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Abstract

In recent years, algebraic quantum field theory and modular theory have provided signifi-
cant insights into gravitational degrees of freedom. Notably, the works [1, 2, 3] demonstrate
that the inclusion of gravitational degrees of freedom transforms the algebra of quantum
fields on a curved spacetime from a type III to a type II crossed product algebra. More-
over, authors in [2, 3] have shown that the generalized entropy of the black hole exterior,
evaluated at the bifurcation surface, equals the algebraic entropy of the associated type II
crossed product algebra.

We have extended these results to arbitrary cuts on the horizon for black hole solutions
in general relativity (GR) [4]. Specifically, we show that for QFT (including perturbative
gravitons) in the static blackhole spacetime, the generalized entropy equals the algebraic
entropy at any cut on the horizon, and the construction uses the Hartle-Hawking state.
These results can also be extended to Kerr black holes under the assumption of a Hadamard
stationary state. Furthermore, using the crossed product construction and modular the-
ory, we present an algebraic proof of the local version of the generalized second law (GSL),
where each step is manifestly finite—thanks to the Type II nature of the algebra. This
finiteness provides a natural renormalization scheme, addressing a key assumption in Wall’s
proof of the GSL [5]. We have also studied deformations of modular operators and derived

the averaged null energy condition (ANEC) for a class of spacetimes.

We further generalize the crossed product construction and the relation between gener-
alized entropy and algebraic entropy beyond GR to arbitrary diffeomorphism-invariant
theories [6]. In particular, we prove that the equality between generalized entropy and
the entropy of the Type II crossed product algebra holds at the bifurcation surface in any

such theory, and we provide a weaker form of the GSL in this broader context.

To study local algebras in higher curvature theories (HCT) and to better understand the
nature of HCT itself, we investigate their causal structure. In particular, we analyze Gen-
eralized Quadratic Gravity (GQG) and Einsteinian Cubic Gravity (ECG). It is known that
gravitons in higher curvature theories can propagate superluminally. This has important
consequences for black holes: if the Killing horizon is not a characteristic surface for the
fastest propagating mode, it cannot serve as a causal barrier. We show that GQG, which
has genuine fourth-order equations of motion, admits only null characteristic surfaces, en-
suring that the black hole horizon remains a causal barrier. We also perform a detailed

characteristic analysis of ECG, finding that while all null surfaces are characteristic, not



all characteristic surfaces are null. Despite the presence of non-null characteristic surfaces,

we establish that the black hole horizon in ECG remains a characteristic surface.






Chapter 1

Introduction

The quest for a quantum theory of gravity is one of the most profound challenges in

theoretical physics. The length scale at which quantum gravity is important is the Planck

scale I, = Gg h. Nevertheless, we expect that at a length scale much larger than the

Planck length, the quantum effects of gravity can be neglected. A full quantum theory
of gravity must reduce to quantum field theory in the absence of gravitational degrees
of freedom and to general relativity in the classical limit 7 — 0, with consistent higher
curvature corrections. Yet, gravity is inherently nonlinear—it gravitates just like other
matter fields, meaning that its quantum effects can, in principle, appear at all energy
scales. This suggests that quantum aspects of gravity must be incorporated systematically,

much like those of matter fields.

Although we do not yet know the full quantized theory of gravity, we can reasonably assume
that if the characteristic de Broglie wavelength of a matter field is A, satisfies [, < A,
then quantum effects of matter fields and fluctuations of the gravitational background
(gravitons) become important, while the full quantization of spacetime itself is not. This

regime is known as the semi-classical regime.

The physics in this regime is governed by the small parameter ZX" < 1. The appropri-
ate theoretical framework is quantum field theory in a curved background, incorporating

graviton fluctuations.

This thesis explores various aspects of this semi-classical regime using both classical and
contemporary tools from local quantum field theory and operator algebras. In this in-

troduction part, we will give a broad overview of the algebraic quantum field theory and
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its usefulness in curved spacetime, especially in black hole spacetime. In Sec 1.1, we will

briefly discuss the development of an algebraic approach to local quantum field theory.

1.1 Algebraic Quantum field theory

The framework of local quantum field theory (LQFT) is one of the most successful
and well-tested frameworks. It elegantly describes the standard model of particle physics,
which is a theory of all fundamental forces in our nature except gravity. The gravity can
also be studied using the LQFT framework, but only as an effective field theory.

Several classical approaches to quantum field theory, such as canonical quantization and
path integral quantization, have provided deep insights into quantum field theory and
physical interactions. These methods have led to remarkable predictions, such as the value
of the electron’s gyromagnetic ratio to 11 decimal places. However, examining a system
from multiple perspectives often deepens our understanding and may even prompt new
questions that might not have naturally arisen within the conventional framework. There

are other useful frameworks of LQFT, such as Algebraic quantum field theory (AQFT).

Algebraic Quantum Field Theory (AQFT) is one of the axiomatic approaches to
Local Quantum Field Theory (LQFT), developed in the 1950s alongside the Wightman
axiomatic framework by Haag, Kastler, Araki, Borchers, and others [7, 8, 9]. The primary
goal of these axiomatic approaches was to establish a mathematically rigorous foundation
for quantum field theory. However, as we will see, AQFT not only provides a precise for-
malism but also leads to many profound conceptual insights—some of which are difficult
to even formulate within other approaches.

In AQFT, the fundamental objects of study are local algebras of observables, con-
structed from bounded functions of smeared field operators within bounded regions of
spacetime. These algebras naturally exhibit the structure of von Neumann algebras,
allowing us to analyze the general structure of the theory using von Neumann algebras
and, more broadly, the powerful methods of operator algebras. All properties of quan-
tum fields are now encoded in the algebraic relations among these observables. States
are then defined as functionals on the algebra of observables. Further, we can obtain the
traditional Hilbert space formulation using what is known as the GNS construction. This
algebraic perspective is particularly effective for addressing questions related to local re-
gions in spacetime and excels in deriving general theorems by focusing on the fundamental
algebraic structure of a theory. For instance, Araki in [10] has shown that the local algebra

of a subregion in any quantum field theory belongs to the type III; class of von Neumann
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algebras. As we will discuss in later chapters, this is closely related to the divergence of

entanglement entropy in quantum field theory.

From a physical standpoint, experimental measurements access quantities such as mo-
mentum and energy, rather than directly probing the quantum state of the system. The
central idea of AQFT is to work directly with observables, making it a natural frame-
work for formulating and addressing observational questions in quantum field
theory. It also provides a natural setting for studying LQFT as an information-theoretic
system.

The algebraic approach to QFT is a natural framework for studying QFT in curved space-
time. In Minkowski QFT, the primary objects of interest are scattering amplitudes, di-
rectly related to physical cross sections in scattering experiments. However, a well-defined
S-matrix generally does not exist in curved spacetime. Additionally, in Minkowski space,
the Poincaré group provides a distinguished vacuum state, leading to a Fock space con-
struction over the Poincaré-invariant vacuum. In generic curved spacetimes, the absence
of such symmetries implies no preferred vacuum and, consequently, no natural Hilbert
space[11, 12]. This motivates an algebraic formulation, where the fundamental structure

is the algebra of local observables, with states as secondary constructs.

As we have explained, quantum field theory can be studied through the lens of von Neu-
mann algebras. These algebras were introduced by von Neumann in order to understand
quantum system and later classified by Murray and von Neumann into three types: Type
I, Type 11, and Type III. This classification is based on key algebraic properties such

as the existence of a trace, density matrices, and pure states.

Type Trace Density matrix Pure state
Type 1 Yes Yes Yes
Type 11 Yes Yes No
Type 111 No No No

More broadly, this can be viewed as a classification of quantum systems themselves. It is
well known that any finite-dimensional quantum system is described by a Type 1
von Neumann algebra. As noted in the previous section, Araki proved that the local
algebra of a subregion in quantum field theory is of Type III;. The same algebraic struc-
ture was also obtained by Leutheusser and Liu in [13, 14] while studying N' = 4 super
Yang-Mills theory. They showed that in the strict N — oo limit, the algebra emerges as
Type III; . Now, what about Type II von Neumann algebras? Are they realized in any
physical system?
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1.2 Gravitational Algebra and Black hole thermodynamics

Recent developments have shown that the local algebra of observables in perturbative
quantum gravity, in the limit where the gravitational coupling Gy — 0, is of Type II. As
we discussed earlier, in this limit, the effective description is given by quantum field theory
in a curved background, with free gravitons included on the same footing as other matter
fields. Adding dynamical gravity in the sense of graviton corrections requires implementing
gravitational constraints in the theory. In gravity, diffeomorphisms that vanish at infinity
are redundancies of the description. All observables in a theory of gravity must be invariant
under such transformations, i.e., they must commute with the constraints associated with

each diffeomorphism.

It is well known that in the full theory of quantum gravity, there are no local operators.
This is because any local region can be mapped to any other by an appropriate diffeo-
morphism, preventing the definition of strictly local operators. However, in perturbative
quantum gravity, these diffeomorphism constraints are implemented order by order. As a
result, one can construct a gravitational algebra by dressing observables with respect to
some heavy degrees of freedom that remain unaffected by linearized diffeomorphisms or
by dressing them to the asymptotic boundary when available. Further, it turns out that
implementing the gravitational constraints changes the local algebra of observables from
type III to type II. In particular, the gravitational algebra has the structure of what is
known as a Type II crossed product. This was first obtained by Witten [1] in the context
of AdS black holes, where he showed that the algebra of observables in the exterior of a
black hole in the limit G — 0 is a type II crossed product. The fact that gravitational
algebras are type II crossed product algebras has deep implications for the nature of local
quantum degrees of freedom. Since type Il algebras possess a trace, one can define a
density matrix and an associated entropy. In black hole physics, it is already known that

there exists Bekenstein’s generalized entropy [15, 16], which is defined by

A
Sgen - @ + SQFT, (121)

where A is the black hole horizon area at an arbitrary cut of the event horizon and Sqp is
the entropy of the quantum field theory in the exterior of the black hole. When Bekenstein
originally proposed this, he had in mind the thermodynamic entropy of matter outside the
horizon. It was Sorkin [17] who proposed that if the matter was quantum, then Sgpr
should be the entanglement entropy of the quantum fields in the exterior with the interior.

Further, it was shown by Susskind and Uglum in [18] that if one interprets Sqpr as the



Chapter 1. Introduction 5

entanglement entropy of the quantum field in the black hole exterior, then at one-loop in

graviton, Sgen is UV finite and independent of the UV cutoftf.

Note that Sgen is universal in the sense that for any black hole in general relativity, it
can be defined by the same formula and exhibits the same UV behavior. This naturally
raises several questions: Is there a deeper reason for this cancellation? Does this behavior
suggest that the inclusion of gravity improves the UV properties? What exactly is Sgen?

Is there a concrete interpretation of what this entropy measures, and who observes it?

As it turns out, these questions can be answered using the framework of von Neumann
algebras and modular theory. It was shown by Chandrasekaran, Longo, Penington, and
Witten in [2] and by Chandrasekaran, Penington, and Witten in [3] that Sge,, evaluated
at the bifurcation surface of a black hole, is equal (up to a state-independent constant) to
the algebraic entropy of a type II crossed product algebra associated with the black hole
exterior. This result clarifies why Sgen is UV finite.

Now, if it is indeed true that the generalized entropy is equal to the algebraic entropy,
then one must demonstrate this for all cuts on the horizon of a semi-classical black hole.
As we will show, in general relativity, this can be proven for any static black hole in the

Hartle-Hawking state and can further be extended to Kerr black holes.

In addition, there is a compelling proof of the generalized second law (GSL) by Aron Wall in
[5], which assumes the existence of a suitable renormalization scheme for certain quantities
like entanglement entropy. We will show that the type II crossed product construction
provides such a scheme, and we will provide an algebraic version of the local generalized

second law in which each step is manifestly finite [4].

It is also well known that any UV-complete theory of gravity will contain higher curvature
corrections. One might therefore expect that it should still be possible to show that the
generalized entropy equals the algebraic entropy up to a state-independent constant. We

will demonstrate that this is indeed the case at the bifurcation surface [6].

A natural next question is whether the second law can be established for higher curvature
theories. However, this requires us to first define local algebras in such theories. Since
the causal structure in higher curvature gravity differs from that of general relativity, a
prerequisite for this program is to understand the causal structure in these theories. This

motivates our study of causal structures in higher curvature gravity [19].
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Notably, understanding the causal structure in higher curvature gravity is also interesting
in its own right. For example, it is a crucial first step towards addressing the problem of

well-posedness.

1.3 Plan of thesis

In Chapter 2, we briefly describe the mathematics of operators used in the von Neumann
algebras and algebraic quantum field theory. For completeness, we provide all the relevant

definitions and theorems, along with illustrative examples from quantum mechanics.

In Chapter 3, we introduce von Neumann algebras and their classification, emphasiz-
ing their relevance in physics. For clarity, we provide the necessary definitions, theorems,
and either their proofs or references to them. We also present useful examples from quan-
tum mechanics and local quantum field theory. Additionally, we introduce generalized
functions to facilitate a better understanding of the algebraic framework of quantum field

theory.

In Chapter 4, we demonstrate how the techniques of von Neumann algebras and mod-
ular theory can be used to show that the generalized entropy is equal to the algebra
entropy on arbitrary cuts of the horizon for any black hole. We also prove a local version
of the Generalized Second Law (GSL) using the crossed product construction, in which

each step is manifestly finite [4].

In Chapter 5, we extend the results of Chapter 4 to arbitrary diffeomorphism-invariant
theories. In particular, we prove that the generalized entropy equals the algebraic entropy
at the bifurcation surface. We also present a weaker version of the GSL in this broader

context [6].

In Chapter 6, we study the causal structure of generalized quadratic gravity and Ein-
steinian cubic gravity [19]. We also discuss the implications of these structures for holog-

raphy.

In Chapter 7, we provide a summary and synthesis of the main results from the three

works presented in Chapters 4, 5, and 6.



Chapter 2

Mathematics of Operators for

Quantum Theory

This section provides a concise yet rigorous introduction to the mathematical framework of
Hilbert space operators and operator algebras, serving as a foundation for the exposition of
von Neumann algebras. Our approach is to systematically present the essential definitions,
lemmas, and theorems required for understanding von Neumann algebras. While some
results will be proved in detail, others will be stated with references to sources where

complete proofs can be found.

2.1 Some Mathematical Background

Definition 2.1. (Sequence)
A sequence ¢ in the set M is a map ¢ : N — M. We denote ¢(n) = ¢, for n € N
and the sequence by {¢,}72; or {¢p}.

The simplest example of a sequence is {%} in the set of real numbers.
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Definition 2.2. (Vector Space)
A vector space (V,+,.) over a field K (which we will take to be either R or C) is a
set of vectors that comes with an addition + : V' x V' — V and scalar multiplication

. K x V — V, and satisfies:

1. Under addition: associativity, commutativity, existence of an additive identity,

and existence of additive inverses.

2. Under scalar multiplication: associativity, existence of a multiplicative iden-
tity, distributivity of scalar multiplication with respect to vectors, and dis-

tributivity of scalar multiplication with respect to field addition.

\. J

There are many interesting examples of vector spaces. For instance, R? is a vector space
over the field R; the solution space of any linear differential operator forms a vector space;
and C™(R), the space of n-times continuously differentiable functions on R, is also a vector
space over R.

A vector space is finite-dimensional if every linearly independent subset in the vector space
is a finite set; otherwise, it is an infinite-dimensional vector space. Once we have a vector

space, we can define a normed space.

Definition 2.3. (Seminormed and normed space)

A complex vector space (V,+,) equipped with a map ||.|| : V — RT and satisfy,
1. Non negativity: ||a|| > 0.
2. Homogenity: ||za|| = |z].||all.
3. Triangle inequality: ||a + b|| < ||a|| + ||b]|.
Va,b € V and z € C then V is a semi-normed space and ||.|| is called a semi-norm.
If the semi-norm also satisfies,

la] =0 = a=0 (2.1.1)

then ||.|| is a norm and V is the normed vector space.
If the space is normed, then we can use this norm to define the notion of distance

via metric function d(a,b) : V x V = R™ as follows:

d(a,b) = |la — b|| Ya,b € V (2.1.2)
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Consider (R%, +,.) vector space and consider the function f, : R? — R? defined as,
fao(X)=0aX (2.1.3)

where . is a dot product in R , X € R% and a € R? is a constant vector. Now consider a
map |||, : R — R that takes X — |f,(X)|, where |f,(X)| is the absolute value of fq(X).
Then ||||f, is seminorm as |f,(X)| = 0 does not imply X = 0. While its evident that for
X = (x1,..,2q) € R? with || X]||s = \/Zgzl 22, ||.|l2 is a norm on R%. As we have seen, a
norm induces a notion of distance on a vector space, which allows us to rigorously define

and analyze the convergence of sequences within the space.

e '

Definition 2.4. (Convergent sequence)
Let {¢,} be a sequence in normed space (V,||.||) and it is said to converge to
¢ €V, if

Ve>0:ANeN:Vn>N:| ¢, — 9| <e (2.1.4)

\. J

Further, it can be easily shown using the triangle inequality that in a normed space, a
convergent sequence converges to at most one element. In the above definition, convergence
depends on a pre-assumed limit. However, one can define Cauchy convergence, which is

intrinsic to a sequence and does not require, a priori, that the limit lie in the vector space.

Definition 2.5. (Cauchy sequence)

A sequence {¢y} in a normed space(V,||.||) is Cauchy sequence if

Ve>0:aAN eN:Vn,m > N : || — ol <& (2.1.5)

It is straightforward to prove that every convergent sequence is a Cauchy sequence; how-
ever, the converse is not always true. For example, in the normed space (Q,]|-|), where

| - | denotes the absolute value, the sequence {z,} defined by z; = 3 and

44 3z,

B T

is a Cauchy sequence. Nevertheless, it converges to v/2 ¢ Q, showing that not all Cauchy
sequences converge in Q. Therefore, in the sense of Cauchy sequence (Q,| - |) is not a

complete space.
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Definition 2.6. (Banach space )
A normed space is said to be complete if every Cauchy sequence in it is convergent.

A complete normed vector space is called a Banach space.

The simplest example of Banach space is (R%, ||.||2) or more generally, (R?|.||,), where
1

1Xl, = (3%, 2P)7. Another Example is £7(N),
P(N) = {a = {a;} : ||all, < oo}

where,
oo
1
lall, = (D _af)r,1<p< oo
i=1

We can add more structure to the vector space and define the notion of the Hilbert space.

Definition 2.7. (Hilbert Space)

A complex vector space H equipped with a sesquilinear inner product
(| HxH—-C

is called a pre-Hilbert space if it satisfies the following properties:

1. Hermitian property: (¢ | ¢) = (¢ | ).

2. Linearity in the second argument: (¢ | ai)1+by2) = al{p | Y1) +b(p | 1¥2).
3. Positive-definiteness: (¢ | ) > 0, with equality if and only if ¢ = 0.

for all p, ¥, 11,109 € H and a,b € C.

If ‘H is also complete with respect to the norm defined by

1%l =V [ ¥)

then it is called a Hilbert space.

Later, we will use the Dirac notation |¢)) to denote vectors in H.

It must be evident from the above definition that every Hilbert space is a Banach space,
but not every Banach space is a Hilbert space. This is because not every norm induces
an inner product. The example is space ¢P(N), these are Banach spaces but not Hilbert

spaces until p = 2. The necessary and sufficient condition for a Banach space B to be a
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Hilbert space is that its norm must satisfy the parallelogram identity.

161+ d2l|* + 61 — @21 = 2[|¢1]1* + 2| 62|

for all ¢1, o € B. A Hilbert space is a separable Hilbert space if there exists a countable
basis (a countable set of vectors such that any vector in the space can be written as a linear
combination from the set; this set of vectors is called the basis, and the cardinality of the set
is the dimension of the Hilbert space). Any finite-dimensional Hilbert space is isomorphic
to CV for some N € N, and any infinite-dimensional separable Hilbert space is isomorphic
to /2(N).

In a quantum system, Hilbert space plays a crucial role, as it is used to define the state
of the system. In particular, pure states correspond to rays in the Hilbert space and
thus naturally belong to the projective Hilbert space. It is commonly thought that pure
states correspond to vectors in the Hilbert space, but this is not entirely correct. For
example, consider a unit vector ¢; € H. The vector e/®¢;, where « is a real number, is
a different vector in the Hilbert space H, yet in quantum mechanics, they represent the
same physical state. Therefore, unit vectors in Hilbert space do not correspond directly to
physical states; rather, pure states are described by equivalence classes of vectors differing

by a global phase.

Definition 2.8. (Direct sum of Hilbert space )
Let H; for i = {1,.., N} be the Hilbert space, then the direct sum Hilbert space is
denoted by @2 H; and defined as,

SN Hi = {(P1, .-y dN) : H; € My}

where the inner product over the direct sum Hilbert space is defined as,

N
(1, dMN W1, -, ON o 20 = D (Dili)n,

1=1

if N — oo, then we must also require that for each (¢1,...,¢n) € EBZ-]L’HZ',

(0.9]
> lill3, < oo
=0

Further, if all the Hilbert space H; = H, then we write @fil?{i = HON,
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In the direct sum of Hilbert spaces, the vectors of two different Hilbert spaces are orthogo-
nal. Therefore, the dimension of the direct sum Hilbert space is the sum of the dimensions

of each Hilbert space in the direct sum.

7

Definition 2.9. (Direct product of Hilbert space )
Let H,; for i = {1,.., N} be the Hilbert space, then the direct product Hilbert space

is denoted by ®Z~]\L1”Hi and defined as a completion,
R Hi = {(¢1, -, ON) : B € Hi}

With respect to the inner product over the direct product of Hilbert spaces,

N

(15 SN (W1, s U)oy 3 = [ [ (Gil)

i=1

Further, if all the Hilbert space H; = H, then we write @Y H; = H®V.

J

\.

The direct product of Hilbert spaces naturally arises in the quantum mechanics of mul-
tiparticle systems. An important application of direct sums and direct product Hilbert

spaces is that they allow us to define the Fock space.

Definition 2.10. (Fock space )
Let H be the Hilbert space, then we can define the Fock space associated with H

as a Hilbert space,

F(H) = %2, HO"

where @°H = C.

The Fock space is used as the state space in quantum field theory, which describes systems
with an indefinite number of particles. Having established the essential structure for
understanding the state space of a quantum system, we now move toward the study of
operators in quantum systems. Let us introduce a few more concepts and definitions that

will be needed for the discussion of von Neumann algebras.
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Definition 2.11. (Banach Algebra)

A Banach algebra B is a Banach space equipped with a bilinear map
p:BxB—=B, (fg)— fg,

such that the multiplication is associative and satisfies the submultiplicative norm

condition:

Ifgll < Wf1Hgll, Vf,g € B.

Banach algebras play a crucial role in quantum mechanics by providing a robust mathe-
matical framework for analyzing operators on quantum systems. They facilitate the study
of spectral properties and allow physical observables to be represented as elements of the

algebra, enabling us to study the quantum dynamics.

Definition 2.12. (Banach * algebra )
A Banach *-algebra A is a Banach algebra over complex numbers equipped with a
map

x: A=A
satisfying the following properties:
1. (A)*=AVAec A
2. (AB)* =B*A*VA,Be A
3. (A+B)*=A"+B*VA,Be A

4. (zA)* = zA*, for all z € C, for every A € A.

ot

AT = (1Al vA € A

If there exists a unit element I € A such that Al = IA = A for all A € A, then Ais a
unital Banach *-algebra. We can define an important structure called C* algebra using

this Banach* algebra.

a )

Definition 2.13. (C * algebra )
A C*- algebra is a special type of Banach*-algebra where the norm satisfies the

following property.
1A% Al = A%l Al = (142
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In quantum mechanics, observables are represented as self-adjoint operators on a Hilbert
space. C* algebras provide a natural framework for studying these operators, especially
in the algebraic formulation of quantum mechanics. In algebraic quantum field theory
(AQFT), local algebras of observables are modeled using C*-algebras and von Neumann

algebras.

e 1

Definition 2.14. (Linear Operator)
A linear operator is a linear map A : Dy — H, where H is a Hilbert space and

Dy C H is the domain of the operator, satisfying:

Alalp) + Blp)) = aAly) + BA[p)

for all |4}, |¢) € Dy and «, 8 € C.

\. J

As we know, observables in quantum mechanics are self-adjoint linear operators. While
we have defined linear operators, we still need to define self-adjoint operators. To do so,
we must first define the adjoint of a linear operator. However, before that, we need to
introduce the concept of densely defined operators, as only densely defined operators have

adjoints.

Definition 2.15. (Densely Defined Operator)

A linear operator is said to be densely defined if its domain D, is dense in the
Hilbert space H.

More precisely, D4 is dense in H if for every |¢) € H and every € > 0, there exists
|p) € D4 such that

lle) =91l <e.

In simple terms, a dense subspace of a Hilbert space is a subspace such that any vector in
the Hilbert space can be approximated arbitrarily well by vectors from it. More precisely,
for any vector |1)) € H, there exists a sequence {|py)} C D4 that converges to |¢). This
convergence is guaranteed by the completeness of the Hilbert space. This property is
particularly useful in physics: to prove a statement about an operator, it is often sufficient

to establish it on a dense subspace of the Hilbert space.
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Definition 2.16. (Adjoint of an Operator )
Let A be densely defined linear operator, A : D4 — H, the adjoint of the operator
is a map AT : D 4+ — H, such that,

Dar={ly) e H:V |p) € Da,3 |x) € H: (Y[Alp) = (xlp)}

and

Aly) = |x)

. J

It can easily be shown by the properties of the inner product that the adjoint is well
defined, i.e., there exists a unique |y) in the above definition. Further, we would like to
emphasize that to define an operator, we need to give its domain and its action on each
element in the domain. Therefore, if we have two operators A and B, they are equal iff
D4 =Dp and A|y) = BJy) for all [¢) € H. Now, we can define a self-adjoint operator,

Definition 2.17. (Self adjoint Operator )
A densely defined operator A : D4 — H, is self adjoint if it equals to its adjoint
AT : D, — H, that is

1. The domain must coincide: Dy = D 4.

2. They should have same action V|p) € Da: Alp) = Af|p)

In quantum theory, self-adjoint operators are of prime importance. The observables in
quantum theory, such as the momentum operator in the quantum harmonic oscillator,
are self-adjoint operators. As we can see from the definition, self-adjointness requires the
domains of the operator and its adjoint to coincide, which is a highly non-trivial condition.
Therefore, nothing guarantees a priori that an operator is self-adjoint. Sometimes, a

symmetric operator is mistaken for a self-adjoint operator.

First, let us define a symmetric operator and then examine whether the momentum oper-

ator in quantum mechanics is always self-adjoint.

Definition 2.18. (Symmetric opertor)
A densely defined operator A : D4 — H, is symmetric if

Y [1), [p) € Da; (P]|Alp) = (A|p)
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As should be clear from the definition, every self-adjoint operator is symmetric, but not

every symmetric operator is self-adjoint.

Now let us consider the momentum operator, which is defined by
P:Dp — L%([0,1]),

where £2([0,1]) is the space of square-integrable functions on the interval [0, 1].

We choose the domain Dp := C1([0,1]) C £2(]0,1]) such that

$(0) = ¥(1) =0, ¥(z) € C'([0,1]).

Although it is easy to show that P is symmetric using integration by parts and the bound-
ary conditions, it is generally difficult to determine whether Dp« = Dp. It can be proven (a
proof can be found in [20]) that the domain of the adjoint, Dp-~, is larger than the domain
Dp. This is a very general property of symmetric operators, as we will see. Additionally,
one would like to determine whether a self-adjoint extension exists. But first, we need to

define the extension of an operator.

a )

Definition 2.19. (Extension of an operator)
Let A: D4 — H and B : Dg — H be are linear operators; we say B is an extension
of A and denote it by A C B , if

1. Domain of A is contained in domain of B: D4 C Dp.
2. They should have the same action on the intersection of their domain:

V[Y)) € Da, Alyp) = Blip).

. J

Proposition 2.20. If A and B are densely defined and A C B, then B' C AT,

Proof. Let |1)) € Dgy,then there exists |p) € H, such that

V|x) € Dp : (¥[Blx) = (¢lx)

Since A C B, we have D4 C Dp and therefore

V' [n) € Da C Dp, (¥|B[n) = (¢[Aln) = (¢n)
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Implies, [¢)) € D4+ and hence, Dyt C D 4t. Further, BT|y) = AT|y)) = |¢) .

— BiC AT
O
Proposition 2.21. If A is symmetric operator, then A C AT.
Proof. Let 1)) € Dy and |n) = A|ty) some element in H, then by symmetric property,
Vlp) € Da, (Y|Alp) = (nlp)
implies [¢) € D 44, therefore D4 C D 4i. Further, Vi € Da, Af|)) = AJy).
— ACAT
O

The above proposition is very important, as it tells us that a self-adjoint operator does
not have any self-adjoint extension. Let A and B are self adjoint operators and A C B.
Therefore, B= Bt C At = A C B, implies B = A.

In quantum mechanics, we have a Hamiltonian, which is constructed by adding and multi-
plying different operators. Therefore, it is natural to ask whether we can add and multiply
any two operators. In general, the answer is no. If we have two operators A and B with

domains D4 and Dp, respectively, then

1. The domain of A+ B is Dyyp =D4 NDp.

2. The domain of A.Bis Dap = {|¢) € Dp : B|Y)) € Da}.
3. The domain of AA, where A € C is Dyq = Dy

4. The domain of inverse operator A~!is Dy-1 = ADy

5. If A=! is bounded then A~'A c AA~1

I want to emphasize that, up to this point, all the discussion has been about general linear
operators. We would also like to introduce the concept of the graph of an operator, which

will be useful later in understanding the closed operator.
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Definition 2.22. (Graph of an Operator)
The graph G(A) of a linear operator A : D4 C H — H is subspace of H®H defined
as,

G(A) = {([¢), Alp)) e HOH | |[¢) € Da}

\. J

The above definition is simply a generalization of the definition of the graph of a function.
For any function f : (a,b) C R — R, the graph is a subset of R @ R (or the Cartesian
product R x R), where each element is represented by an ordered pair (z, f(x)) with
x € (a,b). It must be clear that the graph of an operator nicely captures all the information
about the action of an operator in its domain. It is particularly helpful in studying the

extension of an operator in an infinite-dimensional Hilbert space.

2.1.1 Bounded Operators on Hilbert space

In the previous subsection, we were very careful with the domain of the operators and
consistently considered it to be a subspace of the Hilbert space. The reason is simple: not
all operators have a well-defined action on every vector in the Hilbert space. Operators

that do are called bounded operators, as we will see.

'a 2

Definition 2.23. (Bounded Operator)
A linear operator A : H — H is bounded iff 3 C' > 0 such that for all |¢)) € H, we

have,

[A[O) ] < Cllb)

\.

From the above definition for a bounded operator, ||[A|y)|| < C|#)|| or equivalently

Al
)]

ial. Further, using the linearity of the norm, the inequality is the same as ||A[y)|| < C for

< C, here |¢) non-zero vector in H as for a zero vector, the inequality is triv-

all unit vectors [¢) € H. Furthermore, it tells us that C' = supy =1 [[A[) |, where sup

is the superimum or least upper bound. This motivates the definition of operator norm.

Definition 2.24. (Operator norm)
The norm of a linear operator A : H — H is denoted by ||A|| and defined as

|A = sup [Al)]
Iell=1

for |¢) € H.
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therefore, for a bounded operator ||A|| < oco. One thing that you might be thinking about

is why I have taken the domain of a bounded operator as full H. The reason is,

Theorem 2.1.1. Hahn Banach Theorem
Let A : Dy C H — H is linear bounded operator densely define on H with an operator

norm ||A| = C, then there exists a continuous extension A : % — H, such that A|p, = A
and ||A]| = C.

We will not prove the theorem here, but it can be found in [21]. The theorem states that
every bounded operator defined on a dense subspace of H can be uniquely extended to
an operator defined on the entire H while preserving the same operator norm. Therefore,
when working with a bounded operator, we can take its domain to be H.

The bounded operators have many nice properties. Let B(?) be the collection of all
bounded operators on the Hilbert space . Then

1. Adjoint of a bounded operator is bounded, i.e., |[A| < 00 = [|AT]| < .
2. Using (1) and the fact that bounded operators are well-defined on full Hilbert space,

e (A+B)=AT +Bf
e MA)F = )AT

e (AB)f = BTAT

e AlT=A

for A, B € B(H).
3. Further using properties of the norm,

o [laA] = [efl|A]l
o [A+B[ <[Al+]B]
 [AB]| < [A[[[B]

for A,B e B(H)and a € C
4. ATA for A € B(H) is a positive operator,i.e V[¢)) € H, ()| ATA|) >0
5. B(H) is a Banach * algebra.

6. Every bounded symmetric operator is self-adjoint.
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Above, we have listed some important and useful properties of bounded operators. The
first property is straightforward: since A is bounded, it is defined on the entire Hilbert
space (if initially defined on a subspace, the Hahn-Banach theorem guarantees the
existence of a unique extension to the full Hilbert space H). Therefore, Dy is dense and
Al exists. Tt follows from the Reisz representation theorem (linear isomorphism of H and
its dual) that Dy = H.

Next, it can be easily shown that ||AT|| = ||A||, which implies that AT is bounded. Prop-
erties (2) and (3) can be proven straightforwardly. The fourth property follows from the
fact that the norm of any state is positive when applied to state |x) = Aly). The proof of
the fifth property can be found in any standard text on functional analysis; for example,
see Rudin [21]. The sixth property follows from (1) and the symmetry of the operator. We
would also like to mention that bounded operators are continuous, i.e, for any sequence
{|trn)} — |¢), the sequence {A|1,)} — Alv). This follows from the fact that

[A[¢n) — Al) || = [[A(In) — [¥)] < Cllltn) — [} (2.1.6)

and therefore {|i,)} — [¢) implies {A|¢y,)} — Al). Now, what will happen if the

operator is not a bounded operator?

2.1.2 Unbounded operator on Hilbert space

All operators that are not bounded are called unbounded operators. This means that for
an unbounded operator, there always exists an element in H that is not mapped back to
‘H by the operator. Hence, an unbounded operator can only be defined on the subspace of

the Hilbert space.

Definition 2.25. (Unbounded Operator)
A linear operator A : D4 — H is unbounded if it is not bounded or Equivalently
VC > 0 there exists a |¢)) € Dy, such that,

IA[O)| = Cll)

. J

The above definition tells us that for an unbounded operator, ||A|y)|| < C||¢)|| for some
vector |1¢), but there exists at least one element [¢) in its domain such that |Aly)| >
C||v)|| for all C > 0.
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We want to emphasize that, in quantum mechanics, we often work with unbounded op-
erators. For example, the momentum operator and the position operator in quantum

mechanics are unbounded, or at least one of them must be unbounded.

Let us prove this statement. We know that

[a,p] = ik
and, more generally, for n € ZT,

[q,p"] = ihnp™ L.

Now, taking the norm on both sides and using the fact that

InmP™ | = [lla, p"]I < 2lallllpllp" ],

we obtain
_ nh, ._
" lalllpll > L Y]

Since n can be any integer, this inequality implies that both q and p cannot be bounded

operators.

Another example of an unbounded operator is the number operator N' = afa in the
quantum harmonic oscillator. Let |n) be the nth occupation state in Fock space, where

the number operator acts as

Hence,

IV In) ]| = n?.

Since for any constant C' > 0, there exists an n € Z* such that n? > C, it follows that A/

is unbounded.
Let us go one step further and determine the domain of A/. The first thing to notice is

that the domain of N is not all of £2(C). For any state |) € £2(C), we can write

[e.e]

) =S enln),

n=0

where the coefficients satisfy

oo
Z lcn|? < 0.
n=0
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However, this condition does not necessarily imply that

o0
Z n?|en|? < co.
n=0
For example, choosing ¢, = %, we see that > |e,|? < oo, but
0o o 2 o0
2 2 _ _— = —
ST SLAD S
n=0 n=0 n=0
Therefore, the domain of A/ is not £2(C) but rather

Dy = {|w> = chlm € *(C): ZnQ\cn\Q < oo} .
n=0 n=0

Therefore, Dy is a subset of £2(C). Furthermore, Dy is dense in £2(C), since |n) € Dy for
any n, and there is no nontrivial vector in £2(C) that is orthogonal to Dy, i.e D = {0,}.
Therefore, Dy = ¢2(C).

Having established that quantum mechanics necessarily involves unbounded operators, let

us now list some important properties of unbounded operators.

Let A be some densely defined unbounded operator and B is some bounded operator, then

e (A+B)f =AT+ BT

e (AB) =BTAf
If A and B both are densely defined unbounded operators, then it can be verified that,

1. (A+B) > AT + BT

2. (AB)f > BfAT

The way to verify the above statements is to use the definition of the adjoint and then
prove that the domain of the operator on the right-hand side is contained in the domain
of the operator on the left-hand side.

Unlike bounded operators, unbounded operators do not form an algebra or even a linear
vector space. This is solely because each operator comes with its own domain. Further-
more, unbounded operators are not continuous. In fact, one can prove that an operator is

continuous if and only if it is bounded. We have already proved that bounded operators
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are continuous (2.1.6). Although we will not prove the reverse statement, it can be easily
shown using linearity and the fact that continuity requires every open set in an image to
have an inverse image as an open set in the preimage; for a full proof, see Rudin [21].
However, there is a generalization of continuity to a class of unbounded operators called

closed operators.

' 1

Definition 2.26. (Closed and Preclosed Operator)

A linear unbounded operator A : Dy C H — H is closed if its graph G(A) is closed
under the norm (graph norm) induced by H @ H, i.e., if G(A) is a closed subspace
of H®H.

Furthermore, an operator is preclosed if it admits an extension to a closed operator.

If A is the preclosed operator, then we will denote its closure by A.

\

Let us explain what the above definition means. It essentially states that operator A is
closed, if {|p,)} is a sequence in Dy such that |p,) — |¢) and A|py,) — [1), then it follows
that 1) = A|p). It is exactly the definition of closed subspace applied to the graph.

We emphasize that this does not imply that for every convergent sequence {|py)}, the
sequence {A |p,,)} necessarily converges. Instead, it tells us that if {A|p,)} does converge,
then it does so consistently, meaning that it satisfies 1)) = A|yp). Let us list some useful

properties related to closed and preclosed operators:

1. If A is densely defined operator then A is closed.

2. A is densely defined preclosed operator iff AT is densely defined. In that case the
closure A = Aff,

3. Every self-adjoint operator is closed.

4. If A is symmetric operator then, A C A C Af.

The proof of the above statements can be found in [chapter 13] of [21].

2.1.3 Spectral properties of an Operator

In this subsection, we delve into the concept of the spectrum of operators, a fundamental
notion in quantum mechanics, where measurable quantities correspond to spectral values
of operators. To build a rigorous foundation, we first introduce the inverse of an operator,

which serves as a key tool in formally defining the spectrum.
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Definition 2.27. (Invertible operator)
For every linear operator A : Dy — H, we can define kernel ker(A) and range

ran(A) as,
ker(A) = {[¢) € Da: Alp) =0}, ran(A) = {A[) :[¢) € Da}
A is said to be invertible iff,
ker(A) = {0}, ran(A)=%H
Further we can define inverse operator A~' : AD4 — D4 such that,

AA™' =1ap, AT'A=1p,

The above notion of invertibility is precisely a generalization of the invertibility of functions
to operators. The reason we focus on the inverse of an operator is that, in the case of
any matrix M (which acts on finite dimensional vector space), eigenvalues are determined
by studying the kernel of M — AI. We will now generalize it to operators on infinite
dimensional Hilbert space.

Consider a densely defined linear operator A : Dy C H — H, we can define a family of
operators

Ay=A-1)

for every A € C. If A, is invertible then we can define a resolvent operator Ry (A) as,
Ri(A) = (A)) "= (A-1N)"!

Further, we can define resolvent set p(A) as set of all A € C such that,

1. R)(A) exists.
2. R)(A) is bounded.
3. R)(A) is densely defined in H.
or equivalently,
p(A) = {A € C: Ry(A) € BH))

Now, we can define the spectrum of an operator,
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Definition 2.28. (Spectrum of an Operator)
The spectrum o(A) of an operator A is defined as the complement of resolvent set
in C,

o(A) = C\ p(A)

\. J

We can further classify the spectrum into three disjoint set:

1. Point spectrum o,(A): The point spectrum o,(A) C o(A) such that VA € 0,(A),
R (A) does not exist. That is, there exists a non-trivial element |¢)) € D4 such that
(A — 1\)|¢p) = 0. This implies that A is an eigenvalue and |¢) is an eigenvector.

2. Continous Spectrum o.(A): The continuous spectrum o.(A) C o(A) such that
VA € 0.(A), Ry(A) exists and defined densely on H, but is unbounded.

3. Residual spectrum o,(A): It is set in 0(A) such that R)(A) exist as an bounded
or unbounded operator but R)(A) is not densely defined.

As it must be clear that

op(A)Uoc(A)Uo(A) =0(A)

and

oi(A)Noj(A) = di0i(A),

where i,j € {p,c,r}. It is possible that some of these subsets of the spectrum are empty.
For example, consider any linear operator T : H — H, where H is a finite-dimensional
Hilbert space. If T is injective, then it is also bijective, implying that such operators have

only a point spectrum, i.e.,

Therefore, the usual intuition that the spectrum of an operator consists solely of its eigen-
values holds only in finite-dimensional spaces. In infinite-dimensional spaces, the spectrum
may include not only eigenvalues (point spectrum) but also the continuous and residual

spectrum.

Now, let us consider a particle in a box of length unity. In this case, the position

operator
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a: L*([0,1]) — L*([0,1])

acts as

av(q) = q(q), for ¥(q) € L*([0,1]).

Notice that in this case position operator is bounded, || (q)|| = |lgv¥ ()|l = |gl||[¥] < 1,
where 1(q) is unit vector. To determine the point spectrum, we look for solutions to the

eigenvalue equation:

ay(q) = qb(q) = M(q)-

Clearly, the equation g (q) = M)(q) cannot be satisfied for all ¢ € [0, 1] unless ¥(q) is
identically zero. This implies that the position operator has no point spectrum. It also
confirms that the position operator exists. Furthermore, it is evident that the range of the
operator is the entire space L?([0,1]). However, Ry (q) is not bounded everywhere, since
for any vector, R)(q) diverges at ¢ = A if A € [0, 1]. Therefore, the position operator has

a continuous spectrum given by

o(q) = [0,1]
Now, we would like to list here a few spectral properties of operators.
1. The spectrum o(A) of any bounded operator A, is closed, bounded, non empty set
of C. Further, it is bounded by the [|A]|.
2. For the bounded operators, the spectrum is real iff it is self-adjoint.
3. The point spectrum of a self-adjoint operator is the eigenvalues.
4. The spectrum of any self-adjoint operator is a closed subset of R.

5. For any self adjoint operator (bounded or unbounded) A : Dy — H, A € R belongs
to the spectrum of A iff, 3 a sequence {|i,,)} in D4, such that,

o 1A = AD[B)]

=0
n—00 o) |
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We will not prove these properties here, but the proof can be found in [20]. The first
property follows directly from the definition of a bounded operator. Since the norm of a
bounded operator exists and is given by the supremum over all expectation values of the

operator, the spectrum must be bounded by the norm of the bounded operator.

The second and third properties are generalizations of what we already know for Hermitian
finite-dimensional matrices. However, the second property has an interesting implication:

if an operator has a real spectrum but is not self-adjoint, then it must be unbounded.

The fourth property states that even for an unbounded self-adjoint operator, the spectrum
remains real and closed. Definitely it won’t be bounded, because if it is bounded, then the

operator is bounded.

The fifth property is particularly interesting as it introduces the notion of approximate
eigenvectors and eigenvalues. It tells us that every element in the spectrum of a self-
adjoint operator can approximately be considered an eigenvalue. This means there exists
a sequence in the domain such that the sequential limit of the transformed sequence under
the operator behaves as an eigenvalue equation in the limit. This can be seen in the
above example of the position operator. We know that the Dirac delta function §(q — \)
can act as an eigenfunction for the position operator. However, the Dirac delta function
does not belong to the space of square-integrable functions. Instead, we can replace the
Dirac delta function with a sequence of functions in L?([0,1]) that converges to the Dirac
delta function. This allows us to interpret the continuous spectrum as an approximate

eigenvalue spectrum.



Chapter 3

von Neumann Algebras for

Physicist

This chapter aims to make the mathematical ideas of von Neumann algebras and oper-
ator algebras in general accessible to a broad physics audience without sacrificing much
rigor. As outlined in the introduction, operator algebras—particularly von Neumann al-
gebras—serve as powerful tools for exploring quantum systems, including quantum fields
and gravity. Given that von Neumann originally developed these concepts to formalize
quantum mechanics, it is natural that they have found extensive applications in physics. In
recent years, von Neumann algebras have led to significant developments in quantum field
theory and gravity. To ensure that the presentation is self-contained, we provide essential
definitions, propositions, and theorems. Furthermore, this section serves as a reference
for the mathematical concepts related to von Neumann algebras that will be used in later

chapters.

3.1 Operator topologies

The point of this subsection is to introduce the definition of commonly used operator
topologies. As we will see, the choice of topology plays a crucial role in defining different
classes of operator algebras, with closure under various topologies leading to distinct al-
gebraic structures. We will briefly discuss these topologies here, but the interested reader
can look at [22, 23].

Let H be a Hilbert space, and let B(?) denote the space of bounded operators on H. One

28
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may induce many interesting B(H) topologies. The most commonly used topologies are
norm, ultrastrong, ultraweak, strong, and weak. The topologies of our interest are the

norm, strong, and weak topologies.

Let {T.} € B(H) be the sequence of a bounded operator or more precesily net ! of

operators in B(#H). Now we can define the operator topologies as,

e Operator Norm(ON): We say {T,} — T in norm topology iff,
ITo —T| — 0. (3.1.1)

where ||| is an operator norm defined in (2.24). In norm topology, an operator is

small if its supremum norm is small.

e Strong Operator(So): We say {T,} — T in the strong topology if, for every
|y € H, we have (T — Ty) |¢)) — 0. In So, an operator is said to be small if its

action on any state is small.

e Weak Operator(Wo): We say {T,} — T in the weak topology if, for every
|) € H, we have (] (T —Ty)|¥) — 0. In Wo, an operator is said to be small if its

expectation value in any state is small.

e Ultrastrong Operator(USo): We say {T,} — T in the ultrastrong topology if,
for every positive trace-class operator p on H, we have (T — Ty)p(T — To)" — 0 in
the trace norm.?> In USo, an operator is said to be small if the expectation value

positive operator (T — T,)T(T — T,) in any density matrix is small.

e Ultraweak Operator(UWo): We say {T,} — T in the ultraweak topology if, for
every positive trace-class operator p € H, we have tr(p(T — Ty)) — 0. In UWo, an

operator is said to be small if its expectation value in any density matrix is small.

Notice that the convergence is measured with respect to a density matrix whenever we
use ”"Ultra” topologies. In the case of non-ultra topologies, the convergence is measured

in pure states. These operator topologies have interesting properties,

1A net is a generalization of a sequence; roughly speaking, a net can be thought of as a sequence where
indexing is done by a directed set (a set which is preordered such that for any two elements there is a
greater element under the preorder). Moreover, the reason to introduce net is that in general topological
spaces, the convergence of sequences is not enough to completely determine the topology.

2Note that this is different from the condition T4 pT}, — TpT*. That condition, since it is not a function
of the difference T — Ty, is not compatible with the vector space structure of B(H).
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1. If {T,} — T in the norm topology then T, — T in strong topology. If T, — T in
strong topology, then T,, — T in weak topology.

2. The convergence of net {T,} — T under different topologies follows the ordering,

norm — ultrastrong — strong — wealk,

norm — ultrastrong — ultraweak — weak,

The first property follows directly from the fact that the operator norm is given by the
supremum over ||(T,—T)|¢)||. This immediately implies that | T, —T| > ||[(To—T)[¥)| .
Moreover, applying the Cauchy—Schwarz inequality, we obtain |(¢)|(Tq —T)[¢)| < |[(To —
T)|¢)||. A similar argument can be used to verify the second property. The ordering in
operator topologies, as described above, implies that if {T,} — T in the norm topology,
then the sequence also converges in all weaker topologies. However, the converse does
not hold; convergence in a weaker topology does not necessarily imply convergence in the
norm topology.

Notational convention: Just for notational convenience we will not write the operator

in bold from here.

3.2 von Neumann algebra

Let A C B(H) be a unital %-algebra (2.12). As defined earlier, if A is closed in the norm
topology, it is called a C*-algebra. However, if A is closed in the weak topology, it is called

a von Neumann algebra.

Definition 3.1. (von Neumann algebra):
The algebra of operators A C B(#) is a von Neumann algebra, if A is a unital
x-algebra and is closed under the Wo topology.

From the above ordering of convergence of a net in different operator topologies, we observe
that the norm topology is stronger than the weak operator topology (WOT), which means
it has more open sets. Since a closed set is the complement of an open set, the closure
of a set in the norm topology is smaller (or finer) than its closure in the weak operator
topology. Therefore, the closure in a weaker topology (like WOT) is larger than the closure
in a stronger topology (like norm topology). Therfore
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C* algebra D von Neumann algebra

The above definition of von Neumann algebra is very abstract, but it turns out that one
can give a simpler, more useful, and equivalent definition of von Neumann algebra using
the notion of commutant of the algebra. In addition, it will give us an easier way to think
about von Neumann algebras in physical systems. So, let us introduce the commutant of

an algebra,

7

Definition 3.2. (Commutant of algebra):
Let A be any subset of bounded operators i.e A C B(H), then commutant of A is
denoted by A’ and defined as,

A = {a cB(H):Vbe A [ab] = o} (3.2.1)

Remark: A is any subset, need not be a von Neumann algebra.

Since A" C B(H), we can also define the commutant of A’, which we will call a double

commutant and denote it as A”.
A = {c eBH):Vde A [c,d] = 0} (3.2.2)
From the above definition, it is easy to see that
Ac A’ (3.2.3)

Let a € A be any bounded operator, then V b € A" we have [a,b] = 0. From the above
definition, A” is a collection of bounded operators that commute with all the elements of
A’, which implies a € A”. Thus, A C A”. Similarly, we can define higher commutants.
We will denote n + 1-th commutant of A as A™+D and define it as,

A1) — {c € B(H):Vd e A [c,d] = 0} (3.2.4)

Now we want to prove that A" = A”. Notice that (3.2.3) holds for any subset of B(H),
which implies that A" c A™.

Now, let a € A”. By definition,
[a, A"] = 0.
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but, since A C A”
[a, Al =0.

This implies that a € A’, and hence, A” c A'.

Since we have both inclusions, it follows that
A = A" (3.2.5)

We can again use the fact that A can be any set in B(H) and the above equation to show
that,

e For any A C B(H), A?"D = A v¥n € N.

e For any A C B(H), A®"+2) = A" ¥n € N.
Now our aim is to show that there is an equivalent definition of von Neumann algebra

in terms of commutants. To set up an equivalent definition, we need to introduce the

concepts of projection.

7

Definition 3.3. ( Projection)
An operator, P € B(H), is said to be a projection iff

e P = P! Adjointness
A

The rank of a projection P on a Hilbert space # is defined as the dimension of its
range:

rank(P) := dim(ran(P))

\

The set of all projections in B(H) is denoted as Ppy). It is clear that if P is projection
then,

1. 1 — P is also a projection.

1-P?=1-P-P+P>=1-P

2. PH is a closed subspace of H.
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Proof. Let |¢),|¢) € H and «, 8 € C. Then,

aPly) + pPl¢) = P(aly) + Blé)) € PH.

So, PH is closed under linear combinations and hence is a subspace.
Now, let us show that PH is closed.

Let {P|y,)} C PH be a sequence such that
Plipn) = [€) € H.

We want to show that |£) € PH, i.e., that there exists some |p) € H such that
&) = Plo).

Since P is bounded and linear, we can write:

P(Plipn)) = P?|ihn) = Plibn) — |£).

Also, by continuity of P, it follows that

P(Plin)) = PIE).

Therefore,
Pl§) = lim P(Pl,)) = lim Pl = o).
Thus, |{) = P|¢), which shows that |£) € Im(P) = PH.

Hence, PH is closed. O

3. ||P|| =1 = P is a positive operator.

Further, Let P, € B(H) be the set projections. We say they are orthogonal projection if
P,Pg = 0 whenever a # . One simple example of orthogonal projection is P and 1 — P.
It can also be shown that for any closed subspace of H there exists a unique projection
P € B(H). It is also easy to show that

1. If P, P € PB(’H)a then P, + P, € PB(’H) <~— PP,=0.

2. If P, P € PB(H)a then PP, € PB(”H) <— PPb=DPPFP.

3. If P, P e PB(H) then P, < Py <— PP =P < PHCPH
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Let us prove the first property. Let P; 4+ P> be a projection, then,
(PL+ Py) = (PL+ P2)*> = PL+ Py + (PP, + P, P)) (3.2.6)
Implies, Py P, + P, P; = 0. But then
PoPPy=—P,P,=—P P,

Implies, P,P, = PP, = 0. Conversely, we know that (P, + P)' = P, + P, and if
PP, = PP, =0 then (P; + P2)2 =P+ Py+ (PP, + P,P) =P, + P».

To prove the second property, notice that if P;P» is a projection, then PyPy = (P1P) =
PyPy. Conversely, if P,P; = Py P, then (P, Py)f = PP, = PyPy and (P, P;)?> = P P,P, P, =
PP = P\ P,.

Now, let us prove the third property.

Assume that P; P, = P;. Since we know that 0 < P; <1, it follows that
PBPP <P
From this, we can deduce that P, < Ps.
Conversely, assume that P; < P,. Then,
0<(1-P)P(1-P)<(1-P)P((1-P)=0

This implies that
(1-Py)Pi(1—P) =0,

which further leads to
P(1-P)=0

To prove that Py P, = P; if and only if PyH C PyH, note that
PHCPH < (1-PR)HC(1-P)H < P(1-P)H =0 <= Pi(1-P)=0.

This completes the proof of the third property.

We can also define projections onto the closure of the union and intersection of projections.
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Let {P;}Y | be any family of projection on B(#H). Then, we define:

N
\/ P; = the projection on the subspacez PH (3.2.7)
i=1 =1
N
/\ P; = the projection on the subspace N;—1 P;H (3.2.8)
i=1

Now, we will use the properties of projections to prove von Neumann’s bicommutant

theorem.

Theorem 3.2.1. (von-Neumann’s bicommutant theorem):
Let A C B(H) be the unital -algebra of operators. Then the So- closure of A or equiva-
lently Wo- closure of A coincides with the bicommutant A” of A.

Proof. Let a € A", we want to show that a € A3, i.e. for each 1)) € H and any £ > 0,
there exists b € A with ||(a — b) [¢)|| < e. This will imply that A” C A.
Let |¢)) € H be the fixed element, we can define the subspace A [1)) = {c [) :c € A}. It

is invariant under the action of any element of A. Its closure A|¢) in the norm of H is
a closed linear subspace. We can associate the orthogonal projection P : H — m onto
the subspace. P is a bounded linear operator, and it can easily be shown that P € A’
Which we will prove as the next lemma.

Since P € A’, bP = Pb for all b € A. Also, from the definition of the bicommutant, we
must have aP = Pa. Since A is unital, [¢)) € A[¢), and so |[¢)) = P |[¢).

Hence a|¢) = aP|¢) = Paly) € Al). So for each £ > 0, there exists b in A with
(@ —b) [¥)|| < e. Therefore A" C A.

Now we want to show that A C A”. We have already proved that A C A”.

Next, we note that the strong operator topology (So) is stronger than the weak operator
topology (Wo). Consequently, closure in Wo is larger than closure in So. Therefore, it

suffices to show that the weak closure of A is contained in .A”.

This follows from the fact that, under the weak operator topology, continuity ensures that

for all a € A, we have

[a, A’] = 0.

This, in turn, implies that A C A”. Therefore, we conclude that

A" = A

3 A is a closure of A
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To complete the proof, we just have to prove that,

Lemma 3.4. The orthogonal projector P € A’.

Proof. Let |1)) € H be the fixed element, Then P |¢)) € AH. Since AH is closed subspace,
there must exist the limiting sequence {A,, [¢)}, with a, € A which limits to P |[¢)). Let
b € A then bay, [¢) € AH, and therefore bP |¢)) € AH. Which implies PbP 1)) = bP |1)).
Since it holds for all |¢), PbP = bP for all b € A. Since the orthogonal projectors are
self-adjoint operator, for any [¢), |¢) € H,

(@lbP) = (6 PoP ) = ((PbP)g|w) = (PVPolw) = (WPolu)  (3.2.9)

(b'Pofv) = (Polbw) = (o|Pbu)

Thus, Pb = bP for b € A. Similarly, it can be shown that the orthogonal projector M on
A’ |) for any [¢) € H belong to A, i.e M € A. O

This completes the proof of the von Neumann bicommutant theorem. So from von Neu-
mann’s bicommutant theorem,( the closure of A in WO)= A”. This implies that we
can replace the Wo closure condition with the equality condition of the algebra with its

bicommutant in the definition of von Neumann algebra.

a )

Definition 3.5. (von-Neumann algebra ):
The algebra of operators cA C B(#H) is a von Neumann algebra. If A is a unital

x-algebra, and it is equal to its bicommutant.

A=A" (3.2.10)

This is an extremely useful definition because, to check whether an operator belongs to a
von Neumann algebra A, it suffices to verify that it commutes with every operator in A’.
It is also useful in constructing von Neumann algebra, for example, if we have a unital *-
algebra, we can get a von Neumann algebra by taking its double commutant. From now

on, we will use the above definition of a von Neumann algebra.

Consider A C B(H), which is not necessarily a von Neumann algebra. We previously
established that for any subset A,
./4, — A/”
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This implies that for any A C B(H), the commutant A’ is always a von Neumann algebra.
As we know, in physics, commutators are intimately connected with microcausality in
quantum field theory. Therefore, it is natural to realize that von Neumann algebras arise
as appropriate mathematical structures to describe the set of local observatories associated
with the causal closure of a local subregion of a physical system [24, 25]. We will discuss
this in detail in a later section.

Let A be a von Neumann algebra and A’ its commutant. It is not necessarily the case

that they are disjoint. This leads to the concept of the center of an algebra.

e 2

Definition 3.6. (Centre:)
For a von Neumann algebra A, the centre Z of the algebra is defined as,

Z=AnA (3.2.11)

These are the collection of all the elements that are common in both A4 and A’.

The center of an algebra plays a crucial role in the classification of von Neumann algebras.
Operators in the center are used to define superselection rules in charged systems and
gauge theories [26]. The centre will play a very important role in the classification of
von Neumann algebras, as we will see. Using the centre of algebra, we can define factor

algebras,

e '

Definition 3.7. (Factor)

The von Neumann algebra is a factor if the center Z is trivial.

Z = C1lyu, where ¢ € C.

Factors are a fundamental concept in the theory of von Neumann algebras. A remarkable
theorem by von Neumann states that any von Neumann algebra that is not a factor can
always be decomposed into a direct sum or direct integral of factors. Thus, a factor von
Neumann algebra is an irreducible von Neumann algebra, meaning that studying factors
is sufficient to understand the structure of von Neumann algebras. There is also a strong
physical motivation for the importance of these factors. In quantum field theory, the local
algebra associated with a given spacetime region is typically a factor. Now, we want to

move to a composite system.



Chapter 3. von Neumann Algebras for Physicist 38

It is natural to ask: if two systems are disjoint, and each has its own algebra of observables,
what is the algebra describing the total system? The answer is that the algebra of the

total system is given by the tensor product of the algebras associated with each system.

Thus, let us now define the tensor product of von Neumann algebras.

Definition 3.8. (Tensor product of two von Neuman algebras):

Let H1,H2 be two Hilbert spaces, and H; ® Ha is the tensor product Hilbert space
of H1 and Hsy. Let B(H1) and B(#Hz) be the algebra of bounded linear operators
in H; and Hg, respectively. Then for any a1 ® ag € B(H; ® Ha2), it is uniquely
determined by (a1 ® ag) |1 ® 12)) = a1 1) @ ag |[¢ps) for all |¢;) € H;. For von
Neumann algebras A; C B(H,;), the von Neumann algebra generated by {a; ® as :
ay € Ay, az € Ay} is denoted by A; ® Ay and called the tensor product of Aj, As.

. J

Using the tensor product of von Neumann algebras, we can show

Theorem 3.2.2. (Commutation Theorem for Tensor Products):
The commutation theorem for tensor products states that for von Neumann algebras A
and As, the commutant of their tensor product is the tensor product of their commutants.

Specifically:

(A1 ® Ap)' = Ay @ A
Proof. To prove this, we need to show two inclusions:

L (A1 ®Ap) DAl @A)

2. (A1 @A) C Al ® A,

1. (A1 ®Ag) DA @A)

Let a € A} and b € A,. We need to show that a ® b commutes with every element of
A1 ® As.
Take any ¢ € Ay and d € As. Then:

(a®b)(c®d) =ac®bd
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Since a € A}, ac = ca. Similarly, since b € A}, bd = db. Thus:
ac®@bd =ca®db=(c®d)(a®b)
This shows that a ® b commutes with ¢ ® d. Therefore,
a®be (A ®A)

This proves A} ® A5 C (A1 ® Az)'.

2. (A1 @A) C A, @ A,

Let e € (A; ® Az)'. We need to show that e € A} @ A). Since e commutes with every
element of A; ® Ajg, it commutes with elements of the form c¢® I 4, for c € A and I4, ®d
for d € Ag, where I 4, and I 4, are the identity operators on .4; and As, respectively. This
implies:

e(c®@Iy,) =(c®Iy,)e forall ce A
e(lg, ®d) = (L4, ®d)e forall d € Ay

These commutation relations imply that e can be decomposed as e = a ® b, where a € A}
and b € A),. This is a consequence of the structure of von Neumann algebras and the fact
that e commutes with the generators of A; ® As.

Therefore, e € A} @ Al,, which proves (A; ® Ag) C A} @ Aj.

Combining the two inclusions, we have:

(A1 @ Az)' = A ® A

This completes the proof of the commutation theorem for tensor products. O

The above theorem is helpful in thinking about the algebra of a composite system and the
algebra of multiple subregion in local quantum field theory. For completeness and the fact
that any von Neumann algebra can be written as the direct sum of the factor algebras, we

would like to introduce the direct sum of von Neuman algebra.
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Definition 3.9. (Direct sum of von Neumann algebra:)

Let A; and Ay are von Neumann algebras, then their direct sum is defined as:
A=A & As.

This means that every element a € A can be written as a pair a = (a1, a2), where

a1 € A1 and ay € As and satisfty,
(a1,a2) + (b1,b2) = (a1 + b1, a2 + ba),

(a1,a2) - (b1,b2) = (a1b1, agbs),

(a1,a2)" = (al, ad).

Further, following the similar steps as in the tensor product of von Neumann algebra, it
can be shown that (A; ® Ag) = A} @ Aj,.
Now, let us see some examples of von Neumann algebras. Let us start with a finite-

dimensional Hilbert space.

Example 3.1. (Algebra of n x n matriz )
Let M,,(C) denote the algebra of n x n complex matrices acting on the Hilbert space H =
C™. This is a unital *-algebra, since it is closed under addition, multiplication, scalar

multiplication, and taking adjoints (i.e., conjugate transpose).
The commutant of M, (C) is
M,(C)Y={M\ | xeC}=C-1,

since the only matrices that commute with all matrices in M, (C) are scalar multiples of

the identity matriz.

Taking the commutant again, we find

so M, (C) is equal to its double commutant and is therefore a von Neumann algebra by the

double commutant theorem.
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Example 3.2. (Finite Dimensional Interacting System)
Consider an n-dimensional quantum system interacting with another n-dimensional quan-

tum system. The algebra of observables for these systems is given by:
Ay =spanf{a® I, |a € Mp,(C)}, Ay = span{l, @b|be M,(C)},
acting on the Hilbert space H = C" ® C".
Clearly, A1 and Ay are *-algebras, and we have:
Al = Ay, A=Ay

Hence, each is the commutant of the other, and both are von Neumann algebras.

Example 3.3. (Weyl Algebra in Quantum Mechanics)
Let Q and P be the position and momentum operators in quantum mechanics acting on

the Hilbert space H = L2(R). These operators satisfy the canonical commutation relation:
[Q, P] = ih.
Define the Weyl operators as
Wi(q,p) = ei(QQ_pP), where (¢q,p) € R
These operators satisfy the Weyl form of the canonical commutation relations:
W a1, p)W (a2,p2) = € P 2POW (g1 + g, p1 + pa).
The Weyl algebra is defined as the von Neumann algebra generated by all Weyl operators:
Awey = {W(a,p) : (¢,p) € R?}".

Since this algebra is closed under adjoint, weak operator limits, and contains the identity

and linear combinations of Weyl operators, it is indeed a von Neumann algebra.
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3.3 The Local Algebras in Quantum Field Theory

In this subsection, we study the operator aspects of quantum field theory. The goal is to
construct a local algebra of observables in QFT or, equivalently, an algebra of subregions
in QFT. If quantum fields are fields of operators, constructing such an algebra is straight-
forward: restrict the field to the subregion, take all bounded operators constructed from
the localized field, and complete the set under the weak topology. However, quantum
fields are not operator-valued fields but rather operator-valued distributions. Thus, the
first step is to construct well-defined operators from the quantum field that act on a dense
subset of the Hilbert space. Let’s take a small digression and understand a little bit about

generalized functions, also known as distributions.

3.4 Introduction to Generalized functions

Generalized functions, or distributions, extend the classical notion of functions to ac-
commodate singularities, non-smooth behavior, and idealized physical quantities such as
point charges and mass distributions. Their necessity was recognized in both physics
and mathematics, with Dirac’s introduction of the delta function in quantum mechanics
and Schwartz’s rigorous formulation of distribution theory. This revolutionary framework,
pioneered by Laurent Schwartz in the 1940s [27, 28], extends classical calculus to han-
dle singularities, jumps, and infinite values with mathematical precision. At its core lies
the Dirac delta function—a mathematical phantom, zero everywhere except at a single
point where it is ”infinitely tall,” yet integrates to unity. This function is essential for
modeling point sources in classical mechanics, defining canonical commutation relations,
and normalizing eigenfunctions of operators with continuous spectra (e.g., position and

momentum operators in quantum mechanics), all of which require this broader framework.

Beyond these foundational aspects, generalized functions play a crucial role in the analysis
of differential equations, particularly in defining Green’s functions (or propagators) in
quantum field theory and facilitating non-smooth solutions to PDEs. They provide a
rigorous framework for handling singularities in physical models and offer deep insights

into the structure of quantum fields.

Generalized functions or distributions are defined as continuous linear functionals on spaces

of test functions. The primary test function spaces include D(R?), the space of compactly
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supported smooth functions, and the Schwartz space S(R?), consisting of rapidly decaying

smooth functions. So, let us start by introducing the space of the test function.

3.4.1 Test Functions

Let f : RY — C be a smooth function (infinitely differentiable function) denoted by C°°(R%)

and multi-index @ = (o, ..., aq) with a; € N. We can define order |a| =3, a; and

For z € R?, we denote

=zt x|* = Z BRI
Jj<d

For each integer k, we define the seminorm?*

1F I = sup (L+[x[*)* D> [D*f(x)]. (3.4.1)

d
xek ol <k

Then,

7

Definition 3.10. (Schwartz Functions) S(R%):
The Schwartz space S(R?) consists of all functions f € C°°(R%) such that

| fllx <00 VkeZ

In other words, a function belongs to S(R™) if and only if f together with all its

derivatives falls off as |x| — oo faster than any power of ||~

Notice that,

1. S(R%) is a vector space, that is

f,9€ SRY),a,8€C = af + g € S(R?)

41t is easy to check that satisfy condition for the seminorm given in 2.3
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2. For f,g € S(R?), the product fg € S(R?).
3. The seminorm in (3.4.1) is a norm if and only if £ = 0.
4. If f(x) € S(R?), then an arbitrary derivative of f(x) also belongs to S(R%).

5. If h(x) is a smooth function such that both h(x) and all its derivatives are polyno-

mially bounded, i.e., Vo € N? there exist n € N and C,, > 0 such that
WY (x)| < C,(1+ x]*)", Vae N,

then for any f(x) € S(R?), the product h(x)f(x) also belongs to S(R%). Such
functions are called multipliers. It can easily be shown that the collection of all

multipliers forms a vector space.

It can also be shown that for a function h(x) to be a multiplier, it is necessary and
sufficient that it be smooth and that both h(x) and its derivatives grow at infinity

no faster than some polynomial.

Further , we say the sequence {f,} € S(R?) convergence to f in S(R?), if

D fu(x) % pef(x) (3.4.2)
where 2% = xfl..xgd.
We call all functions in S(R?) test function. Now, let us look at some examples of
Schwartz functions or test functions.
Example 1:
Consider f(z) = P(z)e”1*l, where P(z) is a polynomial of z € R of order m, it is a

Schwartz function.

Proof. Note that any derivative of f(x) will always take the form g(z)e~*l, where g(z)
is some polynomial. Let us denote the a-th derivative as go(z)e~!*l, where g, (z) is some

polynomial and it must be clear that,
ga(z) < C(1 + |z|?)mT

where C' = |g(0)| + 1. In addition, for any z € R and n € N

< 1
1+ x|+ ... + |z|?

—lz|

(&
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therefore, there must exist a ny € N for each k € N such that

Ck(1 2\2k+m
Z ’Daf ( +|33| )
:L"ER1+| ‘_’_ +|x|nk

sup(1 + |z[?)

zeR o<k

Therefore all f(z) = P(x)e”*l, where P(z) is a polynomial of z, is a Schwarzt function. [

Since e=** < e~17l, any function of the form f(z) = P(z)e™*" where P(z) is polynomial
is a Schwartz function. More generally, any f(z) = P(z)e~*I" for n being integer is a
Schwartz function.

Example 2

Any smooth function with compact support is a Schwartz function.

Proof. Any smooth function with compact support is bounded [21]. Furthermore, any
polynomial is also bounded in a compact region of R%. This implies that (3.4.1) is finite.
In other words, a smooth function with compact support is nonzero only in a compact
region and hence decays faster than any power of |x|~'. Therefore, it belongs to S(R%).
An example of such a function is a bump function.

A bump function is a smooth function (infinitely differentiable) that has compact sup-
port, meaning it is nonzero only in a finite region and smoothly vanishes outside that

region. A common example is given by:

)

e =2 if |x| < a,

0, if |x| > a.
where a > 0 and x € R%.

Graph of the Bump Function for Different Values of a
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Plot of f(x) for a =1,2,3

fa(x) —a:l
—a=2
L a=3
0.5
/\ z
R — : 1 —
—4 -2 2 4

O]

It can be easily checked that f,(z) is smooth but not real analytic. The nonanalytic
behavior of f,(x) follows from the fact that all derivatives of f,(x) are zero at |x| = a.
Hence, the Taylor expansion does not exist at |x| = a. These compactly supported smooth

functions are closed in themselves.

Definition 3.11. (Test function with compact support) D(R9):
The collection of all smooth functions with compact support forms a vector space
denoted by D(R?).

It must be clear from the above definition and Example 2 that D(RY) ¢ S(R?). Further ,
we say the sequence {f,} € D(R?) convergence to f in D(R?), if

D fu(x) X&' pep(x) (3.4.3)

It follows that any sequence convergent in D(R?) is also convergent in S(R?). Furthermore,
for any smooth function f, the product fg with g € D(R?) remains in D. Therefore, mul-
tiplication by a smooth function is an automorphism in D(Rd). fa(x) is a good example
of the function which belongs D(R?).

Some properties of the test functions:

1. The Schwartz functions are bounded functions. It clearly follows from the definition

just take k = 0.
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2. Schwartz functions are absolutely integrable, i.e., S(R?) ¢ L'(R?).

Proof. Let f(x) € S(RY) and consider a ball B(rg) of radius r centered at the origin.

Then,
x)|dx = f(x)|d%z + x)|d%.
/Rd‘f( ) /B(ro)| Gold" /]Rd\B(ro)|f( )

Since f(x) is bounded in B(rg), there exists M > 0 such that
/ |f(x)|d%2 < M.
B(ro)

For |x| > rg, the rapid decay of f(x) ensures that there exists C > 0 such that

Ck

- k .
e >0

[f(x)] <

Choosing k > d/2, we obtain

/ | f(x)|d% < oco.
RA\B(ro)

Thus,
/ F()ld% < oo,
Rd

which proves that f(x) € L'(R?). O

3. The Fourier transform of any f € S(R?) is well defined, that is
Fo) =] [ ePxreoats] < [ 1fe0late < oc
R4 R4

where f(p) is Fourier transform of f(x).

4. For f € S(RY) the Fouier transform f(p) also belongs to S(RY). It follows from the
fact for f € S(RY), |x|*f € S(R?) and all derivatives of f also belongs to S(R?).

5. If f € D(R), then f is an entire analytic function, and there exist a 79 > 0 and
By, > 0 such that |p"f(p)| < Bpe™!™®)_ This is also true in d dimensions.

Proof. Let supp(f) be contained in the region B(rg) of radius ry around the origin.
then

f(p) = /]Rd P f(x)dr = /B( )eipr(:v)dx (3.4.4)
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Now let p be a complex variable, then,

i JE(P) dp = /B(TO) i [7{2 peipwzdp} f(z)dz = / eizxf(m)dx = f(Z)

2mi ), p— 2 27 B(ro)

where ~, is any contour in the complex plane that encloses z. Therefore, it f (z) is
an analytic function on the complex plane. Since it does not have any poles, it is
entire.

" F) =1 [ (g ) da

| [ e
Rd

< / #1m)| 7(2) | de
Rd

< erolm(o) / (@) da
B(ro)

where 7 is the minimum radius of an open ball B(rg) containing the support of f"(x).
Since f™(z) is bounded there must exist B, > 0 such that fB(ro) |f"(x)|dz = By.
Implies,

p"f(p)] < Byeo™®) (3.4.5)

It can easily be checked that the above inequality is true even if we replace f () by
any of its derivatives. This implies when p € R then f € S(R). It is straightforward
x

to extend this to d dimensions. This basically follows from the fact that e**? is an

entire analytic function for any complex vector z. O

3.4.2 Generalized Functions or Tempered Distribution

Generalized functions are continuous linear functionals defined on the space of test func-
tions. When the space of test functions is S(R?), these functionals are called tem-
pered distributions. The space of tempered distributions is the dual space of S(Rd),
ie., T:S(RY) — C, and it is denoted by S'(RY). Let f € S(R?) and T € S'(R%), then we
denote action of T on f as,

T(f)=(T,f) (3.4.6)

and it satisfies the following properties,

1. Linearity: (T, af1 + 8f2) = a(T, f1) + B(T, f2) .
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2. Continuity: There exist £ € N and C' > 0, such that

(T, f1)] < C|fillx

where f1, f2 € S(R?) and «a, 8 € C. These are the necessary and sufficient conditions for
T to belong to S(R)[29]. We can also write it formally as,

7(7) = | T6sG)% (3.4.7)

The above integral representation is formal because it assumes that 7'(x) is defined at each
point. In general, a distribution may not be defined point-wise, but has a well-defined
action on test functions. However, there are regular distributions, which are essentially
functions that are locally integrable and have polynomial growth (tempered), for which the
above integral representation is well defined. This is because the product of a Schwartz
function with any polynomially bounded function is again a Schwartz function and is
integrable. For example, The Lebesgue measure dz is a regular tempered distribution. It

is defined as,

(@r.0)= [ ra)ta (3.4.8)

Furthermore, any continuous measure of type p(x)dz, where p(z) is a polynomially bounded
smooth function, is a regular distribution. Let us see an example where the integral rep-

resentation (3.4.6) is formal. But before that, let us define the support of a distribution.

7~

Definition 3.12. (Support of a distribution):
A closed subset @ of R? is called the support of 7' if, for any f € S(R?%) with support
R =R?\ Q, it holds that

(T, f)=0.

\. J

Delta distribution §,:
The delta distribution is defined by

(0a, f) = f(a), (3.4.9)

where f is any test function in S(R%).

The first thing to notice is that d, is linear, and continuity follows from the fact that

|(0a, £)I = [ £ (@) < [ fllr=o-
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Hence, it is a tempered distribution.

Let g be any smooth function with compact support such that g(a) = 0. Then,

(5a7 g) =0.

This implies that the support of J, is

supp(da) = {a}.

Therefore, if we modify the test function away from a, the delta distribution will not detect

the change. Now, assume that d, has an integral representation:

fla)= | Sa(x)f(x) dlz. (3.4.10)
R
In the theory of Riemann integration, any function supported at a single point has a
vanishing integral. Even the integral of the product of an integrable function with such a
function is zero. This implies that if §, were Riemann integrable, then the right-hand side
of the expression

da(x) f(x) d%z
Rd

would be zero for all f, which contradicts the defining property of the delta distribution.
Hence, d, is not Riemann integrable. To see it more explicitly, take d = 1 and a = 0.

Consider a sequence of bump functions f°_, (z) defined in (3.4.1). Clearly,

) b e’ !, ifz=0,
lim f)_i(z) =
nee 0, otherwise.

By the assumed integral representation, we obtain

el = lim [ do(x)f° . (2)da. (3.4.11)

n—oo R

since f°_, (z) is only non zero in [—1, 1]

Y

el = ILm ! do(2) f2_1(x) do. < lim sup(dp(x))dx
n—oo | 1
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if do(z) is bounded as required for Riemann integrable functions. Then there exists C' > 0,

e~ < lim EZ0

n—oo n

This is a clear contradiction. It tells us that there is no Riemann-integrable function
dq(x) that satisfies (3.4.10). Moreover, it can also be shown that it is not Lebesgue
integrable. Therefore, the integral representation is formal and does not exist in the

actual mathematical sense.

3.4.3 Derivative of Tempered Distribution:

As we have already mentioned, the purpose of defining generalized functions is to extend
the concept of functions beyond point-wise definitions. Consequently, we must also gen-
eralize the definitions of derivatives, products, and the Fourier transform appropriately.

Let T'(x) be a polynomially bounded function and suppose that it has a derivative; then

15 = [ T69 fod's = - | TR e = ~(1.1)

where the derivative can be with respect to any component of x. Further, the extra term
that we get after biparts vanishes because the Schwartz function vanishes at |x| — oo
faster than any polynomial. Now, we will state this as the definition of the derivative of
a tempered distribution. This is a natural extension of the definition of derivatives from

functions to generalized functions.

Definition 3.13. (Derivative of a distribution):
Let T be a tempered distribution. The n-th derivative T of the tempered distri-
bution T is defined by the equation,

@®, f) = (—1)™@, ) (3.4.12)

for all f € S(R?) and f (") is the n-th derivative of f.

The above definition allows us to define the n-derivative of the delta distributions.

(6, ) = (=1)" f™(a) (3.4.13)

where f is any Schwartz function and f(™ is its derivatives. Using the fact that locally

integrable functions can be thought of as distributions, we can define the delta distribution
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as the derivative of some discontinuous locally integrable function

1, ifx>a,
O(r —a) = (3.4.14)

0, otherwise.

Now it follows that, for f € S(R),

(a@(;fv—a)’ h= ‘/R@(l‘ —a)f'(x) = f(a) = (8, f) (3.4.15)

implies that 86%9;—(1) = {, in the sense of distributions. Another example of such distri-

bution that is derivative of some locally integrable function is Cauchy’s principal value

distribution. Consider the derivatives of log |z|.

where f € S(R),

(8lgi|x|’f) = p_v/R f;x)da: = (%,f) (3.4.17)

where p.v denotes the principal value of the integrals. In addition, we want to make the
notation that whenever we write %, it should be thought of as a distribution and defined
through the principal value integral over some test function.

The above equation can easily be generalized; it can easily be shown that,

(-n)"torlogle| , 1
n—11 9oz =5 f)

xn’

(

We can further consider a locally integrable function defined as,

log(x £i04) = lim log(x + ie) (3.4.18)
E—>0+
=log|z|+1i lim arg(z + ie) (3.4.19)
e—04
= log |z| + imO(Fx) (3.4.20)

using (3.4.15) and (3.4.17), it follows

1 0 1
= —log(z +i04) = p.v— F in§, 3.4.21
PERT R og(z £1i0+) = p.v— Findy ( )
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in the sense of the distributions. It also follows that,

1 (—=1)n=t on 1 (—1)"

@Li0L)" — (n—1) ozn 8@ ) =pvin £ 1)!m5§”‘” (3:4.22)

where 5((]") is the n-th derivative of the delta distribution.

Notation: From now on, we will formally write dp as d(z), and we will always keep

in mind that it’s not a function; its a tempered distribution.

3.4.4 Multiplication of Tempered Distributions:

The product of two tempered distributions is not defined in general, since one wants the
associative law of multiplication to hold, which does not hold in general for distributions.

Let Q,T € §* be any pair of distributions and f € §, then
(QT, f) is not defined. (3.4.23)

since, in general, Tf ¢ S. For example, take T = O(x) and Q = §(x). Then §(x)O(x)
is not defined because O(x)f(x) ¢ S for all f € S. For another example, consider the

following equation in the sense of distributions:
1
zé(z) =0 -z =1 (3.4.24)

Now,

implies that multiplication is not associative. Although multiplication is not defined in
general, there is a wider class S* for which the multiplication is well defined. Take T' to

be an element in the space of multipliers; then for any Q € S*, the product,

(QT, f) =(Q,Tf) (3.4.25)
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This is well-defined because T' is a polynomially bounded smooth function and Tf € S.
Also, it follows from the definition that Q7 = T'Q). In some cases, it is also possible to
define the singular product of distributions where neither of the distributions in the product
belongs to the space of multipliers; however, we will not discuss that here. Knowing the

fact that the product of a multiplier and a distribution is a distribution, we can ask if
fQ=T (3.4.26)

where T' € §* and f is a multiplier, then can we find ) in the space of distributions. If
f~ 1 exists for all z and is a multiplier, then Q = f~'T. However, if f(x) has zeros ( n
distinct zeroes), then the problem becomes somewhat non-trivial. Let v € S and v = fu,

then,
(fQ,u) = (Q, fu) = (Q,v) = (T, u)

The above equation uniquely specifies ) in the subspace of S, which contains all test
functions that vanish at the zeroes of f. Now, to completely specify Q, it is sufficient to
specify it for u € S such that u(z;) = 1, where 2; is the i-th zero of f. Any arbitrary

u € § can written as,
n

u= Z u(z)uh + v

i=1
where v = fui, u; € S and satisfy v(z;) = 0. Now

n

(Qu) =Y ulz)(Q,up) + (T, u1)

i=1
which can also be written as,

n
(Q.u) = u(z)Ci + (T,u1) (3.4.27)
i=1
where C; are some arbitrary functions. The above equation completely specifies @@, which

satisfies fQQ = T. If T is a multiplier, then we can write the general solution as,

n
1
Q=> Cid(z)+pvT
i=1 f
if f has finitely many zeroes and f~! is a good multiplier away from those zeroes. Here
f~! should be thought of in terms of the Cauchy principal value. Moreover, the first term
of the above equation is the solution to the homogeneous part of the equation (3.4.26),

and the second term is the solution to the particular part of (3.4.26). One straightforward
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application of the above result is,

Q=0 (3.4.28)

implies, @ = Cd(x), where C' is some constant. Another interesting example is
(p* —m?)G, =1 (3.4.29)
The solution of the above equation is,

Gp = (p* —m*) ™" + (O(po) f1(P) + O(—po) f2(7)) 5% (p* — m?) (3.4.30)

where (p? — m?) is defined as a Cauchy principal value and f; and f» are multiples. We
can further generalize (3.4.27) for the case when f has degenerate zeroes. Let m; be the

degeneracy of zeroes at z;, then the solution of fQ) =T is,

n l=m;—

1
Q=>_ Z 25” () +pva (3.4.31)
=1 =
This basically followed from the fact that,

0, if n > m,
(x — a)"ilé(m)(x —a)=

m! (5;_1):)!5("1—”) (r —a), otherwise

(3.4.32)

It can also be proved by induction using the above fact. It follows from equation (3.4.31)
that any distribution that has point support can always be written in terms of a delta

distribution and its derivatives.

3.4.5 Fourier Transform of the distributions:

To define the Fourier transform F of a distribution, we will adapt the same strategy used in
defining the derivative of a distribution. First, we will examine the properties of functions
whose Fourier transform exists, viewed from the perspective of functionals on the space
of test functions. Then, we will elevate these properties to define the Fourier transform of

distributions. Let f be an integrable function and f be its Fourier transform. Consider
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g € S(RY) defined in the momentum space, then

(F.9(p)) = / FP)gp)d'p = / F@a@)dls = (f,5(x)) (3.4.33)

Now we will declare the above equation as a definition of the Fourier transform for any
distribution. Notice that it is a consistent definition since g € S(R?), the Fourier transform

of ¢ exists, unique and belongs to S(R%).

Definition 3.14. (Fourier transform of a distribution):
Let T € S8* be a tempered distribution and let f € S. The Fourier transform
F(T) =T € §* is defined by

(T, f(p)) := (T, f (), (3.4.34)

where p and z denote the Fourier and spacetime variables, respectively.

\.

Since for any f € S, the Fourier transform f € S is uniquely defined, it follows that
the Fourier transform is an isomorphism from S* onto itself. Therefore, from the above
definition, for all T € S*, the Fourier transform T € S*. We can also define the inverse

Fourier transform,

(F7HD), f(2) = (T, F 1 (£)(p)) (3.4.35)

It follows that,
FYFm)=T (3.4.36)

Let us list some nice properties of the Fourier transform of T' € §*,

1. Fourier transform of derivative of distribution, F(0J.T") = (ipa)"F(T).
2. Fourier transform of polynomial times distribution, F(2"T) = (—i)" 9, F(T).

3. Fourier transform of the Fourier transform of distribution, F(F(T))(x) = T'(—x).

Now, let us see some examples,

1. Fourier transform of the Delta distribution :

1
(2m)

(3(p). f(p) = (8(2), f(x)) = F(0) = / ( g)f<p>ddp (3.4.37)
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Implies, 6(p) = ——. Now consider,
(2m)2

Implies, F(d,)(p) = F(5(z — a))(p) = <,

2. Fourier transform of step function ©:
®). 1) = @), fw) = [~ e@F@idr= [ o) [~ erear)ap  (3.439)
Implies, .
o) = p+ 104

There are many other interesting properties of generalized functions, but we will conclude

(3.4.40)

our discussion here, as the material covered is sufficient for subsequent developments. For
further details, see [29]. Now, let us present a concrete application of the generalized
(tempered distribution).

We utilize our understanding of distributions to demonstrate that quantum fields are, in

fact, operator-valued distributions.

Proposition 3.15. (Quantum fields are operator valued distribution):
Let ¢(x) be the scalar quantum field (not necessarily free) in d-dimensional Minkowski
spacetime; then the covariance under the Poincaré group implies that the quantum fields

are not local operators but rather operator-valued distributions.

Proof. Let |Q) be a Poincaré invariant vacuum state. Consider 2-pt Wightman function:

(o' (@)o(y)12)

Then from translation invariance

Qe (z + a)o(y + a)|Q) = (Qe ()6 (y)|)

where a € R%. Implies there must exist a continuous function F on R? such that,

Q" (2)(y)|2) = F(z —y)
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Further, let {x;}!' | be set of points in R™4=1) and {#i}7_, be a complex number, then

Z F(xz ZZZ] Q|Z¢T Zg Zzz (xj>zj‘9> = || Z¢($])ZJ|Q>H >0

1<i,j<n j=1 j=1

Implies F(x) is a positive function; for definition, see [30]. Now, from the theorem of
Bochner, which states that a complex-valued function F € R4 11 ig positive iff it is a

Fourier transform of a nonnegative measure y on R4 11,

F(z —y) = (¢ (2)8(y)|2) = =D dp(p) (3.4.41)

V( 27‘(’ Rd— 11

du(p) > 0 and Lorentz invariant, i.e. u(Ap) = p(p), where A is a restricted Lorentz

transformation. Now if we assume that ¢(x) is an operator and |Q2) is in its domain then,

@I = [ | dulp) < o0

Implies that the measure is integrable. The most general measure invariant under re-

stricted Lorentz transformation is [31, 32],
dup) = (C5'(p) + ©(p) [ 507 ~ m)dp(m?)a'p (3.4.42)

where C is a positive constant and p(m?) is non decreasing function with a polynomial
growth. Note that the first term in the above equation is the only integrable part. There-

fore,

Qo' (2)e(y)|2) = C

So we have learned that if ¢(z) is a local operator (defined at a point), then the 2-pt
function is just a constant. Hence, ¢(x) with a nontrivial 2-pt function cannot be an

operator. Let f(z) and g(z) be a real smooth function with compact support, then

Qo[ f1olg]|2) = 1/ (27) /d . F(p)g(p)du(p) < oo (3.4.43)

where,

o= [ et (3.4.41)

and f and § are the Fourier transform of f and g respectively. The finiteness of the equation
(3.4.43) follows from the fact that the Fourier transform of a compactly supported function
is a Schwartz function. Hence, the quantum fields can be thought of as operator-valued

distributions. O
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From the above proposition, we have learned that the homogeneity and isotropy of space-
time (or equivalently, Poincaré invariance) imply that fields are not defined as an operator
at any specific point in spacetime, but rather as an operator-valued distribution. The
second term in equation (3.4.42) exhibits a UV divergence in the limit p? — oo(large

momentum), which is regulated using a smooth function with compact support.

We emphasize two important points. First, similar results are expected to hold for higher-
spin fields as well. Second, we anticipate that the above result remains valid in curved
spacetime. Since any curved spacetime locally resembles Minkowski space at sufficiently

small length scales, the UV divergence must be the same.

To better understand the distributional nature of the field and the precise meaning of ¢[f],

we now consider a free scalar field.

3.5 Example of Free Scalar field

Let us consider the free scalar field in d-dimensional Minkowski spacetime. Our approach
here will be to start with the well-known canonical quantization, examine some character-
istics of the scalar field, and then demonstrate that the smeared field operator is indeed a

densely defined unbounded operator.

To begin, let us write the field expansion in terms of creation and annihilation operators.

ddilp 1 —ip.x ip.x T
o(x) = - W%(e ap + €P7al,) (3.5.1)

where w;, = (p?+ mz)% and p.x = wpxo —p.Z. In the above equation, the creation and the

annihilation operator are evaluated at 2° = 0, and they satisfy equal time commutator,

lap, aly] = 2wp(2m)* 16" (p — p') (3.5.2)

All other commutators are zero. The above equation tells us that ap and an are not really
operator as their commutator results in a delta function (distribution). It will be helpful
to write the (3.5.2) as,

o(x) = v(z) + ¥ () (3.5.3)
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where 9(z) and ' (z) contain the a, and CLL, respectively. It follows from (3.5.2),

ddfl

(e), ¥ ()] = / P 1 inte) = A, (2 —y) (3.5.4)

Rd—1 (27T)d_1 pr

A4 (z —y) is clearly a distribution. It is not difficult to show that [31],

7020 —y°)

T — 2
Ay(x—y) = —ZW(S((:E _ y)Q) + o(( y)?)

2(2m)2 /(@ — y)
mrO(—(z ~ y)?)
(2r) 2y~ =P

[Ni(my/ (2 = y)?))

Ki(my/—(z —y)?) (3.5.5)

+i0(2° — ") J1 (my/(z — y)?)] +

where N7 is Neumann function, J; is Bessel function and K7 is modified Bessel function.
It can easily be seen that the above integral diverges when (z —y)? = 0, if 2# — y* or they
are null separated. Further, let |Q2) be Poincare invariant vacuum, such that ap|) = 0.
Then 2pt function is,

d—1 .
(Q(2)d(y)12) = (QU[(x), ¥ (y)]|Q) = / TP L) — A (a—y) (356)

ri-1 (2m)41 2wp
As we have already seen, that A (z — y) diverges as x* — y* implies, ||¢(z)|Q)|| — oo.
This divergence is Universal in the sense that a 2-pt function in any state at high energy
must have the same behavior. This is due to the fact that any state at high energy looks
like a vacuum state, and therefore, the 2-pt function should have the same UV behavior.
Implies ||¢(z)|¥)|| — oo, for any state. This tells us that the quantum field ¢(x) is too
singular to be thought of as any operator-valued function, as the norm of the state that one
gets after the action of the field on any arbitrary state is divergent (field operator does not
map any state in Hilbert space back to Hilbert space). Now, notice in the equation (3.5.5)
that the singular behavior at the coincidence point is coming from the delta distribution,
and we know that we can deal with such a distribution by smearing over a suitable test

function (Schwartz function). Now consider the smeared 2-pt function,

Q[ f18la)|) = /R (@) A (@ — y)g(y)diad’y (3.5.7)

where ¢[f] := [z é(z) f(x)dz and f,g € S(R?) are real functions. For future ease, we

want to write,

/R F@) A (z — y)gy)diadty = (flg) (3.5.)

Now, it is evident from equation (3.5.4) and (3.5.5) that equation (3.5.7) is finite every-

where. Hence, ¢(x) is an operator-valued distribution. We again want to emphasize that
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the above analysis is easily generalized to curved spacetime, at least in Hadamard states.
This generalization works because, at a very small length scale—much smaller than the
scale of spacetime curvature—the behavior of fields is the same as in flat space. Hence,
the UV divergence of the two-point function in curved spacetime can also be handled by
smearing the fields. The above analysis is just an explicit demonstration of the general

proposition (3.15) that we have proved above.

Now, if ¢[f] is truly an operator, is it bounded or unbounded? What is the domain of
the operator? To investigate this, we need to define the action of the operator on some
subspace of the Hilbert space. Let us start by defining the n-particle state of identical

bosons in the momentum basis using the creation operator ap.

[1ab12) =[Py, ) (3.5.9)

In the above equation, we assumed that all p; are distinct. However, if some p; appear np,
times, then the above expression must be divided by ,/mp, for each such p;. These states
are not normalizable, since (p’|p) = (27)9 12wpd¢ 1 (p — p’) (eigenmodes of momentum
operator) and therefore does not belongs to the Hilbert space. This is exactly because ap,
was not an operator. The presence of a delta distribution in (p’|p) tells us that we must

smear |p) with some test function, that is, we should work with the states of type

1 dd 1
/ hiP)p)5— S 2r)T T 1 (3.5.10)

where fi(p) € S(RY). As we already know, the Schwarzt functions are square-integrable;

therefore, these state belongs to the one particle Hilbert space H. It can easily be shown,

d-1
Ual) = /Rd Ui(2) f1()dz|Q) = /Rd_l f1(P)|P>2;éT)dI_)1 (3.5.11)

Now following the same trick, we can define the general state in the Fock space,

R AT i JEFSRE BN YOS O S /308
IR s PR g oyt T it o L PP Pl oy
(3.5.12)

where g;(p;) € S(R?) and fy € C. The n-th term depicted above is clearly a n particle
state, which belongs to the Hilbert space H®<" (symmetrized tensor product) and therefore

|®) € Fr(H), where F(H) is a bosonic Fock Space . Also, notice that the above expression
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can also be written as,

) = fol2) + UT[A]]Q) + 7[[ UHg,][) + ... (3.5.13)
or equivalently,
@) = fol2) + S[f1]|) + ... + jﬁ : 1;[1 dlgi] : Q) + ... (3.5.14)

From the above equation, we have learned that the n-particles state |n;{g1, .., gn}) can be

written as,
n

][ 0lai) - | H‘I'T i) (3.5.15)

=1

Sk

|TL; {gla 7gn}> =

Further, using (3.5.4) or the wick contraction, it can be shown that,

1 n
<m; {fla ) fm}|n’ {glv 7g’ﬂ}> = 5”””5 Z H(fl|ga(z)) (3516)

ceS™i=1
where S§™ is symmetric group on n objects. The above equation tells us that the state
with different particles has no overlap. Further, there is no (f|f) or (g|g) because of the

normal order. It can easily be shown that

H ®[fi]|€2) = Sum over normal ordered field (3.5.17)
i=1

Now, there is a beautiful theorem in QFT known as the Reeh-Schlieder theorem, which
says that

Hrs =Y Hn (3.5.18)

where
n

My = {Z nlthn) : [n) = [[ 01£11Q),n € Zy,a € C}

i=1

Hps is dense in Fp(H), ie Hrs = Fg(H). Using (3.5.17), we can write,
M = {Z anltn) : [Un) =[] ¢[fi] 1 [Q).n € Zy,a € C} (3.5.19)
=1

therefore, any state in Bosonic Fock space can be approximated with the state |®) that we

have constructed in (3.5.14). Now to find the domain of the operator ¢[f], we first check
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the action of ¢[f] on the state |n;{gi,..,gn}). It can easily be shown using (3.5.4) that,

¢[f”n7 {gla "7gn}> =V (TL + 1)’n+17 {f7 g1, - gn}>+\/15 Z(f’gl)’n_lv {g17 vy 9i—159i+1-» gn})
=0
(3.5.20)

therefore ¢[f] has good action on this states. Further, it can be shown by using the above

equation, or equivalently, wick contraction that ¢[f] has bounded action on such states,

16[f]In: {g1s - g )| < V/(glg) 5 {915 - g }) | (3.5.21)

The above inequality can be further saturated. To show this, let us consider the case when
gi(x) = f(x). Then, from (3.5.20),

Sl {fs - fH) =V +Din+ LS f, . ) +Valflf)in = L{f, . f}) (3522

therefore,

L1l {f, -, SO =V @n+ DV D A FI (3.5.23)

In order to get the above expression, we used the relation in (3.5.16). It implies that for

every C > 0 there exists a n € Zy such that

oLl (Fe D _
VN gy~ VTN 2C (35:24)

Hence, ¢[f] is an unbounded operator. Furthermore, it follows from the above equation

that the domain of @[f] is Hrs. Since Hps is dense in Fp(H), the unbounded operator

¢[f] is densely defined. It can easily be shown using (3.5.20) that ¢[f] is a symmetric
operator. Now, since ¢|f] is densely defined and symmetric, it follows that ¢[f] exists and
®[f] C #[f]T, which implies that ¢[f]T is dense. Therefore, ¢[f] is a closed operator with
closure ¢[f] = ¢[f]'t. It can further be shown that ¢[f] is self-adjoint [33], and it satisfies

the equation of motion in the sense of distribution, that is, for all f € S(R%),

S[(O% +m?)f] =0 (3.5.25)

3.5.0.1 Algebra of observables

Let M be the global hyperbolic spacetime and ¥ C M be the Cauchy surface. Let V C X

be an open set, small enough so that its closure V is not all of ¥ . Since V is not all of

5We are interested in the local algebra of observables.
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¥, the complement V' of V will also be a non-empty open set, disjoint from V. Clearly,
V and V' are spacelike separated and we can contain them in the open sets Uy, C M and
Uy C M respectively, which are also spacelike separated and are open sets in spacetime.
There can be multiple choices for Uy and Uy, and one chooses them as large as they want

as long as they are spacelike separated.

Definition 3.16. (Local algebra of the region U):
Let U be the open set in spacetime. Then, the local algebra A;; of the region U is

defined as the von Neumann algebra of the bounded operators supported in i.

Consider the quantum field theory in D dimension spacetime (M, g), where g denotes the
metric on the spacetime M. For example, the scalar field ¢(z) in Minkowski spacetime. We
want to emphasize that the field ¢(z) is not an operator in Hilbert space. Rather, it’s an
operator-valued distribution. Its distribution nature is apparent through the delta function
appearing in the canonical commutation relation or through the universal singularity in
its two-point function. To make it an unbounded operator, we need to smear it. Let f(z)

be the smooth function supported only in i/, then we can define smear field operator as

olf] = /M VgdPz f(2)d(z) (3.5.26)

Now, it’s an unbounded operator, as we have discussed in the previous subsection. We can
construct a bounded operator from ¢[f] by considering F(¢[f]), where F' is a complex-
valued bounded function. For example, ¢??l/] is a bounded operator. We can construct a
more general bounded operator by considering multivariable bounded functions of these
smeared field operators. The x—Ilocal algebra is then constructed by taking these simple
operators and the operators that one can construct from them by taking their sums,
products, and hermitian conjugates. Now, the von Neumann algebra associated with the
local algebra is defined by closing the *— local algebra under weak operator topology or
equally by taking the double commutant.

From the above construction of the local algebra, it is not difficult to see that the algebra
Ay in the region U will be the same as the algebra Ay, of causal completion Uof U. Tt
follows from the fact that the operator in the causal diamond can be written in terms of
the operator on the Cauchy slice using the evolution equation of the fields.

Let us now understand more about the association of algebras to local regions, and the

properties we expect such an association to satisfy. One of the most basic properties is
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the following: if Uy C Uz, then the associated algebras should satisfy

Ay, € Ay, (Isotony) (3.5.27)

We expect that the algebra of a smaller region is contained within the algebra of a larger
region is known as the isotony property of local algebras. Isotony guarantees that extend-
ing the region that we probe in real experiments should at least retain the measurements
we could already make in a smaller subregion. Further, if we denote the causal completion
of the region containing two causally complete region Uy Us by Uy VU = (Z:Il U Z]g)” and
the von Neumann algebra associated with the i V Uy by Ay VA, = (Ay UAG )" Then
we also expect the local algebra to follow,

.Aalv% =A; V ‘Alflg (Additivity) (3.5.28)
The additivity property (as expressed in the equation above) states that the algebra asso-
ciated with a larger region can be generated from the algebras of smaller regions contained
within it. Together with isotony, additivity provides an algebraic formulation of the idea
that degrees of freedom are local. Specifically, it reflects the fact that one cannot recon-
struct the algebra of a larger region from the algebra of its smaller subregions alone, since
there exist local degrees of freedom in the larger region that are not accessible within the
smaller one.
If 2’ be the causal complement of U (a maximally open set which is spacelike seperated

from U), then the algebra A,;, associated with U’ will commute with the algebra Ay
[Ay, Ayl =0 (3.5.29)
The above equation can equivalently be written as A; C (Ay; ). Therefore,
Causality = A; C (A;) (3.5.30)

In many interesting quantum field theories, and at least for a wide class of open regions
such as a single open ball, it can be shown that A, = .A;:{. This property was proposed
by Haag and is known as Haag duality [34]. An important example where Haag duality
holds is in Rindler space, as proven by Bisognano and Wichmann [35]. Haag duality can
be interpreted as the requirement that the algebra associated with a region is mazximal,
in the sense that it includes all operators compatible with causality. For more details on

local algebras, see [24].
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However, Haag duality can be violated in various cases. For example, in gauge theories, it
may fail for non-simply connected open regions in spacetime [36]. Moreover, there are the-
ories with global symmetries where charged operators can be locally constructed. In such
cases, there exist superselection sectors known as DHR (Doplicher, Haag, and Roberts)
sectors. In theories admitting DHR sectors, regions with nontrivial topology generally
violate Haag duality. Furthermore, as shown in [37], attempts to restore duality often
lead to the failure of additivity of algebras; the two properties cannot be simultaneously
preserved. Haag duality has several nontrivial implications. Notably, Haag duality in
the vacuum sector is equivalent to the absence of spontaneously broken gauge symmetries
[38, 39, 40].

As we know, the field operator does not commute at time-like and light-like separations.
¢[f] and ¢[g] will not commute if the support of f is time-like or light-like separated from
the support of g. Therefore, A,; can have a non-trivial centre only if one can construct
an operator supported on the bifurcation surface B = unu' (intersection right and left
Rindler wedges), which commutes with .AZ{ and Ay;. However, we should not expect that
such an operator will always exist. Because there is a region (the Cauchy horizon of U)
in U that is light-like separated from B, and the operator in B has to commute with the
operator on the horizon. This will not happen unless there is some symmetry for which
charges can be localized at the bifurcation surface. For example, if we have only one scalar
field, then we know that null-separated fields do not commute, and we don’t have any such

symmetry. Thus, generically, the local algebra of the quantum field is a factor.

3.6 States of the quantum system and classification of von

Neumann algebra

In this section, we present a physicist’s perspective on the classification of von Neumann
algebras, following the lecture notes of Sorce [25]. We begin by exploring the relationship
between the existence of a trace on the algebra and the density matrix. This will lead
us to a classification scheme based on whether a trace can be defined, either directly or
through some renormalization procedure. In the next subsection, we will introduce the
classification of von Neumann algebras using the theory of projections. Let us begin with

the definition of the trace.
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Definition 3.17. (Trace on von Neumann algebra):
A trace on the von Neumann algebra A is a map 7 : A4 — [0, 00|, where A are

collection of all positive operators in A, satisfying:
1. Homogenity: 7(Aa) = A7(a) for all a € A4 and all A >0
2. Additivity: 7(a 4+ b) = 7(a) + 7(b) for all a,b € A;.

3. Unitarity Equivalence: 7(UaU') = 7(a) for all a € A, and all unitary U € A.

. J

The above definition arises from identifying the key properties of the Hilbert space trace
and elevating them to define the abstract trace. The first two properties ensure that the
trace is a linear map, while the third property generalizes the notion that the Hilbert space
trace is independent of the choice of basis to an abstract setting. We want to emphasize
that all the elements need not have finite trace. For example, the identity operator has
infinite trace with respect to the Hilbert space trace in infinite dimensions. One might
wonder why the trace is defined only on positive operators, given that a von Neumann
algebra contains many more elements. However, this restriction is sufficient, and we can

extend the trace using an interesting theorem to a bigger subset of A.

Theorem 3.6.1. Every operator a € A can always be written as,

a=afl —af' +ial —ial (3.6.1)

where ai/L €A

Proof. For any bounded operator a, there exists a bounded adjoint af. We can always

decompose any bounded operator into a sum of two self-adjoint operators A; and As:
a = A1 + iAQ

where
1 1
Aq :i(a—i—aT), Ay = Z(a—aT)
Since A; and As are self-adjoint, they each have a real spectrum. Using the spectral de-

composition, we can further decompose them into the difference of two positive operators:
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where

aff = A1 O(x4)), . = 4,0(+Ay)

and © denotes the Heaviside step function. af* and a! are the restrictions of a to the
real and imaginary parts of the spectrum. It is evident from the above expressions that

R R I I

at,a’,a’,a” are all positive operators. Therefore, we can express any bounded operator

a as a linear combination of positive operators:

_ R R, 1 I
a=ay —a_+way —a_

O]

Further, if a,b € A4 and a < b, then b = a + (b — a), where b — a is again a positive
operator. This implies 7(a) < 7(b).

Now, let a € A, and define |a] = Vala. By the spectral theorem, we have |a| > ai/l,

which means that |a| dominates both the positive and negative parts of the real and
imaginary components of a and 7(|a|) > T(aiﬂ). Implies if 7(Ja|]) < oo, then the sum

7(af) — 7(af’) +i7(al) —iT(al) is well defined as each term in sum is finite.

Now, using the above theorem and observation, we can extend the trace to all trace class

operators denoted by Ar.

7

Definition 3.18. (Extended trace):
Let A; be the collection of all operators T' € A such that 7(|T|) < co. The set A,
is called the space of trace-class operators. We can define an extended trace Texy on
A by

Text(a) = 7(af) — 7(af) +i1(al) —iT(al), (3.6.2)

R R I

where a’f,a’, a’, and al

denote the positive and negative parts of the real and

imaginary components of the a, respectively.

The above definition by construction is well-defined. It can be easily shown that it satisfies
all three properties of trace. And for the positive operator 7¢;; = 7. Furthermore, the

above trace has many nice properties:

1. If a € A; and U is some unitary in A, then 7., (aU) < oo. This follows from the

fact that |a| dominates aU.
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2. Using the first property and the unitary equivalence of 7, it follows that 7., (alU) =
Temt(Ua) .

3. It follows from the second property and the fact that any operator can be written as
a sum of two Hermitian operators, and that any Hermitian operator can be written

as a linear combination of two unitary operators, that
Text(ab) = Text(ba) (363)

for any a € A, and b € A. This is called the Cyclicity of trace.

4. Using the third property and the fact that when a € A and 7(aal) is infinite, 7(a’a)

is infinite. We get
7(aa") = 7(a'a) Vae A (3.6.4)

Using the trace, we can define the concepts of state or density matrix.

e N

Definition 3.19. (State or Density matrix):
A state or density matrix p of a system is a positive trace-class operator with respect

to a trace 7, and satisfies
T(p)zl peALNA;
The state is called pure if and only if

pe=p

From the above definition, it is evident that the notion of a state is fundamentally linked
to the existence of a trace, as the trace is used to define the state itself. Also, in practice,
we are interested in finding the expectation value of an operator in some state described

by the density matrix p, that we can assign by the following relation,

(a)p = Teat(pa) (3.6.5)

It follows from the third property that 7., (pa) is well defined for all a € A. Therefore,

the trace that we have defined is sufficient for our purpose.
From now on, we will omit the subscript ext and simply write 7 to denote the extended
trace Text. Unless stated otherwise, all traces will be understood to refer to Teyt.

We also emphasize that the above definition of the trace does not uniquely fix the trace; in
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general, multiple traces may exist in a given von Neumann algebra. One might also wonder
why we need to consider such general notions of trace, given that we always have the usual
Hilbert space trace at our disposal. The reason is that the Hilbert space trace may not
be well defined, and therefore, to capture the relevant physical or algebraic structure, we
need a more general trace. Let us demonstrate this through an example.

Suppose we have a quantum system with a separable Hilbert space H. In an actual
experiment, we only have access to bounded operators, since we always operate with finite
energy in experiments, and our measurement devices have finite resolution. Therefore, we

have access to all bounded operators on #, i.e., B(H).
But do we also have access to any density matrices?

Indeed, there are positive trace-class operators in B(H). For example, given any orthonor-

mal sequence [¢,) € H and any sequence p,, € [0,1] with > p, = 1, the operator
P= an |thn Xn]
n

is a positive trace-class operator with respect to the Hilbert space trace, which is defined

as

Tro(a) = > (¥nlaltbn), (3.6.6)

n
where a is some operator. It is also clear that p is a bounded operator with Tr4(p) = 1.

Therefore, p is a density matrix.

Now, suppose there is another quantum system in the Andromeda galaxy with Hilbert

space H'. It is natural to ask, what operators do we have access to?

Now that we are aware of the presence of another system, we must extend our Hilbert
space to incorporate the degrees of freedom of the system in the Andromeda galaxy.
Correspondingly, the algebra of operators must also be extended. We now have access to

B(H) ® 14: operators that act as a bounded operator on H and as the identity on H'.
Let us ask again: Do we have access to any density matrices?

To answer this, we return to the definition of a density matrix: it must be a trace-class
operator with unit trace. The requirement that the trace be equal to one implies that the
answer depends on the dimension of H'. Let the dimension of H' be d, so that 13 has

trace d. Then, for any density matrix p € B(H), we have access to the operator

P Ly
— 1y = —_ 3.6.7
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which is itself a density matrix on the extended system.

However, if H' is infinite-dimensional, then § ® 13y is not a density matrix, infact the
algebra B(H) ® 14 does not contains any density matrices with respect to Hilbert space
trace, because there is no way to normalize p ® 1+ to obtain unit trace on the combined

system.
Therefore, we learn the following;:

When H’ is infinite-dimensional, there is no density matrix in B(H) ® 1y with
respect to the Hilbert space trace of the combined system, because there is no
way to normalize p ® 13/ to have unit trace.

It might seem bizarre that knowing that there is another system out there that we do not
have access to, can make the algebra of observables B(#H) ® 14 not have a density matrix.
We want the reader to notice that this is not a density matrix with respect to the Hilbert
space trace. But since we can only access algebra of observable B(H) ® 13,/. It is legitimate
to ask whether we can think of p as an effective density matrix for our system, which is
a subsystem of the combined system. Let us rephrase this question as ” Whether there is
any consistent way to define a new trace for the algebra of observables of our system such
that we can compute expectation values (a ® 19;) p®1,, Of any operator a and that gives
p ® 13y all the properties of a quantum state”. This question is the central theme of the
type classification of von Neumann algebras. The answer, in our case, is yes.

For any bounded operator a ® 14/, we define its effective expectation value in the “state”

p ® 14 in the obvious way:
<A X 1'H'>p®17_£/ = HH(pA) (368)

here Tr can be thought of as a renormalized trace for B(H) ® 1. So we have learned
that

The operator p ® 14y is not a true density matrix with respect to the Hilbert
space trace on the combined system. Nevertheless, it is a density matrix with
respect to the algebra B(H)® 13y, relative to a certain renormalized trace. This
allows us to consistently assign expectation values to p® 14/, thereby endowing

it with the properties of a quantum state.

This renormalization procedure is not specific to the particular operator p ® 14/; it can
be applied analogously to any positive trace-class operator. This makes it clear that we
need to define a more general notion of trace in order to meaningfully assign expectation

values to the observables we have access to.
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Let us take another step. Suppose we are given access to some general von Neumann
algebra A—for example, the von Neumann algebra associated with a subregion in the
vacuum sector of a quantum field theory (3.5.0.1). It is important to realize that all actual
experiments involve operators localized in the region where the experiment is performed.
Hence, we never truly access the global state defined on the full algebra. What matters
for us is the state that is associated with, or induced on, the local subregion. Therefore,

the relevant notion of a state should be the density matrix associated with that subregion.

Within any von Neumann algebra A, we have the set of positive operators by A,. Are
any of these operators genuine density matrices? Perhaps not in the traditional sense.
However, as in the previous discussion, some operators in A, may act as effective density
matrices for observables in A. This motivates a natural question: does there exist a
consistent renormalization scheme on 4 that promotes certain operators in A4 to well-

defined quantum states?

The answer depends on the type of algebra of observables, which we will introduce in
the next subsection. In particular, we will see that for a von Neumann factor, if the
trace exists, then there exists only one consistent renormalized trace (i.e., renormalization

scheme), up to an overall normalization, that acts on every operator in a well-defined way.

With respect to this renormalized trace, the type classification of von Neumann factors

can be understood in the following terms:

e A factor A is said to be of type I if the renormalized trace allows some (possibly
all) operators in A4 to be interpreted as pure states, and others as mixed states
(density matrices that are not pure). That is, A contains renormalizable pure and

mized states.

e A factor A is of type II if the renormalized trace turns some (possibly all) op-
erators in A, into mixed states, but none into pure states. That is, A contains

renormalizable mized states but no renormalizable pure states.

e A factor A is of type III if, even after applying the renormalized trace, there
are no operators in A, that qualify as density operators. That is, A contains no

renormalizable states.

Further,

e A factor A is said to be finite if the renormalized trace assigns a finite value to every

operator in A, . That is, every positive operator in A becomes a renormalizable state.
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e A factor A is infinite if the renormalized trace fails to normalize at least one oper-
ator in A,. That is, there exists at least one positive operator in A that is not a

renormalizable state.

Note that based on the above definitions, every type III factor is infinite, while type I
and II factors can be either finite or infinite. Let us conclude this section with some

terminology and examples.

A finite factor of type II is called type II;.

An infinite factor of type II is called type Il...

A finite factor of type I is called type I, where n is a positive integer that encodes
additional information about the factor (e.g., the dimension of the Hilbert space on

which it acts).

An infinite factor of type I is called type 1.

Examples:

e Type I,: n X n matrix algebra; system of n qubits.
e Type I,: Quantum harmonic oscillator.

e Type II;: The thermodynamic limit of two spin chains maximally entangled with
each other; algebra of observables accessible to a static observer in de Sitter space-

time.

e Type II,,: Algebra of observables in the exterior of a black hole in perturbative

quantum gravity.

e Type III;: Local algebra of observables in quantum field theory.

More details can be found in [24, 3, 6, 41]. To define the renormalized trace, we need
an effective way to discuss all positive operators in a von Neumann algebra. As is well
known from spectral theory, any positive operator can be expressed in terms of its spec-
tral projections. Therefore, projections can be viewed as the building blocks of positive

operators.

By studying the projections associated with a von Neumann algebra and defining the

renormalized trace on them, we can extend this definition to all positive operators. Thus,
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in the next section, we will study the theory of projections, their classification, and how

this induces an algebraic classification of von Neumann algebras.

We will then define the renormalized trace on these projections, which in turn allows us to
construct density matrices associated with the algebra and define the expectation values

of positive operators in renormalized states—quantities of physical interest.

3.6.1 The theory of projections and Murray von Neumann classification

In this section, we will briefly talk about the theory of projectors, and then we will use it

to outline the Murray-von Neumann classification of von Neumann algebras.

7

Definition 3.20. (Isometry):
A bounded operator V' € B(H) is said to be an isometry if,

VI =l Vi) € M

. J

It is evident from the above definition that the norm of isometry is unity. If V is an

isometry, then the following interesting properties hold.

L (Vy[Ve) = (¢|g) for all [¢), |¢) € H.

Proof.

)P+ 2Re((]¢) + @)I* = (¥ + ¢l + ¢)
=llY+ o)
= V() + o)
= V@ +0)V(Y+9))
= VI I* + 2Re((Ve[V)) + )]

Implies, Re((¢|¢)) = Re((V|V¢)) for any |¢). So, let us take i|¢) instead of |¢).
Then, we will get

Im(($|¢)) = Re(—i(p|9)) = Re(=i(V|[V)) = Im((V|V¢))

Hence,(V|V o) = (¥|¢).
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2. VIV = I; and converse is also true.

Proof. This direction = follows from property 2. For any [v), |¢) € H,
(®lg) = (VY[Ve) = (|VIVe) = (@[VIV = I|g) =0

which implies,
VIV -I,=0

Now, let us prove the converse. We will assume that V1V = I, then
VI = (Vplve) = (VIVyle) = [l|l))*

Implies, ||[V)|| = ||[¢)]] for all ) € H. Hence, V is an isometry. O

An isometry is an injective map but need not be a surjective one. We emphasize that V'V

is not necessarily the identity operator. It becomes the identity if and only if V' is unitary.

a )

Definition 3.21. (Partial isometry):
An operator V' € B(H) is said to be a partial isometry if there exists a closed
subspace M C H, such that

VDM = ([l V [4) € M
V [¢) = 0,for any |¢) € Mt

\.

Notice that in the above definition, M» = ker(V), and therefore a partial isometry is an

isometry on M = ker(V)+. We can further show that these are equivalent,

1. V is a partial isometry.
2. VT is a partial isometry.
3. VIV is a projection.

4. VV1is a projection.

5. Vivvi=vi

6. VVIV = V.
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Proof. Let us start by showing that 1) = 5). Assume that V' is an isometry. We want
to show that for any [¢), |¢) € H,

(VIVVigle) = (VTgg).
First, suppose |¢) € ker(V). Then,
(VIVVTglg) = (VVT[Ve) = 0 = (v|Ve) = (VTY|g).
Now suppose |¢) € ker(V)*. Then,
(VIVVTgle) = (V(VTg)|Ve).
Since V is an isometry on ker(V)* and satisfies property 1),
(VIVVTY|g) = (V(VI)|Ve) = (Vie|e).

Thus, we conclude that VIVVT = VT,

Now, it is easy to show that 5) = 6):
V=VH=wviviHil =vviv.

Similarly, 6) = 5):
Vi= W =Wwviv)i=vivyt

Therefore, 5) < 6).

It is also straightforward to see that 5) == 3). First, note that V1V is self-adjoint, and
VIV =vivviv = (vivihy =viy,

which implies that V1V is a projection. Similarly, by analogous steps, 5) = 4).
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Now we show 4) = 1). Assume V'V is a projection. Let |¢) € ker(V)* = ran(V1).
Then, there exists a sequence {|¢,)} C ran(V1) such that lim, o |#,) = |¢). Then,

1V )|
(VVTg,[VVig,)

Vo)

lim
n—oo
lim
n—o0
= lim <(VVT)2¢n|¢n>
n—oo
= lim [[V1enl? = 6)II*
Hence, V is a partial isometry.

By similar reasoning, it can be shown that 3) = 2). It is also straightforward to show

that 2) = 6). Hence, all the statements are equivalent. O
Theorem 3.22. If V is a partial isometry, then ran(V') is closed subspace of H, further

V'V is the projection on ran(V) and V1V is projection on ran(V'1).

Proof. To show that ran(V) is closed, suppose that |¢) € ran(V) then there exists a se-
quence {|¢,)} € H such that |¢) = lim, o V|¢p). Then, using the continuity of bounded
operators,

V(VTe) = lim V(VVg,)) = lim Vo) = |9)

implies |¢) € ran(V'), ran(V') C ran(V'). Therefore, ran(V') = ran(V') is closed.
Let |¢) € ran(V'), then 3 |[¢)) € H such that |¢) = V|)), then

VVIg) = VVIVIY) = V) = |¢)

Further if [¢) € ran(V), = ker(VT), then VVT|¢) = 0. Hence VVT is a projection on
ran(V). Similarly, VIV is projection on ran(VT). O

Now, we would like to give some examples of isometry and partial isometry.

Example 3.4. (Isometry):
S:A(N) = A(N), S(xi,z0,23,...)=(0,21,22,...)

e STS =1, s0 8 is an isometry.

o SST£1, 508 is not unitary.
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o S preserves norms but is not surjective.

Example 3.5. (Partial Isometry):
ST:2(N) = A(N),  ST(x1,29,23,...) = (22,23, 24,...)

e ST is a partial 1sometry.
e ker(ST) = span{(1,0,0,...)}

o St is an isometry on ker(ST)*

Note that S = ——2— and (z1,22,23,..) = Y o gZnt1|n) in the quantum harmonic
(14ata) n=

oscillator. Another outcome of partial isometry is the polar decomposition theorem.

Theorem 3.23. Polar decomposition:
For any operator x € B(H), there exists a unique positive operator a € B(H) and a unique

partial isometry V- € B(H), such that

z="Va (3.6.9)
VIV = s(a) (3.6.10)

where s(a) is projection on ran(a).

Proof. Let us define a positive operator a = (ﬁx)% and define vg on aH by,

voal) = z[y)  V|yY) € H

Clearly,
lvoal)|* = lz|)|* = (zTzple) = (@®vlv) = [lalv)|

From the continuity of vg, it is an isometry on a?H. We can easily extend it as a partial

isometry on full H as follows,

Vi) = Voly) for |¢) € aH

0 for otherwise,
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From the properties of partial isometry s(a) = V1V is a projection on aH. Now, it can

easily be checked,

x=Va
VIV = s(a)

Uniqueness follows from the fact that a is unique for the given x € B(H) and V' is unique

for a. It follows from the above proof that,

zt =pVi (3.6.11)
VIV = 5(b) (3.6.12)

where b = (xxT)% When z is self-adjoint then a = b = |z| and s(a) = s(b) = s(|z]). O

Definition 3.24. Let A C B(#) be a von Neumann algebra. An operator V € A

is a partial isometry if V1V is a projection.

From the properties of the partial isometry, it follows that VT is also a partial isometry.
Moreover, for E,F € P4 and defined as E = VIV and F = VV1,

VE=V FV =V (3.6.13)
VEVI =F VIFV = E (3.6.14)

It follows from (3.6.13) that,
VEH)=V(VIVH)=VVIVH=VHC FH (3.6.15)
Now for any |¢) € H, we have EVT |¢) = VT |¢) € EH, and thus
Flg) =VVTg) =V(VT|g)) € V(EH), (3.6.16)

so F'H C V(EH). Therefore,
V(EH) = FH (3.6.17)

Therefore, V' maps the subspace EH to FH. Since V is an isometry on E7H, it implies
that dim(EH) = dim(FH). This shows that V is a map between projections of the
same rank. Furthermore, if two projections have the same rank, then there is a partial

isometry that connects them. This is because any two Hilbert spaces of the same dimension
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are isomorphic. Thus, partial isometries are the appropriate algebraic objects to define
equivalence between projections, as they compare only the "relevant parts” (the images

of the projections, or the rank of the projections) rather than the entire space.

'a 2

Definition 3.25. (Equivalent projection):

Let A C B(#) be a von Neumann algebra. Then E, F' € P 4 are said to be equivalent
with respect to A if there exists a partial isometry V € A, such that £ = VIV and
F =VV*t. We will denote it as E ~ F.

\. J

Another way of putting the above definition is that two projections in a von Neumann
algebra are equivalent if their ranks are the same relative to the von Neumann algebra.
We can easily show that ~ is an equivalence relation. Let P,Q, R € P4.

1. Reflexivity: Let V = P. Then VIV =VV! =P, so P~ P.

2. Symmetry: If P ~ Q via partial isometry V, then VIV = P, VVT = Q. Let
W =V then WiW =Q, WWt=P,s0Q~ P

3. Tramnsitivity: If P ~ @Q via partial isometry V', and @) ~ R via partial isometry W,
define U = WV. Then:

Uty = viwtwv = viQv = viv = p,

vUt =wvviwt =woQw' =ww' = R.

SoP~R

Therefore, ~ is an equivalence relation.

Definition 3.26. (Central projection):
A projection in the von Neumann algebra A is called a central projection if it

belongs to the centre Z 4 of A.

Central projection has a very nice property that it preserves the equivence of projections.
That is,
E~F PePy, = EP~FP (3.6.18)

This follows from the fact that there exists a partial isometry V' such that E = VIV and
F = VVT. Now we can define a partial isometry W = VPS5, Since WIW ~ WWi —

5Tt follows properties of partial isometry that we have proved and the fact that WTW is a projection.



Chapter 3. von Neumann Algebras for Physicist 81

EP ~ FP.
Another interesting thing we can define using central projection is the concept of central

support of the element of algebra. Let a € A, we define
Z(a) = \{E € Pz,; Ea = a} (3.6.19)

clearly, Z(a) € Pz,. So it is the smallest central projection, and Z(a)a = aZ(a) = a.
Z(a) is also known as central support of a. Further, it is easy to show that the central

support of two equivalent projections is equal. That is,
E~F = Z(FE)=Z(F) (3.6.20)

It follows from the fact that if V' is a partial isometry then Z(VVT) = Z(V) and Z(VIV) =
Z(V), implies Z(E) = Z(F).

Proposition 3.27. Let A be a von Neumann algebra. Let {E;}icr,{F;}ticr € Pa, where

E; are mutually orthogonal projections and F; are also mutually orthogonal projections
such that E; ~ F; for alli € I. Then

VE~VE

iel iel
Proof. Since E; ~ F; for each i € I, there exists a partial isometry V; € A such that
ViVi=E; and V;V!'=F

Because the {F;};cr are mutually orthogonal, and likewise the {F;};cs, the ranges of the
V; are mutually orthogonal, and their initial spaces are orthogonal as well. Thus, for

each |[¢) € H, only countably many V;|1¢)) are non-zero, and their sum converges in norm.

V::ZV;

el

Hence, the series

converges in the strong operator topology in A, since A is a von Neumann algebra (closed
under strong limits), and the sum of strongly orthogonal partial isometries converges

strongly.

Now compute:

VIV=3 ViV, =3 vilvi=3 B =\ E,
ij i :

il
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and similarly,

=S v =Y v =Y R=V/E
i,j @ ‘

el
Thus, V is a partial isometry in A such that

viv=\/E, vvi=\/F,

iel i€l

so we conclude that

VE~\F (3.6.21)

iel icl

O

The above result tells us that the equivalence of projections is compatible with orthogonal
sums.

Now, we have the notion of the equivalence of projections, but we want to go one step
further and define the notion of sub-projection that is compatible with the equivalence of

projections.

Definition 3.28. (Sub equivalence):

Let A be the von Neumann algebra, and let E, F' € P4. We call E subequivalent
to F', and denote it as E =< F (and read it as F' dominates F), if 3 a partial
isometry V € A such that E = VIV and VVT = Q < F. E is equivalent to some

subprojection of F'.

The relation < on the projections is a preorder relation (reflexive and transitive). Let
E F,G € Py.
1. Reflexivity: Take V = E, then VIV = E, VVI = E<E,so E < E.

2. Transitivity: Suppose E < F via partial isometry V € A, so VIV = E, VVT < F;
and F < G via partial isometry W € A, so WIW = F, WW' < G. Define
U=WV e A. Then:

Ut =viwtwv = viFv = viv = E,

vut =wvviwt <wrwt =wwt < G.

Hence, £ < G.



Chapter 3. von Neumann Algebras for Physicist 83

Thus, < is reflexive and transitive, hence a preorder. Given the above definitions, it is
natural to ask whether any two projections can be compared using the preorder relation.
The answer is, in general, no. In finite-dimensional Hilbert spaces, any two projections

are comparable via dimension: for instance,
rank(P) <rank(Q)) = P Q.

However, in infinite-dimensional case, it may happen that they are not directly comparable.

We can prove following theroem.

Theorem 3.29. If E. F € Py, then following statements are equivalent:

1. E and F are centrally orthogonal,i.e Z(E)Z(F') = 0.
2. EAF = {0}

3. For all nonzer projection 1 < F and F1 < F, E1 and F1 are inequivalent.

Proof. We start with 1) = 2). Let a € A. Then
EaF = Z(E)EaZ(F)F = EaFZ(E)Z(F) = 0, (3.6.22)

which implies that EAF = {0}.
Now, to show 2) = 1), EAF = {0}. Then EZ(F) = 0, and therefore Z(E)Z(F) = 0.

For 2) == 3), suppose that statement 3) is not true. Then, there exist £, = VVT and
F; = V1V, satisfying F; < E and F; < F, we have

EVF = EE\VF\F = E\VF, =V (3.6.23)

by 2), V must vanish. Implies, statement 3) must be true if 2) is true.

Now, to prove that 3) = 2), assume that 2) is not true. Then there exists 0 # a € EAF.
But since a = EaF = Fa = Fa, it follows that s(a) < F and s(a') < F, which contradicts
3).

Therefore, 3) implies 2). O

The above theorem shows that there exist projections F and F' for which neither £ < F'

nor ' < E holds. However, there is a weaker notion of comparison for the projections.
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Theorem 3.6.2. (The Comparison theorem):
For any E, F' € P4, there exists a P € Pz, where Z4 is the center of A, such that

EP < FP,
F(1-P)<E(1-P)

Proof. Let {(E;, F;)} be a maximal pair of families of mutually orthogonal projections
with Ez S E, Fz S F, and Ez ~ Fl Let

Ev=\/E, F=\/F.
7 7

Then from the Proposition (3.27), Ey ~ Fy. We can define the orthogonal complements
E' = FE—Ey, ' = F — Fy. Since Ey and Iy are maximal, there cannot be any equivalent
subprojection of E’ and F’. It follows from the previous theorem that Z(E')Z(F') =0 or
equivalently E'Z(F') = 0.

Let P be the central support of F”, i.e P = Z(F). Then P € Pgz,, and we have:

EP = EyP ~ FyP < FP, and F(1—P)=Fy(l1—P)~ Ey(1—p) < E(1—P).

Hence,
EP<FP, and F(1-P)=E(l1-P),

as claimed. O

The above theorem tells us that even if two projections cannot be directly compared, we
can still compare them on subspaces determined by central projections P. Moreover, it
tells us that when A is a factor, any two projections are directly comparable.
Classification of Projections and von Neumann algebras:

Let F be a projection in a von Neumann algebra A. Then F is said to be:

1. Abelian: If EAFE is abelian.

2. Finite: If for F € Py, E ~ F < F = FE = F. That is, E is not equivalent to

any proper subprojection of itself.

3. Infinite: If it is not finite. That is, E/ can be equivalent to some proper subprojection

of itself.
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4. Properly infinite: If for every central projection F, E'F' is either infinite or zero.

There is no central subspace on which F' is non-trivial and finite.

5. Purely infinite: If for every projection F' < E, F is either infinite or zero. That

is, F/ should not have any non-trivial finite subprojection.
6. Minimal: If forany F € Py, F<E = E=F.
Further, we can prove some very useful theorems. As we will see, they play an important
role in the decomposition of von Neumann algebras.

Theorem 3.30. A nonzero projection E € Py is abelian if, for every F' € Py with
F < E, we have
F=EZ(F),

where Z(F') denotes the central support of F.
Furthermore, if A is a factor, then a projection E is abelian if and only if it is minimal.

Proof. Let E,F € Py and F < E, then we want to show that if E is abelian, then F' = F.

Since EAFE is commutative, for any a € A, we have
Fa(FE—F)=F(EaE)(E—F)=F(F —F)(EaE)=0 (3.6.24)

hence FA(E — F) = {0}, implies F = EZ(F). If Ais a factor, then if ' = E. Conversely,
if £ is a minimal then F' < F'| implies F' = F = EZ(F). O

Another very useful theorem will be useful.
Theorem 3.31. Let {E;} be a family of finite (respectively abelian) projections, centrally

orthogonal support. Then E =\/,.; E; is a finite (respectively abelian) projection.

Proof. Let F' is some projection,such that FF < E, F ~ E. Using the fact that Z(F;) are

mutually orthogonal,
(E-E)\/ Z(E.) =E - E; = E; = EZ(E)) (3.6.25)

since F; are finite,
E,=EZ(E,)=FZ(E;)<F Viel (3.6.26)
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Implies £ < F7. Therefore E = F and E is finite.
Now, let {E;} be a family of abelian projections with centrally orthogonal supports in a

von Neumann algebra. Let F' be a projection such that F' < E :=\/,.; E;.

Then we can define
F=\/F;,, where F,:=EFE;
el
Since the central supports Z(F;) and Z(Fj) are centrally orthogonal for i # j, it follows

that
Z(F)Z(Fy) = 6i3Z(Fy).

Thus, the family {Z(F;)} consists of mutually orthogonal central projections.

Furthermore, since F;E; = F;, it follows that F; < E;. Because E; is abelian, any sub-
projection is of the form E;Z for some central projection Z (relative to the center of A
restricted to E;). Hence,

F, = EiZ(F).

Therefore,
F:VE:V&K@:E(VHEO.
i€l i€l i€l

Since \/,c; Z(F;) is a central projection, it follows that
F = EZ(F),

where Z(F') is the central support of F'.

Thus, for every projection F' < E, we have F' = EZ(F'). This proves that E is an abelian

projection. E is abelian®. O

The above classification of projections provides a useful way to analyze von Neumann
algebras. Since von Neumann algebras are unital, and identity I dominates every projec-
tion. Therefore, we can naturally extend the notion of finite and infinite to von Neumann

algebras as follows. Let A € B(#) be the von Neumann algebra. Then A is said to be:

"The Finitness is used in the second equality. That is E ~ F = Z(E;)E ~ Z(E;)F and since Z(E;)E
is finite. Implies Z(E;)E = Z(E;)F.
8See theorem (3.30)
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e Finite, infinite, properly infinite, and purely infinite, if I is a finite, infinite,

properly infinite, and purely infinite projection, respectively.

e Semifinite, if any non-zero central projection contains a non-zero finite projection.

Murray von Neumann Classification:
Let A € B(H) be the von Neumann algebra. Then A is said to be:

1. Type I: If for every non zero central projection E, there exists a non-zero abelian

projection in A. Further

e It is Type Iy, if it is finite.
e It is Type I if it is infinite.

2. Type II: If it is semifinite and contains no non-zero abelian projection. Further,

e It is Type II; if it is finite.
e It is Type Il if it is not finite.

3. Type III: If it contains no non-zero finite projection.

It is easy to see that every subprojection of an abelian projection is finite. Let E be an
abelian projection, then from (3.30), for F' < E, FF = EZ(F). We want to show that F
is finite. Let G < F and G ~ F, then G < E, implies G = EZ(G). But since F' ~ G,
Z(G)=Z(F) = F = G. Therefore, F is finite.

Now, let us use this fact in the classification above. If a von Neumann algebra contains
an abelian projection (also contains a finite projection), then it is of Type L. If it does not
contain any abelian projections but does contain some finite projections, then it is of Type
II. Furthermore, if it contains neither abelian nor finite projections, then it is of Type III.

Now, let us use this to prove the following theorem.

Theorem 3.32. (Decomposition theorem):
Let A be the von Neumann algebra. Then there exists a unique decomposition of A into

the direct sum

A= A[@AH@A[U (3.6.27)

of type I, type II, and type III von Neumann algebras.

Proof. Let {E,}ner be amaximal family of centrally orthogonal abelian projections. Then,
by (3.31), £ := \/,,c; Ey is abelian. Let Z; be the central support of E, i.e Z; = Z(E).
Then A := AZ; is a von Neumann algebra of type I.
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Indeed, if Z < Zj, that is, if Z is a nonzero central projection in Aj, then ZFE is a nonzero
abelian projection dominated by Z (if it were zero, then Z; — Z < Z; would contradict

the fact that Z; is the central support of E).

By construction, (1 — Z7).A is a von Neumann algebra with no abelian projections. Let
{F;} be a maximal family of centrally orthogonal finite projections in (1 — Zj).A, and let
F =" F;, which is finite by (3.31). Now, let Z; be the central support of F'in (1—Z7)A,
ie Zip = Z(F). Then Arr = Zi(1 — Zr)A is a von Neumann algebra, and, as in the

previous paragraph, one shows that it is of type II.

Finally, letting Z;;r = 1 — Z; — Zy7, we find that Zjj is central, and Aj;; = ZprAis a

type III von Neumann algebra. Therefore,

A=Ar® A1 ® Arrr (3.6.28)

The uniqueness follows from the uniqueness of Z(E) and Z(F) for any equivalence maximal

family of orthogonal projections. O

For more details, see [22]. The theorem above shows that a general von Neumann algebra
does not need to be of a single type; rather, it can be decomposed into components of
different types. If algebra is a factor, then the following corollary follows.

Corollary 3.6.3. A factor A C B(H) is of exactly one of the following types: I, I, 111,
11, or I11. Tt is of type I if it contains a minimal projection. Furthermore, if the identity
projection I can be written as a sum of n mutually orthogonal minimal projections, then

A is of type I,. If n = oo, then it is of type I.

If A has no minimal projections but contains a non-zero finite projection, then it is of type
1I. Within type I1, if the identity projection I is itself finite, then A is of type Ily; if I is
infinite, then it is of type Il.

Finally, if A has no non-zero finite projections at all, then it is of type I

Proof. If A is a factor, then its center is trivial. That is, the center contains only the

identity projection I or the zero projection. From the decomposition theorem, we have
Zr+Zir + Zir = 1,

Which implies that only one of them can be nonzero. Hence, a factor von Neumann algebra

can be of only one type.
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Now, suppose Z1 is the only nonzero central projection. Then the algebra is of type I.
Moreover, in every factor, every abelian projection is minimal. Since Z; = I dominates
the collection of all mutually orthogonal abelian projections F, it follows that £ = Z; = 1.
If not, then the orthogonal complement I — E would be a nonzero central projection. But
because the algebra is type I, this complement must contain an abelian subprojection,

which contradicts the maximality of F.

Therefore, in a type I factor, the identity projection can be written as a sum of minimal
projections—specifically, n < dim H minimal projections®. If n is finite, it will be type I,,
otherwise it will be type I.

Now, suppose Zj is the only non-zero central projection. Since Z;; does not support any
abelian projections, it follows that the algebra lacks minimal projections and is therefore
of type II. Furthermore, if the identity projection [ is finite, then the algebra is of type
I1;; otherwise, it is of type Il.

Finally, if Z;7; is non-zero, then the algebra contains neither abelian nor minimal finite

projections. Therefore, it is of type III. O

Thus, having classified von Neumann algebras via the theory of projections, we now return
to our original question: Can a renormalized trace be defined that renders all or some pro-

jections finite? Moreover, is such a construction possible for every von Neumann algebra?

We have already introduced the definition of a general trace in (3.17). We have also
seen that it allows us to define the expectation value of any operator in the algebra. How-
ever, the definition is quite general and imposes no restrictions on how the trace assigns

values to positive operators.

Physically, we do not want our trace to assign zero to any nonzero positive operator
or nonzero density matrix. This motivates the requirement that the trace be faithful.
Furthermore, we want the trace to be compatible with the spectral decomposition of
self-adjoint operators, since every observable can be written as the supremum over linear

combinations of its spectral projections. That is, we expect

T <Sup pz) = sup 7(p;)
1 (A

If H is a separable Hilbert space with orthonormal basis {|e;)}, then E; = |e;)(ei| is a minimal
projection and E = %" |e;) (e;]| = I
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whenever {p;} is an increasing net of positive operators (e.g., spectral projections). This

is the property of normality.

Finally, our entire motivation for considering such a general notion of trace is to be able
to define density matrices. Therefore, we want our trace to assign finite values to
all finite projections. This is the condition of semifiniteness. These requirements

motivate us to define the normalized trace as follows.

Definition 3.33. (Renormalized trace):

A trace 7: Ay — [0, 00] is a normalized trace if it follows:
1. Faithful: For any p € Ay, 7(p) =0 = p=0.

2. Semi-finitness: For every P € A, there exists some non-zero @ € A, with
Q < P and 7(Q) < 0.

3. Normal: If {p;} is a family of positive operator in Ay with p = sup, p;, then
7 (sup; pi) = sup; 7(pi).-

This is the minimal requirement we expect from any well-defined trace. As emphasized
earlier, projections can be thought of as the building blocks of positive operators. From

the above definition, it follows,

1. Every non-zero projection will have a non-zero trace.

2. Equivalent projections have equal trace.
Let E.F € Py and F ~ F. The there will some partial isometry V such that,
E=V*V and F = VVT. From (3.6.4), it follows that,

(E) =r(VIV) = 7(VVT) = 7(F)

3. f E,F € Pgand E < F, then 7(F) < 7(F).
Using linearity and the fact that ' = EF+ F — E,

T(F)=71(E)+7(F - FE) = 7(F) >71(E) (3.6.29)

4. An infinite projection has infinite trace. For every infinite projection, there exists an
equivalent proper subprojection. Let F' € P4 be an infinite projection. Then, there

exists a projection F such that F < F and F ~ F. Suppose 7(FE) is finite. Since
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F > E, we have
T(F)=7(E)+7(F — E).

Since £ ~ F, 7(F) = 7(F), implies 7(F — E) = 0. From property (1), this would
mean FF = F, which is a contradiction since E is a proper subprojection of F.
Therefore, 7(E) = oc.

5. If E, F € P4 are finite projection with 7(E) = 7(F'). Then E ~ F.
Let us assume I’ < E. Then there exists I’ ~ I, such that F/ < E. Therefore,

7(E)=7(F')+7(E - F').

This implies 7(E — F’) = 0. From property (1), it follows that E = F' ~ F.

Similarly, if we assume F' < F, the result will be the same. Hence, E ~ F'.

It can be shown that any two infinite projections are equivalent. Furthermore, it follows
from properties (2) — (5) above that the trace preserves the algebraic comparison; that is,
it respects both the von Neumann equivalence and the partial order on projections. That
is, for any E, F € Py,

T(E)=7(F) < E~F

T(E)<7(F) <= EXF

Now, we would like to ask: which von Neumann algebras can admit the renormalized trace
defined above?

Let us start with type III von Neumann algebras. From the algebraic classification of
von Neumann algebras, we know that in a type III von Neumann algebra, there are no
non-zero finite projections. This implies that for any projection E in a type III algebra,
T7(E) € {0,00}. Therefore, there is no trace on a type III algebra that satisfies semi-
finiteness, since semi-finiteness requires the existence of projections with finite, non-zero

trace. As a result, there is no renormalized trace for type III von Neumann algebras.

Now, let the algebra be a type I, factor. Since in a factor algebra all projections are
comparable, and type I algebras have minimal projections, any two minimal projections
must be equivalent. Then, from property (2), any minimal projection must have the same
trace. Let A\ be the trace for any nonzero minimal projection. Furthermore, we know

that any projection can be written as a linear combination of at most n minimal mutually
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orthogonal projections. For any projection F in a type I, algebra, we have
7(E) = Cp\  with C, € {0,1,...,n},

and 7(I) = nA, which follows from the fact that the identity dominates every projection.
We emphasize that n can be infinite, and then the algebra will be type Io.. This clearly
satisfies all the properties of the renormalized trace.

Now, let the algebra be of type II. In a type II von Neumann algebra, there are no
minimal projections. However, there is a maximal projection, namely the identity I,
which dominates every other projection. Let the trace of the identity be A € R, which is
finite in the case of type II; algebras and infinite in the case of type Il algebras. Then
for any projection F in a type II algebra, we have 7(E) € [0, A\]. Now, let us argue that
for each a € [0, A], there exists a projection in the algebra such that the trace takes the

value o. This implies that the trace takes values continuously.

In type II for any projection E with 7(E) < A, and for any « € [0, 7(E)], define the set:
So :={F < E|F is a projection and 7(F) < a}.

This set is non-empty and directed. By Zorn’s Lemma, there exists a maximal element
F, € S,. Suppose 7(F,) < a. Since E — F, # 0 and A contains no minimal projections,
we can find a projection G < E — F, with 7(G) > 0 and such that 7(F,) + 7(G) < a,
contradicting the maximality of F,. Therefore, 7(F,) = a.

Furthermore, there is a remarkable theorem by von Neumann which states that the trace
defined above is unique up to an overall scaling factor (for details, see [22, 23]). By an
overall scaling, we mean that any other trace 7/(-) must be of the form 7/(-) = a7(-), where
« is a positive constant.

We conclude this section by emphasizing that, through appropriate scaling of finite pro-
jections, we can interpret them as density matrices. Therefore, only type I and type II
von Neumann algebras admit density matrices. Furthermore, in type I algebras, if we
choose the normalization A = 1, then each minimal projection corresponds to a pure state.
Hence, only type I algebras admit pure states in this sense. This observation connects the

discussion of the previous section with the current one, thereby completing our exposition.
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3.7 Tomita Takesaki modular theory

Tomita—Takesaki modular theory is a powerful tool for investigating von Neumann alge-
bras. It plays a crucial role in the mathematical development of von Neumann algebras and
their applications to physical systems, such as systems described by statistical mechan-
ics and quantum field theory. There are many outstanding works by Connes, Bisognano,
Wichmann, Borchers, and others, where modular theory has played a pivotal role. It is
modular theory that makes it possible to connect abstract von Neumann algebras with
local algebras in quantum field theory in a useful and meaningful way. An excellent review
on the use of modular theory in quantum field theory is provided by Borchers [42]. Mod-
ular theory also plays an important role in understanding black hole thermodynamics, as

we will see later in this thesis.

Let us now begin by briefly introducing the key concepts of modular theory.

3.7.1 Brief Review of Modular Theory

Let A be a von Neumann algebra acting on Hilbert space H. Let A’ be the commutant of

the algebra A.

Definition 3.34. (Cyclic and Separating vector):
A vector |¢) € H is said to be cyclic for algebra A if

And it is called separating with respect to A, if

Vac A, alp)=0 = z=0. (3.7.1)

\. J

The above definition tells us that if a vector is cyclic, then the action of the algebra A on
this vector generates a dense subspace of the Hilbert space. In other words, a cyclic vector
encodes enough information to approximate any state in the Hilbert space using vectors
of the form aly), with a € A. Thus, given an algebra A, we can, in principle, generate the

Hilbert space from a single vector (”cyclic vector”), also known as GNS reconstruction.

Furthermore, the separating property of a vector ensures that the vector can distinguish
(separate) between distinct operators in A. That is, if a,b € A with a # b, then a
separating vector |¢) satisfies a|y)) # b|). Equivalently, alt)) = 0 implies a = 0.
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Furthermore, cyclic and separate vectors also encode information about the commutant.

We can prove the following proposition.

Proposition 3.35. Let A be any von Neumann algebra and A’ be its commutant. Then

|v) € H is cyclic for A < |¢) is Separating for A’

Proof. We will first prove = direction.
Let |¢) € H is cyclic for A and b € A’ is some operator, such that b)) = 0, then

bal) = [b,a]j)) =0 Vae A (3.7.2)

Since AH is dense in H, for every |¢) € H there exists a sequence of operators {a,} € A
such that lim,, o an|YV) = [¢). We know from the above equation that ba,|1) = 0 for any

n. Therefore, from the continuity of bounded operators,
blp) = lim ba,|y) =0 (3.7.3)
n—oo

Implies, b = 0. Hence [¢) is separating for A’.

Now let us prove the <= direction. We assume that A is not cyclic, and we aim to show
that A" is not separating. Let |1)) € H be a vector that is not cyclic for A, so the cyclic
subspace

H! = AlY) C H.

Define P to be the orthogonal projection onto the orthogonal complement (H')*. Since
[y) € H! (as I € A), it follows that

Ply) = 0.

Moreover, P is a bounded operator and belongs to A’; we have established this in (3.4).
Therefore, [¢)) is not separating for A’ O

Since A can be any von Neumann algebra, and we know A’ is always a von Neumann

algebra. Therefore,
|4y € H is cyclic for A <= |1)) is Separating for A"

Furthermore, it follows from the above proposition that if |1) is cyclic and separating for

A, then it is cyclic and separating for A’, and the converse is also true.
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Given a cyclic and separating state, Tomita and Takesaki showed that one can define an
important operator that relates any operator in the algebra to its adjoint. This operator
plays a crucial role in understanding the structure of von Neumann algebras. In particular,
it is essential for analyzing Type III algebras, which are of physical importance to us,

especially in the context of quantum field theory.

' 1

Definition 3.36. (Tomita operator):
Let |¢)) € H be a cyclic and separating vector, then the Tomita operator for the

pair (A, ) is an antilinear operator,

Sy AlY)y CH — Aly) CH
Syalp) = al|y),Va € A

\. J

We want to emphasize that the cyclic and separating vector plays a crucial role in the
definition of the Tomita operator. Since |1)) is separating, for any non-zero a € A, we have
aly) # 0. This is important for Sy, to be well-defined. Otherwise, if for some a, a [¢)) = 0,
then Sy would map it to al 1) # 0, violating well-definedness.

Additionally, due to the cyclic property of |¢), the domain of Sy, is dense in H. Together,
cyclicity and separability imply that Sy is closable. From now on, we will assume that Sy,

has been closed and denote the closed extension by the same symbol.

Furthermore, the Tomita operator is unbounded. If it were bounded, then by the bounded
operator extension theorem, it could be extended to a bounded operator on the full Hilbert
space. This would imply the existence of a bounded operator that relates every bounded

operator to its adjoint, which is not true in general.

For example, in quantum field theory, we know that any state at very high energy resembles
the vacuum. Therefore, we can use high-energy modes to construct a sequence of operators
that approximate the annihilation operator. However, the adjoints of these operators will
approximate the creation operator. So, Sy, maps states very close to the vacuum to states
that are not close to the vacuum, and hence it must be unbounded.

It is straightforward to see from the above definition that,

o 52 =7

o Syli) =)
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Therefore, Sy, is an invertible operator. We also want to emphasize that it is a very special
operator in the sense that it is an unbounded operator whose square is bounded.

It is natural to ask whether we can define a similar operator for the commutant. Let S;p
be the Tomita operator for the pair (A’,1). We can easily show that S/, = Sj/).

For any a € Aand b’ € A',

(Syb'plaly) = plalp) = (] Va|v) = (alp|b[p) = (Spav|V [¢) = (SLY'Ylaly) (3.7.4)

In the last equality, we have used the antilinearity of the Sy 10 Since the above equation

is true for any a € A, b’ € A" and cyclic separating state [1). The Tomita operator S, of
(A, 19) s 5],

Theorem 3.37. Let T be a closed, densely defined operator on a Hilbert space H . Then
there exists a positive self-adjoint operator A, with Do = Dp and an isometric operator:
V i ran(A) — ran(T) where ran(A) = ran(T) such that T = VA and A? = TTT.

Moreover, if ker(A)=ker(T') , such decomposition is unique.

Proof. Since T is closed and densely defined, the adjoint 71 exists and is also densely
defined. Then the operator TTT is a positive, self-adjoint operator. By the spectral

theorem for densely defined operators, we can define,
A= (TTT)V2.
Then A is positive, self-adjoint, and A? = T1T, with D(A) = D(T).
For any |¢) € D(T'), we compute:
IT1)I* = (TYITI) = (TTTply) = (A%, 9) = | Ap|*

Therefore, the mapping
VA — Ty

defines an isometry on ran(A), since it preserves the norm. Thus, V extends to a partial

isometry from ran(A) to ran(7"), and we can write

T=VA.

19An antilinear operator K has the following property, (1| K |¢) = (KT|¢) = (¢| KT |4).
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Uniqueness: Suppose T = V1A = V5 A are two such decompositions with the same A,
and assume ker(A) = ker(T'). Then ViAlyp) = VaAly) for all [¢p) € D(A), and hence

Vi = V5 on ran(A). Therefore, V' is uniquely determined under this condition. O

The more elaborate proof of the above theorem can be found in any standard book. Since
Sy satisfies all the properties of the above theorem and it is antilinear and invertible, we

can uniquely decompose Sy into
Sy = JuAY? (3.7.5)

where Jy, is antiunitary operator called modular conjugation and A:/ % is a self adjoint

positive operator satisfying,
Ay =818, (3.7.6)

Ay is known as a modular operator. Similarly, we can obtain the polar decomposition,
S:p = JI’Z)A;/ ?. The modular operator and modular conjugation have many nice properties.

We will list some of them here.

L Ay ) = [¢).
It follows from the fact that I belongs to both A and A’. Therefore,

Syle) = 1), Shlb) =10) = Aylv) = SLSy |4) = [¥)

2. T2 T, = A5

Since Si = I, it follows from polar decomposition,
ToA TN =1

Implies,
JpA 20y = A,

3. Ju,Af;Jw = Af;, where t € R

It follows from property (2) and antilinearity of Jy.
4. Jp =1

Since JwAi)/ 2J¢ = A;l/ 2, and Jy, has inverse,

2/ 7—1 A 1/2 oA -l2 —1/2
Jw(Jw Aw J¢)_Aw _I.Aw
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Since Jz; lAi/ 2J¢ is positive and from the uniqueness of polar decomposition of

A;l/z, we must have Ji = I. This also implies that Jh = Jy-

5. Jj = Jy and A, = Al
Since,

Sy = JAL =81 = ATy = TPy = Jua

where we have used the property (2) and (4). From the uniqueness of polar decom-

... 1
position, J;, = Jy and A, = Ay

6. Va,b € A, (Y| alyb[)=(| ba [¢))

(Y] adyblv) = (¥|aS],Syb|¢) = (] aSLT [v) = (Syate[bi[e) = (t[bale))

7. Let a(t) = AzaA;it, where a € A is a modular evolution of an operator. Then, all
operators that evolve under a modular operator satisfy the KIMS condition. That
is, Va,b e A

(la(t +i)b(t)[¢) = ([b(t)a(t)]¢)

We can easily prove the above relation using property (1) and 6),

(@la(t +)b(t)|0) = (WIAL aA T TTALDA T |¢) = (| Aybly) = (baly)
= (YIAUDA S A al " [) = (lb(t)a(t)|v)

This tells us that the state is thermal with unit temperature with respect to the

modular Hamiltonian Ky = —InAy.

8. Va,b,c € A, [SyaSy,blc|y) =0

SypaSybeli) = Syactbl|v) = bealyh) = bSyact|ph) = bS,aSycl)

9. The modular operator generates the automorphisms of the algebra, and modular
conjugation acts as a reflection onto the commutant. That is, for all a € A and
t e R,

Afad e A, Jyaly e A

This famous theorem by Takesaki is not proven here, but interested readers can refer
to Takesaki’s book [43] or notes by Sorce [23, 44].
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One might initially think that in property (8), we have shown that SgaSg belongs to
the commutant algebra. However, what we have actually shown is that S;aS,; commutes
with all elements of the algebra when viewed as an operator on the subspace AH. Such
operators are said to be affiliated with the commutant algebra: they commute with all

elements of the algebra but do not necessarily belong to the algebra.

For an operator to belong to the algebra, it must be bounded and admit a bounded
extension to the entire Hilbert space. In the case of SyaSys, we have not yet demonstrated
that it is bounded or that it extends to a bounded operator on the full Hilbert space;

establishing this would require additional analysis.

However, Takesaki’s theorem that proves property (9) also establishes that SgaSg does
indeed belong to the commutant algebra. Since such operators frequently appear and
behave almost like elements of the algebra, we now provide the definition of an operator

affiliated with a von Neumann algebra, to avoid further confusion.

7

Definition 3.38. (Operator Affiliated to the Algebra):

Let A be a von Neumann algebra with commutant A’. A closed operator T' (possibly
unbounded) is said to be affliated to the algebra A, if it comutes with all the element
of A’ on every vector where both a'T and Ta’ is defined, for o’ € A'.

We will conclude the introduction by quoting the very useful theorem by Takesaki [43].

Theorem 3.39. If A is a von Neumann algebra and |V) is a cyclic and separating vector
for A, then there exists a unique one-parameter automorphism group o : a € A — oy(a) €

A, where t € R, such that:

1. The vector |¥) is invariant under the automorphism group. That is,

or (W) (V) = |W) (],

2. The state |V) satisfies the KMS condition with respect to or. That is,

(V|otti(a) o (b)[ ) = (¥]ot(b) ot(a)| V),

for alla,b e A and t € R.

We will not prove this theorem here; the proof can be found in Takesaki’s book [43].

However, it is important to observe that the modular operator generates an automorphism
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of the algebra, leaves the cyclic and separating state invariant, and satisfies the KMS
condition—see properties (1),(7), and (9). Therefore, the modular automorphism is the
unique automorphism associated with the pair (A, |¥)) that satisfies the conditions of the
theorem. Moreover, we can use this theorem to determine the modular operator associated
with (A, |¥)).

3.7.2 The Relative Modular Operator

The modular theory can be extended to what we can call the relative modular theory.
This extension involves defining Tomita and modular operators relative to two states [45].

Let us begin with the definition.

7

Definition 3.40. (Relative Tomita Operator):
Let |¢) be cyclic and separating for an algebra A and |¢) be another state. We can

define an antilinear relative Tomita operator Sy, for the algebra A,

Sppwalv) = al |¢)

\.

Since [¢) is cyclic and separating for the A, Sy, is densely defined. It also follows that
Sgpy is closable. We will assume that Sy, has been closed and denote it by the same
symbol. We emphasize that |¢) can be any state. But, if |¢) is cyclic and separating, then

we can define,
Syipald) = al 1) (3.7.7)

In this case, Sy|¢Sgp = I, and therefore Sy, is invertible. However, let us not assume this
for now; we will return to it after introducing a few more definitions that do not require
this assumption.

Following the steps in (3.7.4) we can show that the relative Tomita operator S;)‘ " of A/
follows S<,¢>| = S};| v Furthermore, we can apply the polar decomposition theorem on Sgyy-

We can write,

1/2
St = Jopu g (3.7.8)

where,

Agpy = S(; St (3.7.9)
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is a self-adjoint positive operator called a relative modular operator. Notice that if |¢) =
|1), then

Syl = Sy Tyl = Jy Ayjy = Ay

If |¢) is not separating, then S|, will have a non-trivial kernel, and the polar decomposi-
tion in (3.7.8) will not be unique. However, we can make the polar decomposition unique
by defining Jy|,, in such a way that it annihilates this kernel. Furthermore, if |¢) is not
cyclic, then the image of S|, is not dense in the Hilbert space. This implies that Jy|,, will
be an antilinear map only on ran(Sg,,). However, if |¢) is cyclic, then Jg|,, is antiunitary.
Following the steps in (3.7.4), we can show that,

_ ot
Sopp =9

" (3.7.10)

where S(’m " is the Tomita operator of the commutant. The relative modular operator and

conjugation have many interesting properties. We will list here some of them,

1. If both |¢) and |¢) are cyclic and separating, then J¢|¢A11/)/|;J¢|¢ = A;ﬁf.

Since Sy|¢Sgjy = I, it follows from polar decomposition,

Tols A

1/2
MHWA

oy —
Implies,
1/2 A—1)2
J¢\¢A¢\¢J¢\¢ - A¢|w
2. If both [¢) and |¢) are cyclic and separating, then JysJg|y = 1.
This follows from the property (1) and the uniqueness of polar decomposition.

/
and (A ¢|¢

!
3. Ty =Tl o)’

ol
Since,

, 2 _ ot AL/2 gt Pt AL FoA-1/2
b = T (D)2 = 80, = Ay Tl = Tl Tl A Tl = ThuA 0

where we have used the property (1) and (2). From the uniqueness of polar decom-

L ~1/2
position, J¢|w JT| and (A’QL)W})U2 = Aw\¢>/ .

4. Let o’ be any unitary operator in A’, then Aggy = Agy-
Let us apply the definition of a relative Tomita operator to state a[¢), Sqygjyb |[¢)) =
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a't |p) = bal |¢) for any b € A. Implies, Sy 4)yy = a’'Sg|y. Therefor,
_ gt _ qf _ qf _
Drsfy = ShgiySaohs = Shypd 0" Spy = Sl Sy = Agjy

5. Va,b € A, (1] algyb 1) =(6] ba |9).

Since,

(Wl atyub|6) = (6] aSh, Syub|6) = (w]ash bt |6) = (SyualbloT[e) = (9lbale)

6. There are some fascinating relations between the modular operator and the relative
modular operator due to Connes, known as the Connes Cocycle Theorem. The

key statements are as follows:

(a) ugly(s) = A% A = Af;A_is € Aand s € R.

Pl = (4L
(b) uiblw(s) = A;ﬁZAf; =APAN, € A’ and s € R.

We will not prove this theorem here, but a very nice proof can be found in
[46]. Though it is true for all von Neumann algebras, it is easy to prove it for

the type I case, as we will see in the next section.

Let us make a few remarks about the beautiful Connes Cocycle theorem. The first one
is, ugjy(s) and u’d)‘ 1/1(8) are unitary operators. The second one is that the relative modular
operators relate the modular flow of two states, that is

" = ATALS = AGAAG, =AY (3.7.11)

Another interesting property that follows from the fact that u;ﬂ » € A’ is that for a € A,
uiﬁw(s)au;ﬁlw(—s) =a = AﬁfwaA;‘i; = f/faAJis (3.7.12)

Af;‘ » generate same modular flow that Aﬁf generates. Hence, the relative modular opera-
tors have very nice applications.

Another important application of the relative modular operator is that it allows us to
define relative entropy. Moreover, we want to emphasize that the modular operator is
defined for all von Neumann algebras, and therefore, the relative entropy defined using it
will also be well-defined for all types of von Neumann algebras. It was first introduced by

Araki and is hence known as Araki relative entropy.
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Definition 3.41. (Araki’s relative entropy):
Let |¢) be a cyclic and separating state and |¢) be another state, then Araki’s

relative entropy is defined as

S (¢llY) = — (¢l log A, #) (3.7.13)

where A:;l' b isa relative modular operator associated with von Neumann algebra A.

The above definition of Araki relative entropy is a generalization of relative entropy from

quantum mechanics to the infinite-dimensional case. It has many nice properties.
1. It is defined in all types of von Neumann algebras.

This follows from the fact that the relative modular operator is well-defined in all

von Neumann algebras.

2. The Araki relative entropy vanishes when both states are the same.

If |¢) is equals to [¢), then

SAW 1) = — ([ log Agy,, 1) = (|log A7 ) = 0

3. The Araki relative entropy is non-negative. That is

SA(B|[v) >0 (3.7.14)

The above statement follows from the fact that log Aﬁ‘ s = I— A;;l‘ e Therefore,
SA(¢|[v) > (S| — Aﬁkﬁ‘@ = 0!''. Hence, Araki’s relative entropy is always non-

negative.

4. Araki’s relative entropy is Monotonic under the inclusion of the algebra. That is,
Let A be the von Neumann algebra and B be the von Neumann subalgebra of A,

then
SB(]|w) > 5A(||¥) (3.7.15)

The proof can be found in [24].

1We assume that () = (¢|p) =1
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It is called a relative entropy because it quantifies the distinguishability between two
quantum states, as should be evident from properties (2) and (3). We emphasize again

that the Araki relative entropy reduces to the familiar finite-dimensional expression,

Try(plogp — plogo),

when p and o are density matrices. These properties have profound implications in physics.
For instance, there exists a beautiful derivation of the Bekenstein bound using relative
entropy by Casini [47]. Moreover, the Quantum Null Energy Condition (QNEC) can be
rigorously proven using relative entropy, as demonstrated in [48]. The relative entropy
also plays a crucial role in various proofs of the Generalized Second Law (GSL) [5, 3, 4], as
we will see later in this thesis. Many other important applications exist across quantum

field theory and quantum gravity.

3.8 Finite-Dimensional Quantum Systems And Some Lessons

In this section, we explicitly construct the modular operator and modular conjugation in
a finite-dimensional quantum system. The example is taken from Witten’s lecture notes
[24]. We include it here because it is simple and serves the purpose of building intuition
for understanding these objects. By exploring modular operators in finite-dimensional
settings, we aim to draw some valuable lessons that will help us later in more general

contexts.

3.8.1 The Modular Operators in Finite-Dimensional Interacting System

In finite dimensions, each system is described by a matrix algebra (3.1), and the interesting
case is that of a bipartite quantum system (3.2) defined on a Hilbert space given by the
tensor product H = H1 ® Ho.

Let A be the algebra of linear operators acting on #;, and let A’ be the algebra of linear
operators acting on Hg, as described in (3.2). To apply modular theory, we require a cyclic
vector |U) for A. From (3.35), we know that such a vector will be separating for A’, and

vice versa. Let us understand when a vector in ‘H will be cyclic.
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From Schmidt decomposition theorem, we know that any |¥) € H admits an expansion,

n
T) =" ek |vn) @ [U), (3.8.1)
k=1
where n = min[dim(#,), dim(%2)], |¢%) are orthogonal unit vectors in #H; and 1)}, are
orthogonal unit vectors in Ho. Furthermore, the action of operator a® I € A on the above

state is defined as,

(@@ 1)) = cpalihy) @ [¢4,) (3.8.2)
k

Now, we want to determine when the state is cyclic and separating for A, or equivalently,
separating for both A and its commutant A’. Suppose that a ® I annihilates the state
|W). This is possible if and only if a annihilates all of the vectors |i)g).

Now, assume that all coefficients c; are nonzero. Then, the set {|¢y)} forms a complete
basis for H;. This implies that @ = 0. Thus, |¥) is separating for the algebra A if and
only if the [t;) form a basis of H;. Similarly, it is separating for A" if and only if the [¢;)

form a basis for Hs.

This is possible precisely when H; and Hs have equal dimension. The converse is also
true: when H; and Hs both have dimension n, a generic vector will admit a Schmidt
decomposition (3.8.1), and if all the coefficients ¢; are nonzero, then the vector will be

cyclic and separating for the algebras of both subsystems.

For simplicity, we will write |¢;) = |k), [¢}) = |k)" and |j) ® |k)" as |j, k). Thus

©) = clk)k) =D cklk, k). (3.8.3)
k=1 k=1

One interesting point we wish to emphasize is that precisely when the Hilbert spaces of
both subsystems have the same dimension, the above state defines an isomorphism from
the algebra A to the Hilbert space H, as also explained by Witten in [24].

Now, we would like to find the modular data associated with the finite-dimensional system.
So, we start with the definition of Tomita’s operator Sy : H — H, defined by the following

action of the operator in A,

Sy((a® 1) |¥) = (af @ I)|0) (3.8.4)
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Now, pick some i and j in the set {1,2,--- ,n}, and choose some elementary matrix a € A
that acts on H; by
ali) =17), alk)=0if k #i (3.8.5)

and its adjoint acts by,
allj) =), a'lk) =0 if k#j (3.8.6)

Now, we compute the action of a on |¥),
(a® )T = ¢lj,i), (al @ I)|[T) = cli, ) (3.8.7)

It follows from the definition of Sy that,
Sw(cilf,i)) = ¢li, j) (3.8.8)

From the antilinearity of Sy,
Sulj,i) = %yi,ﬁ (3.8.9)
This defines the action of Sy on the arbitrary state and therefore completely specifies the
Tomita operator. Infact, we can write,
"o
Su = 2ij)i.jl (3.8.10)

ij=1 "

Similarly the adjoint S\TI, acts by
. Cj,. .
Shli.g) = 1) (3.8.11)
7

Since modular operator Ay = S\TI,S\I,,

2
.. Cj ..
Aglj, i) = < 17,4) (3.8.12)

Ci|2

To obtain the above equation, we used the antilinearity of STI,. Therefore, we can write,

n 2
Gl* . ., .
Ao =3, C],||z 17,4) (i, j] (3.8.13)
ij=1""



Chapter 3. von Neumann Algebras for Physicist 107

Now, we can find the modular conjugate Jy, using the polar decomposition Sy = J\pAl/ 2
Since
12 (. . le;|?
A2 1j,i) = | 3‘2 19,4), (3.8.14)
’l
We will get,
Ju [j,1) = i, ) (3.8.15)
or equivalently,
Cic; ,
Jy = Z o z. 10,04 (3.8.16)
i,7=1

We have now constructed the modular operator and modular conjugation. While this
construction is straightforward in finite dimensions, we wish to emphasize that the Tomita
operator and the modular operator are bounded operators in this setting.

Now, we would like to construct the relative Tomita operator Sy and the modular
operator Ay associated with it. But for that we need another state. Let |®) be another
state in H. In some orthonormal bases ¢; of Hi, which we want to denote as |«) and ¢/,

of Ha, which we will denote with |o/), where a = {1,...,n}.

Zd o) @ |e)’ Zd |av, @) (3.8.17)

where d,, is some coefficient. Further for notational convenience, we write |a)® i)’ = |a, i),
i) @ |a) = |i, ), etc. Again, the state |®) is cyclic and separating for both algebras if
and only if the d, are all nonzero. But we will not assume this, as already emphasized
in the introduction of relative modular theory. The relative Tomita operator Sg|e define

through the equation,

Spip((@a®1)[¥) = (a' ®1)|®) Vae A (3.8.18)
Now pick some i and « from {1,2,--- ,n} and matrix operator a € A such that,
ali) =la), alj)=0 for j#i (3.8.19)

Then the adjoint acts by

a'la) = i), a'|B) =0 for B # o (3.8.20)
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then its action |¥) and |®) is given by,

(a®@ DT = ¢la,i), (af @1)|®) = dqyli,a) (3.8.21)
therefore,
d
Sopwla, i) = =i, a) (3.8.22)
G
or equivalently,
n
do . .
So|w = Z f’l>a><l,a| (3.8.23)
ij=1 "
The adjoint is given by,
d
Shigli-a) = =a,i) (3.8.24)
Ci
Since Ag|p = S\TI,@S\I,@, we get
N\ ldal?)
Agpy|a, i) = e |ov, 7) (3.8.25)
(2
or equivalently,
n
dol®, .
Saw = 32 ool 520
ij=1 "

Now we will write some of the above formulas in terms of density matrices. For our

convenience we will assume that |¥) and |®) are normalized. That is,

D_leil’ =D ldaf* =1 (3.8.27)

To the state |U) € H; ® Ha, We can associate a density matrix,

n
pr2 =[O (W] = " Jealli, i) (i, i (3.8.28)
i=1
It is basically a projection operator onto the subspace generated by |¥). It is a density
matrix because it is positive and has unit trace with respect Hilbert space trace.

Tr 12 P12 = 1 (3829)

where Tr 15 represents the trace over H = H1 ® Hs. We can define reduced density matrix

on H1 and Ho by taking a partial trace over Hy or Hs, respectively.

p1="Trapiz, p2="Tripi (3.8.30)
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Where Trq and Tro are trace on Hi and Ho. The explicit form is,
pr=>_leilli)(il, p2=Y lei*li)' (il (3.8.31)

It can easily be seen from the above equation that p; and py are positive matrices acting
on H; and Hy respectively. It follows from (3.8.29) that they have unit trace, ie Tri p; =
Tr1Tro pio = Tria p12 = 1. It is also evident from (3.8.31) that, p; and py are invertible
if and only if the ¢; are all nonzero, that is if and only if |¥) is cyclic separating for both
algebras. Furthermore, we use (3.8.31) to write modular operator Ay in (3.8.13) and

density matrix pj2 in (3.8.28), as

Ay =p@py"  p2= P @2 (3.8.32)
Similarly, we can define a density matrix 12 = |®)(®| associated to the state |®) and

reduced density matrices o1 = Try 012, 02 = Tr 012. The reduced density matrices of |®)

are

o1 = ldl’|e)(al, o2=_|dal?|a) (] (3.8.33)

Using (3.8.33) and (3.8.31), we can write relative modular operator Ay|p in terms of the

reduced density matrices,
Apjy =01 ® P;l Ayjp = p1 ® 051 (3.8.34)

Here, we would like to emphasize that both the modular operator and the relative modular
operator factorize in terms of the reduced density matrices of the system and its commu-
tant. This is a very general feature of the modular operator: whenever a density matrix

associated with a cyclic and separating state exists, the modular operator factorizes.

What is special in the finite-dimensional case—or, equivalently, in the case of a type I von
Neumann algebra—is that the reduced density matrix belongs to the algebra. In contrast,
for type II algebras, while certain density matrices may exist, they do not belong to the
algebra. At most, they can be affiliated with the algebra.

Now we would like to use the above expression to compute Araki’s relative entropy. Since

S(@[|¥) = — (@|log Ag|e |P) = (P| — log Ayep + log Ag | D) (3.8.35)
= (P|log o1 — log p1 |P) (3.8.36)
= TI“1(01 10g01 — 01 1ng1) (3.8.37)



Chapter 3. von Neumann Algebras for Physicist 110

So, the Araki relative entropy is the usual relative entropy in quantum mechanics. We
also want to emphasize that Sen(01) = —Tri(o1logoy) is the von Neumann entropy or
Entanglement entropy associated with the density matrix oo. Therefore, relative entropy

also knows about the entanglement encoded in the state. We can also check that,
Ug|y(8) = Af;wA;is = Af; qu; = oipif e A

Ugpp(5) = DpAG = AJFAY, = py oy € A (3.8.38)
Ajpaljis = AjaAy™ = pilapy ™

Hence, all the statements of Connes Cocyle are satisfied.

3.8.2 Modular operator for the Rindler Algebra

Let o# = (t,x,y]1 ) be the Cartesian coordinate in d+ 1 dimensional Minkowski spacetime.

The right rindler wedge Wg is defined as,
Wr={(t,z,y1) e RMI| 2> |t[} (3.8.39)

Now, we can construct the von Neumann algebra of the scalar quantum field ¢(x) in Wg
as (3.5.0.1),

A(WR) = {* algebra generated by ¢(f) such that support f C Wg }"’ (3.8.40)

where "

is double commutant to ensure the weak closure of the algebra (3.2.1). It can
easily be shown that,

A(WR) = AWp) (3.8.41)

where W, is causal complement of Wgr. We also know that if U(A) represents the Lorentz

transformation on spacetime, then

UN)()UT(A) = ¢(fa) (3.8.42)
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where fy-1 = f((A~1)5z"). We also know that the boost in ¢ and x by amount 7 is given
by

t(r) =tcosht + xsinhr (3.8.43)
z(71) = tsinh 7 + x cosh T (3.8.44)
gL(r) =91 (3.8.45)

It can further be checked the if x > [t| = z(7) > |t(7)| for all 7 € R. Implies if z# € Wg

then z#(7) € Wg. Now, if Kp denotes the generator of the boost transformation, then,
o(f) € Aw,, = eEETG(f)e BT ¢ A(WR) VreR (3.8.46)

Therefore, boost generates one parameter group of automorphisms of A(Wg). Also notice

that,

t(T +ia) = t(7) cosa+isina x(7) (3.8.47)
(T +ia) = x(7) cosa + isina t(7) (3.8.48)

which implies,
t(r + 2mi) = t(7) x(T + 2mi) = x(7) (3.8.49)

furthermore, if 2# € Wg then Im(z#(7+1iw)) lies in future lightcone for 0 < oo < 7. Now it
follows from the spectrum condition of local quantum field theory that for the Minkowski
vacuum [Q), B3¢ (g)|Q2) is analytic for 0 < Im(s) < 7 and (Q|p(f)e *5B¢ is analytic in
—71 < Im(s) < 0. Hence, (Qo(f)eifB5¢(g)|Q) is analytic in s € R + [0, 27][49]. Now,

using the Schwartz reflection principle,

Jim (Qo(f)e P THETT(g)|0) = lim (Qo(g)e™#TTo(f)|0) (3.8.50)
for all 7 € R. Hence, automorphisms satisfy the KMS condition '? with 3 = 27. Therefore,
the Minkowski vacuum is thermal with respect to the boost generator. This is precisely the
statement of the Unruh effect. We can define a new generator Ky = 2w Kp. Notice that it
satisfy a) e 5w |Q) = |Q), b) e~ KW generates autmorphism of A(Wg) and c)|€2) is thermal
thermal with respect to Ky with 8 = 1. Now from (3.39) it follows that Ag = e %W is
the modular operator of (A(Wg),2). Now, let us compute the modular conjugation Jg.

12Similarly, it can be shown for a polynomial of ¢(f) and therefore for the general algebra elements.



Chapter 3. von Neumann Algebras for Physicist 112

We know that,
Jod(£)Q) = Ag o)1) (3.8.51)

From (3.8.43) we know that under Ag(—i/2)(t,z, ¥ ) = (—t,—z,¥1) = ORg(m)(t, z, 71 ),
where © is CPT operator and R, () is rotation about the z axis. Therefore, noting the
fact that Ag}/z acts as Ap(—i/2) on the points on which f has support, Jg = OU (R,;())

is antiuntary operator satisfying (3.8.51), where U(R, () is a unitary representation of
Ry ().

So, we have learned that the modular Hamiltonian for the Rindler algebra in the Minkowski
vacuum state is the boost operator, i.e. Aq = e %8. Now, we would like to ask whether
we can factorize the modular operator as some operator in the right wedge (algebra) times
some operator in the left wedge (commutant), as in (3.8.32). Although we can write the

boost operator in terms of the stress tensor 7}, on some Cauchy surface.
Kp = /ZdZ“TW{” (3.8.52)
We can also write Kp, on t = 0 surface and split it as,
Kp = /t _0(a;Tﬁ)d:,;dyd*2 = KE - KL (3.8.53)
where

KE = / (2T dady®2 KE=— / (2T dady > (3.8.54)
t=0,z>0 t=0,z<0

But the action of K g and K é is not well-defined on any state, as the norm of the state
Kg/ L|\IJ> diverges for any |¥). It can be shown that this divergence is universal and arises
from the region near x = 0. Nevertheless, the matrix elements of Kg/ L are well-defined
(or well-defined as quadratic forms) in any finite-energy state. This is because, if |¢)
and [¢) are finite-energy states, then (¢|K§/ L]w> effectively projects Kg/ L|@ZJ> onto the
finite-energy state |¢). As a result, it eliminates the high-energy modes and avoids UV

divergences.

Hence, the modular operator for the Rindler wedge does not factorize and cannot be
written purely in terms of operators defined individually on the right and left wedges.
Algebraically, this implies that the modular automorphism is generated by the boost op-
erator acting as an outer automorphism. It is well known that for type I and type II

algebras, all modular automorphisms are inner; see Theorem 3.14 in [50]. Hence, the
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Rindler algebra must be of type III factor. Furthermore, we know that the boost opera-
tor has a continuous spectrum'® and the spectrum is R. Therefore, the spectrum of the
modular operator o(Agq) € [0,00]. Additionally, it is known that every state resembles
the vacuum at short wavelengths. Thus, for any state 1), we expect o(Ay) € [0,00]. By
Connes classification of type III factors, it then follows that the Rindler algebra is of type
II1;. For completeness, we would like to briefly talk about Connes classification of type
III factor [51]. Connes classification is based on spectral property of modular operator. In
particular, Conne studied,

S(A) =(eo(Ay) (3.8.55)

[)

where A is von Neumann algebra. Connes showed that S(A), the modular spectrum of a
von Neumann algebra A, is a multiplicative subgroup of R,. Since it is also closed, the

only possibilities are:

b S(-A) = {O, 1}7

o S(A)={0}U{\"|n € Z} for some 0 < A < 1,

This leads to a finer classification of type III factors. A type III factor A is called:

1. Type IIIj if S(A) = {0,1}.
2. Type III, if S(A) = {0} U{\" | n € Z} for some 0 < \ < 1.
3. Type III; if S(A) = R,.

From the above classification, it must be clear that the Rindler algebra should be type
II1;.

3.9 Crossed Product Algebra

As we have seen, in type III algebras there is no semifinite trace (i.e., a trace that assigns
a finite value to at least some nonzero projection), whereas type II and type I algebras

admit a unique semifinite trace, up to scaling. This makes type II and type I algebras

3In Rindler coordinates, the boost acts like a translation operator.
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more tractable and interesting, particularly in the context of assigning finite entanglement

measures.

One might ask whether it is possible to study type III algebras using type II algebras. In
other words, can we map a type III algebra to a type II algebra? If so, this would provide
greater control and may potentially lead to a deeper understanding of type III algebras.
As it turns out, certain crossed product constructions achieve precisely this. Therefore,
the crossed product is an essential tool for probing type III algebras. Moreover, we will
see that crossed product algebras naturally arise in gravitational theories, making them

even more compelling to study.

Let us now begin by defining crossed product algebras.
Let A be a von Neumann algebra acting on a Hilbert space H, and let T be a self-adjoint

operator on H that generates a one-parameter group of automorphisms on A. That is,

Vac A eTae™™c A, where s €R (3.9.1)

Ts can be viewed as an additive, possibly non-faithful, unitary representation of

where ¢’
R'". Furthermore, an automorphism is called inner if e’ € A; otherwise, it is called
outer. Inner automorphisms are considered trivial in the sense that they are implemented
by elements within the algebra itself. In contrast, outer automorphisms are nontrivial, as
they define an action by an external operator on the algebra that preserves its structure.

Now, let us define the crossed product algebra.

Definition 3.42. (Crossed product algebra):
The crossed product algebra A xR, of a von Neumann algebra A by R, is defined
on the Hilbert space H' = H @ L*(R) as follows:

A A oA 1
Axp R = {6sz%—sz7 e lac A se R} (3.9.2)

Here, ¢ and p are the canonical conjugate operators satisfying [¢, p] = i, and they
act on L%(R).
Remark: The double commutant ensures that the resulting algebra is a von Neu-

mann algebra, i.e., it is weakly closed.

14¥We are defined here for R, but one can consider other groups.
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From the above definition, it must be clear that the crossed product algebra is generated

by the operator of the type e’Pae™"'? and €'4%'5. A priori, it is not clear that it’s an
algebra, but nevertheless, it can be checked easily. It can easily be shown using the

Baker—Campbell-Hausdorff (BCH) formula that for any a,b € A and s1,s2 € R,
(eiTﬁae—iTﬁeizjsl ) (6iTﬁb6—iTﬁeiz§32) _ 6iTﬁ{a(e—iTsl bez’Tsl ) }e—iTﬁeizj(sl—l-sz) (393)

Since T generates the automorphism of algebra, a(e™*7*1be’?*1) € A. Therefore, A x1 R

is indeed an algebra, and closure ensures that it is a von Neumann algebra.

By adjoining with respect to e77? and using the BCH formula, we can easily show that,
. AN "
ANT]R%’{G,@I, e_ZT8®e’q8\a€A,seR} (3.9.4)

Notice that T'— ¢ belong to A xpR. Furthermore, the above representation is particularly
interesting in the sense that in this representation, it is explicit that the automorphism is

now inner. That is,
e e a@ e ™ e =Tqe T g T (3.9.5)

One way to think about what we have just done by constructing the crossed product is
that we started with an outer automorphism, which can be viewed as the action of some
symmetry on the algebra that leaves the algebra invariant. Then, we added an additional
degree of freedom in a specific way, namely ¢, which transforms the outer automorphism
into an inner one. This procedure is analogous to gauging the automorphism, and it
closely resembles what is done in gauge theory. Another way of saying this is the famous
commutation theorem [52], which says that crossed product algebra is the subalgebra of

the algebra A ® B(L?(R))that is invariant under 7" + ¢. That is,
AxrR={ac A® B(L*(R)): THDtae= T+t — 5 vt € R} (3.9.6)

This is like gauging the symmetry whose generator is T + q.

It can easily be shown that the commutant of (3.9.2) is,

(AxrRY ={d @I, eT*®e |ac A, sec R} (3.9.7)

15Here, we have made a slight abuse of notation: by e‘T?ae™*T?  we actually mean
el<T®p)(a ® ILz)eﬂ(T‘g)p)7 and by €*?®, we mean Iy ® e*?°.
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This follows from the fact that e?Pae~I? € A and commute with ¢’ ® I for all a’ € A’.
Also,

[e"Pae™ P, T + 4] = ¢"Pla, T]e™ P + [T, aJe™ P = 0 (3.9.8)

where we have used that [eiT23 4] = TeTP. Notice that T + § belongs to the commutant
(A xp R). We also emphasize that equation (3.9.7) describes a crossed product algebra
as well. It should be clear from equations (3.9.2) and (3.9.7) that if A is a factor, then
A %7 R is also a factor.

Till now, we have considered the general automorphisms on the algebra, but we can very
well choose it to be a modular automorphism (an automorphism by the modular operator

of some state). Then, there is a beautiful theorem by Takesaki, see corollary 9.7 of [53].

Theorem 3.43. (Duality theorem of type III, and type Il ):
Let A be a type III; factor von Neumann algebra, then the crossed product of A by any of
its modular Hamiltonians K = —log A, where A is a modular operator of some state, is

a type Il factor von Neumann algebra.

A xg R is a type Il von Neumann algebra.

The proof of the theorem can be found in [53]. The type III; refers to one of the subclasses
in Connes’ further classification of type III von Neumann algebras [51]. In particular, it is
a type III algebra for which every modular operator has spectrum supported on R U {0}.
The beauty of the theorem is that it allows us to define both the trace and the density
matrix. As we have seen earlier, type III von Neumann algebras do not admit a (renormal-
ized) trace, whereas type II algebras possess a unique trace up to rescaling. The crossed
product construction enables us to relate type III algebras to type II, thereby allowing us
to define a renormalized trace on the extended algebra, which in turn makes it possible
to define a density matrix. This should be understood as an algebraic method of renor-
malizing the infinite quantities that arise in type III algebras or possibly in quantum field
theory. The trace on the crossed product has already been studied by Takesaki [53], and
we will write it explicitly following Witten [1]. As we also emphasized, the crossed product
construction is very similar to the construction of algebras in gauge theory. Later in the

thesis, we will see that it arises naturally in the construction of gravitational algebras.
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3.9.1 Modular theory in Classical Quantum States

One interesting question that one might want to ask is whether we can write the modular
operator of the crossed product algebra in A xx R in terms of the modular data of A.
It is shown in [1] that the modular operator can be explicitly obtained for some class of

classical-quantum states. So, let us first define the classical quantum state.

Definition 3.44. Classical-quantum states:
Consider a bipartite system with Hilbert space H = H1 ® Ha. The state is called a
classical-quantum state if the density matrix p associated with the state in H is of

the form:

p=> pili)1{il ® pi2
i

where ). P; = 1,{|i)1} some basis in H; and ps is a density in Ha.

\.

One of the reasons it is called a classical quantum state is that it is non-entangled. In

particular, we want to take the state of type,
1®) = |®) @ |f) € H™  where |®) € H & |f) € L*(R) (3.9.9)

It is clearly, classical quantum state. We can choose the position representation of |f),

and write,

) = @) © |) = / dgf (9)]®) © |g) = / dgf(q)®,q) = |, f) (3.9.10)

Now, let |¥) € H be cyclic and separating in A for which we have constructed a crossed
product. We would like to make a convention that the operator a; = A;iﬁ aAgsei‘js, where
Ay is a modular operator of (A,|¥)). Then the Tomita operator of the state |®) for

modular crossed product algebra A X, R, where Ky = —log Ay, is

Sgas|®) = al|®) (3.9.11)
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then,

af|®) = e AL’ AY |P, f)
= e PIALPat A Sy Sy |0, f)
= Sq>|q/5q/efis‘jA\;,iﬁaTAfI’f |0, £)
= SpwSve AP Sya | U, f*)

= Sy iaa [ daf (@) ¥.q)
= Spiwe*1A%a / dqf*(q) / dpe™I|W, p)
= So|w / dqf*(q) / dpe'Pie™ " 1Pae’| @, p)
= Sp|w /dpf*(P)ei(qKq')pa|‘I’73>
= Sp|vf"(¢ — Kv)a|¥,s) (3.9.12)
In the third step, we use the fact that S¢Sy is affiliated to A’. That is,
SapSwba|¥) = Spgad!|¥) = ba|®) = bSpySwal®) = [SeySw,ba|T) =0

for all a,b € A'6. In the fourth step, we have used the antilinearity of the Tomita operator
and its action on the algebra elements. In the six-step, we went to the Fourier basis so

that we can act p. Now, let us compute,

is|®) = AyPaALe (@, f)
= Ay PaA e Sy Sy |V, f)
= SpwSvAyPaAPet |, f)
— SauSuAgPangPei / £(@)] ¥, q)
= SolwSv /eiqsﬁéiﬁaf(q)\‘lf, q)

= S@\WS\I/AE,ipf(qA)a |, s)
since |¥) is cyclic and separating state, it follows from (3.9.11),that

SSowSuAy P f(4) = Sou f (G — Ku) (3.9.13)

168imilarly, it can be shown that Se|¢vSw
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Therefore, we get,

Sy = Sapwf (4 — Ko) = A¥SySya (3.9.14)

1
f(q)
where, we used the fact that S;l = Sy and S;‘l\ll = Sy|p- We can further write the above

equation as

1 1/2 1/2
1 ~1/2 1/2
1/2 pxa 579 AP — 1 1/2
= Jw%ﬂ\pf (@ K PAge e A
i 1
= (JowAD) (AFPAY2 (g — Ky)el2AP) (670 JyJyeAY2) (3.9.15
(Jojw \1/)( s/ (1 — Kv) )( K vJy|o \11|<1>> ( )
—1/2

Here in the second step, we used J¢A 12 _ = Ay '"Jy. In the third step, we used the
relation ed/2APe=/2 = APA-Y2 and [¢, AP o= Kq,Alf. We can write the second term in

the bracket as,

—z § ip —q — %/ A a—K
(AV7 AL~ Ka)ePAF) = (AP AYLAL P10 - Ka)e

;) (3.9.16)

Since the bounded function ¢ — Ky belongs to the crossed product algebra, see equation
(3.9.4), f*(q — K\p)eﬁ must be affiliated to the algebra. Moreover, it can be shown
that A}I,/‘?PA /2 is affiliated to A. Therefore, the whole term in the above equation is
affiliated with crossed product algebra. Similarly, it can be shown that the third term in
the equation (3.9.15) is affiliated with the commutant of the crossed product algebra '7
Now, we can find a modular operator using the relation, Ag = S})S@. It can easily be

shown that a modular operator takes the following form,

where,
= ATP (G — Kg)AgreAr2e T2 (G — Kg)AP 3.9.18
pg = Ay f(d— Ku)AgwAy e 2 f7(§— Ku)Ay (3.9.18)
Py = Dga o Jwe? F(q+ Ko) P Tudaw gy (3.9.19)

In order to obtained above equations, we used that A;‘lq) = Agy and J\I_,ﬁb = Jpp. It
must be clear, following the same argument presented in the last paragraph, that pg is

affiliated to the crossed product algebra and p&) is affiliated to its commutant. Notice that

171t follows from the fact that §+ K¢ and Jy Jo|v is affiliate to the commutant of crossed product algebra
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the modular operator factorizes into operators affiliated to the type II crossed product
algebra and its commutant. We would like to remind that the modular operator gets
factorized even in type I, but there the operator corresponding to pg and p&) was the
density matrix in the algebra and its commutant (3.8.32). This tells us that maybe we
should interpret the pg and p&) as density matrix of type II crossed product algebra and its
commutant respectively, keeping in mind that they at most can be affiliated to the algebra
and the commutant. We also want to emphasize that the density matrix is ambiguous up

¢, where ¢ is some constant,

to overall scaling, because scaling of pg by e and p&) by e~
gives same modular operator. These are the expressions obtained by authors in [41, 54].
Now, let’s say we want to find the modular of the state |¥) = |¥) ® |f), then we just need

to put |®) = |¥) in the equation (3.9.18) and (3.9.19), which will yield,

pi =l f (@) (3.9.20)
ol = 0T £G4+ Ko)|? (3.9.21)

Therefore, the modular operator takes the following form,

|f (4l

A, UL —
|f(qg+ Ku)[?

i = Av

(3.9.22)

Witten obtained this expression in [1]. We can also obtain the Tomita operator by putting

|®) = |¥) in (3.9.15).
o I AC)) 1/2
Sy = JuA? o (3.9.23)

We can use the above equation along with (3.9.22) to get,

F@f G+ Kw))” (3.9.24)

. ip
T = WY (G T 7o)

Hence, we have obtained the modular data for the type II crossed product algebra in

classical quantum states.

3.9.2 Trace in Crossed Product

As we have seen in the last subsection, the modular operator of the type II crossed product
algebra A x g, R in classical quantum state factories. We have also argued that pg and pg,
can be thought of as density matrix affiliated to the algebra A x g, R. The identification

of pg as a density matrix immediately implies the existence of the trace. We can define
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trace following [1], as
trfa] = (Vlapy'|¥) Va € Axp, R (3.9.25)

It is evident from the above definition that the above tr satisfies linearity and positivity.
The cyclicity follows from the property (6) of the modular operator. For any a,b €
A ><]Kq; R?

tr(ab) = (Blabpy [¥) = (Blbpy Agal¥) = (Elbpy pg © (o)~ al¥) = (Tlbipg Ay )
_ tr(ba) (3.9.26)

In the above equation, we used the fact that p’@ is affiliated with commutant and A\I,\\i/> =
|¥). Therefore, (3.9.25) satisfies all the properties of trace defined in (3.17). We can also
put an explicit form of pg from (3.9.20) and |B) = 75 daf (@) ) ® |g), we get

rfa] = / "~ dget (W]a(q)|®) (3.9.27)
—o0
where a(q) is operator valued function of g. Notice that the above trace is not well defined
for all elements of A x g, R, for example, if a = A;iﬁ aAff,ﬁ € A xg, R, then trace is not
finite. One might wonder whether it even assigns a finite value to any operator. If we
assume, (U|¥) = 1, then tr[pg] = 1. Hence py, is traceclass with respect to (3.9.25).
Further, we know that the algebra is generated by the operator of type A\E,ii’ aAgaei‘jS,
where s € R. Therefore, we can take an arbitrary linear combination of such operators,
such as
o0 - o RN
a= / dsAyPa(s)A e (3.9.28)

—0o0
where a(s) for each s pick an operator for A. Let us further assume that a(s) goes to zero

at |s| — oo and holomorphic for 0 < I'm(s) < 1. Then,
tr[a] = / dq/ dsedT% (W |a(q)| W) = 27 (V|a(i)|¥) < oo (3.9.29)

We obtained the second equality by shifting the contour of s from R to R+ ¢R. So, indeed,
there are some trace-class operators with respect to (3.9.25) that assign a finite value to
them. Since the density matrix is ambiguous up to overall scaling, by (3.9.25), the trace
will also be ambiguous up to overall scaling. If crossed product algebra is a factor, then
we know that there is a unique trace up to overall scaling. Hence, for the crossed product

factor, any trace will be related to the trace in (3.9.25) by overall scaling. Once we have
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the trace and density matrix, we can define the Algebra entropy for the state pg by 18
S(®) = —tr[pg log p] (3.9.30)

Since the trace is ambiguous up to scaling, the entropy will be ambiguous up to an additive
constant. But the entropy difference will be unambiguous, like in thermodynamics. It can

easily be shown that the above expression can also be written as,
S(®) = —(d|log pg | D) (3.9.31)
To obtain the above equation, we used the proper (5) of the relative modular operator.
To further simplify the above expression, let us first simplify the p; given in (3.9.18),
—ip pya -1/2 =Ke . . ip
Py =Dy f(q— Ku)AgwlAy ez f7(G— Ku)Ay
= (@) A5 70, Do Ay P AL 1 (g)

= f( )6q/2A_ZpA\p|lq{2AéAwiqézAzpeq/Qf*(d)
= AL F(a— Kupo)e" Do f* (4 — Kujo)AY 4 (3.9.32)

In the second line, we used the fact that p acts on ¢ as a shift operator. In the third

line, we used the Conne cocycle theorem that Ay, 1/2A(11)/|?I, = A;gQAl/Q In the last line,

we shift property of p and Kyj¢ = —logAy|p. Now using the fact the for any unitary
operator U and some operator A, log(UAUT) = U(log A)UT, we get,

log pg, = Ay {a+1og (£(d— Kuo)Aef (4~ Kuja)) } AT,
=G+ Kyjo +10g (F(@) A3 AT 0 1*(0)) (3.9.33)
Putting the above equation in (3.9.31), we get
S(®) = ~(D]q1®) — (@] Kyja|) — (Bl10g (F(DAGFAAT LS (@)IE)  (39.34)

This expression is also obtained in [41, 55, 1]. The crossed product construction and the al-
gebra entropy defined above will play a vital role in understanding entropy in semiclassical

gravity.

81t can easily be shown using (¥|Agy|¥) = (®|®), that tr[pg] = (®|®). Hence, for (®|®)=1, it is a
state.



Chapter 4

Black Holes in GR, Local Algebra
of Observables and GSL

The material presented in this chapter is based on the work of the author in [4]

In this chapter, we show a local generalized second law (the generalized entropy is nonde-
creasing) in crossed product constructions for maximally extended static and Kerr black
holes using modular theory. The new ingredient is the use of results from a recent paper
discussing the entropy of the algebra of operators in subregions of arbitrary spacetimes
[41]. These results rely on an assumption which we show is true in our setting. In the
last part of this chapter, we look at modular Hamiltonians of deformed half-spaces in a
class of static spacetimes, including the Schwarzschild spacetime. These are computed us-
ing path integrals, and we primarily compute them to investigate whether these non-local
modular Hamiltonians can be made local by subtracting off pieces from the algebra and
its commutant, as has been surmised in the literature. Along the way, the averaged null

energy condition (ANEC) also follows in this class of spacetimes.

123
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4.1 Introduction

Bekenstein proposed the Generalized Second Law (GSL) [56], [57] for black hole spacetimes
with quantum matter in the expectation that the second law of thermodynamics would be

valid near black holes. This is the statement that the generalized entropy is nondecreasing,

d%% > 0, where v is the null coordinate on the horizon. Here,
A
Sgen =< R > +SQFT, (411)

where A is the black hole horizon area at an arbitrary cut of the event horizon and Sgrr
is the entanglement entropy of the quantum fields in the black hole exterior. We put the
<> on the area term to emphasize that the graviton correction is included. As is also
well known, both terms in (4.1.1) are individually ultraviolet (UV) divergent (the first
term due to loop effects which renormalize G and the second term, entanglement entropy,
which is UV divergent), but there is a lot of evidence that the sum is UV finite [18]—[58].
The GSL for Einstein gravity was proved by Wall [5] under the assumption that there
exists some renormalization scheme for the boost energy and the entropy in quantum field
theory (QFT). Explicitly constructing such a renormalization scheme and proving GSL
where each step is manifestly finite is always good. It can also provide insight on why
the Syepn is UV finite and independent of the UV cutoff, and the role of gravity in making
(4.1.1) well defined.

The QFT algebra in the exterior of the black hole in strict Gy — 0 is of type III; .
Recently, it was shown that the perturbative correction in G changes the algebra from
type III; to type Il crossed product algebra [1, 2, 3]. Furthermore, the entropy of the
algebra of observables (3.9.34) in the AdS-Schwarzschild exterior, defined in the crossed
product construction, is equal to the generalized entropy at the bifurcation surface up to
a state-independent constant [3]. This construction was extended to asymptotically flat
black holes in [2], where including the ADM Hamiltonian and a timeshift degree of freedom
yields a crossed product with the modular automorphism group of the original algebra.
This is further generalized for the case of Kerr in [60]. We want to emphasize that these
results are obtained only at the bifurcation surface.

Our primary goal in this chapter is to extend the above results to arbitrary cuts on the

horizon and to show that a local version of the generalized second law (GSL) is indeed true

!The boundary version of this statement in the AdS/CFT correspondence was found by Leutheusser
and Liu [14], [13] (see also [59]). They studied the holographic boundary operator algebra of the CFT dual
to gravity in the asymptotically anti-de Sitter (AdS) black hole spacetime. They found an emergent type
III; von Neumann algebra for single trace operators in the large N limit of the CFT boundary.
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in crossed product constructions for maximally extended static black holes and Kerr ge-
ometries. We have also discussed the asymptotically AdS black holes in Section V. Hence,
the crossed product gives the renormalization scheme needed for the proof of GSL. In
order to prove this, we utilised the construction of Jensen, Sorce, and Speranza (JSS) [41],
who studied operator algebras associated with domains of dependence of arbitrary partial
Cauchy slices in Einstein gravity coupled to matter. These algebras are of Type III, but
can be promoted to Type II via a crossed product with the modular automorphism group.
Their construction relies on a conjecture that a certain local gravitational Hamiltonian,
generating flow along a specially chosen vector field on the Cauchy slice, serves as the
modular Hamiltonian for some state. JSS support this by arguing that non-local modular
Hamiltonians can be rendered local through appropriate subtractions, and the converse
of Connes’ cocycle theorem then ensures such a local integral defines the modular Hamil-
tonian of a state. Under this conjecture, one can associate an entropy to the algebra of
a subregion, which matches the generalized entropy up to a constant. In the setting of
our application of the JSS results, we have shown that the conjecture is indeed true. By
considering a slight generalization of the JSS construction to include an observer even for
wedge-shaped regions with an asymptotic boundary, we have shown that we obtain a local
GSL. We also give evidence for this conjecture for more general modular Hamiltonians in
section (4.7) - specifically, seeing how a non-local modular Hamiltonian can be made local

by subtracting off appropriate terms.

The chapter is organized as follows. In Section 2, we briefly review the crossed product
in black hole spacetime. In Section 3, we define a half-sided modular inclusion, which is
used crucially to obtain modular Hamiltonians at the arbitrary cut on the horizon in black
hole spacetimes. In Section 4, we discuss modular Hamiltonians in black hole spacetimes,
both static and Kerr black holes. In Section 5, we review the salient results of JSS on
algebra entropy of subregions of spacetime, which are domains of dependence of partial
Cauchy slices. In Section 6, we derive a local GSL using these results. In Appendix
A (7.2), we discuss the modular Hamiltonians of wedges in Minkowski spacetime as a
warm-up example for the application of half-sided modular inclusions. In section (4.7),
we compute (one-sided) modular Hamiltonians for various subregions of a general class
of spacetimes and discuss whether they satisfy the conjecture of JSS. In the Discussion

section, we provide a summary and discussion of the results presented in this chapter.
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4.2 Crossed Product in Black Hole Spacetime

The series of recent papers by CLPW, Witten, and CPW [2, 1, 3] has helped to under-
stand the generalized entropy introduced by Bekenstein [56] better. They have addressed
the question of why the generalized entropy is well-defined, whereas the gravity contribu-
tion and the quantum field contribution in the generalized entropy are not well-defined
separately. CPW showed for an eternal black hole that is either asymptotically flat and
asymptotically AdS, that the exterior algebra of quantum field (including gravitons) is a
type II crossed product algebra. Further, they showed that the type II algebra entropy de-
fined by (3.9.34) in semi-classical state is the generalized entropy at the bifurcation surface
of the black hole. They have also discussed the monotonicity of the generalized entropy

of asymptotically AdS black holes by using techniques from von Neumann algebras.

The general construction of crossed products is reviewed in the previous chapter (3.9).
In this subsection, we will briefly see how the algebra in the exterior of a black hole in

Gn — 0 is a crossed product algebra as shown by CPW.

FIGURE 4.1: Maximally extended stationary black hole with Cauchy surface S. The bulk
algebra of the left and the right exterior region is Ay o and A, ¢ respectively.

2Gravitational crossed product constructions have been explored in [61]. For crossed product construc-
tions without gravity, and for a connection between the crossed product and extended phase space, see
[62], [63]. Crossed product constructions for quantum field theories on subregions are discussed in [64].
Approximations to the crossed product for Type I algebras are explored in [65]. The use of the crossed
product as a covariant regulator is discussed in [55].
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Let M be the asymptotically flat, maximally extended Schwarzschild black hole in Ein-
stein’s theory or the maximally extended AdS-Schwarzschild black hole. We consider
quantum fields in this spacetime, including gravitons. The left and right exterior regions
of M will be denoted by ¢ and r respectively, while L and R will be used to denote left and
right spatial infinity. Let Ho be the Hilbert space of this theory that we get by quantizing
the fields and the local algebra of observables of the left and right exterior region be Ay g
and A, o respectively as shown in Figure 4.1. It is well known that algebras A,y and A,
are Type I1I; factors (their centers are trivial) [66, 24, 67]3. Moreover, Ao and A, are
each other’s commutants (i.e all the operators of Ay ¢ commute with all the operators in
Arp).

The spacetime is stationary and equipped with a time translation Killing field V. V is
future directed in the right exterior region and past-directed in the left exterior region.
Due to background diffeomorphism invariance, one can define a conserved quantity h as-
sociated with the time translation vector field V. Let S be the bulk Cauchy surface going
from the spatial infinity of the right exterior region to the spatial infinity of the left exterior

region, through the bifurcation surface as shown in Figure 4.1. Then h can be defined as
b= / AXHVVT,. (4.2.1)
S

Here, T}, is the stress-energy tensor of the bulk fields*. In Tomita-Takesaki theory of the
quantum fields in the black hole exterior, ﬂiz is the modular Hamiltonian associated with
the Hartle-Hawking state |¥ g > of the black hole and 3 is the Hawking temperature’[68,
69]. It is well known that h in Einstein’s gravity is the difference between the right ADM
Hamiltonian Hgi and the left ADM Hamiltonian Hj, i.e. h = Hp — Hy.

CLPW and CPW now extend the Type III; algebra Ao and A, o by including one more
operator hy with Agg and hp similarly for the right algebra 5. This extended (crossed
product) algebra acts on an extended Hilbert space H = Ho ® L?(R) where the extra
degree of freedom that has been introduced is the time-shift (the sum of the times in
the left and the right exteriors). The extended crossed product right algebra is denoted
A, = Ao xRy, and similarly for the left algebra. Here,

hy = Hp — My  hr=Hg— M, (4.2.2)

3The algebra of operators in quantum field theory in a causal wedge is always a von Neumann algebra
of Type III [14]. When the center is trivial it is a Type III; algebra.

4T, includes the contribution from the pseudo-stress tensor of gravitons.

5The modular operator is defined as A = exp{(—Hmoa)} and for |Yuu), Hmoda = ﬂiL

6As discussed in (3.9), the crossed product algebra can be understood as an extension of the original
algebra by adjoining the operator T + ¢, where T generates an automorphism of the algebra.
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My is the ADM mass of some reference black hole. CPW work in a micro-canonical
ensemble i.e. an energy eigenstate centered around some energy M (mass of the reference
black hole)”. The algebra of observables for the right exterior region is studied in a semi-
classical limit i.e. G — 0. In this limit, the ADM masses Hr and Hp, diverge because the
black hole mass My (Schwarzschild radius divided by 2G) diverges. Also note that the
modular Hamiltonian A depends only on the fluctuation of the ADM Hamiltonian, i.e., on

hr and hr. So, CPW works with the non-divergent subtracted Hamiltonians hy, and hg.

We can also write h = h, — hy where

h, :/ dZ“VVT#,, (4.2.3)
S1

hy = —/ dE'uVVT‘Lw (4.2.4)
Sa

where S1 and So are the right exterior and the left exterior part of the Cauchy surface S

FI1GURE 4.2: This figure depicts the split of Cauchy surface S into union of the red Cauchy
surface S7 in the right exterior and the green Cauchy surface Sy in the left exterior.

as shown in Figure 4.2. As pointed out by CPLW, h, and h, have divergent fluctuations.
Thus, such a splitting is not true, strictly speaking [1], but in the extended algebra of

"CPW explicitly do the microcanonical ensemble construction in the boundary CFT using a thermofield
double state.
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Witten, the modular operator has a factorization into a product of operators in the left

and right algebra.

h=hy—hy=hg—hg (4.2.5)
Further,
A hl/)
hR:h'i‘hLEF"i_x (4.2.6)

Let hy = Hpoq denote the modular Hamiltonian for the Hartle-Hawking state |¥) =
|Whn). The algebra A, = A, x Ry, is the crossed product of the algebra A, by the
modular group associated with the cyclic and separating vector |¥). As discussed in the
previous chapter, the crossed product of a type III; von Neumann algebra by its modular
group yields a type Il von Neumann algebra. Moreover, a type Il crossed product
algebra admits a notion of trace, and thus we can define the notion of density matrix and
entropy, referred to entropy of algebra (see (3.9)). One might think that the operator mea-
suring fluctuations in the ADM mass is added in the algebra by hand without any reason.
However, we emphasize that this is not the case. Gravity is a diffeomorphism-invariant
theory, and there are gauge constraints associated with diffeomorphisms. Importantly,
some of these gauge constraints must be imposed even in the Gy — 0 limit—for example,
the gravitational Gauss law. The crossed product algebra constructed by CPW is the
algebra of observables that commute with these constraints, and therefore represents the
correct algebra of observables in a gravitational setting.

Following the discussion in (3.9), we can write operator in .4, denoted by a has the form
a = aelishv/B) e(i“), where a € A, . The states on which this operator acts has the
form ’\il> = ) ®g(z) € H where |¥) € Hg and g(x) € L?(R). The most generic operator
in A, can be written as

d:/ a(s)eis(”i‘)ds (4.2.7)

—00

where a(s) € Ay . Similarly, we can write the most general state as
(qz> - /dxf(x) W) |z) (4.2.8)

We can also write algebra entropy using (3.9.34). As emphasized earlier, S (Ci)) defined in
(3.9.34) should not be thought of as the entanglement entropy of A, but is a renormalized
entropy. Also, because of the ambiguity in the definition of trace (trace is defined up to
a scaling), it is only the entropy differences that are unambiguous, not the entropy itself.
CPW now works with a semi-classical state, i.e, the state with fluctuation in timeshift p,

Ap ~ O(e), where ¢ is some parameter much smaller than unity. Then, with x = hyp,
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Ax ~ O(%) CPW consider the AdS-Schwarzschild black hole and write down the semi-
classical state in the boundary CFT. However, it could have equally been defined in the bulk
and we will assume that the formulae below correspond to the equivalent bulk statement.

The general form of such a state is,

<i>>:/°oeég(m) |®) |z) where |®) € H, g(x) € L*(R) (4.2.9)

It is shown by CPW that the density matrix pg for the state ‘@> is approximately ® given
by
ps ~ eg(ehr)e P Apyg(ehr) (4.2.10)

where Agy = e hwie is a relative modular operator and hy|e is the relative modular
Hamiltonian ?. The relative modular Hamiltonian hg|y is defined such that hyjg = hy.
As we have already mentioned, the Type II algebra modular operator factorizes, i.e A b =
Py pgl (where prime denotes the element of the commutant of the algebra A,)[3]. Putting

(4.2.10) in (3.9.31) or (3.9.34) yields
S()a = <<1>) Bhg ]q>> - <q>] hae ‘q>> - <q>‘ log (¢|g(ehr)|?) ‘<I>> YO(e) (4211
By definition, the second term in the above equation is the relative entropy,
Syt (B[|T) = — <<1>‘ ho )<1>> (4.2.12)

The expression in (4.2.11) is shown to be equal to Sgey, at the bifurcation surface up to an
additive constant; for details, see [2, 3]. This completes the discussion of the algebra of
observables in black hole spacetime. Now, we introduce concepts of the half-sided modular

inclusion, which will play a key role in proving GSL.

4.3 The half-sided modular inclusion (HSMI)

In this section, we want to introduce the definition and properties of the half-sided modular
inclusion (HSMI). Let A be a von Neumann algebra acting on the Hilbert space H, with
the cyclic and separating vector 2 € H. The modular operator for A is Ay4.

1) Hsmi(A)~ is a von Neumann sub-algebra B of A with the properties: a) Q is

cyclic and separating for B.

8The expression is only valid up to corrections suppressed by O(g) terms.
9% is the Hartle Hawking state and ® is any arbitrary state of quantum fields in the black hole spacetime.
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b) AUBAL" C B for t <0.

In this case B is called the positive half-sided modular inclusion of A.

2) Hemi(A)t is a von Neumann sub-algebra B of A with the properties: a) Q is
cyclic and separating for B.

b) AYBAL" C B for t > 0.
In this case B is called the negative half-sided modular inclusion of A.
Let Ap be the modular operator of B. There is a theorem ensuring the existence of the
one-parameter continuous unitary U (t) such that U(1) maps A and B [42].
Theorem 1: If A and B are von Neumann algebras such that B is the half-sided modular
inclusion of A, then there exists a one parameter continuous unitary U (t) with ¢ € R with
the following properties:
When inclusion is negative

a) U(t) has a positive generator, i.e we can write

U(t) =exp[iHt], with H>0 (4.3.1)
b)Ut)Q=QVteR
c) U)AU(—t) C Aand t <0
d) B=U(-1)AU(1)

e) ztAzt _ U( 6—27rt)'
) AztU( )A—zt U(e(Qﬂ't)S)
When inclusion is positive

a) U(t) has a positive generator, i.e, we can write
U(t) = exp[iHt], with H >0 (4.3.2)

b) Ut)Q=QVieR

c) U(t)AU(—t) C Aand t >0
d)B = U(1)AU(-1)

e) AJTAYL =U(e* —1).

h) A%U(s)A" = U(el=2)s)

The conditions a,b and c in (4.3.1) and (4.3.2) define what is known as half-sided modular
translation in the literature. As a warm up example, we have shown in the appendix 7.2
how one can obtain the modular operator for arbitrary wedges in Minkowski spacetime
using modular inclusions. In particular, we obtain the modular operator of the wedge

which is a translated version of the original wedge at the origin by constant amount. One
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can also obtain the modular operator of a null translated wedge where the null translation
depends on the transverse coordinate. The latter case is a simpler case of a null translated

wedge in a black hole spacetime which will be used while proving the GSL.

4.4 Half-sided modular inclusions in black hole spacetimes

In this section, we want to obtain the relation between the modular Hamiltonian of two
wedges in both static and Kerr black holes. For static black holes, the wedges are A and
B, as shown in Figure 4.3. We will restrict ourselves to black holes with a bifurcate Killing
horizon and a smooth bifurcation surface. Both asymptotically flat and asymptotically
AdS black holes are considered. We will also obtain such a relation for the two wedges on
H™ for the Kerr black hole.

Interior

Exterior

F1GURE 4.3: The figure depicts a black hole spacetime with Kruskal-like coordinates.

Static Black holes:

Let M4 and Mp be the von Neumann algebras associated with the wedge A and B,
respectively, as shown in Figure 4.3. Here, v*(y) > 0 can be a function of the transverse
coordinates y. Sewell’s work in [69] established that the modular Hamiltonian of the right

exterior in the static black hole spacetime generates time translation with respect to the



Chapter 4. Black Holes, Local Algebra of Observables and GSL 133

asymptotically timelike Killing vector in the right exterior (for e.g, the Schwarzschild time
in a Schwarzschild black hole). The time translation Killing field behaves like a boost
vector field on the event horizon of the black hole. Let £* be the Killing field associated
with the time translation in this spacetime and let 7},, be the stress tensor of all quantum

fields present in this spacetime. Then, let us define

2
Ka="
K

/ T, 1Y (4.4.1)
b

where ¥ represents a Cauchy surface in spacetime and x, the surface gravity, is specific
to the black hole. In this spacetime, there exists a Hartle-Hawking state Qg that is a
unique stationary state with respect to Killing time and is regular at the horizon [70].
This state is also KMS when restricted to the wedge A. The KMS condition for operators
a and bin M 4 is

< ag(a)b >=< boyyig(a) > (4.4.2)

Here, a; is the automorphism of the algebra generated by the isometry of translations
of the time (generated by the asymptotically timelike Killing vector). The modular op-
erator for (M, Qpp) for the right exterior is Ay = exp|—K4]. Modular flow Af}i =
exp|—iK at], corresponds to boost-like flow near the horizon and timelike flow inside A.
ay(a) = exp[—iK gt]a exp[+iK at], and we know from modular theory that this is an auto-
morphism of the algebra. Now, since Mp C M 4, this implies Qpp is separating for Mp.
Furthermore, the fact that Qg is cyclic with respect to M 4 and the spacetime possesses
a global timelike Killing field implies Qg is cyclic for Mg [71, 72]. In this section, we will
choose for the Cauchy slice ¥ of the black hole right exterior, H™ UZ™", the union of the
future event horizon and future null infinity (both on the left and right for the maximally
extended black hole).

As seen in Figure 4.3, Af}i has a local geometrical action on the operators in Mpg, causing
them to move along integral curves of the boost Killing field. Since the flow is null on the
horizon and timelike inside, the forward boost cannot take the local operator in Mg out-
side it. This implies: Af};./\/l BAZit C Mp for t < 0. Therefore, according to the definition
of positive half-sided modular inclusion, Mp is the positive half-sided modular inclusion
(HSMI) of (M.4,€). Once the inclusion holds, Theorem 1 guarantees the existence of a
unitary U(t) such that

AN = U(e?™ — 1) (4.4.3)

where U (t) = exp[i€,«t] where &, is a positive operator. From property (d) of a positive

half-sided modular inclusion, it follows that &,, is the generator of a null translation and
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can be written as

Eps = / /d2Q dv v*(y) Ty (4.4.4)

Now following the same steps as in the appendix (7.2) for the Minkowski wedges, we can
easily show that
Kp = Kg — 27 (4.4.5)

and the modular flow of the wedge B
Al = K5t (4.4.6)

We know there is no global translation symmetry in this spacetime, but null translation
is a symmetry on the horizon. As a result, we anticipate that the modular Hamiltonian
of the wedge B will be expressed in local form, at least on the horizon (by local form, we
mean as a local integral over the three dimensional Cauchy slice, which in this case is a
portion of the horizon). If one chooses any other partial Cauchy slice in the wedge B other
than the horizon (H*T UZ™ for asymptotically flat black holes), the modular Hamiltonian
will be non-local. It is straightforward to verify that the one-sided modular Hamiltonian
when computed on H;, UZT in asymptotically flat spacetime and H,}, in AdS, is identical
to the form of a conjectured modular Hamiltonian in [41], where H}, is the portion of the

future horizon for v > v*. This is because
H'j*UI+ — > 2 * -+
Ky =27 dv | d*Q Tp(v —0v*)+ K(ZT). (4.4.7)
vk

Here, K(ZT) is the contribution to the modular operator from the partial Cauchy slice
Z*, which is common to K and K 4. Note that the first term on the right in (4.4.7) is
exactly of the form of a local modular operator proposed in [41] in a perturbative gravity
expansion where T}, also contains the stress-energy of gravitons. In [41], it is conjectured
that for the domain of dependence of a partial Cauchy slice 34 in any spacetime, an

expression such as

/ T,V dx? (4.4.8)
Za

is proportional to the modular Hamiltonian for some state, if the vector field V in the
integral obeys certain properties: it acts like a boost close to the entangling surface sep-
arating the partial Cauchy slice from its complement, and has a certain prescribed form
on the domain of dependence of the complement of this Cauchy slice. Further, the vector
V is such that V,Vj|s = kng, where S is the entangling surface and ng, is the binor-

b

mal to the surface satisfying n.,n® = —2. k is a constant. It can be checked that the
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vector field V' = k(v — v*)% satisfies all the requirements of [41] on the horizon — fur-
ther, it can be suitably extended both to the rest of the wedge (by choosing for example
k((v — v*)% - ua%)) and to the domain of dependence of the complement to the Cauchy
slice. k is exactly the surface gravity on the horizon. The condition V,Vj|s = kngp is
satisfied if we take v* to be a constant. When v* = f(y), then we need to modify the
condition in [41] to be

n®V,Vyls = —2k. (4.4.9)

As it happens, all the derivations in [41] go through with this modification - further, it is
possible to change coordinates and satisfy the condition V,V,|s = kng, . Now, if we have
v*(y) being a non-trivial function of the transverse coordinates y, then V,Vj, will not get
any contributions from the terms proportional to the Christoffel symbols since those terms
are proportional to the components of V' which vanishes at the entangling surface S. The
terms of the form 9,V} will contain derivatives with respect to the transverse coordinates.

However, those terms get projected out when multiplied by the binormal n® in (4.4.9).
So, V satisfies (4.4.9).

Here, we know exactly that Kp is the modular Hamiltonian of wedge B for the same state
Qpy as K4 and is obtained via the half-sided modular inclusion. Thus, this provides an
example where the conjecture of JSS in [41] is exactly true — further, in their conjecture,
the state for which this expression is the modular Hamiltonian is not known in general,

whereas in this example, we know this.

Kerr black hole:

The Kerr spacetime is stationary, and has a Killing horizon. The Killing field associated
with the horizon is not timelike everywhere in the exterior of the black hole. As a result,
there is no global KMS state on this spacetime. There is no Hartle-Hawking state for which
we can repeat the procedure which we did for the Schwarzschild black hole. However, one
can define a stationary state in the interior until the Cauchy horizon, and the exterior of
the black hole [73]. The Kerr spacetime is not globally hyperbolic when extended beyond
the inner Cauchy horizon. Nevertheless, there is a well defined initial value problem for the
exterior region R and the region between the Cauchy horizon and the exterior horizon F'.
This has been discussed in great detail by Kudler-Flam, Leutheusser and Satishchandran
(KLS) in the paper [60]. Figure 4.4 depicts one of the Cauchy surfaces for these regions.
In this section, we will be primarily interested in the right exterior of the black hole. Let
us consider linear fields in this spacetime which we generically denote ®(x). First of all,

it can be shown that any local field smeared with respect to some smooth function with
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FIGURE 4.4: The figure depicts the Kerr black hole, where the red curvy line represents
the singularity and the blue line represents the Cauchy surface for RU F'.

compact support can be written in terms of smeared local fields on some Cauchy slice [74].
We are interested in a Cauchy slice for the right exterior. It was shown by Wall [5] that
one can take the Cauchy slice to be the union of ?-[;5 and ZT. We can construct the algebra
of observables AH;% on ’H;% and ’AI;; on IE and then the algebra of observables in the
right exterior Ag ~ .A?_% ®AI7§' This decomposition of bulk algebra in terms of boundary
algebra has also been done by KLS in [60] for the Cauchy slice which is a union of H™
and Z~. KLS consider a Gaussian state in the black hole right exterior '°. They assume
that the state is Hadamard, stationary with respect to the horizon Killing field and has
zero energy with respect to it. This state can be written as a state on the von Neumann
algebra wy : Ag — C. This state is denoted wy = W’ @ w? ™, where w"™ and w? are
invariant with respect to the Killing field, and are Gaussian at H~ and Z~ respectively.
Then, they take the unique Gaussian state invariant under affine time translations on H™
and Z~. They show this obeys the KMS condition (4.4.2) on the horizon. This enables

10T hese are states for which one-point functions vanish and n point functions can be written as products
of 2 point functions.
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them to determine the form of the modular Hamiltonian on H~ and Z—.

_271'

K_ T, ds” (4.4.10)

K JH-UTr~
where &# = tH + Qpit. t# is the time translation Killing field and ¥* is the azimuthal
Killing field in the Kerr spacetime. We can do the same at H™ and ZT. Thus, we
assume the existence of a quasifree Hadamard, stationary state with zero Killing energy
and consider the unique state invariant under affine time translations on H , ’HE and Z7.
Such a state is automatically KMS on HE. The two-point function in this state is given

on H} with coordinates (V, z) by

_g 552(:1:11471;?)
(Vi — Vo) — 0t

wo (I (x1)1I(z2)) = (4.4.11)
Here, II(z) = 0y ® are operators supported on ’HE. Considering the geometric flow of the
Killing time translation (V,z4) — (e"*V,24) on HT — this generates an automorphism
of the algebra, a;. With respect to this flow, it can be checked that the state wgy is KMS
[60]. A similar observation can be made at Z3;. Added to the assumption that this state
has zero Killing energy on the horizon, this implies that this flow is modular flow and the

modular Hamiltonian is given on H; U HE U I;g by

_27‘(’

K /
—Uyty T
k- Jupunpu i

T, 8" d>" (4.4.12)
We note that the modular Hamiltonian on some other Cauchy slice may not have this
nice, local form and away from this slice, modular flow may not be a geometric flow. We
can formally split the above equation as an integral on ’HE UZ*' and H; and call it Kp
and — K7y,

K=Krp—- K (4.4.13)

This split is just formal because the entanglement across the bifurcation surface is infinite.
This give rise to a type III von Neumann algebra U(H %, wp). Further, using the fact that
for linear fields, one can always write any observable in the bulk region in terms of an
observable on the Cauchy slice pertaining to that bulk, the algebra of the right exterior

can be written as !,

U(R,wy) ~U(HE, wo) @U(Z},, wo) (4.4.14)

Further, the algebra on the H;, U(H, ,wo) is the commutant of U (H %, wo). More details
can be found in the paper of KLS [60].

1We assume that we can specify the initial data independently on ”HJR: and IIJ{.
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In the null coordinates on H T, the modular Hamiltonian (4.4.12) generates dilatation on
the horizon, see Figure 4.4. Consider another wedge R’ that has one of its future null

boundaries overlapping with the part of H#};, as shown in Figure 4.5.

FIGURE 4.5: In this diagram, the green wedge represents bulk wedge R’, with the vertex
at V =Vx.

Let V be an affine time on H* which goes from 0 to oo as we move from the bifurcation
surface B to i;, as shown in the Figure 4.5. Let the vertex of the new wedge be at Vx
and HT (V) = HT N (V > Vx). Following the above discussion, the algebra of the wedge
can be represented by the boundary algebra U(R',wy) ~ V(HT(V*),wo) @U(Z};,wo). The
state wp here is a restriction of wy to R/. The state € is clearly separating and cyclic
[71] for V(HT(V*),wp) by construction. Since modular flow produces dilatation on the
horizon, U(R',wp) is the HSMI of the algebra U(R,wp). Following the same steps as for

the Schwarzschild and Rindler spacetime, the modular operator of R’ is,
K(Vx) =K — 21y, (4.4.15)

where K (V) and K the modular Hamiltonian for the wedge R’ and R and v, is the
generator of the null translation connecting them. This modular operator (4.4.15) is the

modular operator for the state wy and it has a local geometric action on the boundary
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algebra, since the null translation is a symmetry on the horizon. It will not have a local

geometrical action in the exterior R’ away form the horizon.

4.5 Review: Type II construction for gravitational subre-

gion

In this section, we would like to summarize the construction of Jensen, Sorce and Speranza
(JSS) in [41] which we will use to prove the GSL in the next section. This construction is
for Einstein gravity coupled to quantum fields. The construction generalizes recent work
which studies QFT in a static black hole background in [1, 2, 3|, where the entropy of an
algebra is discussed. This algebra is that of fields in the black hole exterior. In [1, 2, 3],
this algebra is enlarged using the crossed product construction in von Neumann algebra.
The operator that is added in the enlarged algebra is the ADM mass which now acts
on an enlarged Hilbert space which includes square integrable functions of a new degree
of freedom, the timeshift. This crossed product (by the modular automorphism group)
changes the algebra of fields in the right exterior from a Type III; von Neumann algebra
to a Type II algebra. Consequently, one has a renormalized trace on the algebra which
can be used to obtain a von Neumann entropy in any state for the algebra. [1, 2, 3]
showed that this entropy is the generalized entropy of the black hole at the bifurcation
surface modulo a constant. In this construction, the isometry group of the static black
hole is implemented as a set of constraints - the time translation generator then equals a

boundary term — the difference of the left and right ADM Hamiltonians.

In [41], JSS have generalized the crossed product construction of [1, 2, 3] for arbitrary
subregions to obtain the entropy of the algebra of domains of dependence of partial Cauchy
slices. This is for subregions in theories of Einstein gravity coupled to matter in the
Newton’s constant G — 0 limit. The construction depends on a specific vector field and
relies on the existence of a conjectured state whose modular flow is local and geometrical
on some Cauchy slice.

JSS construction:

Let A be a subregion and A’ be the causal complement as shown in the figure 4.6. Since
the observables must be diffeomorphism invariant, they must commute with the constraint
associated with these diffeomorphisms. In particular, JSS consider a class of subregion-
preserving diffeomorphisms that act both on A and A’, with the following properties:

1) They generate boosts around the entangling surface.

2) The vector field £%, which generates this diffeomorphism should be future directed in A
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z 5 T
A// W

FIGURE 4.6: In this diagram, A is the subregion of interest and A’ is its complement.
3} and ¥’ are partial Cauchy slices associated with A and A’. Red lines in the diagram
represent the vector field £* and its direction.

and past directed in A’, and should be tangent to the null boundaries of the subregions.
3) £* must vanish at the entangling surface 93 and have constant surface gravity k£ on 0%,
given by

Vol E gy (4.5.1)

where n,y, is the binormal to 9X.

The gravitational algebra is obtained by imposing the diffeomorphism as a constraint on
the algebra of observables order by order in the full nonlinear theory of gravity. However,
as shown in [2], directly imposing constraints on Agpr and Ay trivializes the algebra.
Instead, one must introduce an observer in the subregion and extend the algebra by adding
Hamiltonian H,,s = ¢ of the observer in the algebra of observables. Also, one must extend
the Hilbert space by tensoring the Hilbert space of the QFT with the observer Hilbert
space Hops = L?(R). When the subregion does not contain any asymptotic boundary '2,
we need an observer to define the location of subregion. We must also add an observer in

A’, but since A’ contains an asymptotic boundary, the role of the observer is played by the

21n all the cases considered in this chapter, the subregion will contain an asymptotic boundary.
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ADM Hamiltonian Hapy 3. Now, the full algebra is (.AQFTVA’QFT) ® Aobs @ Aapur,
and it acts on the Hilbert space H = Horr @ Hops @ Hapm. It can be shown that the

gravitational constraint associated with £% is given by
C¢] = H{ + Hops + Hapu- (4.5.2)

Here, H, g is the operator generating the flow £ on the quantum field algebra Agpr and
Ab p instantaneously on the Cauchy slice ¥, = XU as shown in the figure 4.6. One can
write it as a local integral of the matter and graviton stress tensors (i.e., as an integral on
the Cauchy surface), which at leading order has the form (linear order constraint having

already been implemented):
HY = / T, " d5H (4.5.3)

c

Further, JSS have shown that implementing the constraint at the level of the subregion
algebra gives the von Neumann algebra A®, which is the crossed product of Agrr by the
flow generated by H g.

.AC = {engpae_ngp, ei‘it|a S AQFT,t S R}” (4.5.4)

where p is the canonical conjugate to the observer Hamiltonian and S” denotes the smallest
von Neumann algebra containing the set S. Further, JSS assume that Hé’ is the
modular Hamiltonian for some state on the algebra Agrr. With this assumption,
the algebra in (4.5.4) becomes type II, for more details, see [41]. The assumption that H, g
is a modular Hamiltonian is a key assumption for obtaining the type II algebra — there
are cases for which this assumption is exactly true, and these situations are the focus of
our attention in the previous and next sections. Once the type II algebra is obtained, it is
straightforward to define a renormalized trace and to associate entropy with the algebra

as done in [1, 2, 3],
S(pg) = —Srer (| W) — B<Hobs> o+ Sk +log (4.5.5)

where [ is the inverse temperature associated with the KMS state W for which H g is the
modular operator and ® = ®® f is the state in the crossed product construction of the type
IT algebra, see [41]. Here, we have assumed that the state d is semiclassical. This is defined
as a eigenstate of the conjugate momentum operator p peaked around zero momentum or,

equivalently, a state with a slowly varying position wavefunction f(¢). This assumption is

13This needs to be generalized to include an observer even for subregions with an asymptotic boundary,
as we discuss in the next section.
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crucial because, in crossed product algebras, operators are dressed with respect to HEP,
When acting on states of the form |®) ® |f), this dressing induces entanglement between
the observer and quantum field degrees of freedom whenever the modular energy is non-
zero. For the state with non-zero modular energy, the semiclassical assumption ensures
this entanglement remains small, and simplifies the entropy of the algebra S(pg ), enabling
the derivation of equation (4.5.5). Further it can be shown that Araki’s Type III relative

entropy of the state ® with respect to state ¥ is [66]
Syt (D|| W) = 5<H§>¢ - 5<H§E>w + ST (4.5.6)

where H, EE = fE T,V d¥* is the one-sided modular Hamiltonian. Finally, JSS show that
the algebra entropy is the generalized entropy modulo a state independent constant. JSS
assume that the gravitational constraint C'[¢] = 0 holds locally on the partial Cauchy slice

for the subregion. This allows them to obtain an integrated first law of local subregions,

1 K Aaz
H> + Hyy = — Ve = -~ 4.5.7
€ Hobs = "9 a0 /aE O T (45.7)

14

where Apyx: is the area of the entangling surface Further, in quantum theory, the

constraint should be implemented as an operator equation, which will give

—_N[Loml 45,
<H€ >q> * <H0bs>f 27r<4GN ><i> (4.5.8)
Using (4.5.7) and (4.5.8), it can be shown that
Apyx, QFT b
S(p;) =(——~ S S3s 4.5.9
(pg) <4GN><i>+ e Topte (4.5.9)

where ¢ is a state-independent constant. The above equation is the relation between the

entropy of the algebra and generalized entropy for the subregion.

c=logf — B<H§E>w + §rT (4.5.10)

MThis is exactly the place where V& = Knap is used, but notice that we will get same answer even if
we assume the weaker condition n®V,&, R By changing coordinates, we can also get exactly the

JSS condition V,&, e KNab
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4.6 The Generalized Second Law (GSL)

In this section, we will show that a local generalized second law holds true in the crossed
product constructions for static and Kerr black holes with bifurcate Killing horizons and
in Rindler spacetime. While we will do the computation for asymptotically flat black
holes, it can be done for asymptotically AdS black holes as well. The idea is to use
the construction of JSS [41], but with a modification. As mentioned in the previous
section, their construction relies on an assumption that their proposed local Hamiltonian
is the modular Hamiltonian of some state. In our computation of modular Hamiltonians,
we have shown that the modular Hamiltonian obtained using HSMI of the algebra is
for the Hartle Hawking state of static black holes and Minkowski vacuum for Rindler
(and for the particular Gaussian state we assumed in the Kerr case) - furthermore, it
precisely matches with the form of the JSS local Hamiltonian (4.4.8), when the Cauchy
slice contains the future horizon. This is true for both wedges A and B in Figure 4.3. For
wedge B, the modular Hamiltonian is (4.4.7) which is of the form (4.4.8) with vector field
V=kr(v— v*(y))% on the horizon. This satisfies nearly all of the conditions of JSS (when
suitably extended to the rest of the wedge as described in previous sections and in the
complement Cauchy slice) and the modified condition (4.4.9) which, as we have already
mentioned in previous sections, is all we need for the JSS construction to go through.
Thus, we have the modular Hamiltonians of both wedges A and B corresponding to the
same state. They both have the JSS form. So the assumption of JSS for a local modular
Hamiltonian is explicitly realized in this case. Our aim is to use the JSS construction along
with the positivity of relative entropy to show Sgen(00) > Sgen(v*) for any v*(y) > 0.
Then, using monotonicity of relative entropy, we can establish that Sgey, (v * %) > Syen (v¥)
for v**(y) > v*(y). This is a local GSL.

Before we get into the computation, we employ the JSS construction with a generalization

which we describe in the next sub-section.

4.6.1 Adding an observer to the calculation:

We now wish to discuss a slight generalization of the JSS construction where we add an
observer to the calculation. We will use the JSS construction to get relative entropy in two
different wedges. For wedges with asymptotic regions, in the JSS construction, the ADM
Hamiltonian associated with the chosen vector field plays the role of an observer in section
4. However, since this is a boundary term on a codimension 2 surface at infinity, it only

depends on the asymptotic form of the vector field which is the same for the two wedges
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FIGURE 4.7: The figure represents accretion of quantum matter into the black hole.

we are considering (or indeed for any wedge-shaped regions). To make the construction
and dressing of operators specific to the wedges we are considering, we add an observer
with Hamiltonian H,,s = g > 0 in addition to Happs. The commutant has an observer
with Hamiltonian H!, . = ¢’ > 0. This has also been discussed in [60]. To begin with,
we then have the Hilbert space H = Horr @ Hobs @ H'obs @ Hapm @ Hapar- Then, the
constraint is

Clél = Hé’ +q—q — Hapy + Hapur. (4.6.1)

Properly implementing the constraint at the level of the Hilbert space [2] leads to the
Hilbert space H = Horr @ Hobs @ Hapm @ Hapyr- We now dress operators with respect
to the observer to make the dressing specific to the wedge. This produces the crossed
product algebra A, which is the crossed product of Agrr by the flow generated by H, g

15

AY = {engﬁae_iHégﬁ, ¢l Haparla € Agrr,t € R} (4.6.2)

where p is the canonical conjugate to the observer Hamiltonian and S” denotes the smallest

von Neumann algebra containing the set S. The inclusion of both the observer and the

5Here we have only added an observer in the right exterior algebra and dressed the operator with respect
to it.
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ADM Hamiltonian still leads to a Type II,, von Neumann algebra as discussed in [60].
Considering the states ® = P ¢® f and 0 = QR g ® f (the second factor relates to
the observer degree of freedom, and the third factor to the Hapys degree of freedom),
we can now discuss relative entropies of the two wedges. We note that implementing the

constraint on each partial Cauchy slice now yields

(a8, -8}, = (), o

First, we will discuss the static black hole case. We have a static black hole with Killing
horizon which is perturbed away from stationarity by quantum fields (including gravitons)
in the spacetime. We will assume that the black hole settles down to a stationary state at
late times. This is plausible because all the flux of matter would either have crossed the
horizon or would have escaped to future null infinity. In the case of AdS, all matter will
eventually cross the horizon. So, at late times, the state must be indistinguishable from
the vacuum Q. Let us now apply the modified JSS construction to the wedge B for the
black hole. This will yield a type II von Neumann algebra of fields in the wedge B. Once
we have obtained the type II algebra, the modular Hamiltonian can be factorized and
we can write a one-sided modular Hamiltonian. Further, using the definition of Araki’s
relative entropy, we can write S(®[|Q2) in terms of the one-sided modular operator in the
type II algebra, with the states ® = ®® ¢ ® f and Q = Q® ¢ ® f in the type II algebra
corresponding to some quantum field state ® and cyclic, separating state () as defined
in the previous section. Using (5.13) and (5.14) in the paper [41] and the fact that we
are working with a semiclassical state '6, it can be shown that S(®||Q)= S(®||Q). This
explicitly shows the well-known fact that Araki’s relative entropy is well-defined and finite
even in a type III algebra. It allows us to write the relative entropy in terms of the one-
sided modular Hamiltonian in the type III algebra (which is well-defined as a Hermitian
form [55]). The partial Cauchy slice on which we want to write the modular Hamiltonian
is HT(vx) UZT, where HT(vx) represents v > vx part of the horizon. The modular
Hamiltonian on this partial Cauchy slice can be written as K4(vx) = Ky+(vk) + Kz+.

Here, K7+ is the modular Hamiltonian at Z* and
oo
Ky+(vi) = 277/ dv/ dP 22V h(v — v.) Ty (4.6.4)
Vs HF

which can easily be obtained using the equation (4.4.5) and the fact that &, is a generator

of null translation and is local on the horizon. Note that K7+ is independent of v*. This

0One needs to use the fact that in a semiclassical state, g(q) is slowly varying or equally its Fourier
transform is peaked around zero momentum.
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implies that K7+ will not contribute to the difference in the modular Hamiltonian between
two cuts. The state of the system restricted to the wedge B can be obtained by specifying
the density matrix at H* (vx) and Z,i.e W(HT (vx) UZT) = py+(ps) @ o7+ [5]. Let  be
the state of the quantum field, which is indistinguishable from Qpp at late times. Now
as shown by JSS in [41],

Syt (®]|Qr11) = <KA(U*)>(I> B SgFT _ <KA(U*)> + 5’855 (4.6.5)

Qun

where S,(®||V) is Araki’s relative entropy of the state ® and Qpm, SgFT and 5’85;

are the entropy of the QFT in the state ® and Qg respectively. While each term may
not be finite, but since relative entropy in type II and type III algebras are equal, all
divergent terms must come in pairs in such a way that the final answer is finite. Further,
the one-sided modular Hamiltonian is well-defined as a sesquilinear form on a dense set of

states [55].

Imposing constraints as an operator equation and for some state @,

(Kaws)), +5(a) —6(Hapur) = —<4;;‘N>& (4.6.6)

where [ is inverse temperature associated with the KMS state Qg and P=0d® g® fis
the state in the crossed product construction of the type II algebra, see [41] . Similarly,
O=00 g ® f. The f and g in the type II state are square integrable wavefunctions
and [ <H ADM> is the expectation value of the ADM Hamiltonian in f while 8 <q> is
the expectationfvalue of the observer Hamiltonian in state g. Notice that f and g gare
independent of the state ® and therefore if we consider the difference of the area operator
in two different quantum field states, than it will be independent of both f and g. Finally,
we see that the relative entropy of the states ® and () is the same as the type III entropy,
and the terms dependent on the observer and ADM degrees of freedom cancel out in a
single wedge'”. We will be doing this computation for two wedges that we define below,

and inclusion of the observer degree of freedom explicitly defines the wedges. Using (4.6.6)
and (4.6.5), we get

A A

Set@120) = (G oy, ~ (i Jo + S~ 58 (4.6.7)

"We could think of the addition of the observer as a regularization tool since the observer degrees of
freedom do not play a role in the relative entropy. The crossed product with respect to the observer as a
regularization tool has also been discussed for QFTs in [75]
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Since Qprpr is a stationary state, the area at any cut is the same as at vx — oco. Using this

fact, we can write the equation as

Syt (]| Q1) (v3) = <4éN>(oo) - <4(‘;1N>q>(v*) +SGIT _ gQFT (4.6.8)

We put vx* in the equation above to emphasize that it is for the wedge at v*. Further, the

above equation can also be written as:
Srel(®||QH) (V%) = Sgen(00) — Sgen(v*). (4.6.9)

The positivity of relative entropy implies Sgen (00) > Sgen(v*). Since the equation (4.6.9)
holds for any v+ > 0, we can write the same equation for some wedge which is at v+*(y) >

v*(y), i.e
Srel(q)”QHH)(U**) = Sgen(oo) - Sgen('U * *) (4.6.10)

Since the wedge at v+x* is contained in the wedge at v, the monotonicity of Araki’s Type

III relative entropy for QFTs implies
Sret (P rr) (V%) — Srer(P@|[Qprer) (v * %) > 0. (4.6.11)
Using (4.6.10) and (4.6.9), we get
Sgen (v * %) > Sgen(v¥) (4.6.12)

for all v¥x > v > 0. This is the local version of GSL that we wish to obtain. Since the
relative entropy has been used, at every step, we are dealing with finite quantities. The
computation will continue to hold in AdS ¥, with the only difference being that the partial
Cauchy slice will be H T (v*). The computation is also identical for the Rindler wedge; the
only difference is that the cyclic separating state at late times will be the Minkowski
vacuum, and the modular Hamiltonian in equation (4.6.5) is with respect to this vacuum.
Furthermore, this technique can be simply extended to any spacetime having a Killing
horizon like Kerr, modulo our assumption about the existence of a special Gaussian state
on the horizon. Notice that this computation is fundamentally dependent on modular
inclusion and the fact that the null translation is a symmetry on the horizon — this
mainly results in the local modular Hamiltonian for all wedges of type B (wedges whose
future null boundary coincides with part of the future horizon). As we have seen, the JSS

conjecture is true for any wedge with a boundary which overlaps with a part of the Killing

18 A subtlety in the AdS case is discussed in the next paragraph.



Chapter 4. Black Holes, Local Algebra of Observables and GSL 148

horizon. The generalized entropy at each cut is equal to the entropy of the type II algebra
of the wedge associated with that cut in the sense of JSS.

In an asymptotically AdS spacetime, a question that can be asked is the boundary dual
of this construction. Modular Hamiltonians on time bands in the boundary have been
discussed in [76] (see also eq.(98) in [77]). However, we have been informed by Prof. E.
Witten that the modular Hamiltonian of a proper subregion in the boundary does not
have a splitting into left and right parts. Thus, in the asymptotically AdS case, we cannot
merely use Happs to implement a crossed product construction. It is clear that one has
to add an observer in addition to H 4pps and implement the crossed product with respect
to the observer. If we add the observer, then the question is what is the boundary dual of
the observer. This is a question which we hope to address in the future. The meaning of

the observer has also been extensively discussed in [41].

Finally, we end this section with a note comparing this derivation with the proof of the
GSL by Wall [5] who also used the monotonicity of the relative entropy. The type II
crossed product construction provides a natural renormalization scheme which was an
assumption in Wall’s proof. Further, the relative entropy used in this section is Araki’s

type III relative entropy and all computations are done in modular theory.

4.7 Modular Hamiltonian of deformed half-spaces in general

spacetimes

In this section, we depart somewhat from the techniques of the previous sections and
consider (one-sided) modular Hamiltonians (for the vacuum state) computed using path
integrals rather than Tomita-Takesaki theory. The issue then is that the one-sided modular
Hamiltonian may be formally infinite, however we will assume that this can be renormal-
ized, since we will finally be interested in two-sided modular Hamiltonians '°. The purpose
is to compute some examples of general modular Hamiltonians to confirm/check the ex-
pectation of JSS [41] that a non-local modular Hamiltonian H of some state |¥ > may be
made local by subtracting off an element of the algebra a and an element of its commutant,
b’ such that H' = H —a — U is local. By local, we mean a local integral over some Cauchy
slice. Then the converse of the cocycle derivative theorem implies that H’ is the modular

Hamiltonian of some other state |W gy >.

The one-sided modular Hamiltonian is well defined as a Hermitian form on a dense set of states.
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The expectation that the modular Hamiltonian can be made local is crucial to the con-
jecture of JSS that H, g is the modular Hamiltonian for some state on the algebra Agpr.
In order to check this, we need modular Hamiltonians at our disposal, which are hard
to calculate in situations without a lot of symmetry. In cases where, for example, there
is Killing symmetry, the modular Hamiltonian for the vacuum can be computed in most
situations and is a local expression on a Cauchy slice. However, other than these examples,
the modular Hamiltonian will in general, be non-local and will not generate a geometric

flow on the spacetime.

The simplest example is to consider the half-space in Minkowski spacetime, whose domain
of dependence is the Rindler wedge. We know the modular Hamiltonian — it is the gen-
erator of a boost and therefore can be written as a local integral on the t = 0 surface.
Consider an arbitrary deformation of the ¢ = 0 surface by a small amount which, in par-
ticular, perturbs the entangling surface itself. As is well-known, the modular Hamiltonian
on this surface will be non-local, but we can do a perturbative expansion about the mod-
ular Hamiltonian associated with the half-space at ¢ = 0 and obtain a relation between
them. This was obtained by Faulkner, Leigh, Parrikar and Wang (FLPW) in [77] and
later by Balakrishnan and Parrikar (BP)[78] for Minkowski spacetime and in the paper
[79] by Rosso for AdSs x S?2. This technique gives, at least perturbatively, the modular
Hamiltonian for more general wedges in the spacetime.

We would like to see if the perturbative correction to the half-space modular Hamiltonian
can be made local as surmised by JSS by subtracting off a piece a from the modular
Hamiltonian (and a piece b’ from the commutant when one considers the two-sided mod-
ular Hamiltonian). But first, we want to apply the technique of FLPW to a more general
class of spacetimes and find the relation between the half-space modular operator and the
deformed one. We will work with the Wick-rotated Euclidean metric. The class of metrics

we are interested in is the class of Wick-rotated metrics with the form
ds® = g, dX"dX" = exp[Q(p)] (alp2 + f(p)dTQ) + hap(p?, T)dx*da® (4.7.1)

where Q(p) is a smooth function for all p and f(p) is a positive function, which goes like
r2p? for small p where  is some constant. We will also assume Ay, is a Riemannian metric
which is smooth at p = 0. 7 is Euclidean time with periodicity 5 = 2?” Note, the metric
components are independent of 7. The periodicity ensures that there is no conical singular-
ity. Since the metric is independent of 7, the metric after the Wick rotation corresponds to
a static Lorentzian metric. Furthermore, the metric is degenerate at p = 0 indicating the

existence of a horizon associated with these coordinates. After the Wick rotation, one can
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analytically continue the coordinates to obtain its maximal extension. The metric ansatz
accommodates many interesting cases. The metric is conformally Rindler if f(p) = p? and
transverse metric is flat, Rindler if we also have Q(p) = 0. It is AdS2 X Miransverse When

f(p) = sinh? p and 2(p) = 0. The Schwarzschild metric can also be put in this form.

%4—
H‘r ¢+ A 0

FIGURE 4.8: The red line represents the surface Ag on which density matrix is computed
in (7,p) plane. H, is the generator that maps ¢, to ¢_ on (7,p). t in the figure is
Lorentzian time and H* are the Cauchy (and Killing) horizons of the Cauchy slice.

We are interested in computing the modular Hamiltonian for some Cauchy slice which is
not a half space in these class of spacetimes. Consider a QFT in the above spacetime. It
is well-known how to compute the density matrix of the vacuum state using the Euclidean
path integral on any generic spacetime with the time translation symmetry. The spacetime
should have a well-defined Wick rotation, and the metric should be smooth everywhere
after the rotation. The density matrix for the vacuum state on an arbitrary surface is
obtained in [80] and is non-local, as expected. The nonlocality arises from the fact that
the generator that maps the configuration of fields above and below the surface of interest
on which the density matrix has to be computed is not a symmetry. In our case, we want

to compute the density matrix for a surface which is a small deformation of the 7 = 0
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surface. But, first let us compute the density matrix for the 7 = 0 surface as shown in
Figure 4.8. Since 7 translation is an isometry of the spacetime, the result will be local. In

general, we will get
PAg,g = €xp|—[H;] (4.7.2)

PAy,g Tepresents the density matrix 20 H, is a generator of 7 translation. H, can be written
in terms of the QFT stress tensor and vector field d; [80]. Now the one-sided modular
Hamiltonian of the vacuum can be obtained using K4, 4, = —logpa, s = BH,. This is
the modular Hamiltonian associated with the domain of dependence D(Ag). The modular
Hamiltonian derived by Sewell for the right exterior of the Schwarzschild black hole in [69]
is of this form. In fact, the class of (Lorentzian) metrics we consider in this section are
exactly of the form assumed by Sewell. So we can simply use Sewell’s computation for
getting the modular Hamiltonian. Now, we are interested in the modular Hamiltonian of
the deformed region D(A) associated with the Cauchy surface A, which is obtained via a
small diffeomorphism of Ay. Let X* = X' — ((p,Z) be the diffeomorphism which maps
Ap to A, where ( is generator of this infinitesimal diffeomorphism. Note, we also assume
it to be independent of 7. We will assume that ( is non-vanishing and smooth at p = 0.

The unitary operator that implements this diffeomorphism on the Hilbert space is [77, 79],

U = exp [/ dZ“ij("] (4.7.3)
7=0

where T}, is the stress tensor. Note that there is no ¢ in the above equation, since we
are working with the Euclidean theory. By applying a general identity for computing the
derivative of the log of an operator, FLPW [77] have shown that

KA»Q = KAO,Q + [KAo,g, 5U] + 5KA0,g + O(CQ) (474)

where K 4 4 is the modular Hamiltonian of the deformed surface, U is a linear order term

in ¢ when U is expanded in ¢ and 6K 4, 4 is,

0K 44,9 = /Oo+ia dz;/ dS“p;%TWC’p?T (4.7.5)
’ —ootia 4sinh® z/2 oMy 0,9 0,9

where a € (0,27) is a free parameter, z = s + ia where s € R and 9Mp is the boundary
of the Euclidean manifold Mg we are working on. Here we have put 5 = 27, so that

we do not have to track it at each step, but one can introduce it and it will just change

20gin pa,.4 is just to emphasize that it is defined in the metric g.
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the answer by scaling of 4?!. The above integral does not get a contribution from the
conformal boundary?2. The only contributions we get are from the branch cut and C | i.e

OMp = CU R4 U R_ as shown in the Figure 4.9, for more details, see [77, 79]. Further,

FIGURE 4.9: The red line represents branch cut in the (p, 7) plane, the blue line Ry will
give the contribution from the branch cut and C is the p = b surface which will give the
contribution from the entangling surface as b — 0.

we can split the contribution as coming from C and Ry U R_,

5KA07Q = 5KA0,9,C + 5KAo7g,R+UR, (4.7.6)

Contribution from C:
We are interested in computing the contribution of C' as b — 0. Since p is very small on

the contour C', we can work we the metric

ds* = exp[Q(p)] (alp2 + p2d7'2) + hap(p?, T)dxda® (4.7.7)

21To do the computation with 8, let pﬁ,g — ,oAF

..o in the equation (4.7.5).
22We can take ¢ be non-vanishing only for very small p and at 7 = 0, the contribution coming from the

spatial boundary dies off due to appropriate fall-off of the stress tensor.
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It will be more convenient to work in the following variable,
T4 = pexp|[FiT] (4.7.8)
It is straightforward to show
ds® = exp[Q(p)] (dw+d:r_) + hay(p?, B)dzda®, (4.7.9)

the translation in 7 is scaling in 2, i.e 7 — 7 + iz becomes x4+ — e™?x4. For computing

0K Ay,g,c » We need the inward unit normal n# to C, which can easily be obtained,

n* = —exp[(b)/2](e” oK + €'T5H) (4.7.10)

We know that p;? generates the diffeomorphism x4 — Z4+ = ez, . We can write
BT LA 4.7.11
PAs,g W(%iax)PAO,g = Onk Orv B(ZT4, T) (4.7.11)

Since a in the limits of integration in (4.7.5) is a free parameter, we will work with the

choice a = 7. Using (4.7.10) and (4.7.11), we can show B = n“CVPEETMsz,g‘C is

B = —¢ /2 <C+es+”(T++es+T+,e_s)+C_e_(s+iT) (T,,6_8+T,+es)+C“(T+aeS+T,ae_s)>.

(4.7.12)
Since
Vhdpd—2 > ds o Q(b)/2
0K = lim hdx®~ —_— be dr B, 4.7.13
Ao.9,¢ b—>0/ /_OO 4Sinh2(5+#) /0 g ( )
note that e£2()/2 in the equation cancels the e 2()/2 in B. Therefore the contribution from

C' is independent of the conformal factor in the metric (4.7.1). We can split the above

equation in the components of (, as
0K 9,90 = 0K g9+ + 0K 409 +0Kayga (4.7.14)
where

6K g+ = — lim / Vhdz®=2¢E (b, 7) / dsli(s)b(Tiieis—kTJr,e:FS) (4.7.15)

—00

where

2m et (s+ir)
I = dr———————— 4.7.16
+(s) /0 " sinn? () (4.7.16)
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and
5K 1o g0 = — lim / Vhdz®2¢% (b, ©) / dsIa(s)b(TJraes—i—T_ae’s) (4.7.17)
— —0o0
where
2w 1
I.(s) = dr——————— 4.7.18
(s) /0 " Ismh2(5T) (4.7.18)
Now to compute I, we will use the well-known identity
_ w‘]
I;= f dw — =2mi0e * (4.7.19)
w—e
where J is integer and
O(s) J>0
0y =
—-0(-s) J<0

where O is the step function. It is easy to show that I, = i%—fs‘) =270(s) and I = i%eis,

where _
0141
0s

We eventually want to compute the integrals (4.7.14) and (4.7.17) as b — 0, but they are

=2mi(6(s)eT® — £eT°O41) (4.7.20)

non-vanishing only if b — 0 is compensated by s — +oo. Since I, = 276(s), 0K 4,90
vanishes as b — 0. Similarly, d(s) terms in I+ do not contribute, leaving only © terms
to contribute. Notice that the term with 7 _ does not contribute. Therefore, we are left
with
+o0
0K Ag g+ = —QW/\/ded_ZCi(f)/ dep+Tii(xrs, ) (4.7.21)
0

where z7+ = be™ are Lorentzian null coordinates. Therefore

—00

SKappe = —2r [ Va2 ((H@) [ doniTotors 9+ @) [

de_T__(xLi,£)>
0

(4.7.22)
Contribution from R, U R_: Let the unit normal to the Ry be denoted by ni. This is
given by
; o (1723
nh = F— 4.7.23
. eSUP) f(p)

and the metric induced on this surface is

ds®|p. = exp[Qp)]dp” + hap(p®, F)da*da’ (4.7.24)
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In computing the contribution from R4, we will choose the free parameter a@ = € for R

and o« = 2w — € for R_. pZézg generates 7 translation. Using (4.7.11), we can write

o [ Y o0 ds s s
0K 4095 = / Vhdz®? / M2 dp¢vnly / ki) Paog L (0, 2 D) P
b —oo 4sinh® *=;

(4.7.25)
since the contours for R4 are oriented oppositely and n” = —ni. One can close the
contour and from residue theorem the contribution comes only from the double pole at

s = 0. Further, one can show?3
0K Ag,9,r_UR, = [0U, Ka.g]. (4.7.26)

Using (4.7.26), (4.7.22) and (4.7.6), we can obtain dK 4, 4. Further, putting in (4.7.4), we
get

Kag=Kuagg—2m / \/ded—Q(c+(f) / drp Tiy + (7 (2) / de_T,,) +0(¢%)
0 0
(4.7.27)
We have obtained the modular Hamiltonian of the deformed surface at leading order in

the deformation field using the FLPW technique. K4, 4 is a local expression

/ dxt VVTW
Ao

where V is the Killing vector field. It is conserved (from the fact that the energy momentum
tensor is conserved and that V' is Killing). Therefore, we can also evaluate it on a Cauchy
slice that consists of the Killing horizon H* and Z* (for asymptotically flat spacetimes).
Then we can attempt to combine the second integral on the right in (4.7.27) which is
also an integral on H™* with the contribution to K4, , from HT. Indeed, in a situation
where (7 (Z) = 0, we can do the computation to higher orders, and all of these will be
integrals on H*. Presumably, they can be resummed [78] to get the one-sided modular
Hamiltonian for a null translated wedge along H™ exactly as in the previous sections. But
when (7 (%) # 0, we will not be able to combine the second integral in this manner. This
is the signature, at leading order in the deformation field, that the modular Hamiltonian
is really non-local. It can be made more explicit at higher orders in the deformation field,
where the non-local products of the stress tensor will appear. This can be seen even in
the Minkowski spacetime, for example, in the equation (3.21) in [78]. We note also that

the integrals are over the horizons of the domain of dependence of the slice Ay and differ

2For the residue at double pole, we have to compute the first derivative of the non-singular part at s = 0
,and will result in the commutator.
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from similar integrals on the horizon of the domain of dependence of A only at quadratic
order in the deformation field.

Since the integrands in the terms in K44 — K4, depend on the quantum fields due

FIGURE 4.10: In this diagram Ag is the undeformed partial Cauchy slice of the half space

and A is the deformed partial Cauchy slice. By represents bifurcation surface associated

with wedge with Ag being Cauchy slice where B represents bifurcation surface associated
with the wedge with A being Cauchy slice.

to the energy-momentum tensor, we can think of these terms as affiliated to the right
exterior algebra (at linear order in the deformation field) and for the two-sided modular
Hamiltonian, we have an identical term in the left half space affiliated to the commutant.
Here by affiliated, we mean affiliated to the algebra or its commutant as a Hermitian form
on some Hilbert space H [55] ?*. The above computation is a perturbative computation
in the deformation field, and it only makes sense in the regime of perturbation theory.
It restricts the state in which one can compute the expectation value of the deformed
modular Hamiltonian. For example, if we work with states such that | in < Tyg >
€*] < 1, this presumably can always be met by appropriately choosing the magnitude
of the deformation field. It tells us that maybe we can think of the deformation field as

a smoothing function. Notice that the difference of the two-sided modular Hamiltonians

#4See also Corollary 2.12 in [23] for operators affiliated to a von Neumann algebra.
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under the deformation depends on precisely in Ty &F types of quantities coming from
the wedge and its commutant. So, it might be possible that there exists some a in the
algebra and b’ in its commutant such that the difference of the modular Hamiltonians is
a + b in the states where |in < Tiy > €| < 1. We also see that these terms have
support near the original entangling surface since the deformation actually changes the
entangling surface — see Figure (4.10). The distinction between the horizon of the original
wedge and the deformed wedge only comes at quadratic order in the deformation. This
result is suggestive of the statement of JSS in [41], that a non-local two-sided modular
Hamiltonian can be written as the sum of a local modular Hamiltonian of some other state
and some operator from the algebra plus one from the commutant which makes the full

operator non-local.

The construction of FLPW [77] can be done for higher order terms in the deformation. It
is expected that this can be resummed for null deformations given only by (™ (Z) and one
will get 2°,

[e.e]

Kag =27 [ VRdo™ [~ (op0 = CH@)Tysdor (4.7.28)
¢(%)

We have already seen this in previous sections for the Schwarzschild black hole, using
HSMI. Translation symmetry in 7 corresponds to a boost in null coordinates. Null trans-
lation at the horizon is a symmetry for the Schwarzschild metric. Therefore K4, — K4 = &¢
where &; is the generator of the null translation on the horizon. Now, we can easily ob-
tain the equation (4.7.28) by extracting out the one-sided modular Hamiltonian for the
new wedge. Further, one can write the full modular Hamiltonian and use the fact from
modular theory that if Mp4) C Mp(a,) then K4, — K4 > 0 for any state. For the class
of metrics we consider in this section as well, such a result follows on the Cauchy (Killing)
horizon by resumming terms when we only have (' (%) deformations or by using HSMI.
Further, for this class of metrics, Sewell’s result [69] for the modular Hamiltonian of the
wedge corresponding to the half-space can be used and it is local. This along with the fact

that K4, — K4 > 0 is true for any ¢(* > 0 implies,

o0
/ dQ}L+T++<f, IBL+) Z 0. (4729)
—0o0

This is just the Averaged Null energy condition (ANEC) integrated along a null generator
of the Cauchy (Killing) horizon. A similar relation can be obtained on H~. Therefore, in

particular, HSMI along with the monotonicity of K implies ANEC along null generators

251t seems that if one works with Gaussian null coordinates, a computation similar to [78] will go through.



Chapter 4. Black Holes, Local Algebra of Observables and GSL 158

of the future horizon of the Schwarzschild spacetime and for the class of metrics we are

working with in this section. This has already been noted by FLPW [77].

4.8 Discussion

Crossed product constructions have proved to be very useful in renormalizing quantities
such as one-sided modular Hamiltonians and associating an entropy with the algebra of
field operators in subregions. However, so far, it has only been possible to obtain a
weak form of a GSL in black hole spacetimes in crossed product constructions [3]. This
involves considering asymptotically AdS black holes and proving that for a very large
time gap between early and late times, the generalized entropy at late times is greater
than at early times. In this chapter, we primarily show that a local version of the GSL,
namely d%% > 0, follows from crossed product constructions. The new ingredient is the
application of recent results on the entropy of the algebra of operators on subregions of
general spacetimes by JSS [41]. We discuss a slight generalization of the JSS construction
in the case of asymptotic wedges, where we explicitly introduce an observer and implement
the crossed product with respect to the observer. This also allows us to obtain a GSL for
asymptotically AdS and flat black holes, for which, as discussed in section V, we have
added an observer to make the construction specific to a wedge. Such extra degrees of

freedom do not change our results, since these degrees of freedom cancel out in a single

wedge when considering the relative entropy in the wedge.

We first use half-sided modular inclusions to obtain expressions for modular Hamiltonians
for algebras of null-shifted wedges along the future horizons in maximally extended static
black hole spacetimes. We also outline a similar computation for the horizon of the Kerr
black hole. Then we apply the result of JSS to these wedges. The results of JSS rely on
the conjecture that the Hamiltonian generating the flow of a specific vector field on the
Cauchy slice is a modular Hamiltonian of some state. This conjecture is true in the setting
to which we apply these results. It also allows us to interpret the generalized entropy at
each cut on the horizon as the entropy of the algebra of the wedge associated with that
cut in the sense of JSS. Further, we are able to compare relative entropy for two different
subregions (specifically, wedges along the horizon) using the JSS results since the modular
Hamiltonian used for the crossed product construction in both the wedges is for the same
state. How to compare, for example, algebra entropy of two different subregions of a
spacetime in general in the JSS construction is an interesting open problem, with many

potential applications.
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4.8.1 Modular Hamiltonians of deformed half-spaces:

In the section (4.7), we also compute modular Hamiltonians in a class of static spacetimes
(including the Schwarzschild spacetime), which are modular Hamiltonians for the domains
of dependence of deformed Cauchy slices of half-space using path integrals. The purpose
is to check whether such a modular Hamiltonian, which is expected to be non-local, can be
made local by adding two operators, one from the algebra, and one from the commutant
(for the two-sided modular Hamiltonian) as surmised by JSS. We compute these modular
Hamiltonians using the path integral method. The results produced for the two-sided
Hamiltonian, apart from a local integral on a Cauchy surface, are operators of the form
in Ti+€F . Since perturbation theory requires |in < Tyg > €F| < 1, so0 it might be
possible that there exists some operator a in the algebra and an operator ¥’ in its com-
mutant such that the difference of the deformed and undeformed modular Hamiltonians
is a + b'. Along the way, we see that the averaged null energy condition (ANEC) also
holds for null generators of the Cauchy horizon in the class of static spacetimes we have

considered, which includes the Schwarzschild spacetime.



Chapter 5

Black Holes in Higher Curvature
theory and Local algebra of

Observer

The material presented in this chapter is based on the work of the author in [6]

In this chapter, we generalize the result of Chandrasekaran, Penington, and Witten (CPW)
to higher curvature theory. In particular, we have shown that the generalized entropy at
the bifurcation surface of any static black hole with a causal horizon in an arbitrary
diffeomorphism-invariant theory of gravity is equal to the entropy of the algebra of ob-
servables of the exterior. We have also presented a version of the generalized second law

for an arbitrary diffeomorphism-invariant theory of gravity that follows.

160
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5.1 Introduction

In an arbitrary diffeomorphism invariant theory of gravity, the entropy of a black hole is
not ﬁ, where A is the area of the horizon at some horizon cut. Instead, it will have
some higher curvature corrections. Therefore, the generalized entropy is not given by
the formula (4.1.1). But, we can analogously define the generalized entropy for a black
hole with quantum fields to be the sum of its horizon entropy S in that theory and the

entanglement entropy of quantum fields in the black hole exterior,
Sgen =S+ SQFT- (5.1.1)

A candidate for the horizon entropy for a stationary black hole is the Wald entropy [81],
[82]. The Wald entropy is ambiguous for a non-stationary black hole — these ambiguities
were first discussed in [83]. A linearized GSL (ignoring gravitons) was proved for Lovelock

gravity in [84].

As we have seen in the last chapter, the generalized entropy at the arbitrary cut on the
horizon in Einstein gravity is equal to the entropy of a von Neumann algebra of observables
in the black hole exterior up to an additive constant. We have also seen that it helps us to

prove the local GSL in crossed product construction, where each step is manifestly finite.

In this chapter, we study the generalization of these results to an arbitrary diffeomorphism-
invariant theory of gravity. Our aim is to prove that the relation between generalized
entropy and the entropy of the algebra of observables is true even in higher curvature
theory, at least at the bifurcation surface. We first write the black hole entropy in such
a theory at an arbitrary horizon cut, which is the Wald entropy [81], [82] with an extra
term representing an ambiguity in the Wald entropy for a non-stationary black hole [83].
We work in semiclassical gravity. We consider a static (therefore stationary) black hole
that is slightly perturbed due to infalling quantum matter and gravitons. In the limit
when the cut v — oo, the perturbed black hole approaches a stationary black hole (v is
the affine parameter along the null generator of the horizon). We compute the entropy
at v — oo minus the entropy at the bifurcation surface up to quadratic order in the
perturbation, and we take into account the contribution due to gravitons to the stress-
energy tensor. It is possible to fix the ambiguity in the Wald entropy in such a way that
this difference of entropies takes a simplified form proportional to the vv component of the
stress-energy tensor. Generalizing the computations of CPW [3], we find the difference of
generalized entropies at v — 0o and at the bifurcation surface to be proportional to the

relative entropy, which is non-negative. By computing the entropy of the extended von
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Neumann algebra of the black hole exterior [1], we show that the entropy of the algebra
is the generalized entropy at the bifurcation surface just as in [2] for Einstein gravity. All
the above constructions can be done for asymptotically flat static black holes [2]. Finally,
we discuss the monotonicity result of CPW [3], who show that the monotonicity of relative
entropy under trace-preserving inclusions can be used to argue that the generalized entropy
at late times is more than that at early times. For this, we need asymptotically AdS black
holes with a holographic dual, but modulo this change, the monotonicity result of CPW
goes through for the generalized entropy of a black hole in an arbitrary diffeomorphism-

invariant theory of gravity.

In section II, we discuss the difference of entropies at v — oo and at the bifurcation
surface for a slightly perturbed black hole. We use boost arguments, which we summarize
in section II.1, to simplify this difference of entropies. By expanding the Raychaudhuri
equation order by order in the perturbation parameter, we compute the change in entropies
to quadratic order in section I1.4, both without graviton contributions to the stress-energy
tensor, and with the graviton contribution included. In section III, we discuss the entropy
of the algebra of operators in the black hole exterior. We first generalized salient results
from earlier papers of Witten [1], Chandrasekaran, Longo, Penington, and Witten [2], and
CPW [3], who discussed how the entropy of the algebra was related to the generalized
entropy in Einstein gravity, to higher curvature gravity. We then generalize these results
to an arbitrary diffeomorphism-invariant theory of gravity. In Section IV, we conclude

with a discussion.

5.2 Entropy Change in Higher Curvature Theory

In what follows and the rest of the chapter, we work in units where G = 1. Consider an
entropy function for a black hole horizon in an arbitrary diffeomorphism invariant theory

of gravity with matter,

S = le/p\/ﬁdD%U (5.2.1)

where p = 1+ py, + €, where h is the induced metric on the D — 2 dimensional transverse
cut on the horizon and 1+ p,, is the Wald local entropy density [81], [82]. As is well-
known, the Wald entropy is unambiguously defined for a stationary black hole, but suffers
from ambiguities when evaluated on a non-stationary black hole. These ambiguities were
pointed out by Jacobson, Kang and Myers (JKM) [83] and by Iyer and Wald [82].
is a correction to Wald entropy density representing this JKM ambiguity, such that it
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FIGURE 5.1: Accretion of matter across the horizon in an asymptotically flat black hole.

vanishes for a stationary solution. We are interested in a black hole spacetime with a
regular bifurcation surface B, which is slightly perturbed from stationarity by throwing
some quantum matter. Let v be an affine parameter along the null generator of the future
horizon, such that v = 0 is the bifurcation surface as shown in Figure 5.1. Then, the

entropy at an arbitrary horizon cut (given by v = constant) is
1
Slv] = 4/p\/EdD_2x (5.2.2)
v

where the subscript v in the integral indicates that the integral is over the transverse space

at fixed v on the horizon. We can compute the change in the entropy along the horizon,

ds 1 dp

22 =2 [ VhdP? (— 0 ) 5.2.3

dv 4 /U\F v +op ( )
where expansion 0 = id\/ﬁ. To compute change in the entropy from v = 0 to v — oo,

— Vh dv
we can integrate both the sides with respect to v. This yields

_ p-2, (4P
AS—4/O dv/vx/ﬁd x(dep). (5.2.4)
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Here, AS = S(c0) — S(0). Using integration by parts,

AS = i/v{vx/ﬁ<f£+ap)}

v—00 1 [ d’p df dp
dP 2y —~ [ d hdP2zvd L+ p+2-20+60%p .
v=0 v 4/0 v/\f xv{dv2+dvp+ dv + p}

(5.2.5)

We will assume that \/E(% + 0,0) goes to zero faster than %, therefore the first term in

the above equation is identically zero and we are left with

AS = —1/000 dv/\/ﬁdD%v{Zngr %p+2%9+92p}. (5.2.6)
To compute AS order by order, we will now consider the metric perturbation sourced
by a stress-energy tensor of order €, i.e, < Ty, > ~ O(€). We will also assume that the
perturbation is about a stationary black hole background and at late times, the black
hole will again settle down into a stationary state. The perturbation expansion we are
interested in is
G = 9;(8/) + e%g,(é) + egl(},j) + O(e%), (5.2.7)
where the zeroth order term corresponds to the stationary black hole solution with regular
bifurcation surface, the /e term is due to quantized graviton fluctuations, and the e term
is due to the gravitational field of matter or gravitons. We can think of ¢ as h. We want
to emphasize that Q vanishes at order /e at the bifurcation surface [85], a fact which will

be useful later in the calculations.

5.2.1 Boost Argument

We now use boost arguments first used in [86] and later in [87], [88]. The metric near
any null hypersurface and therefore near the event horizon can be given in Gaussian null

coordinates as
ds? = 2dvdu — u* X (u, v, 2%)dv? + 2uw;(u, v, 2%)dvdz® + hij(u, v, 2¥)da’ da? (5.2.8)

where v is an affine parameter along the null generator of the horizon, z* corresponds to
coordinates on the D — 2 transverse surface (cut) and u is chosen in a way that 9,.0, = 1
and 0,.0; = 0. In this coordinate system, u = 0 is the future horizon and v = 0,v = 0
corresponds to the bifurcation surface B. These coordinates may not cover the entire
spacetime, but the near-horizon region of any dynamical black hole spacetime can always
be written in this form. Now, the black hole spacetime we consider in this chapter is a

static (therefore stationary) black hole spacetime which is a solution in a diffeomorphism
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invariant theory of gravity. Then, the black hole event horizon is a Killing horizon [81].
First consider the case where this horizon is a Killing horizon with respect to the boost
field £ = v0, — ud, (see [87]). This is true for any stationary black hole spacetime which,
near the horizon, looks like a Rindler spacetime, hence the terminology ‘boost field’. The
near-horizon metric of this stationary black hole will then be boost invariant, i.e the Lie

derivative of the metric L¢g,, = 0. Then, the near-horizon metric (5.2.8) is of the form
ds?, = 2dvdu — u? X (uv, 2%)dv? + hj(wo, 2¥)da' da? (5.2.9)

Here, w; = 0 since the spacetime is static. This is the most general form of a static
spacetime with a Killing horizon near the horizon. It can easily be seen from (5.2.8) that
along the horizon, any non-zero tensor A, which is constructed out of metric components
can always be written as A = 0;/0;' B, where m,n are integers and B is constructed out
of metric components X, w;, h;; and their derivatives with respect to V; . Then, we can
associate a boost weight with these tensors as boost weight = #v index — #u index.
Furthermore, we can write the schematic form for the vv component of any 2-tensor A,

constructed from metric components as
Ay, = X0?Y 4 C0,A0,B. (5.2.10)

Here, X,Y,C, A, B have boost weight zero and are constructed out of metric components.

Now for the stationary black hole spacetime, the above equation reduces down to
Apolst = u*X02,Y + u*Cyy ADyy B. (5.2.11)

This is because the stationary black hole has a Killing symmetry which reduces on the
horizon to a scaling symmetry under v — pu and v — v/p. Thus, the metric components
in the stationary case only depend on wv at the horizon. This implies that the vv compo-
nent of any 2-tensor A,, constructed from metric components in a stationary black hole

spacetime vanishes at the future horizon i.e at u = 0.
Ap|50 = 0. (5.2.12)

Now, the vv component of the equation of motion for any higher curvature theory takes
the following form,
Ryy + Hyy = 87T, (5.2.13)
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where H,, corresponds to a higher curvature contribution to the equation of motion. Using

(5.2.11) for the stationary black hole R,, = 0 and H,, = 0, this implies that
Tp|*=% =0 (5.2.14)

for any classical matter stress-energy tensor. Furthermore, whenever a v derivative acts
on the stationary background metric component, it gives a factor of u as well, since the
metric component depends on v only through uv. Hence such a term will vanish at the
future horizon u = 0. Therefore, from (5.2.10), the vv component of any 2- tensor A,
linear in the metric perturbation at the future horizon u = 0 can always be written in the

following form,
Ay |70 = 9%¢, (5.2.15)

where ¢ has boost weight zero and is constructed from the background metric and the

linear perturbation over stationarity.

5.2.2 Semi-classical gravity equations

Following Chandrasekaran, Penington and Witten [2] and Wall [5], we will work in semi-
classical gravity where the expectation value of the matter stress energy tensor is a source
term in the gravity equations. Now let us look at the semiclassical equations of motion.
The vv component is

Ryy + Hyy = 81 < Ty > (5.2.16)

Writing this order by order in €, we get:

@ Ryy + Hyy =0 (5.2.17)
1 (%) 3 _

€2 : Ry +Hy2' =0 (5.2.18)

e: RO+ HD —8r <19 > . (5.2.19)

where T = TM 4 typ, <TM > ~ O(e) is a matter stress energy tensor and < t,, > ~
1 1
O(e), the pseudo-stress-energy tensor of the graviton. Further, Rl(,%), Hf,g) are linear in

(3) : 1) (1) : (1) :
gui/ perturbation, and Ry, Hy, are linear in g, perturbation.
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5.2.3 Raychaudhuri equation order by order

As is well-known, the Raychaudhuri equation (5.2.18) plays a key role in the proof of the
second law and we will use it later in our computation. The Raychaudhuri equation is

given by,

d@i_{ 62

@ af } 2.2
7 D_2+J 0ap + Ruw (5.2.20)

Now, if we write it order by order in €, we get,

(0)
el dzv =0 (5.2.21)
(3) 1
€3 dfi R (5.2.22)
v
do™ 9(3)9(3) 11
1. _ aﬂ ( ) ( ) (33)
Further using (5.2.19), (5.2.23) can be written as
do® 9(2)p3) os (1) (1.1
_ Q (1 ) 212
- { oy T ooy 8T < T > —H{) + Rif } (5.2.24)

11
Furthermore, if we compute RSJ%’2 in TT (transverse traceless) gauge at the horizon !, we

will get, -
(3:3) 1773 a9 1d ( ij i )
2 - S . 2.2
i T 4 dv dv +2dv IO " (5:2:25)
dg'? (3) (0)
Now using the fact that §—2— = 0.+ ﬁgij 0(2) [5] (i,j are transverse coordinate
indices), we can write equation (5.2.25) as
3)0(3) 1 2
(33 _ _(9(2 0 ap ) }i( (—))
VU —T D_9 +0'%)0'a5 + 4d g( )gU (5226)
which yields
do 1d% /0 (Y
o {87’(‘ < TQ > H( )—|‘ Zw(gé)gif )} (5227)

(5.2.21) follows from the fact that the background solution is stationary. The other equa-

tions are obtained by expanding the Raychaudhuri equation order by order.

!The perturbative expansion of the Ricci tensor to quadratic order can be found in [89)].
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5.2.4 Entropy change due to accretion of quantum matter across the

horizon

In this subsection, we will compute the order-by-order change in the entropy due to the
accretion of quantum matter and gravitons across the horizon. We will assume that the
background black hole solution is stationary, as well as the final state of the black hole at
late times. Also, we assume the perturbation will fall off fast enough, so that all boundary
terms at late times vanish 2. To compute the entropy change order by order, first we will

write the perturbative expansion of entropy density as

N|w

p=pO +e2p@ +ep® 4 O(e3) (5.2.28)
Now, we have all the tools to compute the change in entropy. First we will do the change

in entropy computation in the absence of the graviton. Then we will do the computation

in which we will include gravitons.

5.2.4.1 Entropy change without graviton contribution

1
When there is no graviton, all the terms with g,(ﬁ,) perturbation will go away in all of the

above equations. Also, the stress-energy tensor will have only the matter contribution
ie, < T >=< TM > which we will take to be O(¢). The background solution is
a stationary black hole, with a Killing horizon and regular bifurcation sphere. For the
stationary black hole, the expansion coefficient of the horizon is zero and the entropy

density will be independent of the chosen horizon cut. Therefore
@ ASO =9 (5.2.29)

Now, we will compute the change in the entropy due to accretion of matter by the sta-
tionary black hole, which takes it away from stationarity. As we have already mentioned,
the black hole will settle down into a new stationary state at late times. Now using (5.2.6)

and (5.2.27) with the fact that there is no p(2) and ©7 we will get

1 [® d2p(1) do
. Assw = 1 / / D-2 o, 2
’ 59 i) [ /o L+ S } (5.2.30)

2This implies that at late times all the perturbations would have either crossed the horizon or gone to
asymptotic infinity. For AdS black hole spacetime with reflecting boundary conditions, all perturbations
will cross the horizon. Also, we dynamically impose the gauge (5.2.8) at all times.



Chapter 5. Black Holes in Higher Curvature theory and Local algebra of Observer — 169

Here, 6 is the perturbation away from stationarity. Since p(® =1+ ,01(1(,) ),
1 1 1
do™) (O)Zdeﬂ g o

dv ” G g P = 8T < TR > +H) — R o). (5.2.31)

The equation (5.2.31) is obtained using (5.2.23),(5.2.27) and the fact that there is no g(%)

perturbation, which will make %S) = —R&,). Further, we used the equation of motion

(1)

to rewrite Ry, in terms of the stress energy tensor. Putting the equation (5.2.31) in the

equation (5.2.30), we get

e: ASSW = —i /OO dv/dD—%\/Ev{(de;) R plY) +H£$)) — 8 < T3 > }
" (5.2.32)
We note that (M — 1(,%,) p§9 ) +H 511))) is constructed out of background metric components
and the perturbation and is linear in the perturbation . Therefore, using boost arguments
we can write (d PV R0 Hﬁ)) — 02((1), which will yield

0

We can simplify the above term using integration by parts,
oo 1 oo
AsSY = 2n / dv / AP 2avho < T >+ / d’2zvh / dvdy( (1)
0 0

— le/dDQx\/E(v&]C(l)) vjoo

v=0

(5.2.34)

Now we assume fall-off conditions at late times i.e, all perturbations and their derivatives
should fall fast enough such that this boundary term goes to zero at late times. The
contribution from the last term in (5.2.34) also vanishes at v = 0. Let us recall that we

are in the gauge (5.2.8) in which the horizon is always at u = 0. Then we will get

ee 1
AsSW = 27r/ dv / AP avhe < T > = /dD—%:\/Eg(l) K (5.2.35)
0 o=
We can get rid of the second term by assuming that we can fix the JKM ambiguity in such
a way that
oY 0, g _ g2
2 Ry/py +Hyy = avC(l) =0 (5.2.36)

everywhere on the horizon. This will get rid of the term which is giving rise to the second

term in (5.2.35). This is because then ((;)(v) = av + b, where a and b are only functions

3We can replace the ordinary derivatives with respect to v in the first term with covariant derivatives
in the gauge we are in.
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of transverse coordinate. (1) is constructed out of the background metric and the linear
perturbation in the gauge (5.2.8). We have to further impose the fall-off conditions on the
perturbation i.e., the perturbation and its derivatives with respect to v must go to zero at
late times. Thus ((;)(v) = 0. There is no contradiction with the fact that ) vanishes at
the bifurcation surface in linear order. It is shown in [90] that the second term in (5.2.35)
is zero for F'(R) gravity and arbitrary order Lovelock gravity. It is also argued there that
this will be true for an arbitrary diffeomorphic theory at linear order. Therefore, assuming
this,
oo
AsSM = 27T/0 dv/dD_Qx\/ﬁv <T9 > (5.2.37)

The above derivation is of course true even when the accreting matter is classical. For

classical matter, imposing the null energy condition i.e Tg% > 0 will give the second law.

5.2.4.2 Entropy change with the graviton contribution included

In this section, we include the graviton contribution, and therefore we will work with the
full perturbation expansion. We will again do an order by order expansion. Using (5.2.6)

and the fact that background solution is stationary,
¢ ASO =9 (5.2.38)

Now, let us compute change in entropy at ¢ order. Writing (5.2.6) at ez will give

2 )
ez AsS) ——/ dv/dD Qx\f d Zl (0)} (5.2.39)
U

Here, § corresponds to entropy change due to a perturbation that takes the solution away

from stationarity. Using (5.2.22), we can write (5.2.39) as

\ -

A§SE) = —/ /dD %fv Ll <0>} (5.2.40)

1
Furthermore using the boost argument in (5.2.15), we can write RQ(,%) = 31%((;), where C(;)
2 2

1
is constructed out of the background metric and linear perturbation in g,(ﬁ,) where we work

in the gauge (5.2.8). Further, p(*) is independent of v. Therefore, the equation (5.2.40)

) D—2
ASS3) :—/ dv/d ”“f“@{

becomes

l\.’)\»—‘
)
—
(=)
=
I
—~

%)}. (5.2.41)
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Using integration by parts,

I (R T~ G RN PO U e D2, /p L (B0
A§S'2) = 4/d x\/ﬁvdv{p2 p C(%)} o +4 ; dv | d I\/Hdv{pQ p C(%)}.

(5.2.42)

Using the fall-off condition on the perturbation at late times, the first term vanishes.

Therefore, we get

CONE D2, /4 [ ) _ 0
A0S'2 4/0 dv/d x\/ﬁdv{p 2) —p g“(%)}. (5.2.43)
Integrating and using fall-off condition gives
G~ L [ p2 &) _ 0
ASSE) = 4/d x\/ﬁ{p 2 p C(%)} o’ (5.2.44)

Using the fact that 6 = d% log (v/h) and (5.2.22), we can write ¢ log (v/h) = —C(%). There-

fore, we can write (5.2.44) as
1
A§S3) = —4/ dD—%c\/E{p(%> +5log(x/ﬁ)p(°)}- (5.2.45)
B
Using (5.2.1), it is straightforward to verify that

A6SG) = —§5(2)

. (5.2.46)

B is the bifurcation surface. Now, we use Theorem 6.1 in Iyer and Wald (IW) [82], i.e
(0S8 = 6 — QudJ) " where £ is the canonical energy and J is the canonical angular
momentum of the black hole in the covariant phase space formalism 4. This was proved by
IW at the bifurcation surface for any non-stationary perturbation satisfying the linearized
equation of motion®. Now in our case, there is no stress-energy tensor at ¢(3) order. This
implies

A5S@) = —55) =0 (5.2.47)

Hence, 55(%)(0) = 55(%)(00) = 0. Therefore, from (5.2.47), if 55(2) is non-zero at any cut,
then for some range of v entropy will definitely decrease. This violates the second law.
The only way for the second law to be true is to assume that §.5 (3) will vanish at arbitrary
cut. It was shown explicitly by the authors in [85, 90] that

_&p
— dv?

4Since we have a static black hole, angular velocity at the horizon is zero.
5TW'’s first law at the bifurcation surface B is unaffected by the JKM ambiguity.

R — RyopQ) + Hyy (5.2.48)
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vanishes for F'(R) theory and Lovelock theory of arbitrary order, at the linear order in
perturbation theory about the stationary black hole (perturbation can be non-stationary).
Using (5.2.18), it can can be checked that the term in curly brackets in (5.2.39) is the same
as 7?4(,%) . The authors in [85, 90] also argued that this relation may be true for an arbitrary
theory of gravity with an appropriate definition of local entropy density. Vanishing of
55G) in general will yield,

a2p(3)

dv?

= —,0(0)8@9(%) (5.2.49)

which after integration and using the boundary condition that the perturbation vanishes
at late times will give p(%) = p(O)C(;).

2
Now, let us compute the € order change in entropy, writing (5.2.6) to the € order. We get

1 !
A(SS - _/ / dv21) )dzi)l)erfl(;) (%)+29( )dd(;) ©otz % }\FdD K
(5.2.50)
Using (5.2.19), (5.2.23) and (5.2.48), the first two terms in the above expression can be
written as
d2pM N (O)dg(l) _ 4 70 a1 lig i (3
L+ p O T <TE > +RE) - 1o (g(%)gw p ) (5.2.51)

Using (5.2.48), (5.2.15) and the fact that Hl(,i) and RI%) are constructed out of background
(1)

metric components and the perturbation and are linear in ¢,,; perturbation in the gauge
p p Guv P gaug
(5.2.8), R can be written as Ry = 92¢(1)- This yields

d2p® do)
— + p© — = _81 < TI% > +83C21). (5.2.52)

(L
where, Cél) = () — %(gé)gi(f)p(o)) Putting the above equation in (5.2.50) we get,

(1) 1) o
—/ dv/vde 2 p p(o)dfl>:27r/ dv/v\/HdDZx<T3,>
v 0

2
- i / Vh(yydP % (5.2.53)

We get the above equation using integration by parts in the 83((1) integral and the fact
that the term at v — oo will vanish due to the fall-off condition. Let us consider the rest
of the terms in (5.2.50), we will call it A(3, 1),

1

1
dv

+ p@p(2)p(2) }de 20, (5.2.54)
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1
After integrating (5.2.49) once, we get d‘(’;j) = 7}0(0)0(%)_ Putting this in (5.2.54) will yield
11 1 [ a0z 1, dp(2)
A, 2)=—=[ d @) 9 L L/hdP—2 2.
(5:3) 4/0 "/”{ w Pt g }f v (5.2.55)

which can be further simplified using integration by parts and using fall-off conditions as

v — 00,

1 o
Ak Ly 2 1/ dv/mé)p(%)\/ﬁdf’—?x. (5.2.56)
22071,

¢
Using %2>~ = —,0(0)9(%) in (5.2.56), we get

11, 1 [ d (P(%))z D—2
A(2,2)_—8/0 dv/dv( o )\/Hd 2. (5.2.57)

After integrating and using fall-off at late times, we will get

Ay =5 ) (G )V

This quantity is thus manifestly positive. From (5.2.53) and (5.2.58), we get

7OdD*2x (5.2.58)

oo B 1 B 11
AsSW :27r/0 dv/v\/EdD 2r < TS > —4/\/ﬁcél)dD 21’\U +4(3,5). (52.59)

We know that the Wald entropy has JKM ambiguities when the metric is not stationary.
That was a motivation for putting {2 as the correction to the Wald entropy in the definition
of local entropy density. We now fix 2 such that the last two terms in (5.2.59) vanish. These
terms are anyway zero for a stationary black hole, as can be seen from the expression for
A(%,4) in (5.2.58) and R is zero for a stationary black hole from results in the subsection
on the boost argument 5. So Q will be non-zero only when the metric is not stationary.
For the cases when it is possible to set these two terms to zero by a choice of €2, we will
get -

AsSWY = or /0 dv / wWhdP 2z < TS > (5.2.60)

Some of the ambiguities in Wald’s entropy were fixed for some class of theories at linear
order in perturbation theory[86]. Moreover, this entropy was shown to be equal to holo-
graphic entanglement entropy computed by Dong [91].1t is also pointed out in [86] that
considering the second law at linear order does not fix the ambiguities at higher order.

Therefore these results are not in contradiction with our computation. One can also get rid

5For a stationary black hole, v derivatives of p are zero and R,,, and H,, are zero for a stationary metric
as discussed using boost arguments.
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of the second and third term in (5.2.59), by restricting the perturbation to a special class
of perturbations which vanishes at v = 0. One physical case in which such perturbation

can be realised is when matter falls after v = 0.

5.3 The Entropy of Algebra And Generalized Entropy in
Higher Curvature Theory

In this section, we utilize the algebraic approach to quantum field theory, specifically
the constructions of Chandrasekaran, Penington, Longo, and Witten (CPLW) in [2], and
Chandrasekaran, Penington, and Witten (CPW) in [3], to study black holes in higher
curvature theories. We have employed their construction to prove a version of the GSL
(Generalized Second Law) for an arbitrary diffeomorphism invariant theory of gravity, with
certain appropriate assumptions. The setup that we are interested in involves both the
asymptotically flat and asymptotically AdS stationary black hole solutions in an arbitrary

diffeomorphism-invariant theory. Throughout this section, we follow the notation of CPW.

5.3.1 Generalization To Higher Curvature Gravity

We now generalize the construction of the subsection (4.2) to an arbitrary diffeomorphism-
invariant theory of gravity. We note that some of the constructions in the previous sub-
section such as the semi-classical state were done by CPW for the AdS-Schwarzschild black
hole in the boundary CFT. But we can analogously define such a semi-classical state in
the bulk using the same construction. In fact, only in the sections on monotonicity of
generalized entropy in CPW, are results in the boundary theory crucially used. Therefore,
except while discussing monotonicity of the generalized entropy, we can confine our analysis
to the bulk, and we can even work with an asymptotically flat black hole, as discussed
by CPLW. So, in our case, M is the (3 + 1) dimensional, asymptotically flat, maximally
extended static (therefore stationary) black hole solution in an arbitrary diffeomorphism
invariant theory of gravity. Therefore, its horizon is a Killing horizon. The equation
(4.2.1) will define a conserved quantity even in the arbitrary theory of gravity, since it
is the consequence of invariance of the action under background diffeomorphisms. Let
us define the 1-form J = T),,V"dx* where V is the timelike Killing vector of M. Then,
divergence of J, is zero, i.e., J# is covariantly conserved. This implies d * J = 0, where
x is the Hodge dual. Since the spacetime does not have non-trivial topology, this implies

xJ = d@ for some 2 form (). Also, notice that the integral of *J over the 3 dimensional
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Cauchy surface is h. Since xJ = d@, this reduces to an integral over the codimension 2
surface which is the boundary of the Cauchy slice. Therefore we can write h=Hpr— Hp
where Hr and Hp, are codimension 2 integrals at right and left spatial infinity respectively.
We note that the canonical energy in the covariant phase space formalism is given by (4.2.1)

apart from a surface term ambiguity (see appendix of IW [82]).
&= / J + Surface term = / d¥'T,, € + Surface term (5.3.1)
s s

where £ is canonical energy in covariant phase space formalism. So we can think of Hp
and Hp, as being the right and left canonical energy, respectively, apart from ambiguities
in the canonical energy 7. We will call them right and left Hamiltonian. It can be shown
that these statement will go through even in semi classical regime as discussed in appendix
(7.2). Now, h is the modular Hamiltonian corresponding to the Hartle-Hawking state as

before. This follows from the analysis of Sewell [69] for any metric of the following form:
ds® = A(t* —w?,y)(—dt® + dw?®) + B(t* — w?, y)do*(y). (5.3.2)

The Schwarzschild spacetime in Kruskal coordinates is of this form. We will assume that
our static black hole solution also has this form (i.e., we assume the existence of Kruskal-

like coordinates).

Now we can proceed by defining hz, and hpr as defined in (4.2.2). Following the argument in
the previous section that including gravity changes the algebra to Type II, we can split h as
done in (4.2.3) and (4.2.4). Further, we can straightforwardly obtain the equation in (4.2.5)
and (4.2.6). The only difference is now hg in (4.2.6) is the renormalized Hamiltonian in the
higher curvature theory which generates the time translation on the boundary of the right
exterior region. Afterwards, the construction of the crossed -product algebra (extended
algebra) and other constructions like defining the trace and entropy will analogously go
through as done in the previous section. We will work with a semi-classical state as defined
in (4.2.9). Therefore we can define the entropy of the algebra in the right exterior region
by the same formula (4.2.11) i.e.

S(d)4, = <q>] Bhg ‘q>> . <<1>‘ hae )q>> - <<1>} log (¢|g(chp)[?) }q>> +0()  (5.3.3)

7As discussed in the Appendix of IW [82], the ambiguity in the canonical energy is the sum of two
surface terms, one of which vanishes for common matter theories in a background spacetime. There is an
ambiguity due to the second surface term which is a function of the background metric, Killing vector,
matter fields and their derivatives. In what follows, we ignore this ambiguity.
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where Sy¢(®||¥) = — <<i>‘ hy|o ‘ti)> is relative entropy as defined earlier. So the form
of the equation (4.2.11) remains intact —the only change is that hg is the renormalized
canonical energy in higher curvature theory and hg|y is the relative modular Hamiltonian
in that particular theory.

In our case of interest, the black hole settles down to a stationary state at very late times.
This is plausible since at late times all the flux of matter would either have crossed the
horizon or would have escaped through future null infinity. So, at late times we will not

be able to distinguish between |¥) and |®). We get

Sputk(00)d = Stuik(00)w = Spuik (D) w (5.3.4)

where Sy, denotes the entanglement entropy of quantum fields in the exterior region of
the black hole 8. Now let us analyze h,, using (4.2.3) and the fact that the deformation
of Cauchy surfaces S does not affect the conserved quantity h. We deform S; such that

S1 =HTUT", where Ht is the future horizon and Z+ is future null infinity . Therefore
BRI = B(h, — KT") = / dv / dP =22V T, (5.3.5)
0 H+

where BhZ" is the time translation generator at future null infinity and A" is the boost
generator on the horizon. The second equality in the above equation can be obtained using
(4.2.3) and the fact that h?r is just the integral of the stress tensor supported at future
null infinity. Let us define a one-sided modular operator (boost operator) at arbitrary cut
v = v, ( which is the D —2 dimensional transverse surface) at the horizon. It is well known
that the density matrix (p,) g g of the Hartle Hawking state in the region r is thermal with
respect to [68, 5]

K, (vy) :/ dv/ dP22vVh(v — v,) Ty + KX (5.3.6)
Vs HT

where, KTI+ = Bh%Jr is the modular energy at ZT, which accounts for energy which goes
to It without crossing the horizon. Also notice that KTI+ is independent of v,. When
vy = 0, then the first term in the above equation will become thﬁ as defined in (5.3.5),
and therefore

K,(b) = Bh, = BRI + BRT" (5.3.7)

8Earlier, we denoted this quantity by Sgrr.
°In the case of an asymptotically AdS black hole, the deformed Cauchy surface is just H*
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where b is the bifurcation surface v, = 0. We can also define

K, (o0) = lim K, (vs) (5.3.8)

Vx —>00

Using the result from the previous section and equation (5.3.8), we get
(®| BRI |®) = ASS (5.3.9)

If a density matrix were to exist for the algebra A, o, then using the definition of modular

Hamiltonian for state |¥) and the fact that Ay = pypf, ', we will be able to write
log py = —K,.(b) + C (5.3.10)

where C' is some constant. The density matrix of the Hartle Hawking state in region r can
be written as W(HT UZT) = (pr)HH ® 0, which corresponds to the ground state 10 PHH
at HT, product taken with some arbitrary density matrix defining a faithful state at Z+
[5]. Therefore,

(U|log py | V) = — (U| KX |U) + C (5.3.11)

Here we use the fact that (| h*" |¥) = 0 since it is the Hartle Hawking state. Further,
since Spur(b)y = — (U] log py |¥), we get Spur(b)y = (V| KZ" W) — C.

As mentioned before, it is not strictly true of the algebra A, ¢ that the modular operator
factorizes, but by extending the algebra to A,, it is true that the modular operator factor-
izes as Ay = p\i,pgl (in the notation of[1]). We will ignore this detail just for illustrative

purposes following [2] .
Sgen(00) — Sgen(b) = S(00) — S(b) + Spuik(b)w — Spuik(b)o- (5.3.12)
It can be written in terms of the one-sided modular operator,
Sgen(00) = Sgen(b) = — (@ (Kr(00) — K (b)) [®) + Spuir (b)w — Spuir (b)o- (5.3.13)
Putting Spyk(b)w and (®| K,.(b) |®) using the equation (5.3.10) , we get

Sgen(00) = Sgen(b) = — (@[ log pu |) + C — (@] K,(00) [®) + (¥| K |¥) — C = Spun(b)a
(5.3.14)

OHartle Hawking state is a ground state with respect to the time v.
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Now, we use the fact that at late times, every state is indistinguishable from |¥) and
K.(00) = KZ'. Further, KZ' is independent of the cut. The expectation value KZ' in

state |®) will be equal to its expectation value in state |¥). Therefore, we get
Sgen(oo) - Sgen(b) = - <(I>‘ log P ‘(I)> - Sbulk(b)q’ (5315)

therefore we got,
Sgen(00) — Sgen(b) = Srer(P|| V) (5.3.16)

As we see, the difference of generalized entropies in (5.3.16) is manifestly finite and non-
negative. For Einstein gravity, the above expression has been already obtained by Wall
in [5]. The result (5.3.16) is in an arbitrary theory of gravity — the difference between
generalized entropy at late times and generalized entropy at the bifurcation surface is
relative entropy of the state of the black hole with respect to the Hartle Hawking state.
We now need to show, as in [2], that the generalized entropy at the bifurcation surface is

the entropy of the algebra. We thus need to show
Sgen(00) = <<i>‘ Bhr ‘<i>> - <<i>‘ log (elg(ehr)[?) ‘<i>> + Const (5.3.17)

Since both terms in the above equation are only functions of hr, and since we have inter-
preted hr as the renormalized canonical energy, the above terms are some distributions
of energy in the semi-classical state ‘i)> Also, these terms are independent of the state

|®). To see that, choose a(s) such that

a(s) = / e~ RS f(hh)dhy (5.3.18)

where f(hg) is some chosen function. Putting the equation (5.3.18) in the equation (4.2.7)
and using the fact that hg = hy + x, will yield @ = f(hg). Now let us compute the ex-
pectation value <<i>‘ Ba i>> for (5.3.18) with the semi-classical state ‘(i)> defined in (4.2.9).
Using the results (3.25) and (3.26) in CPW [2],

(&

Now put (5.3.18) in (5.3.19). Using the fact that hg = hy + 2 and hy |¥) = 0, we get

a

<i)> = /Z dz /O; ds|eg(ex)|?e™® (T Agpa(s) W) (5.3.19)

<<i>’ f(hg) ‘<i>> = /_Z dx /_Z ds /_O; dyleg(ex)|?e™@Y) f(y) (U] Ay [V) (5.3.20)

By definition, (V| Ag|y [¥) = 1. Therefore the above equation is independent of |®), it
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will only depend on f(hg) and g(ex). Therefore, both the terms on the right-hand side
of (5.3.17) will give the same result either when we compute them in the state |®) or in
the Hartle Hawking state |¥) at late times. Since both terms can be determined from the
late-time behavior of the black holes, the relation (5.3.17) is plausible. This is because at
late times, all the fields have either fallen across the horizon or to infinity.

Using equation (4.2.2), we can write <\i1‘ Bhr ‘\11> = B(AE), where A€ is the energy
difference between the black hole we are studying and the reference black hole. Since both
the black holes are taken in an equilibrium state, we can apply the first law of black hole

mechanics for two equilibrium configurations in phase space which yields
<\IJ‘ Bhg ‘\1/> — AS (5.3.21)

where AS is the difference of entropy of the equilibrium black hole state we get at late
times to the reference black hole. Therefore, the first term in (5.3.17) describes the change
in Sgen(00) due to a change in black hole entropy. At very late times, all the matter would
have either crossed the horizon or would have escaped to null infinity. The second term
should be thought of as the contribution of entropy of fluctuations in black hole entropy
[2]. Finally, we add and subtract the entanglement entropy of the quantum fields in the
Hartle-Hawking state and lump one of the pieces in the constant in (5.3.17) using (5.3.11).
This is because at late times, all the fields have either fallen across the horizon or to

infinity.

Combining everything, we get
S(®) 4, = Sgen(b) + Const. (5.3.22)

The equation (5.3.22) tells us that Sgep(b) for black holes at the bifurcation surface in the
arbitrary theory of gravity can be thought of as the entropy of the algebra A, modulo a
constant. Notice, we have shown that the generalized entropy at the bifurcation surface
is equal to the entropy of the algebra up to a constant, but we are not making any
statement about entropy at an arbitrary cut of the horizon. In algebraic QFT, relative
entropy is positive. This implies Sgyen(00) — Sgen(b) > 0. Can we go beyond this result
and prove that the generalized entropy is monotonic? The entropy of the algebra is
monotonic under trace-preserving inclusions [92]. To obtain a GSL (monotonicity of the
generalized entropy), CPW consider an AdS Schwarzschild black hole with a holographic
dual CFT. Then, they have the following clever argument: In the dual CFT, they consider
operator algebras at two different times (early and late times), Ag o and Bpr o respectively,

separated by a timescale much larger than the thermal time scale 5. The correlation
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functions of operators at these different times factorize into a product of correlators of
early and late times. Thus, the algebra generated by both early and late time operators
is Cro = ARr,0 ® Br,o. The Hilbert space factorizes similarly. These algebras are extended
similar to what was done before, to obtain a Type II algebra which has an associated
entropy. Now, consider three different situations: first, the quantum fields at both early
and late times are in an arbitrary state, a second situation where the fields at early times
have fallen into the horizon, so that the state of these fields is the vacuum times any state
of the late time fields, and finally, a situation where both sets of fields have fallen into
the horizon and the state of the fields in the exterior is the vacuum. CPW argue that
the generalized entropies at these three horizon cuts is the generalized entropy for the
extended algebra Cg for these three different states at a hypothetical bifurcation surface
in the limit of large time gap. From the property of the monotonicity of the entropy of
the algebra under trace preserving inclusions, it follows that the generalized entropy is
increasing in going from the first to the third situation above. This argument is then
a version of the GSL. We can use these results to prove this version of the GSL in an
arbitrary diffeomorphism invariant theory of gravity if we start with an asymptotically
AdS black hole which has a holographic dual. We can repeat all the steps in this section
for such a black hole. The only thing we need is for the first law as in the paper of Iyer and
Wald [82] to be true in this situation. Although the statement of the First law is only for
asymptotically flat black holes, the same will be true for an asymptotically AdS black hole
provided the integrals involved in the presymplectic form and the canonical energy are
finite after assuming appropriate fall-offs for the fields. In this case, the computation of
CPW generalizes to these black holes in a higher curvature theory of gravity, and a version
of the increase of generalized entropy (comparing the entropy at early and late times) is
true. The ambiguity in the Wald entropy, which we fixed in the bifurcation surface in
a previous section, was in terms of a quadratic function of the half-order perturbation.
This is not affected by the different states of the quantum fields in the argument of CPW,
so their argument goes over to our case. Can we show a stronger monotonicity result
dsd% > 07 This is what Wall [5] has done for Einstein gravity, using an expression for
the entropy at any cut of the horizon. Due to JKM ambiguities in the Wald entropy, this

expression will probably need one to specify the particular theory of gravity.

5.4 Discussion

In the context of Einstein gravity, it was shown by CPW [3] that for the system of quantum
fields in a perturbed Schwarzschild black hole spacetime in the G — 0 limit with infalling
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quantum matter across the horizon, the generalized entropy at the bifurcation surface
was equal to the entropy of the von Neumann algebra of operators in the black hole
exterior. This was achieved by enlarging the operator algebra by including the ADM
Hamiltonian and by enlarging the Hilbert space. This had the effect of changing the
algebra of operators to a Type Il,, von Neumann algebra, to which we can associate
a notion of trace and entropy. Furthermore, CPW showed that the difference of the
generalized entropy of an arbitrary cut of the horizon, in the limit when the cut v — oo
and the generalized entropy at the bifurcation surface was equal to the relative entropy,
and therefore nonnegative. For this, CPW worked in semiclassical gravity and up to
quadratic order in perturbations. They then obtained a monotonicity result (GSL) for
the generalized entropy from the monotonicity of relative entropy under trace-preserving
inclusions. In this chapter, we consider quantum fields in a slightly perturbed static black
hole with a causal horizon in an arbitrary diffeomorphism-invariant theory of gravity in
the G — 0 limit. In this setup, generalized entropy is the sum of Wald entropy (including
JKM correction) and entanglement entropy of quantum fields in the black hole exterior.
We consider the difference in Wald entropy at infinity and at the bifurcation surface up to
quadratic order in the perturbations and obtain (5.2.59). Wald entropy has ambiguities on
non-stationary geometries. We fix the ambiguity in order to get (5.2.60), which matches
the result for Einstein gravity in the paper of CPW, and we obtain a simplified result
for the difference of entropies, which enables us to employ the CPW construction. We
then consider the difference in generalized entropies and show that this difference equals
the relative entropy of the state of the quantum fields and the Hartle-Hawking state — it
is thus non-negative. We next consider the von Neumann algebra of the quantum fields
in the black hole exterior, extended to include the Hamiltonian and an enlarged Hilbert
space as in CPW. Evaluated on the semiclassical states defined by CPW, we show that
the entropy of the von Neumann algebra equals the generalized entropy of the bifurcation
surface. Finally, we see that the derivation of the increase of generalized entropy by CPW
in Einstein gravity goes through for black holes in an arbitrary gravity theory, provided
the black hole is asymptotically AdS, which has a holographic dual.

It would be interesting to extend the above results to arbitrary cuts on the horizon and
to establish the validity of the generalized second law (GSL). However, this extension
is subtle. The subtlety arises from the fact that the causal structure in higher curvature
theories differs significantly from that of general relativity. In particular, defining the local
algebra of observables for a given region requires us to understand the causal structure (see

the discussion in the section (3.5.0.1)). This issue will be the focus of the next chapter.



Chapter 6

Causal Structure of Higher

Curvature theory

The material presented in this chapter is based on the work of the author in [19]

In this chapter, we analyze the causal structure of Generalized Quadratic Gravity (GQG)
and Einsteinian Cubic Gravity (ECG). It is well known that gravitons in higher-curvature
theories can exhibit superluminal propagation, rendering the conventional definition of
causal structures based on null curves inadequate. Instead, the causal structure must be
defined using the fastest propagating modes, which travel along characteristic surfaces.
The superluminal propagation in higher-curvature theories has significant implications for
black holes. Specifically, if the Killing horizon of a black hole is not a characteristic surface
corresponding to the fastest propagating mode, the horizon can no longer function as a
causal barrier. Here, we present a detailed characteristic analysis of GQG and ECG, and

discuss their implications for holography and the algebra of observables.

182



Chapter 6. Causal Structure of Higher Curvature theory 183

6.1 Introduction

General Relativity (GR) is one of the most elegant and experimentally validated theories,
providing a robust framework for describing gravitational phenomena in the weak-field,
low-energy regime [93]. However, its validity in strong-field regimes remains an open
question, as we currently lack sufficient experimental or observational evidence to confirm
its applicability under such extreme conditions. This uncertainty makes it imperative
to explore extensions of GR, such as higher curvature theories, which naturally arise in
many approaches to quantum gravity. These theories are not only motivated by attempts
to quantize gravity but also serve as fertile ground for exploring deviations from GR in

regimes where it has yet to be tested.

In higher curvature theories, the equations of motion (EoM) incorporate higher derivative
terms, leading to a more intricate spectrum of propagating modes and the causal structure.
These modes often have distinct propagation speeds depending on fields and polarization,
with some modes propagating superluminally[94, 95]. In the presence of such superluminal
propagation, the usual GR notion of causal structure, defined with respect to null curves,
becomes inadequate. Instead, the causal structure must be redefined in terms of the fastest
propagating modes. This causal structure, defined with respect to the fastest propagating,

is what we should use to define the local algebra of observables.

For many partial differential equations (PDEs), the fastest propagating modes
travel along the characteristic surfaces, which are determined by the principal symbol of
the PDE—corresponding to the highest derivative terms in the EoM. As a result, the
causal structure of higher curvature theories is encoded in the principal symbol of their
governing equations. In GR, the fastest propagating modes travel along null curves, and
therefore it makes sense to define the causal structure with respect to null curves, which
is not true in generic higher curvature theory. This shift in how causality is understood
underscores the importance of analyzing the principal symbol in such theories. This fact
has implications for the behavior of black holes in higher curvature theories. Let M be
the manifold representing the entire spacetime. If we extend the definition of a black
hole region from GR as M \ J~(Z1), where J~(Z71) is the causal past of future null
infinity ZT, this definition inherently relies on the causal structure defined with respect to
null curves associated with the spacetime metric. However, in higher curvature theories
that admit superluminal propagating modes, the causal structure is determined by the
fastest propagating modes rather than the null structure of the spacetime metric. In these

theories, if the horizon is not a characteristic surface corresponding to the fastest mode,
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the black hole boundary can no longer act as a causal barrier. This motivates us to study
the causal structure of the higher curvature theories.

Generic higher curvature theory has lots of pathologies, like ill-posed initial value problems,
instabilities, and perturbative ghosts. But there are higher curvature theories with second-
order EoM and, which therefore, are free from such instabilities and ghosts, like Lovelock
theories. Moreover, it is shown by Izumi in [96] that in the Gauss-Bonnet theory, the
Killing horizon is a characteristic surface for all polarization modes of the graviton and
therefore, no modes can leak from the horizon. Reall, Tanahashi, and Way in [94] have
generalized this result to the full Lovelock class of theories.

Generally, the theories with the EoM higher than the second order have linearized ghosts
and are also considered to be ill-posed. Nevertheless, there are theories with ghosts that
have well-posed initial value problems and stable dynamical properties [97, 98, 99]. This
makes the higher derivative theories more interesting and worth exploring. One of the main
goals of studying these theories is to come up with some physically motivated criteria
to define good gravitational theories. For example, the causality criteria of Camanho,
Edelstein, Maldacena, and Zhiboedov (CEMZ) require the theory not to have a Shapiro
time advance [100]. Edelstein, Ghosh, Laddha, and Sarkar in [101, 102] have shown that
Generalized Quadratic Gravity (GQG) in a shock wave background for some class of
couplings has Shapiro time delay and therefore satisfies CEMZ causality criteria.

In this chapter, we have analyzed the causal structure in GQG, whose Lagrangian has
arbitrary linear combinations of squares of the Riemann tensor, Ricci tensor and Ricci
scalar. We have also analyzed the causal structure of Einsteinian Cubic Gravity (ECG),
a special cubic curvature theory that has only a massless graviton in the spectrum when
linearized about the maximally symmetric background. To study the causal structure, we
have used the method of characteristics. In Section (6.2), we consider a theory with fourth-
order EoM, described by a diffeomorphism invariant Lagrangian. Following Reall in [103],
we define the principal symbol and study its symmetries, as well as the implications of the
action principle and diffeomorphism invariance on the principal symbol. In Section (6.3),
we analyze the characteristics of the Riemann-squared theory in D-dimensions and their
implications for Killing horizons. In Section (6.4), we examine GQG in D-dimensions
and study its characteristics when the theory has genuinely a fourth-order EoM. The
characteristics analysis of linearized perturbations in some higher derivative theories in
specific backgrounds is also studied in [104]. In Section (6.5), we present a characteristic
analysis of Einsteinian Cubic Gravity. First, we analyze ECG on an arbitrary background
but are only able to analyze the null characteristics. To analyze the non-null case, we

perform a characteristics analysis on Type N spacetimes in the Weyl classification. In



Chapter 6. Causal Structure of Higher Curvature theory 185

Section (6.6), we discuss the results and outline future directions.

6.2 Principal Symbol and its Symmetries

Let us consider theories described by the action below with metric g,,, and matter ®;.

1
Slguw: 1] = 167G /de\/ —gL(g, ®1). (6.2.1)

The gravitational EoM obtained from the above action is

-1 o
B = - \G;Gé 5 o (6.2.2)
g Guv
Similarly, the matter EoM is
—167G 6S
EL =~ T (6.2.3)

where ¢ denotes metric and m denotes matter. Let us assume that the EoM is fourth

order, then the variation of EoM takes the following form,

SEW = MEvePP% 9.0,050:8g0 + Ml 17%C 0,0,050:00 5 + ... (6.2.4)
SE" = ML 0,0,050:00 ; + ML2P7% 9.0,050:09ap + ... (6.2.5)

where MEVPAPC i JapdC -\ LI and M P¢ denote the coefficients of the highest
derivatives of the metric and matter fields in the equations of motion (EoM), which we
refer to as the principal tensors. The ellipses in the above equation denote the terms with
less than four derivatives. We define the matrix of the principal symbol for the EoM by

contracting the ypd( indices of M with an arbitrary covector K, as

vaf,ypd vJ,ypd
P(K) — MLy KK KK M7 KK KK (626)
MpaPPe KK KsKe Ml K K, Ks5K¢
which we can write as,
PloB (g Pk
P(K) = 9§a5( ) 9;"] (K) (6.2.7)
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where Py (K) = Mzg*,'ypéc K \K,K;K: with A, B € {g,m}, is the principal symbol of
the field B coming from Ez*l. The principal symbol matrix P(K) is an endomorphism
on the vector space Vo of “polarization” vectors of the form T = (7},,,T7) where T}, is
symmetric. As we will see, P(K) is always degenerate due to diffeorphism invariance, but
then we can define a gauge equivalence class of polarizations, which we can call ”physical
polarization.” The covector K, is called a characteristic covector if there exists a non-zero
T in the gauge equivalence class of polarizations such that it satisfies the characteristic
equation P(K)T = 0. Furthermore, a hypersurface with a normal covector that is a
characteristic covector everywhere on the hypersurface is called a characteristic hypersur-
face. On these surfaces, the coefficient of the highest derivative in (6.2.4) and (6.2.5) is
non-invertible. Therefore, one cannot express the highest derivative in the EoM in terms
of lower derivatives. Thus, characteristic surfaces represent the boundary of the Cauchy
development. There can be multiple characteristics, and the modes propagating along the
outermost characteristic surfaces are the fastest-moving modes. Consequently, informa-
tion about the causal structure of a theory is encoded in the principal symbol of the EoM

of the theory.

6.2.1 Symmetries of Principal symbol

In this section, we will follow [103] to find the principal symbol’s symmetries. It is clear
from the (6.2.2)—(6.2.5)that,

vaf,ypé¢ _ v)aB,ypd¢ _ v(apB),ypd¢ _ vaf,(vps¢
M;goz 7P _Mél; aBsyp _M;g (aB)vp _M;ga (vpS¢) (6.2.8)
M;ZJ’W‘;C _ Mg(%V)J,wciC _ M;%J,(W(SC) (6.2.9)
MR = METved) (6.2.10)
Mfﬂc;ﬂnpéc — Mq;(gaﬁ)np% - MT{{EB’(W‘;C) (6.2.11)

6.2.1.1 Implication of action principle on Principal symbol

Let g, (x) and ®;(x) be any background field configuration (need not be a solution to
the EoM) in the configuration space. Let g,. (2, A1, Ad2) and ®1(x, A1, A2) be the compactly

supported two-parameter family of field configurations in the configuration space such that

L* here is a proxy for the index
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G (2,0,0) = gu(x) and ®7(x,0,0) = ®7(x). We will denote derivatives with respect to

A1 and Ao as 01 and §o respectively. It can easily be shown that

52515_—ﬁ dPx/—g|(E [( 1Y 6901 G + B, 8261®1)

+ (MEreBAPC 5, 0,050¢ 0290 + MEs1PC 0,0,050¢02® 1 + ...)81 G
+ (MEFP 9,0,050062® 5 + MICPPC 9.0,050¢ 02905 + 0191 | (6.2.12)

where ellipses involve terms with less than four derivatives in total acting on the variation
of fields. In order to get the above equation, we have used (6.2.4) and (6.2.5), and the fact
that the variation is compactly supported, and therefore, we can neglect the boundary
terms. Since the above equation is covariant and we are not interested in terms with fewer
than four derivatives, we can replace partial derivatives with covariant derivatives in the

equation above. Further, by integrating by parts twice

1
02015 = —m de\/ —g |:(E5V52(Slguy + ETIn(SQ(Slq)])

+ (Aig'u'guaﬁ”yp(SC v’yvpélguVV(SVC(Sanﬂ + ]\4g'u'ﬁlj{]”yp6C Vyvpélgw,V(;VCég(I)J -+ )
+ (MR VY 10181V 5V 82Dy + ML 7V 6181 VsV bagas +-.) | (6.2.13)

Now antisymmetrizing the variation in A; and Ay and then computing the equation at the

background configuration gives,

1
167G

dP /jg[(Méthaﬁ,’YPéC _ Mgagﬁw,vp&)v,yvp(;lngavc(gwaﬁ

+ (MEvIPOC A LIAn T 81 g,, V5V 62
+ (MITaeo6 — MLV T N 6,81V 5V 62D
+ (MBI . MEBIP) T 518,V 5V Sagag + .| (6.2.14)

The above expression has to hold for an arbitrary compactly supported variation, which

implies

Muvaﬁ vpo¢ Maﬁ;vat?( M IedC — prdpvypdC MIJ,%D(?C MJLWC
gm mg

(6.2.15)

which for covector K, gives,

Plo(K) = Pp™(K)  Pp’(K) =P’ (K) Py (K) = P, (K) (6.2.16)
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Thus, the principal symbol is symmetric. We emphasize that one can always derive the
above equation from the action principle for any action whose EoM is of even order. For

the odd-order EoM, the action principle will not give a symmetric principal symbol.

6.2.1.2 Implication of Diffeomorphism invariance on the principal symbol

As we know, under diffeomorphisms with compact support, the action is invariant. In a
diffeomorphism invariant theory, the diffeomorphism invariance implies the Bianchi iden-
tity,

V.EY — LYE}, =0 (6.2.17)

where L7 is the coefficient of the infinitesimal change in ®; under an infinitesimal diffeo-

2

morphism “. This must hold for an arbitrary configuration of fields. Using (6.2.4) and

(6.2.5) we can write (6.2.17) as
MHEreBAPC §,0.0,050c0gas + MbwP%C 8,0,0,05006®1 + ... = 0 (6.2.18)

where the ellipsis denotes terms with fewer than four derivatives. Since the above equation

is true for an arbitrary configuration, the coefficient of the highest derivative must vanish.
po¢) Jl,ypdC¢)
M;;ulaﬂ\ 8¢ — M;#Ll l7p3¢) — (6.2.19)

where (u]af|, yp0¢) means that upon fixing a3, it is symmetric in puypd¢. For an arbitrary

covector K, the above equation implies that
K, PeP(K) =0 K,P!(K)=0 (6.2.20)

This relation will hold for any higher curvature theory because it is just an outcome of

the diffeomorphism invariance of the action.

21f & is a n-tensor field then L,; = 6<§§?I)7 where L¢ is the Lie derivative with respect to vector field

£ .
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6.3 Riemann squared theory

For illustration of the method, in this section, we are interested in studying the causal

structure of a theory with the following action:

5= / V=g dP2(R + AR masR"P) (6.3.1)

where )\ is the coupling constant associated with a higher curvature term, D is the space-
time dimension, and we will assume that D > 4. In generic higher curvature theory, the
analysis of causal structure based on null curves (with respect to spacetime metric) does
not make sense. Therefore, we must do a characteristic analysis of the differential equa-
tion obtained from the above Lagrangian. The equation of motion (EoM) for the above
Lagrangian is,

1 1
Ry — ig,uz/R + )\(2Rua57Rya/B'y + 2VO‘VBRM0U/,B - §g#vR’y§aﬂR76a6) =0 (6.3.2)

It is clear from the above equation that it is a fourth-order quasi-linear PDE. Therefore,

we can write the above equation as,
M, ®P7P%(g) 9,0,050t gup + O(83g) = 0 (6.3.3)

where M, aByPC g the coefficient of the highest derivative term in the EoM. It is clear
from (6.3.2) that the highest derivative term will come from V*V? R0, and it will only
depend on the metric. Let X be a co-dimension 1 surface with the normal K*. We can

define the principal symbol for the above PDE as
P, Pz, K) = M, *P77%¢(g) K, K,Ks;K; (6.3.4)

We know from the method of characteristics that the fastest propagating modes are tangent

to the characteristic surface. The characteristic equation for (6.3.3) is given by
det(P(xz,k)) =0 (6.3.5)

The above equation tells us that the kernel of the principal symbol will give us the modes
moving along the characteristic surface. Let T,,3 be a symmetric tensor corresponding to

a polarization mode of the graviton. The possible T3 satisfying

AQu (K, T) = P, *P (2, K)Tap = 0 (6.3.6)
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will give the kernel of the principal symbol, and its dimension will give the number of
modes propagating along characteristics. It can easily be shown that the @, (K,T) for

Riemann Squared theory is,
Qu/(K,T) = —2K?K>T),, + 2K*K,, KTy, + 2K*K, KTy, — 2K, K, K“K"T,5 (6.3.7)

It is straightforward to check that K*Q, (K,T) = 0 and for T}, = T, + K(,X,) where
X, is any covector field, Q. (K, T") = Qu (K, T). Therefore K, X, is pure gauge. Now,

we will split the characteristic analysis into two parts, as in [94].
Null Case : K2 =0

In this case, the equation (6.3.6) reduces to
K, K, KK T,5 =0 (6.3.8)

which implies K*KPT, op = 0. Therefore, the characteristic equation only fixes one com-
ponent of the Ty, but D of the components of T;,3 are just pure gauge, and we can fix
D — 1 by suitable gauge choice. To see this more explicitly, we can choose a null basis
{kH, 1", mt} such that,

kk=11l= k‘ml = lmz =0 & k.l = —1, mi.mj = 5¢j (6.3.9)

We will denote contraction with respect to {k*, I#, mt'} as {0,1,4}. Let us choose one of the
null basis vectors k = K. The equation in 6.3.8 implies that Tyg = 0 ; further, in this basis,

Ty, are pure gauge modes due to diffeomorphism invariance 3 . As aresult, the total degen-

D(D+1 D—2)(D+1
%_D_lzw

eracy of the principal symbol for the null characteristics is 5 ,

% are the degrees of freedom (DoF) associated with physical propagating

where
modes in the space of symmetric two tensors (total minus pure gauge). Notice that the
degeneracy is equal to the number of DoF for massive gravitons. But it is important to
remember that we are not in a 2 derivative theory, and therefore derivatives of the metric
may not be canonically conjugate to the metric; some of them will be independent de-
grees of freedom. Further, we are in the eikonal limit, where all the information about

the spectrum is encoded in the allowed polarization 4. So we cannot associate %

SIn the null basis Tuu = Tooluly =+ TllKuKu + 2T11K(Mm£) + 2T01l(um;) =+ 2T01K(Hll,) + Tijmzumi),
notice that T1,, = {T11,T10,T1:} are the coefficient of the term of type K, X,y, where X, = {K,,l,, mf,}
Therefore they are pure gauge modes.

“In the eikonal limit, although the mass term is irrelevant, the polarization retains information distin-

guishing between massive and massless fields.
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DoF to massive gravitons directly; one must reduce the theory to second-order theory, and

then these %

occur in the spectrum of the theory. The crucial thing to notice is that this is true for any

propagating components will split into different particles that can

null surface in this theory without assuming any condition on curvature components. So,
unlike the Gauss-Bonnet theory [96] , all null surfaces are characteristic. This also tells us

the Killing horizon in this theory is a characteristic surface.
Non Null Case: K2 #0

In the non-null case, it is always possible to write T, = TW + K, X,), for some X
and where Tw/ is transverse, i.e K“TW - %TKb = 0°. Using the fact that K, X,) is pure

gauge and T, o is transverse, we can simplify the expression in (6.3.6) for the non-null case:
Qu/(K,T) = 2K?K*T),, + K*K,K,T = 0. (6.3.10)
As we want @, (K,T) = 0, its trace will also vanish, implies
Q(K,T) = —K*K*T = 0. (6.3.11)
Since K2 # 0, this implies T' = 0, and putting it back to the equation (6.3.10), we get
Qu/(K,T) = —2K?K*T,,, = 0. (6.3.12)

The only solution to the above equation is Tj,, = 0. When K 2 £ 0, the symbol is
not degenerate; therefore, Riemann squared theory has no non-null characteristics. The

above analysis suggests that in the Riemann-squared theory, all the characteristics are

(D+1)(D—-2)

5 allowed polarization modes that move along the

null. Furthermore, there are

characteristic surface.

6.4 Generalized Quadratic Gravity (GQG

In this section, we are interested in studying the causal structure of theory with the

following action:

1

= 1l6xC / VG dP2(R + X3R,ap R*™ P + Ao R, R* + M\ R?) (6.4.1)

T is the trace of Thg
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where \; are the coupling constants and D > 4. The EoM for the above Lagrangian is,

1 1
EMV = Ruu - ig,u,l/R + (>\2 + 4)\3)DR;LV + 5()\2 + 4)\1).Q;L1/DR
—(2)\1 + Ao + 2)\3)V/,,VVR + 2)\3Ra57uR3ﬂ’y + 2()\2 + 2)\3)RO4WZ,RO[’Y

1
— 4\3R, RS + 2\ RR,,, — §gW(A33W5Rwﬁ + AR, R™ + M R?) =0 (6.4.2)

It is evident from the above equation that the EoM is a fourth-order quasi-linear PDE of
the form (6.3.3). The terms that contribute to the fourth-order derivative are shown in
red color in the equation (6.4.2). Since we are interested in causal structure determined
by the principal symbol, these are the only terms of relevance. For any covector K, and

symmetric 2-tensor Ty, it is straight forward to show that

Quv(K,T) = M (—2K, K, K°K°T,5 + 29, K*K“K T + 2K, K, K*T — 2g,, K'T)
1 1 1 1
+ AQ(—§K4TQB + iKl,KQTMBKB + §K#K2TV5K5 ~ K, K, K“KPT,5+ 3 9K K KPT,4
1 1
+§K2KuK,,T—igu,,K4T)+/\3(—2K2K2Tu,,+2K2KMK°“TOW+2K2K,,K“TW—QK“KVKaKﬂTaﬁ)
(6.4.3)

where K4 = K2K?. We can write the above equation in terms of ,,(K) = guK*-K,K,,

this is K2 times a projector that projects the vector onto transverse space to K.

Q;u/ (K,T) = -2\ (HMV(K)HQB(K))TCW

1
= SR, () + T (BT () T — 20 (T (KT () . (6.4.4)
Another way of writing this equation is

Qu(K,T) = ( — 2\ + %AQ)HW(K)HO“B(K) — (%AQ + 2A3)HMQ(K)HV5(K))TQ5.
(6.4.5)

Notice that the term inside the bracket is the principal symbol. It is evident from the
above equation that that K*Q,(K,T) = 0 and for T}, = T, + K, X,) where X, is any
covector, Quu (K, T") = Qu (K, T). Therefore T, = K(,X,) is pure gauge. Further, the
principal symbol vanishes for any K,, when A3 = —%/\2 = A;. This choice of couplings
corresponds to the Gauss-Bonnet term in the action whose EoM is second order. Here,
we restrict ourselves to theories where the equation in (6.4.5) is genuinely fourth order. It

requires either A\g + i)\g # 0 or %/\2 + A1 # 0. We will assume that A3z + %)\2 # 0, as this
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condition will also appear in the case of the characteristics analysis for non-null case. Let

us analyze the characteristic equations for GQG,
Null Case: K2 =0
In this case, the equation (6.4.5) reduces to,

Quv(K,T) = —(2X\1 + Xa + 203) K, K, K*KPT,5 = 0 (6.4.6)

As we already mentioned, we don’t want 2A\; + Ao + 2A3 = 0. Otherwise, the principal
symbol will be completely degenerate for K2 = 0. Using the null basis defined in Section
(6.3) and the equation (6.4.5), we get Tpg = 0. Using the fact that in the null basis, T}, are
pure gauge modes, the total degeneracy of the principal symbol for null characteristics is
(D_Q)#. Following the logic presented in the QG, these are the number of polarizations
allowed in this theory. Similar to the Riemann squared theory, this is true without putting

any conditions on the curvature components.
Non-null Case: K2 # 0

In non-null cases, we will follow the same steps as in the last section. Without loss of
generality, we can take T}, = A,“, as the symmetric tensor that is transverse. The equa-
tion for characteristics will become @, (K, T ) = 0, where we can use K “TW = %K LT T

can easily be seen that
A 1 ~
QK,T) = (A3 — X\ + D\ + ZAz))K‘*T =0. (6.4.7)

Assuming that A3 — A\ + D(A\ + %)\2) £ 0, this implies 7' = 0. Putting this back into
Quv (K, T) =0, we will get

~ 1 ~
Qu(K,T) = —§(>\2 +4X3)K* T, =0 (6.4.8)

Since Ag +4A3 # 0, the above equation implies that 7 wv = 0. In this, all the degeneracy of
the principal symbol is now lifted, and therefore, there are no non-null characteristics for

GQG in the considered coupling space. The allowed couplings in D spacetime dimensions
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are
(%AQ +2X3) #0 (6.4.9)
(2A1 + A2 +2X3) #0 (6.4.10)
(As = A+ DO + EAQ)) £0 (6.4.11)

In the figure (6.1) we have shown the forbidden couplings in dimension D = 5.

A2

-10
0 -5

1M\\\
-10

0 ) \ A
A3 -5 A\\L /
-10

FIGURE 6.1: This figure depicts the space of couplings, with the colored regions indicating

forbidden couplings. Here, {A\1, A2, A3} represent the couplings in the action of GQG,

with the dimension D set to 5. From the above analysis, the equation for the forbidden
is (%)\2 +2X3)(2A1 + A2 + 2)\3)()\3 — A+ 50\ + 41_1)‘2)) =0.

6.5 Einsteinian cubic gravity (ECQG)

Recently, there has been a lot of interest in Einsteinian cubic gravity proposed by Bueno
and Cano in the paper [105]. This theory is a special higher curvature theory of gravity
(cubic in curvature) defined in a way that, when linearized about a maximally symmetric
background, it gives an Einsteinian spectrum. It exists for spacetime dimension D > 4, and

there is some evidence that it possesses Schwarzschild-like black hole solutions [106]. ECG
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does not have an Einsteinian spectrum when linearized about generic backgrounds[107,

108]. The action of ECG is

1
where
o é v o 9 v Tp PUo v
P=12RFIR)SRMY + REGRISRY — 12R 50 R R + 8R! RO R (6.5.2)
1 : V1V3 DUV
Ly = 15511#22;3}:4 RMI1M33 Ruzzut (6.5.3)

Le = lguwwauwsustm RV2Vs RV3V6 (6.5.4)

{ V1V2V3V4V5VE T THIM4T TH2Hs T UHBHG

A is the cosmological constant and 6,12/ is the generalized antisymmetric Kronecker

delta. Notice that £4 and Lg are quadratic and cubic Lovelock terms. As we have summa-
rized, ECG has a lot of nice properties. It is worthwhile to study the causality structure
of ECG. Let us start by writing the EoM for ECG.

1
£,V Ry — 39l 2VOVAE s = 0 (6.5.5)

where £ = (R — Ag + aLy + BLs + AP) and ErF = aRa,ufwﬂ' We can write

guoclfﬁ — agfa’jﬂ + 68&‘0‘”[3 + )\ggaljﬁ (656)

where &Y B and &L B are terms coming from Lovelock terms in Lagrangian and 57‘;&”5
comes from P. Notice that the highest derivative term in (6.5.5) will come from V*VAE,,,,5.

Further, it is well-known that
Vo VgEL™P = v,V 3ElP = 0 (6.5.7)

since &4 and & are coming from Lovelock terms. Now the highest derivative contribution

will come from VQVBEgWﬂ and it will be fourth order. It can easily be shown that

AT, = 6A (Ra,,Rﬁu — RapRoy + 950 R Ruo — Gow RS Ruo — 953 RS Ruo + gap RS Ruo

- gﬁyRa’YRaauw + gﬁuRg’yRaauv + gaVRUVRfBU/W
1. -
= 3R0%, Royry — 9o R Ry + 3Ro R + 5 R R ) (65.8)

Using the above equation and with a bit of algebra, we can compute the principal symbol

acting on the symmetric two-tensor T}, for the EoM in (6.5.5),
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Qap(T, K) = P, " (2, K) Ty = 12K*K* KV Ry, Tog + 6K*K*K” Rgy Toy — 6K* R Tag
— 18K K K" K" Ry Ty + 6 K3 K*K* Rl Toyy + 6 K> K" K¥ Rp,s T3 4+ 6K° K" K" Ro T3,
— 6K R Ts, — 18Ko K K'K" Ry Ty, + 6 Ko K2 KR! T, + 6 K K"K RayoT5
— 18K K"K" K’ RowppToy — 18K K KPKY Ryl — 18K 0 K7 K* K" Rg 0,17
— 6K*K* K" RopTy + 6 Kg K> KF R Ty + 6 Ko K2 KPRY T, — 6 Ko KgK*RM'T),
+ 12K*K* K" Ray o Ty + 12K°K* K R, T + 18gas K KF K" K* Rg, T,
— 1294 K*KF KV ROT,p + 69ag K R* Ty, + 6K RogT — 6 K3 K* K" Ry, T
— 6K K*K"Rg, T + 18K Ks K" K" R, T — 12K* Ruy5, T" + 12 K5 K2 K" Ry TH*
+ 12K K2 K" Ry T — 18K o Ks K* K" Ryuoiyp TP — 1290 K* KM KY R, T
+ 6K*K"K"” Roppu T + 6gap K> K" K” Rypo T (6.5.9)

where K, is an arbitrary covector . It can easily be checked that the above principal
symbol satisfies the Bianchi identity K“Q.g(T, K) = 0 and is invariant under pure gauge
transformations. Furthermore, it can be checked that for maximally symmetric space-
times, the principal symbol vanishes as expected. This is related to the fact that when
ECG is linearized about a maximally symmetric background, its EoM is almost that of
the Einstein gravity[105].

As it must be clear from the expression of the principal symbol, the ECG will not have an
Einsteinian spectrum about a generic background. We also want to emphasize that unlike
GQG, the principal symbol here depends on the curvature tensors, and therefore, in prin-
ciple, it can lead to very different causal structures depending on the background. Hence,

doing characteristic analysis is extremely important. Let us start with null characteristics.
Null Case:K? =0

Again, we will use the same null basis that we have defined in the section (6.3). By

using this null basis and putting K2 = 0, the principal symbol simplifies.

Qap(T, K) = —18T,0Roo K 3—18T 30 Roo K o — 18Tp0 Raogo — 18T} Raoop K 35— 18K TY Raoop
+ 189045T00R00 + 18KQKBTR00 - 18KQKBR0’“0,,TMV =0 (6510)
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Let us write the above equation in component form,

Qoo(T,K) =0, Qu(T,K)=0, Qu(T,K)=0 (6.5.11)
Qu (T, K) = 18T} Roo — 18 Rp0;135 = 0 (6.5.12)

Q1i(T, K) = —18T;0Roo — 18T R10io — 18T} Rigop = 0 (6.5.13)
Qi;(T, K) = 186;;Too Roo — 18Too Riojo = 0 (6.5.14)

The equation (6.5.11) is due to the Bianchi identity. Further notice that 7%, does not
appear anywhere, which is consistent with the fact that it is pure gauge. Assuming
Too = Toi = 0, the equations (6.5.13) and (6.5.14) are trivially satisfied. Therefore, we
are able to satisfy the null characteristic equation for any 7}, satisfying Tog = Tp; = 0
and the equation (6.5.12). This implies that the degeneracy of the principal symbol is
w. This is the same as the DoF of a massless graviton in D dimensional spacetime.
Therefore, any null surface is a characteristic surface in ECG. We want to emphasize that
our analysis is for any spacetime for which the fourth derivative terms do not vanish for all
T},,. Now, let us analyze the case of a Killing horizon. As we know, at the Killing horizon,
Rigjo = Roijr, = 0. Using this fact, we can easily show that all the equations for the null
characteristics are satisfied for all Ty, in the equivalence class of symmetric tensors up
to gauge. This implies that the principal symbol is degenerate for all Ty, and therefore,
the dynamics is governed by a lower-order differential equation. We emphasize that this
holds true for any Killing horizon. For any such solution which is also asymptotic to a
maximally symmetric spacetime, the order of the differential equation interpolates from 2
in the asymptotic region, to 4 in the bulk, and less than 4 on the horizon.

Furthermore, it is well known in the case of ECG that for spacetimes of the form Mp: x
Mp_pr, where D' < D, and Mp: and Mp_p are maximally symmetric spaces, the equa-
tions of motion for gravitational perturbations reduce to a linearized Einstein equation
with an effective Newton’s constant Geg [109]. This indicates that, in all such spacetimes,
null surfaces are characteristic surfaces.

This observation has significant implications for black holes in this theory. It is well known
that there exists a large class of black holes where the near-horizon geometry has this prod-
uct form. Consequently, for all such black holes, the horizon is a characteristic surface.
This means that none of the propagating modes can classically escape or leak through

spacelike paths from inside the horizon.

Non-null Case: K? #0
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In this case, we can use the fact that T3 can be split into pure gauge and transverse

parts, as in Section (6.3). Using the transverse property of 7,3 we can show

Qap(T, K) = 12K* Ry, K" K" Tog — 6 K* Ry T, + 6 RYTo, K'Y K K + 6K Ry THK M K
— 6K RYT,p + 6K° Royuy TS KM KY — 6Ko Kg K2R T, + 6g0s K R T,
3K 'RogT — 12K Ropup T" + 12K 5 K* Ry TP K + 12K o K* Ry, TP K
—18K0 K5 Rpwo T KFKY — 9905 K* Ry KFKYT + 9K? Royp K KYT
+ 690K Rupo T KF'KY + 6 K° Ko KY Ry TS (6.5.15)

Unlike GQG, the principal symbol of ECG depends on the Riemann curvature tensor,
making it challenging to analyze non-null cases on arbitrary backgrounds. Therefore, we
focus on analyzing it in the Ricci-flat Type N spacetime in the algebraic classification of

spacetimes using the Weyl tensor.

6.5.1 ECG in Type N Spacetimes

As is well known from the algebraic classification of the spacetimes, the type N spacetime
is the simplest spacetime with a nontrivial Riemann tensor [110, 111]. Let us introduce a

null basis {I#,n*,m!'} such that,
nn=100l=nm;=1lm;=0& nl=1, mym; = (6.5.16)

The spacetime is type N iff in some null basis; the Riemann tensor takes the following
form,

Raﬁ,uu = 49”1[&?71}3#[“771?/] (6517)

where Q;; is a (D — 2)x(D — 2) matrix. If 2 is traceless, then the spacetime will be Ricci
flat, which is the case of interest to us. Now, we will write the equation (6.5.9) in a Ricci
flat type N spacetime. Further, using the Ricci flatness and the fact that the contraction
of Weyl curvature with itself vanishes in type N spacetime, it can easily be shown that it

is a solution to ECG. It is more convenient to work in the basis {K*,[% m$}. It can be
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shown that the principal symbol in this case is

Qus(T. K) = P, " (2, K)T,u
- QQM{ — 3K(K.0)*miT] — 3K3(K.0)?mi,T) — 9(K.1)2mi,m’ Too
12K (K Lymdm], Tio—6ml,m’ K* Ty —6 K (K 1) gmd, T3 +9K gm, (K.1)*T]
+ 6K mi1gT] — 6Kgml, K*(K.1)T] — 6K>Tymb(K.1) + 9Kami(K.1)>T]
+ 6K ombT] — 6K2(K.1)KomiT] — 6K 151577 + 6 K*(K.1)Kalo T
+6K K2 (K.1)TY —9KQK5(K.z)QT“JrsgaﬁK?(K.J)QT“+3K2(K.Z)ngmgT}
(6.5.18)

where {0, 1,7} indexes in the above equation are contractions with respect to { K%, (%, m$}
respectively. We can always write K, as a linear superposition of n, and l,. It can easily
be checked that the above equation satisfies the Bianchi identity and is invariant under
pure gauge transformation, i.e. Tog — Top + KXy, for arbitrary X,. As shown earlier
in this section, we can analyze the null case K? = 0 of ECG in an arbitrary background.
In this part, we will focus on the non-null case, using a Ricci flat type N spacetime.

Let K2 # 0, which means that K|, is a non-trivial superposition of I, and n,, and therefore
K.I #0. Since K? # 0, we can decompose 7, g into a transverse part and pure gauge. The
invariance of the equation (6.5.18) under pure gauge transformations allows us to choose
T transverse, i.e KI5 = %KBT. Further, for solving the equation Q,g(T, K) = 0 for
Twp, we will assume 111 =T \“ = 0. With this assumption and the transverse property of

T4, the characteristics equation reduces to
Qus(T, K) = P, 4" (x, K) Ty
- QQU{ — 3K(K.0)*miT] — 3K3(K.1)*mi,T) + 6K 2(K 1) mlm, T
— 6K ,l5T" + 6 K*(K.1)Kglo T + 6 Kolg K*(K.1)TY — §K2(K.l)2mamjﬁT

— Ko K3(K.1)*TY + 3o K2(K.1)*TY + 3K2(K.Z)2mgmgT} =0 (6.5.19)

Now, we will solve the characteristics equation component by component. It can easily be
checked that Qog(K,T) = 0 and

Qus(K, T) = 180, T (K.)* (K15 — KKl (6.5.20)
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Since we want to solve for Qi3(K,T) = 0, this implies either (KQZB — KgK.l) =0 or

QUTU =0. If (K2l5 — KgK.l) = 0, then contraction with respect to I# both sides and
using [.I = 0 implies K.l = 0, which contradicts the fact that K, is not parallel to l,.
Hence Q15(K,T) = 0 implies Q;;7% = 0. If we consider T}; as a (D —2) x (D — 2)
matrix, then this condition is the same as tr(Q7") = 0, where tr is a trace in the transverse
directions. Now, we are left to solve for the characteristics equations in (D — 2) transverse
directions. Let p and g be the directions in the null basis which are orthogonal to [ and
n®. Then,

QoK T) = ~6K (K1) (T, 70 + T, — gmpq) (6.5.21)
where T is the trace Ty. Since T, is transverse, it can easily be shown that T3 =
2Tp1(K.I)~ and Tj; = 0°. In order to obtain the above equation, we used the fact that
Q;;T% = 0. The characteristics equation Qp,(K,T) = 0 implies

3 -
Tpiq + TyjQp = 5To1 (K.0) 1q (6.5.22)

Since all the indices take values in the transverse directions, we can write the equation
(6.5.22) in (D —2) x (D — 2) matrix notation as

3
TQ + QT = 5Tm(K.Z)—lfz. (6.5.23)
Q) is symmetric and therefore invertible. Multiplying both sides by () inverse, we get,
QlTQ+T = ;TOl(K.l)’I]lD,g (6.5.24)

Taking trace on both sides and using the fact that T;; = 0, we get Tp; = 0. This reduces
the equation (6.5.23) to
T+ QT =0 (6.5.25)

The above certainly has a nontrivial solution space. For example, in D = 4, one can use a
similarity transformation to set {2 = Cio3, where C; is some constant and o3 is the third
Pauli matrix. Then it is clear that T' = Cy01, where o7 is the first Pauli matrix, is the
solution to the equation (6.5.25). Further, one can use this solution to construct solutions
in higher dimensions. Therefore, we have shown that ECG has non-null characteristics

and it can have superluminal propagation.

6Using the fact that K is a linear combination of n and [, we can write K¢ = n®K.l +[*K.n. Since,
Ti1 = 0, it can easily be shown that n®T,; = T01(K.l)71, Further, T = 2n%Ta1 + T = 2T01(K.l)71 + T
Now, using the transverse condition, To1 = T K.l, implying T3; = 0.
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6.6 Discussion

In this chapter, we have analyzed the causal structure of Generalized Quadratic Gravity
(GQG) and Einsteinian Cubic Gravity (ECG). Firstly, we analyze the Riemann-squared
theory and show that the theory only possesses null characteristics, independent of the
background metric. This background-independent analysis is possible because the prin-
cipal symbol of GQG does not depend on curvature. We further extend this result to
genuinely fourth-order GQG. By ”genuinely fourth order,” we mean that the theory has
a non-trivial fourth-order principal symbol in both the null and non-null cases. This con-
dition excludes the Gauss-Bonnet theory. Furthermore, we demonstrate that such GQG
has W polarization modes. These modes correspond to massive spin-2, massless
spin-2, and scalar fields in the spectrum.

GQG is a fourth-order theory, and therefore, the metric and its derivatives may not cor-
respond to canonically conjugate variables. Some of the metric derivatives can represent
independent degrees of freedom. The best way to analyze the spectrum is to reduce the
equations of motion to second order; we will address this separately elsewhere. However,
since we are analyzing the principal symbol of a fourth-order partial differential equation
(PDE), this is equivalent to analyzing the theory in the eikonal limit. The massive and
massless polarizations get mixed, and we can only count the number of helicities allowed
in the theory. Further, our results imply for black holes with Killing horizons, the Killing
horizon in GQG is a characteristic surface with no polarization modes of the graviton
traversing it along a spacelike path.

We have also shown that for ECG, all null surfaces are characteristic surfaces. This result
is demonstrated on an arbitrary background. It does not appear possible to analyze the
non-null characteristics on an arbitrary background. To address the non-null case, we
consider Type N spacetimes in the Weyl classification. We show that in ECG, there exist
non-null characteristic surfaces. Further using the fact that, Rog = Rjpjo = 0 on the Killing
horizon, we showed that the null characteristic equations are satisfied for any 7, in the
equivalence class T, ~ Ty, + X(,K,), where X, is an arbitrary covector. This tells us
that on the horizon the EoM for dynamical degrees of freedom is lower order. For ECG, it
is known that the linearized EOM for gravitational perturbations has the Einstein gravity
form on spacetimes which are a product Mp, x Mp_pr, where D' < D, Mp and Mp_pr
are maximally symmetric spaces. We argued that the killing horizon is a characteristic

surface for black holes, and therefore, no modes can escape the black hole in ECG.
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6.6.1 Implications on the Local Algebra of Observables

As discussed in Section (3.5.0.1), the causal diamond, defined with respect to null lines,
is used to construct the commutant of the algebra. The bicommutant theorem (3.2.1) is
then invoked to define the corresponding von Neumann algebras. However, in theories
exhibiting superluminal propagation, the causal structure is not encoded by null curves,
since superluminal modes allow for communication outside the null cone. In such cases, one
must instead use characteristic surfaces (associated with the fastest propagating modes) to
define both the causal structure and the corresponding local algebras. Our results indicate
that in GQG, causality in the local algebra must still be implemented via null curves, as
in general relativity. We also expect that the local GSL holds for black holes in GQG. In
contrast, in ECG, the presence of spacelike characteristics leads to a causal structure and

thus local algebras that deviate from those in GR.

6.6.2 Holographic Implications

One way to think about higher curvature theory is as the low-energy limit of a UV-
complete theory of gravity. String theory is one such UV-complete quantum theory of
gravity. In string theory, the semiclassical limit involves taking Gy — 0 and the string
length o/ =12 — 0. In the case of AdS/CFT, this limit corresponds to N — co and the 't
Hooft coupling A — co. The effective theory in the bulk is Einstein gravity plus matter,
meaning all bulk fields see the same metric (the metric that describes the causal structure

of the theory).

We can also define a stringy regime where Gy — 0 and ' remains finite. In this regime,
there are no quantum gravitational fluctuations, but spacetime is probed by strings rather
than point particles. Perturbatively in o/, the stringy regime corresponds to introducing
higher derivative corrections, which implies that, in principle, different bulk fields may see
different metrics. On the CFT side, this corresponds to N — oo with A finite.

Now, let us consider stringy black holes (i.e., black holes in the stringy regime) that are
classically stable. For such solutions, one can ask if all fields see the same horizon, namely
the event horizon of the black hole. If that is true, we should expect only those higher
curvature corrections where the black hole horizon remains a characteristic surface for all
the bulk fields. Our analysis indicates that GQG and ECG have this property. As shown
by Liu and Gesteau in [112], the information about the causal structure of a region in the
bulk is encoded in the associated time band algebra of operators in the boundary CFT.

Gesteau and Liu propose a diagnostic of the presence of a horizon in the bulk, entirely
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using the boundary algebra. As already stated, this could in principle, lead to different
horizons for different bulk fields. It would be interesting to investigate this diagnostic in
the boundary algebras and see what it predicts for stringy horizons in the bulk at least

for the different polarization modes of the graviton.



Chapter 7

Conclusions and future work

This section provides a synopsis of the results presented in this thesis, which are based
on the following three papers by the author: [4, 6, 19]. We summarize the main findings
and outline several open questions that we hope to explore in future work. This thesis
is primarily an effort by the author to understand black holes and their behavior in the
semiclassical limit. In particular, we employ techniques from algebraic quantum field

theory and modular theory to investigate the notion of generalized entropy in this regime.

The first three chapters introduce the problem and review the tools and techniques used in
the subsequent chapters to establish a relation between generalized entropy and algebraic
entropy in the semiclassical limit using the crossed product construction. Our analysis
encompasses black holes in both general relativity and higher curvature theories of gravity.
To better understand the latter, we examine the causal structure of higher curvature
theories and discuss its implications for black hole physics, holography, and the algebra of

observables.

7.1 Summary of the Results

In chapter 4, we began with the elegant result of [2, 3], which shows that in general relativ-
ity, the generalized entropy at the bifurcation surface coincides up to a state-independent
additive constant with the entropy of the algebra of observables of type II crossed product.
The fact that the gravitational algebra in the exterior region is of type II, where entropy
is well-defined, provides a natural explanation for the UV finiteness of the generalized

entropy. However, since generalized entropy is well defined on arbitrary horizon cuts, it is

204
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essential to extend this construction beyond the bifurcation surface to arbitrary slices of

the horizon.

Building on the conjecture in [41] regarding the existence of specific local modular Hamil-
tonians—which we explicitly verified in our setting and employing the half-sided modular
inclusion (4.3), we demonstrated that the generalized entropy of a static black hole at an
arbitrary horizon cut is equal to the algebraic entropy up to a state-independent additive
constant. Utilizing the positivity and monotonicity of the Araki relative entropy, we pro-
vide an algebraic version of the local generalized second law (GSL)in the crossed product
construction. We further extended this result to the Kerr spacetime, assuming the exis-
tence of a Hadamard stationary state. A key advantage of this algebraic approach is that
each step in the argument remains manifestly finite, owing to the Type II nature of the
crossed-product algebra. This finiteness offers a natural renormalization scheme, needed
in Wall’s proof of the GSL [5], which is realized naturally in crossed-product construction.
In Section (4.7), we analyzed nonlocal modular flows in a class of spacetimes and inves-
tigated whether they can be rendered local by adding operators from the algebra and its
commutant. Along the way, we see that the averaged null energy condition (ANEC) also
holds for null generators of the Cauchy horizon in the class of static spacetimes we have

considered, which includes the Schwarzschild spacetime.

In Chapter 5, we have extended the result to black holes in arbitrary diffeomorphic invari-
ants (not necessarily the effective field theory). In particular, we have shown that indeed
for any black hole with a regular bifurcation surface and causal horizon, the generalized
entropy at the bifurcation surface is equal to the entropy of the algebra of observables
up to a state-independent additive constant. The natural next step is to establish this
correspondence between the generalized entropy and the algebraic entropy at an arbitrary
cut on the horizon. However, this is a subtle issue because the causal structure of a generic
higher curvature theory differs significantly from that of general relativity. In such theo-
ries, the definition of the local algebra must be adapted to the modified causal structure,
which is determined by the fastest-propagating modes—that is, by the characteristic sur-
faces of the theory. This motivates a deeper investigation into the characteristics of higher

curvature gravity theories.

In Chapter 6, we analyzed the causal structure of Generalized Quadratic Gravity (GQG)
and Einsteinian Cubic Gravity (ECG). For genuinely fourth-order GQG, we found that

the theory admits only null characteristic surfaces, and this result holds independently

(D+1)(D-2)
2

polarization modes corresponding to massless spin-2, massive spin-2, and scalar degrees of

of the background metric. Furthermore, we demonstrated that GQG features
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freedom in the spectrum. In the case of ECG, we showed that all null surfaces are char-
acteristic surfaces, a result valid on arbitrary backgrounds. Additionally, by considering
type N spacetimes in the Weyl classification, we found that ECG can also admit spacelike
characteristic surfaces. We argued that in both GQG and ECG, the killing horizon of a
black hole acts as a characteristic surface, implying that no modes can propagate out of
the black hole. We also discussed its implications on the local algebra of observables and

holography.

7.2 Future directions

Here we outline some future directions that we would like to explore in the future.

¢ Quantum Focusing Conjecture (QFC) in Type II Algebras: Recently, the
authors in [48] established the quantum null energy condition (QNEC) and the
Bekenstein bound using algebraic quantum field theory and modular theory. It
would be intriguing to formulate the quantum focusing conjecture (QFC) within the
framework of type II crossed-product algebras. This framework has a key technical
advantage, as entanglement entropy in type II algebras is free from UV divergences,

and therefore, modular theory provides a natural setting for proving QFC.

e Exploring the Information Loss Paradox via von Neumann Algebras: The
information loss problem remains one of the key challenges in understanding the na-
ture of quantum gravity. It has been suggested in [113] that the language of von
Neumann algebras is particularly suitable for formulating the information paradox
in the G — 0 limit. The authors proposed a recovery protocol for retrieving black
hole information, and it would be valuable to investigate this further and understand

this recovery protocol.

¢ Entanglement Entropy in String Perturbation Theory and Modular The-
ory: In [114], the authors defined entanglement entropy in string perturbation theory
using the orbifold method. They expressed entropy as a modular-invariant series,
which was shown to be finite [115]. It would be intriguing to find generalizations
of the modular theory in string theory and understand the entropy in an algebraic
context, which could provide valuable insights into quantum gravity and semiclas-

sical physics. It will also be interesting to study stringy effects using the algebraic
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techniques as in [112].

e Higher Curvature Theory: There are several interesting directions for further
exploration. One is to investigate the well-posedness of GQG and ECG. From the
perspective of classical theory, well-posedness is a fundamental criterion for a physi-
cally viable classical theory. Linearizing these theories around nontrivial backgrounds
typically introduces a linearized ghost in the spectrum. If the theory admits a well-
posed initial value formulation, it would be particularly interesting to examine the
role of these linearized ghosts and their implications for the full non-linear theory
and its quantization. Furthermore, Deser and Tekin in [116], have proven the posi-
tive mass theorem for full non-linear quadratic gravity (theory with R? and R, RF
in action). It would be worthwhile to investigate whether a similar theorem holds in
the contexts of Generalized Quadratic Gravity (GQG) and Einsteinian Cubic Grav-
ity (ECG). Such a study could shed light on the interplay between higher-curvature

corrections and gravitational stability.



Appendix

A. Minkowski wedges

The objective of this section is to establish the relationship between the modular operator
of the Rindler wedge A, whose null boundaries intersect at the origin of the Minkowski
space, and another Rindler wedge C, which is contained within the wedge A and has
no overlapping null boundaries with the wedge A, as shown in the Figure 1. A second
wedge, B, is introduced for computational purposes and for a subsequent section. Its null

boundary overlaps with the part of the future null boundary of that of the wedge A. Let

FIGURE 1: A,B and C are three Rindler wedges. A is the Rindler wedge at the centre,

B is the wedge A shifted along the null coordinate v by v and C' is the wedge B shifted

along the null coordinate u by ux. The coordinates in the diagram are the null coordinates
and transverse coordinates are suppressed.
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My, Mg, and M¢ be the von Neumann algebras associated with the wedges A, B, and
C correspondingly, and let these algebras act on the Hilbert space H. In the Minkowski
spacetime, the Reeh-Schlieder theorem provides us a cyclic and separating state € (the
Minkowski vacuum) for the von Neumann algebra of any proper subregion in the space-
time. In modular theory, we may define (A4, Ja), (A, JB), and (A¢, Jo) as the modular
operator and the modular conjugation associated with (M4, Q), (Mp,Q), and (M, ),
respectively.

We will obtain the relationship between the modular operator of M4 and Mg in the
following three steps:

i) We will prove that Mp is the positive modular inclusion of M 4, and use its properties
to derive the relationship between the modular Hamiltonians of (M4, Q) and (Mg, Q).
We will then demonstrate that A% has a geometrical action on the wedge B.

ii) Following the same analysis as for the wedge A and B, we will obtain the relation
between the modular Hamiltonian of (Mp, Q) and (Mg, 2), showing that Mg is the neg-
ative half-sided modular inclusion of Mp.

iii) Using the previously obtained relation, we will obtain the relation between the modular
Hamiltonian of M 4 and Me.

We have already defined modular inclusions in the main body of the thesis, following [42].

Claim: Mg is the positive modular inclusion of (M 4, ).

Note that Mg C M 4. As previously stated, € is cyclic and separating for Mpg. According
to the Bisognano Wichmann theorem [68], A% is the boost flow in the forward direction
for the wedge A when ¢ < 0. Thus, Af}{ has a geometrical action on the operators in
Mg, i.e. it moves the operators along integral curves of the boost Killing field as shown
in Figure 2. Because the boost is null on the Rindler horizon of wedge A and timelike
inside, the forward boost cannot take the local operator in Mpg outside it. Therefore,
AZM BAZ” C Mp when t < 0. According to the definition of positive half-sided modular
inclusion, Mp is a positive half-sided modular inclusion of (M4, ).

For a more detailed study, let the vertices of the wedge A and B be separated by vx along
the null direction v, as shown in Figure 2. Now, according to the results on modular

inclusions, there exists a unitary U(t) such that
AN = U(e?™ — 1) (.0.1)

where U(t) = exp[i€yt] and &, is a positive operator. U(t) can be thought of as an
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FIGURE 2: The figure represents boost integral curves, which also represent the modular
flow in the wedge A.

operator that translates the wedge B in null direction v. Further, &,, can be written as

vx times generator of null translation along the v. We can write the above equation as
exp|—itlog[A a]] exp|itlog[Ap]] = exp [i(e%t — )& (.0.2)

Now, differentiating the above equation with respect to ¢ and evaluating it at ¢ = 0 gives

log[A 4] —log[AB] = —27E (.0.3)
Now, if we can define the modular Hamiltonian as K = —log[A], then
Kp =Ky — 210 (.0.4)

We want to emphasize that the above result is true even if v* depends on the transverse
coordinate. However, if v+ depends on the transverse coordinate, the modular flow gener-
ated by it will not have a local action on the wedge B but it will have local action along
the null boundary (horizon) associated with the wedge. Nevertheless, for v+ independent
of the transverse coordinate, the modular flow is local and that is what we will assume for
rest of this section.

Claim: Kp is a boost generator associated with wedge B.
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To show that Kp is a boost generator associated with wedge B, we use the fact that we
can use Theorem 1. Differentiating the condition (k) in the theorem 1 first with respect
to t and evaluating at ¢t = 0 and then with respect to s and evaluating it at s = 0, we will
get

[iK 4, iEps] = 2MiE s (.0.5)

From (.0.2), we can write
exp[—itKp] = exp[—itK 4] exp[i(e®™ — 1)E,.] (.0.6)

Now there is a well-known theorem which we will just use here.
Theorem 2: If [X,Y] = sY, where s € C and s # 2win then

exp|Y] exp[—X] exp[—Y] = exp[—X] exp[(exp[s] — 1)Y] (.0.7)

Now choose X = iK 4t and Y = i€,,. Then using (.0.5), one can identify s = 27t. Since
t € R, we can apply the theorem. This gives

exp[—itK ] exp[i(e®™ — 1)E,.] = expli&y] exp[—iK at] exp[—i&ps] (.0.8)
Now putting (.0.8) back in (.0.6), we get
AL =U(1)AU(-1) (.0.9)

So this is a null translated boost, which can still be thought of as a boost but this time
associated with the wedge B. Furthermore, (.0.4) and (.0.9) establish its local and geo-
metrical nature. There is another way to get (.0.9), because Mg = U(1)M4U(-1), and
U is an () preserving unitary. It is straightforward to verify that the Tomita operator for
Bis Sp=U(1)S4U(-1).

U(1)SaU(-1) (U(l)aU(—l))Q — U(1)a'U(~1)0 (.0.10)

For each a € M4, U(1)aU(—1) € Mp. Now, using the definition of the modular operator
Ap = SLSB = U(1)A4U(—1). Further, using the spectral theorem for operators and the
fact that U(1) is unitary, we will get the equation in (.0.9).

We can now do the same with wedges B and C. As we already know, 2 is cyclic and
separating for Me. A% is the boost associated with the wedge B and the past Rindler
horizon of the wedge C' overlaps with the portion of the past horizon of the wedge B, as
shown in Figure 3. For ¢ > 0, the boost A% maps the wedge C into itself. Thus, M¢ is a
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FI1GURE 3: The figure represents boost integral curves associated with the wedge B which
also represents the modular flow in the wedge B.

negative inclusion of Mp. Following the steps of previous analysis, using Theorem 1 we
can write

AGIAL =V (1 — ™2™ (.0.11)

where V(t) = exp[i€u«t] and &, is a positive operator. V(t) can be thought of as the
operator that translates wedge B in the null direction u. Further £, can be written as ux

times generator of null translation along u. We obtain
Ko = Kp —21&y. (.0.12)

and
AL =V(=1)A%LV(1). (.0.13)

The modular Hamiltonians of the algebra and the algebra related by the modular inclusion
will differ by the generator of a one-parameter unitary group. If the algebras are wedge
algebras with inclusion as a null translated wedge, then the generator that connects the two
modular Hamiltonians is a null translation generator. Now we may express the modular
Hamiltonian of the wedge C' in terms of the modular Hamiltonian of A. Using (.0.12 and
(.0.4), we obtain

Ko =Kg—21Eps — 27Eys. (.0.14)
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Further using (.0.13) and (.0.9), we can write the modular flow
AL =V(-1)UQ)ALU(-1)V(1). (.0.15)

Since translations in Minkowski spacetime commute, we can define the unitary W(s; a,b) =

exp2mi(a&ys + bEys)s] and the equation can be written as
AL =W(1;1,-1)A4W(-1;1, 1) (.0.16)

This is true for any v+ and ux*; therefore, we have obtained a relation between the modular
Hamiltonian of any wedge that can be reached via a series of null translations and the
wedge at the origin. It is crucial to note that because null translation is a global isometry
of spacetime, the resulting modular Hamiltonians for B and C' are conserved and may be
represented as a local integral on the Cauchy surface. This is the simplest example of a
local modular Hamiltonian. The result (.0.4) is valid even if v« depends on the transverse
coordinate. The only difference is that the null translation that maps two wedges would
not be a symmetry, and therefore the resultant modular Hamiltonian may not have local
action everywhere inside the wedge B. But it will be local on the horizon, since the null

translation depending on the transverse coordinate is still a symmetry on the horizon.

B. Quantum Canonical energy in covariant phase space for-

malism

As we are working with quantum fields, one might want to check whether IW relation [82]
is true in the expectation value. The way to obtain the IW relation in expectation value
is to write Schwinger Dyson’s equation in some state for the quantum fields (including
gravitons) about a static black hole spacetime and use diffeomorphism invariance of the

Lagrangian. Using diffeomorphism invariance of the Lagrangian, we can write

oL oL

—Lep=—dJ — —L .0.17

5o €9 5g ~e9 (-0-17)
where J is same as in equation (49) in [82], ¢ here corresponds to all quantum fields and
g is back ground metric. Since we want to compute the expectation value of the above

equation in some state |®) [117]. We will do that following the point split prescription as
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described in [117],

lim (@ (;g(:v)ﬁgcb(y) @) = lim (@] (= dJ(z,y) - ‘;j(w)cgg(y)) ®)  (0.18)

From the Schwinger Dyson’s equation, we know the left-hand side is zero up to a state-

independent divergent term. Therefore if we consider the difference of the quantity ( —

dJ(z,y) — %(x)ﬁgg(y)) in any two state |®) and |¥), then state independent divergent

term will cancel out. Now we can take the coincident limit of y — .

@] (= i) - S @)Leola)) 18) - (9] (- o) - 5 (0)Leg()) [9) =0 (0.9

Now the above equation can be written as,
d(®[(J + k.€) |®) — d (V[ (J + k.€) [¥) = V,((B[ T [®))& — VL. ((¥|TH |¥))&, (.0.20)

above equation is obtained using the fact that 5‘;% = TH ¢, where € is volume form and
kH = THE,. Notice that the left-hand side in the above equation is the total derivative,
while the right-hand side is not. The only way this can happen is when V,((®| T* |®) )&, =
V. ((¥| TH |W))E,. Since this has to be true for any two states and any vector field &,
it can only be if V,((®| T+ |®)) vanishes for any state |®) to a local term independent
of state. We may modify our prescription to eliminate this extra state-independent term
by performing background subtraction[117]. The same argument then leads to d (®| (J +
k.€) |®) = 0. Now you choose " to be the killing field of the background spacetime (and
we have killing fields since the background is static). Following IW [82], we will get

<S>¢) = / dZm“<TW>¢§” + Surface term (.0.21)

where £ is known as the canonical energy in the covariant phase space formalism, and it

is independent of the choice of Cauchy slice.
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