear-response theory in an arbi-
trary magnetic field: a new fermi-surface formation”, Phys. Rev. B 40, 8169–8193
(1989).

104C. Jarzynski, “Nonequilibrium equality for free energy differences”, Phys. Rev.
Lett. 78, 2690–2693 (1997).

105C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measure-
ments: a master-equation approach”, Phys. Rev. E 56, 5018–5035 (1997).

106G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium
work relation for free energy differences”, Phys. Rev. E 60, 2721–2726 (1999).

107G. E. Crooks, “Path-ensemble averages in systems driven far from equilibrium”,
Phys. Rev. E 61, 2361–2366 (2000).

108D. J. Evans, E. G. D. Cohen, and G. P. Morriss, “Probability of second law
violations in shearing steady states”, Phys. Rev. Lett. 71, 2401–2404 (1993).

109G. Gallavotti and E. G. D. Cohen, “Dynamical ensembles in nonequilibrium sta-
tistical mechanics”, Phys. Rev. Lett. 74, 2694–2697 (1995).

110T. Hatano and S.-i. Sasa, “Steady-state thermodynamics of langevin systems”,
Phys. Rev. Lett. 86, 3463–3466 (2001).

111J. Kurchan, “Fluctuation theorem for stochastic dynamics”, J. Phys. A: Math.
Gen. 31, 3719 (1998).

112J. L. Lebowitz and H. Spohn, “A gallavotti–cohen-type symmetry in the large
deviation functional for stochastic dynamics”, J. Stat. Phys. 95, 333–365 (1999).

113K. Kim, C. Kwon, and H. Park, “Heat fluctuations and initial ensembles”, Phys.
Rev. E 90, 032117 (2014).

114C. Jarzynski and D. K. Wójcik, “Classical and quantum fluctuation theorems for
heat exchange”, Phys. Rev. Lett. 92, 230602 (2004).

https://doi.org/10.1103/PhysRev.91.1512
https://doi.org/10.1103/PhysRevLett.84.4613
https://doi.org/10.1103/PhysRevB.40.8169
https://doi.org/10.1103/PhysRevB.40.8169
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1103/PhysRevLett.71.2401
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1103/PhysRevE.90.032117
https://doi.org/10.1103/PhysRevE.90.032117
https://doi.org/10.1103/PhysRevLett.92.230602


132 Bibliography

115U. Seifert, “Entropy production along a stochastic trajectory and an integral
fluctuation theorem”, Phys. Rev. Lett. 95, 040602 (2005).

116U. Seifert, “Stochastic thermodynamics, fluctuation theorems and molecular ma-
chines”, Rep. Prog. Phys. 75, 126001 (2012).

117U. Seifert, “Stochastic thermodynamics: principles and perspectives”, Eur. Phys.
J. B 64, 423–431 (2008).

118C. Maes and K. Netočný, “Time-reversal and entropy”, J. Stat. Phys. 110, 269–
310 (2003).

119M. Esposito and C. Van den Broeck, “Three detailed fluctuation theorems”, Phys.
Rev. Lett. 104, 090601 (2010).

120M. Esposito and C. Van den Broeck, “Three faces of the second law. i. master
equation formulation”, Phys. Rev. E 82, 011143 (2010).

121T. Sagawa and M. Ueda, “Generalized jarzynski equality under nonequilibrium
feedback control”, Phys. Rev. Lett. 104, 090602 (2010).

122T. Sagawa and M. Ueda, “Fluctuation theorem with information exchange: role of
correlations in stochastic thermodynamics”, Phys. Rev. Lett. 109, 180602 (2012).

123Z. Gong and H. T. Quan, “Jarzynski equality, crooks fluctuation theorem, and
the fluctuation theorems of heat for arbitrary initial states”, Phys. Rev. E 92,
012131 (2015).

124M Sahoo, S Lahiri, and A. M. Jayannavar, “Fluctuation theorems and atypical
trajectories”, J. Phys. A: Math. Theor. 44, 205001 (2011).

125H. Tasaki, Jarzynski relations for quantum systems and some applications, 2000,
arXiv:cond-mat/0009244 [cond-mat.stat-mech].

126P. Talkner and P. Hänggi, “The tasaki–crooks quantum fluctuation theorem”, J.
Phys. A: Math. Theor. 40, F569 (2007).

127P. Talkner, M. Campisi, and P. Hänggi, “Fluctuation theorems in driven open
quantum systems”, J. Stat. Mech. 2009, P02025 (2009).

128P. Talkner, E. Lutz, and P. Hänggi, “Fluctuation theorems: Work is not an ob-
servable”, Phys. Rev. E 75, 050102 (2007).

https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1023/A:1021026930129
https://doi.org/10.1023/A:1021026930129
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevLett.104.090602
https://doi.org/10.1103/PhysRevLett.109.180602
https://doi.org/10.1103/PhysRevE.92.012131
https://doi.org/10.1103/PhysRevE.92.012131
https://doi.org/10.1088/1751-8113/44/20/205001
https://arxiv.org/abs/cond-mat/0009244
https://doi.org/10.1088/1751-8113/40/26/F08
https://doi.org/10.1088/1751-8113/40/26/F08
https://doi.org/10.1088/1742-5468/2009/02/P02025
https://doi.org/10.1103/PhysRevE.75.050102


Bibliography 133

129A. C. Barato and U. Seifert, “Thermodynamic uncertainty relation for biomolec-
ular processes”, Phys. Rev. Lett. 114, 158101 (2015).

130T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England, “Dissipation
bounds all steady-state current fluctuations”, Phys. Rev. Lett. 116, 120601 (2016).

131J. M. Horowitz and T. R. Gingrich, “Thermodynamic uncertainty relations con-
strain non-equilibrium fluctuations”, Nat. Phys. 16, 15–20 (2020).

132K. Macieszczak, K. Brandner, and J. P. Garrahan, “Unified thermodynamic un-
certainty relations in linear response”, Phys. Rev. Lett. 121, 130601 (2018).

133Y. Hasegawa and T. Van Vu, “Fluctuation theorem uncertainty relation”, Phys.
Rev. Lett. 123, 110602 (2019).

134G. Falasco, M. Esposito, and J.-C. Delvenne, “Unifying thermodynamic uncer-
tainty relations”, New J. Phys. 22, 053046 (2020).

135A. M. Timpanaro, G. Guarnieri, J. Goold, and G. T. Landi, “Thermodynamic
uncertainty relations from exchange fluctuation theorems”, Phys. Rev. Lett. 123,
090604 (2019).

136G. Guarnieri, G. T. Landi, S. R. Clark, and J. Goold, “Thermodynamics of preci-
sion in quantum nonequilibrium steady states”, Phys. Rev. Res 1, 033021 (2019).

137K. Brandner, T. Hanazato, and K. Saito, “Thermodynamic bounds on precision
in ballistic multiterminal transport”, Phys. Rev. Lett. 120, 090601 (2018).

138J. Liu and D. Segal, “Thermodynamic uncertainty relation in quantum thermo-
electric junctions”, Phys. Rev. E 99, 062141 (2019).

139S. K. Manikandan, D. Gupta, and S. Krishnamurthy, “Inferring entropy produc-
tion from short experiments”, Phys. Rev. Lett. 124, 120603 (2020).

140H. J. D. Miller, M. H. Mohammady, M. Perarnau-Llobet, and G. Guarnieri,
“Thermodynamic uncertainty relation in slowly driven quantum heat engines”,
Phys. Rev. Lett. 126, 210603 (2021).

141M. F. Sacchi, “Thermodynamic uncertainty relations for bosonic Otto engines”,
Phys. Rev. E 103, 012111 (2021).

https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1103/PhysRevLett.121.130601
https://doi.org/10.1103/PhysRevLett.123.110602
https://doi.org/10.1103/PhysRevLett.123.110602
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1103/PhysRevLett.123.090604
https://doi.org/10.1103/PhysRevLett.123.090604
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevLett.120.090601
https://doi.org/10.1103/PhysRevE.99.062141
https://doi.org/10.1103/PhysRevLett.124.120603
https://doi.org/10.1103/PhysRevLett.126.210603
https://doi.org/10.1103/PhysRevE.103.012111


134 Bibliography

142S. Saryal, O. Sadekar, and B. K. Agarwalla, “Thermodynamic uncertainty relation
for energy transport in a transient regime: a model study”, Phys. Rev. E 103,
022141 (2021).

143Y. Hasegawa, “Thermodynamic uncertainty relation for general open quantum
systems”, Phys. Rev. Lett. 126, 010602 (2021).

144B. K. Agarwalla and D. Segal, “Assessing the validity of the thermodynamic
uncertainty relation in quantum systems”, Phys. Rev. B 98, 155438 (2018).

145J. M. Horowitz and T. R. Gingrich, “Proof of the finite-time thermodynamic
uncertainty relation for steady-state currents”, Phys. Rev. E 96, 020103 (2017).

146P. Pietzonka, F. Ritort, and U. Seifert, “Finite-time generalization of the thermo-
dynamic uncertainty relation”, Phys. Rev. E 96, 012101 (2017).

147K. Proesmans and C. V. den Broeck, “Discrete-time thermodynamic uncertainty
relation”, EPL 119, 20001 (2017).

148D. Chiuchiù and S. Pigolotti, “Mapping of uncertainty relations between contin-
uous and discrete time”, Phys. Rev. E 97, 032109 (2018).

149D. H. Wolpert, “Uncertainty relations and fluctuation theorems for bayes nets”,
Phys. Rev. Lett. 125, 200602 (2020).

150K. Yoshimura and S. Ito, “Thermodynamic uncertainty relation and thermody-
namic speed limit in deterministic chemical reaction networks”, Phys. Rev. Lett.
127, 160601 (2021).

151T. R. Gingrich and J. M. Horowitz, “Fundamental bounds on first passage time
fluctuations for currents”, Phys. Rev. Lett. 119, 170601 (2017).

152J. P. Garrahan, “Simple bounds on fluctuations and uncertainty relations for
first-passage times of counting observables”, Phys. Rev. E 95, 032134 (2017).

153K. Liu, Z. Gong, and M. Ueda, “Thermodynamic uncertainty relation for arbitrary
initial states”, Phys. Rev. Lett. 125, 140602 (2020).

154S. Pigolotti, I. Neri, E. Roldán, and F. Jülicher, “Generic properties of stochastic
entropy production”, Phys. Rev. Lett. 119, 140604 (2017).

155A. C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli, “Bounds on current
fluctuations in periodically driven systems”, New J. Phys. 20, 103023 (2018).

https://doi.org/10.1103/PhysRevE.103.022141
https://doi.org/10.1103/PhysRevE.103.022141
https://doi.org/10.1103/PhysRevLett.126.010602
https://doi.org/10.1103/PhysRevB.98.155438
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1103/PhysRevE.97.032109
https://doi.org/10.1103/PhysRevLett.125.200602
https://doi.org/10.1103/PhysRevLett.127.160601
https://doi.org/10.1103/PhysRevLett.127.160601
https://doi.org/10.1103/PhysRevLett.119.170601
https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1103/PhysRevLett.125.140602
https://doi.org/10.1103/PhysRevLett.119.140604
https://doi.org/10.1088/1367-2630/aae512


Bibliography 135

156T. Koyuk, U. Seifert, and P. Pietzonka, “A generalization of the thermodynamic
uncertainty relation to periodically driven systems”, J. Phys. A: Math. Theor. 52,
02LT02 (2018).

157P. P. Potts and P. Samuelsson, “Thermodynamic uncertainty relations including
measurement and feedback”, Phys. Rev. E 100, 052137 (2019).

158T. V. Vu and Y. Hasegawa, “Uncertainty relation under information measurement
and feedback control”, J. Physics A: Math. Theor. 53, 075001 (2020).

159G. Paneru, S. Dutta, T. Tlusty, and H. K. Pak, “Reaching and violating thermo-
dynamic uncertainty bounds in information engines”, Phys. Rev. E 102, 032126
(2020).

160K. Proesmans and J. M. Horowitz, “Hysteretic thermodynamic uncertainty re-
lation for systems with broken time-reversal symmetry”, J. Stat. Mech. 2019,
054005 (2019).

161Z. Cao, J. Su, H. Jiang, and Z. Hou, “Effective entropy production and thermo-
dynamic uncertainty relation of active Brownian particles”, Physics of Fluids 34,
053310 (2022).

162M. Shreshtha and R. J. Harris, “Thermodynamic uncertainty for run-and-tumble–
type processes”, Europhys. Lett. 126, 40007 (2019).

163F. Carollo, R. L. Jack, and J. P. Garrahan, “Unraveling the large deviation statis-
tics of markovian open quantum systems”, Phys. Rev. Lett. 122, 130605 (2019).

164D Andrieux, P Gaspard, T Monnai, and S Tasaki, “The fluctuation theorem for
currents in open quantum systems”, New J. Phys. 11, 043014 (2009).

165M. T. Mitchison and P. P. Potts, Physical implementations of quantum absorption
refrigerators, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G.
Adesso (Springer International Publishing, Cham, 2018).

166N. Linden, S. Popescu, and P. Skrzypczyk, “How small can thermal machines be?
The smallest possible refrigerator”, Phys. Rev. Lett. 105, 130401 (2010).

167J. P. Palao, R. Kosloff, and J. M. Gordon, “Quantum thermodynamic cooling
cycle”, Phys. Rev. E 64, 056130 (2001).

https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1103/PhysRevE.100.052137
https://doi.org/10.1088/1751-8121/ab64a4
https://doi.org/10.1103/PhysRevE.102.032126
https://doi.org/10.1103/PhysRevE.102.032126
https://doi.org/10.1088/1742-5468/ab14da
https://doi.org/10.1088/1742-5468/ab14da
https://doi.org/10.1063/5.0094211
https://doi.org/10.1063/5.0094211
https://doi.org/10.1209/0295-5075/126/40007
https://doi.org/10.1103/PhysRevLett.122.130605
https://doi.org/10.1088/1367-2630/11/4/043014
https://doi.org/10.1103/PhysRevLett.105.130401
https://doi.org/10.1103/PhysRevE.64.056130


136 Bibliography

168A. Levy and R. Kosloff, “Quantum absorption refrigerator”, Phys. Rev. Lett. 108,
070604 (2012).

169L. A. Correa, J. P. Palao, D. Alonso, and G. Adesso, “Quantum-enhanced ab-
sorption refrigerators”, Sci. Rep. 4, 3949 (2014).

170L. A. Correa, J. P. Palao, G. Adesso, and D. Alonso, “Performance bound for
quantum absorption refrigerators”, Phys. Rev. E 87, 042131 (2013).

171L. A. Correa, “Multistage quantum absorption heat pumps”, Phys. Rev. E 89,
042128 (2014).

172A. Mu, B. K. Agarwalla, G. Schaller, and D. Segal, “Qubit absorption refrigerator
at strong coupling”, New J. Phys. 19, 123034 (2017).

173M. Kilgour and D. Segal, “Coherence and decoherence in quantum absorption
refrigerators”, Phys. Rev. E 98, 012117 (2018).

174D. Segal, “Current fluctuations in quantum absorption refrigerators”, Phys. Rev.
E 97, 052145 (2018).

175H. M. Friedman and D. Segal, “Cooling condition for multilevel quantum absorp-
tion refrigerators”, Phys. Rev. E 100, 062112 (2019).

176J. Liu and D. Segal, “Coherences and the thermodynamic uncertainty relation:
insights from quantum absorption refrigerators”, Phys. Rev. E 103, 032138 (2021).

177S. K. Manikandan, E. Jussiau, and A. N. Jordan, “Autonomous quantum absorp-
tion refrigerators”, Phys. Rev. B 102, 235427 (2020).

178J. B. Brask and N. Brunner, “Small quantum absorption refrigerator in the tran-
sient regime: time scales, enhanced cooling, and entanglement”, Phys. Rev. E 92,
062101 (2015).

179Y.-X. Chen and S.-W. Li, “Quantum refrigerator driven by current noise”, EPL
97, 40003 (2012).

180S. Nimmrichter, J. Dai, A. Roulet, and V. Scarani, “Quantum and classical dy-
namics of a three-mode absorption refrigerator”, Quantum 1, 37 (2017).

181P. Skrzypczyk, N. Brunner, N. Linden, and S. Popescu, “The smallest refrigerators
can reach maximal efficiency”, J. Phys. A: Math. Theor. 44, 492002 (2011).

https://doi.org/10.1103/PhysRevLett.108.070604
https://doi.org/10.1103/PhysRevLett.108.070604
https://doi.org/10.1038/srep03949
https://doi.org/10.1103/PhysRevE.87.042131
https://doi.org/10.1103/PhysRevE.89.042128
https://doi.org/10.1103/PhysRevE.89.042128
https://doi.org/10.1088/1367-2630/aa9b75
https://doi.org/10.1103/PhysRevE.98.012117
https://doi.org/10.1103/PhysRevE.97.052145
https://doi.org/10.1103/PhysRevE.97.052145
https://doi.org/10.1103/PhysRevE.100.062112
https://doi.org/10.1103/PhysRevE.103.032138
https://doi.org/10.1103/PhysRevB.102.235427
https://doi.org/10.1103/PhysRevE.92.062101
https://doi.org/10.1103/PhysRevE.92.062101
https://doi.org/10.1209/0295-5075/97/40003
https://doi.org/10.1209/0295-5075/97/40003
https://doi.org/10.22331/q-2017-12-11-37
https://doi.org/10.1088/1751-8113/44/49/492002


Bibliography 137

182J. O. González, J. P. Palao, and D. Alonso, “Relation between topology and heat
currents in multilevel absorption machines”, New J. Phys. 19, 113037 (2017).

183J. M. Gordon and K. C. Ng, Cool thermodynamics (Cambridge International
Science, Cambridge, 2000).

184F. P. E. Carré, “Improvement in apparatus for freezing liquids”, pat. U.S. Patent
No. 30,201 (Oct. 1860).

185P. P. Hofer, M. Perarnau-Llobet, J. B. Brask, R. Silva, M. Huber, and N. Brun-
ner, “Autonomous quantum refrigerator in a circuit qed architecture based on a
josephson junction”, Phys. Rev. B 94, 235420 (2016).

186M. T. Mitchison, M. Huber, J. Prior, M. P. Woods, and M. B. Plenio, “Realising
a quantum absorption refrigerator with an atom-cavity system”, Quantum Sci.
Technol. 1, 015001 (2016).

187P. A. Erdman, B. Bhandari, R. Fazio, J. P. Pekola, and F. Taddei, “Absorption
refrigerators based on coulomb-coupled single-electron systems”, Phys. Rev. B 98,
045433 (2018).

188D. Venturelli, R. Fazio, and V. Giovannetti, “Minimal self-contained quantum
refrigeration machine based on four quantum dots”, Phys. Rev. Lett. 110, 256801
(2013).

189D. M. Busiello and S. Pigolotti, “Hyperaccurate currents in stochastic thermody-
namics”, Phys. Rev. E 100, 060102 (2019).

190André, M. Timpanaro, G. Guarnieri, and G. T. Landi, Hyperaccurate thermoelec-
tric currents, 2021, arXiv:2108.05325 [quant-ph].

191K. Brandner, K. Saito, and U. Seifert, “Strong bounds on onsager coefficients and
efficiency for three-terminal thermoelectric transport in a magnetic field”, Phys.
Rev. Lett. 110, 070603 (2013).

192K. Brandner and U. Seifert, “Multi-terminal thermoelectric transport in a mag-
netic field: bounds on Onsager coefficients and efficiency”, New J. Phys. 15, 105003
(2013).

https://doi.org/10.1088/1367-2630/aa8647
https://doi.org/10.1103/PhysRevB.94.235420
https://doi.org/10.1088/2058-9565/1/1/015001
https://doi.org/10.1088/2058-9565/1/1/015001
https://doi.org/10.1103/PhysRevB.98.045433
https://doi.org/10.1103/PhysRevB.98.045433
https://doi.org/10.1103/PhysRevLett.110.256801
https://doi.org/10.1103/PhysRevLett.110.256801
https://doi.org/10.1103/PhysRevE.100.060102
https://arxiv.org/abs/2108.05325
https://doi.org/10.1103/PhysRevLett.110.070603
https://doi.org/10.1103/PhysRevLett.110.070603
https://doi.org/10.1088/1367-2630/15/10/105003
https://doi.org/10.1088/1367-2630/15/10/105003


138 Bibliography

193G. Benenti, K. Saito, and G. Casati, “Thermodynamic bounds on efficiency for
systems with broken time-reversal symmetry”, Phys. Rev. Lett. 106, 230602
(2011).

194K. Saito, G. Benenti, G. Casati, and T. c. v. Prosen, “Thermopower with broken
time-reversal symmetry”, Phys. Rev. B 84, 201306 (2011).

195B. Sothmann, R. Sánchez, and A. N. Jordan, “Thermoelectric energy harvesting
with quantum dots”, Nanotechnology 26, 032001 (2014).

196K. Brandner, K. Saito, and U. Seifert, “Thermodynamics of micro- and nano-
systems driven by periodic temperature variations”, Phys. Rev. X 5, 031019
(2015).

197V. Holubec and A. Ryabov, “Cycling tames power fluctuations near optimum
efficiency”, Phys. Rev. Lett. 121, 120601 (2018).

198H. B. G. Casimir, “On Onsager’s principle of microscopic reversibility”, Rev. Mod.
Phys. 17, 343–350 (1945).

199J.-H. Jiang, B. K. Agarwalla, and D. Segal, “Efficiency statistics and bounds
for systems with broken time-reversal symmetry”, Phys. Rev. Lett. 115, 040601
(2015).

200R. Kosloff, “Quantum thermodynamics and open-systems modeling”, J. Chem.
Phys. 150, 204105 (2019).

201E. Geva and R. Kosloff, “A quantum-mechanical heat engine operating in finite
time. A model consisting of spin-1/2 systems as the working fluid”, J. Chem.
Phys. 96, 3054–3067 (1992).

202T. Feldmann and R. Kosloff, “Performance of discrete heat engines and heat
pumps in finite time”, Phys. Rev. E 61, 4774–4790 (2000).

203T. D. Kieu, “The second law, Maxwell’s demon, and work derivable from quantum
heat engines”, Phys. Rev. Lett. 93, 140403 (2004).

204M. J. Henrich, F. Rempp, and G. Mahler, “Quantum thermodynamic Otto ma-
chines: A spin-system approach”, Eur. Phys. J.: Spec. Top. 151, 032102 (2007).

205M. O. Scully, “Quantum afterburner: improving the efficiency of an ideal heat
engine”, Phys. Rev. Lett. 88, 050602 (2002).

https://doi.org/10.1103/PhysRevLett.106.230602
https://doi.org/10.1103/PhysRevLett.106.230602
https://doi.org/10.1103/PhysRevB.84.201306
https://doi.org/10.1088/0957-4484/26/3/032001
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1103/RevModPhys.17.343
https://doi.org/10.1103/PhysRevLett.115.040601
https://doi.org/10.1103/PhysRevLett.115.040601
https://doi.org/10.1063/1.5096173
https://doi.org/10.1063/1.5096173
https://doi.org/10.1063/1.461951
https://doi.org/10.1063/1.461951
https://doi.org/10.1103/PhysRevE.61.4774
https://doi.org/10.1103/PhysRevLett.93.140403
https://doi.org/10.1103/PhysRevE.90.032102
https://doi.org/10.1103/PhysRevLett.88.050602


Bibliography 139

206G. Watanabe, B. P. Venkatesh, P. Talkner, and A. del Campo, “Quantum per-
formance of thermal machines over many cycles”, Phys. Rev. Lett. 118, 050601
(2017).

207Y. Rezek and R. Kosloff, “Irreversible performance of a quantum harmonic heat
engine”, New J. Phys. 8, 83–83 (2006).

208O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, and E.
Lutz, “Single-ion heat engine at maximum power”, Phys. Rev. Lett. 109, 203006
(2012).

209Y. Zheng, P. Hänggi, and D. Poletti, “Occurrence of discontinuities in the perfor-
mance of finite-time quantum Otto cycles”, Phys. Rev. E 94, 012137 (2016).

210J Jaramillo, M Beau, and A del Campo, “Quantum supremacy of many-particle
thermal machines”, New J. Phys. 18, 075019 (2016).

211S. Chand and A. Biswas, “Single-ion quantum Otto engine with always-on bath
interaction”, EPL 118, 60003 (2017).

212R. Shastri and B. P. Venkatesh, “Optimization of asymmetric quantum Otto
engine cycles”, Phys. Rev. E 106, 024123 (2022).

213V. Singh, “Performance bounds of nonadiabatic quantum harmonic Otto engine
and refrigerator under a squeezed thermal reservoir”, Phys. Rev. E 102, 062123
(2020).

214M. Campisi, “Fluctuation relation for quantum heat engines and refrigerators”,
J. Phys. A: Math. Theor. 47, 245001 (2014).

215M. F. Sacchi, “Multilevel quantum thermodynamic swap engines”, Phys. Rev. A
104, 012217 (2021).

216S. Deffner and E. Lutz, “Nonequilibrium work distribution of a quantum harmonic
oscillator”, Phys. Rev. E 77, 021128 (2008).

217K. Husimi, “Miscellanea in Elementary Quantum Mechanics, II”, Prog. Theor.
Phys. 9, 381–402 (1953).

218R. Kosloff and Y. Rezek, “The quantum harmonic Otto cycle”, Entropy 19, 062123
(2017).

https://doi.org/10.1103/PhysRevLett.118.050601
https://doi.org/10.1103/PhysRevLett.118.050601
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1103/PhysRevLett.109.203006
https://doi.org/10.1103/PhysRevE.94.012137
https://doi.org/10.1088/1367-2630/18/7/075019
https://doi.org/10.1209/0295-5075/118/60003
https://doi.org/10.1103/PhysRevE.106.024123
https://doi.org/10.1103/PhysRevE.102.062123
https://doi.org/10.1103/PhysRevE.102.062123
https://doi.org/10.1088/1751-8113/47/24/245001
https://doi.org/10.1103/PhysRevA.104.012217
https://doi.org/10.1103/PhysRevA.104.012217
https://doi.org/10.1103/PhysRevE.77.021128
https://doi.org/10.1143/ptp/9.4.381
https://doi.org/10.1143/ptp/9.4.381
https://doi.org/10.1103/PhysRevE.102.062123
https://doi.org/10.1103/PhysRevE.102.062123


140 Bibliography

219R. Uzdin, A. Levy, and R. Kosloff, “Equivalence of quantum heat machines, and
quantum-thermodynamic signatures”, Phys. Rev. X 5, 031044 (2015).

220Z. Fei and H. T. Quan, “Nonequilibrium Green’s Function’s approach to the
calculation of work statistics”, Phys. Rev. Lett. 124, 240603 (2020).

221V. Cavina, S. S. Kadijani, M. Esposito, and T. L. Schmidt, “A convenient Keldysh
contour for thermodynamically consistent perturbative and semiclassical expan-
sions”, SciPost Phys. 15, 209 (2023).

222J. Rammer and H. Smith, “Quantum field-theoretical methods in transport theory
of metals”, Rev. Mod. Phys. 58, 323–359 (1986).

223J. Schwinger, “Brownian motion of a quantum oscillator”, J. Math. Phys. 2, 407–
432 (1961).

224J. Weber, “Fluctuation dissipation theorem”, Phys. Rev. 101, 1620–1626 (1956).
225B. U. Felderhof, “On the derivation of the fluctuation-dissipation theorem”, J.

Phys. A: Math. Gen. 11, 921 (1978).
226R. Pathria and P. Beale, Statistical mechanics, 3rd ed. (Elsevier, New York, 2011).
227S. Mohanta, M. Saha, B. P. Venkatesh, and B. K. Agarwalla, “Bounds on nonequi-

librium fluctuations for asymmetrically driven quantum Otto engines”, Phys. Rev.
E 108, 014118 (2023).

228M. Campisi, J. Pekola, and R. Fazio, “Nonequilibrium fluctuations in quantum
heat engines: theory, example, and possible solid state experiments”, New J. Phys.
17, 035012 (2015).

229H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford
University Press, 2007).

230H. Carmichael, An open systems approach to quantum optics, Lectures presented
at the université libre de bruxelles, october 28 to november 4, 1991, 1st ed., Lecture
Notes in Physics Monographs (Springer Berlin, Heidelberg, 1993).

231P. C. Martin and J. Schwinger, “Theory of many-particle systems. I”, Phys. Rev.
115, 1342–1373 (1959).

https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevLett.124.240603
https://doi.org/10.21468/SciPostPhys.15.5.209
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1063/1.1703727
https://doi.org/10.1063/1.1703727
https://doi.org/10.1103/PhysRev.101.1620
https://doi.org/10.1088/0305-4470/11/5/021
https://doi.org/10.1088/0305-4470/11/5/021
https://doi.org/10.1103/PhysRevE.108.014118
https://doi.org/10.1103/PhysRevE.108.014118
https://doi.org/10.1088/1367-2630/17/3/035012
https://doi.org/10.1088/1367-2630/17/3/035012
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342


Bibliography 141

232S. Saryal, S. Mohanta, and B. K. Agarwalla, “Bounds on fluctuations for machines
with broken time-reversal symmetry: A linear response study”, Phys. Rev. E 105,
024129 (2022).

233H. J. D. Miller, M. Scandi, J. Anders, and M. Perarnau-Llobet, “Work fluctuations
in slow processes: Quantum signatures and optimal control”, Phys. Rev. Lett. 123,
230603 (2019).

234M. Scandi, H. J. D. Miller, J. Anders, and M. Perarnau-Llobet, “Quantum work
statistics close to equilibrium”, Phys. Rev. Research 2, 023377 (2020).

235M. F. Sacchi, “Thermodynamic uncertainty relations for bosonic Otto engines”,
Phys. Rev. E 103, 012111 (2021).

236O. Abah and E. Lutz, “Optimal performance of a quantum Otto refrigerator”,
EPL 113, 60002 (2016).

237H. Barghathi, J. Yu, and A. Del Maestro, “Theory of noninteracting fermions and
bosons in the canonical ensemble”, Phys. Rev. Res. 2, 043206 (2020).

238W. Magnus, L. Lemmens, and F. Brosens, “Quantum canonical ensemble: a pro-
jection operator approach”, Physica A 482, 1–13 (2017).

239W. J. Mullin and J. P. Fernández, “Bose–Einstein condensation, fluctuations, and
recurrence relations in statistical mechanics”, Am. J. Phys. 71, 661–669 (2003).

240O. Giraud, A. Grabsch, and C. Texier, “Correlations of occupation numbers in
the canonical ensemble and application to a bose-einstein condensate in a one-
dimensional harmonic trap”, Phys. Rev. A 97, 053615 (2018).

241P. Borrmann, J. Harting, O. Mülken, and E. R. Hilf, “Calculation of thermody-
namic properties of finite bose-einstein systems”, Phys. Rev. A 60, 1519–1522
(1999).

242K. Schönhammer, “Deviations from wick’s theorem in the canonical ensemble”,
Phys. Rev. A 96, 012102 (2017).

243A. Grabsch, S. N. Majumdar, G. Schehr, and C. Texier, “Fluctuations of observ-
ables for free fermions in a harmonic trap at finite temperature”, SciPost Phys.
4, 014 (2018).

https://doi.org/10.1103/PhysRevE.105.024129
https://doi.org/10.1103/PhysRevE.105.024129
https://doi.org/10.1103/PhysRevLett.123.230603
https://doi.org/10.1103/PhysRevLett.123.230603
https://doi.org/10.1103/PhysRevResearch.2.023377
https://doi.org/10.1103/PhysRevE.103.012111
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1103/PhysRevResearch.2.043206
https://doi.org/https://doi.org/10.1016/j.physa.2017.04.069
https://doi.org/10.1119/1.1544520
https://doi.org/10.1103/PhysRevA.97.053615
https://doi.org/10.1103/PhysRevA.60.1519
https://doi.org/10.1103/PhysRevA.60.1519
https://doi.org/10.1103/PhysRevA.96.012102
https://doi.org/10.21468/SciPostPhys.4.3.014
https://doi.org/10.21468/SciPostPhys.4.3.014


142 Bibliography

244K. Hammam, G. Manzano, and G. De Chiara, “Quantum coherence enables hy-
brid multitask and multisource regimes in autonomous thermal machines”, Phys.
Rev. Res. 6, 013310 (2024).

245Y. Zheng and D. Poletti, “Quantum statistics and the performance of engine
cycles”, Phys. Rev. E 92, 012110 (2015).

246X. Ding, J. Yi, Y. W. Kim, and P. Talkner, “Measurement-driven single temper-
ature engine”, Phys. Rev. E 98, 042122 (2018).

https://doi.org/10.1103/PhysRevResearch.6.013310
https://doi.org/10.1103/PhysRevResearch.6.013310
https://doi.org/10.1103/PhysRevE.92.012110
https://doi.org/10.1103/PhysRevE.98.042122

	Abstract
	List of Publications
	Introduction
	Background
	Fluctuation-Dissipation theorem
	Linear Response theory
	Fluctuation theorems
	Thermodynamic Uncertainty Relations

	Formalism
	Two-time projective measurements and Full Counting Statistics
	Quantum fluctuation theorems
	Linear response and Fluctuation-Dissipation from Fluctuation Theorem

	Main Research Questions Addressed
	Outline


	Bounds on performance for autonomous absorption refrigerators
	Hierarchy in the relative fluctuations of currents
	Bounds on cooling efficiency and cooling power derived from TURs
	Comparison of the bounds
	Example I: Weak (additive) system-reservoir coupling
	Four-level working medium

	Example II: Strong (multiplicative) system-reservoir coupling
	Two-level working medium

	Summary

	Fate of bounds on fluctuations for continuous machines with broken time-reversal symmetry
	Broken time-reversal symmetry: Bounds on symmetrized fluctuations
	Distinct forward and reverse processes
	Breakdown of Onsager reciprocity: Onsager-Cashimir relation
	Symmetrization of the operational regime conditions
	Generalized thermodynamic uncertainty relations
	Bounds on symmetrized efficiency
	Symmetrized tight-coupling condition

	 Example: Cyclic Brownian heat engine
	Summary

	Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto cycle
	Four-stroke quantum Otto cycle
	Joint probability distribution of work and heat
	Fluctuation symmetry
	Statistics of work and heat: The cumulant generating function

	Single qubit as a working medium:
	Expressions for averages and fluctuations of heat and work
	GTURs in the far-from-equilibrium regime
	General bounds on work to heat fluctuations
	Engine regime: Bounds on symmetrized efficiency
	Engine regime: Hierarchy in the symmetrized relative fluctuations
	Engine regime: Bounds on efficiency derived from the GTURs
	Refrigerator regime: Bounds on fluctuation

	Harmonic oscillator as a working medium
	Summary

	Full statistics of nonequilibrium heat and work for many-body quantum Otto cycle and universal bounds: a NEGF approach
	Quantum Otto cycle with generic many-boday working medium
	Characteristic function on modified Schwinger-Keldysh contour
	Cumulants of work and heat
	Linear response: Onsager coefficients
	Fluctuation-Dissipation relations: violation of work–FDR
	Engine regime: Universal lower bound on the ratio of output to input fluctuations
	Refrigerator regime: Universal upper bound on the ratio of output to input fluctuations
	Example
	Summary

	Closing Remarks and Outlook
	Results
	Future Research Directions

	Appendix
	Statistics of heat from the cold bath oo from ou

	Bibliography

