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Abstract

In recent years, algebraic quantum field theory and modular theory have provided signifi-

cant insights into gravitational degrees of freedom. Notably, the works [1, 2, 3] demonstrate

that the inclusion of gravitational degrees of freedom transforms the algebra of quantum

fields on a curved spacetime from a type III to a type II crossed product algebra. More-

over, authors in [2, 3] have shown that the generalized entropy of the black hole exterior,

evaluated at the bifurcation surface, equals the algebraic entropy of the associated type II

crossed product algebra.

We have extended these results to arbitrary cuts on the horizon for black hole solutions

in general relativity (GR) [4]. Specifically, we show that for QFT (including perturbative

gravitons) in the static blackhole spacetime, the generalized entropy equals the algebraic

entropy at any cut on the horizon, and the construction uses the Hartle-Hawking state.

These results can also be extended to Kerr black holes under the assumption of a Hadamard

stationary state. Furthermore, using the crossed product construction and modular the-

ory, we present an algebraic proof of the local version of the generalized second law (GSL),

where each step is manifestly finite—thanks to the Type II nature of the algebra. This

finiteness provides a natural renormalization scheme, addressing a key assumption in Wall’s

proof of the GSL [5]. We have also studied deformations of modular operators and derived

the averaged null energy condition (ANEC) for a class of spacetimes.

We further generalize the crossed product construction and the relation between gener-

alized entropy and algebraic entropy beyond GR to arbitrary di↵eomorphism-invariant

theories [6]. In particular, we prove that the equality between generalized entropy and

the entropy of the Type II crossed product algebra holds at the bifurcation surface in any

such theory, and we provide a weaker form of the GSL in this broader context.

To study local algebras in higher curvature theories (HCT) and to better understand the

nature of HCT itself, we investigate their causal structure. In particular, we analyze Gen-

eralized Quadratic Gravity (GQG) and Einsteinian Cubic Gravity (ECG). It is known that

gravitons in higher curvature theories can propagate superluminally. This has important

consequences for black holes: if the Killing horizon is not a characteristic surface for the

fastest propagating mode, it cannot serve as a causal barrier. We show that GQG, which

has genuine fourth-order equations of motion, admits only null characteristic surfaces, en-

suring that the black hole horizon remains a causal barrier. We also perform a detailed

characteristic analysis of ECG, finding that while all null surfaces are characteristic, not



all characteristic surfaces are null. Despite the presence of non-null characteristic surfaces,

we establish that the black hole horizon in ECG remains a characteristic surface.





Chapter 1

Introduction

The quest for a quantum theory of gravity is one of the most profound challenges in

theoretical physics. The length scale at which quantum gravity is important is the Planck

scale lp =
q

GN~
c3

. Nevertheless, we expect that at a length scale much larger than the

Planck length, the quantum e↵ects of gravity can be neglected. A full quantum theory

of gravity must reduce to quantum field theory in the absence of gravitational degrees

of freedom and to general relativity in the classical limit ~ ! 0, with consistent higher

curvature corrections. Yet, gravity is inherently nonlinear—it gravitates just like other

matter fields, meaning that its quantum e↵ects can, in principle, appear at all energy

scales. This suggests that quantum aspects of gravity must be incorporated systematically,

much like those of matter fields.

Although we do not yet know the full quantized theory of gravity, we can reasonably assume

that if the characteristic de Broglie wavelength of a matter field is �, satisfies lp ⌧ �,

then quantum e↵ects of matter fields and fluctuations of the gravitational background

(gravitons) become important, while the full quantization of spacetime itself is not. This

regime is known as the semi-classical regime.

The physics in this regime is governed by the small parameter lp

�
⌧ 1. The appropri-

ate theoretical framework is quantum field theory in a curved background, incorporating

graviton fluctuations.

This thesis explores various aspects of this semi-classical regime using both classical and

contemporary tools from local quantum field theory and operator algebras. In this in-

troduction part, we will give a broad overview of the algebraic quantum field theory and

1
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its usefulness in curved spacetime, especially in black hole spacetime. In Sec 1.1, we will

briefly discuss the development of an algebraic approach to local quantum field theory.

1.1 Algebraic Quantum field theory

The framework of local quantum field theory (LQFT) is one of the most successful

and well-tested frameworks. It elegantly describes the standard model of particle physics,

which is a theory of all fundamental forces in our nature except gravity. The gravity can

also be studied using the LQFT framework, but only as an e↵ective field theory.

Several classical approaches to quantum field theory, such as canonical quantization and

path integral quantization, have provided deep insights into quantum field theory and

physical interactions. These methods have led to remarkable predictions, such as the value

of the electron’s gyromagnetic ratio to 11 decimal places. However, examining a system

from multiple perspectives often deepens our understanding and may even prompt new

questions that might not have naturally arisen within the conventional framework. There

are other useful frameworks of LQFT, such as Algebraic quantum field theory (AQFT).

Algebraic Quantum Field Theory (AQFT) is one of the axiomatic approaches to

Local Quantum Field Theory (LQFT), developed in the 1950s alongside the Wightman

axiomatic framework by Haag, Kastler, Araki, Borchers, and others [7, 8, 9]. The primary

goal of these axiomatic approaches was to establish a mathematically rigorous foundation

for quantum field theory. However, as we will see, AQFT not only provides a precise for-

malism but also leads to many profound conceptual insights—some of which are di�cult

to even formulate within other approaches.

In AQFT, the fundamental objects of study are local algebras of observables, con-

structed from bounded functions of smeared field operators within bounded regions of

spacetime. These algebras naturally exhibit the structure of von Neumann algebras,

allowing us to analyze the general structure of the theory using von Neumann algebras

and, more broadly, the powerful methods of operator algebras. All properties of quan-

tum fields are now encoded in the algebraic relations among these observables. States

are then defined as functionals on the algebra of observables. Further, we can obtain the

traditional Hilbert space formulation using what is known as the GNS construction. This

algebraic perspective is particularly e↵ective for addressing questions related to local re-

gions in spacetime and excels in deriving general theorems by focusing on the fundamental

algebraic structure of a theory. For instance, Araki in [10] has shown that the local algebra

of a subregion in any quantum field theory belongs to the type III1 class of von Neumann
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algebras. As we will discuss in later chapters, this is closely related to the divergence of

entanglement entropy in quantum field theory.

From a physical standpoint, experimental measurements access quantities such as mo-

mentum and energy, rather than directly probing the quantum state of the system. The

central idea of AQFT is to work directly with observables, making it a natural frame-

work for formulating and addressing observational questions in quantum field

theory. It also provides a natural setting for studying LQFT as an information-theoretic

system.

The algebraic approach to QFT is a natural framework for studying QFT in curved space-

time. In Minkowski QFT, the primary objects of interest are scattering amplitudes, di-

rectly related to physical cross sections in scattering experiments. However, a well-defined

S-matrix generally does not exist in curved spacetime. Additionally, in Minkowski space,

the Poincaré group provides a distinguished vacuum state, leading to a Fock space con-

struction over the Poincaré-invariant vacuum. In generic curved spacetimes, the absence

of such symmetries implies no preferred vacuum and, consequently, no natural Hilbert

space[11, 12]. This motivates an algebraic formulation, where the fundamental structure

is the algebra of local observables, with states as secondary constructs.

As we have explained, quantum field theory can be studied through the lens of von Neu-

mann algebras. These algebras were introduced by von Neumann in order to understand

quantum system and later classified by Murray and von Neumann into three types: Type

I, Type II, and Type III. This classification is based on key algebraic properties such

as the existence of a trace, density matrices, and pure states.

Type Trace Density matrix Pure state

Type I Yes Yes Yes

Type II Yes Yes No

Type III No No No

More broadly, this can be viewed as a classification of quantum systems themselves. It is

well known that any finite-dimensional quantum system is described by a Type I

von Neumann algebra. As noted in the previous section, Araki proved that the local

algebra of a subregion in quantum field theory is of Type III1. The same algebraic struc-

ture was also obtained by Leutheusser and Liu in [13, 14] while studying N = 4 super

Yang-Mills theory. They showed that in the strict N ! 1 limit, the algebra emerges as

Type III1 . Now, what about Type II von Neumann algebras? Are they realized in any

physical system?
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1.2 Gravitational Algebra and Black hole thermodynamics

Recent developments have shown that the local algebra of observables in perturbative

quantum gravity, in the limit where the gravitational coupling GN ! 0, is of Type II. As

we discussed earlier, in this limit, the e↵ective description is given by quantum field theory

in a curved background, with free gravitons included on the same footing as other matter

fields. Adding dynamical gravity in the sense of graviton corrections requires implementing

gravitational constraints in the theory. In gravity, di↵eomorphisms that vanish at infinity

are redundancies of the description. All observables in a theory of gravity must be invariant

under such transformations, i.e., they must commute with the constraints associated with

each di↵eomorphism.

It is well known that in the full theory of quantum gravity, there are no local operators.

This is because any local region can be mapped to any other by an appropriate di↵eo-

morphism, preventing the definition of strictly local operators. However, in perturbative

quantum gravity, these di↵eomorphism constraints are implemented order by order. As a

result, one can construct a gravitational algebra by dressing observables with respect to

some heavy degrees of freedom that remain una↵ected by linearized di↵eomorphisms or

by dressing them to the asymptotic boundary when available. Further, it turns out that

implementing the gravitational constraints changes the local algebra of observables from

type III to type II. In particular, the gravitational algebra has the structure of what is

known as a Type II crossed product. This was first obtained by Witten [1] in the context

of AdS black holes, where he showed that the algebra of observables in the exterior of a

black hole in the limit GN ! 0 is a type II crossed product. The fact that gravitational

algebras are type II crossed product algebras has deep implications for the nature of local

quantum degrees of freedom. Since type II algebras possess a trace, one can define a

density matrix and an associated entropy. In black hole physics, it is already known that

there exists Bekenstein’s generalized entropy [15, 16], which is defined by

Sgen =
A

4GN

+ SQFT, (1.2.1)

where A is the black hole horizon area at an arbitrary cut of the event horizon and SQFT is

the entropy of the quantum field theory in the exterior of the black hole. When Bekenstein

originally proposed this, he had in mind the thermodynamic entropy of matter outside the

horizon. It was Sorkin [17] who proposed that if the matter was quantum, then SQFT

should be the entanglement entropy of the quantum fields in the exterior with the interior.

Further, it was shown by Susskind and Uglum in [18] that if one interprets SQFT as the
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entanglement entropy of the quantum field in the black hole exterior, then at one-loop in

graviton, Sgen is UV finite and independent of the UV cuto↵.

Note that Sgen is universal in the sense that for any black hole in general relativity, it

can be defined by the same formula and exhibits the same UV behavior. This naturally

raises several questions: Is there a deeper reason for this cancellation? Does this behavior

suggest that the inclusion of gravity improves the UV properties? What exactly is Sgen?

Is there a concrete interpretation of what this entropy measures, and who observes it?

As it turns out, these questions can be answered using the framework of von Neumann

algebras and modular theory. It was shown by Chandrasekaran, Longo, Penington, and

Witten in [2] and by Chandrasekaran, Penington, and Witten in [3] that Sgen, evaluated

at the bifurcation surface of a black hole, is equal (up to a state-independent constant) to

the algebraic entropy of a type II crossed product algebra associated with the black hole

exterior. This result clarifies why Sgen is UV finite.

Now, if it is indeed true that the generalized entropy is equal to the algebraic entropy,

then one must demonstrate this for all cuts on the horizon of a semi-classical black hole.

As we will show, in general relativity, this can be proven for any static black hole in the

Hartle–Hawking state and can further be extended to Kerr black holes.

In addition, there is a compelling proof of the generalized second law (GSL) by AronWall in

[5], which assumes the existence of a suitable renormalization scheme for certain quantities

like entanglement entropy. We will show that the type II crossed product construction

provides such a scheme, and we will provide an algebraic version of the local generalized

second law in which each step is manifestly finite [4].

It is also well known that any UV-complete theory of gravity will contain higher curvature

corrections. One might therefore expect that it should still be possible to show that the

generalized entropy equals the algebraic entropy up to a state-independent constant. We

will demonstrate that this is indeed the case at the bifurcation surface [6].

A natural next question is whether the second law can be established for higher curvature

theories. However, this requires us to first define local algebras in such theories. Since

the causal structure in higher curvature gravity di↵ers from that of general relativity, a

prerequisite for this program is to understand the causal structure in these theories. This

motivates our study of causal structures in higher curvature gravity [19].
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Notably, understanding the causal structure in higher curvature gravity is also interesting

in its own right. For example, it is a crucial first step towards addressing the problem of

well-posedness.

1.3 Plan of thesis

In Chapter 2, we briefly describe the mathematics of operators used in the von Neumann

algebras and algebraic quantum field theory. For completeness, we provide all the relevant

definitions and theorems, along with illustrative examples from quantum mechanics.

In Chapter 3, we introduce von Neumann algebras and their classification, emphasiz-

ing their relevance in physics. For clarity, we provide the necessary definitions, theorems,

and either their proofs or references to them. We also present useful examples from quan-

tum mechanics and local quantum field theory. Additionally, we introduce generalized

functions to facilitate a better understanding of the algebraic framework of quantum field

theory.

In Chapter 4, we demonstrate how the techniques of von Neumann algebras and mod-

ular theory can be used to show that the generalized entropy is equal to the algebra

entropy on arbitrary cuts of the horizon for any black hole. We also prove a local version

of the Generalized Second Law (GSL) using the crossed product construction, in which

each step is manifestly finite [4].

In Chapter 5, we extend the results of Chapter 4 to arbitrary di↵eomorphism-invariant

theories. In particular, we prove that the generalized entropy equals the algebraic entropy

at the bifurcation surface. We also present a weaker version of the GSL in this broader

context [6].

In Chapter 6, we study the causal structure of generalized quadratic gravity and Ein-

steinian cubic gravity [19]. We also discuss the implications of these structures for holog-

raphy.

In Chapter 7, we provide a summary and synthesis of the main results from the three

works presented in Chapters 4, 5, and 6.



Chapter 2

Mathematics of Operators for

Quantum Theory

This section provides a concise yet rigorous introduction to the mathematical framework of

Hilbert space operators and operator algebras, serving as a foundation for the exposition of

von Neumann algebras. Our approach is to systematically present the essential definitions,

lemmas, and theorems required for understanding von Neumann algebras. While some

results will be proved in detail, others will be stated with references to sources where

complete proofs can be found.

2.1 Some Mathematical Background

Definition 2.1. (Sequence)

A sequence � in the set M is a map � : N ! M. We denote �(n) = �n for n 2 N
and the sequence by {�n}1n=1

or {�n}.

The simplest example of a sequence is { 1

n
} in the set of real numbers.

7
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Definition 2.2. (Vector Space)

A vector space (V,+, .) over a field K (which we will take to be either R or C) is a
set of vectors that comes with an addition + : V ⇥V ! V and scalar multiplication

. : K⇥ V ! V , and satisfies:

1. Under addition: associativity, commutativity, existence of an additive identity,

and existence of additive inverses.

2. Under scalar multiplication: associativity, existence of a multiplicative iden-

tity, distributivity of scalar multiplication with respect to vectors, and dis-

tributivity of scalar multiplication with respect to field addition.

There are many interesting examples of vector spaces. For instance, Rd is a vector space

over the field R; the solution space of any linear di↵erential operator forms a vector space;

and Cn(R), the space of n-times continuously di↵erentiable functions on R, is also a vector

space over R.
A vector space is finite-dimensional if every linearly independent subset in the vector space

is a finite set; otherwise, it is an infinite-dimensional vector space. Once we have a vector

space, we can define a normed space.

Definition 2.3. (Seminormed and normed space)

A complex vector space (V,+, ) equipped with a map k.k : V ! R+ and satisfy,

1. Non negativity: ||a|| � 0.

2. Homogenity: ||za|| = |z|.||a||.

3. Triangle inequality: ||a+ b||  ||a||+ ||b||.

8a, b 2 V and z 2 C then V is a semi-normed space and k.k is called a semi-norm.

If the semi-norm also satisfies,

||a|| = 0 =) a = 0 (2.1.1)

then k.k is a norm and V is the normed vector space.

If the space is normed, then we can use this norm to define the notion of distance

via metric function d(a, b) : V⇥V ! R+ as follows:

d(a, b) = ||a� b|| 8a, b 2 V (2.1.2)



Chapter 2. Mathematics of Operators for Quantum theory 9

Consider (Rd,+, .) vector space and consider the function fa : Rd
! Rd defined as,

fa(X) = a.X (2.1.3)

where . is a dot product in Rd , X 2 Rd and a 2 Rd is a constant vector. Now consider a

map kkfa : R ! R that takes X ! |fa(X)|, where |fa(X)| is the absolute value of fa(X).

Then kkfa is seminorm as |fa(X)| = 0 does not imply X = 0. While its evident that for

X = (x1, .., xd) 2 Rd with ||X||2 ⌘

qP
d

i=1
x2
i
, k.k2 is a norm on Rd. As we have seen, a

norm induces a notion of distance on a vector space, which allows us to rigorously define

and analyze the convergence of sequences within the space.

Definition 2.4. (Convergent sequence)

Let {�n} be a sequence in normed space (V, k.k) and it is said to converge to

� 2 V, if

8" > 0 : 9N 2 N : 8n � N : k�n � �k < " (2.1.4)

Further, it can be easily shown using the triangle inequality that in a normed space, a

convergent sequence converges to at most one element. In the above definition, convergence

depends on a pre-assumed limit. However, one can define Cauchy convergence, which is

intrinsic to a sequence and does not require, a priori, that the limit lie in the vector space.

Definition 2.5. (Cauchy sequence)

A sequence {�n} in a normed space(V, k.k) is Cauchy sequence if

8" > 0 : 9N 2 N : 8n,m � N : k�n � �mk < " (2.1.5)

It is straightforward to prove that every convergent sequence is a Cauchy sequence; how-

ever, the converse is not always true. For example, in the normed space (Q, | · |), where

| · | denotes the absolute value, the sequence {xn} defined by x1 =
3

2
and

xn+1 =
4 + 3xn
3 + 2xn

is a Cauchy sequence. Nevertheless, it converges to
p
2 /2 Q, showing that not all Cauchy

sequences converge in Q. Therefore, in the sense of Cauchy sequence (Q, | · |) is not a

complete space.
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Definition 2.6. (Banach space )

A normed space is said to be complete if every Cauchy sequence in it is convergent.

A complete normed vector space is called a Banach space.

The simplest example of Banach space is (Rd, k.k2) or more generally, (Rd, k.kp), where

kXkp = (
P

d

i=1
xp
i
)
1
p . Another Example is `p(N),

`p(N) = {a = {aj} : kakp < 1}

where,

kakp = (
1X

i=1

ap
i
)
1
p , 1  p < 1

We can add more structure to the vector space and define the notion of the Hilbert space.

Definition 2.7. (Hilbert Space)

A complex vector space H equipped with a sesquilinear inner product

h· | ·i : H⇥H ! C

is called a pre-Hilbert space if it satisfies the following properties:

1. Hermitian property: h' |  i = h | 'i.

2. Linearity in the second argument: h' | a 1+b 2i = ah' |  1i+bh' |  2i.

3. Positive-definiteness: h |  i � 0, with equality if and only if  = 0H.

for all ', , 1, 2 2 H and a, b 2 C.

If H is also complete with respect to the norm defined by

k k ⌘

p
h |  i

then it is called a Hilbert space.

Later, we will use the Dirac notation | i to denote vectors in H.

It must be evident from the above definition that every Hilbert space is a Banach space,

but not every Banach space is a Hilbert space. This is because not every norm induces

an inner product. The example is space `p(N), these are Banach spaces but not Hilbert

spaces until p = 2. The necessary and su�cient condition for a Banach space B to be a
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Hilbert space is that its norm must satisfy the parallelogram identity.

k�1 + �2k
2 + k�1 � �2k

2 = 2k�1k
2 + 2k�2k

2

for all �1,�2 2 B. A Hilbert space is a separable Hilbert space if there exists a countable

basis (a countable set of vectors such that any vector in the space can be written as a linear

combination from the set; this set of vectors is called the basis, and the cardinality of the set

is the dimension of the Hilbert space). Any finite-dimensional Hilbert space is isomorphic

to CN for some N 2 N, and any infinite-dimensional separable Hilbert space is isomorphic

to `2(N).

In a quantum system, Hilbert space plays a crucial role, as it is used to define the state

of the system. In particular, pure states correspond to rays in the Hilbert space and

thus naturally belong to the projective Hilbert space. It is commonly thought that pure

states correspond to vectors in the Hilbert space, but this is not entirely correct. For

example, consider a unit vector �1 2 H. The vector ei↵�1, where ↵ is a real number, is

a di↵erent vector in the Hilbert space H, yet in quantum mechanics, they represent the

same physical state. Therefore, unit vectors in Hilbert space do not correspond directly to

physical states; rather, pure states are described by equivalence classes of vectors di↵ering

by a global phase.

Definition 2.8. (Direct sum of Hilbert space )

Let Hi for i = {1, .., N} be the Hilbert space, then the direct sum Hilbert space is

denoted by �
N

i=1
Hi and defined as,

�
N

i=1Hi = {(�1, ....,�N ) : �i 2 Hi}

where the inner product over the direct sum Hilbert space is defined as,

h(�1, ...,�N )|( 1, ..., N )i
�

N

i=1H
=

NX

i=1

h�i| iiHi

if N ! 1, then we must also require that for each (�1, ...,�N ) 2 �
N

i=1
Hi,

1X

i=0

k�ik
2

Hi
< 1

Further, if all the Hilbert space Hi = H, then we write �
N

i=1
Hi = H

�N .
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In the direct sum of Hilbert spaces, the vectors of two di↵erent Hilbert spaces are orthogo-

nal. Therefore, the dimension of the direct sum Hilbert space is the sum of the dimensions

of each Hilbert space in the direct sum.

Definition 2.9. (Direct product of Hilbert space )

Let Hi for i = {1, .., N} be the Hilbert space, then the direct product Hilbert space

is denoted by ⌦
N

i=1
Hi and defined as a completion,

⌦
N

i=1Hi = {(�1, ....,�N ) : �i 2 Hi}

With respect to the inner product over the direct product of Hilbert spaces,

h(�1, ...,�N )|( 1, ..., N )i
⌦

N

i=1H
=

NY

i=1

h�i| iiHi

Further, if all the Hilbert space Hi = H, then we write ⌦
N

i=1
Hi = H

⌦N .

The direct product of Hilbert spaces naturally arises in the quantum mechanics of mul-

tiparticle systems. An important application of direct sums and direct product Hilbert

spaces is that they allow us to define the Fock space.

Definition 2.10. (Fock space )

Let H be the Hilbert space, then we can define the Fock space associated with H

as a Hilbert space,

F(H) = �
1

n=0 H
⌦n

where ⌦
0
H = C.

The Fock space is used as the state space in quantum field theory, which describes systems

with an indefinite number of particles. Having established the essential structure for

understanding the state space of a quantum system, we now move toward the study of

operators in quantum systems. Let us introduce a few more concepts and definitions that

will be needed for the discussion of von Neumann algebras.
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Definition 2.11. (Banach Algebra)

A Banach algebra B is a Banach space equipped with a bilinear map

µ : B ⇥ B ! B, (f, g) 7! fg,

such that the multiplication is associative and satisfies the submultiplicative norm

condition:

kfgk  kfk kgk, 8f, g 2 B.

Banach algebras play a crucial role in quantum mechanics by providing a robust mathe-

matical framework for analyzing operators on quantum systems. They facilitate the study

of spectral properties and allow physical observables to be represented as elements of the

algebra, enabling us to study the quantum dynamics.

Definition 2.12. (Banach * algebra )

A Banach *-algebra A is a Banach algebra over complex numbers equipped with a

map

⇤ : A ! A

satisfying the following properties:

1. (A⇤)⇤ = A, 8A 2 A

2. (AB)⇤ = B⇤A⇤, 8A,B 2 A

3. (A+B)⇤ = A⇤ +B⇤
8A,B 2 A

4. (zA)⇤ = z̄A⇤, for all z 2 C, for every A 2 A.

5. kA⇤
k = kAk, 8A 2 A

If there exists a unit element I 2 A such that AI = IA = A for all A 2 A, then A is a

unital Banach *-algebra. We can define an important structure called C⇤ algebra using

this Banach* algebra.

Definition 2.13. (C * algebra )

A C⇤- algebra is a special type of Banach*-algebra where the norm satisfies the

following property.

kA⇤Ak = kA⇤
kkAk = kAk

2
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In quantum mechanics, observables are represented as self-adjoint operators on a Hilbert

space. C* algebras provide a natural framework for studying these operators, especially

in the algebraic formulation of quantum mechanics. In algebraic quantum field theory

(AQFT), local algebras of observables are modeled using C*-algebras and von Neumann

algebras.

Definition 2.14. (Linear Operator)

A linear operator is a linear map A : DA ! H, where H is a Hilbert space and

DA ✓ H is the domain of the operator, satisfying:

A(↵| i+ �|'i) = ↵A| i+ �A|'i

for all | i, |'i 2 DA and ↵,� 2 C.

As we know, observables in quantum mechanics are self-adjoint linear operators. While

we have defined linear operators, we still need to define self-adjoint operators. To do so,

we must first define the adjoint of a linear operator. However, before that, we need to

introduce the concept of densely defined operators, as only densely defined operators have

adjoints.

Definition 2.15. (Densely Defined Operator)

A linear operator is said to be densely defined if its domain DA is dense in the

Hilbert space H.

More precisely, DA is dense in H if for every | i 2 H and every " > 0, there exists

|'i 2 DA such that

k|'i � | ik < ".

In simple terms, a dense subspace of a Hilbert space is a subspace such that any vector in

the Hilbert space can be approximated arbitrarily well by vectors from it. More precisely,

for any vector | i 2 H, there exists a sequence {|'ni} ⇢ DA that converges to | i. This

convergence is guaranteed by the completeness of the Hilbert space. This property is

particularly useful in physics: to prove a statement about an operator, it is often su�cient

to establish it on a dense subspace of the Hilbert space.
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Definition 2.16. (Adjoint of an Operator )

Let A be densely defined linear operator, A : DA ! H, the adjoint of the operator

is a map A† : DA† ! H, such that,

DA† = {| i 2 H : 8 |'i 2 DA, 9 |�i 2 H : h |A|'i = h�|'i}

and

A†
| i = |�i

It can easily be shown by the properties of the inner product that the adjoint is well

defined, i.e., there exists a unique |�i in the above definition. Further, we would like to

emphasize that to define an operator, we need to give its domain and its action on each

element in the domain. Therefore, if we have two operators A and B, they are equal i↵

DA = DB and A| i = B| i for all | i 2 H. Now, we can define a self-adjoint operator,

Definition 2.17. (Self adjoint Operator )

A densely defined operator A : DA ! H, is self adjoint if it equals to its adjoint

A† : DA† ! H, that is

1. The domain must coincide: DA = DA† .

2. They should have same action 8|'i 2 DA: A|'i = A†
|'i

In quantum theory, self-adjoint operators are of prime importance. The observables in

quantum theory, such as the momentum operator in the quantum harmonic oscillator,

are self-adjoint operators. As we can see from the definition, self-adjointness requires the

domains of the operator and its adjoint to coincide, which is a highly non-trivial condition.

Therefore, nothing guarantees a priori that an operator is self-adjoint. Sometimes, a

symmetric operator is mistaken for a self-adjoint operator.

First, let us define a symmetric operator and then examine whether the momentum oper-

ator in quantum mechanics is always self-adjoint.

Definition 2.18. (Symmetric opertor)

A densely defined operator A : DA ! H, is symmetric if

8 | i, |'i 2 DA; h |A|'i = hA |'i
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As should be clear from the definition, every self-adjoint operator is symmetric, but not

every symmetric operator is self-adjoint.

Now let us consider the momentum operator, which is defined by

P : DP ! L
2([0, 1]),

where L
2([0, 1]) is the space of square-integrable functions on the interval [0, 1].

We choose the domain DP := C1([0, 1]) ⇢ L
2([0, 1]) such that

 (0) =  (1) = 0,  (x) 2 C1([0, 1]).

Although it is easy to show that P is symmetric using integration by parts and the bound-

ary conditions, it is generally di�cult to determine whether DP ⇤ = DP . It can be proven (a

proof can be found in [20]) that the domain of the adjoint, DP ⇤ , is larger than the domain

DP . This is a very general property of symmetric operators, as we will see. Additionally,

one would like to determine whether a self-adjoint extension exists. But first, we need to

define the extension of an operator.

Definition 2.19. (Extension of an operator)

Let A : DA ! H and B : DB ! H be are linear operators; we say B is an extension

of A and denote it by A ✓ B , if

1. Domain of A is contained in domain of B: DA ✓ DB.

2. They should have the same action on the intersection of their domain:

8| i 2 DA, A| i = B| i.

Proposition 2.20. If A and B are densely defined and A ✓ B, then B†
✓ A†.

Proof. Let | i 2 DB† ,then there exists |'i 2 H, such that

8 |�i 2 DB : h |B|�i = h'|�i

Since A ✓ B, we have DA ✓ DB and therefore

8 |⌘i 2 DA ✓ DB, h |B|⌘i = h |A|⌘i = h'|⌘i
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Implies, | i 2 DA† and hence, DB† ✓ DA† . Further, B†
| i = A†

| i = |'i .

=) B†
✓ A†

Proposition 2.21. If A is symmetric operator, then A ✓ A†.

Proof. Let | i 2 DA and |⌘i = A| i some element in H, then by symmetric property,

8|'i 2 DA, h |A|'i = h⌘|'i

implies | i 2 DA† , therefore DA ✓ DA† . Further, 8 2 DA,A
†
| i = A| i.

=) A ✓ A†

The above proposition is very important, as it tells us that a self-adjoint operator does

not have any self-adjoint extension. Let A and B are self adjoint operators and A ✓ B.

Therefore, B = B†
✓ A† = A ✓ B, implies B = A.

In quantum mechanics, we have a Hamiltonian, which is constructed by adding and multi-

plying di↵erent operators. Therefore, it is natural to ask whether we can add and multiply

any two operators. In general, the answer is no. If we have two operators A and B with

domains DA and DB, respectively, then

1. The domain of A+B is DA+B = DA \DB.

2. The domain of A.B is DAB = {| i 2 DB : B| i 2 DA}.

3. The domain of �A, where � 2 C is D�A = DA

4. The domain of inverse operator A�1 is DA�1 = ADA

5. If A�1 is bounded then A�1A ⇢ AA�1

I want to emphasize that, up to this point, all the discussion has been about general linear

operators. We would also like to introduce the concept of the graph of an operator, which

will be useful later in understanding the closed operator.
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Definition 2.22. (Graph of an Operator)

The graph G(A) of a linear operator A : DA ✓ H ! H is subspace of H�H defined

as,

G(A) = {(| i,A| i) 2 H�H | | i 2 DA}

The above definition is simply a generalization of the definition of the graph of a function.

For any function f : (a, b) ⇢ R ! R, the graph is a subset of R � R (or the Cartesian

product R ⇥ R), where each element is represented by an ordered pair (x, f(x)) with

x 2 (a, b). It must be clear that the graph of an operator nicely captures all the information

about the action of an operator in its domain. It is particularly helpful in studying the

extension of an operator in an infinite-dimensional Hilbert space.

2.1.1 Bounded Operators on Hilbert space

In the previous subsection, we were very careful with the domain of the operators and

consistently considered it to be a subspace of the Hilbert space. The reason is simple: not

all operators have a well-defined action on every vector in the Hilbert space. Operators

that do are called bounded operators, as we will see.

Definition 2.23. (Bounded Operator)

A linear operator A : H ! H is bounded i↵ 9 C > 0 such that for all | i 2 H, we

have,

kA| ik  Ck ik

From the above definition for a bounded operator, kA| ik  Ck ik or equivalently
kA| ik

k ik
 C, here | i non-zero vector in H as for a zero vector, the inequality is triv-

ial. Further, using the linearity of the norm, the inequality is the same as kA| ik  C for

all unit vectors | i 2 H. Furthermore, it tells us that C = supk| ik=1 kA| ik, where sup

is the superimum or least upper bound. This motivates the definition of operator norm.

Definition 2.24. (Operator norm)

The norm of a linear operator A : H ! H is denoted by kAk and defined as

kAk = sup
k| ik=1

kA| ik

for | i 2 H.
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therefore, for a bounded operator kAk < 1. One thing that you might be thinking about

is why I have taken the domain of a bounded operator as full H. The reason is,

Theorem 2.1.1. Hahn Banach Theorem

Let A : DA ⇢ H ! H is linear bounded operator densely define on H with an operator

norm kAk = C, then there exists a continuous extension Â : H ! H, such that Â|DA
= A

and kÂk = C.

We will not prove the theorem here, but it can be found in [21]. The theorem states that

every bounded operator defined on a dense subspace of H can be uniquely extended to

an operator defined on the entire H while preserving the same operator norm. Therefore,

when working with a bounded operator, we can take its domain to be H.

The bounded operators have many nice properties. Let B(H) be the collection of all

bounded operators on the Hilbert space H. Then

1. Adjoint of a bounded operator is bounded, i.e., kAk < 1 =) kA†
k < 1.

2. Using (1) and the fact that bounded operators are well-defined on full Hilbert space,

• (A+B)† = A† +B†

• (�A)† = �̄A†

• (AB)† = B†A†

• A†† = A

for A,B 2 B(H).

3. Further using properties of the norm,

• k↵Ak = |↵|kAk

• kA+Bk  kAk+ kBk

• kABk  kAkkBk

for A,B 2 B(H) and ↵ 2 C

4. A†A for A 2 B(H) is a positive operator,i.e 8| i 2 H, h |A†A| i � 0

5. B(H) is a Banach * algebra.

6. Every bounded symmetric operator is self-adjoint.
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Above, we have listed some important and useful properties of bounded operators. The

first property is straightforward: since A is bounded, it is defined on the entire Hilbert

space (if initially defined on a subspace, the Hahn-Banach theorem guarantees the

existence of a unique extension to the full Hilbert space H). Therefore, DA is dense and

A† exists. It follows from the Reisz representation theorem (linear isomorphism of H and

its dual) that DA† = H.

Next, it can be easily shown that kA†
k = kAk, which implies that A† is bounded. Prop-

erties (2) and (3) can be proven straightforwardly. The fourth property follows from the

fact that the norm of any state is positive when applied to state |�i = A| i. The proof of

the fifth property can be found in any standard text on functional analysis; for example,

see Rudin [21]. The sixth property follows from (1) and the symmetry of the operator. We

would also like to mention that bounded operators are continuous, i.e, for any sequence

{| ni} ! | i, the sequence {A| ni} ! A| i. This follows from the fact that

kA| ni �A| ik = kA(| ni � | i)k  Ck| ni � | ik (2.1.6)

and therefore {| ni} ! | i implies {A| ni} ! A| i. Now, what will happen if the

operator is not a bounded operator?

2.1.2 Unbounded operator on Hilbert space

All operators that are not bounded are called unbounded operators. This means that for

an unbounded operator, there always exists an element in H that is not mapped back to

H by the operator. Hence, an unbounded operator can only be defined on the subspace of

the Hilbert space.

Definition 2.25. (Unbounded Operator)

A linear operator A : DA ! H is unbounded if it is not bounded or Equivalently

8C > 0 there exists a | i 2 DA, such that,

kA| ik � Ck ik

The above definition tells us that for an unbounded operator, kA| ik  Ck ik for some

vector | i, but there exists at least one element | i in its domain such that kA| ik �

Ck ik for all C > 0.
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We want to emphasize that, in quantum mechanics, we often work with unbounded op-

erators. For example, the momentum operator and the position operator in quantum

mechanics are unbounded, or at least one of them must be unbounded.

Let us prove this statement. We know that

[q,p] = i~

and, more generally, for n 2 Z+,

[q,pn] = i~npn�1.

Now, taking the norm on both sides and using the fact that

kn~Pn�1
k = k[q,pn]k  2kqkkpkkpn�1

k,

we obtain

kpn�1
kkqkkpk �

n~
2
kpn�1

k

Since n can be any integer, this inequality implies that both q and p cannot be bounded

operators.

Another example of an unbounded operator is the number operator N = a†a in the

quantum harmonic oscillator. Let |ni be the nth occupation state in Fock space, where

the number operator acts as

N|ni = n|ni.

Hence,

kN|nik = n2.

Since for any constant C > 0, there exists an n 2 Z+ such that n2 > C, it follows that N

is unbounded.

Let us go one step further and determine the domain of N . The first thing to notice is

that the domain of N is not all of `2(C). For any state | i 2 `2(C), we can write

| i =
1X

n=0

cn|ni,

where the coe�cients satisfy
1X

n=0

|cn|
2 < 1.
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However, this condition does not necessarily imply that

1X

n=0

n2
|cn|

2 < 1.

For example, choosing cn = 1

n
, we see that

P
1

n=0
|cn|2 < 1, but

1X

n=0

n2
|cn|

2 =
1X

n=0

n2

n2
=

1X

n=0

1 = 1.

Therefore, the domain of N is not `2(C) but rather

DN =

(
| i =

1X

n=0

cn|ni 2 `2(C) :
1X

n=0

n2
|cn|

2 < 1

)
.

Therefore, DN is a subset of `2(C). Furthermore, DN is dense in `2(C), since |ni 2 DN for

any n, and there is no nontrivial vector in `2(C) that is orthogonal to DN , i.e D
?

N
= {0`}.

Therefore, DN = `2(C).
Having established that quantum mechanics necessarily involves unbounded operators, let

us now list some important properties of unbounded operators.

Let A be some densely defined unbounded operator and B is some bounded operator, then

• (A+B)† = A† +B†

• (AB)† = B†A†

If A and B both are densely defined unbounded operators, then it can be verified that,

1. (A+B)† � A† +B†

2. (AB)† � B†A†

The way to verify the above statements is to use the definition of the adjoint and then

prove that the domain of the operator on the right-hand side is contained in the domain

of the operator on the left-hand side.

Unlike bounded operators, unbounded operators do not form an algebra or even a linear

vector space. This is solely because each operator comes with its own domain. Further-

more, unbounded operators are not continuous. In fact, one can prove that an operator is

continuous if and only if it is bounded. We have already proved that bounded operators
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are continuous (2.1.6). Although we will not prove the reverse statement, it can be easily

shown using linearity and the fact that continuity requires every open set in an image to

have an inverse image as an open set in the preimage; for a full proof, see Rudin [21].

However, there is a generalization of continuity to a class of unbounded operators called

closed operators.

Definition 2.26. (Closed and Preclosed Operator)

A linear unbounded operator A : DA ⇢ H ! H is closed if its graph G(A) is closed

under the norm (graph norm) induced by H �H, i.e., if G(A) is a closed subspace

of H�H.

Furthermore, an operator is preclosed if it admits an extension to a closed operator.

If A is the preclosed operator, then we will denote its closure by Ā.

Let us explain what the above definition means. It essentially states that operator A is

closed, if {|'ni} is a sequence in DA such that |'ni ! |'i and A|'ni ! | i, then it follows

that | i = A|'i. It is exactly the definition of closed subspace applied to the graph.

We emphasize that this does not imply that for every convergent sequence {|'ni}, the

sequence {A|'ni} necessarily converges. Instead, it tells us that if {A|'ni} does converge,

then it does so consistently, meaning that it satisfies | i = A|'i. Let us list some useful

properties related to closed and preclosed operators:

1. If A is densely defined operator then A† is closed.

2. A is densely defined preclosed operator i↵ A† is densely defined. In that case the

closure Ā = A††.

3. Every self-adjoint operator is closed.

4. If A is symmetric operator then, A ✓ Ā ✓ A†.

The proof of the above statements can be found in [chapter 13] of [21].

2.1.3 Spectral properties of an Operator

In this subsection, we delve into the concept of the spectrum of operators, a fundamental

notion in quantum mechanics, where measurable quantities correspond to spectral values

of operators. To build a rigorous foundation, we first introduce the inverse of an operator,

which serves as a key tool in formally defining the spectrum.
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Definition 2.27. (Invertible operator)

For every linear operator A : DA ! H, we can define kernel ker(A) and range

ran(A) as,

ker(A) = {| i 2 DA : A| i = 0}, ran(A) = {A| i : | i 2 DA}

A is said to be invertible i↵,

ker(A) = {0}, ran(A) = H

Further we can define inverse operator A�1 : ADA ! DA such that,

AA�1 = 1ADA
A�1A = 1DA

The above notion of invertibility is precisely a generalization of the invertibility of functions

to operators. The reason we focus on the inverse of an operator is that, in the case of

any matrix M (which acts on finite dimensional vector space), eigenvalues are determined

by studying the kernel of M � �I. We will now generalize it to operators on infinite

dimensional Hilbert space.

Consider a densely defined linear operator A : DA ⇢ H ! H, we can define a family of

operators

A� = A� 1�

for every � 2 C. If A� is invertible then we can define a resolvent operator R�(A) as,

R�(A) = (A�)
�1 = (A� 1�)�1

Further, we can define resolvent set ⇢(A) as set of all � 2 C such that,

1. R�(A) exists.

2. R�(A) is bounded.

3. R�(A) is densely defined in H.

or equivalently,

⇢(A) = {� 2 C : R�(A) 2 B(H)}

Now, we can define the spectrum of an operator,
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Definition 2.28. (Spectrum of an Operator)

The spectrum �(A) of an operator A is defined as the complement of resolvent set

in C,
�(A) = C \ ⇢(A)

We can further classify the spectrum into three disjoint set:

1. Point spectrum �p(A): The point spectrum �p(A) ⇢ �(A) such that 8� 2 �p(A),

R�(A) does not exist. That is, there exists a non-trivial element | i 2 DA such that

(A� 1�)| i = 0. This implies that � is an eigenvalue and | i is an eigenvector.

2. Continous Spectrum �c(A): The continuous spectrum �c(A) ⇢ �(A) such that

8� 2 �c(A), R�(A) exists and defined densely on H, but is unbounded.

3. Residual spectrum �r(A): It is set in �(A) such that R�(A) exist as an bounded

or unbounded operator but R�(A) is not densely defined.

As it must be clear that

�p(A) [ �c(A) [ �r(A) = �(A)

and

�i(A) \ �j(A) = �ij�i(A),

where i, j 2 {p, c, r}. It is possible that some of these subsets of the spectrum are empty.

For example, consider any linear operator T : H ! H, where H is a finite-dimensional

Hilbert space. If T is injective, then it is also bijective, implying that such operators have

only a point spectrum, i.e.,

�p(A) = �(A)

Therefore, the usual intuition that the spectrum of an operator consists solely of its eigen-

values holds only in finite-dimensional spaces. In infinite-dimensional spaces, the spectrum

may include not only eigenvalues (point spectrum) but also the continuous and residual

spectrum.

Now, let us consider a particle in a box of length unity. In this case, the position

operator
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q̂ : L2([0, 1]) ! L2([0, 1])

acts as

q̂ (q) = q (q), for  (q) 2 L2([0, 1]).

Notice that in this case position operator is bounded, kq̂ (q)k = kq (q)k = |q|k k < 1,

where  (q) is unit vector. To determine the point spectrum, we look for solutions to the

eigenvalue equation:

q̂ (q) = q (q) = � (q).

Clearly, the equation q (q) = � (q) cannot be satisfied for all q 2 [0, 1] unless  (q) is

identically zero. This implies that the position operator has no point spectrum. It also

confirms that the position operator exists. Furthermore, it is evident that the range of the

operator is the entire space L2([0, 1]). However, R�(q̂) is not bounded everywhere, since

for any vector, R�(q̂) diverges at q = � if � 2 [0, 1]. Therefore, the position operator has

a continuous spectrum given by

�(q̂) = [0, 1]

Now, we would like to list here a few spectral properties of operators.

1. The spectrum �(A) of any bounded operator A, is closed, bounded, non empty set

of C. Further, it is bounded by the kAk.

2. For the bounded operators, the spectrum is real i↵ it is self-adjoint.

3. The point spectrum of a self-adjoint operator is the eigenvalues.

4. The spectrum of any self-adjoint operator is a closed subset of R.

5. For any self adjoint operator (bounded or unbounded) A : DA ! H, � 2 R belongs

to the spectrum of A i↵, 9 a sequence {| ni} in DA, such that,

lim
n!1

k(A� �1)| nik

k| nik
= 0
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We will not prove these properties here, but the proof can be found in [20]. The first

property follows directly from the definition of a bounded operator. Since the norm of a

bounded operator exists and is given by the supremum over all expectation values of the

operator, the spectrum must be bounded by the norm of the bounded operator.

The second and third properties are generalizations of what we already know for Hermitian

finite-dimensional matrices. However, the second property has an interesting implication:

if an operator has a real spectrum but is not self-adjoint, then it must be unbounded.

The fourth property states that even for an unbounded self-adjoint operator, the spectrum

remains real and closed. Definitely it won’t be bounded, because if it is bounded, then the

operator is bounded.

The fifth property is particularly interesting as it introduces the notion of approximate

eigenvectors and eigenvalues. It tells us that every element in the spectrum of a self-

adjoint operator can approximately be considered an eigenvalue. This means there exists

a sequence in the domain such that the sequential limit of the transformed sequence under

the operator behaves as an eigenvalue equation in the limit. This can be seen in the

above example of the position operator. We know that the Dirac delta function �(q � �)

can act as an eigenfunction for the position operator. However, the Dirac delta function

does not belong to the space of square-integrable functions. Instead, we can replace the

Dirac delta function with a sequence of functions in L2([0, 1]) that converges to the Dirac

delta function. This allows us to interpret the continuous spectrum as an approximate

eigenvalue spectrum.



Chapter 3

von Neumann Algebras for

Physicist

This chapter aims to make the mathematical ideas of von Neumann algebras and oper-

ator algebras in general accessible to a broad physics audience without sacrificing much

rigor. As outlined in the introduction, operator algebras—particularly von Neumann al-

gebras—serve as powerful tools for exploring quantum systems, including quantum fields

and gravity. Given that von Neumann originally developed these concepts to formalize

quantum mechanics, it is natural that they have found extensive applications in physics. In

recent years, von Neumann algebras have led to significant developments in quantum field

theory and gravity. To ensure that the presentation is self-contained, we provide essential

definitions, propositions, and theorems. Furthermore, this section serves as a reference

for the mathematical concepts related to von Neumann algebras that will be used in later

chapters.

3.1 Operator topologies

The point of this subsection is to introduce the definition of commonly used operator

topologies. As we will see, the choice of topology plays a crucial role in defining di↵erent

classes of operator algebras, with closure under various topologies leading to distinct al-

gebraic structures. We will briefly discuss these topologies here, but the interested reader

can look at [22, 23].

Let H be a Hilbert space, and let B(H) denote the space of bounded operators on H. One

28
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may induce many interesting B(H) topologies. The most commonly used topologies are

norm, ultrastrong, ultraweak, strong, and weak. The topologies of our interest are the

norm, strong, and weak topologies.

Let {T↵} 2 B(H) be the sequence of a bounded operator or more precesily net 1 of

operators in B(H). Now we can define the operator topologies as,

• Operator Norm(ON): We say {T↵} ! T in norm topology i↵,

kT↵ �Tk ! 0. (3.1.1)

where k.k is an operator norm defined in (2.24). In norm topology, an operator is

small if its supremum norm is small.

• Strong Operator(So): We say {T↵} ! T in the strong topology if, for every

| i 2 H, we have (T � T↵) | i ! 0. In So, an operator is said to be small if its

action on any state is small.

• Weak Operator(Wo): We say {T↵} ! T in the weak topology if, for every

| i 2 H, we have h | (T�T↵) | i ! 0. In Wo, an operator is said to be small if its

expectation value in any state is small.

• Ultrastrong Operator(USo): We say {T↵} ! T in the ultrastrong topology if,

for every positive trace-class operator ⇢ on H, we have (T�T↵)⇢(T�T↵)† ! 0 in

the trace norm.2 In USo, an operator is said to be small if the expectation value

positive operator (T�T↵)†(T�T↵) in any density matrix is small.

• Ultraweak Operator(UWo): We say {T↵} ! T in the ultraweak topology if, for

every positive trace-class operator ⇢ 2 H, we have tr(⇢(T�T↵)) ! 0. In UWo, an

operator is said to be small if its expectation value in any density matrix is small.

Notice that the convergence is measured with respect to a density matrix whenever we

use ”Ultra” topologies. In the case of non-ultra topologies, the convergence is measured

in pure states. These operator topologies have interesting properties,

1A net is a generalization of a sequence; roughly speaking, a net can be thought of as a sequence where
indexing is done by a directed set (a set which is preordered such that for any two elements there is a
greater element under the preorder). Moreover, the reason to introduce net is that in general topological
spaces, the convergence of sequences is not enough to completely determine the topology.

2Note that this is di↵erent from the condition T↵⇢T
†

↵ ! T⇢T†. That condition, since it is not a function
of the di↵erence T�T↵, is not compatible with the vector space structure of B(H).
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1. If {T↵} ! T in the norm topology then T↵ ! T in strong topology. If T↵ ! T in

strong topology, then T↵ ! T in weak topology.

2. The convergence of net {T↵} ! T under di↵erent topologies follows the ordering,

norm ! ultrastrong ! strong ! weak,

norm ! ultrastrong ! ultraweak ! weak,

The first property follows directly from the fact that the operator norm is given by the

supremum over k(T↵�T)| ik. This immediately implies that kT↵�Tk � k(T↵�T)| ik .

Moreover, applying the Cauchy–Schwarz inequality, we obtain |h |(T↵�T)| i|  k(T↵�

T)| ik. A similar argument can be used to verify the second property. The ordering in

operator topologies, as described above, implies that if {T↵} ! T in the norm topology,

then the sequence also converges in all weaker topologies. However, the converse does

not hold; convergence in a weaker topology does not necessarily imply convergence in the

norm topology.

Notational convention: Just for notational convenience we will not write the operator

in bold from here.

3.2 von Neumann algebra

Let A ⇢ B(H) be a unital ⇤-algebra (2.12). As defined earlier, if A is closed in the norm

topology, it is called a C⇤-algebra. However, if A is closed in the weak topology, it is called

a von Neumann algebra.

Definition 3.1. (von Neumann algebra):

The algebra of operators A ⇢ B(H) is a von Neumann algebra, if A is a unital

⇤-algebra and is closed under the Wo topology.

From the above ordering of convergence of a net in di↵erent operator topologies, we observe

that the norm topology is stronger than the weak operator topology (WOT), which means

it has more open sets. Since a closed set is the complement of an open set, the closure

of a set in the norm topology is smaller (or finer) than its closure in the weak operator

topology. Therefore, the closure in a weaker topology (like WOT) is larger than the closure

in a stronger topology (like norm topology). Therfore
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C* algebra � von Neumann algebra

The above definition of von Neumann algebra is very abstract, but it turns out that one

can give a simpler, more useful, and equivalent definition of von Neumann algebra using

the notion of commutant of the algebra. In addition, it will give us an easier way to think

about von Neumann algebras in physical systems. So, let us introduce the commutant of

an algebra,

Definition 3.2. (Commutant of algebra):

Let A be any subset of bounded operators i.e A ⇢ B(H), then commutant of A is

denoted by A
0 and defined as,

A
0 =

n
a 2 B(H) : 8b 2 A [a, b] = 0

o
(3.2.1)

Remark: A is any subset, need not be a von Neumann algebra.

Since A
0
⇢ B(H), we can also define the commutant of A0, which we will call a double

commutant and denote it as A00.

A
00 =

n
c 2 B(H) : 8d 2 A

0 [c, d] = 0
o

(3.2.2)

From the above definition, it is easy to see that

A ⇢ A
00 (3.2.3)

Let a 2 A be any bounded operator, then 8 b 2 A
0 we have [a, b] = 0. From the above

definition, A00 is a collection of bounded operators that commute with all the elements of

A
0, which implies a 2 A

00. Thus, A ⇢ A
00. Similarly, we can define higher commutants.

We will denote n+ 1-th commutant of A as A(n+1) and define it as,

A
(n+1) =

n
c 2 B(H) : 8d 2 A

(n) [c, d] = 0
o

(3.2.4)

Now we want to prove that A
0 = A

000. Notice that (3.2.3) holds for any subset of B(H),

which implies that A0
⇢ A

000.

Now, let a 2 A
000. By definition,

[a,A00] = 0.
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but, since A ⇢ A
00

[a,A] = 0.

This implies that a 2 A
0, and hence, A000

⇢ A
0.

Since we have both inclusions, it follows that

A
0 = A

000. (3.2.5)

We can again use the fact that A can be any set in B(H) and the above equation to show

that,

• For any A ⇢ B(H), A(2n+1) = A
0
8n 2 N.

• For any A ⇢ B(H), A(2n+2) = A
00
8n 2 N.

Now our aim is to show that there is an equivalent definition of von Neumann algebra

in terms of commutants. To set up an equivalent definition, we need to introduce the

concepts of projection.

Definition 3.3. ( Projection)

An operator, P 2 B(H), is said to be a projection i↵

• P = P † Adjointness

• P 2 = P

The rank of a projection P on a Hilbert space H is defined as the dimension of its

range:

rank(P ) := dim(ran(P ))

The set of all projections in B(H) is denoted as PB(H). It is clear that if P is projection

then,

1. 1� P is also a projection.

(1� P )2 = 1� P � P + P 2 = 1� P

2. PH is a closed subspace of H.
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Proof. Let | i, |�i 2 H and ↵,� 2 C. Then,

↵P | i+ �P |�i = P (↵| i+ �|�i) 2 PH.

So, PH is closed under linear combinations and hence is a subspace.

Now, let us show that PH is closed.

Let {P | ni} ⇢ PH be a sequence such that

P | ni ! |⇠i 2 H.

We want to show that |⇠i 2 PH, i.e., that there exists some |�i 2 H such that

|⇠i = P |�i.

Since P is bounded and linear, we can write:

P (P | ni) = P 2
| ni = P | ni ! |⇠i.

Also, by continuity of P , it follows that

P (P | ni) ! P |⇠i.

Therefore,

P |⇠i = lim
n!1

P (P | ni) = lim
n!1

P | ni = |⇠i.

Thus, |⇠i = P |⇠i, which shows that |⇠i 2 Im(P ) = PH.

Hence, PH is closed.

3. kPk = 1 =) P is a positive operator.

Further, Let P↵ 2 B(H) be the set projections. We say they are orthogonal projection if

P↵P� = 0 whenever ↵ 6= �. One simple example of orthogonal projection is P and 1� P .

It can also be shown that for any closed subspace of H there exists a unique projection

P 2 B(H). It is also easy to show that

1. If P1, P2 2 PB(H), then P1 + P2 2 PB(H) () P1P2 = 0.

2. If P1, P2 2 PB(H), then P1P2 2 PB(H) () P1P2 = P2P1.

3. If P1, P2 2 PB(H) then P1  P2 () P1P2 = P1 () P1H ⇢ P2H
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Let us prove the first property. Let P1 + P2 be a projection, then,

(P1 + P2) = (P1 + P2)
2 = P1 + P2 + (P1P2 + P2P1) (3.2.6)

Implies, P1P2 + P2P1 = 0. But then

P2P1P2 = �P2P1 = �P1P2

Implies, P2P1 = P1P2 = 0. Conversely, we know that (P1 + P2)† = P1 + P2 and if

P2P1 = P1P2 = 0 then (P1 + P2)2 = P1 + P2 + (P1P2 + P2P1) = P1 + P2.

To prove the second property, notice that if P1P2 is a projection, then P1P2 = (P1P2)† =

P2P1. Conversely, if P2P1 = P1P2 then (P1P2)† = P2P1 = P1P2 and (P1P2)2 = P1P2P1P2 =

P 2

1
P 2

2
= P1P2.

Now, let us prove the third property.

Assume that P1P2 = P1. Since we know that 0  P1  1, it follows that

P2P1P2  P2

From this, we can deduce that P1  P2.

Conversely, assume that P1  P2. Then,

0  (1� P2)P1(1� P2)  (1� P2)P2(1� P2) = 0

This implies that

(1� P2)P1(1� P2) = 0,

which further leads to

P1(1� P2) = 0

To prove that P1P2 = P1 if and only if P1H ⇢ P2H, note that

P1H ⇢ P2H () (1� P2)H ⇢ (1� P1)H () P1(1� P2)H = 0 () P1(1� P2) = 0.

This completes the proof of the third property.

We can also define projections onto the closure of the union and intersection of projections.
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Let {Pi}
N

i=1
be any family of projection on B(H). Then, we define:

N_

i=1

Pi ⌘ the projection on the subspace
X

i=1

PiH (3.2.7)

N^

i=1

Pi ⌘ the projection on the subspace \i=1 PiH (3.2.8)

Now, we will use the properties of projections to prove von Neumann’s bicommutant

theorem.

Theorem 3.2.1. (von-Neumann’s bicommutant theorem):

Let A ⇢ B(H) be the unital ⇤-algebra of operators. Then the So- closure of A or equiva-

lently Wo- closure of A coincides with the bicommutant A00 of A.

Proof. Let a 2 A
00, we want to show that a 2 Ā

3, i.e. for each | i 2 H and any " > 0,

there exists b 2 A with k(a� b) | ik < ". This will imply that A00
⇢ Ā.

Let | i 2 H be the fixed element, we can define the subspace A | i =
n
c | i : c 2 A

o
. It

is invariant under the action of any element of A. Its closure A| i in the norm of H is

a closed linear subspace. We can associate the orthogonal projection P : H ! A| i onto

the subspace. P is a bounded linear operator, and it can easily be shown that P 2 A
0.

Which we will prove as the next lemma.

Since P 2 A
0, bP = Pb for all b 2 A. Also, from the definition of the bicommutant, we

must have aP = Pa. Since A is unital, | i 2 A | i, and so | i = P | i.

Hence a | i = aP | i = Pa | i 2 A| i. So for each " > 0, there exists b in A with

k(a� b) | ik < ". Therefore A
00
⇢ Ā.

Now we want to show that Ā ⇢ A
00. We have already proved that A ⇢ A

00.

Next, we note that the strong operator topology (So) is stronger than the weak operator

topology (Wo). Consequently, closure in Wo is larger than closure in So. Therefore, it

su�ces to show that the weak closure of A is contained in A
00.

This follows from the fact that, under the weak operator topology, continuity ensures that

for all a 2 Ā, we have

[a,A0] = 0.

This, in turn, implies that Ā ⇢ A
00. Therefore, we conclude that

A
00 = Ā.

3
Ā is a closure of A
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To complete the proof, we just have to prove that,

Lemma 3.4. The orthogonal projector P 2 A
0.

Proof. Let | i 2 H be the fixed element, Then P | i 2 AH. Since AH is closed subspace,

there must exist the limiting sequence {An | i}n with an 2 A which limits to P | i. Let

b 2 A then ban | i 2 AH, and therefore bP | i 2 AH. Which implies PbP | i = bP | i.

Since it holds for all | i, PbP = bP for all b 2 A. Since the orthogonal projectors are

self-adjoint operator, for any | i , |�i 2 H,

h�|bP i = h�|PbP | i =
D
(PbP )†�

��� 
E
=
D
Pb†P�

��� 
E
=
D
b†P�

��� 
E

(3.2.9)

D
b†P�

��� 
E
= hP�|b i = h�|Pb i

Thus, Pb = bP for b 2 A. Similarly, it can be shown that the orthogonal projector M on

A0 | i for any | i 2 H belong to A, i.e M 2 A.

This completes the proof of the von Neumann bicommutant theorem. So from von Neu-

mann’s bicommutant theorem,( the closure of A in WO)= A
00. This implies that we

can replace the Wo closure condition with the equality condition of the algebra with its

bicommutant in the definition of von Neumann algebra.

Definition 3.5. (von-Neumann algebra ):

The algebra of operators cA ⇢ B(H) is a von Neumann algebra. If A is a unital

⇤-algebra, and it is equal to its bicommutant.

A = A
00 (3.2.10)

This is an extremely useful definition because, to check whether an operator belongs to a

von Neumann algebra A, it su�ces to verify that it commutes with every operator in A
0.

It is also useful in constructing von Neumann algebra, for example, if we have a unital *-

algebra, we can get a von Neumann algebra by taking its double commutant. From now

on, we will use the above definition of a von Neumann algebra.

Consider A ⇢ B(H), which is not necessarily a von Neumann algebra. We previously

established that for any subset A,

A
0 = A

000.
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This implies that for any A ⇢ B(H), the commutant A0 is always a von Neumann algebra.

As we know, in physics, commutators are intimately connected with microcausality in

quantum field theory. Therefore, it is natural to realize that von Neumann algebras arise

as appropriate mathematical structures to describe the set of local observatories associated

with the causal closure of a local subregion of a physical system [24, 25]. We will discuss

this in detail in a later section.

Let A be a von Neumann algebra and A
0 its commutant. It is not necessarily the case

that they are disjoint. This leads to the concept of the center of an algebra.

Definition 3.6. (Centre:)

For a von Neumann algebra A, the centre Z of the algebra is defined as,

Z = A \A
0 (3.2.11)

These are the collection of all the elements that are common in both A and A
0.

The center of an algebra plays a crucial role in the classification of von Neumann algebras.

Operators in the center are used to define superselection rules in charged systems and

gauge theories [26]. The centre will play a very important role in the classification of

von Neumann algebras, as we will see. Using the centre of algebra, we can define factor

algebras,

Definition 3.7. (Factor)

The von Neumann algebra is a factor if the center Z is trivial.

Z = CIA, where c 2 C.

Factors are a fundamental concept in the theory of von Neumann algebras. A remarkable

theorem by von Neumann states that any von Neumann algebra that is not a factor can

always be decomposed into a direct sum or direct integral of factors. Thus, a factor von

Neumann algebra is an irreducible von Neumann algebra, meaning that studying factors

is su�cient to understand the structure of von Neumann algebras. There is also a strong

physical motivation for the importance of these factors. In quantum field theory, the local

algebra associated with a given spacetime region is typically a factor. Now, we want to

move to a composite system.
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It is natural to ask: if two systems are disjoint, and each has its own algebra of observables,

what is the algebra describing the total system? The answer is that the algebra of the

total system is given by the tensor product of the algebras associated with each system.

Thus, let us now define the tensor product of von Neumann algebras.

Definition 3.8. (Tensor product of two von Neuman algebras):

Let H1,H2 be two Hilbert spaces, and H1 ⌦H2 is the tensor product Hilbert space

of H1 and H2. Let B(H1) and B(H2) be the algebra of bounded linear operators

in H1 and H2, respectively. Then for any a1 ⌦ a2 2 B(H1 ⌦ H2), it is uniquely

determined by (a1 ⌦ a2) | 1 ⌦  2)i = a1 | 1i ⌦ a2 | 2i for all | ii 2 Hi. For von

Neumann algebras Ai ⇢ B(Hi), the von Neumann algebra generated by {a1 ⌦ a2 :

a1 2 A1, a2 2 A2} is denoted by A1 ⌦A2 and called the tensor product of A1,A2.

Using the tensor product of von Neumann algebras, we can show

Theorem 3.2.2. (Commutation Theorem for Tensor Products):

The commutation theorem for tensor products states that for von Neumann algebras A1

and A2, the commutant of their tensor product is the tensor product of their commutants.

Specifically:

(A1 ⌦A2)
0 = A

0

1 ⌦A
0

2

Proof. To prove this, we need to show two inclusions:

1. (A1 ⌦A2)0 ◆ A
0

1
⌦A

0

2

2. (A1 ⌦A2)0 ✓ A
0

1
⌦A

0

2

1. (A1 ⌦A2)0 ◆ A
0

1
⌦A

0

2

Let a 2 A
0

1
and b 2 A

0

2
. We need to show that a ⌦ b commutes with every element of

A1 ⌦A2.

Take any c 2 A1 and d 2 A2. Then:

(a⌦ b)(c⌦ d) = ac⌦ bd
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Since a 2 A
0

1
, ac = ca. Similarly, since b 2 A

0

2
, bd = db. Thus:

ac⌦ bd = ca⌦ db = (c⌦ d)(a⌦ b)

This shows that a⌦ b commutes with c⌦ d. Therefore,

a⌦ b 2 (A1 ⌦A2)
0

This proves A0

1
⌦A

0

2
✓ (A1 ⌦A2)0.

2. (A1 ⌦A2)0 ✓ A
0

1
⌦A

0

2

Let e 2 (A1 ⌦ A2)0. We need to show that e 2 A
0

1
⌦ A

0

2
. Since e commutes with every

element of A1⌦A2, it commutes with elements of the form c⌦ IA2 for c 2 A1 and IA1 ⌦ d

for d 2 A2, where IA1 and IA2 are the identity operators on A1 and A2, respectively. This

implies:

e(c⌦ IA2) = (c⌦ IA2)e for all c 2 A1

e(IA1 ⌦ d) = (IA1 ⌦ d)e for all d 2 A2

These commutation relations imply that e can be decomposed as e = a⌦ b, where a 2 A
0

1

and b 2 A
0

2
. This is a consequence of the structure of von Neumann algebras and the fact

that e commutes with the generators of A1 ⌦A2.

Therefore, e 2 A
0

1
⌦A

0

2
, which proves (A1 ⌦A2)0 ✓ A

0

1
⌦A

0

2
.

Combining the two inclusions, we have:

(A1 ⌦A2)
0 = A

0

1 ⌦A
0

2

This completes the proof of the commutation theorem for tensor products.

The above theorem is helpful in thinking about the algebra of a composite system and the

algebra of multiple subregion in local quantum field theory. For completeness and the fact

that any von Neumann algebra can be written as the direct sum of the factor algebras, we

would like to introduce the direct sum of von Neuman algebra.
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Definition 3.9. (Direct sum of von Neumann algebra:)

Let A1 and A2 are von Neumann algebras, then their direct sum is defined as:

A = A1 �A2.

This means that every element a 2 A can be written as a pair a = (a1, a2), where

a1 2 A1 and a2 2 A2 and satisfty,

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),

(a1, a2) · (b1, b2) = (a1b1, a2b2),

(a1, a2)
† = (a†

1
, a†

2
).

Further, following the similar steps as in the tensor product of von Neumann algebra, it

can be shown that (A1 �A2)0 = A
0

1
�A

0

2
.

Now, let us see some examples of von Neumann algebras. Let us start with a finite-

dimensional Hilbert space.

Example 3.1. (Algebra of n⇥ n matrix )

Let Mn(C) denote the algebra of n⇥ n complex matrices acting on the Hilbert space H =

Cn. This is a unital *-algebra, since it is closed under addition, multiplication, scalar

multiplication, and taking adjoints (i.e., conjugate transpose).

The commutant of Mn(C) is

Mn(C)0 = {�I | � 2 C} = C · I,

since the only matrices that commute with all matrices in Mn(C) are scalar multiples of

the identity matrix.

Taking the commutant again, we find

Mn(C)00 = (Mn(C)0)0 = Mn(C),

so Mn(C) is equal to its double commutant and is therefore a von Neumann algebra by the

double commutant theorem.
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Example 3.2. (Finite Dimensional Interacting System)

Consider an n-dimensional quantum system interacting with another n-dimensional quan-

tum system. The algebra of observables for these systems is given by:

A1 = span {a⌦ In | a 2 Mn(C)} , A2 = span {In ⌦ b | b 2 Mn(C)} ,

acting on the Hilbert space H = Cn
⌦ Cn.

Clearly, A1 and A2 are *-algebras, and we have:

A
0

1 = A2, A
0

2 = A1

Hence, each is the commutant of the other, and both are von Neumann algebras.

Example 3.3. (Weyl Algebra in Quantum Mechanics)

Let Q̂ and P̂ be the position and momentum operators in quantum mechanics acting on

the Hilbert space H = L
2(R). These operators satisfy the canonical commutation relation:

[Q̂, P̂ ] = i~.

Define the Weyl operators as

W (q, p) ⌘ ei(qQ̂�pP̂ ), where (q, p) 2 R2.

These operators satisfy the Weyl form of the canonical commutation relations:

W (q1, p1)W (q2, p2) = e�
i~
2 (q1p2�q2p1)W (q1 + q2, p1 + p2).

The Weyl algebra is defined as the von Neumann algebra generated by all Weyl operators:

AWeyl = {W (q, p) : (q, p) 2 R2
}
00.

Since this algebra is closed under adjoint, weak operator limits, and contains the identity

and linear combinations of Weyl operators, it is indeed a von Neumann algebra.
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3.3 The Local Algebras in Quantum Field Theory

In this subsection, we study the operator aspects of quantum field theory. The goal is to

construct a local algebra of observables in QFT or, equivalently, an algebra of subregions

in QFT. If quantum fields are fields of operators, constructing such an algebra is straight-

forward: restrict the field to the subregion, take all bounded operators constructed from

the localized field, and complete the set under the weak topology. However, quantum

fields are not operator-valued fields but rather operator-valued distributions. Thus, the

first step is to construct well-defined operators from the quantum field that act on a dense

subset of the Hilbert space. Let’s take a small digression and understand a little bit about

generalized functions, also known as distributions.

3.4 Introduction to Generalized functions

Generalized functions, or distributions, extend the classical notion of functions to ac-

commodate singularities, non-smooth behavior, and idealized physical quantities such as

point charges and mass distributions. Their necessity was recognized in both physics

and mathematics, with Dirac’s introduction of the delta function in quantum mechanics

and Schwartz’s rigorous formulation of distribution theory. This revolutionary framework,

pioneered by Laurent Schwartz in the 1940s [27, 28], extends classical calculus to han-

dle singularities, jumps, and infinite values with mathematical precision. At its core lies

the Dirac delta function—a mathematical phantom, zero everywhere except at a single

point where it is ”infinitely tall,” yet integrates to unity. This function is essential for

modeling point sources in classical mechanics, defining canonical commutation relations,

and normalizing eigenfunctions of operators with continuous spectra (e.g., position and

momentum operators in quantum mechanics), all of which require this broader framework.

Beyond these foundational aspects, generalized functions play a crucial role in the analysis

of di↵erential equations, particularly in defining Green’s functions (or propagators) in

quantum field theory and facilitating non-smooth solutions to PDEs. They provide a

rigorous framework for handling singularities in physical models and o↵er deep insights

into the structure of quantum fields.

Generalized functions or distributions are defined as continuous linear functionals on spaces

of test functions. The primary test function spaces include D(Rd), the space of compactly
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supported smooth functions, and the Schwartz space S(Rd), consisting of rapidly decaying

smooth functions. So, let us start by introducing the space of the test function.

3.4.1 Test Functions

Let f : Rd
! C be a smooth function (infinitely di↵erentiable function) denoted by C1(Rd)

and multi-index ↵ = (↵1, . . . ,↵d) with ↵j 2 N. We can define order |↵| =
P

jd
↵j and

D↵f =
@|↵|f

@x↵1
1

. . . @x↵d

d

.

For x 2 Rd, we denote

x↵ = x↵1
1
..x↵d

d
, |x|2 =

X

jd

|xj |
2.

For each integer k, we define the seminorm4

kfkk = sup
x2Rd

(1 + |x|2)k
X

|↵|k

|D↵f(x)|. (3.4.1)

Then,

Definition 3.10. (Schwartz Functions) S(Rd):

The Schwartz space S(Rd) consists of all functions f 2 C1(Rd) such that

kfkk < 1 8k 2 Z

In other words, a function belongs to S(Rn) if and only if f together with all its

derivatives falls o↵ as |x| ! 1 faster than any power of |x|�1.

Notice that,

1. S(Rd) is a vector space, that is

f, g 2 S(Rd),↵,� 2 C =) ↵f + �g 2 S(Rd)
4It is easy to check that satisfy condition for the seminorm given in 2.3
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2. For f, g 2 S(Rd), the product fg 2 S(Rd).

3. The seminorm in (3.4.1) is a norm if and only if k = 0.

4. If f(x) 2 S(Rd), then an arbitrary derivative of f(x) also belongs to S(Rd).

5. If h(x) is a smooth function such that both h(x) and all its derivatives are polyno-

mially bounded, i.e., 8↵ 2 Nd there exist n 2 N and Cn > 0 such that

|h(↵)(x)|  Cn(1 + |x|2)n, 8↵ 2 Nd,

then for any f(x) 2 S(Rd), the product h(x)f(x) also belongs to S(Rd). Such

functions are called multipliers. It can easily be shown that the collection of all

multipliers forms a vector space.

It can also be shown that for a function h(x) to be a multiplier, it is necessary and

su�cient that it be smooth and that both h(x) and its derivatives grow at infinity

no faster than some polynomial.

Further , we say the sequence {fn} 2 S(Rd) convergence to f in S(Rd), if

D↵fn(x)
x2Rd

=) D↵f(x) (3.4.2)

where x� = x�1
1
..x�d

d
.

We call all functions in S(Rd) test function. Now, let us look at some examples of

Schwartz functions or test functions.

Example 1:

Consider f(x) = P (x)e�|x|, where P (x) is a polynomial of x 2 R of order m, it is a

Schwartz function.

Proof. Note that any derivative of f(x) will always take the form g(x)e�|x|, where g(x)

is some polynomial. Let us denote the ↵-th derivative as g↵(x)e�|x|, where g↵(x) is some

polynomial and it must be clear that,

g↵(x) < C(1 + |x|2)m+↵

where C = |g(0)|+ 1. In addition, for any x 2 R and n 2 N

e�|x|


1

1 + |x|+ ....+ |x|n
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therefore, there must exist a nk 2 N for each k 2 N such that

sup
x2R

(1 + |x|2)k
X

|↵|k

|D↵f(x)| < sup
x2R

Ck(1 + |x|2)2k+m

1 + |x|+ ....+ |x|nk

< 1

Therefore all f(x) = P (x)e�|x|, where P (x) is a polynomial of x, is a Schwarzt function.

Since e�x
2
 e�|x|, any function of the form f(x) = P (x)e�x

2
where P (x) is polynomial

is a Schwartz function. More generally, any f(x) = P (x)e�|x|
n

for n being integer is a

Schwartz function.

Example 2

Any smooth function with compact support is a Schwartz function.

Proof. Any smooth function with compact support is bounded [21]. Furthermore, any

polynomial is also bounded in a compact region of Rd. This implies that (3.4.1) is finite.

In other words, a smooth function with compact support is nonzero only in a compact

region and hence decays faster than any power of |x|�1. Therefore, it belongs to S(Rd).

An example of such a function is a bump function.

A bump function is a smooth function (infinitely di↵erentiable) that has compact sup-

port, meaning it is nonzero only in a finite region and smoothly vanishes outside that

region. A common example is given by:

f b

a(x) =

8
<

:
e
�

a
2

a2�x2 , if |x|  a,

0, if |x| > a.

where a > 0 and x 2 Rd.

Graph of the Bump Function for Di↵erent Values of a
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�4 �2 2 4

0.5

1

x

fa(x)

Plot of f b
a(x) for a = 1, 2, 3

a = 1
a = 2
a = 3

It can be easily checked that fa(x) is smooth but not real analytic. The nonanalytic

behavior of fa(x) follows from the fact that all derivatives of fa(x) are zero at |x| = a.

Hence, the Taylor expansion does not exist at |x| = a. These compactly supported smooth

functions are closed in themselves.

Definition 3.11. (Test function with compact support) D(Rd):

The collection of all smooth functions with compact support forms a vector space

denoted by D(Rd).

It must be clear from the above definition and Example 2 that D(Rd) ⇢ S(Rd). Further ,

we say the sequence {fn} 2 D(Rd) convergence to f in D(Rd), if

D↵fn(x)
x2Rd

=) D↵f(x) (3.4.3)

It follows that any sequence convergent in D(Rd) is also convergent in S(Rd). Furthermore,

for any smooth function f , the product fg with g 2 D(Rd) remains in D. Therefore, mul-

tiplication by a smooth function is an automorphism in D(Rd). fa(x) is a good example

of the function which belongs D(Rd).

Some properties of the test functions:

1. The Schwartz functions are bounded functions. It clearly follows from the definition

just take k = 0.



Chapter 3. von Neumann Algebras for Physicist 47

2. Schwartz functions are absolutely integrable, i.e., S(Rd) ⇢ L1(Rd).

Proof. Let f(x) 2 S(Rd) and consider a ball B(r0) of radius r0 centered at the origin.

Then, Z

Rd

|f(x)|ddx =

Z

B(r0)

|f(x)|ddx+

Z

Rd\B(r0)

|f(x)|ddx.

Since f(x) is bounded in B(r0), there exists M > 0 such that

Z

B(r0)

|f(x)|ddx  M.

For |x| > r0, the rapid decay of f(x) ensures that there exists Ck > 0 such that

|f(x)| 
Ck

(1 + |x|2)k
, 8k > 0.

Choosing k > d/2, we obtain

Z

Rd\B(r0)

|f(x)|ddx < 1.

Thus, Z

Rd

|f(x)|ddx < 1,

which proves that f(x) 2 L1(Rd).

3. The Fourier transform of any f 2 S(Rd) is well defined, that is

|f̃(p)| =
���
Z

Rd

eip.xf(x)ddx
��� 

Z

Rd

|f(x)|ddx < 1

where f̃(p) is Fourier transform of f(x).

4. For f 2 S(Rd) the Fouier transform f̃(p) also belongs to S(Rd). It follows from the

fact for f 2 S(Rd), |x|nf 2 S(Rd) and all derivatives of f also belongs to S(Rd).

5. If f 2 D(R), then f̃ is an entire analytic function, and there exist a r0 > 0 and

Bn > 0 such that |pnf̃(p)|  Bner0Im(p). This is also true in d dimensions.

Proof. Let supp(f) be contained in the region B(r0) of radius r0 around the origin.

then

f̃(p) =

Z

Rd

eipxf(x)dx =

Z

B(ro)

eipxf(x)dx (3.4.4)



Chapter 3. von Neumann Algebras for Physicist 48

Now let p be a complex variable, then,

1

2⇡i

I

�z

f̃(p)

p� z
dp =

Z

B(ro)

1

2⇡i

h I

�z

eipx

p� z
dp
i
f(x)dx =

Z

B(ro)

eizxf(x)dx = f̃(z)

where �z is any contour in the complex plane that encloses z. Therefore, it f̃(z) is

an analytic function on the complex plane. Since it does not have any poles, it is

entire.

|pnf̃(p)| = |

Z

Rd

(�i)n
@n

@xn
e�ipxf(x)dx|

= |

Z

Rd

e�ipxfn(x)dx|



Z

Rd

exIm(p)
|fn(x)|dx

 er0Im(p)

Z

B(r0)

|fn(x)|dx

where r0 is the minimum radius of an open ballB(r0) containing the support of fn(x).

Since fn(x) is bounded there must exist Bn > 0 such that
R
B(r0)

|fn(x)|dx = Bn.

Implies,

|pnf̃(p)|  Bne
r0Im(p) (3.4.5)

It can easily be checked that the above inequality is true even if we replace f̃(x) by

any of its derivatives. This implies when p 2 R then f̃ 2 S(R). It is straightforward
to extend this to d dimensions. This basically follows from the fact that eiz.x is an

entire analytic function for any complex vector z.

3.4.2 Generalized Functions or Tempered Distribution

Generalized functions are continuous linear functionals defined on the space of test func-

tions. When the space of test functions is S(Rd), these functionals are called tem-

pered distributions. The space of tempered distributions is the dual space of S(Rd),

i.e., T : S(Rd) ! C, and it is denoted by S
0(Rd). Let f 2 S(Rd) and T 2 S

0(Rd), then we

denote action of T on f as,

T (f) = (T, f) (3.4.6)

and it satisfies the following properties,

1. Linearity: (T,↵f1 + �f2) = ↵(T, f1) + �(T, f2) .
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2. Continuity: There exist k 2 N and C > 0, such that

|(T, f1)|  Ckf1kk

where f1, f2 2 S(Rd) and ↵,� 2 C. These are the necessary and su�cient conditions for

T to belong to S(Rd)[29]. We can also write it formally as,

T (f) =

Z

Rd

T (x)f(x)ddx (3.4.7)

The above integral representation is formal because it assumes that T (x) is defined at each

point. In general, a distribution may not be defined point-wise, but has a well-defined

action on test functions. However, there are regular distributions, which are essentially

functions that are locally integrable and have polynomial growth (tempered), for which the

above integral representation is well defined. This is because the product of a Schwartz

function with any polynomially bounded function is again a Schwartz function and is

integrable. For example, The Lebesgue measure dx is a regular tempered distribution. It

is defined as,

(dx, f) =

Z

R
f(x)ddx (3.4.8)

Furthermore, any continuous measure of type ⇢(x)dx, where ⇢(x) is a polynomially bounded

smooth function, is a regular distribution. Let us see an example where the integral rep-

resentation (3.4.6) is formal. But before that, let us define the support of a distribution.

Definition 3.12. (Support of a distribution):

A closed subset Q of Rd is called the support of T if, for any f 2 S(Rd) with support

R = Rd
\Q, it holds that

(T, f) = 0.

Delta distribution �a:

The delta distribution is defined by

(�a, f) = f(a), (3.4.9)

where f is any test function in S(Rd).

The first thing to notice is that �a is linear, and continuity follows from the fact that

|(�a, f)| = |f(a)|  kfkk=0.
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Hence, it is a tempered distribution.

Let g be any smooth function with compact support such that g(a) = 0. Then,

(�a, g) = 0.

This implies that the support of �a is

supp(�a) = {a}.

Therefore, if we modify the test function away from a, the delta distribution will not detect

the change. Now, assume that �a has an integral representation:

f(a) =

Z

Rd

�a(x)f(x) d
dx. (3.4.10)

In the theory of Riemann integration, any function supported at a single point has a

vanishing integral. Even the integral of the product of an integrable function with such a

function is zero. This implies that if �a were Riemann integrable, then the right-hand side

of the expression Z

Rd

�a(x)f(x) d
dx

would be zero for all f , which contradicts the defining property of the delta distribution.

Hence, �a is not Riemann integrable. To see it more explicitly, take d = 1 and a = 0.

Consider a sequence of bump functions f b

n�1(x) defined in (3.4.1). Clearly,

lim
n!1

f b

n�1(x) =

8
<

:
e�1, if x = 0,

0, otherwise.

By the assumed integral representation, we obtain

e�1 = lim
n!1

Z

R
�0(x)f

b

n�1(x) dx. (3.4.11)

since f b

n�1(x) is only non zero in [� 1

n
, 1

n
],

e�1 = lim
n!1

Z 1
n

�
1
n

�0(x)f
b

n�1(x) dx.  lim
n!1

Z 1
n

�
1
n

sup(�0(x))dx
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if �0(x) is bounded as required for Riemann integrable functions. Then there exists C > 0,

e�1
 lim

n!1

2C

n
= 0

This is a clear contradiction. It tells us that there is no Riemann-integrable function

�a(x) that satisfies (3.4.10). Moreover, it can also be shown that it is not Lebesgue

integrable. Therefore, the integral representation is formal and does not exist in the

actual mathematical sense.

3.4.3 Derivative of Tempered Distribution:

As we have already mentioned, the purpose of defining generalized functions is to extend

the concept of functions beyond point-wise definitions. Consequently, we must also gen-

eralize the definitions of derivatives, products, and the Fourier transform appropriately.

Let T (x) be a polynomially bounded function and suppose that it has a derivative; then

(T 0, f) =

Z

Rd

T (x)
0

f(x)ddx = �

Z

Rd

T (x)f 0(x)ddx = �(T, f 0)

where the derivative can be with respect to any component of x. Further, the extra term

that we get after biparts vanishes because the Schwartz function vanishes at |x| ! 1

faster than any polynomial. Now, we will state this as the definition of the derivative of

a tempered distribution. This is a natural extension of the definition of derivatives from

functions to generalized functions.

Definition 3.13. (Derivative of a distribution):

Let T be a tempered distribution. The n-th derivative T (n) of the tempered distri-

bution T is defined by the equation,

(T (n), f) = (�1)n(T, f (n)) (3.4.12)

for all f 2 S(Rd) and f (n) is the n-th derivative of f .

The above definition allows us to define the n-derivative of the delta distributions.

(�(n)a , f) = (�1)nf (n)(a) (3.4.13)

where f is any Schwartz function and f (n) is its derivatives. Using the fact that locally

integrable functions can be thought of as distributions, we can define the delta distribution
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as the derivative of some discontinuous locally integrable function

⇥(x� a) =

8
<

:
1, if x > a,

0, otherwise.
(3.4.14)

Now it follows that, for f 2 S(R),

(
@⇥(x� a)

@x
, f) = �

Z

R
⇥(x� a)f 0(x) = f(a) = (�a, f) (3.4.15)

implies that @⇥(x�a)

@x
= �a in the sense of distributions. Another example of such distri-

bution that is derivative of some locally integrable function is Cauchy’s principal value

distribution. Consider the derivatives of log |x|.

(
@ log |x|

@x
, f) = �

Z
1

�1

log |x|f 0dx = lim
✏!0

{

Z
�✏

�1

f(x)

x
dx+

Z
1

✏

f(x)

x
dx} (3.4.16)

where f 2 S(R),

(
@ log |x|

@x
, f) = p.v

Z

R

f(x)

x
dx ⌘ (

1

x
, f) (3.4.17)

where p.v denotes the principal value of the integrals. In addition, we want to make the

notation that whenever we write 1

x
, it should be thought of as a distribution and defined

through the principal value integral over some test function.

The above equation can easily be generalized; it can easily be shown that,

(
(�1)n�1

n� 1!

@n log |x|

@xn
, f) = (

1

xn
, f)

We can further consider a locally integrable function defined as,

log(x± i0+) ⌘ lim
✏!0+

log(x± i✏) (3.4.18)

= log |x|+ i lim
✏!0+

arg(x± i✏) (3.4.19)

= log |x|+ i⇡⇥(⌥x) (3.4.20)

using (3.4.15) and (3.4.17), it follows

1

x± i0+
⌘

@

@x
log(x± i0+) = p.v

1

x
⌥ i⇡�0 (3.4.21)
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in the sense of the distributions. It also follows that,

1

(x± i0+)n
⌘

(�1)n�1

(n� 1)!

@n

@xn
log(x± i0+) = p.v

1

xn
±

(�1)n

(n� 1)!
i⇡�(n�1)

0
(3.4.22)

where �(n)
0

is the n-th derivative of the delta distribution.

Notation: From now on, we will formally write �0 as �(x), and we will always keep

in mind that it’s not a function; its a tempered distribution.

3.4.4 Multiplication of Tempered Distributions:

The product of two tempered distributions is not defined in general, since one wants the

associative law of multiplication to hold, which does not hold in general for distributions.

Let Q,T 2 S
⇤ be any pair of distributions and f 2 S, then

(QT, f) is not defined. (3.4.23)

since, in general, T̄ f /2 S. For example, take T = ⇥(x) and Q = �(x). Then �(x)⇥(x)

is not defined because ⇥(x)f(x) /2 S for all f 2 S. For another example, consider the

following equation in the sense of distributions:

x�(x) = 0
1

x
x = 1 (3.4.24)

Now,

1

x
(x�(x)) =

1

x
0 = 0

(
1

x
x)�(x) = �(x)

implies that multiplication is not associative. Although multiplication is not defined in

general, there is a wider class S
⇤ for which the multiplication is well defined. Take T to

be an element in the space of multipliers; then for any Q 2 S
⇤, the product,

(QT, f) = (Q, T̄ f) (3.4.25)
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This is well-defined because T is a polynomially bounded smooth function and Tf 2 S.

Also, it follows from the definition that QT = TQ. In some cases, it is also possible to

define the singular product of distributions where neither of the distributions in the product

belongs to the space of multipliers; however, we will not discuss that here. Knowing the

fact that the product of a multiplier and a distribution is a distribution, we can ask if

fQ = T (3.4.26)

where T 2 S
⇤ and f is a multiplier, then can we find Q in the space of distributions. If

f�1 exists for all x and is a multiplier, then Q = f�1T . However, if f(x) has zeros ( n

distinct zeroes), then the problem becomes somewhat non-trivial. Let u 2 S and v = f̄u,

then,

(fQ, u) = (Q, f̄u) = (Q, v) = (T, u)

The above equation uniquely specifies Q in the subspace of S, which contains all test

functions that vanish at the zeroes of f . Now, to completely specify Q, it is su�cient to

specify it for ui
0
2 S such that ui

0
(zi) = 1, where zi is the i-th zero of f . Any arbitrary

u 2 S can written as,

u =
nX

i=1

u(zi)u
i

0 + v

where v = fu1, u1 2 S and satisfy v(zi) = 0. Now

(Q, u) =
nX

i=1

u(zi)(Q, ui0) + (T, u1)

which can also be written as,

(Q, u) =
nX

i=1

u(zi)Ci + (T, u1) (3.4.27)

where Ci are some arbitrary functions. The above equation completely specifies Q, which

satisfies fQ = T . If T is a multiplier, then we can write the general solution as,

Q =
nX

i=1

Ci�(zi) + p.v
1

f
T

if f has finitely many zeroes and f�1 is a good multiplier away from those zeroes. Here

f�1 should be thought of in terms of the Cauchy principal value. Moreover, the first term

of the above equation is the solution to the homogeneous part of the equation (3.4.26),

and the second term is the solution to the particular part of (3.4.26). One straightforward
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application of the above result is,

xQ = 0 (3.4.28)

implies, Q = C�(x), where C is some constant. Another interesting example is

(p2 �m2)Gp = 1 (3.4.29)

The solution of the above equation is,

Gp = (p2 �m2)�1 + (⇥(p0)f1(~p) +⇥(�p0)f2(~p))�
d(p2 �m2) (3.4.30)

where (p2 �m2) is defined as a Cauchy principal value and f1 and f2 are multiples. We

can further generalize (3.4.27) for the case when f has degenerate zeroes. Let mi be the

degeneracy of zeroes at zi, then the solution of fQ = T is,

Q =
nX

i=1

l=mi�1X

l=0

C l

i

l!
�(l)(zi) + p.v

1

f
T (3.4.31)

This basically followed from the fact that,

(x� a)n
1

m!
�(m)(x� a) =

8
<

:
0, if n > m,

(�1)
n

(m�n)!
�(m�n)(x� a), otherwise

(3.4.32)

It can also be proved by induction using the above fact. It follows from equation (3.4.31)

that any distribution that has point support can always be written in terms of a delta

distribution and its derivatives.

3.4.5 Fourier Transform of the distributions:

To define the Fourier transform F of a distribution, we will adapt the same strategy used in

defining the derivative of a distribution. First, we will examine the properties of functions

whose Fourier transform exists, viewed from the perspective of functionals on the space

of test functions. Then, we will elevate these properties to define the Fourier transform of

distributions. Let f be an integrable function and f̃ be its Fourier transform. Consider
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g 2 S(Rd) defined in the momentum space, then

(f̃ , g(p)) =

Z
f̃(p)g(p)ddp =

Z
f(x)g̃(x)ddx = (f, g̃(x)) (3.4.33)

Now we will declare the above equation as a definition of the Fourier transform for any

distribution. Notice that it is a consistent definition since g 2 S(Rd), the Fourier transform

of g exists, unique and belongs to S(Rd).

Definition 3.14. (Fourier transform of a distribution):

Let T 2 S
⇤ be a tempered distribution and let f 2 S. The Fourier transform

F(T ) = T̃ 2 S
⇤ is defined by

(T̃ , f(p)) := (T, f̃(x)), (3.4.34)

where p and x denote the Fourier and spacetime variables, respectively.

Since for any f 2 S, the Fourier transform f̃ 2 S is uniquely defined, it follows that

the Fourier transform is an isomorphism from S
⇤ onto itself. Therefore, from the above

definition, for all T 2 S
⇤, the Fourier transform T̃ 2 S

⇤. We can also define the inverse

Fourier transform,

(F�1(T ), f(x)) = (T,F�1(f)(p)) (3.4.35)

It follows that,

F
�1(F(T )) = T (3.4.36)

Let us list some nice properties of the Fourier transform of T 2 S
⇤,

1. Fourier transform of derivative of distribution, F(@nx↵T ) = (ip↵)nF(T ).

2. Fourier transform of polynomial times distribution, F(xnT ) = (�i)n@npF(T ).

3. Fourier transform of the Fourier transform of distribution, F(F(T ))(x) = T (�x).

Now, let us see some examples,

1. Fourier transform of the Delta distribution :

(�̃(p), f(p)) = (�(x), f̃(x)) = f̃(0) =

Z ⇣ 1

(2⇡)
d

2

⌘
f(p)ddp (3.4.37)
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Implies, �̃(p) = 1

(2⇡)
d

2
. Now consider,

(�a(x), f(x)) = f(a) =

Z ⇣ eiap

(2⇡)
d

2

⌘
f̃(p)ddp = (

eiap

(2⇡)
d

2

, f̃(p)) (3.4.38)

Implies, F (�a)(p) = F (�(x� a))(p) = e
iap

(2⇡)
d

2

2. Fourier transform of step function ⇥:

(⇥̃(p), f(p)) = (⇥(x), f̃(x))) =

Z
1

0

⇥(x)f̃(x)dx =

Z

R
f(p)

⇣Z 1

0

e�ip.xdx
⌘
dp (3.4.39)

Implies,

⇥̃(p) =
i

p+ i0+
(3.4.40)

There are many other interesting properties of generalized functions, but we will conclude

our discussion here, as the material covered is su�cient for subsequent developments. For

further details, see [29]. Now, let us present a concrete application of the generalized

(tempered distribution).

We utilize our understanding of distributions to demonstrate that quantum fields are, in

fact, operator-valued distributions.

Proposition 3.15. (Quantum fields are operator valued distribution):

Let �(x) be the scalar quantum field (not necessarily free) in d-dimensional Minkowski

spacetime; then the covariance under the Poincaré group implies that the quantum fields

are not local operators but rather operator-valued distributions.

Proof. Let |⌦i be a Poincaré invariant vacuum state. Consider 2-pt Wightman function:

h⌦|�†(x)�(y)|⌦i

Then from translation invariance

h⌦|�†(x+ a)�(y + a)|⌦i = h⌦|�†(x)�(y)|⌦i

where a 2 Rd. Implies there must exist a continuous function F on Rd such that,

h⌦|�†(x)�(y)|⌦i = F (x� y)
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Further, let {xi}ni=1
be set of points in R(1,d�1) and {zi}ni=1

be a complex number, then

X

1i,jn

F (xi � xj)z̄izj = h⌦|
nX

i=1

�†(xi)z̄i

nX

j=1

�(xj)zj |⌦i = k

nX

j=1

�(xj)zj |⌦ik � 0

Implies F (x) is a positive function; for definition, see [30]. Now, from the theorem of

Bochner, which states that a complex-valued function F 2 Rd�1,1 is positive i↵ it is a

Fourier transform of a nonnegative measure µ on Rd�1,1,

F (x� y) = h⌦|�†(x)�(y)|⌦i =
1p
(2⇡)d

Z

Rd�1,1
e�ip.(x�y)dµ(p) (3.4.41)

dµ(p) � 0 and Lorentz invariant, i.e. µ(⇤p) = µ(p), where ⇤ is a restricted Lorentz

transformation. Now if we assume that �(x) is an operator and |⌦i is in its domain then,

k�(x)|⌦ik2 =

Z

Rd�1,1
dµ(p) < 1

Implies that the measure is integrable. The most general measure invariant under re-

stricted Lorentz transformation is [31, 32],

dµ(p) =
�
C�d(p) +⇥(p0)

Z
1

�1

�(p2 �m2)d⇢(m2
�
ddp (3.4.42)

where C is a positive constant and ⇢(m2) is non decreasing function with a polynomial

growth. Note that the first term in the above equation is the only integrable part. There-

fore,

h⌦|�†(x)�(y)|⌦i = C

So we have learned that if �(x) is a local operator (defined at a point), then the 2-pt

function is just a constant. Hence, �(x) with a nontrivial 2-pt function cannot be an

operator. Let f(x) and g(x) be a real smooth function with compact support, then

h⌦|�†[f ]�[g]|⌦i =
q
(2⇡)d

Z

Rd�1,1
f̃⇤(p)g̃(p)dµ(p) < 1 (3.4.43)

where,

�[f ] :=

Z

Rd�1,1
�(x)f(x)ddx (3.4.44)

and f̃ and g̃ are the Fourier transform of f and g respectively. The finiteness of the equation

(3.4.43) follows from the fact that the Fourier transform of a compactly supported function

is a Schwartz function. Hence, the quantum fields can be thought of as operator-valued

distributions.
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From the above proposition, we have learned that the homogeneity and isotropy of space-

time (or equivalently, Poincaré invariance) imply that fields are not defined as an operator

at any specific point in spacetime, but rather as an operator-valued distribution. The

second term in equation (3.4.42) exhibits a UV divergence in the limit p2
! 1(large

momentum), which is regulated using a smooth function with compact support.

We emphasize two important points. First, similar results are expected to hold for higher-

spin fields as well. Second, we anticipate that the above result remains valid in curved

spacetime. Since any curved spacetime locally resembles Minkowski space at su�ciently

small length scales, the UV divergence must be the same.

To better understand the distributional nature of the field and the precise meaning of �[f ],

we now consider a free scalar field.

3.5 Example of Free Scalar field

Let us consider the free scalar field in d-dimensional Minkowski spacetime. Our approach

here will be to start with the well-known canonical quantization, examine some character-

istics of the scalar field, and then demonstrate that the smeared field operator is indeed a

densely defined unbounded operator.

To begin, let us write the field expansion in terms of creation and annihilation operators.

�(x) =

Z

Rd�1

dd�1p

(2⇡)d�1

1

2!p

�
e�ip.xap + eip.xa†p

�
(3.5.1)

where !p = (p2+m2)
1
2 and p.x = !px0�p.~x. In the above equation, the creation and the

annihilation operator are evaluated at x0 = 0, and they satisfy equal time commutator,

[ap, a
†

p0 ] = 2!p(2⇡)
d�1�d�1(p� p0) (3.5.2)

All other commutators are zero. The above equation tells us that ap and a†p are not really

operator as their commutator results in a delta function (distribution). It will be helpful

to write the (3.5.2) as,

�(x) =  (x) +  †(x) (3.5.3)
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where  (x) and  †(x) contain the ap and a†p, respectively. It follows from (3.5.2),

[ (x), †(y)] =

Z

Rd�1

dd�1p

(2⇡)d�1

1

2!p
e�ip(x�y) = �+(x� y) (3.5.4)

�+(x� y) is clearly a distribution. It is not di�cult to show that [31],

�+(x� y) = �i
⇡⇥(x0 � y0)

(2⇡)d�2
�((x� y)2) +

⇥((x� y)2)

2(2⇡)d�2
p
(x� y)2

⇥
N1(m

p
(x� y)2))

+ i⇥(x0 � y0)J1(m
p
(x� y)2)

⇤
+

m⇡⇥(�(x� y)2)

(2⇡)d�2
p
�(x� y)2

K1(m
p
�(x� y)2) (3.5.5)

where N1 is Neumann function, J1 is Bessel function and K1 is modified Bessel function.

It can easily be seen that the above integral diverges when (x�y)2 = 0, if xµ ! yµ or they

are null separated. Further, let |⌦i be Poincare invariant vacuum, such that ap|⌦i = 0.

Then 2pt function is,

h⌦|�(x)�(y)|⌦i = h⌦|[ (x), †(y)]|⌦i =

Z

Rd�1

dd�1p

(2⇡)d�1

1

2!p
e�ip(x�y) = �+(x� y) (3.5.6)

As we have already seen, that �+(x � y) diverges as xµ ! yµ implies, k�(x)|⌦ik ! 1.

This divergence is Universal in the sense that a 2-pt function in any state at high energy

must have the same behavior. This is due to the fact that any state at high energy looks

like a vacuum state, and therefore, the 2-pt function should have the same UV behavior.

Implies k�(x)| ik ! 1, for any state. This tells us that the quantum field �(x) is too

singular to be thought of as any operator-valued function, as the norm of the state that one

gets after the action of the field on any arbitrary state is divergent (field operator does not

map any state in Hilbert space back to Hilbert space). Now, notice in the equation (3.5.5)

that the singular behavior at the coincidence point is coming from the delta distribution,

and we know that we can deal with such a distribution by smearing over a suitable test

function (Schwartz function). Now consider the smeared 2-pt function,

h⌦|�[f ]�[g]|⌦i =

Z

R
f(x)�+(x� y)g(y)ddxddy (3.5.7)

where �[f ] :=
R
Rd �(x)f(x)ddx and f, g 2 S(Rd) are real functions. For future ease, we

want to write, Z

R
f(x)�+(x� y)g(y)ddxddy := (f |g) (3.5.8)

Now, it is evident from equation (3.5.4) and (3.5.5) that equation (3.5.7) is finite every-

where. Hence, �(x) is an operator-valued distribution. We again want to emphasize that
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the above analysis is easily generalized to curved spacetime, at least in Hadamard states.

This generalization works because, at a very small length scale—much smaller than the

scale of spacetime curvature—the behavior of fields is the same as in flat space. Hence,

the UV divergence of the two-point function in curved spacetime can also be handled by

smearing the fields. The above analysis is just an explicit demonstration of the general

proposition (3.15) that we have proved above.

Now, if �[f ] is truly an operator, is it bounded or unbounded? What is the domain of

the operator? To investigate this, we need to define the action of the operator on some

subspace of the Hilbert space. Let us start by defining the n-particle state of identical

bosons in the momentum basis using the creation operator ap.

nY

i=1

a†p
i
|⌦i = |p1, ...,pni (3.5.9)

In the above equation, we assumed that all pi are distinct. However, if some pi appear npi

times, then the above expression must be divided by
p
npi

for each such pi. These states

are not normalizable, since hp0
|pi = (2⇡)d�12!p�d�1(p � p0) (eigenmodes of momentum

operator) and therefore does not belongs to the Hilbert space. This is exactly because ap

was not an operator. The presence of a delta distribution in hp0
|pi tells us that we must

smear |pi with some test function, that is, we should work with the states of type

Z

Rd�1
f1(p)|pi

1

2!p

dd�1p

(2⇡)d�1
(3.5.10)

where f1(p) 2 S(Rd). As we already know, the Schwarzt functions are square-integrable;

therefore, these state belongs to the one particle Hilbert space H. It can easily be shown,

 †[f1]|⌦i :=

Z

Rd

 †(x)f1(x)d
dx|⌦i =

Z

Rd�1
f1(p)|pi

1

2!p

dd�1p

(2⇡)d�1
(3.5.11)

Now following the same trick, we can define the general state in the Fock space,

|�i = f0|⌦i+

Z

Rd�1
f1(p1)|p1i

1

2!p1

dd�1p1

(2⇡)d�1
+...+

1
p
n!

Z

Rd�1

nY

i=1

gi(pi)|p1, ..pni
1

2!p
i

dd�1pi

(2⇡)d�1
+...

(3.5.12)

where gi(pi) 2 S(Rd) and f0 2 C. The n-th term depicted above is clearly a n particle

state, which belongs to the Hilbert spaceH⌦sn (symmetrized tensor product) and therefore

|�i 2 FB(H), where FB(H) is a bosonic Fock Space . Also, notice that the above expression
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can also be written as,

|�i = f0|⌦i+ 
†[f1]|⌦i+ ...+

1
p
n!

nY

i=1

 †[gi]|⌦i+ ... (3.5.13)

or equivalently,

|�i = f0|⌦i+ �[f1]|⌦i+ ...+
1

p
n!

:
nY

i=1

�[gi] : |⌦i+ ... (3.5.14)

From the above equation, we have learned that the n-particles state |n; {g1, .., gn}i can be

written as,

|n; {g1, .., gn}i =
1

p
n!

:
nY

i=1

�[gi] : |⌦i =
1

p
n!

nY

i=1

 †[gi]|⌦i (3.5.15)

Further, using (3.5.4) or the wick contraction, it can be shown that,

hm; {f1, ..., fm}|n; {g1, .., gn}i = �nm
1

n!

X

�2Sn

nY

i=1

(fi|g�(i)) (3.5.16)

where S
n is symmetric group on n objects. The above equation tells us that the state

with di↵erent particles has no overlap. Further, there is no (f |f) or (g|g) because of the

normal order. It can easily be shown that

nY

i=1

�[fi]|⌦i = Sum over normal ordered field (3.5.17)

Now, there is a beautiful theorem in QFT known as the Reeh-Schlieder theorem, which

says that

HRS =
X

�n

Hn (3.5.18)

where

Hn = {

X

n

↵n| ni : | ni =
nY

i=1

�[fi]|⌦i, n 2 Z+,↵ 2 C}

HRS is dense in FB(H), ie HRS = FB(H). Using (3.5.17), we can write,

Hn = {

X

n

↵n| ni : | ni =
nY

i=1

: �[fi] : |⌦i, n 2 Z+,↵ 2 C} (3.5.19)

therefore, any state in Bosonic Fock space can be approximated with the state |�i that we

have constructed in (3.5.14). Now to find the domain of the operator �[f ], we first check
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the action of �[f ] on the state |n; {g1, .., gn}i. It can easily be shown using (3.5.4) that,

�[f ]|n; {g1, .., gn}i =
p
(n+ 1)|n+1; {f, g1, .., gn}i+

1
p
n

nX

i=0

(f |gi)|n�1; {g1, .., gi�1, gi+1., gn}i

(3.5.20)

therefore �[f ] has good action on this states. Further, it can be shown by using the above

equation, or equivalently, wick contraction that �[f ] has bounded action on such states,

k�[f ]|n; {g1, .., gn}ik 
p
n
p
(g|g)k|n; {g1, .., gn}ik (3.5.21)

The above inequality can be further saturated. To show this, let us consider the case when

gi(x) = f(x). Then, from (3.5.20),

�[f ]|n; {f, .., f}i =
p
(n+ 1)|n+ 1; {f, f, .., f}i+

p
n(f |f)|n� 1; {f, .., f}i (3.5.22)

therefore,

k�[f ]|n; {f, .., f}ik =
p
(2n+ 1)

p
(f |f)k|n; {f, .., f}ik (3.5.23)

In order to get the above expression, we used the relation in (3.5.16). It implies that for

every C > 0 there exists a n 2 Z+ such that

k�[f ]|n; {f, .., f}ikp
hf |fik|n; {f, .., f}ik

=
p
(2n+ 1) � C (3.5.24)

Hence, �[f ] is an unbounded operator. Furthermore, it follows from the above equation

that the domain of �[f ] is HRS . Since HRS is dense in FB(H), the unbounded operator

�[f ] is densely defined. It can easily be shown using (3.5.20) that �[f ] is a symmetric

operator. Now, since �[f ] is densely defined and symmetric, it follows that �[f ] exists and

�[f ] ⇢ �[f ]†, which implies that �[f ]† is dense. Therefore, �[f ] is a closed operator with

closure �[f ] = �[f ]††. It can further be shown that �[f ] is self-adjoint [33], and it satisfies

the equation of motion in the sense of distribution, that is, for all f 2 S(Rd),

�[(⇤2 +m2)f ] = 0 (3.5.25)

3.5.0.1 Algebra of observables

Let M be the global hyperbolic spacetime and ⌃ ⇢ M be the Cauchy surface. Let V ⇢ ⌃

be an open set, small enough so that its closure V̄ is not all of ⌃ 5. Since V̄ is not all of

5We are interested in the local algebra of observables.
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⌃, the complement V 0 of V̄ will also be a non-empty open set, disjoint from V . Clearly,

V and V 0 are spacelike separated and we can contain them in the open sets UV ⇢ M and

UV 0 ⇢ M respectively, which are also spacelike separated and are open sets in spacetime.

There can be multiple choices for UV and UV 0 , and one chooses them as large as they want

as long as they are spacelike separated.

Definition 3.16. (Local algebra of the region U):

Let U be the open set in spacetime. Then, the local algebra AU of the region U is

defined as the von Neumann algebra of the bounded operators supported in U .

Consider the quantum field theory in D dimension spacetime (M, g), where g denotes the

metric on the spacetimeM . For example, the scalar field �(x) in Minkowski spacetime. We

want to emphasize that the field �(x) is not an operator in Hilbert space. Rather, it’s an

operator-valued distribution. Its distribution nature is apparent through the delta function

appearing in the canonical commutation relation or through the universal singularity in

its two-point function. To make it an unbounded operator, we need to smear it. Let f(x)

be the smooth function supported only in U , then we can define smear field operator as

�[f ] =

Z

U

p
�gdDxf(x)�(x) (3.5.26)

Now, it’s an unbounded operator, as we have discussed in the previous subsection. We can

construct a bounded operator from �[f ] by considering F (�[f ]), where F is a complex-

valued bounded function. For example, ei�[f ] is a bounded operator. We can construct a

more general bounded operator by considering multivariable bounded functions of these

smeared field operators. The ⇤�local algebra is then constructed by taking these simple

operators and the operators that one can construct from them by taking their sums,

products, and hermitian conjugates. Now, the von Neumann algebra associated with the

local algebra is defined by closing the ⇤� local algebra under weak operator topology or

equally by taking the double commutant.

From the above construction of the local algebra, it is not di�cult to see that the algebra

AU in the region U will be the same as the algebra A
Û
of causal completion Û of U . It

follows from the fact that the operator in the causal diamond can be written in terms of

the operator on the Cauchy slice using the evolution equation of the fields.

Let us now understand more about the association of algebras to local regions, and the

properties we expect such an association to satisfy. One of the most basic properties is
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the following: if U1 ⇢ U2, then the associated algebras should satisfy

AU1 ⇢ AU2 (Isotony) (3.5.27)

We expect that the algebra of a smaller region is contained within the algebra of a larger

region is known as the isotony property of local algebras. Isotony guarantees that extend-

ing the region that we probe in real experiments should at least retain the measurements

we could already make in a smaller subregion. Further, if we denote the causal completion

of the region containing two causally complete region Û1 Û2 by Û1 _ Û2 = (Û1 [ Û2)00 and

the von Neumann algebra associated with the Û1_ Û2 by A
Û1

_A
Û2

= (A
Û1

[A
Û2
)00. Then

we also expect the local algebra to follow,

A
Û1_Û2

= A
Û1

_A
Û2

(Additivity) (3.5.28)

The additivity property (as expressed in the equation above) states that the algebra asso-

ciated with a larger region can be generated from the algebras of smaller regions contained

within it. Together with isotony, additivity provides an algebraic formulation of the idea

that degrees of freedom are local. Specifically, it reflects the fact that one cannot recon-

struct the algebra of a larger region from the algebra of its smaller subregions alone, since

there exist local degrees of freedom in the larger region that are not accessible within the

smaller one.

If Û 0 be the causal complement of Û (a maximally open set which is spacelike seperated

from U), then the algebra A
Û 0 associated with Û 0 will commute with the algebra A

Û
.

[A
Û
,A

Û 0 ] = 0 (3.5.29)

The above equation can equivalently be written as A
Û
✓ (A

Û 0)0. Therefore,

Causality =) A
Û
✓ (A

Û 0)
0 (3.5.30)

In many interesting quantum field theories, and at least for a wide class of open regions

such as a single open ball, it can be shown that A
Û 0 = A

0

Û
. This property was proposed

by Haag and is known as Haag duality [34]. An important example where Haag duality

holds is in Rindler space, as proven by Bisognano and Wichmann [35]. Haag duality can

be interpreted as the requirement that the algebra associated with a region is maximal,

in the sense that it includes all operators compatible with causality. For more details on

local algebras, see [24].
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However, Haag duality can be violated in various cases. For example, in gauge theories, it

may fail for non-simply connected open regions in spacetime [36]. Moreover, there are the-

ories with global symmetries where charged operators can be locally constructed. In such

cases, there exist superselection sectors known as DHR (Doplicher, Haag, and Roberts)

sectors. In theories admitting DHR sectors, regions with nontrivial topology generally

violate Haag duality. Furthermore, as shown in [37], attempts to restore duality often

lead to the failure of additivity of algebras; the two properties cannot be simultaneously

preserved. Haag duality has several nontrivial implications. Notably, Haag duality in

the vacuum sector is equivalent to the absence of spontaneously broken gauge symmetries

[38, 39, 40].

As we know, the field operator does not commute at time-like and light-like separations.

�[f ] and �[g] will not commute if the support of f is time-like or light-like separated from

the support of g. Therefore, A
Û
can have a non-trivial centre only if one can construct

an operator supported on the bifurcation surface B = Û \ Û
0 (intersection right and left

Rindler wedges), which commutes with A
0

Û
and A

Û
. However, we should not expect that

such an operator will always exist. Because there is a region (the Cauchy horizon of Û)

in Û that is light-like separated from B, and the operator in B has to commute with the

operator on the horizon. This will not happen unless there is some symmetry for which

charges can be localized at the bifurcation surface. For example, if we have only one scalar

field, then we know that null-separated fields do not commute, and we don’t have any such

symmetry. Thus, generically, the local algebra of the quantum field is a factor.

3.6 States of the quantum system and classification of von

Neumann algebra

In this section, we present a physicist’s perspective on the classification of von Neumann

algebras, following the lecture notes of Sorce [25]. We begin by exploring the relationship

between the existence of a trace on the algebra and the density matrix. This will lead

us to a classification scheme based on whether a trace can be defined, either directly or

through some renormalization procedure. In the next subsection, we will introduce the

classification of von Neumann algebras using the theory of projections. Let us begin with

the definition of the trace.



Chapter 3. von Neumann Algebras for Physicist 67

Definition 3.17. (Trace on von Neumann algebra):

A trace on the von Neumann algebra A is a map ⌧ : A+ ! [0,1], where A+ are

collection of all positive operators in A, satisfying:

1. Homogenity: ⌧(�a) = �⌧(a) for all a 2 A+ and all � � 0

2. Additivity: ⌧(a+ b) = ⌧(a) + ⌧(b) for all a, b 2 A+.

3. Unitarity Equivalence: ⌧(UaU †) = ⌧(a) for all a 2 A+ and all unitary U 2 A.

The above definition arises from identifying the key properties of the Hilbert space trace

and elevating them to define the abstract trace. The first two properties ensure that the

trace is a linear map, while the third property generalizes the notion that the Hilbert space

trace is independent of the choice of basis to an abstract setting. We want to emphasize

that all the elements need not have finite trace. For example, the identity operator has

infinite trace with respect to the Hilbert space trace in infinite dimensions. One might

wonder why the trace is defined only on positive operators, given that a von Neumann

algebra contains many more elements. However, this restriction is su�cient, and we can

extend the trace using an interesting theorem to a bigger subset of A.

Theorem 3.6.1. Every operator a 2 A can always be written as,

a = aR+ � aR� + iaI+ � iaI� (3.6.1)

where aR/L

±
2 A+.

Proof. For any bounded operator a, there exists a bounded adjoint a†. We can always

decompose any bounded operator into a sum of two self-adjoint operators A1 and A2:

a = A1 + iA2

where

A1 =
1

2
(a+ a†), A2 =

1

2i
(a� a†)

Since A1 and A2 are self-adjoint, they each have a real spectrum. Using the spectral de-

composition, we can further decompose them into the di↵erence of two positive operators:

A1 = aR+ � aR�, A2 = aI+ � aI�
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where

aR± = A1⇥(±A1), aI± = A2⇥(±A2)

and ⇥ denotes the Heaviside step function. aR and aI are the restrictions of a to the

real and imaginary parts of the spectrum. It is evident from the above expressions that

aR+, a
R
�, a

I
+, a

I
� are all positive operators. Therefore, we can express any bounded operator

a as a linear combination of positive operators:

a = aR+ � aR� + iaI+ � iaI�

Further, if a, b 2 A+ and a  b, then b = a + (b � a), where b � a is again a positive

operator. This implies ⌧(a)  ⌧(b).

Now, let a 2 A, and define |a| ⌘
p

a†a. By the spectral theorem, we have |a| � aR/I

±
,

which means that |a| dominates both the positive and negative parts of the real and

imaginary components of a and ⌧(|a|) � ⌧(aR/I

±
). Implies if ⌧(|a|) < 1, then the sum

⌧(aR+)� ⌧(aR�) + i ⌧(aI+)� i ⌧(aI�) is well defined as each term in sum is finite.

Now, using the above theorem and observation, we can extend the trace to all trace class

operators denoted by AT .

Definition 3.18. (Extended trace):

Let A⌧ be the collection of all operators T 2 A such that ⌧(|T |) < 1. The set A⌧

is called the space of trace-class operators. We can define an extended trace ⌧ext on

A⌧ by

⌧ext(a) ⌘ ⌧(aR+)� ⌧(aR�) + i ⌧(aI+)� i ⌧(aI�), (3.6.2)

where aR+, a
R
�, a

I
+, and aI� denote the positive and negative parts of the real and

imaginary components of the a, respectively.

The above definition by construction is well-defined. It can be easily shown that it satisfies

all three properties of trace. And for the positive operator ⌧ext = ⌧ . Furthermore, the

above trace has many nice properties:

1. If a 2 A⌧ and U is some unitary in A, then ⌧ext(aU) < 1. This follows from the

fact that |a| dominates aU .
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2. Using the first property and the unitary equivalence of ⌧ , it follows that ⌧ext(aU) =

⌧ext(Ua).

3. It follows from the second property and the fact that any operator can be written as

a sum of two Hermitian operators, and that any Hermitian operator can be written

as a linear combination of two unitary operators, that

⌧ext(ab) = ⌧ext(ba) (3.6.3)

for any a 2 A⌧ and b 2 A. This is called the Cyclicity of trace.

4. Using the third property and the fact that when a 2 A and ⌧(aa†) is infinite, ⌧(a†a)

is infinite. We get

⌧(aa†) = ⌧(a†a) 8a 2 A (3.6.4)

Using the trace, we can define the concepts of state or density matrix.

Definition 3.19. (State or Density matrix):

A state or density matrix ⇢ of a system is a positive trace-class operator with respect

to a trace ⌧ , and satisfies

⌧(⇢) = 1 ⇢ 2 A+ \A⌧

The state is called pure if and only if

⇢2 = ⇢

From the above definition, it is evident that the notion of a state is fundamentally linked

to the existence of a trace, as the trace is used to define the state itself. Also, in practice,

we are interested in finding the expectation value of an operator in some state described

by the density matrix ⇢, that we can assign by the following relation,

hai⇢ ⌘ ⌧ext(⇢a) (3.6.5)

It follows from the third property that ⌧ext(⇢a) is well defined for all a 2 A. Therefore,

the trace that we have defined is su�cient for our purpose.

From now on, we will omit the subscript ext and simply write ⌧ to denote the extended

trace ⌧ext. Unless stated otherwise, all traces will be understood to refer to ⌧ext.

We also emphasize that the above definition of the trace does not uniquely fix the trace; in
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general, multiple traces may exist in a given von Neumann algebra. One might also wonder

why we need to consider such general notions of trace, given that we always have the usual

Hilbert space trace at our disposal. The reason is that the Hilbert space trace may not

be well defined, and therefore, to capture the relevant physical or algebraic structure, we

need a more general trace. Let us demonstrate this through an example.

Suppose we have a quantum system with a separable Hilbert space H. In an actual

experiment, we only have access to bounded operators, since we always operate with finite

energy in experiments, and our measurement devices have finite resolution. Therefore, we

have access to all bounded operators on H, i.e., B(H).

But do we also have access to any density matrices?

Indeed, there are positive trace-class operators in B(H). For example, given any orthonor-

mal sequence | ni 2 H and any sequence pn 2 [0, 1] with
P

n
pn = 1, the operator

⇢ =
X

n

pn | nih n|

is a positive trace-class operator with respect to the Hilbert space trace, which is defined

as

TrH(a) =
X

n

h n|a| ni, (3.6.6)

where a is some operator. It is also clear that ⇢ is a bounded operator with TrH(⇢) = 1.

Therefore, ⇢ is a density matrix.

Now, suppose there is another quantum system in the Andromeda galaxy with Hilbert

space H
0. It is natural to ask, what operators do we have access to?

Now that we are aware of the presence of another system, we must extend our Hilbert

space to incorporate the degrees of freedom of the system in the Andromeda galaxy.

Correspondingly, the algebra of operators must also be extended. We now have access to

B(H)⌦ 1H0 : operators that act as a bounded operator on H and as the identity on H
0.

Let us ask again: Do we have access to any density matrices?

To answer this, we return to the definition of a density matrix: it must be a trace-class

operator with unit trace. The requirement that the trace be equal to one implies that the

answer depends on the dimension of H0. Let the dimension of H0 be d, so that 1H0 has

trace d. Then, for any density matrix ⇢ 2 B(H), we have access to the operator

⇢

d
⌦ 1H0 = ⇢⌦

1H0

d
, (3.6.7)
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which is itself a density matrix on the extended system.

However, if H0 is infinite-dimensional, then ⇢

d
⌦ 1H0 is not a density matrix, infact the

algebra B(H)⌦ 1H0 does not contains any density matrices with respect to Hilbert space

trace, because there is no way to normalize ⇢⌦ 1H0 to obtain unit trace on the combined

system.

Therefore, we learn the following:

When H
0 is infinite-dimensional, there is no density matrix in B(H)⌦ 1H0 with

respect to the Hilbert space trace of the combined system, because there is no

way to normalize ⇢⌦ 1H0 to have unit trace.

It might seem bizarre that knowing that there is another system out there that we do not

have access to, can make the algebra of observables B(H)⌦1H0 not have a density matrix.

We want the reader to notice that this is not a density matrix with respect to the Hilbert

space trace. But since we can only access algebra of observable B(H)⌦1H0 . It is legitimate

to ask whether we can think of ⇢ as an e↵ective density matrix for our system, which is

a subsystem of the combined system. Let us rephrase this question as ”Whether there is

any consistent way to define a new trace for the algebra of observables of our system such

that we can compute expectation values ha ⌦ 1H0i⇢⌦1
H0

of any operator a and that gives

⇢ ⌦ 1H0 all the properties of a quantum state”. This question is the central theme of the

type classification of von Neumann algebras. The answer, in our case, is yes.

For any bounded operator a⌦ 1H0 , we define its e↵ective expectation value in the “state”

⇢⌦ 1H0 in the obvious way:

hA⌦ 1H0i⇢⌦1
H0

⌘ TrH(⇢A). (3.6.8)

here TrH can be thought of as a renormalized trace for B(H) ⌦ 1H0 . So we have learned

that

The operator ⇢ ⌦ 1H0 is not a true density matrix with respect to the Hilbert

space trace on the combined system. Nevertheless, it is a density matrix with

respect to the algebra B(H)⌦1H0, relative to a certain renormalized trace. This

allows us to consistently assign expectation values to ⇢⌦1H0, thereby endowing

it with the properties of a quantum state.

This renormalization procedure is not specific to the particular operator ⇢ ⌦ 1H0 ; it can

be applied analogously to any positive trace-class operator. This makes it clear that we

need to define a more general notion of trace in order to meaningfully assign expectation

values to the observables we have access to.
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Let us take another step. Suppose we are given access to some general von Neumann

algebra A—for example, the von Neumann algebra associated with a subregion in the

vacuum sector of a quantum field theory (3.5.0.1). It is important to realize that all actual

experiments involve operators localized in the region where the experiment is performed.

Hence, we never truly access the global state defined on the full algebra. What matters

for us is the state that is associated with, or induced on, the local subregion. Therefore,

the relevant notion of a state should be the density matrix associated with that subregion.

Within any von Neumann algebra A, we have the set of positive operators by A+. Are

any of these operators genuine density matrices? Perhaps not in the traditional sense.

However, as in the previous discussion, some operators in A+ may act as e↵ective density

matrices for observables in A. This motivates a natural question: does there exist a

consistent renormalization scheme on A that promotes certain operators in A+ to well-

defined quantum states?

The answer depends on the type of algebra of observables, which we will introduce in

the next subsection. In particular, we will see that for a von Neumann factor, if the

trace exists, then there exists only one consistent renormalized trace (i.e., renormalization

scheme), up to an overall normalization, that acts on every operator in a well-defined way.

With respect to this renormalized trace, the type classification of von Neumann factors

can be understood in the following terms:

• A factor A is said to be of type I if the renormalized trace allows some (possibly

all) operators in A+ to be interpreted as pure states, and others as mixed states

(density matrices that are not pure). That is, A contains renormalizable pure and

mixed states.

• A factor A is of type II if the renormalized trace turns some (possibly all) op-

erators in A+ into mixed states, but none into pure states. That is, A contains

renormalizable mixed states but no renormalizable pure states.

• A factor A is of type III if, even after applying the renormalized trace, there

are no operators in A+ that qualify as density operators. That is, A contains no

renormalizable states.

Further,

• A factor A is said to be finite if the renormalized trace assigns a finite value to every

operator inA+. That is, every positive operator inA becomes a renormalizable state.
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• A factor A is infinite if the renormalized trace fails to normalize at least one oper-

ator in A+. That is, there exists at least one positive operator in A that is not a

renormalizable state.

Note that based on the above definitions, every type III factor is infinite, while type I

and II factors can be either finite or infinite. Let us conclude this section with some

terminology and examples.

• A finite factor of type II is called type II1.

• An infinite factor of type II is called type II1.

• A finite factor of type I is called type In, where n is a positive integer that encodes

additional information about the factor (e.g., the dimension of the Hilbert space on

which it acts).

• An infinite factor of type I is called type I1.

Examples:

• Type In: n⇥ n matrix algebra; system of n qubits.

• Type I1: Quantum harmonic oscillator.

• Type II1: The thermodynamic limit of two spin chains maximally entangled with

each other; algebra of observables accessible to a static observer in de Sitter space-

time.

• Type II1: Algebra of observables in the exterior of a black hole in perturbative

quantum gravity.

• Type III1: Local algebra of observables in quantum field theory.

More details can be found in [24, 3, 6, 41]. To define the renormalized trace, we need

an e↵ective way to discuss all positive operators in a von Neumann algebra. As is well

known from spectral theory, any positive operator can be expressed in terms of its spec-

tral projections. Therefore, projections can be viewed as the building blocks of positive

operators.

By studying the projections associated with a von Neumann algebra and defining the

renormalized trace on them, we can extend this definition to all positive operators. Thus,
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in the next section, we will study the theory of projections, their classification, and how

this induces an algebraic classification of von Neumann algebras.

We will then define the renormalized trace on these projections, which in turn allows us to

construct density matrices associated with the algebra and define the expectation values

of positive operators in renormalized states—quantities of physical interest.

3.6.1 The theory of projections and Murray von Neumann classification

In this section, we will briefly talk about the theory of projectors, and then we will use it

to outline the Murray-von Neumann classification of von Neumann algebras.

Definition 3.20. (Isometry):

A bounded operator V 2 B(H) is said to be an isometry if,

kV | ik = k| ik 8| i 2 H

It is evident from the above definition that the norm of isometry is unity. If V is an

isometry, then the following interesting properties hold.

1. hV  |V �i = h |�i for all | i, |�i 2 H.

Proof.

k| ik2 + 2Re(h |�i) + k|�ik2 = h + �| + �i

= k| + �ik

= kV (| i+ |�i)k2

= hV ( + �)|V ( + �)i

= kV | ik2 + 2Re(hV  |V �i) + k|�ik2

Implies, Re(h |�i) = Re(hV  |V �i) for any |�i. So, let us take i|�i instead of |�i.

Then, we will get

Im(h |�i) = Re(�ih |�i) = Re(�ihV  |V �i) = Im(hV  |V �i)

Hence,hV  |V �i = h |�i.
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2. V †V = IH and converse is also true.

Proof. This direction =) follows from property 2. For any | i, |�i 2 H,

h |�i = hV  |V �i = h |V †V �i =) h |V †V � IH|�i = 0

which implies,

V †V � IH = 0

Now, let us prove the converse. We will assume that V †V = IH, then

kV | ik2 = hV  |V  i = hV †V  | i = k| ik2

Implies, kV  ik = k| ik for all | i 2 H. Hence, V is an isometry.

An isometry is an injective map but need not be a surjective one. We emphasize that V V †

is not necessarily the identity operator. It becomes the identity if and only if V is unitary.

Definition 3.21. (Partial isometry):

An operator V 2 B(H) is said to be a partial isometry if there exists a closed

subspace M ⇢ H, such that

kV | ik = k| ik, 8 | i 2 M

V | i = 0, for any | i 2 M
?

Notice that in the above definition, M? = ker(V ), and therefore a partial isometry is an

isometry on M = ker(V )?. We can further show that these are equivalent,

1. V is a partial isometry.

2. V † is a partial isometry.

3. V †V is a projection.

4. V V † is a projection.

5. V †V V † = V †.

6. V V †V = V .
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Proof. Let us start by showing that 1) =) 5). Assume that V is an isometry. We want

to show that for any | i, |�i 2 H,

hV †V V † |�i = hV † |�i.

First, suppose |�i 2 ker(V ). Then,

hV †V V † |�i = hV V † |V �i = 0 = h |V �i = hV † |�i.

Now suppose |�i 2 ker(V )?. Then,

hV †V V † |�i = hV (V † )|V �i.

Since V is an isometry on ker(V )? and satisfies property 1),

hV †V V † |�i = hV (V † )|V �i = hV † |�i.

Thus, we conclude that V †V V † = V †.

Now, it is easy to show that 5) =) 6):

V = (V †)† = (V †V V †)† = V V †V.

Similarly, 6) =) 5):

V † = (V )† = (V V †V )† = V †V V †.

Therefore, 5) () 6).

It is also straightforward to see that 5) =) 3). First, note that V †V is self-adjoint, and

(V †V )2 = V †V V †V = (V †V V †)V = V †V,

which implies that V †V is a projection. Similarly, by analogous steps, 5) =) 4).
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Now we show 4) =) 1). Assume V V † is a projection. Let |�i 2 ker(V )? = ran(V †).

Then, there exists a sequence {|�ni} ⇢ ran(V †) such that limn!1 |�ni = |�i. Then,

kV |�ik2 = lim
n!1

kV |�nik
2

= lim
n!1

hV V †�n|V V †�ni

= lim
n!1

h(V V †)2�n|�ni

= lim
n!1

kV †�nk
2 = k|�ik2.

Hence, V is a partial isometry.

By similar reasoning, it can be shown that 3) =) 2). It is also straightforward to show

that 2) =) 6). Hence, all the statements are equivalent.

Theorem 3.22. If V is a partial isometry, then ran(V ) is closed subspace of H, further

V V † is the projection on ran(V ) and V †V is projection on ran(V †).

Proof. To show that ran(V ) is closed, suppose that |�i 2 ran(V ) then there exists a se-

quence {|�ni} 2 H such that |�i = limn!1 V |�ni. Then, using the continuity of bounded

operators,

V (V †
|�i) = lim

n!1
V (V †V |�ni) = lim

n!1
V |�i = |�i

implies |�i 2 ran(V ), ran(V ) ⇢ ran(V ). Therefore, ran(V ) = ran(V ) is closed.

Let |�i 2 ran(V ), then 9 | i 2 H such that |�i = V | i, then

V V †
|�i = V V †V | i = V | i = |�i

Further if |�i 2 ran(V )? = ker(V †), then V V †
|�i = 0. Hence V V † is a projection on

ran(V ). Similarly, V †V is projection on ran(V †).

Now, we would like to give some examples of isometry and partial isometry.

Example 3.4. (Isometry):

S : `2(N) ! `2(N), S(x1, x2, x3, . . . ) = (0, x1, x2, . . . )

• S†S = I, so S is an isometry.

• SS†
6= I, so S is not unitary.
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• S preserves norms but is not surjective.

Example 3.5. (Partial Isometry):

S† : `2(N) ! `2(N), S†(x1, x2, x3, . . . ) = (x2, x3, x4, . . . )

• S† is a partial isometry.

• ker(S†) = span{(1, 0, 0, . . . )}

• S† is an isometry on ker(S†)?

Note that S = a
†

p
(1+a†a)

and (x1, x2, x3, ..) =
P

1

n=0
xn+1|ni in the quantum harmonic

oscillator. Another outcome of partial isometry is the polar decomposition theorem.

Theorem 3.23. Polar decomposition:

For any operator x 2 B(H), there exists a unique positive operator a 2 B(H) and a unique

partial isometry V 2 B(H), such that

x = V a (3.6.9)

V †V = s(a) (3.6.10)

where s(a) is projection on ran(a).

Proof. Let us define a positive operator a = (x†x)
1
2 and define v0 on aH by,

v0a| i = x| i 8| i 2 H

Clearly,

kv0a| ik
2 = kx| ik2 = hx†x | i = ha2 | i = ka| ik2

From the continuity of v0, it is an isometry on aH. We can easily extend it as a partial

isometry on full H as follows,

V | i =

8
<

:
V0| i for | i 2 aH

0 for otherwise,
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From the properties of partial isometry s(a) = V †V is a projection on aH. Now, it can

easily be checked,

x = V a

V †V = s(a)

Uniqueness follows from the fact that a is unique for the given x 2 B(H) and V is unique

for a. It follows from the above proof that,

x† = bV † (3.6.11)

V †V = s(b) (3.6.12)

where b = (xx†)
1
2 . When x is self-adjoint then a = b = |x| and s(a) = s(b) = s(|x|).

Definition 3.24. Let A ⇢ B(H) be a von Neumann algebra. An operator V 2 A

is a partial isometry if V †V is a projection.

From the properties of the partial isometry, it follows that V † is also a partial isometry.

Moreover, for E,F 2 PA and defined as E = V †V and F = V V †,

V E = V FV = V (3.6.13)

V EV † = F V †FV = E (3.6.14)

It follows from (3.6.13) that,

V (EH) = V (V †VH) = V V †VH = VH ✓ FH (3.6.15)

Now for any |�i 2 H, we have EV †
|�i = V †

|�i 2 EH, and thus

F |�i = V V †
|�i = V (V †

|�i) 2 V (EH), (3.6.16)

so FH ✓ V (EH). Therefore,

V (EH) = FH (3.6.17)

Therefore, V maps the subspace EH to FH. Since V is an isometry on EH, it implies

that dim(EH) = dim(FH). This shows that V is a map between projections of the

same rank. Furthermore, if two projections have the same rank, then there is a partial

isometry that connects them. This is because any two Hilbert spaces of the same dimension
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are isomorphic. Thus, partial isometries are the appropriate algebraic objects to define

equivalence between projections, as they compare only the ”relevant parts” (the images

of the projections, or the rank of the projections) rather than the entire space.

Definition 3.25. (Equivalent projection):

LetA ⇢ B(H) be a von Neumann algebra. Then E,F 2 PA are said to be equivalent

with respect to A if there exists a partial isometry V 2 A, such that E = V †V and

F = V V †. We will denote it as E ⇠ F .

Another way of putting the above definition is that two projections in a von Neumann

algebra are equivalent if their ranks are the same relative to the von Neumann algebra.

We can easily show that ⇠ is an equivalence relation. Let P,Q,R 2 PA.

1. Reflexivity: Let V = P . Then V †V = V V † = P , so P ⇠ P .

2. Symmetry: If P ⇠ Q via partial isometry V , then V †V = P , V V † = Q. Let

W = V †, then W †W = Q, WW † = P , so Q ⇠ P

3. Transitivity: If P ⇠ Q via partial isometry V , and Q ⇠ R via partial isometry W ,

define U = WV . Then:

U †U = V †W †WV = V †QV = V †V = P,

UU † = WV V †W † = WQW † = WW † = R.

So P ⇠ R

Therefore, ⇠ is an equivalence relation.

Definition 3.26. (Central projection):

A projection in the von Neumann algebra A is called a central projection if it

belongs to the centre ZA of A.

Central projection has a very nice property that it preserves the equivence of projections.

That is,

E ⇠ F, P 2 PZA
=) EP ⇠ FP (3.6.18)

This follows from the fact that there exists a partial isometry V such that E = V †V and

F = V V †. Now we can define a partial isometry W = V P 6. Since W †W ⇠ WW † =)

6It follows properties of partial isometry that we have proved and the fact that W †W is a projection.
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EP ⇠ FP .

Another interesting thing we can define using central projection is the concept of central

support of the element of algebra. Let a 2 A, we define

Z(a) =
^

{E 2 PZA
;Ea = a} (3.6.19)

clearly, Z(a) 2 PZA
. So it is the smallest central projection, and Z(a)a = aZ(a) = a.

Z(a) is also known as central support of a. Further, it is easy to show that the central

support of two equivalent projections is equal. That is,

E ⇠ F =) Z(E) = Z(F ) (3.6.20)

It follows from the fact that if V is a partial isometry then Z(V V †) = Z(V ) and Z(V †V ) =

Z(V ), implies Z(E) = Z(F ).

Proposition 3.27. Let A be a von Neumann algebra. Let {Ei}i2I ,{Fi}i2I 2 PA, where

Ei are mutually orthogonal projections and Fi are also mutually orthogonal projections

such that Ei ⇠ Fi for all i 2 I. Then

_

i2I

Ei ⇠

_

i2I

Fi

Proof. Since Ei ⇠ Fi for each i 2 I, there exists a partial isometry Vi 2 A such that

V †

i
Vi = Ei and ViV

†

i
= Fi

Because the {Ei}i2I are mutually orthogonal, and likewise the {Fi}i2I , the ranges of the

Vi are mutually orthogonal, and their initial spaces are orthogonal as well. Thus, for

each | i 2 H, only countably many Vi| i are non-zero, and their sum converges in norm.

Hence, the series

V :=
X

i2I

Vi

converges in the strong operator topology in A, since A is a von Neumann algebra (closed

under strong limits), and the sum of strongly orthogonal partial isometries converges

strongly.

Now compute:

V †V =
X

i,j

V †

i
Vj =

X

i

V †

i
Vi =

X

i

Ei =
_

i2I

Ei,
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and similarly,

V V † =
X

i,j

ViV
†

j
=
X

i

ViV
†

i
=
X

i

Fi =
_

i2I

Fi.

Thus, V is a partial isometry in A such that

V †V =
_

i2I

Ei, V V † =
_

i2I

Fi,

so we conclude that _

i2I

Ei ⇠

_

i2I

Fi (3.6.21)

The above result tells us that the equivalence of projections is compatible with orthogonal

sums.

Now, we have the notion of the equivalence of projections, but we want to go one step

further and define the notion of sub-projection that is compatible with the equivalence of

projections.

Definition 3.28. (Sub equivalence):

Let A be the von Neumann algebra, and let E,F 2 PA. We call E subequivalent

to F , and denote it as E � F (and read it as F dominates E), if 9 a partial

isometry V 2 A such that E = V †V and V V †
⌘ Q  F . E is equivalent to some

subprojection of F .

The relation � on the projections is a preorder relation (reflexive and transitive). Let

E,F,G 2 PA.

1. Reflexivity: Take V = E, then V †V = E, V V † = E  E, so E � E.

2. Transitivity: Suppose E � F via partial isometry V 2 A, so V †V = E, V V †
 F ;

and F � G via partial isometry W 2 A, so W †W = F , WW †
 G. Define

U = WV 2 A. Then:

U †U = V †W †WV = V †FV = V †V = E,

UU † = WV V †W †
 WFW † = WW †

 G.

Hence, E � G.
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Thus, � is reflexive and transitive, hence a preorder. Given the above definitions, it is

natural to ask whether any two projections can be compared using the preorder relation.

The answer is, in general, no. In finite-dimensional Hilbert spaces, any two projections

are comparable via dimension: for instance,

rank(P )  rank(Q) ) P � Q.

However, in infinite-dimensional case, it may happen that they are not directly comparable.

We can prove following theroem.

Theorem 3.29. If E,F 2 PA, then following statements are equivalent:

1. E and F are centrally orthogonal,i.e Z(E)Z(F ) = 0.

2. EAF = {0}

3. For all nonzer projection E1  E and F1  F , E1 and F1 are inequivalent.

Proof. We start with 1) =) 2). Let a 2 A. Then

EaF = Z(E)EaZ(F )F = EaFZ(E)Z(F ) = 0, (3.6.22)

which implies that EAF = {0}.

Now, to show 2) =) 1), EAF = {0}. Then EZ(F ) = 0, and therefore Z(E)Z(F ) = 0.

For 2) =) 3), suppose that statement 3) is not true. Then, there exist E1 = V V † and

F1 = V †V , satisfying E1  E and F1  F , we have

EV F = EE1V F1F = E1V F1 = V (3.6.23)

by 2), V must vanish. Implies, statement 3) must be true if 2) is true.

Now, to prove that 3) =) 2), assume that 2) is not true. Then there exists 0 6= a 2 EAF .

But since a = EaF = Ea = Fa, it follows that s(a)  E and s(a†)  F , which contradicts

3).

Therefore, 3) implies 2).

The above theorem shows that there exist projections E and F for which neither E � F

nor F � E holds. However, there is a weaker notion of comparison for the projections.
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Theorem 3.6.2. (The Comparison theorem):

For any E,F 2 PA, there exists a P 2 PZA
where ZA is the center of A, such that

EP � FP,

F (1� P ) � E(1� P )

Proof. Let {(Ei, Fi)} be a maximal pair of families of mutually orthogonal projections

with Ei  E, Fi  F , and Ei ⇠ Fi. Let

E0 =
_

i

Ei, F0 =
_

i

Fi.

Then from the Proposition (3.27), E0 ⇠ F0. We can define the orthogonal complements

E0 = E �E0, F 0 = F �F0. Since E0 and F0 are maximal, there cannot be any equivalent

subprojection of E0 and F 0. It follows from the previous theorem that Z(E0)Z(F 0) = 0 or

equivalently E0Z(F 0) = 0.

Let P be the central support of F 0, i.e P = Z(F ). Then P 2 PZA
, and we have:

EP = E0P ⇠ F0P  FP, and F (1� P ) = F0(1� P ) ⇠ E0(1� p)  E(1� P ).

Hence,

EP � FP, and F (1� P ) � E(1� P ),

as claimed.

The above theorem tells us that even if two projections cannot be directly compared, we

can still compare them on subspaces determined by central projections P . Moreover, it

tells us that when A is a factor, any two projections are directly comparable.

Classification of Projections and von Neumann algebras:

Let E be a projection in a von Neumann algebra A. Then E is said to be:

1. Abelian: If EAE is abelian.

2. Finite: If for F 2 PA, E ⇠ F  E =) E = F . That is, E is not equivalent to

any proper subprojection of itself.

3. Infinite: If it is not finite. That is, E can be equivalent to some proper subprojection

of itself.
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4. Properly infinite: If for every central projection F , EF is either infinite or zero.

There is no central subspace on which F is non-trivial and finite.

5. Purely infinite: If for every projection F  E, F is either infinite or zero. That

is, E should not have any non-trivial finite subprojection.

6. Minimal: If for any F 2 PA, F  E =) E = F .

Further, we can prove some very useful theorems. As we will see, they play an important

role in the decomposition of von Neumann algebras.

Theorem 3.30. A nonzero projection E 2 PA is abelian if, for every F 2 PA with

F  E, we have

F = EZ(F ),

where Z(F ) denotes the central support of F .

Furthermore, if A is a factor, then a projection E is abelian if and only if it is minimal.

Proof. Let E,F 2 PA and F  E, then we want to show that if E is abelian, then F = E.

Since EAE is commutative, for any a 2 A, we have

Fa(E � F ) = F (EaE)(E � F ) = F (E � F )(EaE) = 0 (3.6.24)

hence FA(E�F ) = {0}, implies F = EZ(F ). If A is a factor, then if F = E. Conversely,

if E is a minimal then F  F , implies F = E = EZ(F ).

Another very useful theorem will be useful.

Theorem 3.31. Let {Ei} be a family of finite (respectively abelian) projections, centrally

orthogonal support. Then E =
W

i2I
Ei is a finite (respectively abelian) projection.

Proof. Let F is some projection,such that F  E, F ⇠ E. Using the fact that Z(Ei) are

mutually orthogonal,

(E � Ei)
_

n 6=i

Z(En) = E � Ei =) Ei = EZ(Ei) (3.6.25)

since Ei are finite,

Ei = EZ(Ei) = FZ(Ei)  F 8i 2 I (3.6.26)
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Implies E  F 7. Therefore E = F and E is finite.

Now, let {Ei} be a family of abelian projections with centrally orthogonal supports in a

von Neumann algebra. Let F be a projection such that F  E :=
W

i2I
Ei.

Then we can define

F =
_

i2I

Fi, where Fi := EiFEi.

Since the central supports Z(Fi) and Z(Fj) are centrally orthogonal for i 6= j, it follows

that

Z(Fi)Z(Fj) = �ijZ(Fj).

Thus, the family {Z(Fi)} consists of mutually orthogonal central projections.

Furthermore, since FiEi = Fi, it follows that Fi  Ei. Because Ei is abelian, any sub-

projection is of the form EiZ for some central projection Z (relative to the center of A

restricted to Ei). Hence,

Fi = EiZ(Fi).

Therefore,

F =
_

i2I

Fi =
_

i2I

EiZ(Fi) = E

 
_

i2I

Z(Fi)

!
.

Since
W

i2I
Z(Fi) is a central projection, it follows that

F = EZ(F ),

where Z(F ) is the central support of F .

Thus, for every projection F  E, we have F = EZ(F ). This proves that E is an abelian

projection. E is abelian8.

The above classification of projections provides a useful way to analyze von Neumann

algebras. Since von Neumann algebras are unital, and identity I dominates every projec-

tion. Therefore, we can naturally extend the notion of finite and infinite to von Neumann

algebras as follows. Let A 2 B(H) be the von Neumann algebra. Then A is said to be:

7The Finitness is used in the second equality. That is E ⇠ F =) Z(Ei)E ⇠ Z(Ei)F and since Z(Ei)E
is finite. Implies Z(Ei)E = Z(Ei)F .

8See theorem (3.30)
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• Finite, infinite, properly infinite, and purely infinite, if I is a finite, infinite,

properly infinite, and purely infinite projection, respectively.

• Semifinite, if any non-zero central projection contains a non-zero finite projection.

Murray von Neumann Classification:

Let A 2 B(H) be the von Neumann algebra. Then A is said to be:

1. Type I: If for every non zero central projection E, there exists a non-zero abelian

projection in A. Further

• It is Type Ifin if it is finite.

• It is Type I1 if it is infinite.

2. Type II: If it is semifinite and contains no non-zero abelian projection. Further,

• It is Type II1 if it is finite.

• It is Type II1 if it is not finite.

3. Type III: If it contains no non-zero finite projection.

It is easy to see that every subprojection of an abelian projection is finite. Let E be an

abelian projection, then from (3.30), for F  E, F = EZ(F ). We want to show that F

is finite. Let G  F and G ⇠ F , then G  E, implies G = EZ(G). But since F ⇠ G,

Z(G) = Z(F ) =) F = G. Therefore, F is finite.

Now, let us use this fact in the classification above. If a von Neumann algebra contains

an abelian projection (also contains a finite projection), then it is of Type I. If it does not

contain any abelian projections but does contain some finite projections, then it is of Type

II. Furthermore, if it contains neither abelian nor finite projections, then it is of Type III.

Now, let us use this to prove the following theorem.

Theorem 3.32. (Decomposition theorem):

Let A be the von Neumann algebra. Then there exists a unique decomposition of A into

the direct sum

A = AI

M
AII

M
AIII (3.6.27)

of type I, type II, and type III von Neumann algebras.

Proof. Let {En}n2I be a maximal family of centrally orthogonal abelian projections. Then,

by (3.31), E :=
W

n2I
En is abelian. Let ZI be the central support of E, i.e ZI = Z(E).

Then AI := AZI is a von Neumann algebra of type I.



Chapter 3. von Neumann Algebras for Physicist 88

Indeed, if Z  ZI , that is, if Z is a nonzero central projection in AI , then ZE is a nonzero

abelian projection dominated by Z (if it were zero, then ZI � Z < ZI would contradict

the fact that ZI is the central support of E).

By construction, (1 � ZI)A is a von Neumann algebra with no abelian projections. Let

{Fi} be a maximal family of centrally orthogonal finite projections in (1� ZI)A, and let

F =
P

Fi, which is finite by (3.31). Now, let ZII be the central support of F in (1�ZI)A,

i.e ZII = Z(F ). Then AII = ZII(1 � ZI)A is a von Neumann algebra, and, as in the

previous paragraph, one shows that it is of type II.

Finally, letting ZIII = 1 � ZI � ZII , we find that ZIII is central, and AIII = ZIIIA is a

type III von Neumann algebra. Therefore,

A = AI �AII �AIII (3.6.28)

The uniqueness follows from the uniqueness of Z(E) and Z(F ) for any equivalence maximal

family of orthogonal projections.

For more details, see [22]. The theorem above shows that a general von Neumann algebra

does not need to be of a single type; rather, it can be decomposed into components of

di↵erent types. If algebra is a factor, then the following corollary follows.

Corollary 3.6.3. A factor A ⇢ B(H) is of exactly one of the following types: In, I1, II1,

II1, or III. It is of type I if it contains a minimal projection. Furthermore, if the identity

projection I can be written as a sum of n mutually orthogonal minimal projections, then

A is of type In. If n = 1, then it is of type I1.

If A has no minimal projections but contains a non-zero finite projection, then it is of type

II. Within type II, if the identity projection I is itself finite, then A is of type II1; if I is

infinite, then it is of type II1.

Finally, if A has no non-zero finite projections at all, then it is of type III.

Proof. If A is a factor, then its center is trivial. That is, the center contains only the

identity projection I or the zero projection. From the decomposition theorem, we have

ZI + ZII + ZIII = I,

Which implies that only one of them can be nonzero. Hence, a factor von Neumann algebra

can be of only one type.
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Now, suppose ZI is the only nonzero central projection. Then the algebra is of type I.

Moreover, in every factor, every abelian projection is minimal. Since ZI = I dominates

the collection of all mutually orthogonal abelian projections E, it follows that E = ZI = I.

If not, then the orthogonal complement I �E would be a nonzero central projection. But

because the algebra is type I, this complement must contain an abelian subprojection,

which contradicts the maximality of E.

Therefore, in a type I factor, the identity projection can be written as a sum of minimal

projections—specifically, n  dimH minimal projections9. If n is finite, it will be type In,

otherwise it will be type I1.

Now, suppose ZII is the only non-zero central projection. Since ZII does not support any

abelian projections, it follows that the algebra lacks minimal projections and is therefore

of type II. Furthermore, if the identity projection I is finite, then the algebra is of type

II1; otherwise, it is of type II1.

Finally, if ZIII is non-zero, then the algebra contains neither abelian nor minimal finite

projections. Therefore, it is of type III.

Thus, having classified von Neumann algebras via the theory of projections, we now return

to our original question: Can a renormalized trace be defined that renders all or some pro-

jections finite? Moreover, is such a construction possible for every von Neumann algebra?

We have already introduced the definition of a general trace in (3.17). We have also

seen that it allows us to define the expectation value of any operator in the algebra. How-

ever, the definition is quite general and imposes no restrictions on how the trace assigns

values to positive operators.

Physically, we do not want our trace to assign zero to any nonzero positive operator

or nonzero density matrix. This motivates the requirement that the trace be faithful.

Furthermore, we want the trace to be compatible with the spectral decomposition of

self-adjoint operators, since every observable can be written as the supremum over linear

combinations of its spectral projections. That is, we expect

⌧

✓
sup
i

⇢i

◆
= sup

i

⌧(⇢i)

9If H is a separable Hilbert space with orthonormal basis {|eii}, then Ei = |eiihei| is a minimal
projection and E =

P
dimH

i
|eiihei| = I
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whenever {⇢i} is an increasing net of positive operators (e.g., spectral projections). This

is the property of normality.

Finally, our entire motivation for considering such a general notion of trace is to be able

to define density matrices. Therefore, we want our trace to assign finite values to

all finite projections. This is the condition of semifiniteness. These requirements

motivate us to define the normalized trace as follows.

Definition 3.33. (Renormalized trace):

A trace ⌧ : A+ ! [0,1] is a normalized trace if it follows:

1. Faithful: For any ⇢ 2 A+, ⌧(⇢) = 0 =) ⇢ = 0.

2. Semi-finitness: For every P 2 A+ there exists some non-zero Q 2 A+, with

Q  P and ⌧(Q) < 1.

3. Normal: If {⇢i} is a family of positive operator in A+ with ⇢ = supi ⇢i, then

⌧ (supi ⇢i) = supi ⌧(⇢i).

This is the minimal requirement we expect from any well-defined trace. As emphasized

earlier, projections can be thought of as the building blocks of positive operators. From

the above definition, it follows,

1. Every non-zero projection will have a non-zero trace.

2. Equivalent projections have equal trace.

Let E,F 2 PA and E ⇠ F . The there will some partial isometry V such that,

E = V +V and F = V V †. From (3.6.4), it follows that,

⌧(E) = ⌧(V †V ) = ⌧(V V †) = ⌧(F )

3. If E,F 2 PA and E < F , then ⌧(E) < ⌧(F ).

Using linearity and the fact that F = E + F � E,

⌧(F ) = ⌧(E) + ⌧(F � E) =) ⌧(F ) > ⌧(E) (3.6.29)

4. An infinite projection has infinite trace. For every infinite projection, there exists an

equivalent proper subprojection. Let F 2 PA be an infinite projection. Then, there

exists a projection E such that E < F and E ⇠ F . Suppose ⌧(E) is finite. Since



Chapter 3. von Neumann Algebras for Physicist 91

F > E, we have

⌧(F ) = ⌧(E) + ⌧(F � E).

Since E ⇠ F , ⌧(F ) = ⌧(E), implies ⌧(F � E) = 0. From property (1), this would

mean E = F , which is a contradiction since E is a proper subprojection of F .

Therefore, ⌧(E) = 1.

5. If E,F 2 PA are finite projection with ⌧(E) = ⌧(F ). Then E ⇠ F .

Let us assume F � E. Then there exists F 0
⇠ F , such that F 0

 E. Therefore,

⌧(E) = ⌧(F 0) + ⌧(E � F 0).

This implies ⌧(E � F 0) = 0. From property (1), it follows that E = F 0
⇠ F .

Similarly, if we assume F � E, the result will be the same. Hence, E ⇠ F .

It can be shown that any two infinite projections are equivalent. Furthermore, it follows

from properties (2)� (5) above that the trace preserves the algebraic comparison; that is,

it respects both the von Neumann equivalence and the partial order on projections. That

is, for any E,F 2 PA,

⌧(E) = ⌧(F ) () E ⇠ F

⌧(E)  ⌧(F ) () E � F

Now, we would like to ask: which von Neumann algebras can admit the renormalized trace

defined above?

Let us start with type III von Neumann algebras. From the algebraic classification of

von Neumann algebras, we know that in a type III von Neumann algebra, there are no

non-zero finite projections. This implies that for any projection E in a type III algebra,

⌧(E) 2 {0,1}. Therefore, there is no trace on a type III algebra that satisfies semi-

finiteness, since semi-finiteness requires the existence of projections with finite, non-zero

trace. As a result, there is no renormalized trace for type III von Neumann algebras.

Now, let the algebra be a type In factor. Since in a factor algebra all projections are

comparable, and type I algebras have minimal projections, any two minimal projections

must be equivalent. Then, from property (2), any minimal projection must have the same

trace. Let � be the trace for any nonzero minimal projection. Furthermore, we know

that any projection can be written as a linear combination of at most n minimal mutually
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orthogonal projections. For any projection E in a type In algebra, we have

⌧(E) = Cn� with Cn 2 {0, 1, . . . , n},

and ⌧(I) = n�, which follows from the fact that the identity dominates every projection.

We emphasize that n can be infinite, and then the algebra will be type I1. This clearly

satisfies all the properties of the renormalized trace.

Now, let the algebra be of type II. In a type II von Neumann algebra, there are no

minimal projections. However, there is a maximal projection, namely the identity I,

which dominates every other projection. Let the trace of the identity be � 2 R, which is

finite in the case of type II1 algebras and infinite in the case of type II1 algebras. Then

for any projection E in a type II algebra, we have ⌧(E) 2 [0,�]. Now, let us argue that

for each ↵ 2 [0,�], there exists a projection in the algebra such that the trace takes the

value ↵. This implies that the trace takes values continuously.

In type II for any projection E with ⌧(E)  �, and for any ↵ 2 [0, ⌧(E)], define the set:

S↵ := {F  E |F is a projection and ⌧(F )  ↵}.

This set is non-empty and directed. By Zorn’s Lemma, there exists a maximal element

F↵ 2 S↵. Suppose ⌧(F↵) < ↵. Since E � F↵ 6= 0 and A contains no minimal projections,

we can find a projection G  E � F↵ with ⌧(G) > 0 and such that ⌧(F↵) + ⌧(G) < ↵,

contradicting the maximality of F↵. Therefore, ⌧(F↵) = ↵.

Furthermore, there is a remarkable theorem by von Neumann which states that the trace

defined above is unique up to an overall scaling factor (for details, see [22, 23]). By an

overall scaling, we mean that any other trace ⌧ 0(·) must be of the form ⌧ 0(·) = ↵⌧(·), where

↵ is a positive constant.

We conclude this section by emphasizing that, through appropriate scaling of finite pro-

jections, we can interpret them as density matrices. Therefore, only type I and type II

von Neumann algebras admit density matrices. Furthermore, in type I algebras, if we

choose the normalization � = 1, then each minimal projection corresponds to a pure state.

Hence, only type I algebras admit pure states in this sense. This observation connects the

discussion of the previous section with the current one, thereby completing our exposition.
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3.7 Tomita Takesaki modular theory

Tomita–Takesaki modular theory is a powerful tool for investigating von Neumann alge-

bras. It plays a crucial role in the mathematical development of von Neumann algebras and

their applications to physical systems, such as systems described by statistical mechan-

ics and quantum field theory. There are many outstanding works by Connes, Bisognano,

Wichmann, Borchers, and others, where modular theory has played a pivotal role. It is

modular theory that makes it possible to connect abstract von Neumann algebras with

local algebras in quantum field theory in a useful and meaningful way. An excellent review

on the use of modular theory in quantum field theory is provided by Borchers [42]. Mod-

ular theory also plays an important role in understanding black hole thermodynamics, as

we will see later in this thesis.

Let us now begin by briefly introducing the key concepts of modular theory.

3.7.1 Brief Review of Modular Theory

Let A be a von Neumann algebra acting on Hilbert space H. Let A0 be the commutant of

the algebra A.

Definition 3.34. (Cyclic and Separating vector):

A vector | i 2 H is said to be cyclic for algebra A if

A| i = H

And it is called separating with respect to A, if

8a 2 A, a | i = 0 =) x = 0. (3.7.1)

The above definition tells us that if a vector is cyclic, then the action of the algebra A on

this vector generates a dense subspace of the Hilbert space. In other words, a cyclic vector

encodes enough information to approximate any state in the Hilbert space using vectors

of the form a| i, with a 2 A. Thus, given an algebra A, we can, in principle, generate the

Hilbert space from a single vector (”cyclic vector”), also known as GNS reconstruction.

Furthermore, the separating property of a vector ensures that the vector can distinguish

(separate) between distinct operators in A. That is, if a, b 2 A with a 6= b, then a

separating vector | i satisfies a| i 6= b| i. Equivalently, a| i = 0 implies a = 0.
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Furthermore, cyclic and separate vectors also encode information about the commutant.

We can prove the following proposition.

Proposition 3.35. Let A be any von Neumann algebra and A
0 be its commutant. Then

| i 2 H is cyclic for A () | i is Separating for A
0

Proof. We will first prove =) direction.

Let | i 2 H is cyclic for A and b 2 A
0 is some operator, such that b| i = 0, then

ba| i = [b, a]| i = 0 8a 2 A (3.7.2)

Since AH is dense in H, for every |�i 2 H there exists a sequence of operators {an} 2 A

such that limn!1 an| i = |�i. We know from the above equation that ban| i = 0 for any

n. Therefore, from the continuity of bounded operators,

b|�i = lim
n!1

ban| i = 0 (3.7.3)

Implies, b = 0. Hence | i is separating for A0.

Now let us prove the (= direction. We assume that A is not cyclic, and we aim to show

that A
0 is not separating. Let | i 2 H be a vector that is not cyclic for A, so the cyclic

subspace

H
1 := A| i ( H.

Define P to be the orthogonal projection onto the orthogonal complement (H1)?. Since

| i 2 H
1 (as I 2 A), it follows that

P | i = 0.

Moreover, P is a bounded operator and belongs to A
0; we have established this in (3.4).

Therefore, | i is not separating for A0.

Since A can be any von Neumann algebra, and we know A
0 is always a von Neumann

algebra. Therefore,

| i 2 H is cyclic for A0
() | i is Separating for A00

Furthermore, it follows from the above proposition that if | i is cyclic and separating for

A, then it is cyclic and separating for A0, and the converse is also true.
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Given a cyclic and separating state, Tomita and Takesaki showed that one can define an

important operator that relates any operator in the algebra to its adjoint. This operator

plays a crucial role in understanding the structure of von Neumann algebras. In particular,

it is essential for analyzing Type III algebras, which are of physical importance to us,

especially in the context of quantum field theory.

Definition 3.36. (Tomita operator):

Let | i 2 H be a cyclic and separating vector, then the Tomita operator for the

pair (A, ) is an antilinear operator,

S : A | i ⇢ H ! A | i ⇢ H

S a | i = a† | i , 8a 2 A

We want to emphasize that the cyclic and separating vector plays a crucial role in the

definition of the Tomita operator. Since | i is separating, for any non-zero a 2 A, we have

a | i 6= 0. This is important for S to be well-defined. Otherwise, if for some a, a | i = 0,

then S would map it to a† | i 6= 0, violating well-definedness.

Additionally, due to the cyclic property of | i, the domain of S is dense in H. Together,

cyclicity and separability imply that S is closable. From now on, we will assume that S 

has been closed and denote the closed extension by the same symbol.

Furthermore, the Tomita operator is unbounded. If it were bounded, then by the bounded

operator extension theorem, it could be extended to a bounded operator on the full Hilbert

space. This would imply the existence of a bounded operator that relates every bounded

operator to its adjoint, which is not true in general.

For example, in quantum field theory, we know that any state at very high energy resembles

the vacuum. Therefore, we can use high-energy modes to construct a sequence of operators

that approximate the annihilation operator. However, the adjoints of these operators will

approximate the creation operator. So, S maps states very close to the vacuum to states

that are not close to the vacuum, and hence it must be unbounded.

It is straightforward to see from the above definition that,

• S2

 
= I

• S | i = | i
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Therefore, S is an invertible operator. We also want to emphasize that it is a very special

operator in the sense that it is an unbounded operator whose square is bounded.

It is natural to ask whether we can define a similar operator for the commutant. Let S0

 

be the Tomita operator for the pair (A0, ). We can easily show that S0

 
= S†

 
.

For any a 2 A and b0 2 A
0,

hS0

 
b0 |a| i = hb0† |a| i = h | b0a | i = ha† |b0| i = hS a | b

0
| i = hS†

 
b0 |a| i (3.7.4)

In the last equality, we have used the antilinearity of the S 10. Since the above equation

is true for any a 2 A, b0 2 A
0 and cyclic separating state | i. The Tomita operator S0

 
of

(A0, | i) is S†

 
.

Theorem 3.37. Let T be a closed, densely defined operator on a Hilbert space H . Then

there exists a positive self-adjoint operator A, with DA = DT and an isometric operator:

V : ran(A) ! ran(T ) where ran(A) = ran(T ) such that T = V A and A2 = T †T .

Moreover, if ker(A)=ker(T ) , such decomposition is unique.

Proof. Since T is closed and densely defined, the adjoint T † exists and is also densely

defined. Then the operator T †T is a positive, self-adjoint operator. By the spectral

theorem for densely defined operators, we can define,

A := (T †T )1/2.

Then A is positive, self-adjoint, and A2 = T †T , with D(A) = D(T ).

For any | i 2 D(T ), we compute:

kT | ik2 = hT |T | i = hT †T | i = hA2 , i = kA k2.

Therefore, the mapping

V : A 7! T 

defines an isometry on ran(A), since it preserves the norm. Thus, V extends to a partial

isometry from ran(A) to ran(T ), and we can write

T = V A.

10An antilinear operator K has the following property, h |K |�i = hK† |�i = h�|K†
| i .
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Uniqueness: Suppose T = V1A = V2A are two such decompositions with the same A,

and assume ker(A) = ker(T ). Then V1A| i = V2A| i for all | i 2 D(A), and hence

V1 = V2 on ran(A). Therefore, V is uniquely determined under this condition.

The more elaborate proof of the above theorem can be found in any standard book. Since

S satisfies all the properties of the above theorem and it is antilinear and invertible, we

can uniquely decompose S into

S = J �
1/2

 
(3.7.5)

where J is antiunitary operator called modular conjugation and �1/2

 
is a self adjoint

positive operator satisfying,

� = S†

 
S (3.7.6)

� is known as a modular operator. Similarly, we can obtain the polar decomposition,

S0

 
= J 0

 
�01/2

 
. The modular operator and modular conjugation have many nice properties.

We will list some of them here.

1. � | i = | i.

It follows from the fact that I belongs to both A and A
0. Therefore,

S | i = | i, S†

 
| i = | i =) � | i = S†

 
S | i = | i

2. J �
1/2

 
J = ��1/2

 
.

Since S2

 
= I, it follows from polar decomposition,

J �
1/2

 
J �

1/2

 
= I

Implies,

J �
1/2

 
J = ��1/2

 

3. J �it

 
J = �it

 
, where t 2 R

It follows from property (2) and antilinearity of J .

4. J2

 
= I

Since J �
1/2

 
J = ��1/2

 
, and J has inverse,

J2

 
(J�1

 
�1/2

 
J ) = �

�1/2

 
= I.��1/2
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Since J�1

 
�1/2

 
J is positive and from the uniqueness of polar decomposition of

��1/2

 
, we must have J2

 
= I. This also implies that J†

 
= J .

5. J 0

 
= J and �0

 
= ��1

 
.

Since,

S0

 
⌘ J 0

 
�01/2

 
= S†

 
= �1/2

 
J = J J �

1/2

 
J = J �

�1/2

 

where we have used the property (2) and (4). From the uniqueness of polar decom-

position, J 0

 
= J and �0

 
= ��1

 
.

6. 8a, b 2 A, h | a� b | i=h | ba | i

h | a� b | i = h | aS†

 
S b | i = h | aS†

 
b† | i = hS a† |b†| i = h |ba| i

7. Let a(t) ⌘ �it

 
a��it

 
, where a 2 A is a modular evolution of an operator. Then, all

operators that evolve under a modular operator satisfy the KMS condition. That

is, 8a, b 2 A

h |a(t+ i)b(t)| i = h |b(t)a(t)| i

We can easily prove the above relation using property (1) and 6),

h |a(t+ i)b(t)| i = h |�it�1

 
a��it+1

 
�it

 
b��it

 
| i = h |� b| i = h |ba| i

= h |�it

 
b��it

 
�it

 
a��it

 
| i = h |b(t)a(t)| i

This tells us that the state is thermal with unit temperature with respect to the

modular Hamiltonian K = � ln� .

8. 8a, b, c 2 A, [S aS , b]c| i = 0

S aS bc| i = S ac
†b†| i = bca† i = bS ac

†
| i = bS aS c| i

9. The modular operator generates the automorphisms of the algebra, and modular

conjugation acts as a reflection onto the commutant. That is, for all a 2 A and

t 2 R,

�it

 
a��it

 
2 A, J aJ 2 A

0.

This famous theorem by Takesaki is not proven here, but interested readers can refer

to Takesaki’s book [43] or notes by Sorce [23, 44].
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One might initially think that in property (8), we have shown that S�aS� belongs to

the commutant algebra. However, what we have actually shown is that S�aS� commutes

with all elements of the algebra when viewed as an operator on the subspace AH. Such

operators are said to be a�liated with the commutant algebra: they commute with all

elements of the algebra but do not necessarily belong to the algebra.

For an operator to belong to the algebra, it must be bounded and admit a bounded

extension to the entire Hilbert space. In the case of S�aS�, we have not yet demonstrated

that it is bounded or that it extends to a bounded operator on the full Hilbert space;

establishing this would require additional analysis.

However, Takesaki’s theorem that proves property (9) also establishes that S�aS� does

indeed belong to the commutant algebra. Since such operators frequently appear and

behave almost like elements of the algebra, we now provide the definition of an operator

a�liated with a von Neumann algebra, to avoid further confusion.

Definition 3.38. (Operator A�liated to the Algebra):

Let A be a von Neumann algebra with commutant A0. A closed operator T (possibly

unbounded) is said to be a✏iated to the algebra A, if it comutes with all the element

of A0 on every vector where both a0T and Ta0 is defined, for a0 2 A
0.

We will conclude the introduction by quoting the very useful theorem by Takesaki [43].

Theorem 3.39. If A is a von Neumann algebra and | i is a cyclic and separating vector

for A, then there exists a unique one-parameter automorphism group �t : a 2 A ! �t(a) 2

A, where t 2 R, such that:

1. The vector | i is invariant under the automorphism group. That is,

�t(| ih |) = | ih |.

2. The state | i satisfies the KMS condition with respect to �t. That is,

h |�t+i(a)�t(b)| i = h |�t(b)�t(a)| i,

for all a, b 2 A and t 2 R.

We will not prove this theorem here; the proof can be found in Takesaki’s book [43].

However, it is important to observe that the modular operator generates an automorphism
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of the algebra, leaves the cyclic and separating state invariant, and satisfies the KMS

condition—see properties (1), (7), and (9). Therefore, the modular automorphism is the

unique automorphism associated with the pair (A, | i) that satisfies the conditions of the

theorem. Moreover, we can use this theorem to determine the modular operator associated

with (A, | i).

3.7.2 The Relative Modular Operator

The modular theory can be extended to what we can call the relative modular theory.

This extension involves defining Tomita and modular operators relative to two states [45].

Let us begin with the definition.

Definition 3.40. (Relative Tomita Operator):

Let | i be cyclic and separating for an algebra A and |�i be another state. We can

define an antilinear relative Tomita operator S�| for the algebra A,

S�| : A| i ⇢ H ! A|�i ⇢ H

S�| a | i = a† |�i

Since | i is cyclic and separating for the A, S�| is densely defined. It also follows that

S�| is closable. We will assume that S�| has been closed and denote it by the same

symbol. We emphasize that |�i can be any state. But, if |�i is cyclic and separating, then

we can define,

S |�a |�i = a† | i (3.7.7)

In this case, S |�S�| = I, and therefore S�| is invertible. However, let us not assume this

for now; we will return to it after introducing a few more definitions that do not require

this assumption.

Following the steps in (3.7.4) we can show that the relative Tomita operator S0

�| 
of A0

follows S0

�| 
= S†

�| 
. Furthermore, we can apply the polar decomposition theorem on S�| .

We can write,

S�| = J�| �
1/2

�| 
(3.7.8)

where,

��| = S†

�| 
S�| (3.7.9)
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is a self-adjoint positive operator called a relative modular operator. Notice that if |�i =

| i, then

S | = S J | = J � | = � 

If |�i is not separating, then S�| will have a non-trivial kernel, and the polar decomposi-

tion in (3.7.8) will not be unique. However, we can make the polar decomposition unique

by defining J�| in such a way that it annihilates this kernel. Furthermore, if |�i is not

cyclic, then the image of S�| is not dense in the Hilbert space. This implies that J�| will

be an antilinear map only on ran(S�| ). However, if |�i is cyclic, then J�| is antiunitary.

Following the steps in (3.7.4), we can show that,

S0

�| 
= S†

�| 
(3.7.10)

where S0

�| 
is the Tomita operator of the commutant. The relative modular operator and

conjugation have many interesting properties. We will list here some of them,

1. If both | i and |�i are cyclic and separating, then J |��
1/2

 |�
J�| = ��1/2

�| 
.

Since S |�S�| = I, it follows from polar decomposition,

J |��
1/2

 |�
J�| �

1/2

�| 
= I

Implies,

J |��
1/2

 |�
J�| = ��1/2

�| 

2. If both | i and |�i are cyclic and separating, then J |�J�| = I.

This follows from the property (1) and the uniqueness of polar decomposition.

3. J 0

�| 
= J†

�| 
and (�0

�| 
)1/2 = ��1/2

 |�
.

Since,

S0

�| 
⌘ J 0

�| 
(�0

�| 
)1/2 = S†

�| 
= �1/2

�| 
J†

�| 
= J†

�| 
J†

 |�
�1/2

�| 
J†

�| 
= J†

�| 
��1/2

 |�

where we have used the property (1) and (2). From the uniqueness of polar decom-

position, J 0

�| 
= J†

�| 
and (�0

�| 
)1/2 = ��1/2

 |�
.

4. Let a0 be any unitary operator in A
0, then �a0�| = ��| .

Let us apply the definition of a relative Tomita operator to state a0|�i, Sa0�| b | i =
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a†b0 |�i = b0a† |�i for any b 2 A. Implies,Sa0�| = a0S�| . Therefor,

�a0�| = S†

a0�| 
Sa0�| = S†

�| 
a0†a0S�| = S†

�| 
S�| = ��| 

5. 8a, b 2 A, h | a��| b | i=h�| ba |�i.

Since,

h | a��| b | i = h | aS†

�| 
S�| b | i = h | aS†

�| 
b† |�i = hS�| a† |b†|�i = h�|ba|�i

6. There are some fascinating relations between the modular operator and the relative

modular operator due to Connes, known as the Connes Cocycle Theorem. The

key statements are as follows:

(a) u�| (s) ⌘ �
is

�| 
��is

 
= �is

�
��is

 |�
2 A and s 2 R.

(b) u0
�| 

(s) ⌘ ��is

�| 
�is

�
= ��is

 
�is

 |�
2 A

0 and s 2 R.

We will not prove this theorem here, but a very nice proof can be found in

[46]. Though it is true for all von Neumann algebras, it is easy to prove it for

the type I case, as we will see in the next section.

Let us make a few remarks about the beautiful Connes Cocycle theorem. The first one

is, u�| (s) and u0
�| 

(s) are unitary operators. The second one is that the relative modular

operators relate the modular flow of two states, that is

�is

�| 
��is

 
= �is

�
��is

 |�
=) �is

�| 
��is

 
�is

 |�
= �is

�
(3.7.11)

Another interesting property that follows from the fact that u0
�| 

2 A
0 is that for a 2 A,

u0
�| 

(s)au0
�| 

(�s) = a =) �is

 |�
a��is

 |�
= �is

 
a��is

 
(3.7.12)

�is

 |�
generate same modular flow that �is

 
generates. Hence, the relative modular opera-

tors have very nice applications.

Another important application of the relative modular operator is that it allows us to

define relative entropy. Moreover, we want to emphasize that the modular operator is

defined for all von Neumann algebras, and therefore, the relative entropy defined using it

will also be well-defined for all types of von Neumann algebras. It was first introduced by

Araki and is hence known as Araki relative entropy.
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Definition 3.41. (Araki’s relative entropy):

Let | i be a cyclic and separating state and |�i be another state, then Araki’s

relative entropy is defined as

SA(�|| ) = �h�| log�A

 |�
|�i (3.7.13)

where �A

�| 
is a relative modular operator associated with von Neumann algebra A.

The above definition of Araki relative entropy is a generalization of relative entropy from

quantum mechanics to the infinite-dimensional case. It has many nice properties.

1. It is defined in all types of von Neumann algebras.

This follows from the fact that the relative modular operator is well-defined in all

von Neumann algebras.

2. The Araki relative entropy vanishes when both states are the same.

If |�i is equals to | i, then

SA( || ) = �h | log�A

 | 
| i = h | log�A

 
| i = 0

3. The Araki relative entropy is non-negative. That is

SA(�|| ) � 0 (3.7.14)

The above statement follows from the fact that log�A

 |�
 I � �A

 |�
. Therefore,

SA(�|| ) � h�|I � �A

 |�
|�i = 011. Hence, Araki’s relative entropy is always non-

negative.

4. Araki’s relative entropy is Monotonic under the inclusion of the algebra. That is,

Let A be the von Neumann algebra and B be the von Neumann subalgebra of A,

then

SB(�|| ) � SA(�|| ) (3.7.15)

The proof can be found in [24].

11We assume that h | i = h�|�i = 1
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It is called a relative entropy because it quantifies the distinguishability between two

quantum states, as should be evident from properties (2) and (3). We emphasize again

that the Araki relative entropy reduces to the familiar finite-dimensional expression,

TrH(⇢ log ⇢� ⇢ log �),

when ⇢ and � are density matrices. These properties have profound implications in physics.

For instance, there exists a beautiful derivation of the Bekenstein bound using relative

entropy by Casini [47]. Moreover, the Quantum Null Energy Condition (QNEC) can be

rigorously proven using relative entropy, as demonstrated in [48]. The relative entropy

also plays a crucial role in various proofs of the Generalized Second Law (GSL) [5, 3, 4], as

we will see later in this thesis. Many other important applications exist across quantum

field theory and quantum gravity.

3.8 Finite-Dimensional Quantum Systems And Some Lessons

In this section, we explicitly construct the modular operator and modular conjugation in

a finite-dimensional quantum system. The example is taken from Witten’s lecture notes

[24]. We include it here because it is simple and serves the purpose of building intuition

for understanding these objects. By exploring modular operators in finite-dimensional

settings, we aim to draw some valuable lessons that will help us later in more general

contexts.

3.8.1 The Modular Operators in Finite-Dimensional Interacting System

In finite dimensions, each system is described by a matrix algebra (3.1), and the interesting

case is that of a bipartite quantum system (3.2) defined on a Hilbert space given by the

tensor product H = H1 ⌦H2.

Let A be the algebra of linear operators acting on H1, and let A0 be the algebra of linear

operators acting on H2, as described in (3.2). To apply modular theory, we require a cyclic

vector | i for A. From (3.35), we know that such a vector will be separating for A0, and

vice versa. Let us understand when a vector in H will be cyclic.
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From Schmidt decomposition theorem, we know that any | i 2 H admits an expansion,

| i =
nX

k=1

ck | ki ⌦
�� 0

k

↵
, (3.8.1)

where n = min[dim(H1), dim(H2)], | ki are orthogonal unit vectors in H1 and  0

k
are

orthogonal unit vectors in H2. Furthermore, the action of operator a⌦I 2 A on the above

state is defined as,

(a⌦ 1) | i =
X

k

ck↵ | ki ⌦
�� 0

k

↵
, (3.8.2)

Now, we want to determine when the state is cyclic and separating for A, or equivalently,

separating for both A and its commutant A
0. Suppose that a ⌦ I annihilates the state

| i. This is possible if and only if a annihilates all of the vectors | ki.

Now, assume that all coe�cients ck are nonzero. Then, the set {| ki} forms a complete

basis for H1. This implies that a = 0. Thus, | i is separating for the algebra A if and

only if the | ki form a basis of H1. Similarly, it is separating for A0 if and only if the | 0

k
i

form a basis for H2.

This is possible precisely when H1 and H2 have equal dimension. The converse is also

true: when H1 and H2 both have dimension n, a generic vector will admit a Schmidt

decomposition (3.8.1), and if all the coe�cients ck are nonzero, then the vector will be

cyclic and separating for the algebras of both subsystems.

For simplicity, we will write | ki = |ki, | 0

k
i = |ki0 and |ji ⌦ |ki0 as |j, ki. Thus

| i =
nX

k=1

ck|ki|ki
0 =

nX

k=1

ck|k, ki. (3.8.3)

One interesting point we wish to emphasize is that precisely when the Hilbert spaces of

both subsystems have the same dimension, the above state defines an isomorphism from

the algebra A to the Hilbert space H, as also explained by Witten in [24].

Now, we would like to find the modular data associated with the finite-dimensional system.

So, we start with the definition of Tomita’s operator S : H ! H, defined by the following

action of the operator in A,

S ((a⌦ I)) | i = (a† ⌦ I) | i (3.8.4)
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Now, pick some i and j in the set {1, 2, · · · , n}, and choose some elementary matrix a 2 A

that acts on H1 by

a|ii = |ji, ↵|ki = 0 if k 6= i (3.8.5)

and its adjoint acts by,

a†|ji = |ii, a†|ki = 0 if k 6= j (3.8.6)

Now, we compute the action of a on | i,

(a⌦ I) = ci|j, ii, (a† ⌦ I)| i = cj |i, ji (3.8.7)

It follows from the definition of S that,

S (ci|j, ii) = cj |i, ji (3.8.8)

From the antilinearity of S ,

S |j, ii =
cj
c̄i
|i, ji (3.8.9)

This defines the action of S on the arbitrary state and therefore completely specifies the

Tomita operator. Infact, we can write,

S =
nX

i,j=1

cj
c̄i
|i, jihi, j| (3.8.10)

Similarly the adjoint S†

 
acts by

S†

 
|i, ji =

cj
c̄i
|j, ii (3.8.11)

Since modular operator � = S†

 
S ,

� |j, ii =
|cj |2

|ci|2
|j, ii (3.8.12)

To obtain the above equation, we used the antilinearity of S†

 
. Therefore, we can write,

� =
nX

i,j=1

|cj |2

|ci|2
|j, iihi, j| (3.8.13)
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Now, we can find the modular conjugate J , using the polar decomposition S = J �
1/2

 
.

Since

�1/2

 
|j, ii =

s
|cj |2

|ci|2
|j, ii, (3.8.14)

We will get,

J |j, ii =
r

cjci
c̄j c̄i

|i, ji (3.8.15)

or equivalently,

J =
nX

i,j=1

r
cjci
c̄j c̄i

|j, iihj, i| (3.8.16)

We have now constructed the modular operator and modular conjugation. While this

construction is straightforward in finite dimensions, we wish to emphasize that the Tomita

operator and the modular operator are bounded operators in this setting.

Now, we would like to construct the relative Tomita operator S |� and the modular

operator � |� associated with it. But for that we need another state. Let |�i be another

state in H. In some orthonormal bases �i of H1, which we want to denote as |↵i and �0↵

of H2, which we will denote with |↵0
i, where ↵ = {1, . . . , n}.

|�i =
nX

↵=1

d↵|↵i ⌦ |↵i0 =
nX

↵=1

d↵|↵,↵i, (3.8.17)

where d↵ is some coe�cient. Further for notational convenience, we write |↵i⌦|ii0 = |↵, ii,

|ii ⌦ |↵i0 = |i,↵i, etc. Again, the state |�i is cyclic and separating for both algebras if

and only if the d↵ are all nonzero. But we will not assume this, as already emphasized

in the introduction of relative modular theory. The relative Tomita operator S |� define

through the equation,

S�| ((a⌦ I) | i = (a† ⌦ 1) |�i 8a 2 A (3.8.18)

Now pick some i and ↵ from {1, 2, · · · , n} and matrix operator a 2 A such that,

a|ii = |↵i, a|ji = 0 for j 6= i (3.8.19)

Then the adjoint acts by

a†|↵i = |ii, a†|�i = 0 for � 6= ↵. (3.8.20)
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then its action | i and |�i is given by,

(a⌦ 1)| i = ci|↵, ii, (a† ⌦ 1)|�i = d↵|i,↵i (3.8.21)

therefore,

S�| |↵, ii =
d↵
c̄i

|i,↵i (3.8.22)

or equivalently,

S�| =
nX

i,j=1

d↵
c̄i

|i,↵ihi,↵| (3.8.23)

The adjoint is given by,

S†

�| 
|i,↵i =

d↵
c̄i

|↵, ii (3.8.24)

Since � |� = S†

 |�
S |�, we get

��| |↵, ii =
|d↵|2

|ci|2
|↵, ii (3.8.25)

or equivalently,

��| =
nX

i,j=1

|d↵|2

|ci|2
|↵, iihi,↵| (3.8.26)

Now we will write some of the above formulas in terms of density matrices. For our

convenience we will assume that | i and |�i are normalized. That is,

X

i

|ci|
2 =

X

↵

|d↵|
2 = 1 (3.8.27)

To the state | i 2 H1 ⌦H2, We can associate a density matrix,

⇢12 = | ih | =
nX

i=1

|cn|
2
|i, iihi, i| (3.8.28)

It is basically a projection operator onto the subspace generated by | i. It is a density

matrix because it is positive and has unit trace with respect Hilbert space trace.

Tr 12 ⇢12 = 1 (3.8.29)

where Tr 12 represents the trace over H = H1⌦H2. We can define reduced density matrix

on H1 and H2 by taking a partial trace over H1 or H2, respectively.

⇢1 = Tr 2 ⇢12, ⇢2 = Tr 1 ⇢12 (3.8.30)
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Where Tr 1 and Tr 2 are trace on H1 and H2. The explicit form is,

⇢1 =
X

i

|ci|
2
|iihi|, ⇢2 =

X

i

|ci|
2
|ii0hi|0 (3.8.31)

It can easily be seen from the above equation that ⇢1 and ⇢2 are positive matrices acting

on H1 and H2 respectively. It follows from (3.8.29) that they have unit trace, ie Tr 1 ⇢1 =

Tr 1Tr 2 ⇢12 = Tr 12 ⇢12 = 1. It is also evident from (3.8.31) that, ⇢1 and ⇢2 are invertible

if and only if the ci are all nonzero, that is if and only if | i is cyclic separating for both

algebras. Furthermore, we use (3.8.31) to write modular operator � in (3.8.13) and

density matrix ⇢12 in (3.8.28), as

� = ⇢1 ⌦ ⇢�1

2
⇢12 =

p
⇢1 ⌦

p
⇢2 (3.8.32)

Similarly, we can define a density matrix �12 = |�ih�| associated to the state |�i and

reduced density matrices �1 = Tr 2 �12, �2 = Tr 1 �12. The reduced density matrices of |�i

are

�1 =
X

↵

|d↵|
2
|↵ih↵|, �2 =

X

↵

|d↵|
2
|↵i0h↵|0. (3.8.33)

Using (3.8.33) and (3.8.31), we can write relative modular operator � |� in terms of the

reduced density matrices,

��| = �1 ⌦ ⇢�1

2
� |� = ⇢1 ⌦ ��1

2
(3.8.34)

Here, we would like to emphasize that both the modular operator and the relative modular

operator factorize in terms of the reduced density matrices of the system and its commu-

tant. This is a very general feature of the modular operator: whenever a density matrix

associated with a cyclic and separating state exists, the modular operator factorizes.

What is special in the finite-dimensional case—or, equivalently, in the case of a type I von

Neumann algebra—is that the reduced density matrix belongs to the algebra. In contrast,

for type II algebras, while certain density matrices may exist, they do not belong to the

algebra. At most, they can be a�liated with the algebra.

Now we would like to use the above expression to compute Araki’s relative entropy. Since

S(�|| ) = �h�| log� |� |�i = h�|� log� |� + log�� |�i (3.8.35)

= h�| log �1 � log ⇢1 |�i (3.8.36)

= Tr 1(�1 log �1 � �1 log ⇢1) (3.8.37)



Chapter 3. von Neumann Algebras for Physicist 110

So, the Araki relative entropy is the usual relative entropy in quantum mechanics. We

also want to emphasize that Sent(�1) = �Tr 1(�1 log �1) is the von Neumann entropy or

Entanglement entropy associated with the density matrix �2. Therefore, relative entropy

also knows about the entanglement encoded in the state. We can also check that,

u�| (s) ⌘ �
is

�| 
��is

 
= �is

�
��is

 |�
= �is1 ⇢

is

1 2 A

u0
�| 

(s) ⌘ ��is

�| 
�is

�
= ��is

 
�is

 |�
= ⇢�is

2
��is

2
2 A

0 (3.8.38)

�is

 |�
a��is

 |�
= �is

 
a��is

 
= ⇢is1 a⇢

�is

1

Hence, all the statements of Connes Cocyle are satisfied.

3.8.2 Modular operator for the Rindler Algebra

Let xµ = (t, x, ~y?) be the Cartesian coordinate in d+1 dimensional Minkowski spacetime.

The right rindler wedge WR is defined as,

WR = {(t, x, ~y?) 2 R(1,d)
| x > |t|} (3.8.39)

Now, we can construct the von Neumann algebra of the scalar quantum field �(x) in WR

as (3.5.0.1),

A(WR) = {* algebra generated by �(f) such that support f ⇢ WR }
00 (3.8.40)

where 00 is double commutant to ensure the weak closure of the algebra (3.2.1). It can

easily be shown that,

A(WR)
0 = A(WL) (3.8.41)

where WL is causal complement of WR. We also know that if U(⇤) represents the Lorentz

transformation on spacetime, then

U(⇤)�(f)U †(⇤) = �(f⇤�1) (3.8.42)
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where f⇤�1 = f((⇤�1)µ⌫x⌫). We also know that the boost in t and x by amount ⌧ is given

by

t(⌧) = t cosh ⌧ + x sinh ⌧ (3.8.43)

x(⌧) = t sinh ⌧ + x cosh ⌧ (3.8.44)

~y?(⌧) = ~y? (3.8.45)

It can further be checked the if x � |t| =) x(⌧) � |t(⌧)| for all ⌧ 2 R. Implies if xµ 2 WR

then xµ(⌧) 2 WR. Now, if KB denotes the generator of the boost transformation, then,

�(f) 2 AWR
=) eiKB⌧�(f)e�iKB⌧ 2 A(WR) 8⌧ 2 R (3.8.46)

Therefore, boost generates one parameter group of automorphisms of A(WR). Also notice

that,

t(⌧ + i↵) = t(⌧) cos↵+ i sin↵ x(⌧) (3.8.47)

x(⌧ + i↵) = x(⌧) cos↵+ i sin↵ t(⌧) (3.8.48)

which implies,

t(⌧ + 2⇡i) = t(⌧) x(⌧ + 2⇡i) = x(⌧) (3.8.49)

furthermore, if xµ 2 WR then Im(xµ(⌧+i↵)) lies in future lightcone for 0 < ↵ < ⇡. Now it

follows from the spectrum condition of local quantum field theory that for the Minkowski

vacuum |⌦i, eiKBs�(g)|⌦i is analytic for 0  Im(s)  ⇡ and h⌦|�(f)e�iKBs is analytic in

�⇡  Im(s)  0. Hence, h⌦|�(f)eiKBs�(g)|⌦i is analytic in s 2 R + i[0, 2⇡][49]. Now,

using the Schwartz reflection principle,

lim
✏!0+

h⌦|�(f)eiKB(⌧+2⇡i�i✏)�(g)|⌦i = lim
✏!0+

h⌦|�(g)e�iKB(⌧�i✏)�(f)|⌦i (3.8.50)

for all ⌧ 2 R. Hence, automorphisms satisfy the KMS condition 12 with � = 2⇡. Therefore,

the Minkowski vacuum is thermal with respect to the boost generator. This is precisely the

statement of the Unruh e↵ect. We can define a new generator KW = 2⇡KB. Notice that it

satisfy a) e�KW |⌦i = |⌦i, b) e�KW generates autmorphism of A(WR) and c)|⌦i is thermal

thermal with respect to KW with � = 1. Now from (3.39) it follows that �⌦ = e�KW is

the modular operator of (A(WR),⌦). Now, let us compute the modular conjugation J⌦.

12Similarly, it can be shown for a polynomial of �(f) and therefore for the general algebra elements.
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We know that,

J⌦�(f)|⌦i = �
1/2

⌦
�(f)†|⌦i (3.8.51)

From (3.8.43) we know that under ⇤B(�i/2)(t, x, ~y?) = (�t,�x, ~y?) = ⇥Rx(⇡)(t, x, ~y?),

where ⇥ is CPT operator and Rx(⇡) is rotation about the x axis. Therefore, noting the

fact that �1/2

⌦
acts as ⇤B(�i/2) on the points on which f has support, J⌦ = ⇥U(Rx(⇡))

is antiuntary operator satisfying (3.8.51), where U(Rx(⇡) is a unitary representation of

Rx(⇡).

So, we have learned that the modular Hamiltonian for the Rindler algebra in the Minkowski

vacuum state is the boost operator, i.e. �⌦ = e�KB . Now, we would like to ask whether

we can factorize the modular operator as some operator in the right wedge (algebra) times

some operator in the left wedge (commutant), as in (3.8.32). Although we can write the

boost operator in terms of the stress tensor Tµ⌫ on some Cauchy surface.

KB =

Z

⌃

d⌃µTµ⌫⇠
⌫ (3.8.52)

We can also write KB, on t = 0 surface and split it as,

KB =

Z

t=0

(xTtt)dxdy
d�2 = KR

B �KL

B (3.8.53)

where

KR

B =

Z

t=0,x�0

(xTtt)dxdy
d�2 KL

B = �

Z

t=0,x0

(xTtt)dxdy
d�2 (3.8.54)

But the action of KR

B
and KL

B
is not well-defined on any state, as the norm of the state

KR/L

B
| i diverges for any | i. It can be shown that this divergence is universal and arises

from the region near x = 0. Nevertheless, the matrix elements of KR/L

B
are well-defined

(or well-defined as quadratic forms) in any finite-energy state. This is because, if |�i

and | i are finite-energy states, then h�|KR/L

B
| i e↵ectively projects KR/L

B
| i onto the

finite-energy state |�i. As a result, it eliminates the high-energy modes and avoids UV

divergences.

Hence, the modular operator for the Rindler wedge does not factorize and cannot be

written purely in terms of operators defined individually on the right and left wedges.

Algebraically, this implies that the modular automorphism is generated by the boost op-

erator acting as an outer automorphism. It is well known that for type I and type II

algebras, all modular automorphisms are inner; see Theorem 3.14 in [50]. Hence, the
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Rindler algebra must be of type III factor. Furthermore, we know that the boost opera-

tor has a continuous spectrum13 and the spectrum is R. Therefore, the spectrum of the

modular operator �(�⌦) 2 [0,1]. Additionally, it is known that every state resembles

the vacuum at short wavelengths. Thus, for any state | i, we expect �(� ) 2 [0,1]. By

Connes classification of type III factors, it then follows that the Rindler algebra is of type

III1. For completeness, we would like to briefly talk about Connes classification of type

III factor [51]. Connes classification is based on spectral property of modular operator. In

particular, Conne studied,

S(A) =
\

| i

�(� ) (3.8.55)

where A is von Neumann algebra. Connes showed that S(A), the modular spectrum of a

von Neumann algebra A, is a multiplicative subgroup of R+. Since it is also closed, the

only possibilities are:

• S(A) = {0, 1},

• S(A) = {0} [ {�n | n 2 Z} for some 0 < � < 1,

• S(A) = R+.

This leads to a finer classification of type III factors. A type III factor A is called:

1. Type III0 if S(A) = {0, 1}.

2. Type III� if S(A) = {0} [ {�n | n 2 Z} for some 0 < � < 1.

3. Type III1 if S(A) = R+.

From the above classification, it must be clear that the Rindler algebra should be type

III1.

3.9 Crossed Product Algebra

As we have seen, in type III algebras there is no semifinite trace (i.e., a trace that assigns

a finite value to at least some nonzero projection), whereas type II and type I algebras

admit a unique semifinite trace, up to scaling. This makes type II and type I algebras

13In Rindler coordinates, the boost acts like a translation operator.
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more tractable and interesting, particularly in the context of assigning finite entanglement

measures.

One might ask whether it is possible to study type III algebras using type II algebras. In

other words, can we map a type III algebra to a type II algebra? If so, this would provide

greater control and may potentially lead to a deeper understanding of type III algebras.

As it turns out, certain crossed product constructions achieve precisely this. Therefore,

the crossed product is an essential tool for probing type III algebras. Moreover, we will

see that crossed product algebras naturally arise in gravitational theories, making them

even more compelling to study.

Let us now begin by defining crossed product algebras.

Let A be a von Neumann algebra acting on a Hilbert space H, and let T be a self-adjoint

operator on H that generates a one-parameter group of automorphisms on A. That is,

8a 2 A eiT sae�iT s
2 A, where s 2 R (3.9.1)

where eiT s can be viewed as an additive, possibly non-faithful, unitary representation of

R14. Furthermore, an automorphism is called inner if eiT s
2 A; otherwise, it is called

outer. Inner automorphisms are considered trivial in the sense that they are implemented

by elements within the algebra itself. In contrast, outer automorphisms are nontrivial, as

they define an action by an external operator on the algebra that preserves its structure.

Now, let us define the crossed product algebra.

Definition 3.42. (Crossed product algebra):

The crossed product algebra AoT R, of a von Neumann algebra A by R, is defined
on the Hilbert space H

ext = H⌦ L2(R) as follows:

AoT R =
n
eiT p̂ae�iT p̂, eiq̂s | a 2 A, s 2 R

o
00

(3.9.2)

Here, q̂ and p̂ are the canonical conjugate operators satisfying [q̂, p̂] = i, and they

act on L2(R).
Remark: The double commutant ensures that the resulting algebra is a von Neu-

mann algebra, i.e., it is weakly closed.

14We are defined here for R, but one can consider other groups.
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From the above definition, it must be clear that the crossed product algebra is generated

by the operator of the type eiT p̂ae�iT p̂ and eiq̂s15. A priori, it is not clear that it’s an

algebra, but nevertheless, it can be checked easily. It can easily be shown using the

Baker–Campbell–Hausdor↵ (BCH) formula that for any a, b 2 A and s1, s2 2 R,

(eiT p̂ae�iT p̂eiq̂s1)(eiT p̂be�iT p̂eiq̂s2) = eiT p̂
{a(e�iT s1beiT s1)}e�iT p̂eiq̂(s1+s2) (3.9.3)

Since T generates the automorphism of algebra, a(e�iT s1beiT s1) 2 A. Therefore, A oT R
is indeed an algebra, and closure ensures that it is a von Neumann algebra.

By adjoining with respect to e�iT p̂ and using the BCH formula, we can easily show that,

AoT R ⇠=
n
a⌦ I, e�iT s

⌦ eiq̂s | a 2 A, s 2 R
o
00

(3.9.4)

Notice that T � q̂ belong to AoT R. Furthermore, the above representation is particularly

interesting in the sense that in this representation, it is explicit that the automorphism is

now inner. That is,

eiT s
⌦ eiq̂s(a⌦ I)e�iT s

⌦ e�iq̂s = eiT sae�iT s
⌦ I (3.9.5)

One way to think about what we have just done by constructing the crossed product is

that we started with an outer automorphism, which can be viewed as the action of some

symmetry on the algebra that leaves the algebra invariant. Then, we added an additional

degree of freedom in a specific way, namely q̂, which transforms the outer automorphism

into an inner one. This procedure is analogous to gauging the automorphism, and it

closely resembles what is done in gauge theory. Another way of saying this is the famous

commutation theorem [52], which says that crossed product algebra is the subalgebra of

the algebra A⌦B(L2(R))that is invariant under T + q̂. That is,

AoT R = {a 2 A⌦B(L2(R)) : ei(T+q̂)tae�i(T+q̂)t = a 8t 2 R} (3.9.6)

This is like gauging the symmetry whose generator is T + q̂.

It can easily be shown that the commutant of (3.9.2) is,

(AoT R)0 = {a0 ⌦ I, eiT s
⌦ eiq̂s | a 2 A

0, s 2 R}00 (3.9.7)

15Here, we have made a slight abuse of notation: by eiT p̂ae�iT p̂, we actually mean
ei(T⌦p̂)(a⌦ IL2)e�i(T⌦p̂), and by eiq̂s, we mean IH ⌦ eiq̂s.
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This follows from the fact that eiT p̂ae�iT p̂
2 A and commute with a0 ⌦ I for all a0 2 A

0.

Also,

[eiT p̂ae�iT p̂, T + q̂] = eiT p̂[a, T ]e�iT p̂ + eiT p̂[T, a]e�iT p̂ = 0 (3.9.8)

where we have used that [eiT p̂, q̂] = TeiT p̂. Notice that T + q̂ belongs to the commutant

(A oT R)0. We also emphasize that equation (3.9.7) describes a crossed product algebra

as well. It should be clear from equations (3.9.2) and (3.9.7) that if A is a factor, then

AoT R is also a factor.

Till now, we have considered the general automorphisms on the algebra, but we can very

well choose it to be a modular automorphism (an automorphism by the modular operator

of some state). Then, there is a beautiful theorem by Takesaki, see corollary 9.7 of [53].

Theorem 3.43. (Duality theorem of type III1 and type II1):

Let A be a type III1 factor von Neumann algebra, then the crossed product of A by any of

its modular Hamiltonians K = � log�, where � is a modular operator of some state, is

a type II1 factor von Neumann algebra.

AoK R is a type II1 von Neumann algebra.

The proof of the theorem can be found in [53]. The type III1 refers to one of the subclasses

in Connes’ further classification of type III von Neumann algebras [51]. In particular, it is

a type III algebra for which every modular operator has spectrum supported on R+
[ {0}.

The beauty of the theorem is that it allows us to define both the trace and the density

matrix. As we have seen earlier, type III von Neumann algebras do not admit a (renormal-

ized) trace, whereas type II algebras possess a unique trace up to rescaling. The crossed

product construction enables us to relate type III algebras to type II, thereby allowing us

to define a renormalized trace on the extended algebra, which in turn makes it possible

to define a density matrix. This should be understood as an algebraic method of renor-

malizing the infinite quantities that arise in type III algebras or possibly in quantum field

theory. The trace on the crossed product has already been studied by Takesaki [53], and

we will write it explicitly following Witten [1]. As we also emphasized, the crossed product

construction is very similar to the construction of algebras in gauge theory. Later in the

thesis, we will see that it arises naturally in the construction of gravitational algebras.
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3.9.1 Modular theory in Classical Quantum States

One interesting question that one might want to ask is whether we can write the modular

operator of the crossed product algebra in A oK R in terms of the modular data of A.

It is shown in [1] that the modular operator can be explicitly obtained for some class of

classical-quantum states. So, let us first define the classical quantum state.

Definition 3.44. Classical-quantum states:

Consider a bipartite system with Hilbert space H = H1 ⌦H2. The state is called a

classical-quantum state if the density matrix ⇢ associated with the state in H is of

the form:

⇢ =
X

i

pi|ii1hi|1 ⌦ ⇢i,2

where
P

i
Pi = 1,{|ii1} some basis in H1 and ⇢2 is a density in H2.

One of the reasons it is called a classical quantum state is that it is non-entangled. In

particular, we want to take the state of type,

|�̂i = |�i ⌦ |fi 2 H
ext where |�i 2 H & |fi 2 L2(R) (3.9.9)

It is clearly, classical quantum state. We can choose the position representation of |fi,

and write,

|�̂i = |�i ⌦ |fi =

Z
dqf(q)|�i ⌦ |qi ⌘

Z
dqf(q)|�, qi = |�, fi (3.9.10)

Now, let | i 2 H be cyclic and separating in A for which we have constructed a crossed

product. We would like to make a convention that the operator âs = �
�ip̂

 
a�ip̂

 
eiq̂s, where

� is a modular operator of (A, | i). Then the Tomita operator of the state |�̂i for

modular crossed product algebra AoK R, where K = � log� , is

S
�̂
âs|�̂i = â†s|�̂i (3.9.11)
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then,

â†s|�̂i = e�iq̂s��ip̂

 
a†�ip̂

 
|�, fi

= e�isq̂��ip̂

 
a†�ip̂

 
S�| S | , fi

= S�| S e
�isq̂��ip̂

 
a†�ip̂

 
| , fi

= S�| S e
isq̂��ip̂

 
S a | , f⇤

i

= S�| e
isq̂�ip̂

 
a

Z
dqf⇤(q)| , qi

= S�| e
isq̂�ip̂

 
a

Z
dqf⇤(q)

Z
dpeipq| , pi

= S�| 

Z
dqf⇤(q)

Z
dpeipqe�iK paeisq̂| , pi

= S�| 

Z
dpf̃⇤(p)ei(q̂�K )pa| , si

= S�| f
⇤(q̂ �K )a| , si (3.9.12)

In the third step, we use the fact that S�| S is a�liated to A
0. That is,

S�| S ba| i = S�| a
†b†| i = ba|�i = bS�| S a|�i =) [S�| S , b]a| i = 0

for all a, b 2 A
16. In the fourth step, we have used the antilinearity of the Tomita operator

and its action on the algebra elements. In the six-step, we went to the Fourier basis so

that we can act p̂. Now, let us compute,

âs|�̂i = �
�ip̂

 
a�ip̂

 
eiq̂s |�, fi

= ��ip̂

 
a�ip̂

 
eiq̂sS�| S | , fi

= S�| S �
�ip̂

 
a�ip̂

 
eiq̂s | , fi

= S�| S �
�ip̂

 
a��ip̂

 
eiq̂s

Z
f(q)| , qi

= S�| S 

Z
eiqs��ip̂

 
af(q)| , qi

= S�| S �
�ip̂

 
f(q̂)a | , si

since | i is cyclic and separating state, it follows from (3.9.11),that

S
�̂
S�| S �

�ip̂

 
f(q̂) = S�| f

⇤(q̂ �K ) (3.9.13)

16Similarly, it can be shown that S�| S 
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Therefore, we get,

S
�̂
= S�| f

⇤(q̂ �K )
1

f(q̂)
�ip̂

 
S S |� (3.9.14)

where, we used the fact that S�1

 
= S and S�1

�| 
= S |�. We can further write the above

equation as

S
�̂
= J�| �

1/2

�| 
f⇤(q̂ �K )

1

f(q̂)
�ip̂

 
J �

1/2

 
J |��

1/2

 |�

= J�| �
1/2

�| 
f⇤(q̂ �K )

1

f(q̂)
�ip̂

 
��1/2

 
J J |��

1/2

 |�

= J�| �
1/2

�| 
f⇤(q̂ �K )e

q̂/2�ip̂

 
e�q̂/2

1

f( ˆq +K )
J J |��

1/2

 |�

=
�
J�| �

ip̂

 

�⇣
��ip̂

 
�1/2

�| 
f⇤(q̂ �K )e

q̂/2�ip̂

 

⌘⇣
e�q̂/2

1

f( ˆq +K )
J J |��

1/2

 |�

⌘
(3.9.15)

Here in the second step, we used J �
1/2

 
= ��1/2

 
J . In the third step, we used the

relation eq̂/2�ip̂e�q̂/2 = �ip̂��1/2 and [q,�ip̂

 
] = K �

ip̂

 
. We can write the second term in

the bracket as,

⇣
��ip̂

 
�1/2

�| 
f⇤(q̂ �K )e

q̂/2�ip̂

 

⌘
=
⇣
��ip̂

 
�1/2

�| 
��1/2

 
f⇤(q̂ �K )e

ˆq�K 
2 �ip̂

 

⌘
(3.9.16)

Since the bounded function q̂ �K belongs to the crossed product algebra, see equation

(3.9.4), f⇤(q̂ � K )e
ˆq�K 
2 must be a�liated to the algebra. Moreover, it can be shown

that �1/2

�| 
��1/2

 
is a�liated to A. Therefore, the whole term in the above equation is

a�liated with crossed product algebra. Similarly, it can be shown that the third term in

the equation (3.9.15) is a�liated with the commutant of the crossed product algebra 17.

Now, we can find a modular operator using the relation, �
�̂

= S†

�̂
S
�̂
. It can easily be

shown that a modular operator takes the following form,

�
�̂
= ⇢

�̂
⌦ (⇢0

�̂
)�1 (3.9.17)

where,

⇢
�̂
= ��ip̂

 
f(q̂ �K )��| �

�1/2

 
e

q̂�K 
2 f⇤(q̂ �K )�

ip̂

 
(3.9.18)

⇢0
�̂
= ��1/2

�| 
J�| J e

q̂/2
|f(q̂ +K )|

2J J�| �
�1/2

�| 
(3.9.19)

In order to obtained above equations, we used that ��1

 |�
= ��| and J�1

 |�
= J�| . It

must be clear, following the same argument presented in the last paragraph, that ⇢
�̂

is

a�liated to the crossed product algebra and ⇢0
�̂
is a�liated to its commutant. Notice that

17It follows from the fact that q̂+K and J J�| is a�liate to the commutant of crossed product algebra
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the modular operator factorizes into operators a�liated to the type II crossed product

algebra and its commutant. We would like to remind that the modular operator gets

factorized even in type I, but there the operator corresponding to ⇢
�̂

and ⇢0
�̂

was the

density matrix in the algebra and its commutant (3.8.32). This tells us that maybe we

should interpret the ⇢
�̂
and ⇢0

�̂
as density matrix of type II crossed product algebra and its

commutant respectively, keeping in mind that they at most can be a�liated to the algebra

and the commutant. We also want to emphasize that the density matrix is ambiguous up

to overall scaling, because scaling of ⇢
�̂
by ec and ⇢0

�̂
by e�c, where c is some constant,

gives same modular operator. These are the expressions obtained by authors in [41, 54].

Now, let’s say we want to find the modular of the state | ̂i = | i⌦ |fi, then we just need

to put |�i = | i in the equation (3.9.18) and (3.9.19), which will yield,

⇢
 ̂
= eq̂|f(q̂)|2 (3.9.20)

⇢0
 ̂
= e(q̂+K )|f(q̂ +K )|

2 (3.9.21)

Therefore, the modular operator takes the following form,

�
 ̂
= � 

|f(q̂|2

|f( ˆq +K )|2
(3.9.22)

Witten obtained this expression in [1]. We can also obtain the Tomita operator by putting

|�i = | i in (3.9.15).

S
 ̂
= J �

ip̂

 

f⇤(q̂)

f(q̂ +K )
�1/2

 
(3.9.23)

We can use the above equation along with (3.9.22) to get,

J
 ̂
= J �

ip̂

 

⇣f⇤(q̂)f⇤(q̂ +K )

f(q̂)f(q̂ +K )

⌘
1/2

(3.9.24)

Hence, we have obtained the modular data for the type II crossed product algebra in

classical quantum states.

3.9.2 Trace in Crossed Product

As we have seen in the last subsection, the modular operator of the type II crossed product

algebra AoK R in classical quantum state factories. We have also argued that ⇢
�̂
and ⇢

 ̂

can be thought of as density matrix a�liated to the algebra AoK R. The identification

of ⇢
 ̂

as a density matrix immediately implies the existence of the trace. We can define
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trace following [1], as

tr[â] = h ̂|â⇢�1

 
| ̂i 8â 2 AoK R (3.9.25)

It is evident from the above definition that the above tr satisfies linearity and positivity.

The cyclicity follows from the property (6) of the modular operator. For any â, b̂ 2

AoK R,

tr(âb̂) = h ̂|âb̂⇢�1

 
| ̂i = h ̂|b̂⇢�1

 
�
 ̂
â| ̂i = h ̂|b̂⇢�1

 
⇢
 ̂
⌦ (⇢0

 ̂
)�1â| ̂i = h ̂|b̂â⇢

 ̂
�
 ̂
| ̂i

= tr(b̂â) (3.9.26)

In the above equation, we used the fact that ⇢0
 ̂
is a�liated with commutant and �

 ̂
| ̂i =

| ̂i. Therefore, (3.9.25) satisfies all the properties of trace defined in (3.17). We can also

put an explicit form of ⇢
 ̂
from (3.9.20) and | ̂i =

R
1

�1
dqf(q)| i ⌦ |qi, we get

tr[â] =

Z
1

�1

dqeqh |â(q)| i (3.9.27)

where â(q) is operator valued function of q. Notice that the above trace is not well defined

for all elements of A oK R, for example, if â = ��ip̂

 
a�ip̂

 
2 A oK R, then trace is not

finite. One might wonder whether it even assigns a finite value to any operator. If we

assume, h ̂| ̂i = 1, then tr[⇢
 ̂
] = 1. Hence ⇢

 ̂
is traceclass with respect to (3.9.25).

Further, we know that the algebra is generated by the operator of type ��ip̂

 
a�ip̂

 
eiq̂s,

where s 2 R. Therefore, we can take an arbitrary linear combination of such operators,

such as

â =

Z
1

�1

ds��ip̂

 
a(s)�ip̂

 
eiq̂s (3.9.28)

where a(s) for each s pick an operator for A. Let us further assume that a(s) goes to zero

at |s| ! 1 and holomorphic for 0  Im(s)  1. Then,

tr[â] =

Z
1

�1

dq

Z
1

�1

dseq+iqs
h |â(q)| i = 2⇡h |â(i)| i < 1 (3.9.29)

We obtained the second equality by shifting the contour of s from R to R+ iR. So, indeed,
there are some trace-class operators with respect to (3.9.25) that assign a finite value to

them. Since the density matrix is ambiguous up to overall scaling, by (3.9.25), the trace

will also be ambiguous up to overall scaling. If crossed product algebra is a factor, then

we know that there is a unique trace up to overall scaling. Hence, for the crossed product

factor, any trace will be related to the trace in (3.9.25) by overall scaling. Once we have
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the trace and density matrix, we can define the Algebra entropy for the state ⇢
�̂
by 18,

S(�̂) = �tr[⇢
�̂
log ⇢

�̂
] (3.9.30)

Since the trace is ambiguous up to scaling, the entropy will be ambiguous up to an additive

constant. But the entropy di↵erence will be unambiguous, like in thermodynamics. It can

easily be shown that the above expression can also be written as,

S(�̂) = �h�̂| log ⇢
�̂
|�̂i (3.9.31)

To obtain the above equation, we used the proper (5) of the relative modular operator.

To further simplify the above expression, let us first simplify the ⇢
�̂
given in (3.9.18),

⇢
�̂
= ��ip̂

 
f(q̂ �K )��| �

�1/2

 
e

q̂�K 
2 f⇤(q̂ �K )�

ip̂

 

= f(q̂)eq̂/2��ip̂

 
��1/2

 
��| �

�1/2

 
�ip̂

 
eq̂/2f⇤(q̂)

= f(q̂)eq̂/2��ip̂

 
��1/2

 |�
���

�1/2

 |�
�ip̂

 
eq̂/2f⇤(q̂)

= ��ip̂

 |�
f(q̂ �K |�)e

q̂��f
⇤(q̂ �K |�)�

ip̂

 |�
(3.9.32)

In the second line, we used the fact that p̂ acts on q̂ as a shift operator. In the third

line, we used the Conne cocycle theorem that ��1/2

 
�1/2

�| 
= ��1/2

 |�
�1/2

�
. In the last line,

we shift property of p̂ and K |� = � log� |�. Now using the fact the for any unitary

operator U and some operator A, log
�
UAU †

�
= U(logA)U †, we get,

log ⇢
�̂
= ��ip̂

 |�

n
q + log

⇣
f(q̂ �K |�)��f

⇤(q̂ �K |�)
⌘o
�ip̂

 |�

= q̂ +K |� + log
⇣
f(q̂)��ip̂

 |�
���

ip̂

 |�
f⇤(q̂)

⌘
(3.9.33)

Putting the above equation in (3.9.31), we get

S(�̂) = �h�̂|q̂|�̂i � h�̂|K |�|�̂i � h�̂| log
⇣
f(q̂)��ip̂

 |�
���

ip̂

 |�
f⇤(q̂)

⌘
|�̂i (3.9.34)

This expression is also obtained in [41, 55, 1]. The crossed product construction and the al-

gebra entropy defined above will play a vital role in understanding entropy in semiclassical

gravity.

18It can easily be shown using h |��| | i = h�|�i, that tr[⇢�̂] = h�̂|�̂i. Hence, for h�̂|�̂i=1, it is a
state.



Chapter 4

Black Holes in GR, Local Algebra

of Observables and GSL

The material presented in this chapter is based on the work of the author in [4]

In this chapter, we show a local generalized second law (the generalized entropy is nonde-

creasing) in crossed product constructions for maximally extended static and Kerr black

holes using modular theory. The new ingredient is the use of results from a recent paper

discussing the entropy of the algebra of operators in subregions of arbitrary spacetimes

[41]. These results rely on an assumption which we show is true in our setting. In the

last part of this chapter, we look at modular Hamiltonians of deformed half-spaces in a

class of static spacetimes, including the Schwarzschild spacetime. These are computed us-

ing path integrals, and we primarily compute them to investigate whether these non-local

modular Hamiltonians can be made local by subtracting o↵ pieces from the algebra and

its commutant, as has been surmised in the literature. Along the way, the averaged null

energy condition (ANEC) also follows in this class of spacetimes.

123
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4.1 Introduction

Bekenstein proposed the Generalized Second Law (GSL) [56], [57] for black hole spacetimes

with quantum matter in the expectation that the second law of thermodynamics would be

valid near black holes. This is the statement that the generalized entropy is nondecreasing,
dSgen

dv
� 0, where v is the null coordinate on the horizon. Here,

Sgen =<
A

4~G > +SQFT , (4.1.1)

where A is the black hole horizon area at an arbitrary cut of the event horizon and SQFT

is the entanglement entropy of the quantum fields in the black hole exterior. We put the

<> on the area term to emphasize that the graviton correction is included. As is also

well known, both terms in (4.1.1) are individually ultraviolet (UV) divergent (the first

term due to loop e↵ects which renormalize G and the second term, entanglement entropy,

which is UV divergent), but there is a lot of evidence that the sum is UV finite [18]—[58].

The GSL for Einstein gravity was proved by Wall [5] under the assumption that there

exists some renormalization scheme for the boost energy and the entropy in quantum field

theory (QFT). Explicitly constructing such a renormalization scheme and proving GSL

where each step is manifestly finite is always good. It can also provide insight on why

the Sgen is UV finite and independent of the UV cuto↵, and the role of gravity in making

(4.1.1) well defined.

The QFT algebra in the exterior of the black hole in strict GN ! 0 is of type III1 1.

Recently, it was shown that the perturbative correction in GN changes the algebra from

type III1 to type II1 crossed product algebra [1, 2, 3]. Furthermore, the entropy of the

algebra of observables (3.9.34) in the AdS-Schwarzschild exterior, defined in the crossed

product construction, is equal to the generalized entropy at the bifurcation surface up to

a state-independent constant [3]. This construction was extended to asymptotically flat

black holes in [2], where including the ADM Hamiltonian and a timeshift degree of freedom

yields a crossed product with the modular automorphism group of the original algebra.

This is further generalized for the case of Kerr in [60]. We want to emphasize that these

results are obtained only at the bifurcation surface.

Our primary goal in this chapter is to extend the above results to arbitrary cuts on the

horizon and to show that a local version of the generalized second law (GSL) is indeed true

1The boundary version of this statement in the AdS/CFT correspondence was found by Leutheusser
and Liu [14], [13] (see also [59]). They studied the holographic boundary operator algebra of the CFT dual
to gravity in the asymptotically anti-de Sitter (AdS) black hole spacetime. They found an emergent type
III1 von Neumann algebra for single trace operators in the large N limit of the CFT boundary.
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in crossed product constructions for maximally extended static black holes and Kerr ge-

ometries. We have also discussed the asymptotically AdS black holes in Section V. Hence,

the crossed product gives the renormalization scheme needed for the proof of GSL. In

order to prove this, we utilised the construction of Jensen, Sorce, and Speranza (JSS) [41],

who studied operator algebras associated with domains of dependence of arbitrary partial

Cauchy slices in Einstein gravity coupled to matter. These algebras are of Type III, but

can be promoted to Type II via a crossed product with the modular automorphism group.

Their construction relies on a conjecture that a certain local gravitational Hamiltonian,

generating flow along a specially chosen vector field on the Cauchy slice, serves as the

modular Hamiltonian for some state. JSS support this by arguing that non-local modular

Hamiltonians can be rendered local through appropriate subtractions, and the converse

of Connes’ cocycle theorem then ensures such a local integral defines the modular Hamil-

tonian of a state. Under this conjecture, one can associate an entropy to the algebra of

a subregion, which matches the generalized entropy up to a constant. In the setting of

our application of the JSS results, we have shown that the conjecture is indeed true. By

considering a slight generalization of the JSS construction to include an observer even for

wedge-shaped regions with an asymptotic boundary, we have shown that we obtain a local

GSL. We also give evidence for this conjecture for more general modular Hamiltonians in

section (4.7) - specifically, seeing how a non-local modular Hamiltonian can be made local

by subtracting o↵ appropriate terms.

The chapter is organized as follows. In Section 2, we briefly review the crossed product

in black hole spacetime. In Section 3, we define a half-sided modular inclusion, which is

used crucially to obtain modular Hamiltonians at the arbitrary cut on the horizon in black

hole spacetimes. In Section 4, we discuss modular Hamiltonians in black hole spacetimes,

both static and Kerr black holes. In Section 5, we review the salient results of JSS on

algebra entropy of subregions of spacetime, which are domains of dependence of partial

Cauchy slices. In Section 6, we derive a local GSL using these results. In Appendix

A (7.2), we discuss the modular Hamiltonians of wedges in Minkowski spacetime as a

warm-up example for the application of half-sided modular inclusions. In section (4.7),

we compute (one-sided) modular Hamiltonians for various subregions of a general class

of spacetimes and discuss whether they satisfy the conjecture of JSS. In the Discussion

section, we provide a summary and discussion of the results presented in this chapter.
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4.2 Crossed Product in Black Hole Spacetime

The series of recent papers by CLPW, Witten, and CPW [2, 1, 3] has helped to under-

stand the generalized entropy introduced by Bekenstein [56] better. They have addressed

the question of why the generalized entropy is well-defined, whereas the gravity contribu-

tion and the quantum field contribution in the generalized entropy are not well-defined

separately. CPW showed for an eternal black hole that is either asymptotically flat and

asymptotically AdS, that the exterior algebra of quantum field (including gravitons) is a

type II crossed product algebra. Further, they showed that the type II algebra entropy de-

fined by (3.9.34) in semi-classical state is the generalized entropy at the bifurcation surface

of the black hole. They have also discussed the monotonicity of the generalized entropy

of asymptotically AdS black holes by using techniques from von Neumann algebras.

The general construction of crossed products is reviewed in the previous chapter (3.9)2.

In this subsection, we will briefly see how the algebra in the exterior of a black hole in

GN ! 0 is a crossed product algebra as shown by CPW.

Figure 4.1: Maximally extended stationary black hole with Cauchy surface S. The bulk
algebra of the left and the right exterior region is A`,0 and Ar,0 respectively.

2Gravitational crossed product constructions have been explored in [61]. For crossed product construc-
tions without gravity, and for a connection between the crossed product and extended phase space, see
[62], [63]. Crossed product constructions for quantum field theories on subregions are discussed in [64].
Approximations to the crossed product for Type I algebras are explored in [65]. The use of the crossed
product as a covariant regulator is discussed in [55].
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Let M be the asymptotically flat, maximally extended Schwarzschild black hole in Ein-

stein’s theory or the maximally extended AdS-Schwarzschild black hole. We consider

quantum fields in this spacetime, including gravitons. The left and right exterior regions

of M will be denoted by ` and r respectively, while L and R will be used to denote left and

right spatial infinity. Let H0 be the Hilbert space of this theory that we get by quantizing

the fields and the local algebra of observables of the left and right exterior region be A`,0

and Ar,0 respectively as shown in Figure 4.1. It is well known that algebras A`,0 and Ar,0

are Type III1 factors (their centers are trivial) [66, 24, 67]3. Moreover, A`,0 and Ar,0 are

each other’s commutants (i.e all the operators of A`,0 commute with all the operators in

Ar,0).

The spacetime is stationary and equipped with a time translation Killing field V . V is

future directed in the right exterior region and past-directed in the left exterior region.

Due to background di↵eomorphism invariance, one can define a conserved quantity ĥ as-

sociated with the time translation vector field V . Let S be the bulk Cauchy surface going

from the spatial infinity of the right exterior region to the spatial infinity of the left exterior

region, through the bifurcation surface as shown in Figure 4.1. Then ĥ can be defined as

ĥ =

Z

S

d⌃µV ⌫Tµ⌫ . (4.2.1)

Here, Tµ⌫ is the stress-energy tensor of the bulk fields4. In Tomita-Takesaki theory of the

quantum fields in the black hole exterior, �ĥ is the modular Hamiltonian associated with

the Hartle-Hawking state | HH > of the black hole and � is the Hawking temperature5[68,

69]. It is well known that ĥ in Einstein’s gravity is the di↵erence between the right ADM

Hamiltonian HR and the left ADM Hamiltonian HL i.e. ĥ = HR �HL.

CLPW and CPW now extend the Type III1 algebra A`,0 and Ar,0 by including one more

operator hL with A`,0 and hR similarly for the right algebra 6. This extended (crossed

product) algebra acts on an extended Hilbert space H = H0 ⌦ L2(R) where the extra

degree of freedom that has been introduced is the time-shift (the sum of the times in

the left and the right exteriors). The extended crossed product right algebra is denoted

Ar = Ar,0 o Rh and similarly for the left algebra. Here,

hL = HL �M0 hR = HR �M0 (4.2.2)

3The algebra of operators in quantum field theory in a causal wedge is always a von Neumann algebra
of Type III [14]. When the center is trivial it is a Type III1 algebra.

4Tµ⌫ includes the contribution from the pseudo-stress tensor of gravitons.
5The modular operator is defined as � = exp{(�Hmod)} and for | HHi, Hmod = �ĥ.
6As discussed in (3.9), the crossed product algebra can be understood as an extension of the original

algebra by adjoining the operator T + q̂, where T generates an automorphism of the algebra.
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M0 is the ADM mass of some reference black hole. CPW work in a micro-canonical

ensemble i.e. an energy eigenstate centered around some energy M0 (mass of the reference

black hole)7. The algebra of observables for the right exterior region is studied in a semi-

classical limit i.e. G ! 0. In this limit, the ADM masses HR and HL diverge because the

black hole mass M0 (Schwarzschild radius divided by 2G) diverges. Also note that the

modular Hamiltonian ĥ depends only on the fluctuation of the ADM Hamiltonian, i.e., on

hL and hR. So, CPW works with the non-divergent subtracted Hamiltonians hL and hR.

We can also write ĥ = hr � h` where

hr =

Z

S1

d⌃µV ⌫Tµ⌫ (4.2.3)

h` = �

Z

S2

d⌃µV ⌫Tµ⌫ (4.2.4)

where S1 and S2 are the right exterior and the left exterior part of the Cauchy surface S

Figure 4.2: This figure depicts the split of Cauchy surface S into union of the red Cauchy
surface S1 in the right exterior and the green Cauchy surface S2 in the left exterior.

as shown in Figure 4.2. As pointed out by CPLW, hr and h` have divergent fluctuations.

Thus, such a splitting is not true, strictly speaking [1], but in the extended algebra of

7CPW explicitly do the microcanonical ensemble construction in the boundary CFT using a thermofield
double state.
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Witten, the modular operator has a factorization into a product of operators in the left

and right algebra.

ĥ = hr � h` = hR � hL (4.2.5)

Further,

hR = ĥ+ hL ⌘
h 
�

+ x (4.2.6)

Let h = Hmod denote the modular Hamiltonian for the Hartle–Hawking state | i =

| HHi. The algebra Ar = Ar,0 o Rh is the crossed product of the algebra Ar,0 by the

modular group associated with the cyclic and separating vector | i. As discussed in the

previous chapter, the crossed product of a type III1 von Neumann algebra by its modular

group yields a type II1 von Neumann algebra. Moreover, a type II1 crossed product

algebra admits a notion of trace, and thus we can define the notion of density matrix and

entropy, referred to entropy of algebra (see (3.9)). One might think that the operator mea-

suring fluctuations in the ADM mass is added in the algebra by hand without any reason.

However, we emphasize that this is not the case. Gravity is a di↵eomorphism-invariant

theory, and there are gauge constraints associated with di↵eomorphisms. Importantly,

some of these gauge constraints must be imposed even in the GN ! 0 limit—for example,

the gravitational Gauss law. The crossed product algebra constructed by CPW is the

algebra of observables that commute with these constraints, and therefore represents the

correct algebra of observables in a gravitational setting.

Following the discussion in (3.9), we can write operator in Ar denoted by â has the form

â = ae(ish /�) ⌦ e(isx), where a 2 Ar,0 . The states on which this operator acts has the

form
��� ̂
E
= | i⌦ g(x) 2 H where | i 2 H0 and g(x) 2 L2(R). The most generic operator

in Ar can be written as

â =

Z
1

�1

a(s)eis(x+ĥ)ds (4.2.7)

where a(s) 2 Ar,0. Similarly, we can write the most general state as

��� ̂
E
=

Z
dxf(x) | i |xi (4.2.8)

We can also write algebra entropy using (3.9.34). As emphasized earlier, S(�̂) defined in

(3.9.34) should not be thought of as the entanglement entropy of Ar but is a renormalized

entropy. Also, because of the ambiguity in the definition of trace (trace is defined up to

a scaling), it is only the entropy di↵erences that are unambiguous, not the entropy itself.

CPW now works with a semi-classical state, i.e, the state with fluctuation in timeshift p,

�p ⇠ O("), where " is some parameter much smaller than unity. Then, with x = hL,
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�x ⇠ O(1
"
). CPW consider the AdS-Schwarzschild black hole and write down the semi-

classical state in the boundary CFT. However, it could have equally been defined in the bulk

and we will assume that the formulae below correspond to the equivalent bulk statement.

The general form of such a state is,

����̂
E
=

Z
1

1

"
1
2 g("x) |�i |xi where |�i 2 H, g(x) 2 L2(R) (4.2.9)

It is shown by CPW that the density matrix ⇢
�̂
for the state

����̂
E
is approximately 8 given

by

⇢
�̂
⇡ "ḡ("hR)e

��x��| g("hR) (4.2.10)

where ��| = e�h |� is a relative modular operator and h |� is the relative modular

Hamiltonian 9. The relative modular Hamiltonian h�| is defined such that h | = h .

As we have already mentioned, the Type II algebra modular operator factorizes, i.e�
�̂| ̂

=

⇢
 ̂
⇢0�1

�̂
(where prime denotes the element of the commutant of the algebra Ar)[3]. Putting

(4.2.10) in (3.9.31) or (3.9.34) yields

S(�̂)Ar
=
D
�̂
����hR

����̂
E
�

D
�̂
���h |�

����̂
E
�

D
�̂
��� log ("|g("hR)|2)

����̂
E
+O(") (4.2.11)

By definition, the second term in the above equation is the relative entropy,

Srel(�|| ) = �

D
�̂
���h |�

����̂
E

(4.2.12)

The expression in (4.2.11) is shown to be equal to Sgen at the bifurcation surface up to an

additive constant; for details, see [2, 3]. This completes the discussion of the algebra of

observables in black hole spacetime. Now, we introduce concepts of the half-sided modular

inclusion, which will play a key role in proving GSL.

4.3 The half-sided modular inclusion (HSMI)

In this section, we want to introduce the definition and properties of the half-sided modular

inclusion (HSMI). Let A be a von Neumann algebra acting on the Hilbert space H, with

the cyclic and separating vector ⌦ 2 H. The modular operator for A is �A.

1) Hsmi(A)� is a von Neumann sub-algebra B of A with the properties: a) ⌦ is

cyclic and separating for B.

8The expression is only valid up to corrections suppressed by O(") terms.
9 is the Hartle Hawking state and � is any arbitrary state of quantum fields in the black hole spacetime.
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b) �it

A
B��it

A
⇢ B for t  0.

In this case B is called the positive half-sided modular inclusion of A.

2) Hsmi(A)+ is a von Neumann sub-algebra B of A with the properties: a) ⌦ is

cyclic and separating for B.

b) �it

A
B��it

A
⇢ B for t � 0.

In this case B is called the negative half-sided modular inclusion of A.

Let �B be the modular operator of B. There is a theorem ensuring the existence of the

one-parameter continuous unitary U(t) such that U(1) maps A and B [42].

Theorem 1: If A and B are von Neumann algebras such that B is the half-sided modular

inclusion of A, then there exists a one parameter continuous unitary U(t) with t 2 R with

the following properties:

When inclusion is negative

a) U(t) has a positive generator, i.e we can write

U(t) = exp[iHt], with H � 0 (4.3.1)

b) U(t)⌦ = ⌦ 8t 2 R

c) U(t)AU(�t) ⇢ A and t  0

d) B = U(�1)AU(1)

e) ��it

A
�it

B
= U(1� e�2⇡t).

h) �it

A
U(s)��it

A
= U(e(2⇡t)s)

When inclusion is positive

a) U(t) has a positive generator, i.e, we can write

U(t) = exp[iHt], with H � 0 (4.3.2)

b) U(t)⌦ = ⌦ 8t 2 R

c) U(t)AU(�t) ⇢ A and t � 0

d)B = U(1)AU(�1)

e) ��it

A
�it

B
= U(e2⇡t � 1).

h) �it

A
U(s)��it

A
= U(e(�2⇡t)s)

The conditions a,b and c in (4.3.1) and (4.3.2) define what is known as half-sided modular

translation in the literature. As a warm up example, we have shown in the appendix 7.2

how one can obtain the modular operator for arbitrary wedges in Minkowski spacetime

using modular inclusions. In particular, we obtain the modular operator of the wedge

which is a translated version of the original wedge at the origin by constant amount. One
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can also obtain the modular operator of a null translated wedge where the null translation

depends on the transverse coordinate. The latter case is a simpler case of a null translated

wedge in a black hole spacetime which will be used while proving the GSL.

4.4 Half-sided modular inclusions in black hole spacetimes

In this section, we want to obtain the relation between the modular Hamiltonian of two

wedges in both static and Kerr black holes. For static black holes, the wedges are A and

B, as shown in Figure 4.3. We will restrict ourselves to black holes with a bifurcate Killing

horizon and a smooth bifurcation surface. Both asymptotically flat and asymptotically

AdS black holes are considered. We will also obtain such a relation for the two wedges on

H
+ for the Kerr black hole.

Figure 4.3: The figure depicts a black hole spacetime with Kruskal-like coordinates.

Static Black holes:

Let MA and MB be the von Neumann algebras associated with the wedge A and B,

respectively, as shown in Figure 4.3. Here, v⇤(y) > 0 can be a function of the transverse

coordinates y. Sewell’s work in [69] established that the modular Hamiltonian of the right

exterior in the static black hole spacetime generates time translation with respect to the
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asymptotically timelike Killing vector in the right exterior (for e.g, the Schwarzschild time

in a Schwarzschild black hole). The time translation Killing field behaves like a boost

vector field on the event horizon of the black hole. Let ⇠µ be the Killing field associated

with the time translation in this spacetime and let Tµ⌫ be the stress tensor of all quantum

fields present in this spacetime. Then, let us define

KA =
2⇡



Z

⌃

Tµ⌫⇠
µd⌃⌫ (4.4.1)

where ⌃ represents a Cauchy surface in spacetime and , the surface gravity, is specific

to the black hole. In this spacetime, there exists a Hartle-Hawking state ⌦HH that is a

unique stationary state with respect to Killing time and is regular at the horizon [70].

This state is also KMS when restricted to the wedge A. The KMS condition for operators

a and b in MA is

< ↵t(a)b >=< b↵t+i�(a) > (4.4.2)

Here, ↵t is the automorphism of the algebra generated by the isometry of translations

of the time (generated by the asymptotically timelike Killing vector). The modular op-

erator for (MA,⌦HH) for the right exterior is �A = exp[�KA]. Modular flow �it

A
=

exp[�iKAt], corresponds to boost-like flow near the horizon and timelike flow inside A.

↵t(a) = exp[�iKAt]a exp[+iKAt], and we know from modular theory that this is an auto-

morphism of the algebra. Now, since MB ⇢ MA, this implies ⌦HH is separating for MB.

Furthermore, the fact that ⌦HH is cyclic with respect to MA and the spacetime possesses

a global timelike Killing field implies ⌦HH is cyclic for MB [71, 72]. In this section, we will

choose for the Cauchy slice ⌃ of the black hole right exterior, H+
[ I

+, the union of the

future event horizon and future null infinity (both on the left and right for the maximally

extended black hole).

As seen in Figure 4.3, �it

A
has a local geometrical action on the operators in MB, causing

them to move along integral curves of the boost Killing field. Since the flow is null on the

horizon and timelike inside, the forward boost cannot take the local operator in MB out-

side it. This implies: �it

A
MB�

�it

A
⇢ MB for t  0. Therefore, according to the definition

of positive half-sided modular inclusion, MB is the positive half-sided modular inclusion

(HSMI) of (MA,⌦). Once the inclusion holds, Theorem 1 guarantees the existence of a

unitary U(t) such that

��it

A
�it

B = U(e2⇡t � 1) (4.4.3)

where U(t) = exp[iEv⇤t] where Ev⇤ is a positive operator. From property (d) of a positive

half-sided modular inclusion, it follows that Ev⇤ is the generator of a null translation and
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can be written as

Ev⇤ =

Z
1

�1

Z
d2⌦ dv v⇤(y)Tvv (4.4.4)

Now following the same steps as in the appendix (7.2) for the Minkowski wedges, we can

easily show that

KB = KA � 2⇡Ev⇤ (4.4.5)

and the modular flow of the wedge B

�it

B = e�iKBt. (4.4.6)

We know there is no global translation symmetry in this spacetime, but null translation

is a symmetry on the horizon. As a result, we anticipate that the modular Hamiltonian

of the wedge B will be expressed in local form, at least on the horizon (by local form, we

mean as a local integral over the three dimensional Cauchy slice, which in this case is a

portion of the horizon). If one chooses any other partial Cauchy slice in the wedge B other

than the horizon (H+
[ I

+ for asymptotically flat black holes), the modular Hamiltonian

will be non-local. It is straightforward to verify that the one-sided modular Hamiltonian

when computed on H
+
v⇤[I

+ in asymptotically flat spacetime and H
+
v⇤ in AdS, is identical

to the form of a conjectured modular Hamiltonian in [41], where H
+
v⇤ is the portion of the

future horizon for v > v⇤. This is because

KH
+
v⇤[I

+

B
= 2⇡

Z
1

v⇤

dv

Z
d2⌦ Tvv(v � v⇤) +K(I+). (4.4.7)

Here, K(I+) is the contribution to the modular operator from the partial Cauchy slice

I
+, which is common to KB and KA. Note that the first term on the right in (4.4.7) is

exactly of the form of a local modular operator proposed in [41] in a perturbative gravity

expansion where Tab also contains the stress-energy of gravitons. In [41], it is conjectured

that for the domain of dependence of a partial Cauchy slice ⌃A in any spacetime, an

expression such as Z

⌃A

TabV
ad⌃b (4.4.8)

is proportional to the modular Hamiltonian for some state, if the vector field V in the

integral obeys certain properties: it acts like a boost close to the entangling surface sep-

arating the partial Cauchy slice from its complement, and has a certain prescribed form

on the domain of dependence of the complement of this Cauchy slice. Further, the vector

V is such that raVb|S = nab where S is the entangling surface and nab is the binor-

mal to the surface satisfying nabnab = �2.  is a constant. It can be checked that the
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vector field V = (v � v⇤) @
@v

satisfies all the requirements of [41] on the horizon — fur-

ther, it can be suitably extended both to the rest of the wedge (by choosing for example

((v � v⇤) @
@v

� u @

@u
)) and to the domain of dependence of the complement to the Cauchy

slice.  is exactly the surface gravity on the horizon. The condition raVb|S = nab is

satisfied if we take v⇤ to be a constant. When v⇤ = f(y), then we need to modify the

condition in [41] to be

nab
raVb|S = �2. (4.4.9)

As it happens, all the derivations in [41] go through with this modification - further, it is

possible to change coordinates and satisfy the condition raVb|S = nab . Now, if we have

v⇤(y) being a non-trivial function of the transverse coordinates y, then raVb will not get

any contributions from the terms proportional to the Christo↵el symbols since those terms

are proportional to the components of V which vanishes at the entangling surface S. The

terms of the form @aVb will contain derivatives with respect to the transverse coordinates.

However, those terms get projected out when multiplied by the binormal nab in (4.4.9).

So, V satisfies (4.4.9).

Here, we know exactly that KB is the modular Hamiltonian of wedge B for the same state

⌦HH as KA and is obtained via the half-sided modular inclusion. Thus, this provides an

example where the conjecture of JSS in [41] is exactly true — further, in their conjecture,

the state for which this expression is the modular Hamiltonian is not known in general,

whereas in this example, we know this.

Kerr black hole:

The Kerr spacetime is stationary, and has a Killing horizon. The Killing field associated

with the horizon is not timelike everywhere in the exterior of the black hole. As a result,

there is no global KMS state on this spacetime. There is no Hartle-Hawking state for which

we can repeat the procedure which we did for the Schwarzschild black hole. However, one

can define a stationary state in the interior until the Cauchy horizon, and the exterior of

the black hole [73]. The Kerr spacetime is not globally hyperbolic when extended beyond

the inner Cauchy horizon. Nevertheless, there is a well defined initial value problem for the

exterior region R and the region between the Cauchy horizon and the exterior horizon F .

This has been discussed in great detail by Kudler-Flam, Leutheusser and Satishchandran

(KLS) in the paper [60]. Figure 4.4 depicts one of the Cauchy surfaces for these regions.

In this section, we will be primarily interested in the right exterior of the black hole. Let

us consider linear fields in this spacetime which we generically denote �(x). First of all,

it can be shown that any local field smeared with respect to some smooth function with
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Figure 4.4: The figure depicts the Kerr black hole, where the red curvy line represents
the singularity and the blue line represents the Cauchy surface for R [ F .

compact support can be written in terms of smeared local fields on some Cauchy slice [74].

We are interested in a Cauchy slice for the right exterior. It was shown by Wall [5] that

one can take the Cauchy slice to be the union of H+

R
and I

+. We can construct the algebra

of observables A
H

+
R

on H
+

R
and A

I
+
R

on I
+

R
and then the algebra of observables in the

right exterior AR ' A
H

+
R

⌦A
I
+
R

. This decomposition of bulk algebra in terms of boundary

algebra has also been done by KLS in [60] for the Cauchy slice which is a union of H�

and I
�. KLS consider a Gaussian state in the black hole right exterior 10. They assume

that the state is Hadamard, stationary with respect to the horizon Killing field and has

zero energy with respect to it. This state can be written as a state on the von Neumann

algebra !0 : AR ! C. This state is denoted !0 = !H
�

⌦ !I
�

, where !H
�

and !I
�

are

invariant with respect to the Killing field, and are Gaussian at H
� and I

� respectively.

Then, they take the unique Gaussian state invariant under a�ne time translations on H
�

and I
�. They show this obeys the KMS condition (4.4.2) on the horizon. This enables

10These are states for which one-point functions vanish and n point functions can be written as products
of 2 point functions.
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them to determine the form of the modular Hamiltonian on H
� and I

�.

K� =
2⇡



Z

H�[ IR
�

Tµ⌫⇠
µd⌃⌫ (4.4.10)

where ⇠µ = tµ + ⌦H µ. tµ is the time translation Killing field and  µ is the azimuthal

Killing field in the Kerr spacetime. We can do the same at H
+ and I

+. Thus, we

assume the existence of a quasifree Hadamard, stationary state with zero Killing energy

and consider the unique state invariant under a�ne time translations on H
�

L
, H+

R
and I

+.

Such a state is automatically KMS on H
+

R
. The two-point function in this state is given

on H
+

R
with coordinates (V, xA) by

!0(⇧(x1)⇧(x2)) = �
2

⇡

�S2(xA
1
, xA

2
)

(V1 � V2)� i0+
. (4.4.11)

Here, ⇧(x) = @V � are operators supported on H
+

R
. Considering the geometric flow of the

Killing time translation (V, xA) ! (etV, xA) on H
+ — this generates an automorphism

of the algebra, ↵t. With respect to this flow, it can be checked that the state !0 is KMS

[60]. A similar observation can be made at I+

R
. Added to the assumption that this state

has zero Killing energy on the horizon, this implies that this flow is modular flow and the

modular Hamiltonian is given on H
�

L
[H

+

R
[ I

+

R
by

K =
2⇡



Z

H
�

L
[H

+
R
[ I

+
R

Tµ⌫⇠
µd⌃⌫ (4.4.12)

We note that the modular Hamiltonian on some other Cauchy slice may not have this

nice, local form and away from this slice, modular flow may not be a geometric flow. We

can formally split the above equation as an integral on H
+

R
[ I

+ and H
�

L
and call it KR

and �KL,

K = KR �KL (4.4.13)

This split is just formal because the entanglement across the bifurcation surface is infinite.

This give rise to a type III von Neumann algebra U(H+

R
,!0). Further, using the fact that

for linear fields, one can always write any observable in the bulk region in terms of an

observable on the Cauchy slice pertaining to that bulk, the algebra of the right exterior

can be written as 11,

U(R,!0) ' U(H+

R
,!0)⌦ U(I+

R
,!0) (4.4.14)

Further, the algebra on the H
�

L
, U(H�

L
,!0) is the commutant of U(H+

R
,!0). More details

can be found in the paper of KLS [60].

11We assume that we can specify the initial data independently on H
+
R

and I
+
R
.
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In the null coordinates on H
+, the modular Hamiltonian (4.4.12) generates dilatation on

the horizon, see Figure 4.4. Consider another wedge R0 that has one of its future null

boundaries overlapping with the part of H+

R
, as shown in Figure 4.5.

Figure 4.5: In this diagram, the green wedge represents bulk wedge R0, with the vertex
at V = V ⇤.

Let V be an a�ne time on H
+ which goes from 0 to 1 as we move from the bifurcation

surface B to i+
R
, as shown in the Figure 4.5. Let the vertex of the new wedge be at V ⇤

and H
+(V ⇤) = H

+
\ (V � V ⇤). Following the above discussion, the algebra of the wedge

can be represented by the boundary algebra U(R0,!0) ' V(H+(V ⇤),!0)⌦U(I+

R
,!0). The

state !0 here is a restriction of !0 to R0. The state ⌦ is clearly separating and cyclic

[71] for V(H+(V ⇤),!0) by construction. Since modular flow produces dilatation on the

horizon, U(R0,!0) is the HSMI of the algebra U(R,!0). Following the same steps as for

the Schwarzschild and Rindler spacetime, the modular operator of R0 is,

K(V ⇤) = K � 2⇡EV ⇤ (4.4.15)

where K(V ⇤) and K the modular Hamiltonian for the wedge R0 and R and EV ⇤ is the

generator of the null translation connecting them. This modular operator (4.4.15) is the

modular operator for the state !0 and it has a local geometric action on the boundary
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algebra, since the null translation is a symmetry on the horizon. It will not have a local

geometrical action in the exterior R0 away form the horizon.

4.5 Review: Type II construction for gravitational subre-

gion

In this section, we would like to summarize the construction of Jensen, Sorce and Speranza

(JSS) in [41] which we will use to prove the GSL in the next section. This construction is

for Einstein gravity coupled to quantum fields. The construction generalizes recent work

which studies QFT in a static black hole background in [1, 2, 3], where the entropy of an

algebra is discussed. This algebra is that of fields in the black hole exterior. In [1, 2, 3],

this algebra is enlarged using the crossed product construction in von Neumann algebra.

The operator that is added in the enlarged algebra is the ADM mass which now acts

on an enlarged Hilbert space which includes square integrable functions of a new degree

of freedom, the timeshift. This crossed product (by the modular automorphism group)

changes the algebra of fields in the right exterior from a Type III1 von Neumann algebra

to a Type II algebra. Consequently, one has a renormalized trace on the algebra which

can be used to obtain a von Neumann entropy in any state for the algebra. [1, 2, 3]

showed that this entropy is the generalized entropy of the black hole at the bifurcation

surface modulo a constant. In this construction, the isometry group of the static black

hole is implemented as a set of constraints - the time translation generator then equals a

boundary term — the di↵erence of the left and right ADM Hamiltonians.

In [41], JSS have generalized the crossed product construction of [1, 2, 3] for arbitrary

subregions to obtain the entropy of the algebra of domains of dependence of partial Cauchy

slices. This is for subregions in theories of Einstein gravity coupled to matter in the

Newton’s constant GN ! 0 limit. The construction depends on a specific vector field and

relies on the existence of a conjectured state whose modular flow is local and geometrical

on some Cauchy slice.

JSS construction:

Let A be a subregion and A0 be the causal complement as shown in the figure 4.6. Since

the observables must be di↵eomorphism invariant, they must commute with the constraint

associated with these di↵eomorphisms. In particular, JSS consider a class of subregion-

preserving di↵eomorphisms that act both on A and A0, with the following properties:

1) They generate boosts around the entangling surface.

2) The vector field ⇠a, which generates this di↵eomorphism should be future directed in A
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Figure 4.6: In this diagram, A is the subregion of interest and A’ is its complement.
⌃ and ⌃’ are partial Cauchy slices associated with A and A’. Red lines in the diagram

represent the vector field ⇠a and its direction.

and past directed in A0, and should be tangent to the null boundaries of the subregions.

3) ⇠a must vanish at the entangling surface @⌃ and have constant surface gravity  on @⌃,

given by

ra⇠b
@⌃
= nab (4.5.1)

where nab is the binormal to @⌃.

The gravitational algebra is obtained by imposing the di↵eomorphism as a constraint on

the algebra of observables order by order in the full nonlinear theory of gravity. However,

as shown in [2], directly imposing constraints on AQFT and A
0

QFT
trivializes the algebra.

Instead, one must introduce an observer in the subregion and extend the algebra by adding

Hamiltonian Hobs = q̂ of the observer in the algebra of observables. Also, one must extend

the Hilbert space by tensoring the Hilbert space of the QFT with the observer Hilbert

space Hobs = L2(R). When the subregion does not contain any asymptotic boundary 12,

we need an observer to define the location of subregion. We must also add an observer in

A0, but since A0 contains an asymptotic boundary, the role of the observer is played by the

12In all the cases considered in this chapter, the subregion will contain an asymptotic boundary.
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ADM Hamiltonian HADM
13. Now, the full algebra is (AQFTVA

0

QFT
) ⌦ Aobs ⌦ AADM ,

and it acts on the Hilbert space H = HQFT ⌦ Hobs ⌦ HADM . It can be shown that the

gravitational constraint associated with ⇠a is given by

C[⇠] = Hg

⇠
+Hobs +HADM . (4.5.2)

Here, Hg

⇠
is the operator generating the flow ⇠a on the quantum field algebra AQFT and

A
0

QFT
instantaneously on the Cauchy slice ⌃c = ⌃[⌃0 as shown in the figure 4.6. One can

write it as a local integral of the matter and graviton stress tensors (i.e., as an integral on

the Cauchy surface), which at leading order has the form (linear order constraint having

already been implemented):

Hg

⇠
=

Z

⌃c

Tµ⌫⇠
⌫d⌃µ (4.5.3)

Further, JSS have shown that implementing the constraint at the level of the subregion

algebra gives the von Neumann algebra A
C , which is the crossed product of AQFT by the

flow generated by Hg

⇠
.

A
C = {eiH

g

⇠
p̂ae�iH

g

⇠
p̂, eiq̂t|a 2 AQFT , t 2 R}

00 (4.5.4)

where p̂ is the canonical conjugate to the observer Hamiltonian and S00 denotes the smallest

von Neumann algebra containing the set S. Further, JSS assume that Hg

⇠
is the

modular Hamiltonian for some state on the algebra AQFT . With this assumption,

the algebra in (4.5.4) becomes type II, for more details, see [41]. The assumption that Hg

⇠

is a modular Hamiltonian is a key assumption for obtaining the type II algebra — there

are cases for which this assumption is exactly true, and these situations are the focus of

our attention in the previous and next sections. Once the type II algebra is obtained, it is

straightforward to define a renormalized trace and to associate entropy with the algebra

as done in [1, 2, 3],

S(⇢
�̂
) = �Srel(�|| )� �

D
Hobs

↵
f
+ Sf

obs
+ log � (4.5.5)

where � is the inverse temperature associated with the KMS state  for which Hg

⇠
is the

modular operator and �̂ = �⌦f is the state in the crossed product construction of the type

II algebra, see [41]. Here, we have assumed that the state �̂ is semiclassical. This is defined

as a eigenstate of the conjugate momentum operator p̂ peaked around zero momentum or,

equivalently, a state with a slowly varying position wavefunction f(q̂). This assumption is

13This needs to be generalized to include an observer even for subregions with an asymptotic boundary,
as we discuss in the next section.
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crucial because, in crossed product algebras, operators are dressed with respect to eiH
g

⇠
p̂.

When acting on states of the form |�i ⌦ |fi, this dressing induces entanglement between

the observer and quantum field degrees of freedom whenever the modular energy is non-

zero. For the state with non-zero modular energy, the semiclassical assumption ensures

this entanglement remains small, and simplifies the entropy of the algebra S(⇢�), enabling

the derivation of equation (4.5.5). Further it can be shown that Araki’s Type III relative

entropy of the state � with respect to state  is [66]

Srel(�|| ) = �
D
H⌃

⇠

E

�

� SQFT

�
� �

D
H⌃

⇠

E

 

+ SQFT

 
(4.5.6)

where H⌃

⇠
=
R
⌃
Tµ⌫⇠⌫d⌃µ is the one-sided modular Hamiltonian. Finally, JSS show that

the algebra entropy is the generalized entropy modulo a state independent constant. JSS

assume that the gravitational constraint C[⇠] = 0 holds locally on the partial Cauchy slice

for the subregion. This allows them to obtain an integrated first law of local subregions,

H⌃

⇠
+Hobs = �

1

16⇡GN

Z

@⌃

nabr
a⇠b = �



2⇡

A@⌃
4GN

(4.5.7)

where A@⌃ is the area of the entangling surface 14. Further, in quantum theory, the

constraint should be implemented as an operator equation, which will give

D
H⌃

⇠

E

�

+
D
Hobs

E

f

= �


2⇡

DA@⌃
4GN

E

�̂

. (4.5.8)

Using (4.5.7) and (4.5.8), it can be shown that

S(⇢
�̂
) =

DA@⌃
4GN

E

�̂

+ SQFT

�
+ Sobs

f
+ c (4.5.9)

where c is a state-independent constant. The above equation is the relation between the

entropy of the algebra and generalized entropy for the subregion.

c = log � � �
D
H⌃

⇠

E

 

+ SQFT

 
(4.5.10)

14This is exactly the place where ra⇠b
@⌃
= nab is used, but notice that we will get same answer even if

we assume the weaker condition nab
ra⇠b

@⌃
= �2 . By changing coordinates, we can also get exactly the

JSS condition ra⇠b
@⌃
= nab
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4.6 The Generalized Second Law (GSL)

In this section, we will show that a local generalized second law holds true in the crossed

product constructions for static and Kerr black holes with bifurcate Killing horizons and

in Rindler spacetime. While we will do the computation for asymptotically flat black

holes, it can be done for asymptotically AdS black holes as well. The idea is to use

the construction of JSS [41], but with a modification. As mentioned in the previous

section, their construction relies on an assumption that their proposed local Hamiltonian

is the modular Hamiltonian of some state. In our computation of modular Hamiltonians,

we have shown that the modular Hamiltonian obtained using HSMI of the algebra is

for the Hartle Hawking state of static black holes and Minkowski vacuum for Rindler

(and for the particular Gaussian state we assumed in the Kerr case) - furthermore, it

precisely matches with the form of the JSS local Hamiltonian (4.4.8), when the Cauchy

slice contains the future horizon. This is true for both wedges A and B in Figure 4.3. For

wedge B, the modular Hamiltonian is (4.4.7) which is of the form (4.4.8) with vector field

V = (v�v⇤(y)) @
@v

on the horizon. This satisfies nearly all of the conditions of JSS (when

suitably extended to the rest of the wedge as described in previous sections and in the

complement Cauchy slice) and the modified condition (4.4.9) which, as we have already

mentioned in previous sections, is all we need for the JSS construction to go through.

Thus, we have the modular Hamiltonians of both wedges A and B corresponding to the

same state. They both have the JSS form. So the assumption of JSS for a local modular

Hamiltonian is explicitly realized in this case. Our aim is to use the JSS construction along

with the positivity of relative entropy to show Sgen(1) � Sgen(v⇤) for any v⇤(y) � 0.

Then, using monotonicity of relative entropy, we can establish that Sgen(v ⇤ ⇤) � Sgen(v⇤)

for v⇤⇤(y) � v⇤(y). This is a local GSL.

Before we get into the computation, we employ the JSS construction with a generalization

which we describe in the next sub-section.

4.6.1 Adding an observer to the calculation:

We now wish to discuss a slight generalization of the JSS construction where we add an

observer to the calculation. We will use the JSS construction to get relative entropy in two

di↵erent wedges. For wedges with asymptotic regions, in the JSS construction, the ADM

Hamiltonian associated with the chosen vector field plays the role of an observer in section

4. However, since this is a boundary term on a codimension 2 surface at infinity, it only

depends on the asymptotic form of the vector field which is the same for the two wedges
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Figure 4.7: The figure represents accretion of quantum matter into the black hole.

we are considering (or indeed for any wedge-shaped regions). To make the construction

and dressing of operators specific to the wedges we are considering, we add an observer

with Hamiltonian Hobs = q � 0 in addition to HADM . The commutant has an observer

with Hamiltonian H 0

obs
= q0 � 0. This has also been discussed in [60]. To begin with,

we then have the Hilbert space H = HQFT ⌦Hobs ⌦H
0
obs ⌦HADM ⌦HADM 0 . Then, the

constraint is

C[⇠] = Hg

⇠
+ q � q0 �HADM +HADM 0 . (4.6.1)

Properly implementing the constraint at the level of the Hilbert space [2] leads to the

Hilbert space H = HQFT ⌦Hobs⌦HADM ⌦HADM 0 . We now dress operators with respect

to the observer to make the dressing specific to the wedge. This produces the crossed

product algebra A
C , which is the crossed product of AQFT by the flow generated by Hg

⇠

15.

A
C = {eiH

g

⇠
p̂ae�iH

g

⇠
p̂, eiq̂t, HADM |a 2 AQFT , t 2 R}

00 (4.6.2)

where p̂ is the canonical conjugate to the observer Hamiltonian and S00 denotes the smallest

von Neumann algebra containing the set S. The inclusion of both the observer and the

15Here we have only added an observer in the right exterior algebra and dressed the operator with respect
to it.
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ADM Hamiltonian still leads to a Type II1 von Neumann algebra as discussed in [60].

Considering the states �̂ = � ⌦ g ⌦ f and ⌦̂ = ⌦ ⌦ g ⌦ f (the second factor relates to

the observer degree of freedom, and the third factor to the HADM degree of freedom),

we can now discuss relative entropies of the two wedges. We note that implementing the

constraint on each partial Cauchy slice now yields

D
KA(v⇤)

E

�

+ �
D
q
E

g

� �
D
HADM

E

f

= �

D A

4GN

E

�̂

(4.6.3)

First, we will discuss the static black hole case. We have a static black hole with Killing

horizon which is perturbed away from stationarity by quantum fields (including gravitons)

in the spacetime. We will assume that the black hole settles down to a stationary state at

late times. This is plausible because all the flux of matter would either have crossed the

horizon or would have escaped to future null infinity. In the case of AdS, all matter will

eventually cross the horizon. So, at late times, the state must be indistinguishable from

the vacuum ⌦HH . Let us now apply the modified JSS construction to the wedge B for the

black hole. This will yield a type II von Neumann algebra of fields in the wedge B. Once

we have obtained the type II algebra, the modular Hamiltonian can be factorized and

we can write a one-sided modular Hamiltonian. Further, using the definition of Araki’s

relative entropy, we can write S(�̂||⌦̂) in terms of the one-sided modular operator in the

type II algebra, with the states �̂ = �⌦ g ⌦ f and ⌦̂ = ⌦⌦ g ⌦ f in the type II algebra

corresponding to some quantum field state � and cyclic, separating state ⌦ as defined

in the previous section. Using (5.13) and (5.14) in the paper [41] and the fact that we

are working with a semiclassical state 16, it can be shown that S(�̂||⌦̂)= S(�||⌦). This

explicitly shows the well-known fact that Araki’s relative entropy is well-defined and finite

even in a type III algebra. It allows us to write the relative entropy in terms of the one-

sided modular Hamiltonian in the type III algebra (which is well-defined as a Hermitian

form [55]). The partial Cauchy slice on which we want to write the modular Hamiltonian

is H
+(v⇤) [ I

+, where H
+(v⇤) represents v � v⇤ part of the horizon. The modular

Hamiltonian on this partial Cauchy slice can be written as KA(v⇤) = KH+(v⇤) + KI+ .

Here, KI+ is the modular Hamiltonian at I+ and

KH+(v⇤) = 2⇡

Z
1

v⇤

dv

Z

H+
dD�2x

p

h(v � v⇤)Tvv (4.6.4)

which can easily be obtained using the equation (4.4.5) and the fact that Ev⇤ is a generator

of null translation and is local on the horizon. Note that KI+ is independent of v⇤. This

16One needs to use the fact that in a semiclassical state, g(q) is slowly varying or equally its Fourier
transform is peaked around zero momentum.
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implies that KI+ will not contribute to the di↵erence in the modular Hamiltonian between

two cuts. The state of the system restricted to the wedge B can be obtained by specifying

the density matrix at H+(v⇤) and I
+,i.e  (H+(v⇤) [ I

+) = ⇢H+(v⇤) ⌦ �I+ [5]. Let � be

the state of the quantum field, which is indistinguishable from ⌦HH at late times. Now

as shown by JSS in [41],

Srel(�||⌦HH) =
D
KA(v⇤)

E

�

� SQFT

�
�

D
KA(v⇤)

E

⌦HH

+ SQFT

⌦HH
(4.6.5)

where Srel(�|| ) is Araki’s relative entropy of the state � and ⌦HH , SQFT

�
and SQFT

⌦HH

are the entropy of the QFT in the state � and ⌦HH respectively. While each term may

not be finite, but since relative entropy in type II and type III algebras are equal, all

divergent terms must come in pairs in such a way that the final answer is finite. Further,

the one-sided modular Hamiltonian is well-defined as a sesquilinear form on a dense set of

states [55].

Imposing constraints as an operator equation and for some state �,

D
KA(v⇤)

E

�

+ �
D
q
E

g

� �
D
HADM

E

f

= �

D A

4GN

E

�̂

(4.6.6)

where � is inverse temperature associated with the KMS state ⌦HH and �̂ = �⌦ g⌦ f is

the state in the crossed product construction of the type II algebra, see [41] . Similarly,

⌦̂ = ⌦ ⌦ g ⌦ f . The f and g in the type II state are square integrable wavefunctions

and �
D
HADM

E

f

is the expectation value of the ADM Hamiltonian in f while �
D
q
E

g

is

the expectation value of the observer Hamiltonian in state g. Notice that f and g are

independent of the state � and therefore if we consider the di↵erence of the area operator

in two di↵erent quantum field states, than it will be independent of both f and g. Finally,

we see that the relative entropy of the states �̂ and ⌦̂ is the same as the type III entropy,

and the terms dependent on the observer and ADM degrees of freedom cancel out in a

single wedge17. We will be doing this computation for two wedges that we define below,

and inclusion of the observer degree of freedom explicitly defines the wedges. Using (4.6.6)

and (4.6.5), we get

Srel(�||⌦HH) =
D A

4GN

E

⌦HH

�

D A

4GN

E

�

+ SQFT

⌦HH
� SQFT

�
(4.6.7)

17We could think of the addition of the observer as a regularization tool since the observer degrees of
freedom do not play a role in the relative entropy. The crossed product with respect to the observer as a
regularization tool has also been discussed for QFTs in [75]
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Since ⌦HH is a stationary state, the area at any cut is the same as at v⇤ ! 1. Using this

fact, we can write the equation as

Srel(�||⌦HH)(v⇤) =
D A

4GN

E
(1)�

D A

4GN

E

�

(v⇤) + SQFT

⌦HH
� SQFT

�
(4.6.8)

We put v⇤ in the equation above to emphasize that it is for the wedge at v⇤. Further, the

above equation can also be written as:

Srel(�||⌦HH)(v⇤) = Sgen(1)� Sgen(v⇤). (4.6.9)

The positivity of relative entropy implies Sgen(1) � Sgen(v⇤). Since the equation (4.6.9)

holds for any v⇤ � 0, we can write the same equation for some wedge which is at v⇤⇤(y) �

v ⇤ (y), i.e

Srel(�||⌦HH)(v⇤⇤) = Sgen(1)� Sgen(v ⇤ ⇤) (4.6.10)

Since the wedge at v⇤⇤ is contained in the wedge at v⇤, the monotonicity of Araki’s Type

III relative entropy for QFTs implies

Srel(�||⌦HH)(v⇤)� Srel(�||⌦HH)(v ⇤ ⇤) � 0. (4.6.11)

Using (4.6.10) and (4.6.9), we get

Sgen(v ⇤ ⇤) � Sgen(v⇤) (4.6.12)

for all v⇤⇤ � v⇤ � 0. This is the local version of GSL that we wish to obtain. Since the

relative entropy has been used, at every step, we are dealing with finite quantities. The

computation will continue to hold in AdS 18, with the only di↵erence being that the partial

Cauchy slice will be H+(v⇤). The computation is also identical for the Rindler wedge; the

only di↵erence is that the cyclic separating state at late times will be the Minkowski

vacuum, and the modular Hamiltonian in equation (4.6.5) is with respect to this vacuum.

Furthermore, this technique can be simply extended to any spacetime having a Killing

horizon like Kerr, modulo our assumption about the existence of a special Gaussian state

on the horizon. Notice that this computation is fundamentally dependent on modular

inclusion and the fact that the null translation is a symmetry on the horizon — this

mainly results in the local modular Hamiltonian for all wedges of type B (wedges whose

future null boundary coincides with part of the future horizon). As we have seen, the JSS

conjecture is true for any wedge with a boundary which overlaps with a part of the Killing

18A subtlety in the AdS case is discussed in the next paragraph.
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horizon. The generalized entropy at each cut is equal to the entropy of the type II algebra

of the wedge associated with that cut in the sense of JSS.

In an asymptotically AdS spacetime, a question that can be asked is the boundary dual

of this construction. Modular Hamiltonians on time bands in the boundary have been

discussed in [76] (see also eq.(98) in [77]). However, we have been informed by Prof. E.

Witten that the modular Hamiltonian of a proper subregion in the boundary does not

have a splitting into left and right parts. Thus, in the asymptotically AdS case, we cannot

merely use HADM to implement a crossed product construction. It is clear that one has

to add an observer in addition to HADM and implement the crossed product with respect

to the observer. If we add the observer, then the question is what is the boundary dual of

the observer. This is a question which we hope to address in the future. The meaning of

the observer has also been extensively discussed in [41].

Finally, we end this section with a note comparing this derivation with the proof of the

GSL by Wall [5] who also used the monotonicity of the relative entropy. The type II

crossed product construction provides a natural renormalization scheme which was an

assumption in Wall’s proof. Further, the relative entropy used in this section is Araki’s

type III relative entropy and all computations are done in modular theory.

4.7 Modular Hamiltonian of deformed half-spaces in general

spacetimes

In this section, we depart somewhat from the techniques of the previous sections and

consider (one-sided) modular Hamiltonians (for the vacuum state) computed using path

integrals rather than Tomita-Takesaki theory. The issue then is that the one-sided modular

Hamiltonian may be formally infinite, however we will assume that this can be renormal-

ized, since we will finally be interested in two-sided modular Hamiltonians 19. The purpose

is to compute some examples of general modular Hamiltonians to confirm/check the ex-

pectation of JSS [41] that a non-local modular Hamiltonian H of some state | > may be

made local by subtracting o↵ an element of the algebra a and an element of its commutant,

b0 such that H 0 = H � a� b0 is local. By local, we mean a local integral over some Cauchy

slice. Then the converse of the cocycle derivative theorem implies that H 0 is the modular

Hamiltonian of some other state | ab0 >.

19The one-sided modular Hamiltonian is well defined as a Hermitian form on a dense set of states.
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The expectation that the modular Hamiltonian can be made local is crucial to the con-

jecture of JSS that Hg

⇠
is the modular Hamiltonian for some state on the algebra AQFT .

In order to check this, we need modular Hamiltonians at our disposal, which are hard

to calculate in situations without a lot of symmetry. In cases where, for example, there

is Killing symmetry, the modular Hamiltonian for the vacuum can be computed in most

situations and is a local expression on a Cauchy slice. However, other than these examples,

the modular Hamiltonian will in general, be non-local and will not generate a geometric

flow on the spacetime.

The simplest example is to consider the half-space in Minkowski spacetime, whose domain

of dependence is the Rindler wedge. We know the modular Hamiltonian — it is the gen-

erator of a boost and therefore can be written as a local integral on the t = 0 surface.

Consider an arbitrary deformation of the t = 0 surface by a small amount which, in par-

ticular, perturbs the entangling surface itself. As is well-known, the modular Hamiltonian

on this surface will be non-local, but we can do a perturbative expansion about the mod-

ular Hamiltonian associated with the half-space at t = 0 and obtain a relation between

them. This was obtained by Faulkner, Leigh, Parrikar and Wang (FLPW) in [77] and

later by Balakrishnan and Parrikar (BP)[78] for Minkowski spacetime and in the paper

[79] by Rosso for AdS2 ⇥ Sd�2. This technique gives, at least perturbatively, the modular

Hamiltonian for more general wedges in the spacetime.

We would like to see if the perturbative correction to the half-space modular Hamiltonian

can be made local as surmised by JSS by subtracting o↵ a piece a from the modular

Hamiltonian (and a piece b0 from the commutant when one considers the two-sided mod-

ular Hamiltonian). But first, we want to apply the technique of FLPW to a more general

class of spacetimes and find the relation between the half-space modular operator and the

deformed one. We will work with the Wick-rotated Euclidean metric. The class of metrics

we are interested in is the class of Wick-rotated metrics with the form

ds2 = gµ⌫dX
µdX⌫ = exp[⌦(⇢)]

⇣
d⇢2 + f(⇢)d⌧2

⌘
+ hab(⇢

2, ~x)dxadxb (4.7.1)

where ⌦(⇢) is a smooth function for all ⇢ and f(⇢) is a positive function, which goes like

2⇢2 for small ⇢ where  is some constant. We will also assume hab is a Riemannian metric

which is smooth at ⇢ = 0. ⌧ is Euclidean time with periodicity � = 2⇡


. Note, the metric

components are independent of ⌧ . The periodicity ensures that there is no conical singular-

ity. Since the metric is independent of ⌧ , the metric after the Wick rotation corresponds to

a static Lorentzian metric. Furthermore, the metric is degenerate at ⇢ = 0 indicating the

existence of a horizon associated with these coordinates. After the Wick rotation, one can
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analytically continue the coordinates to obtain its maximal extension. The metric ansatz

accommodates many interesting cases. The metric is conformally Rindler if f(⇢) = ⇢2 and

transverse metric is flat, Rindler if we also have ⌦(⇢) = 0. It is AdS2 ⇥Mtransverse when

f(⇢) = sinh2 ⇢ and ⌦(⇢) = 0. The Schwarzschild metric can also be put in this form.

Figure 4.8: The red line represents the surface A0 on which density matrix is computed
in (⌧, ⇢) plane. H⌧ is the generator that maps �+ to �� on (⌧, ⇢). t in the figure is

Lorentzian time and H
± are the Cauchy (and Killing) horizons of the Cauchy slice.

We are interested in computing the modular Hamiltonian for some Cauchy slice which is

not a half space in these class of spacetimes. Consider a QFT in the above spacetime. It

is well-known how to compute the density matrix of the vacuum state using the Euclidean

path integral on any generic spacetime with the time translation symmetry. The spacetime

should have a well-defined Wick rotation, and the metric should be smooth everywhere

after the rotation. The density matrix for the vacuum state on an arbitrary surface is

obtained in [80] and is non-local, as expected. The nonlocality arises from the fact that

the generator that maps the configuration of fields above and below the surface of interest

on which the density matrix has to be computed is not a symmetry. In our case, we want

to compute the density matrix for a surface which is a small deformation of the ⌧ = 0
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surface. But, first let us compute the density matrix for the ⌧ = 0 surface as shown in

Figure 4.8. Since ⌧ translation is an isometry of the spacetime, the result will be local. In

general, we will get

⇢A0,g = exp[��H⌧ ] (4.7.2)

⇢A0,g represents the density matrix 20. H⌧ is a generator of ⌧ translation. H⌧ can be written

in terms of the QFT stress tensor and vector field @⌧ [80]. Now the one-sided modular

Hamiltonian of the vacuum can be obtained using KA0,g = � log ⇢A0,g = �H⌧ . This is

the modular Hamiltonian associated with the domain of dependence D(A0). The modular

Hamiltonian derived by Sewell for the right exterior of the Schwarzschild black hole in [69]

is of this form. In fact, the class of (Lorentzian) metrics we consider in this section are

exactly of the form assumed by Sewell. So we can simply use Sewell’s computation for

getting the modular Hamiltonian. Now, we are interested in the modular Hamiltonian of

the deformed region D(A) associated with the Cauchy surface A, which is obtained via a

small di↵eomorphism of A0. Let Xµ = X 0µ
� ⇣(⇢, ~x) be the di↵eomorphism which maps

A0 to A, where ⇣ is generator of this infinitesimal di↵eomorphism. Note, we also assume

it to be independent of ⌧ . We will assume that ⇣ is non-vanishing and smooth at ⇢ = 0.

The unitary operator that implements this di↵eomorphism on the Hilbert space is [77, 79],

U = exp

Z

⌧=0

d⌃µTµ⌫⇣
⌫

�
(4.7.3)

where Tµ⌫ is the stress tensor. Note that there is no i in the above equation, since we

are working with the Euclidean theory. By applying a general identity for computing the

derivative of the log of an operator, FLPW [77] have shown that

KA,g = KA0,g + [KA0,g, �U ] + �KA0,g +O(⇣2) (4.7.4)

where KA,g is the modular Hamiltonian of the deformed surface, �U is a linear order term

in ⇣ when U is expanded in ⇣ and �KA0,g is,

�KA0,g =

Z
1+i↵

�1+i↵

dz

4 sinh2 z/2

Z

@ME

dSµ⇢
�

iz

2⇡
A0,g

Tµ⌫⇣
⌫⇢

iz

2⇡
A0,g

(4.7.5)

where ↵ 2 (0, 2⇡) is a free parameter, z = s + i↵ where s 2 R and @ME is the boundary

of the Euclidean manifold ME we are working on. Here we have put � = 2⇡, so that

we do not have to track it at each step, but one can introduce it and it will just change

20g in ⇢A0,g is just to emphasize that it is defined in the metric g.
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the answer by scaling of �21. The above integral does not get a contribution from the

conformal boundary22. The only contributions we get are from the branch cut and C , i.e

@ME = C [ R+ [ R� as shown in the Figure 4.9, for more details, see [77, 79]. Further,

Figure 4.9: The red line represents branch cut in the (⇢, ⌧) plane, the blue line R± will
give the contribution from the branch cut and C is the ⇢ = b surface which will give the

contribution from the entangling surface as b ! 0.

we can split the contribution as coming from C and R+ [R�,

�KA0,g = �KA0,g,C + �KA0,g,R+[R�
(4.7.6)

Contribution from C:

We are interested in computing the contribution of C as b ! 0. Since ⇢ is very small on

the contour C, we can work we the metric

ds2 = exp[⌦(⇢)]
⇣
d⇢2 + ⇢2d⌧2

⌘
+ hab(⇢

2, ~x)dxadxb (4.7.7)

21To do the computation with �, let ⇢
iz
2⇡
A0,g

! ⇢
iz
�
A0,g

in the equation (4.7.5).
22We can take ⇣ be non-vanishing only for very small ⇢ and at ⌧ = 0, the contribution coming from the

spatial boundary dies o↵ due to appropriate fall-o↵ of the stress tensor.
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It will be more convenient to work in the following variable,

x± = ⇢ exp[⌥i⌧ ] (4.7.8)

It is straightforward to show

ds2 = exp[⌦(⇢)]
⇣
dx+dx�

⌘
+ hab(⇢

2, ~x)dxadxb, (4.7.9)

the translation in ⌧ is scaling in x±, i.e ⌧ ! ⌧ + iz becomes x± ! e±zx±. For computing

�KA0,g,C , we need the inward unit normal nµ to C, which can easily be obtained,

nµ = � exp[⌦(b)/2](e�i⌧�µ
+
+ ei⌧�µ

�
) (4.7.10)

We know that ⇢
�

iz

2⇡
A0

generates the di↵eomorphism x± ! x̄± = e±zx±. We can write

⇢
�

iz

2⇡
A0,g

Tµ⌫(x±, ~x)⇢
iz

2⇡
A0,g

=
@x̄�

@xµ
@x̄�

@x⌫
T��(x̄±, ~x) (4.7.11)

Since ↵ in the limits of integration in (4.7.5) is a free parameter, we will work with the

choice ↵ = ⌧ . Using (4.7.10) and (4.7.11), we can show B = nµ⇣⌫⇢
�

iz

2⇡
A0,g

Tµ⌫⇢
iz

2⇡
A0,g

���
C

is

B = �e�⌦(b)/2
⇣
⇣+es+i⌧ (T++e

s+T+�e
�s)+⇣�e�(s+i⌧)(T��e

�s+T�+e
s)+⇣a(T+ae

s+T�ae
�s)
⌘
.

(4.7.12)

Since

�KA0,g,C = lim
b!0

Z
p

hdxd�2

Z
1

�1

ds

4 sinh2( s+i⌧

2
)

Z
2⇡

0

be⌦(b)/2d⌧B, (4.7.13)

note that e⌦(b)/2 in the equation cancels the e�⌦(b)/2 in B. Therefore the contribution from

C is independent of the conformal factor in the metric (4.7.1). We can split the above

equation in the components of ⇣, as

�KA0,g,C = �KA0,g,+ + �KA0,g,� + �KA0,g,a (4.7.14)

where

�KA0,g,± = � lim
b!0

Z
p

hdxd�2⇣±(b, ~x)

Z
1

�1

dsI±(s)b
⇣
T±±e

±s + T+�e
⌥s

⌘
(4.7.15)

where

I±(s) =

Z
2⇡

0

d⌧
e±(s+i⌧)

4 sinh2( s+i⌧

2
)

(4.7.16)
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and

�KA0,g,a = � lim
b!0

Z
p

hdxd�2⇣a(b, ~x)

Z
1

�1

dsIa(s)b
⇣
T+ae

s + T�ae
�s

⌘
(4.7.17)

where

Ia(s) =

Z
2⇡

0

d⌧
1

4 sinh2( s+i⌧

2
)

(4.7.18)

Now to compute I, we will use the well-known identity

ĪJ =

I
d!

!J

! � e�s
= 2⇡i⇥Je

�Js (4.7.19)

where J is integer and

⇥J =

8
<

:
⇥(s) J � 0

�⇥(�s) J < 0

where ⇥ is the step function. It is easy to show that Ia = i@Ī0
@s

= 2⇡�(s) and I± = i@Ī±1

@s
e±s,

where
@Ī±1

@s
= 2⇡i(�(s)e⌥s

�±e⌥s⇥±1) (4.7.20)

We eventually want to compute the integrals (4.7.14) and (4.7.17) as b ! 0, but they are

non-vanishing only if b ! 0 is compensated by s ! ±1. Since Ia = 2⇡�(s), �KA0,g,a

vanishes as b ! 0. Similarly, �(s) terms in I± do not contribute, leaving only ⇥ terms

to contribute. Notice that the term with T+� does not contribute. Therefore, we are left

with

�KA0,g,± = �2⇡

Z
p

hdxd�2⇣±(~x)

Z
±1

0

dxL±T±±(xL±, ~x) (4.7.21)

where xL± = be±s are Lorentzian null coordinates. Therefore

�KA0,g,C = �2⇡

Z
p

hdxd�2

⇣
⇣+(~x)

Z
1

0

dxL+T++(xL±, ~x)+⇣
�(~x)

Z
�1

0

dxL�T��(xL±, ~x)
⌘

(4.7.22)

Contribution from R+ [R�: Let the unit normal to the R± be denoted by n±. This is

given by

nµ

±
= ⌥

�µ⌧p
e⌦(⇢)f(⇢)

(4.7.23)

and the metric induced on this surface is

ds2|R±
= exp[⌦(⇢)]d⇢2 + hab(⇢

2, ~x)dxadxb (4.7.24)



Chapter 4. Black Holes, Local Algebra of Observables and GSL 155

In computing the contribution from R±, we will choose the free parameter ↵ = ✏ for R+

and ↵ = 2⇡ � ✏ for R�. ⇢
�iz

A0,g
generates ⌧ translation. Using (4.7.11), we can write

�KA0,g,R±
=

Z
p

hdxd�2

Z
1

b

e⌦(⇢)/2d⇢⇣⌫nµ

±

Z
1

�1

ds

4 sinh2 (s±i✏)

2

⇢�is

A0,g
Tµ⌫(0, ⇢, ~x)⇢

is

A0,g

(4.7.25)

since the contours for R± are oriented oppositely and nµ

�
= �nµ

+
. One can close the

contour and from residue theorem the contribution comes only from the double pole at

s = 0. Further, one can show23

�KA0,g,R�[R+ = [�U,KA0,g]. (4.7.26)

Using (4.7.26), (4.7.22) and (4.7.6), we can obtain �KA0,g. Further, putting in (4.7.4), we

get

KA,g = KA0,g � 2⇡

Z
p

hdxd�2

⇣
⇣+(~x)

Z
1

0

dxL+T++ + ⇣�(~x)

Z
�1

0

dxL�T��

⌘
+O(⇣2)

(4.7.27)

We have obtained the modular Hamiltonian of the deformed surface at leading order in

the deformation field using the FLPW technique. KA0,g is a local expression

Z

A0

d⌃µV ⌫Tµ⌫

where V is the Killing vector field. It is conserved (from the fact that the energy momentum

tensor is conserved and that V is Killing). Therefore, we can also evaluate it on a Cauchy

slice that consists of the Killing horizon H
+ and I

+ (for asymptotically flat spacetimes).

Then we can attempt to combine the second integral on the right in (4.7.27) which is

also an integral on H
+ with the contribution to KA0,g from H

+. Indeed, in a situation

where ⇣�(~x) = 0, we can do the computation to higher orders, and all of these will be

integrals on H
+. Presumably, they can be resummed [78] to get the one-sided modular

Hamiltonian for a null translated wedge along H
+ exactly as in the previous sections. But

when ⇣�(~x) 6= 0, we will not be able to combine the second integral in this manner. This

is the signature, at leading order in the deformation field, that the modular Hamiltonian

is really non-local. It can be made more explicit at higher orders in the deformation field,

where the non-local products of the stress tensor will appear. This can be seen even in

the Minkowski spacetime, for example, in the equation (3.21) in [78]. We note also that

the integrals are over the horizons of the domain of dependence of the slice A0 and di↵er

23For the residue at double pole, we have to compute the first derivative of the non-singular part at s = 0
,and will result in the commutator.
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from similar integrals on the horizon of the domain of dependence of A only at quadratic

order in the deformation field.

Since the integrands in the terms in KA,g � KA0,g depend on the quantum fields due

Figure 4.10: In this diagram A0 is the undeformed partial Cauchy slice of the half space
and A is the deformed partial Cauchy slice. B0 represents bifurcation surface associated
with wedge with A0 being Cauchy slice where B represents bifurcation surface associated

with the wedge with A being Cauchy slice.

to the energy-momentum tensor, we can think of these terms as a�liated to the right

exterior algebra (at linear order in the deformation field) and for the two-sided modular

Hamiltonian, we have an identical term in the left half space a�liated to the commutant.

Here by a�liated, we mean a�liated to the algebra or its commutant as a Hermitian form

on some Hilbert space H [55] 24. The above computation is a perturbative computation

in the deformation field, and it only makes sense in the regime of perturbation theory.

It restricts the state in which one can compute the expectation value of the deformed

modular Hamiltonian. For example, if we work with states such that |
R
H±

< T±± >

⇠±| < 1, this presumably can always be met by appropriately choosing the magnitude

of the deformation field. It tells us that maybe we can think of the deformation field as

a smoothing function. Notice that the di↵erence of the two-sided modular Hamiltonians

24See also Corollary 2.12 in [23] for operators a�liated to a von Neumann algebra.
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under the deformation depends on precisely
R
H±

T±±⇠± types of quantities coming from

the wedge and its commutant. So, it might be possible that there exists some a in the

algebra and b0 in its commutant such that the di↵erence of the modular Hamiltonians is

a + b0 in the states where |
R
H±

< T±± > ⇠±| < 1. We also see that these terms have

support near the original entangling surface since the deformation actually changes the

entangling surface — see Figure (4.10). The distinction between the horizon of the original

wedge and the deformed wedge only comes at quadratic order in the deformation. This

result is suggestive of the statement of JSS in [41], that a non-local two-sided modular

Hamiltonian can be written as the sum of a local modular Hamiltonian of some other state

and some operator from the algebra plus one from the commutant which makes the full

operator non-local.

The construction of FLPW [77] can be done for higher order terms in the deformation. It

is expected that this can be resummed for null deformations given only by ⇣+(~x) and one

will get 25,

KA,g = 2⇡

Z
p

hdxd�2

Z
1

⇣(~x)

(xL+ � ⇣+(~x))T++dxL+. (4.7.28)

We have already seen this in previous sections for the Schwarzschild black hole, using

HSMI. Translation symmetry in ⌧ corresponds to a boost in null coordinates. Null trans-

lation at the horizon is a symmetry for the Schwarzschild metric. ThereforeKA0�KA = E⇣

where E⇣ is the generator of the null translation on the horizon. Now, we can easily ob-

tain the equation (4.7.28) by extracting out the one-sided modular Hamiltonian for the

new wedge. Further, one can write the full modular Hamiltonian and use the fact from

modular theory that if MD(A) ⇢ MD(A0)
then KA0 �KA > 0 for any state. For the class

of metrics we consider in this section as well, such a result follows on the Cauchy (Killing)

horizon by resumming terms when we only have ⇣+(~x) deformations or by using HSMI.

Further, for this class of metrics, Sewell’s result [69] for the modular Hamiltonian of the

wedge corresponding to the half-space can be used and it is local. This along with the fact

that KA0 �KA > 0 is true for any ⇣+ > 0 implies,

Z
1

�1

dxL+T++(~x, xL+) � 0. (4.7.29)

This is just the Averaged Null energy condition (ANEC) integrated along a null generator

of the Cauchy (Killing) horizon. A similar relation can be obtained on H
�. Therefore, in

particular, HSMI along with the monotonicity of K implies ANEC along null generators

25It seems that if one works with Gaussian null coordinates, a computation similar to [78] will go through.
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of the future horizon of the Schwarzschild spacetime and for the class of metrics we are

working with in this section. This has already been noted by FLPW [77].

4.8 Discussion

Crossed product constructions have proved to be very useful in renormalizing quantities

such as one-sided modular Hamiltonians and associating an entropy with the algebra of

field operators in subregions. However, so far, it has only been possible to obtain a

weak form of a GSL in black hole spacetimes in crossed product constructions [3]. This

involves considering asymptotically AdS black holes and proving that for a very large

time gap between early and late times, the generalized entropy at late times is greater

than at early times. In this chapter, we primarily show that a local version of the GSL,

namely dSgen

dv
� 0, follows from crossed product constructions. The new ingredient is the

application of recent results on the entropy of the algebra of operators on subregions of

general spacetimes by JSS [41]. We discuss a slight generalization of the JSS construction

in the case of asymptotic wedges, where we explicitly introduce an observer and implement

the crossed product with respect to the observer. This also allows us to obtain a GSL for

asymptotically AdS and flat black holes, for which, as discussed in section V, we have

added an observer to make the construction specific to a wedge. Such extra degrees of

freedom do not change our results, since these degrees of freedom cancel out in a single

wedge when considering the relative entropy in the wedge.

We first use half-sided modular inclusions to obtain expressions for modular Hamiltonians

for algebras of null-shifted wedges along the future horizons in maximally extended static

black hole spacetimes. We also outline a similar computation for the horizon of the Kerr

black hole. Then we apply the result of JSS to these wedges. The results of JSS rely on

the conjecture that the Hamiltonian generating the flow of a specific vector field on the

Cauchy slice is a modular Hamiltonian of some state. This conjecture is true in the setting

to which we apply these results. It also allows us to interpret the generalized entropy at

each cut on the horizon as the entropy of the algebra of the wedge associated with that

cut in the sense of JSS. Further, we are able to compare relative entropy for two di↵erent

subregions (specifically, wedges along the horizon) using the JSS results since the modular

Hamiltonian used for the crossed product construction in both the wedges is for the same

state. How to compare, for example, algebra entropy of two di↵erent subregions of a

spacetime in general in the JSS construction is an interesting open problem, with many

potential applications.
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4.8.1 Modular Hamiltonians of deformed half-spaces:

In the section (4.7), we also compute modular Hamiltonians in a class of static spacetimes

(including the Schwarzschild spacetime), which are modular Hamiltonians for the domains

of dependence of deformed Cauchy slices of half-space using path integrals. The purpose

is to check whether such a modular Hamiltonian, which is expected to be non-local, can be

made local by adding two operators, one from the algebra, and one from the commutant

(for the two-sided modular Hamiltonian) as surmised by JSS. We compute these modular

Hamiltonians using the path integral method. The results produced for the two-sided

Hamiltonian, apart from a local integral on a Cauchy surface, are operators of the form
R
H±

T±±⇠± . Since perturbation theory requires |
R
H±

< T±± > ⇠±| < 1, so it might be

possible that there exists some operator a in the algebra and an operator b0 in its com-

mutant such that the di↵erence of the deformed and undeformed modular Hamiltonians

is a + b0. Along the way, we see that the averaged null energy condition (ANEC) also

holds for null generators of the Cauchy horizon in the class of static spacetimes we have

considered, which includes the Schwarzschild spacetime.



Chapter 5

Black Holes in Higher Curvature

theory and Local algebra of

Observer

The material presented in this chapter is based on the work of the author in [6]

In this chapter, we generalize the result of Chandrasekaran, Penington, and Witten (CPW)

to higher curvature theory. In particular, we have shown that the generalized entropy at

the bifurcation surface of any static black hole with a causal horizon in an arbitrary

di↵eomorphism-invariant theory of gravity is equal to the entropy of the algebra of ob-

servables of the exterior. We have also presented a version of the generalized second law

for an arbitrary di↵eomorphism-invariant theory of gravity that follows.

160
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5.1 Introduction

In an arbitrary di↵eomorphism invariant theory of gravity, the entropy of a black hole is

not A

4GN

, where A is the area of the horizon at some horizon cut. Instead, it will have

some higher curvature corrections. Therefore, the generalized entropy is not given by

the formula (4.1.1). But, we can analogously define the generalized entropy for a black

hole with quantum fields to be the sum of its horizon entropy S in that theory and the

entanglement entropy of quantum fields in the black hole exterior,

Sgen = S + SQFT . (5.1.1)

A candidate for the horizon entropy for a stationary black hole is the Wald entropy [81],

[82]. The Wald entropy is ambiguous for a non-stationary black hole — these ambiguities

were first discussed in [83]. A linearized GSL (ignoring gravitons) was proved for Lovelock

gravity in [84].

As we have seen in the last chapter, the generalized entropy at the arbitrary cut on the

horizon in Einstein gravity is equal to the entropy of a von Neumann algebra of observables

in the black hole exterior up to an additive constant. We have also seen that it helps us to

prove the local GSL in crossed product construction, where each step is manifestly finite.

In this chapter, we study the generalization of these results to an arbitrary di↵eomorphism-

invariant theory of gravity. Our aim is to prove that the relation between generalized

entropy and the entropy of the algebra of observables is true even in higher curvature

theory, at least at the bifurcation surface. We first write the black hole entropy in such

a theory at an arbitrary horizon cut, which is the Wald entropy [81], [82] with an extra

term representing an ambiguity in the Wald entropy for a non-stationary black hole [83].

We work in semiclassical gravity. We consider a static (therefore stationary) black hole

that is slightly perturbed due to infalling quantum matter and gravitons. In the limit

when the cut v ! 1, the perturbed black hole approaches a stationary black hole (v is

the a�ne parameter along the null generator of the horizon). We compute the entropy

at v ! 1 minus the entropy at the bifurcation surface up to quadratic order in the

perturbation, and we take into account the contribution due to gravitons to the stress-

energy tensor. It is possible to fix the ambiguity in the Wald entropy in such a way that

this di↵erence of entropies takes a simplified form proportional to the vv component of the

stress-energy tensor. Generalizing the computations of CPW [3], we find the di↵erence of

generalized entropies at v ! 1 and at the bifurcation surface to be proportional to the

relative entropy, which is non-negative. By computing the entropy of the extended von
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Neumann algebra of the black hole exterior [1], we show that the entropy of the algebra

is the generalized entropy at the bifurcation surface just as in [2] for Einstein gravity. All

the above constructions can be done for asymptotically flat static black holes [2]. Finally,

we discuss the monotonicity result of CPW [3], who show that the monotonicity of relative

entropy under trace-preserving inclusions can be used to argue that the generalized entropy

at late times is more than that at early times. For this, we need asymptotically AdS black

holes with a holographic dual, but modulo this change, the monotonicity result of CPW

goes through for the generalized entropy of a black hole in an arbitrary di↵eomorphism-

invariant theory of gravity.

In section II, we discuss the di↵erence of entropies at v ! 1 and at the bifurcation

surface for a slightly perturbed black hole. We use boost arguments, which we summarize

in section II.1, to simplify this di↵erence of entropies. By expanding the Raychaudhuri

equation order by order in the perturbation parameter, we compute the change in entropies

to quadratic order in section II.4, both without graviton contributions to the stress-energy

tensor, and with the graviton contribution included. In section III, we discuss the entropy

of the algebra of operators in the black hole exterior. We first generalized salient results

from earlier papers of Witten [1], Chandrasekaran, Longo, Penington, and Witten [2], and

CPW [3], who discussed how the entropy of the algebra was related to the generalized

entropy in Einstein gravity, to higher curvature gravity. We then generalize these results

to an arbitrary di↵eomorphism-invariant theory of gravity. In Section IV, we conclude

with a discussion.

5.2 Entropy Change in Higher Curvature Theory

In what follows and the rest of the chapter, we work in units where G = 1. Consider an

entropy function for a black hole horizon in an arbitrary di↵eomorphism invariant theory

of gravity with matter,

S =
1

4

Z
⇢
p

hdD�2x (5.2.1)

where ⇢ = 1+ ⇢w +⌦, where h is the induced metric on the D� 2 dimensional transverse

cut on the horizon and 1 + ⇢w is the Wald local entropy density [81], [82]. As is well-

known, the Wald entropy is unambiguously defined for a stationary black hole, but su↵ers

from ambiguities when evaluated on a non-stationary black hole. These ambiguities were

pointed out by Jacobson, Kang and Myers (JKM) [83] and by Iyer and Wald [82]. ⌦

is a correction to Wald entropy density representing this JKM ambiguity, such that it
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Figure 5.1: Accretion of matter across the horizon in an asymptotically flat black hole.

vanishes for a stationary solution. We are interested in a black hole spacetime with a

regular bifurcation surface B, which is slightly perturbed from stationarity by throwing

some quantum matter. Let v be an a�ne parameter along the null generator of the future

horizon, such that v = 0 is the bifurcation surface as shown in Figure 5.1. Then, the

entropy at an arbitrary horizon cut (given by v = constant) is

S[v] =
1

4

Z

v

⇢
p

hdD�2x (5.2.2)

where the subscript v in the integral indicates that the integral is over the transverse space

at fixed v on the horizon. We can compute the change in the entropy along the horizon,

dS

dv
=

1

4

Z

v

p

hdD�2x
⇣d⇢
dv

+ ✓⇢
⌘

(5.2.3)

where expansion ✓ ⌘
1
p

h

d

p

h

dv
. To compute change in the entropy from v = 0 to v ! 1,

we can integrate both the sides with respect to v. This yields

�S =
1

4

Z
1

0

dv

Z

v

p

hdD�2x
⇣d⇢
dv

+ ✓⇢
⌘
. (5.2.4)
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Here, �S = S(1)� S(0). Using integration by parts,

�S =
1

4

Z

v

n
v
p

h
⇣d⇢
dv

+✓⇢
⌘o���

v!1

v=0

dD�2x �
1

4

Z
1

0

dv

Z
p

hdD�2xv
nd2⇢
dv2

+
d✓

dv
⇢+2

d⇢

dv
✓+✓2⇢

o
.

(5.2.5)

We will assume that
p
h
⇣
d⇢

dv
+ ✓⇢

⌘
goes to zero faster than 1

v
, therefore the first term in

the above equation is identically zero and we are left with

�S = �
1

4

Z
1

0

dv

Z
p

hdD�2xv
nd2⇢
dv2

+
d✓

dv
⇢+ 2

d⇢

dv
✓ + ✓2⇢

o
. (5.2.6)

To compute �S order by order, we will now consider the metric perturbation sourced

by a stress-energy tensor of order ✏, i.e, < Tvv > ⇠ O(✏). We will also assume that the

perturbation is about a stationary black hole background and at late times, the black

hole will again settle down into a stationary state. The perturbation expansion we are

interested in is

gµ⌫ = g(0)µ⌫ + ✏
1
2 g

(
1
2 )

µ⌫ + ✏g(1)µ⌫ +O(✏
3
2 ), (5.2.7)

where the zeroth order term corresponds to the stationary black hole solution with regular

bifurcation surface, the
p
✏ term is due to quantized graviton fluctuations, and the ✏ term

is due to the gravitational field of matter or gravitons. We can think of ✏ as ~. We want

to emphasize that ⌦ vanishes at order
p
✏ at the bifurcation surface [85], a fact which will

be useful later in the calculations.

5.2.1 Boost Argument

We now use boost arguments first used in [86] and later in [87], [88]. The metric near

any null hypersurface and therefore near the event horizon can be given in Gaussian null

coordinates as

ds2 = 2dvdu� u2X(u, v, xk)dv2 + 2u!i(u, v, x
k)dvdxi + hij(u, v, x

k)dxidxj (5.2.8)

where v is an a�ne parameter along the null generator of the horizon, xi corresponds to

coordinates on the D� 2 transverse surface (cut) and u is chosen in a way that @v.@u = 1

and @u.@i = 0. In this coordinate system, u = 0 is the future horizon and u = 0, v = 0

corresponds to the bifurcation surface B. These coordinates may not cover the entire

spacetime, but the near-horizon region of any dynamical black hole spacetime can always

be written in this form. Now, the black hole spacetime we consider in this chapter is a

static (therefore stationary) black hole spacetime which is a solution in a di↵eomorphism
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invariant theory of gravity. Then, the black hole event horizon is a Killing horizon [81].

First consider the case where this horizon is a Killing horizon with respect to the boost

field ⇠ = v@v � u@u (see [87]). This is true for any stationary black hole spacetime which,

near the horizon, looks like a Rindler spacetime, hence the terminology ‘boost field’. The

near-horizon metric of this stationary black hole will then be boost invariant, i.e the Lie

derivative of the metric L⇠gµ⌫ = 0. Then, the near-horizon metric (5.2.8) is of the form

ds2st = 2dvdu� u2X(uv, xk)dv2 + hij(uv, x
k)dxidxj (5.2.9)

Here, !i = 0 since the spacetime is static. This is the most general form of a static

spacetime with a Killing horizon near the horizon. It can easily be seen from (5.2.8) that

along the horizon, any non-zero tensor A, which is constructed out of metric components

can always be written as A = @nv @
m
u B, where m,n are integers and B is constructed out

of metric components X,!i, hij and their derivatives with respect to ri . Then, we can

associate a boost weight with these tensors as boost weight = #v index � #u index.

Furthermore, we can write the schematic form for the vv component of any 2-tensor Avv

constructed from metric components as

Avv = X̃@2vY + C@vA@vB. (5.2.10)

Here, X̃, Y, C,A,B have boost weight zero and are constructed out of metric components.

Now for the stationary black hole spacetime, the above equation reduces down to

Avv|st = u2X̃@2uvY + u2C@uvA@uvB. (5.2.11)

This is because the stationary black hole has a Killing symmetry which reduces on the

horizon to a scaling symmetry under u ! pu and v ! v/p. Thus, the metric components

in the stationary case only depend on uv at the horizon. This implies that the vv compo-

nent of any 2-tensor Avv constructed from metric components in a stationary black hole

spacetime vanishes at the future horizon i.e at u = 0.

Avv|
u=0

st = 0. (5.2.12)

Now, the vv component of the equation of motion for any higher curvature theory takes

the following form,

Rvv +Hvv = 8⇡Tvv (5.2.13)
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whereHvv corresponds to a higher curvature contribution to the equation of motion. Using

(5.2.11) for the stationary black hole Rvv = 0 and Hvv = 0, this implies that

Tvv|
u=0 = 0 (5.2.14)

for any classical matter stress-energy tensor. Furthermore, whenever a v derivative acts

on the stationary background metric component, it gives a factor of u as well, since the

metric component depends on v only through uv. Hence such a term will vanish at the

future horizon u = 0. Therefore, from (5.2.10), the vv component of any 2- tensor Avv

linear in the metric perturbation at the future horizon u = 0 can always be written in the

following form,

Avv|
u=0 = @2v⇣, (5.2.15)

where ⇣ has boost weight zero and is constructed from the background metric and the

linear perturbation over stationarity.

5.2.2 Semi-classical gravity equations

Following Chandrasekaran, Penington and Witten [2] and Wall [5], we will work in semi-

classical gravity where the expectation value of the matter stress energy tensor is a source

term in the gravity equations. Now let us look at the semiclassical equations of motion.

The vv component is

Rvv +Hvv = 8⇡ < Tvv > (5.2.16)

Writing this order by order in ✏, we get:

✏0 : Rvv +Hvv = 0 (5.2.17)

✏
1
2 : R

(
1
2 )

vv +H
(
1
2 )

vv = 0 (5.2.18)

✏1 : R(1)

vv +H(1)

vv = 8⇡ < TQ

vv > . (5.2.19)

where TQ
vv = TM

vv + tvv, < TM
vv > ⇠ O(✏) is a matter stress energy tensor and < tvv > ⇠

O(✏), the pseudo-stress-energy tensor of the graviton. Further, R
(
1
2 )

vv , H
(
1
2 )

vv are linear in

g
(
1
2 )

µ⌫ perturbation, and R(1)

vv , H
(1)

vv are linear in g(1)µ⌫ perturbation.
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5.2.3 Raychaudhuri equation order by order

As is well-known, the Raychaudhuri equation (5.2.18) plays a key role in the proof of the

second law and we will use it later in our computation. The Raychaudhuri equation is

given by,
d✓

dv
= �

n ✓2

D � 2
+ �↵��↵� +Rvv

o
(5.2.20)

Now, if we write it order by order in ✏, we get,

✏0 :
d✓(0)

dv
= 0 (5.2.21)

✏
1
2 :

d✓(
1
2 )

dv
= �R

(
1
2 )

vv (5.2.22)

✏1 :
d✓(1)

dv
= �

n✓(
1
2 )✓(

1
2 )

D � 2
+ �↵�

(
1
2 )
�
(
1
2 )

↵�
+R(1)

vv +R
(
1
2 ,

1
2 )

vv

o
(5.2.23)

Further using (5.2.19), (5.2.23) can be written as

d✓(1)

dv
= �

n✓(
1
2 )✓(

1
2 )

D � 2
+ �↵�

(
1
2 )
�
(
1
2 )

↵�
+ 8⇡ < TQ

vv > �H(1)

vv +R
(
1
2 ,

1
2 )

vv

o
. (5.2.24)

Furthermore, if we compute R
(
1
2 ,

1
2 )

vv in TT (transverse traceless) gauge at the horizon 1, we

will get,

R
(
1
2 ,

1
2 )

vv =
TT

�
1

4

dgij
(
1
2 )

dv

dg
(
1
2 )

ij

dv
+

1

2

d

dv

⇣
gij
(
1
2 )

dg
(
1
2 )

ij

dv

⌘
. (5.2.25)

Now using the fact that 1

2

dg
( 12 )

ij

dv
= �

(
1
2 )

ij
+ 1

D�2
g(0)
ij
✓(

1
2 ) [5] (i, j are transverse coordinate

indices), we can write equation (5.2.25) as

R
(
1
2 ,

1
2 )

vv =
TT

�

⇣✓(
1
2 )✓(

1
2 )

D � 2
+ �↵�

(
1
2 )
�
(
1
2 )

↵�

⌘
+

1

4

d2

dv2

⇣
gij
(
1
2 )
g
(
1
2 )

ij

⌘
(5.2.26)

which yields
d✓(1)

dv
= �

n
8⇡ < TQ

vv > �H(1)

vv +
1

4

d2

dv2

⇣
gij
(
1
2 )
g
(
1
2 )

ij

⌘o
. (5.2.27)

(5.2.21) follows from the fact that the background solution is stationary. The other equa-

tions are obtained by expanding the Raychaudhuri equation order by order.

1The perturbative expansion of the Ricci tensor to quadratic order can be found in [89].
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5.2.4 Entropy change due to accretion of quantum matter across the

horizon

In this subsection, we will compute the order-by-order change in the entropy due to the

accretion of quantum matter and gravitons across the horizon. We will assume that the

background black hole solution is stationary, as well as the final state of the black hole at

late times. Also, we assume the perturbation will fall o↵ fast enough, so that all boundary

terms at late times vanish 2. To compute the entropy change order by order, first we will

write the perturbative expansion of entropy density as

⇢ = ⇢(0) + ✏
1
2 ⇢(

1
2 ) + ✏⇢(1) +O(✏

3
2 ) (5.2.28)

Now, we have all the tools to compute the change in entropy. First we will do the change

in entropy computation in the absence of the graviton. Then we will do the computation

in which we will include gravitons.

5.2.4.1 Entropy change without graviton contribution

When there is no graviton, all the terms with g
(
1
2 )

µ⌫ perturbation will go away in all of the

above equations. Also, the stress-energy tensor will have only the matter contribution

i.e, < TQ
vv >=< TM

vv >, which we will take to be O(✏). The background solution is

a stationary black hole, with a Killing horizon and regular bifurcation sphere. For the

stationary black hole, the expansion coe�cient of the horizon is zero and the entropy

density will be independent of the chosen horizon cut. Therefore

✏0 : �S(0) = 0 (5.2.29)

Now, we will compute the change in the entropy due to accretion of matter by the sta-

tionary black hole, which takes it away from stationarity. As we have already mentioned,

the black hole will settle down into a new stationary state at late times. Now using (5.2.6)

and (5.2.27) with the fact that there is no ⇢(
1
2 ) and ⇥

1
2 we will get

✏ : ��S(1) = �
1

4

Z
1

0

dv

Z
dD�2x

p

hv
nd2⇢(1)

dv2
+

d✓(1)

dv
⇢(0)
o
. (5.2.30)

2This implies that at late times all the perturbations would have either crossed the horizon or gone to
asymptotic infinity. For AdS black hole spacetime with reflecting boundary conditions, all perturbations
will cross the horizon. Also, we dynamically impose the gauge (5.2.8) at all times.
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Here, � is the perturbation away from stationarity. Since ⇢(0) = 1 + ⇢(0)w ,

d✓(1)

dv
⇢(0) =

d✓(1)

dv
+

d✓(1)

dv
⇢(0)w = �8⇡ < TQ

vv > +H(1)

vv �R(1)

vv ⇢
(0)

w . (5.2.31)

The equation (5.2.31) is obtained using (5.2.23),(5.2.27) and the fact that there is no g(
1
2 )

perturbation, which will make d✓
(1)

dv
= �R(1)

vv . Further, we used the equation of motion

to rewrite R(1)

vv in terms of the stress energy tensor. Putting the equation (5.2.31) in the

equation (5.2.30), we get

✏ : ��S(1) = �
1

4

Z
1

0

dv

Z
dD�2x

p

hv
n⇣d2⇢(1)

dv2
�R(1)

vv ⇢
(0)

w +H(1)

vv

⌘
� 8⇡ < TQ

vv >
o
.

(5.2.32)

We note that
⇣
d
2
⇢
(1)

dv2
�R(1)

vv ⇢
(0)

w +H(1)

vv

⌘
is constructed out of background metric components

and the perturbation and is linear in the perturbation 3. Therefore, using boost arguments

we can write
⇣
d
2
⇢
(1)

dv2
�R(1)

vv ⇢
(0)

w +H(1)

vv

⌘
= @2v⇣(1), which will yield

��S(1) = �
1

4

Z
1

0

dv

Z
dD�2x

p

hv
n
@2v⇣(1) � 8⇡ < TQ

vv >
o
. (5.2.33)

We can simplify the above term using integration by parts,

��S(1) = 2⇡

Z
1

0

dv

Z
dD�2x

p

hv < TQ

vv > +
1

4

Z
dD�2x

p

h

Z
1

0

dv@v⇣(1)

�
1

4

Z
dD�2x

p

h
⇣
v@v⇣(1)

⌘���
v!1

v=0

. (5.2.34)

Now we assume fall-o↵ conditions at late times i.e, all perturbations and their derivatives

should fall fast enough such that this boundary term goes to zero at late times. The

contribution from the last term in (5.2.34) also vanishes at v = 0. Let us recall that we

are in the gauge (5.2.8) in which the horizon is always at u = 0. Then we will get

��S(1) = 2⇡

Z
1

0

dv

Z
dD�2x

p

hv < TQ

vv > �
1

4

Z
dD�2x

p

h⇣(1)

���
v=0

. (5.2.35)

We can get rid of the second term by assuming that we can fix the JKM ambiguity in such

a way that
d2⇢(1)

dv2
�R(1)

vv ⇢
(0)

w +H(1)

vv = @2v⇣(1) = 0 (5.2.36)

everywhere on the horizon. This will get rid of the term which is giving rise to the second

term in (5.2.35). This is because then ⇣(1)(v) = av + b, where a and b are only functions

3We can replace the ordinary derivatives with respect to v in the first term with covariant derivatives
in the gauge we are in.
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of transverse coordinate. ⇣(1) is constructed out of the background metric and the linear

perturbation in the gauge (5.2.8). We have to further impose the fall-o↵ conditions on the

perturbation i.e., the perturbation and its derivatives with respect to v must go to zero at

late times. Thus ⇣(1)(v) = 0. There is no contradiction with the fact that ⌦ vanishes at

the bifurcation surface in linear order. It is shown in [90] that the second term in (5.2.35)

is zero for F (R) gravity and arbitrary order Lovelock gravity. It is also argued there that

this will be true for an arbitrary di↵eomorphic theory at linear order. Therefore, assuming

this,

��S(1) = 2⇡

Z
1

0

dv

Z
dD�2x

p

hv < TQ

vv > (5.2.37)

The above derivation is of course true even when the accreting matter is classical. For

classical matter, imposing the null energy condition i.e TQ
vv � 0 will give the second law.

5.2.4.2 Entropy change with the graviton contribution included

In this section, we include the graviton contribution, and therefore we will work with the

full perturbation expansion. We will again do an order by order expansion. Using (5.2.6)

and the fact that background solution is stationary,

✏0 : �S(0) = 0 (5.2.38)

Now, let us compute change in entropy at ✏
1
2 order. Writing (5.2.6) at ✏

1
2 will give

✏
1
2 : ��S(

1
2 ) = �

1

4

Z
1

0

dv

Z
dD�2x

p

hv
nd2⇢(

1
2 )

dv2
+

d✓(
1
2 )

dv
⇢(0)
o
. (5.2.39)

Here, � corresponds to entropy change due to a perturbation that takes the solution away

from stationarity. Using (5.2.22), we can write (5.2.39) as

��S(
1
2 ) = �

1

4

Z
1

0

dv

Z
dD�2x

p

hv
nd2⇢(

1
2 )

dv2
�R

(
1
2 )

vv ⇢
(0)

o
(5.2.40)

Furthermore using the boost argument in (5.2.15), we can write R
(
1
2 )

vv = @2v⇣( 12 )
, where ⇣

(
1
2 )

is constructed out of the background metric and linear perturbation in g
(
1
2 )

µ⌫ where we work

in the gauge (5.2.8). Further, ⇢(0) is independent of v. Therefore, the equation (5.2.40)

becomes

��S(
1
2 ) = �

1

4

Z
1

0

dv

Z
dD�2x

p

hv
d2

dv2

n
⇢(

1
2 ) � ⇢(0)⇣

(
1
2 )

o
. (5.2.41)
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Using integration by parts,

��S(
1
2 ) = �

1

4

Z
dD�2x

p

hv
d

dv

n
⇢(

1
2 )�⇢(0)⇣

(
1
2 )

o���
v!1

v=0

+
1

4

Z
1

0

dv

Z
dD�2x

p

h
d

dv

n
⇢(

1
2 )�⇢(0)⇣

(
1
2 )

o
.

(5.2.42)

Using the fall-o↵ condition on the perturbation at late times, the first term vanishes.

Therefore, we get

��S(
1
2 ) =

1

4

Z
1

0

dv

Z
dD�2x

p

h
d

dv

n
⇢(

1
2 ) � ⇢(0)⇣

(
1
2 )

o
. (5.2.43)

Integrating and using fall-o↵ condition gives

��S(
1
2 ) = �

1

4

Z
dD�2x

p

h
n
⇢(

1
2 ) � ⇢(0)⇣

(
1
2 )

o���
v=0

. (5.2.44)

Using the fact that ✓ = d

dv
log (

p
h) and (5.2.22), we can write � log (

p
h) = �⇣

(
1
2 )
. There-

fore, we can write (5.2.44) as

��S(
1
2 ) = �

1

4

Z

B

dD�2x
p

h
n
⇢(

1
2 ) + � log (

p

h)⇢(0)
o
. (5.2.45)

Using (5.2.1), it is straightforward to verify that

��S(
1
2 ) = ��S(

1
2 )

���
B

(5.2.46)

B is the bifurcation surface. Now, we use Theorem 6.1 in Iyer and Wald (IW) [82], i.e

(�S = �E � ⌦H�J )
���
B

, where E is the canonical energy and J is the canonical angular

momentum of the black hole in the covariant phase space formalism 4. This was proved by

IW at the bifurcation surface for any non-stationary perturbation satisfying the linearized

equation of motion5. Now in our case, there is no stress-energy tensor at ✏(
1
2 ) order. This

implies

��S(
1
2 ) = ��S(

1
2 )

���
B

= 0 (5.2.47)

Hence, �S(
1
2 )(0) = �S(

1
2 )(1) = 0. Therefore, from (5.2.47), if �S(

1
2 ) is non-zero at any cut,

then for some range of v entropy will definitely decrease. This violates the second law.

The only way for the second law to be true is to assume that �S(
1
2 ) will vanish at arbitrary

cut. It was shown explicitly by the authors in [85, 90] that

Rvv ⌘
d2⇢

dv2
�Rvv⇢

(0)

w +Hvv (5.2.48)

4Since we have a static black hole, angular velocity at the horizon is zero.
5IW’s first law at the bifurcation surface B is una↵ected by the JKM ambiguity.
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vanishes for F (R) theory and Lovelock theory of arbitrary order, at the linear order in

perturbation theory about the stationary black hole (perturbation can be non-stationary).

Using (5.2.18), it can can be checked that the term in curly brackets in (5.2.39) is the same

as R
(
1
2 )

vv . The authors in [85, 90] also argued that this relation may be true for an arbitrary

theory of gravity with an appropriate definition of local entropy density. Vanishing of

�S(
1
2 ) in general will yield,

d2⇢(
1
2 )

dv2
= �⇢(0)@v✓( 12 )

(5.2.49)

which after integration and using the boundary condition that the perturbation vanishes

at late times will give ⇢(
1
2 ) = ⇢(0)⇣

(
1
2 )
.

Now, let us compute the ✏ order change in entropy, writing (5.2.6) to the ✏ order. We get

��S(1) = �
1

4

Z
1

0

dv

Z
v
nd2⇢(1)

dv2
+⇢(0)

d✓(1)

dv
+
d✓(

1
2 )

dv
⇢(

1
2 )+2✓(

1
2 )
d⇢(

1
2 )

dv
+⇢(0)✓(

1
2 )✓(

1
2 )
op

hdD�2x.

(5.2.50)

Using (5.2.19), (5.2.23) and (5.2.48), the first two terms in the above expression can be

written as

d2⇢(1)

dv2
+ ⇢(0)

d✓(1)

dv
= �8⇡ < TQ

vv > +R
(1)

vv �
1

4

d2

dv2

⇣
gij
(
1
2 )
g
(
1
2 )

ij
⇢(0)
⌘
. (5.2.51)

Using (5.2.48), (5.2.15) and the fact that H(1)

vv and R(1)

vv are constructed out of background

metric components and the perturbation and are linear in g(1)µ⌫ perturbation in the gauge

(5.2.8), R(1)

vv can be written as R(1)

vv = @2v⇣(1). This yields

d2⇢(1)

dv2
+ ⇢(0)

d✓(1)

dv
= �8⇡ < TQ

vv > +@2v⇣
0

(1)
. (5.2.52)

where, ⇣ 0
(1)

= ⇣(1) �
1

4

⇣
gij
(
1
2 )
g
(
1
2 )

ij
⇢(0)
⌘
.Putting the above equation in (5.2.50) we get,

�
1

4

Z
1

0

dv

Z
v
p

hdD�2x
⇣d2⇢(1)

dv2
+ ⇢(0)

d✓(1)

dv

⌘
= 2⇡

Z
1

0

dv

Z
v
p

hdD�2x < TQ

vv >

�
1

4

Z
p

h⇣ 0
(1)

dD�2x
���
v=0

. (5.2.53)

We get the above equation using integration by parts in the @2v⇣
0

(1)
integral and the fact

that the term at v ! 1 will vanish due to the fall-o↵ condition. Let us consider the rest

of the terms in (5.2.50), we will call it A(1
2
, 1
2
),

A(
1

2
,
1

2
) = �

1

4

Z
1

0

dv

Z
v
nd✓(

1
2 )

dv
⇢(

1
2 ) + 2✓(

1
2 )
d⇢(

1
2 )

dv
+ ⇢(0)✓(

1
2 )✓(

1
2 )
op

hdD�2x. (5.2.54)
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After integrating (5.2.49) once, we get d⇢
( 12 )

dv
= �⇢(0)✓

(
1
2 )
. Putting this in (5.2.54) will yield

A(
1

2
,
1

2
) = �

1

4

Z
1

0

dv

Z
v
nd✓(

1
2 )

dv
⇢(

1
2 ) + ✓(

1
2 )
d⇢(

1
2 )

dv

op
hdD�2x (5.2.55)

which can be further simplified using integration by parts and using fall-o↵ conditions as

v ! 1,

A(
1

2
,
1

2
) =

1

4

Z
1

0

dv

Z
✓(

1
2 )⇢(

1
2 )
p

hdD�2x. (5.2.56)

Using d⇢
( 12 )

dv
= �⇢(0)✓

(
1
2 )

in (5.2.56), we get

A(
1

2
,
1

2
) = �

1

8

Z
1

0

dv

Z
d

dv

⇣(⇢(
1
2 ))2

⇢(0)

⌘p
hdD�2x. (5.2.57)

After integrating and using fall-o↵ at late times, we will get

A(
1

2
,
1

2
) =

1

8

Z ⇣(⇢(
1
2 ))2

⇢(0)

⌘p
h
���
v=0

dD�2x (5.2.58)

This quantity is thus manifestly positive. From (5.2.53) and (5.2.58), we get

��S(1) = 2⇡

Z
1

0

dv

Z
v
p

hdD�2x < TQ

vv > �
1

4

Z
p

h⇣ 0
(1)

dD�2x
���
v=0

+A(
1

2
,
1

2
). (5.2.59)

We know that the Wald entropy has JKM ambiguities when the metric is not stationary.

That was a motivation for putting ⌦ as the correction to the Wald entropy in the definition

of local entropy density. We now fix ⌦ such that the last two terms in (5.2.59) vanish. These

terms are anyway zero for a stationary black hole, as can be seen from the expression for

A(1
2
, 1
2
) in (5.2.58) andR

(1)

vv is zero for a stationary black hole from results in the subsection

on the boost argument 6. So ⌦ will be non-zero only when the metric is not stationary.

For the cases when it is possible to set these two terms to zero by a choice of ⌦, we will

get

��S(1) = 2⇡

Z
1

0

dv

Z
v
p

hdD�2x < TQ

vv > (5.2.60)

Some of the ambiguities in Wald’s entropy were fixed for some class of theories at linear

order in perturbation theory[86]. Moreover, this entropy was shown to be equal to holo-

graphic entanglement entropy computed by Dong [91].It is also pointed out in [86] that

considering the second law at linear order does not fix the ambiguities at higher order.

Therefore these results are not in contradiction with our computation. One can also get rid

6For a stationary black hole, v derivatives of ⇢ are zero and Rvv and Hvv are zero for a stationary metric
as discussed using boost arguments.
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of the second and third term in (5.2.59), by restricting the perturbation to a special class

of perturbations which vanishes at v = 0. One physical case in which such perturbation

can be realised is when matter falls after v = 0.

5.3 The Entropy of Algebra And Generalized Entropy in

Higher Curvature Theory

In this section, we utilize the algebraic approach to quantum field theory, specifically

the constructions of Chandrasekaran, Penington, Longo, and Witten (CPLW) in [2], and

Chandrasekaran, Penington, and Witten (CPW) in [3], to study black holes in higher

curvature theories. We have employed their construction to prove a version of the GSL

(Generalized Second Law) for an arbitrary di↵eomorphism invariant theory of gravity, with

certain appropriate assumptions. The setup that we are interested in involves both the

asymptotically flat and asymptotically AdS stationary black hole solutions in an arbitrary

di↵eomorphism-invariant theory. Throughout this section, we follow the notation of CPW.

5.3.1 Generalization To Higher Curvature Gravity

We now generalize the construction of the subsection (4.2) to an arbitrary di↵eomorphism-

invariant theory of gravity. We note that some of the constructions in the previous sub-

section such as the semi-classical state were done by CPW for the AdS-Schwarzschild black

hole in the boundary CFT. But we can analogously define such a semi-classical state in

the bulk using the same construction. In fact, only in the sections on monotonicity of

generalized entropy in CPW, are results in the boundary theory crucially used. Therefore,

except while discussing monotonicity of the generalized entropy, we can confine our analysis

to the bulk, and we can even work with an asymptotically flat black hole, as discussed

by CPLW. So, in our case, M is the (3 + 1) dimensional, asymptotically flat, maximally

extended static (therefore stationary) black hole solution in an arbitrary di↵eomorphism

invariant theory of gravity. Therefore, its horizon is a Killing horizon. The equation

(4.2.1) will define a conserved quantity even in the arbitrary theory of gravity, since it

is the consequence of invariance of the action under background di↵eomorphisms. Let

us define the 1-form J = Tµ⌫V ⌫dxµ where V is the timelike Killing vector of M . Then,

divergence of Jµ is zero, i.e., Jµ is covariantly conserved. This implies d ⇤ J = 0, where

⇤ is the Hodge dual. Since the spacetime does not have non-trivial topology, this implies

⇤J = dQ for some 2 form Q. Also, notice that the integral of ⇤J over the 3 dimensional
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Cauchy surface is ĥ. Since ⇤J = dQ, this reduces to an integral over the codimension 2

surface which is the boundary of the Cauchy slice. Therefore we can write ĥ = HR �HL

where HR and HL are codimension 2 integrals at right and left spatial infinity respectively.

We note that the canonical energy in the covariant phase space formalism is given by (4.2.1)

apart from a surface term ambiguity (see appendix of IW [82]).

E =

Z

⌃

J + Surface term =

Z

⌃

d⌃µTµ⌫⇠
⌫ + Surface term (5.3.1)

where E is canonical energy in covariant phase space formalism. So we can think of HR

and HL as being the right and left canonical energy, respectively, apart from ambiguities

in the canonical energy 7. We will call them right and left Hamiltonian. It can be shown

that these statement will go through even in semi classical regime as discussed in appendix

(7.2). Now, ĥ is the modular Hamiltonian corresponding to the Hartle-Hawking state as

before. This follows from the analysis of Sewell [69] for any metric of the following form:

ds2 = A(t2 � w2, y)(�dt2 + dw2) +B(t2 � w2, y)d�2(y). (5.3.2)

The Schwarzschild spacetime in Kruskal coordinates is of this form. We will assume that

our static black hole solution also has this form (i.e., we assume the existence of Kruskal-

like coordinates).

Now we can proceed by defining hL and hR as defined in (4.2.2). Following the argument in

the previous section that including gravity changes the algebra to Type II, we can split ĥ as

done in (4.2.3) and (4.2.4). Further, we can straightforwardly obtain the equation in (4.2.5)

and (4.2.6). The only di↵erence is now hR in (4.2.6) is the renormalized Hamiltonian in the

higher curvature theory which generates the time translation on the boundary of the right

exterior region. Afterwards, the construction of the crossed -product algebra (extended

algebra) and other constructions like defining the trace and entropy will analogously go

through as done in the previous section. We will work with a semi-classical state as defined

in (4.2.9). Therefore we can define the entropy of the algebra in the right exterior region

by the same formula (4.2.11) i.e.

S(�̂)Ar
=
D
�̂
����hR

����̂
E
�

D
�̂
���h |�

����̂
E
�

D
�̂
��� log ("|g("hR)|2)

����̂
E
+O(") (5.3.3)

7As discussed in the Appendix of IW [82], the ambiguity in the canonical energy is the sum of two
surface terms, one of which vanishes for common matter theories in a background spacetime. There is an
ambiguity due to the second surface term which is a function of the background metric, Killing vector,
matter fields and their derivatives. In what follows, we ignore this ambiguity.
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where Srel(�|| ) = �

D
�̂
���h |�

����̂
E

is relative entropy as defined earlier. So the form

of the equation (4.2.11) remains intact —the only change is that hR is the renormalized

canonical energy in higher curvature theory and h�| is the relative modular Hamiltonian

in that particular theory.

In our case of interest, the black hole settles down to a stationary state at very late times.

This is plausible since at late times all the flux of matter would either have crossed the

horizon or would have escaped through future null infinity. So, at late times we will not

be able to distinguish between | i and |�i. We get

Sbulk(1)� = Sbulk(1) = Sbulk(b) (5.3.4)

where Sbulk denotes the entanglement entropy of quantum fields in the exterior region of

the black hole 8. Now let us analyze hr, using (4.2.3) and the fact that the deformation

of Cauchy surfaces S does not a↵ect the conserved quantity ĥ. We deform S1 such that

S0

1
= H

+
[ I

+, where H
+ is the future horizon and I

+ is future null infinity 9. Therefore

�hH
+

r = �(hr � hI
+

r ) =

Z
1

0

dv

Z

H+
dD�2x

p

hvTvv (5.3.5)

where �hI
+

r is the time translation generator at future null infinity and �hH
+

r is the boost

generator on the horizon. The second equality in the above equation can be obtained using

(4.2.3) and the fact that hI
+

r is just the integral of the stress tensor supported at future

null infinity. Let us define a one-sided modular operator (boost operator) at arbitrary cut

v = v⇤ ( which is the D�2 dimensional transverse surface) at the horizon. It is well known

that the density matrix (⇢r)HH of the Hartle Hawking state in the region r is thermal with

respect to [68, 5]

Kr(v⇤) =

Z
1

v⇤

dv

Z

H+
dD�2x

p

h(v � v⇤)Tvv +KI
+

r (5.3.6)

where, KI
+

r = �hI
+

r is the modular energy at I
+, which accounts for energy which goes

to I
+ without crossing the horizon. Also notice that KI

+

r is independent of v⇤. When

v⇤ = 0, then the first term in the above equation will become �hH
+

r as defined in (5.3.5),

and therefore

Kr(b) = �hr = �hH
+

r + �hI
+

r (5.3.7)

8Earlier, we denoted this quantity by SQFT .
9In the case of an asymptotically AdS black hole, the deformed Cauchy surface is just H+
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where b is the bifurcation surface v⇤ = 0. We can also define

Kr(1) = lim
v⇤!1

Kr(v⇤) (5.3.8)

Using the result from the previous section and equation (5.3.8), we get

h�|�hH
+

r |�i = ��S (5.3.9)

If a density matrix were to exist for the algebra Ar,0, then using the definition of modular

Hamiltonian for state | i and the fact that � = ⇢ ⇢
0�1

 
, we will be able to write

log ⇢ = �Kr(b) + C (5.3.10)

where C is some constant. The density matrix of the Hartle Hawking state in region r can

be written as  (H+
[ I

+) = (⇢r)HH ⌦ �, which corresponds to the ground state 10 ⇢HH

at H
+, product taken with some arbitrary density matrix defining a faithful state at I

+

[5]. Therefore,

h | log ⇢ | i = �h |KI
+

r | i+ C (5.3.11)

Here we use the fact that h |hH
+

r | i = 0 since it is the Hartle Hawking state. Further,

since Sbulk(b) = �h | log ⇢ | i, we get Sbulk(b) = h |KI
+

r | i � C.

As mentioned before, it is not strictly true of the algebra Ar,0 that the modular operator

factorizes, but by extending the algebra to Ar, it is true that the modular operator factor-

izes as �̂ = ⇢
 ̂
⇢0�1

 ̂
(in the notation of[1]). We will ignore this detail just for illustrative

purposes following [2] .

Sgen(1)� Sgen(b) = S(1)� S(b) + Sbulk(b) � Sbulk(b)�. (5.3.12)

It can be written in terms of the one-sided modular operator,

Sgen(1)� Sgen(b) = �h�| (Kr(1)�Kr(b)) |�i+ Sbulk(b) � Sbulk(b)�. (5.3.13)

Putting Sbulk(b) and h�|Kr(b) |�i using the equation (5.3.10) , we get

Sgen(1)� Sgen(b) = �h�| log ⇢ |�i+ C � h�|Kr(1) |�i+ h |KI
+

r | i � C � Sbulk(b)�

(5.3.14)

10Hartle Hawking state is a ground state with respect to the time v.
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Now, we use the fact that at late times, every state is indistinguishable from | i and

Kr(1) = KI
+

r . Further, KI
+

r is independent of the cut. The expectation value KI
+

r in

state |�i will be equal to its expectation value in state | i. Therefore, we get

Sgen(1)� Sgen(b) = �h�| log ⇢ |�i � Sbulk(b)� (5.3.15)

therefore we got,

Sgen(1)� Sgen(b) = Srel(�|| ) (5.3.16)

As we see, the di↵erence of generalized entropies in (5.3.16) is manifestly finite and non-

negative. For Einstein gravity, the above expression has been already obtained by Wall

in [5]. The result (5.3.16) is in an arbitrary theory of gravity — the di↵erence between

generalized entropy at late times and generalized entropy at the bifurcation surface is

relative entropy of the state of the black hole with respect to the Hartle Hawking state.

We now need to show, as in [2], that the generalized entropy at the bifurcation surface is

the entropy of the algebra. We thus need to show

Sgen(1) =
D
�̂
����hR

����̂
E
�

D
�̂
��� log ("|g("hR)|2)

����̂
E
+Const (5.3.17)

Since both terms in the above equation are only functions of hR, and since we have inter-

preted hR as the renormalized canonical energy, the above terms are some distributions

of energy in the semi-classical state
����̂
E
. Also, these terms are independent of the state

|�i. To see that, choose a(s) such that

a(s) =

Z
e�ih

0

R
sf(h0R)dh

0

R (5.3.18)

where f(hR) is some chosen function. Putting the equation (5.3.18) in the equation (4.2.7)

and using the fact that hR = ĥ + x, will yield â = f(hR). Now let us compute the ex-

pectation value
D
�̂
����â

����̂
E
for (5.3.18) with the semi-classical state

����̂
E
defined in (4.2.9).

Using the results (3.25) and (3.26) in CPW [2],

D
�̂
��� â
����̂
E
=

Z
1

�1

dx

Z
1

�1

ds|"g("x)|2eisx h |��| a(s) | i (5.3.19)

Now put (5.3.18) in (5.3.19). Using the fact that hR = ĥ + x and ĥ | i = 0, we get

D
�̂
��� f(hR)

����̂
E
=

Z
1

�1

dx

Z
1

�1

ds

Z
1

�1

dy|"g(✏x)|2eis(x�y)f(y) h |��| | i (5.3.20)

By definition, h |��| | i = 1. Therefore the above equation is independent of |�i, it
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will only depend on f(hR) and g("x). Therefore, both the terms on the right-hand side

of (5.3.17) will give the same result either when we compute them in the state |�i or in

the Hartle Hawking state | i at late times. Since both terms can be determined from the

late-time behavior of the black holes, the relation (5.3.17) is plausible. This is because at

late times, all the fields have either fallen across the horizon or to infinity.

Using equation (4.2.2), we can write
D
 ̂
����hR

��� ̂
E

= �(�E), where �E is the energy

di↵erence between the black hole we are studying and the reference black hole. Since both

the black holes are taken in an equilibrium state, we can apply the first law of black hole

mechanics for two equilibrium configurations in phase space which yields

D
 ̂
����hR

��� ̂
E
= �S (5.3.21)

where �S is the di↵erence of entropy of the equilibrium black hole state we get at late

times to the reference black hole. Therefore, the first term in (5.3.17) describes the change

in Sgen(1) due to a change in black hole entropy. At very late times, all the matter would

have either crossed the horizon or would have escaped to null infinity. The second term

should be thought of as the contribution of entropy of fluctuations in black hole entropy

[2]. Finally, we add and subtract the entanglement entropy of the quantum fields in the

Hartle-Hawking state and lump one of the pieces in the constant in (5.3.17) using (5.3.11).

This is because at late times, all the fields have either fallen across the horizon or to

infinity.

Combining everything, we get

S(�̂)Ar
= Sgen(b) + Const. (5.3.22)

The equation (5.3.22) tells us that Sgen(b) for black holes at the bifurcation surface in the

arbitrary theory of gravity can be thought of as the entropy of the algebra Ar modulo a

constant. Notice, we have shown that the generalized entropy at the bifurcation surface

is equal to the entropy of the algebra up to a constant, but we are not making any

statement about entropy at an arbitrary cut of the horizon. In algebraic QFT, relative

entropy is positive. This implies Sgen(1) � Sgen(b) � 0. Can we go beyond this result

and prove that the generalized entropy is monotonic? The entropy of the algebra is

monotonic under trace-preserving inclusions [92]. To obtain a GSL (monotonicity of the

generalized entropy), CPW consider an AdS Schwarzschild black hole with a holographic

dual CFT. Then, they have the following clever argument: In the dual CFT, they consider

operator algebras at two di↵erent times (early and late times), AR,0 and BR,0 respectively,

separated by a timescale much larger than the thermal time scale �. The correlation
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functions of operators at these di↵erent times factorize into a product of correlators of

early and late times. Thus, the algebra generated by both early and late time operators

is CR,0 = AR,0 ⌦BR,0. The Hilbert space factorizes similarly. These algebras are extended

similar to what was done before, to obtain a Type II algebra which has an associated

entropy. Now, consider three di↵erent situations: first, the quantum fields at both early

and late times are in an arbitrary state, a second situation where the fields at early times

have fallen into the horizon, so that the state of these fields is the vacuum times any state

of the late time fields, and finally, a situation where both sets of fields have fallen into

the horizon and the state of the fields in the exterior is the vacuum. CPW argue that

the generalized entropies at these three horizon cuts is the generalized entropy for the

extended algebra CR for these three di↵erent states at a hypothetical bifurcation surface

in the limit of large time gap. From the property of the monotonicity of the entropy of

the algebra under trace preserving inclusions, it follows that the generalized entropy is

increasing in going from the first to the third situation above. This argument is then

a version of the GSL. We can use these results to prove this version of the GSL in an

arbitrary di↵eomorphism invariant theory of gravity if we start with an asymptotically

AdS black hole which has a holographic dual. We can repeat all the steps in this section

for such a black hole. The only thing we need is for the first law as in the paper of Iyer and

Wald [82] to be true in this situation. Although the statement of the First law is only for

asymptotically flat black holes, the same will be true for an asymptotically AdS black hole

provided the integrals involved in the presymplectic form and the canonical energy are

finite after assuming appropriate fall-o↵s for the fields. In this case, the computation of

CPW generalizes to these black holes in a higher curvature theory of gravity, and a version

of the increase of generalized entropy (comparing the entropy at early and late times) is

true. The ambiguity in the Wald entropy, which we fixed in the bifurcation surface in

a previous section, was in terms of a quadratic function of the half-order perturbation.

This is not a↵ected by the di↵erent states of the quantum fields in the argument of CPW,

so their argument goes over to our case. Can we show a stronger monotonicity result
dSgen

dv
� 0? This is what Wall [5] has done for Einstein gravity, using an expression for

the entropy at any cut of the horizon. Due to JKM ambiguities in the Wald entropy, this

expression will probably need one to specify the particular theory of gravity.

5.4 Discussion

In the context of Einstein gravity, it was shown by CPW [3] that for the system of quantum

fields in a perturbed Schwarzschild black hole spacetime in the G ! 0 limit with infalling



Chapter 5. Black Holes in Higher Curvature theory and Local algebra of Observer 181

quantum matter across the horizon, the generalized entropy at the bifurcation surface

was equal to the entropy of the von Neumann algebra of operators in the black hole

exterior. This was achieved by enlarging the operator algebra by including the ADM

Hamiltonian and by enlarging the Hilbert space. This had the e↵ect of changing the

algebra of operators to a Type II1 von Neumann algebra, to which we can associate

a notion of trace and entropy. Furthermore, CPW showed that the di↵erence of the

generalized entropy of an arbitrary cut of the horizon, in the limit when the cut v ! 1

and the generalized entropy at the bifurcation surface was equal to the relative entropy,

and therefore nonnegative. For this, CPW worked in semiclassical gravity and up to

quadratic order in perturbations. They then obtained a monotonicity result (GSL) for

the generalized entropy from the monotonicity of relative entropy under trace-preserving

inclusions. In this chapter, we consider quantum fields in a slightly perturbed static black

hole with a causal horizon in an arbitrary di↵eomorphism-invariant theory of gravity in

the G ! 0 limit. In this setup, generalized entropy is the sum of Wald entropy (including

JKM correction) and entanglement entropy of quantum fields in the black hole exterior.

We consider the di↵erence in Wald entropy at infinity and at the bifurcation surface up to

quadratic order in the perturbations and obtain (5.2.59). Wald entropy has ambiguities on

non-stationary geometries. We fix the ambiguity in order to get (5.2.60), which matches

the result for Einstein gravity in the paper of CPW, and we obtain a simplified result

for the di↵erence of entropies, which enables us to employ the CPW construction. We

then consider the di↵erence in generalized entropies and show that this di↵erence equals

the relative entropy of the state of the quantum fields and the Hartle-Hawking state — it

is thus non-negative. We next consider the von Neumann algebra of the quantum fields

in the black hole exterior, extended to include the Hamiltonian and an enlarged Hilbert

space as in CPW. Evaluated on the semiclassical states defined by CPW, we show that

the entropy of the von Neumann algebra equals the generalized entropy of the bifurcation

surface. Finally, we see that the derivation of the increase of generalized entropy by CPW

in Einstein gravity goes through for black holes in an arbitrary gravity theory, provided

the black hole is asymptotically AdS, which has a holographic dual.

It would be interesting to extend the above results to arbitrary cuts on the horizon and

to establish the validity of the generalized second law (GSL). However, this extension

is subtle. The subtlety arises from the fact that the causal structure in higher curvature

theories di↵ers significantly from that of general relativity. In particular, defining the local

algebra of observables for a given region requires us to understand the causal structure (see

the discussion in the section (3.5.0.1)). This issue will be the focus of the next chapter.



Chapter 6

Causal Structure of Higher

Curvature theory

The material presented in this chapter is based on the work of the author in [19]

In this chapter, we analyze the causal structure of Generalized Quadratic Gravity (GQG)

and Einsteinian Cubic Gravity (ECG). It is well known that gravitons in higher-curvature

theories can exhibit superluminal propagation, rendering the conventional definition of

causal structures based on null curves inadequate. Instead, the causal structure must be

defined using the fastest propagating modes, which travel along characteristic surfaces.

The superluminal propagation in higher-curvature theories has significant implications for

black holes. Specifically, if the Killing horizon of a black hole is not a characteristic surface

corresponding to the fastest propagating mode, the horizon can no longer function as a

causal barrier. Here, we present a detailed characteristic analysis of GQG and ECG, and

discuss their implications for holography and the algebra of observables.

182
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6.1 Introduction

General Relativity (GR) is one of the most elegant and experimentally validated theories,

providing a robust framework for describing gravitational phenomena in the weak-field,

low-energy regime [93]. However, its validity in strong-field regimes remains an open

question, as we currently lack su�cient experimental or observational evidence to confirm

its applicability under such extreme conditions. This uncertainty makes it imperative

to explore extensions of GR, such as higher curvature theories, which naturally arise in

many approaches to quantum gravity. These theories are not only motivated by attempts

to quantize gravity but also serve as fertile ground for exploring deviations from GR in

regimes where it has yet to be tested.

In higher curvature theories, the equations of motion (EoM) incorporate higher derivative

terms, leading to a more intricate spectrum of propagating modes and the causal structure.

These modes often have distinct propagation speeds depending on fields and polarization,

with some modes propagating superluminally[94, 95]. In the presence of such superluminal

propagation, the usual GR notion of causal structure, defined with respect to null curves,

becomes inadequate. Instead, the causal structure must be redefined in terms of the fastest

propagating modes. This causal structure, defined with respect to the fastest propagating,

is what we should use to define the local algebra of observables.

For many partial di↵erential equations (PDEs), the fastest propagating modes

travel along the characteristic surfaces, which are determined by the principal symbol of

the PDE—corresponding to the highest derivative terms in the EoM. As a result, the

causal structure of higher curvature theories is encoded in the principal symbol of their

governing equations. In GR, the fastest propagating modes travel along null curves, and

therefore it makes sense to define the causal structure with respect to null curves, which

is not true in generic higher curvature theory. This shift in how causality is understood

underscores the importance of analyzing the principal symbol in such theories. This fact

has implications for the behavior of black holes in higher curvature theories. Let M be

the manifold representing the entire spacetime. If we extend the definition of a black

hole region from GR as M \ J�(I+), where J�(I+) is the causal past of future null

infinity I
+, this definition inherently relies on the causal structure defined with respect to

null curves associated with the spacetime metric. However, in higher curvature theories

that admit superluminal propagating modes, the causal structure is determined by the

fastest propagating modes rather than the null structure of the spacetime metric. In these

theories, if the horizon is not a characteristic surface corresponding to the fastest mode,



Chapter 6. Causal Structure of Higher Curvature theory 184

the black hole boundary can no longer act as a causal barrier. This motivates us to study

the causal structure of the higher curvature theories.

Generic higher curvature theory has lots of pathologies, like ill-posed initial value problems,

instabilities, and perturbative ghosts. But there are higher curvature theories with second-

order EoM and, which therefore, are free from such instabilities and ghosts, like Lovelock

theories. Moreover, it is shown by Izumi in [96] that in the Gauss-Bonnet theory, the

Killing horizon is a characteristic surface for all polarization modes of the graviton and

therefore, no modes can leak from the horizon. Reall, Tanahashi, and Way in [94] have

generalized this result to the full Lovelock class of theories.

Generally, the theories with the EoM higher than the second order have linearized ghosts

and are also considered to be ill-posed. Nevertheless, there are theories with ghosts that

have well-posed initial value problems and stable dynamical properties [97, 98, 99]. This

makes the higher derivative theories more interesting and worth exploring. One of the main

goals of studying these theories is to come up with some physically motivated criteria

to define good gravitational theories. For example, the causality criteria of Camanho,

Edelstein, Maldacena, and Zhiboedov (CEMZ) require the theory not to have a Shapiro

time advance [100]. Edelstein, Ghosh, Laddha, and Sarkar in [101, 102] have shown that

Generalized Quadratic Gravity (GQG) in a shock wave background for some class of

couplings has Shapiro time delay and therefore satisfies CEMZ causality criteria.

In this chapter, we have analyzed the causal structure in GQG, whose Lagrangian has

arbitrary linear combinations of squares of the Riemann tensor, Ricci tensor and Ricci

scalar. We have also analyzed the causal structure of Einsteinian Cubic Gravity (ECG),

a special cubic curvature theory that has only a massless graviton in the spectrum when

linearized about the maximally symmetric background. To study the causal structure, we

have used the method of characteristics. In Section (6.2), we consider a theory with fourth-

order EoM, described by a di↵eomorphism invariant Lagrangian. Following Reall in [103],

we define the principal symbol and study its symmetries, as well as the implications of the

action principle and di↵eomorphism invariance on the principal symbol. In Section (6.3),

we analyze the characteristics of the Riemann-squared theory in D-dimensions and their

implications for Killing horizons. In Section (6.4), we examine GQG in D-dimensions

and study its characteristics when the theory has genuinely a fourth-order EoM. The

characteristics analysis of linearized perturbations in some higher derivative theories in

specific backgrounds is also studied in [104]. In Section (6.5), we present a characteristic

analysis of Einsteinian Cubic Gravity. First, we analyze ECG on an arbitrary background

but are only able to analyze the null characteristics. To analyze the non-null case, we

perform a characteristics analysis on Type N spacetimes in the Weyl classification. In
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Section (6.6), we discuss the results and outline future directions.

6.2 Principal Symbol and its Symmetries

Let us consider theories described by the action below with metric gµ⌫ and matter �I .

S[gµ⌫ ,�I ] =
1

16⇡G

Z
dDx

p
�gL(g,�I). (6.2.1)

The gravitational EoM obtained from the above action is

Eµ⌫

g = �
�16⇡G
p
g

�S

�gµ⌫
= 0. (6.2.2)

Similarly, the matter EoM is

EI

m = �
�16⇡G
p
g

�S

��I

= 0 (6.2.3)

where g denotes metric and m denotes matter. Let us assume that the EoM is fourth

order, then the variation of EoM takes the following form,

�Eµ⌫

g = Mµ⌫↵�,�⇢�⇣

gg @�@⇢@�@⇣�g↵� +Mµ⌫J,�⇢�⇣

gm @�@⇢@�@⇣��J + ... (6.2.4)

�EI = M IJ,�⇢�⇣

mm @�@⇢@�@⇣��J +M I↵�,�⇢�⇣

mg @�@⇢@�@⇣�g↵� + ... (6.2.5)

where Mµ⌫↵�,�⇢�⇣
gg , Mµ⌫J,�⇢�⇣

gm , M IJ,�⇢�⇣
mm and M I↵�,�⇢�⇣

mg denote the coe�cients of the highest

derivatives of the metric and matter fields in the equations of motion (EoM), which we

refer to as the principal tensors. The ellipses in the above equation denote the terms with

less than four derivatives. We define the matrix of the principal symbol for the EoM by

contracting the �⇢�⇣ indices of M with an arbitrary covector Kµ as

P(K)P(K)P(K) =

 
Mµ⌫↵�,�⇢�⇣

gg K�K⇢K�K⇣ Mµ⌫J,�⇢�⇣
gm K�K⇢K�K⇣

M I↵�,�⇢�⇣
mg K�K⇢K�K⇣ M IJ,�⇢�⇣

mm K�K⇢K�K⇣

!
(6.2.6)

which we can write as,

P(K)P(K)P(K) =

 
Pµ⌫↵�
gg (K) Pµ⌫J

gm (K)

P I↵�
mg (K) P IJ

mm(K)

!
(6.2.7)
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where P ⇤⇤⇤⇤

AB
(K) = M⇤⇤⇤⇤,�⇢�⇣

AB
K�K⇢K�K⇣ with A,B 2 {g,m}, is the principal symbol of

the field B coming from E⇤⇤

A

1. The principal symbol matrix P(K)P(K)P(K) is an endomorphism

on the vector space Vpol of “polarization” vectors of the form T = (Tµ⌫ , TI) where Tµ⌫ is

symmetric. As we will see, P(K)P(K)P(K) is always degenerate due to di↵eorphism invariance, but

then we can define a gauge equivalence class of polarizations, which we can call ”physical

polarization.” The covector Kµ is called a characteristic covector if there exists a non-zero

T in the gauge equivalence class of polarizations such that it satisfies the characteristic

equation P(K)P(K)P(K)T = 0. Furthermore, a hypersurface with a normal covector that is a

characteristic covector everywhere on the hypersurface is called a characteristic hypersur-

face. On these surfaces, the coe�cient of the highest derivative in (6.2.4) and (6.2.5) is

non-invertible. Therefore, one cannot express the highest derivative in the EoM in terms

of lower derivatives. Thus, characteristic surfaces represent the boundary of the Cauchy

development. There can be multiple characteristics, and the modes propagating along the

outermost characteristic surfaces are the fastest-moving modes. Consequently, informa-

tion about the causal structure of a theory is encoded in the principal symbol of the EoM

of the theory.

6.2.1 Symmetries of Principal symbol

In this section, we will follow [103] to find the principal symbol’s symmetries. It is clear

from the (6.2.2)–(6.2.5)that,

Mµ⌫↵�,�⇢�⇣

gg = M (µ⌫)↵�,�⇢�⇣

gg = Mµ⌫(↵�),�⇢�⇣

gg = Mµ⌫↵�,(�⇢�⇣)

gg (6.2.8)

Mµ⌫J,�⇢�⇣

gm = M (µ⌫)J,�⇢�⇣

gm = Mµ⌫J,(�⇢�⇣)

gm (6.2.9)

M IJ,�⇢�⇣

mm = M IJ,(�⇢�⇣)

mm (6.2.10)

M I↵�,�⇢�⇣

mg = M I(↵�),�⇢�⇣

mg = M I↵�,(�⇢�⇣)

mg (6.2.11)

6.2.1.1 Implication of action principle on Principal symbol

Let gµ⌫(x) and �I(x) be any background field configuration (need not be a solution to

the EoM) in the configuration space. Let gµ⌫(x,�1,�2) and �1(x,�1,�2) be the compactly

supported two-parameter family of field configurations in the configuration space such that

1* here is a proxy for the index
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gµ⌫(x, 0, 0) = gµ⌫(x) and �I(x, 0, 0) = �I(x). We will denote derivatives with respect to

�1 and �2 as �1 and �2 respectively. It can easily be shown that

�2�1S = �
1

16⇡G

Z
dDx

p
�g
h
(Eµ⌫

g �2�1gµ⌫ + EI

m�2�1�I)

+ (Mµ⌫↵�,�⇢�⇣

gg @�@⇢@�@⇣�2g↵� +Mµ⌫J,�⇢�⇣

gm @�@⇢@�@⇣�2�J + ...)�1gµ⌫

+ (M IJ,�⇢�⇣

mm @�@⇢@�@⇣�2�J +M I↵�,�⇢�⇣

mg @�@⇢@�@⇣�2g↵� + ...)�1�I

i
(6.2.12)

where ellipses involve terms with less than four derivatives in total acting on the variation

of fields. In order to get the above equation, we have used (6.2.4) and (6.2.5), and the fact

that the variation is compactly supported, and therefore, we can neglect the boundary

terms. Since the above equation is covariant and we are not interested in terms with fewer

than four derivatives, we can replace partial derivatives with covariant derivatives in the

equation above. Further, by integrating by parts twice

�2�1S = �
1

16⇡G

Z
dDx

p
�g
h
(Eµ⌫

g �2�1gµ⌫ + EI

m�2�1�I)

+ (Mµ⌫↵�,�⇢�⇣

gg r�r⇢�1gµ⌫r�r⇣�2g↵� +Mµ⌫J,�⇢�⇣

gm r�r⇢�1gµ⌫r�r⇣�2�J + ...)

+ (M IJ,�⇢�⇣

mm r�r⇢�1�Ir�r⇣�2�J +M I↵�,�⇢�⇣

mg r�r⇢�1�Ir�r⇣�2g↵� + ...)
i

(6.2.13)

Now antisymmetrizing the variation in �1 and �2 and then computing the equation at the

background configuration gives,

0 = �
1

16⇡G

Z
dDx

p
�g
h
(Mµ⌫↵�,�⇢�⇣

gg �M↵�µ⌫,�⇢�⇣

gg )r�r⇢�1gµ⌫r�r⇣�2g↵�

+ (Mµ⌫J,�⇢�⇣

gm �MJµ⌫,�⇢�⇣

mg )r�r⇢�1gµ⌫r�r⇣�2�J

+ (M IJ,�⇢�⇣

mm �MJI,�⇢�⇣

mm )r�r⇢�1�Ir�r⇣�2�J

+ (M I↵�,�⇢�⇣

mg �M↵�I,�⇢�⇣

gm )r�r⇢�1�Ir�r⇣�2g↵� + ...
i

(6.2.14)

The above expression has to hold for an arbitrary compactly supported variation, which

implies

Mµ⌫↵�,�⇢�⇣

gg = M↵�µ⌫,�⇢�⇣

gg Mµ⌫J,�⇢�⇣

gm = MJµ⌫,�⇢�⇣

mg M IJ,�⇢�⇣

mm = MJI,�⇢�⇣

mm

(6.2.15)

which for covector Kµ gives,

Pµ⌫↵�

gg (K) = P↵�µ⌫

gg (K) Pµ⌫J

gm (K) = P Jµ⌫

mg (K) P IJ

mm(K) = P JI

mm(K) (6.2.16)
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Thus, the principal symbol is symmetric. We emphasize that one can always derive the

above equation from the action principle for any action whose EoM is of even order. For

the odd-order EoM, the action principle will not give a symmetric principal symbol.

6.2.1.2 Implication of Di↵eomorphism invariance on the principal symbol

As we know, under di↵eomorphisms with compact support, the action is invariant. In a

di↵eomorphism invariant theory, the di↵eomorphism invariance implies the Bianchi iden-

tity,

rµE
µ⌫

g � L⌫IE
I

m = 0 (6.2.17)

where L⌫
I
is the coe�cient of the infinitesimal change in �I under an infinitesimal di↵eo-

morphism 2. This must hold for an arbitrary configuration of fields. Using (6.2.4) and

(6.2.5) we can write (6.2.17) as

Mµ⌫↵�,�⇢�⇣

gg @µ@�@⇢@�@⇣�g↵� +Mµ⌫J,�⇢�⇣

gm @µ@�@⇢@�@⇣��I + ... = 0 (6.2.18)

where the ellipsis denotes terms with fewer than four derivatives. Since the above equation

is true for an arbitrary configuration, the coe�cient of the highest derivative must vanish.

M⌫(µ|↵�|,�⇢�⇣)

gg = 0 M⌫(µ|J |,�⇢�⇣)

gm = 0 (6.2.19)

where (µ|↵�|, �⇢�⇣) means that upon fixing ↵�, it is symmetric in µ�⇢�⇣. For an arbitrary

covector Kµ, the above equation implies that

KµP
µ⌫↵�

gg (K) = 0 KµP
µ⌫J

gm (K) = 0 (6.2.20)

This relation will hold for any higher curvature theory because it is just an outcome of

the di↵eomorphism invariance of the action.

2If �I is a n-tensor field then L⌫I =
�(L⇠�I )

�⇠⌫
, where L⇠ is the Lie derivative with respect to vector field

⇠⌫ .
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6.3 Riemann squared theory

For illustration of the method, in this section, we are interested in studying the causal

structure of a theory with the following action:

S =

Z
p
�g dDx(R+ �Rµ⌫↵�R

µ⌫↵�) (6.3.1)

where � is the coupling constant associated with a higher curvature term, D is the space-

time dimension, and we will assume that D � 4. In generic higher curvature theory, the

analysis of causal structure based on null curves (with respect to spacetime metric) does

not make sense. Therefore, we must do a characteristic analysis of the di↵erential equa-

tion obtained from the above Lagrangian. The equation of motion (EoM) for the above

Lagrangian is,

Rµ⌫ �
1

2
gµ⌫R+ �

⇣
2R ↵��

µ R⌫↵�� + 2r↵
r
�Rµ↵⌫� �

1

2
gµ⌫R��↵�R

��↵�

⌘
= 0 (6.3.2)

It is clear from the above equation that it is a fourth-order quasi-linear PDE. Therefore,

we can write the above equation as,

Mµ⌫
↵�,�⇢�⇣(g) @�@⇢@�@⇣g↵� +O(@3g) = 0 (6.3.3)

where Mµ⌫
↵�,�⇢�⇣ is the coe�cient of the highest derivative term in the EoM. It is clear

from (6.3.2) that the highest derivative term will come from r
↵
r
�Rµ↵⌫� , and it will only

depend on the metric. Let ⌃ be a co-dimension 1 surface with the normal Kµ. We can

define the principal symbol for the above PDE as

Pµ⌫
↵�(x,K) = Mµ⌫

↵�,�⇢�⇣(g) K�K⇢K�K⇣ (6.3.4)

We know from the method of characteristics that the fastest propagating modes are tangent

to the characteristic surface. The characteristic equation for (6.3.3) is given by

det(P (x, k)) = 0 (6.3.5)

The above equation tells us that the kernel of the principal symbol will give us the modes

moving along the characteristic surface. Let T↵� be a symmetric tensor corresponding to

a polarization mode of the graviton. The possible T↵� satisfying

�Qµ⌫(K,T ) = Pµ⌫
↵�(x,K)T↵� = 0 (6.3.6)
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will give the kernel of the principal symbol, and its dimension will give the number of

modes propagating along characteristics. It can easily be shown that the Qµ⌫(K,T ) for

Riemann Squared theory is,

Qµ⌫(K,T ) = �2K2K2Tµ⌫ + 2K2KµK
↵T↵⌫ + 2K2K⌫K

↵T↵µ � 2KµK⌫K
↵K�T↵� (6.3.7)

It is straightforward to check that KµQµ⌫(K,T ) = 0 and for T 0
µ⌫ = Tµ⌫ +K(µX⌫) where

X⌫ is any covector field, Qµ⌫(K,T 0) = Qµ⌫(K,T ). Therefore K(µX⌫) is pure gauge. Now,

we will split the characteristic analysis into two parts, as in [94].

Null Case : K2 = 0

In this case, the equation (6.3.6) reduces to

KµK⌫K
↵K�T↵� = 0 (6.3.8)

which implies K↵K�T↵� = 0. Therefore, the characteristic equation only fixes one com-

ponent of the T↵� , but D of the components of T↵� are just pure gauge, and we can fix

D � 1 by suitable gauge choice. To see this more explicitly, we can choose a null basis

{kµ, lµ,mµ

i
} such that,

k.k = l.l = k.mi = l.mi = 0 & k.l = �1, mi.mj = �ij (6.3.9)

We will denote contraction with respect to {kµ, lµ,mµ

i
} as {0, 1, i}. Let us choose one of the

null basis vectors k = K. The equation in 6.3.8 implies that T00 = 0 ; further, in this basis,

T1µ are pure gauge modes due to di↵eomorphism invariance 3 . As a result, the total degen-

eracy of the principal symbol for the null characteristics is D(D+1)

2
�D � 1 = (D�2)(D+1)

2
,

where (D�2)(D+1)

2
are the degrees of freedom (DoF) associated with physical propagating

modes in the space of symmetric two tensors (total minus pure gauge). Notice that the

degeneracy is equal to the number of DoF for massive gravitons. But it is important to

remember that we are not in a 2 derivative theory, and therefore derivatives of the metric

may not be canonically conjugate to the metric; some of them will be independent de-

grees of freedom. Further, we are in the eikonal limit, where all the information about

the spectrum is encoded in the allowed polarization 4. So we cannot associate (D�2)(D+1)

2

3In the null basis Tµ⌫ = T00lµl⌫ + T11KµK⌫ + 2T1iK(µm
i

⌫) + 2T0il(µm
i

⌫) + 2T01K(µl⌫) + Tijm
i

(µm
j

⌫),

notice that T1µ = {T11, T10, T1i} are the coe�cient of the term of type K(µX⌫), where X⌫ = {K⌫ , l⌫ ,m
i

⌫}.
Therefore they are pure gauge modes.

4In the eikonal limit, although the mass term is irrelevant, the polarization retains information distin-
guishing between massive and massless fields.
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DoF to massive gravitons directly; one must reduce the theory to second-order theory, and

then these (D�2)(D+1)

2
propagating components will split into di↵erent particles that can

occur in the spectrum of the theory. The crucial thing to notice is that this is true for any

null surface in this theory without assuming any condition on curvature components. So,

unlike the Gauss-Bonnet theory [96] , all null surfaces are characteristic. This also tells us

the Killing horizon in this theory is a characteristic surface.

Non Null Case: K2
6= 0

In the non-null case, it is always possible to write Tµ⌫ = T̂µ⌫ + K(µX⌫), for some X

and where T̂µ⌫ is transverse, i.e KµT̂µ⌫ �
1

2
T̂Kb = 05. Using the fact that K(µX⌫) is pure

gauge and T̂↵� is transverse, we can simplify the expression in (6.3.6) for the non-null case:

Qµ⌫(K,T ) = �2K2K2T̂µ⌫ +K2KµK⌫ T̂ = 0. (6.3.10)

As we want Qµ⌫(K,T ) = 0, its trace will also vanish, implies

Q(K,T ) = �K2K2T̂ = 0. (6.3.11)

Since K2
6= 0, this implies T̂ = 0, and putting it back to the equation (6.3.10), we get

Qµ⌫(K,T ) = �2K2K2T̂µ⌫ = 0. (6.3.12)

The only solution to the above equation is Tµ⌫ = 0. When K2
6= 0, the symbol is

not degenerate; therefore, Riemann squared theory has no non-null characteristics. The

above analysis suggests that in the Riemann-squared theory, all the characteristics are

null. Furthermore, there are (D+1)(D�2)

2
allowed polarization modes that move along the

characteristic surface.

6.4 Generalized Quadratic Gravity (GQG

In this section, we are interested in studying the causal structure of theory with the

following action:

S =
1

16⇡G

Z
p
g dDx(R+ �3Rµ⌫↵�R

µ⌫↵� + �2Rµ⌫R
µ⌫ + �1R

2) (6.4.1)

5T̂ is the trace of T̂↵�
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where �i are the coupling constants and D � 4. The EoM for the above Lagrangian is,

Eµ⌫ = Rµ⌫ �
1

2
gµ⌫R+ (�2 + 4�3)⇤Rµ⌫ +

1

2
(�2 + 4�1)gµ⌫⇤R

�(2�1 + �2 + 2�3)rµr⌫R+ 2�3R↵��µR
↵��

⌫ + 2(�2 + 2�3)R↵µ�⌫R
↵�

� 4�3Rµ↵R
↵

⌫ + 2�1RRµ⌫ �
1

2
gµ⌫(�3Rµ⌫↵�R

µ⌫↵� + �2Rµ⌫R
µ⌫ + �1R

2) = 0 (6.4.2)

It is evident from the above equation that the EoM is a fourth-order quasi-linear PDE of

the form (6.3.3). The terms that contribute to the fourth-order derivative are shown in

red color in the equation (6.4.2). Since we are interested in causal structure determined

by the principal symbol, these are the only terms of relevance. For any covector Kµ and

symmetric 2-tensor T↵� , it is straight forward to show that

Qµ⌫(K,T ) = �1(�2KµK⌫K
↵K�T↵� + 2gµ⌫K

2K↵K�T↵� + 2KµK⌫K
2T � 2gµ⌫K

4T )

+�2(�
1

2
K4T↵�+

1

2
K⌫K

2Tµ�K
�+

1

2
KµK

2T⌫�K
�
�KµK⌫K

↵K�T↵�+
1

2
gµ⌫K

2K↵K�T↵�

+
1

2
K2KµK⌫T�

1

2
gµ⌫K

4T )+�3(�2K2K2Tµ⌫+2K2KµK
↵T↵⌫+2K2K⌫K

↵T↵µ�2KµK⌫K
↵K�T↵�)

(6.4.3)

whereK4 = K2K2. We can write the above equation in terms of ⇧µ⌫(K) = gµ⌫K2
�KµK⌫ ,

this is K2 times a projector that projects the vector onto transverse space to K.

Qµ⌫(K,T ) = �2�1(⇧µ⌫(K)⇧↵�(K))T↵�

�
1

2
�2(⇧

↵

µ (K)⇧ �

⌫ (K) +⇧µ⌫(K)⇧↵�(K))T↵� � 2�3(⇧
↵

µ (K)⇧ �

⌫ (K))T↵� . (6.4.4)

Another way of writing this equation is

Qµ⌫(K,T ) =
⇣
� (2�1 +

1

2
�2)⇧µ⌫(K)⇧↵�(K) � (

1

2
�2 + 2�3)⇧

↵

µ (K)⇧ �

⌫ (K)
⌘
T↵� .

(6.4.5)

Notice that the term inside the bracket is the principal symbol. It is evident from the

above equation that that KµQµ⌫(K,T ) = 0 and for T 0
µ⌫ = Tµ⌫ +K(µX⌫) where X⌫ is any

covector, Qµ⌫(K,T 0) = Qµ⌫(K,T ). Therefore Tµ⌫ = K(µX⌫) is pure gauge. Further, the

principal symbol vanishes for any Kµ, when �3 = �
1

4
�2 = �1. This choice of couplings

corresponds to the Gauss-Bonnet term in the action whose EoM is second order. Here,

we restrict ourselves to theories where the equation in (6.4.5) is genuinely fourth order. It

requires either �3 +
1

4
�2 6= 0 or 1

4
�2 + �1 6= 0. We will assume that �3 +

1

4
�2 6= 0, as this
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condition will also appear in the case of the characteristics analysis for non-null case. Let

us analyze the characteristic equations for GQG,

Null Case: K2 = 0

In this case, the equation (6.4.5) reduces to,

Qµ⌫(K,T ) = �(2�1 + �2 + 2�3)KµK⌫K
↵K�T↵� = 0 (6.4.6)

As we already mentioned, we don’t want 2�1 + �2 + 2�3 = 0. Otherwise, the principal

symbol will be completely degenerate for K2 = 0. Using the null basis defined in Section

(6.3) and the equation (6.4.5), we get T00 = 0. Using the fact that in the null basis, T1µ are

pure gauge modes, the total degeneracy of the principal symbol for null characteristics is
(D�2)(D+1)

2
. Following the logic presented in the QG, these are the number of polarizations

allowed in this theory. Similar to the Riemann squared theory, this is true without putting

any conditions on the curvature components.

Non-null Case: K2
6= 0

In non-null cases, we will follow the same steps as in the last section. Without loss of

generality, we can take Tµ⌫ = T̂µ⌫ as the symmetric tensor that is transverse. The equa-

tion for characteristics will become Qµ⌫(K, T̂ ) = 0, where we can use KµT̂µ⌫ = 1

2
K⌫ T̂ . It

can easily be seen that

Q(K, T̂ ) = (�3 � �1 +D(�1 +
1

4
�2))K

4T̂ = 0. (6.4.7)

Assuming that �3 � �1 + D(�1 +
1

4
�2) 6= 0, this implies T̂ = 0. Putting this back into

Qµ⌫(K, T̂ ) = 0, we will get

Qµ⌫(K, T̂ ) = �
1

2
(�2 + 4�3)K

4T̂µ⌫ = 0 (6.4.8)

Since �2+4�3 6= 0, the above equation implies that T̂µ⌫ = 0. In this, all the degeneracy of

the principal symbol is now lifted, and therefore, there are no non-null characteristics for

GQG in the considered coupling space. The allowed couplings in D spacetime dimensions
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are

(
1

2
�2 + 2�3) 6= 0 (6.4.9)

(2�1 + �2 + 2�3) 6= 0 (6.4.10)

(�3 � �1 +D(�1 +
1

4
�2)) 6= 0 (6.4.11)

In the figure (6.1) we have shown the forbidden couplings in dimension D = 5.

Figure 6.1: This figure depicts the space of couplings, with the colored regions indicating
forbidden couplings. Here, {�1,�2,�3} represent the couplings in the action of GQG,
with the dimension D set to 5. From the above analysis, the equation for the forbidden

is ( 12�2 + 2�3)(2�1 + �2 + 2�3)(�3 � �1 + 5(�1 +
1
4�2)) = 0.

6.5 Einsteinian cubic gravity (ECG)

Recently, there has been a lot of interest in Einsteinian cubic gravity proposed by Bueno

and Cano in the paper [105]. This theory is a special higher curvature theory of gravity

(cubic in curvature) defined in a way that, when linearized about a maximally symmetric

background, it gives an Einsteinian spectrum. It exists for spacetime dimensionD � 4, and

there is some evidence that it possesses Schwarzschild-like black hole solutions [106]. ECG
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does not have an Einsteinian spectrum when linearized about generic backgrounds[107,

108]. The action of ECG is

S =
1

16⇡G

Z
dDx

p
�g(R� ⇤0 + ↵L4 + �L6 + �P) (6.5.1)

where

P = 12R ⇢ �

µ ⌫ R
� �

⇢ � R
µ ⌫

� �
+R⇢�

µ⌫R
��

⇢�R
µ⌫

��
� 12Rµ⌫⇢�R

�⇢R⌫� + 8R⌫

µR
⇢

⌫R
µ

⇢ (6.5.2)

L4 =
1

4
�µ1µ2µ3µ4
⌫1⌫2⌫3⌫4

R⌫1⌫3
µ1µ3

R⌫2⌫4
µ2µ4

(6.5.3)

L6 =
1

8
�µ1µ2µ3µ4µ5µ6
⌫1⌫2⌫3⌫4⌫5⌫6

R⌫1⌫4
µ1µ4

R⌫2⌫5
µ2µ5

R⌫3⌫6
µ3µ6

(6.5.4)

⇤0 is the cosmological constant and �µ1µ2...µi

⌫1⌫2...⌫i is the generalized antisymmetric Kronecker

delta. Notice that L4 and L6 are quadratic and cubic Lovelock terms. As we have summa-

rized, ECG has a lot of nice properties. It is worthwhile to study the causality structure

of ECG. Let us start by writing the EoM for ECG.

E
↵��

µ R⌫↵�� �
1

2
gµ⌫L+ 2r↵

r
�
Eµ↵⌫� = 0 (6.5.5)

where L = (R� ⇤0 + ↵L4 + �L6 + �P) and E
µ↵⌫� = @L

@Rµ↵⌫�

. We can write

E
µ↵⌫� = ↵Eµ↵⌫�

4
+ �Eµ↵⌫�

6
+ �Eµ↵⌫�

P
(6.5.6)

where E
µ↵⌫�

4
and E

µ↵⌫�

6
are terms coming from Lovelock terms in Lagrangian and E

µ↵⌫�

P

comes from P. Notice that the highest derivative term in (6.5.5) will come fromr
↵
r
�
Eµ↵⌫� .

Further, it is well-known that

r↵r�E
µ↵⌫�

4
= r↵r�E

µ↵⌫�

6
= 0 (6.5.7)

since E4 and E6 are coming from Lovelock terms. Now the highest derivative contribution

will come from r↵r�E
µ↵⌫�

P
and it will be fourth order. It can easily be shown that

�EP

↵�µ⌫
= 6�

⇣
R↵⌫R�µ �R↵µR�⌫ + g�⌫R

�

↵ Rµ� � g↵⌫R
�

�
Rµ� � g�µR

�

↵ R⌫� + g↵µR
�

�
R⌫�

� g�⌫R
��R↵�µ� + g�µR

��R↵�⌫� + g↵⌫R
��R��µ�

� 3R � �

↵ ⌫ R��µ� � g↵µR
��R��⌫� + 3R � �

↵ ⌫ R��⌫� +
1

2
R ��

↵�
Rµ⌫��

⌘
. (6.5.8)

Using the above equation and with a bit of algebra, we can compute the principal symbol

acting on the symmetric two-tensor Tµ⌫ for the EoM in (6.5.5),
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Q↵�(T,K) = P µ⌫

↵�
(x,K)Tµ⌫ = 12K2KµK⌫Rµ⌫T↵� + 6K2KµK⌫R�µT↵⌫ � 6K4R�

�
T↵�

� 18K�K
�KµK⌫R�⌫T↵µ + 6K�K

2KµR⌫

µT↵⌫ + 6K2KµK⌫R�µ⌫�T
�

↵ + 6K2KµK⌫R↵µT�⌫

� 6K4R�

↵T�� � 18K↵K
�KµK⌫R�µT�⌫ + 6K↵K

2KµR⌫

µT�⌫ + 6K2KµK⌫R↵µ⌫�T
�

�

� 18K�KµK⌫K⇢R↵⌫�⇢T�µ � 18K�K
�KµK⌫R↵µ⌫⇢T

⇢

� � 18K↵K
�KµK⌫R�µ⌫⇢T

⇢

�

� 6K2KµK⌫R↵�Tµ⌫ + 6K�K
2KµR⌫

↵Tµ⌫ + 6K↵K
2KµR⌫

�
Tµ⌫ � 6K↵K�K

2Rµ⌫Tµ⌫

+ 12K2KµK⌫R↵⌫��T
�

µ + 12K2KµK⌫R↵��⌫T
�

µ + 18g↵�K
�KµK⌫K⇢R�µT⌫⇢

� 12g↵�K
2KµK⌫R⇢

µT⌫⇢ + 6g↵�K
4Rµ⌫Tµ⌫ + 6K4R↵�T � 6K�K

2KµR↵µT

� 6K↵K
2KµR�µT + 18K↵K�K

µK⌫Rµ⌫T � 12K4R↵⌫�µT
µ⌫ + 12K�K

2K⌫R↵µ⌫⇢T
µ⇢

+ 12K↵K
2KµR�⌫µ⇢T

⌫⇢
� 18K↵K�K

µK⌫Rµ�⌫⇢T
�⇢

� 12g↵�K
2KµK⌫Rµ⌫T

+ 6K2KµK⌫R↵µ�⌫T + 6g↵�K
2KµK⌫Rµ⇢⌫�T

⇢� (6.5.9)

where Kµ is an arbitrary covector . It can easily be checked that the above principal

symbol satisfies the Bianchi identity K↵Q↵�(T,K) = 0 and is invariant under pure gauge

transformations. Furthermore, it can be checked that for maximally symmetric space-

times, the principal symbol vanishes as expected. This is related to the fact that when

ECG is linearized about a maximally symmetric background, its EoM is almost that of

the Einstein gravity[105].

As it must be clear from the expression of the principal symbol, the ECG will not have an

Einsteinian spectrum about a generic background. We also want to emphasize that unlike

GQG, the principal symbol here depends on the curvature tensors, and therefore, in prin-

ciple, it can lead to very di↵erent causal structures depending on the background. Hence,

doing characteristic analysis is extremely important. Let us start with null characteristics.

Null Case:K2 = 0

Again, we will use the same null basis that we have defined in the section (6.3). By

using this null basis and putting K2 = 0, the principal symbol simplifies.

Q↵�(T,K) = �18T↵0R00K��18T�0R00K↵�18T00R↵0�0�18T ⇢
0
R↵00⇢K��18K↵T

⇢

0
R�00⇢

+ 18g↵�T00R00 + 18K↵K�TR00 � 18K↵K�R0µ0⌫T
µ⌫ = 0 (6.5.10)
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Let us write the above equation in component form,

Q00(T,K) = 0, Q01(T,K) = 0, Q0i(T,K) = 0 (6.5.11)

Q11(T,K) = 18TiiR00 � 18R0i0jTij = 0 (6.5.12)

Q1i(T,K) = �18Ti0R00 � 18T00R10i0 � 18T ⇢
0
Ri00⇢ = 0 (6.5.13)

Qij(T,K) = 18�ijT00R00 � 18T00Ri0j0 = 0 (6.5.14)

The equation (6.5.11) is due to the Bianchi identity. Further notice that T1µ does not

appear anywhere, which is consistent with the fact that it is pure gauge. Assuming

T00 = T0i = 0, the equations (6.5.13) and (6.5.14) are trivially satisfied. Therefore, we

are able to satisfy the null characteristic equation for any Tµ⌫ satisfying T00 = T0i = 0

and the equation (6.5.12). This implies that the degeneracy of the principal symbol is
D(D�3)

2
. This is the same as the DoF of a massless graviton in D dimensional spacetime.

Therefore, any null surface is a characteristic surface in ECG. We want to emphasize that

our analysis is for any spacetime for which the fourth derivative terms do not vanish for all

Tµ⌫ . Now, let us analyze the case of a Killing horizon. As we know, at the Killing horizon,

Ri0j0 = R0ijk = 0. Using this fact, we can easily show that all the equations for the null

characteristics are satisfied for all Tab in the equivalence class of symmetric tensors up

to gauge. This implies that the principal symbol is degenerate for all Tab, and therefore,

the dynamics is governed by a lower-order di↵erential equation. We emphasize that this

holds true for any Killing horizon. For any such solution which is also asymptotic to a

maximally symmetric spacetime, the order of the di↵erential equation interpolates from 2

in the asymptotic region, to 4 in the bulk, and less than 4 on the horizon.

Furthermore, it is well known in the case of ECG that for spacetimes of the form MD0 ⇥

MD�D0 , where D0 < D, and MD0 and MD�D0 are maximally symmetric spaces, the equa-

tions of motion for gravitational perturbations reduce to a linearized Einstein equation

with an e↵ective Newton’s constant Ge↵ [109]. This indicates that, in all such spacetimes,

null surfaces are characteristic surfaces.

This observation has significant implications for black holes in this theory. It is well known

that there exists a large class of black holes where the near-horizon geometry has this prod-

uct form. Consequently, for all such black holes, the horizon is a characteristic surface.

This means that none of the propagating modes can classically escape or leak through

spacelike paths from inside the horizon.

Non-null Case: K2
6= 0
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In this case, we can use the fact that T↵� can be split into pure gauge and transverse

parts, as in Section (6.3). Using the transverse property of T↵� we can show

Q↵�(T,K) = 12K2Rµ⌫K
µK⌫T↵��6K4Rµ

�
T↵µ+6Rµ

⌫T↵µK
⌫K�K

2+6K2R�µ⌫⇢T
⇢

↵K
µK⌫

� 6K4Rµ

↵Tµ� + 6K2R↵µ⌫⇢T
⇢

�
KµK⌫

� 6K↵K�K
2Rµ⌫Tµ⌫ + 6g↵�K

4Rµ⌫Tµ⌫

3K4R↵�T � 12K4R↵µ�⌫T
µ⌫ + 12K�K

2R↵µ⌫⇢T
µ⇢K⌫ + 12K↵K

2R�µ⌫⇢T
µ⇢K⌫

� 18K↵K�Rµ⇢⌫�T
⇢�KµK⌫

� 9g↵�K
2Rµ⌫K

µK⌫T + 9K2R↵µ�⌫K
µK⌫T

+ 6g↵�K
2Rµ⇢⌫�T

⇢�KµK⌫ + 6K2K↵K
⌫R⌫�T

�

�
(6.5.15)

Unlike GQG, the principal symbol of ECG depends on the Riemann curvature tensor,

making it challenging to analyze non-null cases on arbitrary backgrounds. Therefore, we

focus on analyzing it in the Ricci-flat Type N spacetime in the algebraic classification of

spacetimes using the Weyl tensor.

6.5.1 ECG in Type N Spacetimes

As is well known from the algebraic classification of the spacetimes, the type N spacetime

is the simplest spacetime with a nontrivial Riemann tensor [110, 111]. Let us introduce a

null basis {lµ, nµ,mµ

i
} such that,

n.n = l.l = n.mi = l.mi = 0 & n.l = 1, mi.mj = �ij (6.5.16)

The spacetime is type N i↵ in some null basis; the Riemann tensor takes the following

form,

R↵�µ⌫ = 4⌦ijl[↵m
i

�]
l[µm

j

⌫]
(6.5.17)

where ⌦ij is a (D � 2)x(D � 2) matrix. If ⌦ is traceless, then the spacetime will be Ricci

flat, which is the case of interest to us. Now, we will write the equation (6.5.9) in a Ricci

flat type N spacetime. Further, using the Ricci flatness and the fact that the contraction

of Weyl curvature with itself vanishes in type N spacetime, it can easily be shown that it

is a solution to ECG. It is more convenient to work in the basis {K↵, l↵,m↵

i
}. It can be
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shown that the principal symbol in this case is

Q↵�(T,K) = P µ⌫

↵�
(x,K)Tµ⌫

= 2⌦ij

n
� 3K2(K.l)2mi

�
T j

↵ � 3K2(K.l)2mi

↵T
j

�
� 9(K.l)2mi

↵m
j

�
T00

+12K2(K.l)mj

�
mi

↵T10�6mi

↵m
j

�
K4T11�6K2(K.l)l�m

j

↵T
j

0
+9K�m

i

↵(K.l)2T j

0

+ 6K4mi

↵l�T
j

1
� 6K�m

i

↵K
2(K.l)T j

1
� 6K2T j

0
mi

�
(K.l) + 9K↵m

i

�
(K.l)2T j

0

+ 6K4l↵m
i

�
T j

1
� 6K2(K.l)K↵m

i

�
T j

1
� 6K4l↵l�T

ij + 6K2(K.l)K�l↵T
ij

+6K↵l�K
2(K.l)T ij

�9K↵K�(K.l)2T ij+3g↵�K
2(K.l)2T ij+3K2(K.l)2mi

↵m
j

�
T
o

(6.5.18)

where {0, 1, i} indexes in the above equation are contractions with respect to {K↵, l↵,m↵

i
}

respectively. We can always write K↵ as a linear superposition of n↵ and l↵. It can easily

be checked that the above equation satisfies the Bianchi identity and is invariant under

pure gauge transformation, i.e. T↵� ! T↵� +K(aXb), for arbitrary X↵. As shown earlier

in this section, we can analyze the null case K2 = 0 of ECG in an arbitrary background.

In this part, we will focus on the non-null case, using a Ricci flat type N spacetime.

Let K2
6= 0, which means that Ka is a non-trivial superposition of l↵ and n↵ and therefore

K.l 6= 0. Since K2
6= 0, we can decompose T↵� into a transverse part and pure gauge. The

invariance of the equation (6.5.18) under pure gauge transformations allows us to choose

T↵� transverse, i.e K↵T↵� = 1

2
K�T . Further, for solving the equation Q↵�(T,K) = 0 for

T↵� , we will assume T11 = T i

1
= 0. With this assumption and the transverse property of

T↵� , the characteristics equation reduces to

Q↵�(T,K) = P µ⌫

↵�
(x,K)Tµ⌫

= 2⌦ij

n
� 3K2(K.l)2mi

�
T j

↵ � 3K2(K.l)2mi

↵T
j

�
+ 6K2(K.l)2mj

�
mi

↵T

� 6K4l↵l�T
ij + 6K2(K.l)K�l↵T

ij + 6K↵l�K
2(K.l)T ij

�
9

2
K2(K.l)2mi

↵m
j

�
T

� 9K↵K�(K.l)2T ij + 3g↵�K
2(K.l)2T ij + 3K2(K.l)2mi

↵m
j

�
T
o
= 0 (6.5.19)

Now, we will solve the characteristics equation component by component. It can easily be

checked that Q0�(K,T ) = 0 and

Q1�(K,T ) = 18⌦ijT
ij(K.l)2

⇣
K2l� �K�K.l

⌘
(6.5.20)
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Since we want to solve for Q1�(K,T ) = 0, this implies either
⇣
K2l� � K�K.l

⌘
= 0 or

⌦ijT ij = 0. If
⇣
K2l� �K�K.l

⌘
= 0, then contraction with respect to l� both sides and

using l.l = 0 implies K.l = 0, which contradicts the fact that K↵ is not parallel to l↵.

Hence Q1�(K,T ) = 0 implies ⌦ijT ij = 0. If we consider Tij as a (D � 2) x (D � 2)

matrix, then this condition is the same as tr(⌦T ) = 0, where tr is a trace in the transverse

directions. Now, we are left to solve for the characteristics equations in (D� 2) transverse

directions. Let p and q be the directions in the null basis which are orthogonal to l↵ and

n↵. Then,

Qpq(K,T ) = �6K2(K.l)2
⇣
T j

p ⌦jq + T j

q ⌦jp �
3

2
T⌦pq

⌘
(6.5.21)

where T is the trace T↵↵ . Since T↵� is transverse, it can easily be shown that T↵↵ =

2T01(K.l)�1 and Tii = 06. In order to obtain the above equation, we used the fact that

⌦ijT ij = 0. The characteristics equation Qpq(K,T ) = 0 implies

Tpj⌦jq + Tqj⌦jp =
3

2
T01(K.l)�1⌦pq (6.5.22)

Since all the indices take values in the transverse directions, we can write the equation

(6.5.22) in (D � 2) x (D � 2) matrix notation as

T⌦+ ⌦T =
3

2
T01(K.l)�1⌦. (6.5.23)

⌦ is symmetric and therefore invertible. Multiplying both sides by ⌦ inverse, we get,

⌦�1T⌦+ T =
3

2
T01(K.l)�11D�2 (6.5.24)

Taking trace on both sides and using the fact that Tii = 0, we get T01 = 0. This reduces

the equation (6.5.23) to

T⌦+ ⌦T = 0 (6.5.25)

The above certainly has a nontrivial solution space. For example, in D = 4, one can use a

similarity transformation to set ⌦ = C1�3, where C1 is some constant and �3 is the third

Pauli matrix. Then it is clear that T = C2�1, where �1 is the first Pauli matrix, is the

solution to the equation (6.5.25). Further, one can use this solution to construct solutions

in higher dimensions. Therefore, we have shown that ECG has non-null characteristics

and it can have superluminal propagation.

6Using the fact that K is a linear combination of n and l, we can write K↵ = n↵K.l + l↵K.n. Since,
T11 = 0, it can easily be shown that n↵T↵1 = T01(K.l)�1. Further, T = 2n↵T↵1 + Tii = 2T01(K.l)�1 + Tii.
Now, using the transverse condition, T01 = TK.l, implying Tii = 0.
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6.6 Discussion

In this chapter, we have analyzed the causal structure of Generalized Quadratic Gravity

(GQG) and Einsteinian Cubic Gravity (ECG). Firstly, we analyze the Riemann-squared

theory and show that the theory only possesses null characteristics, independent of the

background metric. This background-independent analysis is possible because the prin-

cipal symbol of GQG does not depend on curvature. We further extend this result to

genuinely fourth-order GQG. By ”genuinely fourth order,” we mean that the theory has

a non-trivial fourth-order principal symbol in both the null and non-null cases. This con-

dition excludes the Gauss-Bonnet theory. Furthermore, we demonstrate that such GQG

has (D+1)(D�2)

2
polarization modes. These modes correspond to massive spin-2, massless

spin-2, and scalar fields in the spectrum.

GQG is a fourth-order theory, and therefore, the metric and its derivatives may not cor-

respond to canonically conjugate variables. Some of the metric derivatives can represent

independent degrees of freedom. The best way to analyze the spectrum is to reduce the

equations of motion to second order; we will address this separately elsewhere. However,

since we are analyzing the principal symbol of a fourth-order partial di↵erential equation

(PDE), this is equivalent to analyzing the theory in the eikonal limit. The massive and

massless polarizations get mixed, and we can only count the number of helicities allowed

in the theory. Further, our results imply for black holes with Killing horizons, the Killing

horizon in GQG is a characteristic surface with no polarization modes of the graviton

traversing it along a spacelike path.

We have also shown that for ECG, all null surfaces are characteristic surfaces. This result

is demonstrated on an arbitrary background. It does not appear possible to analyze the

non-null characteristics on an arbitrary background. To address the non-null case, we

consider Type N spacetimes in the Weyl classification. We show that in ECG, there exist

non-null characteristic surfaces. Further using the fact that, R00 = Ri0j0 = 0 on the Killing

horizon, we showed that the null characteristic equations are satisfied for any Tµ⌫ in the

equivalence class Tµ⌫ ⇠ Tµ⌫ + X(µK⌫), where Xµ is an arbitrary covector. This tells us

that on the horizon the EoM for dynamical degrees of freedom is lower order. For ECG, it

is known that the linearized EOM for gravitational perturbations has the Einstein gravity

form on spacetimes which are a product MD0 ⇥MD�D0 , where D0 < D, MD0 and MD�D0

are maximally symmetric spaces. We argued that the killing horizon is a characteristic

surface for black holes, and therefore, no modes can escape the black hole in ECG.
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6.6.1 Implications on the Local Algebra of Observables

As discussed in Section (3.5.0.1), the causal diamond, defined with respect to null lines,

is used to construct the commutant of the algebra. The bicommutant theorem (3.2.1) is

then invoked to define the corresponding von Neumann algebras. However, in theories

exhibiting superluminal propagation, the causal structure is not encoded by null curves,

since superluminal modes allow for communication outside the null cone. In such cases, one

must instead use characteristic surfaces (associated with the fastest propagating modes) to

define both the causal structure and the corresponding local algebras. Our results indicate

that in GQG, causality in the local algebra must still be implemented via null curves, as

in general relativity. We also expect that the local GSL holds for black holes in GQG. In

contrast, in ECG, the presence of spacelike characteristics leads to a causal structure and

thus local algebras that deviate from those in GR.

6.6.2 Holographic Implications

One way to think about higher curvature theory is as the low-energy limit of a UV-

complete theory of gravity. String theory is one such UV-complete quantum theory of

gravity. In string theory, the semiclassical limit involves taking GN ! 0 and the string

length ↵0 = l2s ! 0. In the case of AdS/CFT, this limit corresponds to N ! 1 and the ’t

Hooft coupling � ! 1. The e↵ective theory in the bulk is Einstein gravity plus matter,

meaning all bulk fields see the same metric (the metric that describes the causal structure

of the theory).

We can also define a stringy regime where GN ! 0 and ↵0 remains finite. In this regime,

there are no quantum gravitational fluctuations, but spacetime is probed by strings rather

than point particles. Perturbatively in ↵0, the stringy regime corresponds to introducing

higher derivative corrections, which implies that, in principle, di↵erent bulk fields may see

di↵erent metrics. On the CFT side, this corresponds to N ! 1 with � finite.

Now, let us consider stringy black holes (i.e., black holes in the stringy regime) that are

classically stable. For such solutions, one can ask if all fields see the same horizon, namely

the event horizon of the black hole. If that is true, we should expect only those higher

curvature corrections where the black hole horizon remains a characteristic surface for all

the bulk fields. Our analysis indicates that GQG and ECG have this property. As shown

by Liu and Gesteau in [112], the information about the causal structure of a region in the

bulk is encoded in the associated time band algebra of operators in the boundary CFT.

Gesteau and Liu propose a diagnostic of the presence of a horizon in the bulk, entirely
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using the boundary algebra. As already stated, this could in principle, lead to di↵erent

horizons for di↵erent bulk fields. It would be interesting to investigate this diagnostic in

the boundary algebras and see what it predicts for stringy horizons in the bulk at least

for the di↵erent polarization modes of the graviton.



Chapter 7

Conclusions and future work

This section provides a synopsis of the results presented in this thesis, which are based

on the following three papers by the author: [4, 6, 19]. We summarize the main findings

and outline several open questions that we hope to explore in future work. This thesis

is primarily an e↵ort by the author to understand black holes and their behavior in the

semiclassical limit. In particular, we employ techniques from algebraic quantum field

theory and modular theory to investigate the notion of generalized entropy in this regime.

The first three chapters introduce the problem and review the tools and techniques used in

the subsequent chapters to establish a relation between generalized entropy and algebraic

entropy in the semiclassical limit using the crossed product construction. Our analysis

encompasses black holes in both general relativity and higher curvature theories of gravity.

To better understand the latter, we examine the causal structure of higher curvature

theories and discuss its implications for black hole physics, holography, and the algebra of

observables.

7.1 Summary of the Results

In chapter 4, we began with the elegant result of [2, 3], which shows that in general relativ-

ity, the generalized entropy at the bifurcation surface coincides up to a state-independent

additive constant with the entropy of the algebra of observables of type II crossed product.

The fact that the gravitational algebra in the exterior region is of type II, where entropy

is well-defined, provides a natural explanation for the UV finiteness of the generalized

entropy. However, since generalized entropy is well defined on arbitrary horizon cuts, it is

204
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essential to extend this construction beyond the bifurcation surface to arbitrary slices of

the horizon.

Building on the conjecture in [41] regarding the existence of specific local modular Hamil-

tonians—which we explicitly verified in our setting and employing the half-sided modular

inclusion (4.3), we demonstrated that the generalized entropy of a static black hole at an

arbitrary horizon cut is equal to the algebraic entropy up to a state-independent additive

constant. Utilizing the positivity and monotonicity of the Araki relative entropy, we pro-

vide an algebraic version of the local generalized second law (GSL)in the crossed product

construction. We further extended this result to the Kerr spacetime, assuming the exis-

tence of a Hadamard stationary state. A key advantage of this algebraic approach is that

each step in the argument remains manifestly finite, owing to the Type II nature of the

crossed-product algebra. This finiteness o↵ers a natural renormalization scheme, needed

in Wall’s proof of the GSL [5], which is realized naturally in crossed-product construction.

In Section (4.7), we analyzed nonlocal modular flows in a class of spacetimes and inves-

tigated whether they can be rendered local by adding operators from the algebra and its

commutant. Along the way, we see that the averaged null energy condition (ANEC) also

holds for null generators of the Cauchy horizon in the class of static spacetimes we have

considered, which includes the Schwarzschild spacetime.

In Chapter 5, we have extended the result to black holes in arbitrary di↵eomorphic invari-

ants (not necessarily the e↵ective field theory). In particular, we have shown that indeed

for any black hole with a regular bifurcation surface and causal horizon, the generalized

entropy at the bifurcation surface is equal to the entropy of the algebra of observables

up to a state-independent additive constant. The natural next step is to establish this

correspondence between the generalized entropy and the algebraic entropy at an arbitrary

cut on the horizon. However, this is a subtle issue because the causal structure of a generic

higher curvature theory di↵ers significantly from that of general relativity. In such theo-

ries, the definition of the local algebra must be adapted to the modified causal structure,

which is determined by the fastest-propagating modes—that is, by the characteristic sur-

faces of the theory. This motivates a deeper investigation into the characteristics of higher

curvature gravity theories.

In Chapter 6, we analyzed the causal structure of Generalized Quadratic Gravity (GQG)

and Einsteinian Cubic Gravity (ECG). For genuinely fourth-order GQG, we found that

the theory admits only null characteristic surfaces, and this result holds independently

of the background metric. Furthermore, we demonstrated that GQG features (D+1)(D�2)

2

polarization modes corresponding to massless spin-2, massive spin-2, and scalar degrees of
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freedom in the spectrum. In the case of ECG, we showed that all null surfaces are char-

acteristic surfaces, a result valid on arbitrary backgrounds. Additionally, by considering

type N spacetimes in the Weyl classification, we found that ECG can also admit spacelike

characteristic surfaces. We argued that in both GQG and ECG, the killing horizon of a

black hole acts as a characteristic surface, implying that no modes can propagate out of

the black hole. We also discussed its implications on the local algebra of observables and

holography.

7.2 Future directions

Here we outline some future directions that we would like to explore in the future.

• Quantum Focusing Conjecture (QFC) in Type II Algebras: Recently, the

authors in [48] established the quantum null energy condition (QNEC) and the

Bekenstein bound using algebraic quantum field theory and modular theory. It

would be intriguing to formulate the quantum focusing conjecture (QFC) within the

framework of type II crossed-product algebras. This framework has a key technical

advantage, as entanglement entropy in type II algebras is free from UV divergences,

and therefore, modular theory provides a natural setting for proving QFC.

• Exploring the Information Loss Paradox via von Neumann Algebras: The

information loss problem remains one of the key challenges in understanding the na-

ture of quantum gravity. It has been suggested in [113] that the language of von

Neumann algebras is particularly suitable for formulating the information paradox

in the G ! 0 limit. The authors proposed a recovery protocol for retrieving black

hole information, and it would be valuable to investigate this further and understand

this recovery protocol.

• Entanglement Entropy in String Perturbation Theory and Modular The-

ory: In [114], the authors defined entanglement entropy in string perturbation theory

using the orbifold method. They expressed entropy as a modular-invariant series,

which was shown to be finite [115]. It would be intriguing to find generalizations

of the modular theory in string theory and understand the entropy in an algebraic

context, which could provide valuable insights into quantum gravity and semiclas-

sical physics. It will also be interesting to study stringy e↵ects using the algebraic
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techniques as in [112].

• Higher Curvature Theory: There are several interesting directions for further

exploration. One is to investigate the well-posedness of GQG and ECG. From the

perspective of classical theory, well-posedness is a fundamental criterion for a physi-

cally viable classical theory. Linearizing these theories around nontrivial backgrounds

typically introduces a linearized ghost in the spectrum. If the theory admits a well-

posed initial value formulation, it would be particularly interesting to examine the

role of these linearized ghosts and their implications for the full non-linear theory

and its quantization. Furthermore, Deser and Tekin in [116], have proven the posi-

tive mass theorem for full non-linear quadratic gravity (theory with R2 and Rµ⌫Rµ⌫

in action). It would be worthwhile to investigate whether a similar theorem holds in

the contexts of Generalized Quadratic Gravity (GQG) and Einsteinian Cubic Grav-

ity (ECG). Such a study could shed light on the interplay between higher-curvature

corrections and gravitational stability.



Appendix

A. Minkowski wedges

The objective of this section is to establish the relationship between the modular operator

of the Rindler wedge A, whose null boundaries intersect at the origin of the Minkowski

space, and another Rindler wedge C, which is contained within the wedge A and has

no overlapping null boundaries with the wedge A, as shown in the Figure 1. A second

wedge, B, is introduced for computational purposes and for a subsequent section. Its null

boundary overlaps with the part of the future null boundary of that of the wedge A. Let

Figure 1: A,B and C are three Rindler wedges. A is the Rindler wedge at the centre,
B is the wedge A shifted along the null coordinate v by v⇤ and C is the wedge B shifted
along the null coordinate u by u⇤. The coordinates in the diagram are the null coordinates

and transverse coordinates are suppressed.

208
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MA, MB, and MC be the von Neumann algebras associated with the wedges A, B, and

C correspondingly, and let these algebras act on the Hilbert space H. In the Minkowski

spacetime, the Reeh-Schlieder theorem provides us a cyclic and separating state ⌦ (the

Minkowski vacuum) for the von Neumann algebra of any proper subregion in the space-

time. In modular theory, we may define (�A, JA), (�B, JB), and (�C , JC) as the modular

operator and the modular conjugation associated with (MA,⌦), (MB,⌦), and (MC ,⌦),

respectively.

We will obtain the relationship between the modular operator of MA and MC in the

following three steps:

i) We will prove that MB is the positive modular inclusion of MA, and use its properties

to derive the relationship between the modular Hamiltonians of (MA,⌦) and (MB,⌦).

We will then demonstrate that �it

B
has a geometrical action on the wedge B.

ii) Following the same analysis as for the wedge A and B, we will obtain the relation

between the modular Hamiltonian of (MB,⌦) and (MC ,⌦), showing that MC is the neg-

ative half-sided modular inclusion of MB.

iii) Using the previously obtained relation, we will obtain the relation between the modular

Hamiltonian of MA and MC .

We have already defined modular inclusions in the main body of the thesis, following [42].

Claim: MB is the positive modular inclusion of (MA,⌦).

Note that MB ⇢ MA. As previously stated, ⌦ is cyclic and separating for MB. According

to the Bisognano Wichmann theorem [68], �it

A
is the boost flow in the forward direction

for the wedge A when t  0. Thus, �it

A
has a geometrical action on the operators in

MB, i.e. it moves the operators along integral curves of the boost Killing field as shown

in Figure 2. Because the boost is null on the Rindler horizon of wedge A and timelike

inside, the forward boost cannot take the local operator in MB outside it. Therefore,

�it

A
MB�

�it

A
⇢ MB when t  0. According to the definition of positive half-sided modular

inclusion, MB is a positive half-sided modular inclusion of (MA,⌦).

For a more detailed study, let the vertices of the wedge A and B be separated by v⇤ along

the null direction v, as shown in Figure 2. Now, according to the results on modular

inclusions, there exists a unitary U(t) such that

��it

A
�it

B = U(e2⇡t � 1) (.0.1)

where U(t) = exp[iEv⇤t] and Ev⇤ is a positive operator. U(t) can be thought of as an
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Figure 2: The figure represents boost integral curves, which also represent the modular
flow in the wedge A.

operator that translates the wedge B in null direction v. Further, Ev⇤ can be written as

v⇤ times generator of null translation along the v. We can write the above equation as

exp[�it log[�A]] exp[it log[�B]] = exp
⇥
i(e2⇡t � 1)Ev⇤

⇤
(.0.2)

Now, di↵erentiating the above equation with respect to t and evaluating it at t = 0 gives

log[�A]� log[�B] = �2⇡Ev⇤ (.0.3)

Now, if we can define the modular Hamiltonian as K = � log[�], then

KB = KA � 2⇡Ev⇤. (.0.4)

We want to emphasize that the above result is true even if v⇤ depends on the transverse

coordinate. However, if v⇤ depends on the transverse coordinate, the modular flow gener-

ated by it will not have a local action on the wedge B but it will have local action along

the null boundary (horizon) associated with the wedge. Nevertheless, for v⇤ independent

of the transverse coordinate, the modular flow is local and that is what we will assume for

rest of this section.

Claim: KB is a boost generator associated with wedge B.
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To show that KB is a boost generator associated with wedge B, we use the fact that we

can use Theorem 1. Di↵erentiating the condition (h) in the theorem 1 first with respect

to t and evaluating at t = 0 and then with respect to s and evaluating it at s = 0, we will

get

[iKA, iEv⇤] = 2⇡iEv⇤. (.0.5)

From (.0.2), we can write

exp[�itKB] = exp[�itKA] exp
⇥
i(e2⇡t � 1)Ev⇤

⇤
(.0.6)

Now there is a well-known theorem which we will just use here.

Theorem 2: If [X,Y ] = sY , where s 2 C and s 6= 2⇡in then

exp[Y ] exp[�X] exp[�Y ] = exp[�X] exp[(exp[s]� 1)Y ] (.0.7)

Now choose X = iKAt and Y = iEv⇤. Then using (.0.5), one can identify s = 2⇡t. Since

t 2 R, we can apply the theorem. This gives

exp[�itKA] exp
⇥
i(e2⇡t � 1)Ev⇤

⇤
= exp[iEv⇤] exp[�iKAt] exp[�iEv⇤] (.0.8)

Now putting (.0.8) back in (.0.6), we get

�it

B = U(1)�it

AU(�1) (.0.9)

So this is a null translated boost, which can still be thought of as a boost but this time

associated with the wedge B. Furthermore, (.0.4) and (.0.9) establish its local and geo-

metrical nature. There is another way to get (.0.9), because MB = U(1)MAU(�1), and

U is an ⌦ preserving unitary. It is straightforward to verify that the Tomita operator for

B is SB = U(1)SAU(�1).

U(1)SAU(�1)
⇣
U(1)aU(�1)

⌘
⌦ = U(1)a†U(�1)⌦ (.0.10)

For each a 2 MA, U(1)aU(�1) 2 MB. Now, using the definition of the modular operator

�B = S†

B
SB = U(1)�AU(�1). Further, using the spectral theorem for operators and the

fact that U(1) is unitary, we will get the equation in (.0.9).

We can now do the same with wedges B and C. As we already know, ⌦ is cyclic and

separating for MC . �it

B
is the boost associated with the wedge B and the past Rindler

horizon of the wedge C overlaps with the portion of the past horizon of the wedge B, as

shown in Figure 3. For t � 0, the boost �it

B
maps the wedge C into itself. Thus, MC is a
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Figure 3: The figure represents boost integral curves associated with the wedge B which
also represents the modular flow in the wedge B.

negative inclusion of MB. Following the steps of previous analysis, using Theorem 1 we

can write

��it

B
�it

C = V (1� e�2⇡t) (.0.11)

where V (t) = exp[iEu⇤t] and Eu⇤ is a positive operator. V (t) can be thought of as the

operator that translates wedge B in the null direction u. Further Eu⇤ can be written as u⇤

times generator of null translation along u. We obtain

KC = KB � 2⇡Eu⇤ (.0.12)

and

�it

C = V (�1)�it

BV (1). (.0.13)

The modular Hamiltonians of the algebra and the algebra related by the modular inclusion

will di↵er by the generator of a one-parameter unitary group. If the algebras are wedge

algebras with inclusion as a null translated wedge, then the generator that connects the two

modular Hamiltonians is a null translation generator. Now we may express the modular

Hamiltonian of the wedge C in terms of the modular Hamiltonian of A. Using (.0.12 and

(.0.4), we obtain

KC = KA � 2⇡Ev⇤ � 2⇡Eu⇤. (.0.14)



Appendix 213

Further using (.0.13) and (.0.9), we can write the modular flow

�it

C = V (�1)U(1)�it

AU(�1)V (1). (.0.15)

Since translations in Minkowski spacetime commute, we can define the unitaryW (s; a, b) =

exp[2⇡i(aEv⇤ + bEu⇤)s] and the equation can be written as

�it

C = W (1; 1,�1)�it

AW (�1; 1,�1) (.0.16)

This is true for any v⇤ and u⇤; therefore, we have obtained a relation between the modular

Hamiltonian of any wedge that can be reached via a series of null translations and the

wedge at the origin. It is crucial to note that because null translation is a global isometry

of spacetime, the resulting modular Hamiltonians for B and C are conserved and may be

represented as a local integral on the Cauchy surface. This is the simplest example of a

local modular Hamiltonian. The result (.0.4) is valid even if v⇤ depends on the transverse

coordinate. The only di↵erence is that the null translation that maps two wedges would

not be a symmetry, and therefore the resultant modular Hamiltonian may not have local

action everywhere inside the wedge B. But it will be local on the horizon, since the null

translation depending on the transverse coordinate is still a symmetry on the horizon.

B. Quantum Canonical energy in covariant phase space for-

malism

As we are working with quantum fields, one might want to check whether IW relation [82]

is true in the expectation value. The way to obtain the IW relation in expectation value

is to write Schwinger Dyson’s equation in some state for the quantum fields (including

gravitons) about a static black hole spacetime and use di↵eomorphism invariance of the

Lagrangian. Using di↵eomorphism invariance of the Lagrangian, we can write

�L

��
L⇠� = �dJ �

�L

�g
L⇠g (.0.17)

where J is same as in equation (49) in [82], � here corresponds to all quantum fields and

g is back ground metric. Since we want to compute the expectation value of the above

equation in some state |�i [117]. We will do that following the point split prescription as
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described in [117],

lim
y!x

h�|
�L

��
(x)L⇠�(y) |�i = lim

y!x
h�|
⇣
� dJ(x, y)�

�L

�g
(x)L⇠g(y)

⌘
|�i (.0.18)

From the Schwinger Dyson’s equation, we know the left-hand side is zero up to a state-

independent divergent term. Therefore if we consider the di↵erence of the quantity
⇣
�

dJ(x, y) � �L

�g
(x)L⇠g(y)

⌘
in any two state |�i and | i, then state independent divergent

term will cancel out. Now we can take the coincident limit of y ! x.

h�|
⇣
� dJ(x)�

�L

�g
(x)L⇠g(x)

⌘
|�i � h |

⇣
� dJ(x)�

�L

�g
(x)L⇠g(x)

⌘
| i = 0 (.0.19)

Now the above equation can be written as,

d h�| (J + k.✏) |�i � d h | (J + k.✏) | i = rµ(h�|T
µ⌫

|�i)⇠⌫ �rµ(h |T
µ⌫

| i)⇠⌫ (.0.20)

above equation is obtained using the fact that �L

�gµ⌫
= Tµ⌫✏, where ✏ is volume form and

kµ = Tµ⌫⇠⌫ . Notice that the left-hand side in the above equation is the total derivative,

while the right-hand side is not. The only way this can happen is whenrµ(h�|Tµ⌫
|�i)⇠⌫ =

rµ(h |Tµ⌫
| i)⇠⌫ . Since this has to be true for any two states and any vector field ⇠µ,

it can only be if rµ(h�|Tµ⌫
|�i) vanishes for any state |�i to a local term independent

of state. We may modify our prescription to eliminate this extra state-independent term

by performing background subtraction[117]. The same argument then leads to d h�| (J +

k.✏) |�i = 0. Now you choose ⇠µ to be the killing field of the background spacetime (and

we have killing fields since the background is static). Following IW [82], we will get

⌦
E
↵
�
=

Z

�

d⌃mu
⌦
Tµ⌫

↵
�
⇠⌫ + Surface term (.0.21)

where E is known as the canonical energy in the covariant phase space formalism, and it

is independent of the choice of Cauchy slice.
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