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Abstract

Class Field Theory gives a one-one correspondence between the Galois groups of finite abelian
extensions of a global field, k, and open subgroups of finite index in class group. This
correspondence is captured by Reciprocity map and Existence theorem.

We first derive these theorems for local fields using Tate’s theorem and Lubin-Tate Formal

groups. From local case we go to global case using cohomology of Adeles and Ideles.
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Introduction

In the first chapter we get introduced to the notion of valuation. This gives topological
structure on a field. We read about the correspondence between the primes of QQ and valua-
tions on it. We study how these valuations extend to the extensions over Q. In the second
chapter we introduce Adeles and Ideles. We study the restricted topology on them and prove
Dirichlet’s theorem. In chapter 3 we read about the correspondence between the valuations
in an extension to the primes in the extension. We also explicitly see how Galois group of
the maximal unramified extension looks like.

In chapter 4 we study about Tate cohomology theory and profinite groups. These are
basically tools we need to understand further chapters.

Chapter 5 and 6 are the most important part. Chapter 5 is Local class field theory, where
we study the local reciprocity map and local existence theorem. We use Tate’s theorem to
prove the isomorphism but use Lubin-Tate Formal groups to explicitly give its description.

Chapter 6 is Global class field theory. We read about the cohomology of Ideles and
prove two important inequalities. From these inequalities the reciprocity map and existence
theorem follow.






Chapter 1

Valuations

1.1 Definitions

Definition 1.1. Valuation on a field k is a map || : k — Rxq satisfying the conditions

1. |a] =0 if and only if a =0
2. || : k* = Rsg is a homomorphism

3. There exists constant C' such that |1+ a| < C for all |a] <1

We can define a topology k by taking open basic spheres B,.(a) = {x Dl —al < r}. Two
valuations are said to be equivalent if the topology induced by them is same.

Lemma 1.1. Valuations ||, and ||o are equivalent if there exists a ¢ € R such that |a|; = |al§
for all a € k.

Proof. The statement boils down to proving that |a|; < 1 < |a|o < 1 if and only if there
exists a s € R such that |a|; = |al5. (<) case follows trivially.
Assume |a|; is non trivial and |a|; < 1 < |als < 1. Fix a ¢ € k such that |c[; > 1. |a|; = |¢|$
for some oo € R. Let m/n — ot

alu /el < laly/lelf = 1= Jala/|cl3"" < 1
Observe that the condition |a|; < 1 < |ala < 1 can be restated as |al; > 1 < |aly > 1. This
follows from the fact that |a] < 1 = |a~!| > 1. Similarly if we consider m/n — a~ we have
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lala/|c|3™ > 1. Implying that |als/|c|g = 1

lo.g\c\z‘cll

loglal/loglaly = logie,|cly  |aly = lal

]

Any valuation is equivalent to valuation where the constant in last inequality is 2. This
can be seen by taking ¢ in above lemma as logoC. Now from the fact |1 4+ a| < 2 when
la| <1 bi-implies |a + b| < |a| + |b|,refer pgd3, [CF10]. We can replace the inequality in the
definition by triangle inequality.

We define Non archimedean valuation by replacing the inequality with |a+b| < maaz{a, b}
. This is equivalent to saying n < 1 for all n € k. For a non archimedean valuation we define
the set {z : |z| < 1} as ring of integers denoted by 0. Given a,b € o |ab] = |a|[b] < 1 and
la + b < maz{]al,|b]}. This shows that o is a ring. The set p = {z : |z| < 1} forms an
ideal in 0. a € o is unit if and only if |a| = 1. From this it implies that p is set of all non
units, hence maximal ideal. Archimedean valuation is defined to be valuation that is not
non archimedean.

The valuation || is called discrete if log|a|, for a # 0 forms a discrete additive subgroup of

R.
Lemma 1.2. A non archimedean valuation is discrete if and only if the ideal p is a principal

1deal.

Proof. Assume the valuation is discrete and log|a| generates the additive subgroup. Then it
is easy to observe that a generates the ideal. O]

(K, []) is said to be complete if every cauchy sequence in k converges with respect to the
metric induced by ||. Let k& denote a complete field. If a € k, a = lim a,, for a € k. We define
la| = lim |a,,|. Well definedness follows from the inequality

lla| = [b]]ec < |a —b|

Lemma 1.3. If k is completion of a discrete non archimedean valuation then the set of
values || taken on k and k are equal.

Proof. Assume a = lim a,,, from discreteness if |a,| are close enough there exists NV such that
for all n,m > N |a,| = |anm]. O



1.2 Valuations on QQ

|a|so denotes the absolute value for a € Q . Given z = a/b in Q for a prime p let a/b = p*a’ /b’
such that p fa'b’. We define p-adic valuation as |al, = 1/p". It is a trivial check to see that
p-adic valuation is discrete and non archimedean.

Theorem 1.4 (Ostroswki’s Theorem). Every valuation on Q is either equivalent to ||« or
||, for some prime p.

Proof. Let || be a non trivial valuation on Q, we will prove separately in two cases

1. Non archimedean. |n| <1 for all n. Since it is non trivial there exists a p such that
|p| < 1. Define the set

A={a:la] <1}

pZ C A, since pZ is maximal pZ = A. Any a € Q takes the form p™b, p fb for some
m € N.

lal = |p[™[b] = p[™ = lal}, s = —mlogy|p]

2. Archimedean. We know that given any two natural number m, n we have |m|'//9m =
In|Y/1o9m Let |m|'/%°9™ = ¢, then observe that |z| = 2! for any 2 > 0 € Q

1.3 Finite Residue Fields

Let || be a non archimedean discrete valuation and o, p be its corresponding ring of integers
and maximal ideal. We define residue field by &, = o/p. In this section k, is finite and (k, ||)
is complete. Let p = (7). Every element a € k can be written uniquely as un™ for some unit
u. Let a; denote some fixed representatives of k, throught this section.

Lemma 1.5.

k:{iaﬂri:nEZ}

Proof. Observe that the sequence b, = Y ;= a;7" is a cauchy sequence hence converges in k.
Consider a unit v € 0. Say image of u in k, is ag # 0. Then u — ag € p, say u — ag = 7"uy
where u; is a unit. u; —a; € p for some representative a; and u = ag+ 7"u;. Continuing like
this we can write every unit u as Y .- a;m". The theorem follows from the fact that every

element a € k can be represented as 7" for some unit u. O



Theorem 1.6. o0 is compact. Consequently k s locally compact.

Proof. We have shown that every element a € o can be written as > ;- a;7". Assume that
{oi} is an open cover of o without a finite subcover.

0 = U,;a,0

hence one of a;0 is covered by infinitely many o;, say apo. Again ago = U;(ag + a;0) we get
ay such that ag 4+ aq0 is covered by infinitely many o;. Continuing like this we get an o =
ag+aym+.... € 0. WLOG assume « € 07. Since 0, is open, for some n, ag+ ... +a,7"0 C 0.
This contradicts the construction of a that ag+...+a,7"0 C 07 is covered by infinitely many
0;. This proves o0 is compact. Any element a € k has open set a.0 which is compact. This
proves the theorem. O

1.4 Extensions of Valuation

Let [ be a finite field extension of k. We call a valuation ||, on [ an extension to || on k if
la|; = |a| for all a € k. If k is complete then the extended valuation is unique. If not there
are only finitely many extension to a given valuation. We prove these two statements in this
section.

Let V be a finite dimensional vector space over k. We define norm(|| ||) on V' as a function
| || - V — R satisfying the conditions

1. |la|| =0 if and only if a = 0
2. |la+ 0|l < [lal| + [|o]

3. ||abl| = |a||[b]| for all a € k and b € V

Example:Let w; be basis for V. We define |[v[jg = ||, aiw;|| = maz{|a;|}. If k is complete
then under this norm V' is complete. V' can be given topology by using basic open sets as
spheres B(r,a) = {z : n(a — z) < r}. Observe that [ can seen as a vector space over k and
extended valuation as a norm. Since basic open spheres are same the topology induced as a
norm and valuation are also same.

Definition 1.2 (Equivalent norms). If there exists positive real numbers ¢, and co for norms
| |l and || || such that ||a||y < ci]|alla and ||ally > cs||al| for all a € V' then || |1 and || ||2
are said to be equivalent.

Observe that equivalent norms produce same topology on the vector space.



Lemma 1.7. For a finite dimensional vector space V' over a complete field (k,||) any two
norms are equivalent.

Proof. Let V' be of dimension n with basis w;. We show that every norm on V' is equivalent
to absolute norm || ||o. Let || || be a norm on V.

loll < D lailllerll < llollo el
% 7

This proves ||v]| < ¢||v||o where ¢ = ), ||lw;||. To prove the other way around we use induction.
n = 1 is obvious with ¢ = max{HwiH}. Assume it is true for n — 1. Let V; = kw; + ..kw;_; +
kwii1+ ..+ kw,. V; by induction hypothesis is complete so is V; +w;. Hence V; +w; is closed
in V. 0¢&V;+w;. Hence there exists ¢ > 0 such that ||v; + w;|| > ¢ for all v; € V;, for all 7.
Take v = Y, a;w; and ||v]|o = |a;|. a;'v € V; + w; hence ||a; 'v|| > ¢. Thus we have

[o]l = ¢f|vlo

]

Theorem 1.8. Let [ be a field extension over complete field (k,||) of dimensionn € N. Then
the valuation || can be uniquely extended to | given explicitly by the formula

lal = [Ni(@)[''"

Proof. From the previous lemma considering [ as a finite dimensional vector space every
norm induces the same topology. Since a valuation can be considered as a norm we see that
any two valuations induce the same topology. So any two valuations satisfy |a|; = |a|3. But
if we take a € k we see that ¢ = 1. This proves uniqueness.

f:l—-R
a — |Nl/ka\l/"

is a continous function. The only thing left to prove thet f is a valuation is the triangle
inequality . On since the set S = {a € [ : [lallp = 1 is compact. There exists c¢1,c3 > 0
such that ¢; < f(a) > ¢ for all @ € S. This implies ¢; < f(a)/|lal]lo < c2. For all
fla) <1< e(||1 +allo) < (1 +¢;h). This proves that f is a valuation. O

But in the case of an incomplete field we have

Theorem 1.9. Let | be a finite separable extension over k of degree n. There can be atmost
N number of extension of | |. Let l; be the completion of | with respect to valuation || ||;, for
1 < N. Then we have

k@l =@l
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Proof. Let us first see that k ®; [ is of the form mentioned. Let | = kla] and f,(z) € k[x]
is minimal polynomial of a then k @, I = &)—ja’k. Let fo(x) = [, gi(z) where g;(x) are
irreducible polynomials in k[z]. Take l; = k[x]|/g;(x). Fix a a; € [; such that g;(a;) = 0.
Define homomorphism

a — a;
ol o)
Zb]a — bja;
J

If 0;(h(x)) = 0 then g;(z)|h(z).

This map is clearly a surjection. If 8(h(a)) = 0 then g;(x)|h(x) for all i, hence f,(x)|h(z)
implying h(a) = 0. This proves that the map is an isomorphism. Now consider an b € [,
x =3 bja’ where b; € k.

0i(b) =0 =Y bjal =0
J

h(z) € k[x] and . This proves that k and [ have an inclusion into I;. [; as an extension over
k has a unique extension of | |, say || ||;- By the inclusion 6; : [ — [; define vajuation | |; on [
by

|ali = 10:(a)l:

If ||; is non zero on say I;, then for all b € I;, # 0 we have |al; = |b|;|ab™!|;. Hence |b|; # 0.
If ||; is non zero on any two of [; say l; and Il we have for a; € [;

(CLl,O, ,0)(0,@2,00) = (O, O, O)

= ’CL1|1”CL2|¢ =0

This is a contradiction, since both are non zero. Hence ||; can be non zero only on one ;. [



Chapter 2

Number Fields

Finite extension over QQ is known as Number field. In this entire section k£ represents a
finite extension over Q. Since Qﬂm = R, the extensions of archimedean valuations lie in R
or C. In archimedean case if the field lies in R then valuation is normalized if it is absolute
value. In case of C, if it is square of the absolute value. In non archimedean case we call ||
normalized if |7| = 1/|k,|. Tt is well defined since k, is finite extension of some Z/pZ.

If (Q, ||) is complete then normalized extension of || is |Ni/q|, pgd9 [CF10]. In the incomplete
case, let ||; be normalized extensions then [], |a|; = Ni/gal|. This follows from the fact that
norm is the constant in characteristic polynomial and f(z) = [, gi(x).

In this entire section v denotes a normalized valuation.

Lemma 2.1. For any a € k, |a|, = 1 for all most all v.

Proof. Given any a € Q we know that there are only finitely many primes dividing it. There
for all most all primes |a|, = 1. Now consider a € k, there exists a; € Q such that

n—1
a® = g ata;
i=0

For any discrete non archimedean valuation v we have
n %
laly < maz{lal'|ail, }

If la], > 1
laly < ]a|"_1ma:l:{|a,-|v}
la| < maz{|a;|}

Thus we have |a|, <1 and |a™!|, < 1 for almost all v. O



Lemma 2.2. Let v run through all the normalized valuations of k then we have

[Tlal, = 1va €k

Proof. Let v|p for some p. We have already shown that |a|, = Ny, g,a. Thus from the
corollary of last section we have

[Tlal =TT Tlak) =TT Newre@) = TT Nesoa
v P vlp P vlp p

Since Npga € Q it comes down to proving the statement for Q. Consider a b € Q. b =
+ [[p}" for some finitely many primes p;. We have |b|,, = p™™ and |b|oc = [[p;". Hence the
lemma, follows. O

2.1 Adeles and Ideles

For a number fieldk let m; denote the set of all normalized valuations. Adele ring V is
subset of Hvemk k, such that given a = (a,) € V} a, € o0, for almost all v. This topology is
known restricted topology of k, with respect to 0,. We define topology on V. by taking the
basis elements as

110

where O, is open in k, and O, = o, for almost all v.
Lemma 2.3. V, = Vp ®q k

Proof. This follows from k ®q Q, = @ypk, and S;w;0 = @,)p0, for almost all v, refer pg61
[CF10]. O

k can be seen as an element of V}, whose v*" component is k for all v. Thus we have an

inclusion k — Vj, and the images of k are known as principal adeles.

Lemma 2.4. k" is discrete in V;" and V" /k* is compact.

Proof. As seen earlier V,' = @&,Vow; & @;Vp. This implies V' /kT = EBV& /QT. So it is
enough to prove the statement for Q.

For Q it is enough to show that we can find a neighborhood around 0 which is disjoint
to Q. By translation we can extend it to any neighborhood. Take the set A = {a c Vo
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laso|oo < 1,]a,l, < 1. A is open. If a rational number ¢ € A since |g,|, < 1 for all p, ¢ € Z.
But |gs|oo < 1 implies ¢ = 0.

We construct a continous surjective map from a compact set to V@F /Q%. The continous
image of compact set is compact, that proves the lemma. Consider a subset B of A where
laso]oo < 1. Let b € Vo, there are finitely many p such that |b,|, > 1. For such a p we have
b, = s,+1, where r, € 0,. For all such p’s the sum s = ) s, € Z. Thus we have |b,—s|, <1
for all p. Now choose a r such that |bs, — 7 — s|oo < 1/2. Thus we have found z =r + s € Z
such that b — z € B. We have constructed a surjective map from B — V& /QT. O]

As in the above proof we can similarly construct a compact set W = {a € Vi layl, < cv}
for some constants ¢, where ¢, = 1 for almost all v. Satisfying the condition that every a € Vj,
can be represented as w + a where w € W and a € k.

Theorem 2.5 (Weak approximation theorem). Let | |1, | |2,...| |n be inequivalent valuations
on k. Given a; € k and € > o there exists a € k such that

\a—ai\i <e Wi

Proof. We use induction to construct x; such that |x;|; > 1 and |z;|; < 1 for all j # i. For
n = 1say | |; and | |, are inequivalent. Then there exists a and b such that |a|; < 1, |a|, > 1,
bl < 1 and |b]; > 1. y = a/b satisfies the require condition that |y|; < 1 and |y|s > 1.
Now assume the statement is true for n — 1. So we have x such that |z|; < 1 and |z|; > 1
for all j # 1,n.

1. If |z|, > 1, take t,,, = 2™ /1 + ™. Observe that |t,,|; — 1 for i = 1,n and |t,,,[; — 0
otherwise. Therefore for sufficiently large m we have |t,,y| > 1 and |t,,y| < 1 for all

i 41,
2. If |x|, < 1 for sufficiently large m, |2™y|; < 1 and |z™y|; < 1 for all i # 1.

Similarly we can construct x; such that |z;|; < 1 and |z;|; > 1 for all i # j.
Let ziy, = 2" /1 + 2*. Observe that
|Zim — 1|z — 0

|2im — 0]; = 0, j #

Let 2z, = D, GiZim

Zm — @ili < |agli|zim — 1] + Z |ajlilzjml|i — 0
J

11



Given € we can find sufficiently large m and take a to be z,, to satisfy the required condition.

[]

Theorem 2.6 (Strong Approximation Theorem). Let w be a normalized valuation of k. S
be a finite set of normalized valuations and w ¢ S. Given a, € k, for allv € S and ¢ > 0
there exists a € k such that |a — a,|, < € forv e S and |al, <1 forv & S,# w.

Proof. Similar to the construction of B in the proof of compactness of V" /k* we can con-
struct a compact set W = {a eV —k:layl, < cv} for some constants ¢, = 1 for almost all
v such that every a € Vj, can be repersetned as w + a where w € W and a € k. We use the
following lemma, pg66 [CF10],

Lemma 2.7. For a number field k there is a corresponding constant C' > 0 such that for
A €V, satisfying [ [,em, lavlo < C. Thene there exists b € k such that [b], < |a,|, for all v.

Choose a, € k, such that 0 < |a,|, < ¢, and |a,|, = 1 if ¢, = 1. Choose a,, € k,, large
enough that [[,c, [au], > C.

vem

So by above lemma there exists b € k such that
bl, <cjle,veS

’b|v§C;17 vEg S, #w

Consider a € V}, such that a, = a,, v € S a, =0, v € S,# w. There exists b~la = w + .
bj3 satisfies the required conditions.

O

The Idele group, Jg, is defined to be the set of all units of V. Define map
T: Jk — Vk X VYk

r— (z,27h)

Ji can be seen as a subset of Vj x Vj through this map. A subset O of J is said to be open
if 7(0O) is open in 7(J)) with subset topology. It can be seen that this topology is equivalent
to restricted product topology on & with respect to o}.

Jo ={z € Jy: H\xv\vz 1}

Lemma 2.8. Topology on J} as a subset of Vj, is same as topology as a subset of Jy.

12



Proof. Consider T' C J, such that ' = O N J,, for an open set O in Jj, and 1 € . We want
to find U C V}, containing 1 such that U N J, C T

We may assume that if v is non archimedian then I', C o}. Further we may assume that
if v is archimedean then I', = {z € k, : |[x — 1] < & }. Choose a prime p such that for
archimedean primes v we have

H(1+ev)<p

VESso
Take
U= H vaHo;xHov
VESso v<p v>p
If (z,) eUN J;~C
= 1= [] lzlo= [] lzl- [ |20l
vEMy VESs v>p
< II lwlo/p< [T 0 +e)/p<1
VESso vES

This implies z, € o}, for all v > p. Hence U =[], g Tw X [[,o, 05 X [[,5,00 CT

Now consider a subset W of J,; open with respect to V) topology. That is we have open
set I' = [[,eq v X [[ g O such that W =1"nN J,.. T contains open set I of J; given by

[Toes Tw X [1,gs 05 Since (z,) € W is a unit for all v ¢ S, W = I N J,. This proves the
lemma. O

As a corollary we note

Corollary 2.9. J,; 15 closed in V.

Proof. This follows from the fact that J,; is kernel of the continous map

Jk—>R

(z0) — H |Zo ]

Lemma 2.10. J}/k* is compact

Proof. We prove this by showing that J!/k* is continous image of a compact subset of J,;.
Let a € Vj, such that [], ., |av]|, > C and |a,|, = 1 for almost all v. Consider the compact
set V = {x € Vit |zyly < \av|v}.

13



Given a x € J, there exists b € k such that |b|, < |2;".a,|, for all v. Thus we have
b.x € V. This defines a continous surjection

VN, — J./k

2.2 Dirichlet’s Unit Theorem

Ideal class group, Iy, is defined to be set of formal sums of no archimedean valuations of k.

I, = { Z n,v : v € my and non archimedean, n, € Z}
v
I} is given discrete topology. There is natutal continous homomorphism v : Ji, — I

a=(a,) = Z v(a).w

v nonarch

The sum is finite since a, € o} for almost all v. v(k*) is known as group of principal ideals.

Lemma 2.11. [ /v(k*) is a finite group.

Proof. I, /u(k*) is continous image of the compact set Ji/k*. Hence Ij/v(k*) is compact
and discrete, so finite. O

Theorem 2.12 (Dirichlet’s Unit Theorem). For a finite set S of my, consisting of archimedean
primes. The set Ug = {x ek:|zl,=1Vo ¢ S} is direct sum of a finite cyclic group and
free abelian group of rank s — 1

Proof. Define

Jk7S:Hk:XHO;

vES vgS
J,;’S = JisN J,;. Since J g is an open subgroup of Jy, J,;’S is an open subgroup of J,;. Hence
J,;’S/US = J,;’S/J,;S N k* is open subgroup of J, /k*. Hence is closed and compact. Consider
the subset of W C k* defined by
a<l|rl,<ecyveS

’$h,231,v g‘g

14



for some constants ¢; and c¢o. This is the subset of compact subset of V' C J, given by
1 < |xv|v <co v E S

Tyl =1, v & S

V =W Nk*, that is intersection of a compact set and a discrete set, hence is finite.

Take ¢; = ¢ = 1, these are elements in k* which are units in every valuation. These
contain the roots of unity. They also form a finite subgroup, hence are entirely roots of unity
of some order.

Define
f : Jk,S — @f:1R+
a — ®5_,logla;;

where | |; are valuations of S. This map is continous ans surjective. f(Jys/ker(f)) is
subspace with >  x; where z; # 0. f(Jys/ker(f)) is s — 1 dimensional subspace of

SR f((Jks/ker(f))/(Us/ker(f))) = f(Jrs/Us) is a compact subspace of this. Hence
f(Ug/ker(f)) is free on s — 1 element. Since ker(f) restricted to Us consists of x such that
|z|, = 1 for all v. We have Uy as direct sum of free abelian group generated by s —1 elements
and a finite cyclic group consisting of roots of unity.

O
We note two important maps. [ be a finite extension over k we define

1. Norm map.
Nl/k V=V

(Niyk(@)o = [ | Muwspo o, ¥ @ € Vi

wlv

2. Conorm map.

Conl/k : Vk — Vk

(Conyi(a))w = @y, ¥ wlv

If the context is clear we generally omit the [/k from the subscript.
Observe that Ny, U; C Uy and Conyy, U, C Up. Hence these definitions can be extended to
Ji. and [ similarly. From the above definitions it follows that

Nl/k I = I
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W = €y /yV
and
Conl/k : [k — Il
V= fuppW

e is known as ramification index and f is extension degree of residue fields. These will be
properly defined in the next chapter.
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Chapter 3

Dedekind Domains

Throught this section R denotes an integral domain and K is the corresponding quotient
field.

Definition 3.1 (Discrete additive valuation). A map v : K — ZUoc is a discrete valuation

if,

1. v defines a surjective homomorphism K* — 7
2. v(0) =00

3. vz +y) > inf{v(z),v(y)}

Observe that given v(x) we can define a corresponding valuation |z|, = ¢"®) for some
constant ¢ < 1. This turns out be a discrete non archimedean valuation. we can choose ¢
such that ||, turns out to be a normalized valuation.

Definition 3.2. Discrete valuation ring. Given a discrete valuation v : K — ZUoo discrete
valuation ring is defined by the set {x e K :v(x)> 0}

This is same as o of first chapter.

Theorem 3.1. R is a discrete valuation ring if and only if it is noetherian, integrally closed
and contains an unique prime ideal.

Proof. (<) Let I be a non zero ideal of R, if I/pl = 0 by Nakayamma’s lemma we have
I =0. Let x € I — pl, since p is the only maximal ideal Rad(z) = p and R is noetherian
implies In s.t Rad(x)" = p™ C (z). Choose smallest n s.t

ptlCcptC(x)CcICp
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take a € p"~'I — () and define the map
Paje - P T — p™1

y— ay/x

Observe a/z(p"1) C (1/x)p"Ip"~VI,if 1/2p"l = R = p"I = (x) = x € pl hence 1/xp"] C
p. Therefore this map satisfies an equation

Hoye + a1t )+ e ay =0

= (a/2)" +ar(a/z)" '+ .. +a,)=0=a/r ER

We have a € (x), contradiction, therefore n = 0 = (x) = I. We showed R is a PID hence
a UFD, if p = (m) since p is the only nonzero prime ideal every x € R admits a unique
representaion m"u where u € R — p i.e, v is a unit in R. Define

’UZR—)ZZO

r=n"ur—n
Now assume that R is a dvr corresponding to the discrete valuation v.
v(l) =v(l.1) =v(l) +v(l) = v(l) =0

Take u,v € Rs.tuv =1
= v(xy) =v(z)+v(y) =0=v(x)=0v(y) =0
Since v(z),v(y) > 0. Observe that
v(u)=0=v(1/u)=0= (1/u) € R

Therefore u € R is a unit iff v(z) = 0. Consider the set {z € R : v(z) > 0}. The properties
of valuation show that its an ideal and since its the set of all nonunits its the unique maximal
ideal. Since R is a PID its noetherian and Integrally closed. O]

A fractional ideal J of R is R submodule of K s.t da € K s.t aJ C R. For a fractional
ideal J we define J~ ! = {I e K:xJ C R}. Observe that J~! is an R submodule and for
any nonzero a € J, aJ~! C R making J~! a fractional ideal.

If M is Rsubmodule of K then M, = MR, is R,-module and if M is finitely generated
then M, is finitely generated over a PID. Consider M, N, free R—submodules of K of rank
n. There exists a linear transormation [ of K s.t {M = N. We define [M : N] as fractional
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ideal Rdet(l). If M, N are finitely generated, then [M : N] is defined to be the unique ideal
[M : NJ| s.t
[My - Ny] = [M = N]R,Vp

This definition of [M : N] is well defined only if [M, : N,] = R, for almost all p. Since M, N
are finitely generated, we have a,b € K such that aM C N C bM. Since vy(a) = vy(b) =0
for almost all p, M, = N, for almost all p. L be a seperable extension of K and S be the
integral closure of R in L. Let t1/x denote the trace map on L, since L is seperable over K,
tr Kk defines a nondegenarate bilinear form on L. For any R submodule N of L we define

DR(N) = {513' e L: tL/K(xN) C R}
Lemma 3.2. If N is a free R submodule of L then Dg(N) is a free R submodule.

Proof. Let {ai} be basis for NV over R. Since t1,x is nondegenerate if {bl} is dual basis of
{a;} then Dg(N) is freely generated by {b;}. O

Lemma 3.3. If M is a free Rsubmodule of S with basis {ul} then 9(M) defined by [Dr(M) :
M] is generated by det(trx(uwiu;))

Proof. Assume M is generated by {uz} and Dgr(M) by the dual basis {UZ} Define
[:L— L

Vi /> U,

this takes Dr(M) to M. Fix {v;} as basis for L then
l(v;) = u; = apvy + ...a0,
tr/k(uiv;) = 0if i # 7 and tr/k(uv;) = 1 if i = j hence
o (uiug) = ag;

Hence [Dp(M) : M] = Rdet(tr;x (usu;)) O

Theorem 3.4. S is a finitely generated R module that spans L over K and is a dedekind
domain.

Proof. 1f x € L then x = s/r for some s € S and r € R. z satisfies a polynomial
2"+ a, " F+ap=0
if a; = b;/¢; consider ™ = (][] a;)"
(re)" + rla,_1(re)" ' + ...+ 1"ag = 0,7'a,_; € R
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hence rz € S, this implies SK = L. z € S if and only if R[z| is finitely genererated R
module, from this it follows that S is an R module.

S contains a free N module that spans L. From the definition of Dg(V) it is easy to
see that S C Dg(S) C Dgr(N). Dgr(N) is a free module over a noetherian ring(R), hence
noetherian. Thus S as R submodule of Dg(N) is noetherian. Since S is integrally closed, if
« is inegral over S and satisfies 2™ + a,_12""' + .. + ag, a; € S then « is finitely generated
over R[a, 1, ..,aq]. Thus « is finitely generated over R hence a € S. Let B be a prime ideal
in S and B N R = p. Consider an element o € S — P that satisfies

T4 apx" P+ ..+ ay=0,a; € R

then @ satisfies
2"+ G, 2" @, =0,a; € R/p

for some 1 < j < n. Rewriting it after substituting @ we have
af@ @, @ L a)a =1

. Thus we found an inverse for non zero element in S/, making 8 a maximal ideal. This
completes the proof that S is a dedekind domain. O

It also follows from Hensel’s lemma that S = {# € L : Ny/k(z) € R}. Since we have
shown that N,k is a normalized valuation, the maximal prime ideal of S corresponds to
the normalized extension of the valuation corresponding to R.

S/pS as a vectorspace over k is isomorphic to S/ @ PH/PB* & ... & P /P We have
S/PB = PB/P? by the map s — smp, similarly P/ P = Prl /P2 for all 4 < e —2. If
T1,T2....Ts 18 basis of S/ over R/p then 7'Ty, m'Ts.... 7T is basis of P'/PB over R/p,
T; € ki. Consider N = Rxy + ...+ Ry + ... + Reyn® ' + ...+ Rryr® ! then S = pS + N,
by Nakayama’s lemma, S = N. Hence {iji} 1<j<e—1,1<i< f forms a basis for L
over K.

Consider a pair of dedekind domains Ry, Ry with quotient fields K,K5 respectively s.t
Ry C R,. If py is a prime ideal in Ry and the prime ideal p; = po N Ry is also nonzero then
we define residue class degree f(ps/p1) = (ko : k1), where k; = R;/p;. The ramification index
is defined by e(p2/p1) = vp,(p1R1). From here assume that R is d.v.r and K is complete.
Let p and B denote the prime ideals of R and S respectively.We define residue class degree
of P, f as kr : k where k;, = S/B and k = R/p.

Lemma 3.5. ef = [L : K]

Proof. P! is maximal ideal in B*. We have S/PB = R /B? by the map s — smz. Similarly
we have B¢ /R =2 P+l P2 for all § < e — 2. Since S is a free R moduke of rank [L : K],
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dimension of S/pS is [L : K]. lemma follows from the fact that S/pS as a vectorspace over

k is isomorphic to S/PB & P /P & ... &P /R O
Definition 3.3. Finite seperable extension L over K is said to be Unramified if e(L/K) =

1 and kj, is seperable over k

An eisenstein polynomial in K[X] is a seperable polnoymial
E(z) = 2" + ap_12™ ' 4 ... + ag
where vg(a;) =1 forall 1 <i<n—1and vk(ay) =1
Lemma 3.6. E(x) is an irreducible polynomial.

Proof. Assume FE(z) is not irreducible amd 2" + a, 12" ' + ... +ap = (2™ + ... + b) (z"™ +
..+ ). Since bycy € p assume WLOG by € p and ¢,_; be the smallest ¢; s.t ¢;(modp) # 0

a; = boCn_i + ---bn—iCO

a; —bicp_1—; + ...bp_ico = bocp_;

p divides LHS above but not RHS, hence E(z) is irresucible. ]

We state a very useful lemma without proof.

Lemma 3.7 (Hensel’s Lemma). Let R is a complete local ring, p be it’s prime ideal and
k = R/p. Let f(z) € R[z] be a monic polynomial and f(x) = f(x)(modp). If f(z) =
g(z)h(x) where (g (), h h(z)) =1 then there exists unique g(x), h(z) € R[x] such that f(x) =

g(x)h(x), h(z) = h(z)(modp) and g(x) = g(x)(modp)

In the case of finite separable extension L over a local field K where S is integral closure
of Rin L. If f(x) were separable and f(@) = 0 for some @ € k, then the lemma says that
there exists a unique a € S such that f(a) = 0 and a = @(mod(P)).

Proposition 3.8. Suppose L is an unramified extension over K. Then there exists an
element v € S with k = k[Z|. If x is such an element and g(z) is it’s minimal polynomial
over K, then S = R[z], L = K|[z| and g(z) is irreducible in klx] and separable.

Proof. Since kp, is seperable over k, k;, = k[& for some @ € k. Let f(z) be minimal
polynomial of @ in k(x). F(x) € S[x] such that F'(x) = f(x). Since f(x) is irreducible F(x)
is irreducible, otherwise going mod for the factorization of F(z) gives us a factorization of
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f(zx). Since f(x) is separable we can apply Hensel’s lemma to get a unique o € S such that
a=aand F(a)=0.

L : K] > degree(F(x)) > degree(f(z)) = [k : k] = [L : K]

Thus we have degree(F(z)) = [L : K|, hence L = Kla|. kp = k@ ka® ... ® ka"!, by
Nakayama’s lemma we can lift the basis to S and we get S = R® Ra ® ... & Ra™ L. m

Proposition 3.9. Suppose g(x) is a monic polynomial in R[z|, such that G(x) is irreducible

in k[z] and separable. If x is a root of g(x) then L = K|x| is unramified over K and

Proof. Since g(z) is irreducible and separable degree(g(z)) = degree(g(x)). Thus we have
[L: K] = degree(g(x)) = degree(qg(zx)) < [kr : k] < [k; : K]

Hence [L : K| = [k; : k] and k; = k[z]/g(z). If a is a root of g(x) then L = Klo] and
k; = kl@]. O

Theorem 3.10. given k a finite seperable extension of k there exists a finite seperable ea-

tension L = L(k) over K, such that

1. k

1%

ki
2. L is unramified over K

3. the canonical map s bijective

HomK(L, K) — Homk(kL, k’)

Proof. k = k[a] for some a € k. assume @ satisfies

g(z) = 2" + @12+ .+ Ao, T € K

consider g(z) = 2" + a,_12" ' + ... + a9 € K[X],a; = @;mod(p) since g(x) is seperable
and irreducible g(z) is seperable and irreducible. Consider any L s.t L = K[X]/g(z), by
hensel’s lemma there exists an unique « € L s.t o« = @mod(p) and g(a) = 0. Hence we

have k; = k[X]/g(x) = k and also [L : K] = [kr : k] since degree of g(z) = g(z) making L
unramified extension.

we are left to prove the bijection of canonical map given

Fokla) = k.
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o — B
assume @, (3 satisfy g(z) = 2" +@p_12" "+ ....+ao. If there exists 31, By 5.t g(B1) = g(B2) =0
where g(z) = 2" + a,_12" ' + ... + ap and 61 = B, = 3 then g(x) is not seperable. Hence

there exists a unique 8 € L s.t g(ﬁ) = 0 and ¢(3) = 0. This defines a unique homomorphism
f:L—1L

a—f

whose restriction to k[a] defines f O

Theorem 3.11. Composite of two unramified extensions is unramified

Proof. Let L, = K[a], Ly = K[B] be unramified extensions such that kr, = k[a], k., = k[A].
Assume f(z) € K[X] is minimal polynomial of o in Klz] but it may split in Ls[z]. Say
f(z) =[] hi(z) where h;(x) € Ly[X] are irreducible and h;(a) = 0. Since f(z) is seperable,
hi(x) is seperable in kr,. hy(z r) is also irreducible in kg,, if not assume hi(z) = g(z)h(z).
Since hy(z) is separable (g(z), h(z)) = 1 by Hensel’s lemma we can find g(z), h(z) such that
hi(z) = g(x)h(x) which gives us a contradiction. Thus by proposition3 La[a] = Lo[X]/hy ()
is unramified over Lo, hence over K. Thus L;Ls = Ly|a] is unramified over K. O

Thus taking compositum of all umramified extensions we get a maximal unramified ex-
tension of K in its algebraic closure denoted by K, r

Lemma 3.12. If L is unramified extension and o is an automorphism of L then oL 1is

unramified extension

Proof. Assume L = K[a], o(a) =  and g(z) € K[X] be the minimal polynomial of o and
B. BY theorem4 we have a unique homomorphism

[ k’L — kO'L
o — B
Since 3 is root of g(x) which is irreducible and seperable, [kyr, : k] > degreeg(z). Hence

oL : K| > [kor : k] > [k : k| = [L : K] = [oL : K|. This proves that oL is unramified. [

Given a seperable extension L over K let Ly denote the composite of all unramified
extensions over K in L. Since oL is unramified, Ly is normal. Consider L' = L(k®) which is
an unramified extension, hence L' C Ly. Thus k° C kr,, but kr, is seperable, hence k* = kp,,

Lemma 3.13. Adjoining e roots of unity to K where (e,p) = 1 is an unramified extension.
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Proof. Let (. denote the primitive e roots of unity with minimal polynomial f(z) in R[z].
Since z¢ — 1 is separable in k¢, f(z) € k¢, is separable. Since it’s separable and f(x) is
irreducible by Hensel’s lemma we conclude that f(z) is irreducible.Applying proposition2

K¢, is unramified over K. ]

Theorem 3.14. Every unramified extension of degree n is given by adjoining q" — 1th roots
of unity where q = #k

Proof. Assume L is an unramified extension by theorem3 we have Gal(L/K) = Gal(kr/k).
29" — x is seperable in k; hence by Hensel’s lemma L contains (¢" — 1)th roots of unity,
(qn—1. By applying above lemma L' =K [(n—1] is unramified extension of degree n in over
Kand L' C L, hence L = L. O
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Chapter 4

Tate’s Cohomology and Profinite
Groups

4.1 Tate’s Cohomology

Throught this section let G be a finite group. For i > 0, Z; .= G}, G = G x G x ... x G,
i+ 1 times. For a G module A, Hom(G, A) can be given module structure by (g.f)(z) =
9.f(g7'x). We denote Hom (G, A)% = {f € Hom(G, A) : g.f = f Vg € G} by Home(G, A).
G always acts trivially on Z.

diy 2y — Zi

(907 g1, -+ gz) — Z(_l)](QOJ gi, .-, gz)
§=0
This is a G module homomorphism. Z_; = Hom(Z;_1,7)
d,i : Z,i — Z,i,1
Take f € Hom(Z|G"],Z) we define

d—i.f(90, 91, - 9i) = f(di=1(g0, 91, ---, 9:))

By the above definitions we have the exact sequence
Cl() € d—l
= — Ly > L1 —> L _9—
€ Z() — 74
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LTSI
This exact sequence is known as a standard complex. This induces a chain

LN Homg(Z 5, A) LN Homg(Z_1,A) = Homa(Zy, A) a, Homg(Zy, A) LN

d,: Homg(Z,-1,A) = Homg(Z,, A)

dqnf(.QOagla "'7gq) = f(dqg(bgla "'7gq)

These are G module homomorphisms. For a G module A Tate’s groups are defined as
HYG, A) = ker(dy)/img(d,_) Yq € Z

Elements of ker(d,) are known as g-cocycles and of img(d,_,) are know as ¢ — 1 cochains. Let
H?(G, A) denote the ¢"" cohomology groups and H,(G, A) denote the ¢"" homology groups.
N:A— A a— > gainduces N : Hy(G,A) — H(G, A). We define Hy(G, A) = ker(N).
It can be seen that

HY(G,A) = HY(G, A), ¢ >1

H™(G, A) = Hy(G, 4)
H™ %= H, (G, A)
For an exact sequence of G modules
0-A—-B—-C—0
we have the exact sequence
— HY(G, A) = HY(G, B) = HY(G,C) > A" (G, A) —
0 above is known as connecting homomorphism.

Let H be a subgroup of G then we have embedding f : H — G. This induces map known
as restriction homomorphism

Res : HY(G,A) — H(G, A)

If H is a normal subgroup then A" is a G//H module. G — G//H induces HY(G/H,A") —
HY(G, Af). A" — A induces HY(G, A") — H(G, A). Thus we have the inflation map

Inf: HY(G/H,A") - HI(G, A)
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For Homology groups we can also define corestriction map induced by H — G
cor: H,(H,A) — H,(G,A)

This can be extended to all Tate’s groups by dimension shifting, pgl04 [CF10]. We note an
important lemma, pgl01 [CF10]

Lemma 4.1. If f]i(G,A) =0 forall<i<qg—1 for some q > 1 then the following
sequence s exact
0— HY(G/H,A") 2 F9(G, A) =5 H9(H, A)

Lemma 4.2 (Shapiro’s lemma). Let B be a H module, then

HY(G,Homy(Z|G],B)) = H(H, B)

Proof. Define
f:Homg(Z, Homy(Z|G|,B)) — Hompy(Z, B)

For ¢ € Homg(Z, Homy(Z|G], B)), f(¢¥)(g) = %¥(g)(1). The lemma follows from the fact
that it is an isomorphism. O

Definition 4.1 (Cup product). There exists a unique family of homomorphisms in ]:.Tp+q(G, A®
B) denoted by a.b for a € H?(G, A) and b € HY(G, B) written as

HP(G, A) ® HY(G,B) — H*(G,A® B), Vp,q € Z

satisfying

1. These homomorphisms are funcorial in A and B.
2. For p=q =0 they are induced by A° @ B¢ — (A® B)“.

3. [fO—A>A1 — Ao _>A3T>0 and 0 - Ay ® B - A, ® B — A3 ® B — 0 then for
as € HP(G, A3) and b € HY(G, B) we have (0(as)).b = d(as.b)

4. If 0 = By = By = B3 = 0 and 0 — A® By - A®R By > A® By — 0 then for
a € H?(G,A) and by € HY(G, B3) we have a.(d.b3) = (—1)Pd(a.bs)

From pgl08 of [CF10] we note the lemma
Lemma 4.3. 1. Res(a.b) = Res(a).Res(b)
2. Cor(a.Res(b)) = Cor(a).b

For a finite cyclic group G we have the theorem
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Theorem 4.4. [:IZ(G,Z) 1s cyclic and the cup product with the generator induces an iso-
morphism

HY(G, A) = H™*(G, A)

For a finite cyclic group G if HO (G, A) and H'(G, A) are finite then we define Herbrand
Quotient, h(G, A), by [H*(G, A)]/[H'(G, A)].

4.2 Profinite Groups

Let I be a set with a relation < which is reflexive and'transitive. Inverse system over [ is
{Gi} indexed over I with continous homomorphism 6! : G; — G for all i < j satisfying
7l =1and o7} = 7.

Let G; be finite sets with discrete topology. G = {(a;) € [I,c; Gi : 7w (a;) = a;}. Gis
closed in [] G;(product topology). We denote G = @Gi and call it a profinite group(G;
are finite).

Theorem 4.5. A topological group is profinite if and only if it is compact and totally dis-
connected.

Proof. Consider G = lim G;. G; are finite and discrete hence compact, so is [[ G;. Since
G is closed, it is compact. To prove it is totally disconnected it is enough to show that
intersection of all compact subgroups is 1. Let G denote the subset of [[G; containg 1 at
G; component. ﬂG; = 1, hence [ G; is totally disconnected which follows to G.

Let G be a compact and totally disconnected set. Let G; be collection of open normal
subgroups. The natural maps G/G; — G/G,; for G; C G; make it an inverse system. Let

p:G = limG/G;

r — 2G;

Injectivity follows from the fact that every neighborhood of 1 contains a normal subgroup.
If a = (a;G;) then Na;G; is non empty. This shows surjectivity. Restriction to G/G; is
continous, hence 6 is continous. Thus we have shown that if G is a profinite group and G,
are open normal subgroups then G = 1&1 G/G; O

Thus from above theorem it follows that if [ /k is a Galois extension and [; are intermediate
fields G(I/k) = @G(lz/k) From theorem 3.14 Gal(k,,/k) = @Z/HZ. It is denoted by Z.
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Direct system is set abelian groups {AZ} indexed over I with maps ,uz : A; = Aj such
that ,ug? oul = puf. Let A" = UA;, we can define an equivalence relation z — y < pfz = u?y
for some k. A = ligA,- is set of equivalence classes. This can be made an abelian group by
defining z + y as equivalence class of p¥fx + ufy for any k > 1,7

If G = @G/Ui and A is a G module then A = ligAUi. We have direct system
(I, H1(G/U;, AV#); 67) where
0/ . H1(G/U;, AV") — HY(G/U,;, A%) — HY(G/U;, AY)

This gives us H1(G, A) 1i_n>qlf[q(G’/Ui,AUi. Thus if £ is Galois extension over K, we have
HY(G,E) = li_n>1]:fq(G(Ki/K), K;) for finite intermediate extensions K;. Similarly we have
HY(G,E") = lim H(G(K;/K), K})

Lemma 4.6. Galois extension E has trivial cohomology.

Proof. 1f E is a finite extension then by normal basis theorem E' is induced, hence has trivial
cohomology. O

Lemma 4.7. H'(G,E*) =1

Proof. Consider F to be finite extension. Let 7 € G and f be a 1 cocycle. By independence
of characters we have a non zero b = Y __. f(0).0(c) for some c¢. Then 7(b) = f~*(7)b.
Hence f is a cochain. m
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Chapter 5

Local Class Field Theory

5.1 Brauer Group

Throught this section k& denotes complete field with respect to a non archimedean valuation
v and a finite residue field k. of order ¢. Brauer group of k denoted by Br(k) is defined
as liﬂG(m/ k) where m runs through finite extensions of k. o denotes the ring of integers
and p the maximal ideal. Let [ denote a finite Galois extension of degree n. Let k. be
the maximal unramified extension of & with Galois group Z. In this section we prove that
Br(k) = H*(Z, k%) .

» ur

From the exact sequence 0 = Z — Q — Q/Z — 0, we have

HY(G,Q) » H'(G.Q/Z) % H*(G.Z) - H*(G.Q/Z)
Since @ has trivial cohomology d becomes an isomorphism. HY(G,Q/Z) = Hom(G,Q/Z) =
H?*(G,Z). The map v : Hom(Z,Q/Z) — Q/Z defined by ¢ — ¢(1) is an ismorphism. The

valuation map v : k. — Z defines a homomorphism v : H 2(Z, k* ) — H2(Z, 7). We define
invariant map, invy, : H*(Z,k*,) — Q/Z as

invy =vy06 'ow

Claim is that this is an isomorphism. Which will be proved by showing that v is an ismor-
phism.

Proposition 5.1. Let k, be the degree n unramified extension of k with Galois group G then
HY(G,Uy,) =1 for all q € Z.
Proof. Define Ul = 1+ 70, then U, = @Un/Ué Let k,_ denote the residue field of k,.
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We have a G module homomorphism
Uy — k.

ag + a1+ ... = ag

The kernel is Uy, hence U/U; = k. Similarly the G module homorphism
U, — ki

l1+7"a—a
has kernel U*'. Hence U; /U = kf. Since they are G module isomorphisms we have
HY(G,U/U,) = H1(G,k;; ) and HY(G, U}, /U*") = HY(G, k;} ). From lemma 4.5 and 4.6, k;}
has trivial cohomology and H'(G, ky ) = 1. Since G is cyclic, we have H>(G, k¥ ) =1 and
H2+ (G k) = h(k:, ). H?(G, k). Since k7 is finite h(kf ) = 1, refer pgl09 [CF10]. This
implies H24H1(@, ky)=1
12U, -U—->U/U; =1

= HYG,U/U) S BYG, Uy — HY(G,U) — 1

By above exact sequences given a g-cocycle f € HY(G,U) we have ¢, (¢ — 1)-cochain
in f]qfl(G, U) and fi, g-cocycle in ]:Iq(G, Uy) such that f = d.g; + f1. Similarly we can
construct f, = .gn41 + fni1 wWhere f, is g-cocycle of ]:Iq(G, U,) and g,41 is (¢ — 1)-cochain
of ﬁq_l(G, U,). Now adding all f,, = 6.gp41 + fri1 we have f = 0(> ¢g;). The sum converges
since U,, = lgn U/U, and is a cochain. Since f is image of cochain we have f = 0. n

From the exact sequence 0 — Uy, — k* — Z — 0 we have the sequence
HY(G,Uy,) = HY(G, k) > H(G,Z) — H™ (G, Uy,)

the isomorphism of v follows from the above proposition.

Let I'y denote the Galois group of k%, then Ty = Gal(k,/k,). Since I, C k, we have
an inclusion Gal(l,./l,) — Gal(k,/k,). This inclusion I — T gives us the map Res :
Hz(rbl{;;vﬂ) - ﬁQ(Fhl:LT‘)

Proposition 5.2. inv; o Res = n.invy

BTy, k) —— (T, 12,)
inuy { {Z‘nvl
Q/Z —— Q/Z
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Proof. Let oy be the frobenius element of T'y. Let e be the ramification index and f = [l,. : k,.].
By is defined as Bi(x) = x(ox). For z € kX, v/(x) = evp(z). Hence we have the left most

commutative diagram. Gal(l,/k,) is a cyclic group of order f, hence we have o, = Uk The

third commutative diagram follows as

Bieres(x) = efy(res(x)) = ex(al) = ef (x(ow)) = nBi(x)

H*(Ty, k) R HA(T}, Z) o) Hom(Ty,, Q/Z) B Q/Z

lr@s Je.res le.res {n
. v . -1 15}
H>(Ty,1%) L H*(T'},Z) o Hom(T'y,Q/Z) . Q/Z

This proves the theorem. O

5.2 Fundamental Class of H%(G(l/k),[*)

Let x be an element of kernel of Res. Then from the previous proposition we have
inv(Res(x)) =0 < n.invg(z) = 0 < invg(z) = 1/n

Hence the kernel is generated by an element w;, € H?(Ty, k%,) such that invg(u i) = 1/n.

Since ker(res) ¢ H?(G, I*) we conclude that H?(G,I*) contains a cyclic group of order n.
In fact we can show that H*(G,[*) is generated by u;/;. First let us look at cyclic case.

Lemma 5.3. For a cyclic extension l/k of degree n, ]:.12(@, I*) is cyclic of order n.

Proof. Let U be an open subgroup of U; with trivial cohomology, refer pg134 [CF10].

1-U—-U—-U/)U—=1
From this we have h(U;) = h(U).h(U,;/U) = 1, refer pgl09 [CF10].
15U —=>1I"537Z -0

h(Z). (Ul) hZ) = [HO(G,Z)]/[ﬁl(G,Z)]. G = Z/nZ acts trivially on

This gives h(l*) =
= Z/nZ and HY(G,Z) = Hom(Z/nZ,Z) = 0. Hence h(Z) = n. Therefore

Z. H(G,Z)
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h(I*) = 1. Using the definition h(1*) = [H*(G,1*)]/[H'(G,1*)] and the fact that H'(G,1*) = 1
we have [H?(G,1*)] = n. O
We need the following lemma to go from cyclic case to a general case, refer pgl35 [CF10].

Lemma 5.4. Ugly lemma:Let p,q > 0 be integers. A be a G module. Assume

1. ﬁl(H, [*) = 0 for all subgroups H of G.

2. For H C K C G such that H is normal in K and K/H cyclic of prime order. Then
[H(H, A)J|[K - H]P.

Proposition 5.5. H%(G,1*) is cyclic of order n.
Proof. Take p =1, ¢ = 2 and A = [* in previous lemma. Hence [ﬁﬂ(G, *)] divides n. But

we have shown that H 2(G,1*) contains a cyclic group of order n. Hence H 2(G,1*) is cyclic
group generated by w;/; such that inv(u,) = 1/n. O

By definition Br(k) = MH 2(G,1*) where [ runs through finite Galois extensions. But
H2(G,I*) € HX (T}, k*,) hence Br(k) C H?(T), k*,). Thus we have proved

Theorem 5.6. Br(k) = H2(T, k*,)

5.3 Local Reciprocity Map

We use Tate’s theorem from pgll5 of [CF10] for the following theorem.
Theorem 5.7. The map HY(G,Z) — H™2(G,1*) given a — a.uy s an isomorphism.
Proof. For every subgroup H of G we have field k" over k in [ such that H = Gal(l/k).

We have H Y(H,I*) = 0 for all subgroups H. We have shown already shown H 2(H,1*) is
generated by u; - such that invy (v, ) =1/m, m = [l : k']. Observe that

invy (Resuy) = [k« klinvg () = [k < k]/n=1/m

Hence invy (u;,,7) = invy (u;7). The above arguement is true for all the Sylow subgroups
of G. Hence by applying Tate’s theorem we arrive at the result. O]
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In the case ¢ = —2 we have I:I*Q(G,Z) = H\(G,Z) = G* and ﬁO(G, I*) = k* /Nyl
Thus we have an isomorphism
0 : k*/Nl/kl* — Gab

This map which is the inverse of the above isomorphism is Local reciprocity map.
Let k" be a separable extension over & and [ be a finite extension k. Let G' = Gal(l/k) and
H = Gal(I/k"). With this notation we have

N -Ul/k’ N
HY(G,Z) —— H2(G,I*)

Jres {res
u /K

. a/k
HY(H,Z) —— HT™2(H,1*)

Consider o € HY(G,Z) then res(a.uyg) = res(a).res(uyy) = res(a).u,, refer pgl07 of
[CF10]. Since cup product is isomorphism. We can reverse the isomorphism and taking
q = —2 we have

01k
E* /Nyl —— Gal(l/k)®
Jmcl {r@s
01 K

KNy —e Gal(l/K )

The above restriction map is also known as Transfer.
Let G denote maximal abelian extension over k. Then G = liﬂGal(l/k)“b. Taking
inverse limits

0
ke e
J incl { transfer
1% Qk,
k Gk' ab

Similarly from
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N -Ul/k? N
HY(G,Z) —— H2(G,I*)

cores [ cores l

N Uy /C/ N
H‘I(H,Z) _— Hq+2(H, l*)

we have

ekf
k/* Gk/ ab
J Ny /k incl
O,
k* Gkab

From the sequence 0 - Z — Q — Q/Z — 0 we have

HY(G,Q) — H'(G,Q/Z) — H*(G,Z) — H*(G,Q)
Since Q has trivial cohomology the connection homomorphism § : HY(G,Q/Z) — H*(G,Z)
is an isomorphism. H'(G,Q/Z) = Hom(G,Q/Z) and let x € Hom(G,Q/Z). Let a € k*
and it’s image in H°(G,[*) be denoted by a. a.6(x) € H*(G,1*)

Lemma 5.8. With the above notation x(6(a)) = invg(a.o(x))

We can explicitly derive in the unramified case.
Proposition 5.9. Let [/k be an unramified extension and o be the generator of Gal(l/k).

If vy, is the normalized valuation of k then 6(a) = o+,

Proof. Let a = Ny (b) for some b € I*. vy(Nypb) = fui(b), since vy, is unramified we have
f = n. Hence %@ = g™ = 1 gince o is generator of group of order n. Therefore
0(a) = 0¥+ is well defined. By the previous lemma x(6(a)) = invi(a.0(x)). Drop the k in
v, we have

invg(a.0(x)) =y o d ' ow(@.d(x)) =6 (v(@)d(x)) = v(a)y(x)

This is true for all y, hence 6(a) = o*(@. O
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5.4 Characterization of Reciprocity Map

Let [ be an abelian extension of k containing k,,.. Let k., denote the fixed field of o, the
frobenius element of G(ky,./k). Then k, and k,,. are linearly disjoint(k,, Nk, = k) and
l=ky Q ky.

Lemma 5.10. f: k* — G(I/k) be an homomorphism such that

1. f(2)k,, =o'™
2. For any uniformizer, m, f(m) is identity on k,
Proof. 0, and f coincide on ky,. 6;/x(w) is identity on k,,, for any uniformizer w. Therefore

f and 6/, coincide on k;. Every a € k* can be written as w.7" for some uniformizer w.
Hence f(z) = 6;/x(x). O

We can replace the second condition with
If a € Ny, m* for some finite extension m over k in [ then f(a) is trivial on m. Assume f
satisfies the above statement. Let k' be a finite extension in k,. Since 6;;(7)(z) = 1 for all
r €k Cky Hence 0y . (m) = 1, this implies 7 € Nk//kk:/*. Hence f(r) is trivial on k.
Note: We use these criterion to prove that a map is reciprocity map.

5.5 Formal Groups

A formal group law(F'(z,y)) is a power series in variables over a ring o satisfying the
conditions

1. F(x,F(y,z2)) = F(F(z,y), 2)
2. F(0,y) =y and F(z,0) =z

3. F(x,y) = F(y,z)

If x,y € p then F(z,y) € p, this makes p group under the binary operation x x y = F(x,y).
We denote this group by F,. Similarly for any finite extension {/k we have F(3).
§r be set of formal series f € o[[x]] satisfying

1. f(x) = mx(moddeg2)
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2. f(x) = x%(mod )
Proposition 5.11. Let f,g € § and ¢1(xy,....,x,,) be a linear form over xq, ..., x,, with
coefficients in 0. Then there exists a unique ¢ € o[[xy, .., Ty]] such that

1. ¢ = ¢1(moddeg?)

2. fop=¢o(gx..xXg)
Proof. We shall construct a sequence of ¢lm) = >, ¢ satistying the required conditions
(mod.deg.m +1). Also deg(¢,) > m. For m = 1, (1) = ¢, satisfies the required conditions.

Assume by induction we have ¢(™ = >"" ¢

o™ = ¢y (mod.deg.2), fod™ =p™ o (gx...xg)

We need to find ¢,,41 such that ¢+ := @™ 44, . satisfies the conditions (mod.deg(m-+2).
Say f o ¢™(z) = ¢ (g(x)) + Epnyi(mod.deg(m + 2)) where E,,., = 0(mod.deg(m + 1)).
We have chosen ¢,, 1 with degree greater than m+ 1 hence by f(x) = mz(moddeg2) we have

fod ™V () = f(¢"™ (2) + bmi1(2)) = f(O™) + Thmi1(mod.deg(m + 2))

and similarly
o (g(x)) = 0" (g(x)) + 7w 1)

= (fo ™™ = 6" Vo g)(z) = Byt + (1 = 7" )i

So we define ¢, 1 == E,,pq (7 — 7™~ By induction hypothesis F,, is unique, therefore

Gm+1 is unique. All left is to show that ¢,,11 € o[[X]].

1 — 7™ is a unit hence it is enough to show that F,,,1 = 0(mod 7). Since f = x(mod )

Emir = f(" D (2)) — 6" (g(2)) = (07D (2)) — ¢ (27) = 0(mod )

Using the above proposition the following corollaries follow

Corollary 5.12. 1. There exists a unique formal group law Fy € o[[x]] satisfying f(Fy(x,y)) =

Fy(f(x), ()

2. For any a € o there exists a unique [af, € o[[z]] satisfying
(a) folalsy=lalsgoy
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(b) [a]; = azx(mod.deg.2)
This [a] 14 is an homomorphism of Fy, to Fy .

5. For any unit u € o [u]y,y is an 1somorphism between Fy, and Fy(p)

Proof. 1. Take ¢1[z,y] = x +y and g = f, then by above proposition we have a unique
Fylz, y] satistying satistying f(Fr(x,y)) = Fr(f(x), f(y)). To prove the properties of a
formal group for example F'(z,y) = F(y,x) take ¢1(z,y) = v +y. Both Fy(z,y) and
Fy(y, x) satisfy the conditions of the above proposition. So by uniqueness Fy(z,y) =
Fy¢(y, x). Similarly we can prove the rest of the properties.

2. Take ¢ (x) = ax in the proposition. To show that [a], : Fy, — Fy, one needs to show

Fy(lalyg(2), lalre(y)) = lal o Fy(2,y)

Take ¢1(x,y) = ax + ay, both LHS and RHS above satisfy the criterion of the propo-
sition hence by uniqueness they are equal.

Fy— F;y — F,

v = [ulpg(2) = [u g 0 [u]p4(2)
For the group of endomorphisms on F, [1],, acts as an identity. It can be seen that
[u™t], 50 ulsry, =[1],, by using the uniqueness property of the proposition.

]

5.6 Reciprocity map and Existence Theorem

Denote [a]y s as [a];. Let m denote the maximal ideal in separable closure of k. My = Fy_,
we define 0o— module structure on My by defining a.x = [a](x).

Ep={x € M;: [x"];(x) =0 for somen}
and k, = k(Ey).
Lemma 5.13. As o-modules E¢ and k/o are isomorphic.
Proof. E} = {x € Ey: [1"|;s(x) = 0}. Define a o-module homomorphism
/{Z/O — Ef
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o a, a; € E}

T2 Ao, Qo € EJ%

choose ay such that m.ay = a; Since E} is divisible we can always choose an element like as.
Continuing with as,.. so on we define an isomorphism. n

Lemma 5.14. The map
G(kr/k) — Aut,(Ey)

g — O\E;

18 an isomorphism.

Proof. 1f o is identity on Ey then it is identity on K (E}), hence it is an injection. We prove
the surjectivity by showing that the order is same.

By 2 kjo = Aut(E;) = Aut(k/o)

Note that
0 = End,(k/o)

T = Py U(a) = ax
Hence Aut(k/o) = Uy.

Since by definition [7]; = m.z(mod.deg2) and f(x) = 7.x(mod.deg2) we can take [|; = f.
Since Fy are isomorphic, take f(z) = 7.z + 9. Define k7 = k(E}) and a € E} — E;}‘l.
ma=0= fof.of=f"a)=0. Take ¢(x) = f"(x)/f*Hz) = (f"*(x)) + 7. Note
that ¢(z) is Eisenstein polynomial of degree ¢"~'(¢ — 1) and all the roots lie in E} — E]’}’l.
This implies if we define k! = k(E7}) then |G(k}/k)| > ¢" (¢ — 1). We have already seen
that |U,/UP| = ¢"'(q — 1). We have G(k./k) = @G(kﬁ/k‘) and @Uk/Ug = Ug. This
prooves the surjectivity. 0

This shows kZ/k is an abelian extension. And also observe that since 7 is constant in
Eisenstein polynomial, 7 € Nyn /ik}™.

k*

Jj Jres

e Ok /b
Nig k™ —— G(k" k)
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From the above commutative diagram 6 (7) is identity on k7, since m € Nyn/pk2*. This
implies k, C (k®)<%(> " Hence k. and k,,. are disjoint, that is kr Nk, = k. Define
le = kup-For.

Let k;r denote completion of k,, and 0, denote its ring of integers. Let w be another
uniformizer of k.. Let g € §, and f € §,.

Proposition 5.15. There exists ¢ € 0., [[z]] with ¢(x) = nz(mod.deg.2) where n is a unit,
such that 0. = ¢ o [u]s and ¢ is an o-module isomorphism of My and M,.
Proof. The proof is similar to the proof of proposition5.11, where we use successive approx-
imations to construct ¢. 0
Lemma 5.16. ¢ in the above proposition is invertible.
Proof. Let ¢(x) = n.x + a;.x* + .... We need to find ¥(x) = by.x + by.z? + .... such that z =
na(z)+a;.p(z)*+.... Sowehave n.by =1 = by =0~ n.hy+a;.b3 = 0= by = (—a;.b?).
Inductively we can get all b;. O]
Lemma 5.17. [ is independent of uniformizer
Proof. Take o € kyp.kr, a = > ;.5; where «; € ky, and §; € ky. Say 5 € kr, 5=)_ci.e; =
S ci.¢(e;) for some e; € k,. Hence we have 3 € kypky = a € kypkiy C kyr k.

Take an o € kyykn C Ky ko, say F' = ky,.k,. Assume Jo € G(F/F) such that o(«) # a.

a=Ilima, a, € F

:>3TL, |a—an|<|a—0(a)|=|a—an—0(a—an)|§\a—an|

This gives us contradiction to assumption that a o choosen exists. This implies k..k, C
kyr.k,. Similarly we can show k,..k; D ky..k, prooving the lemma. O

Lemma 5.18. Define the map r, : k* — Gal(l;/k) by

1. rp(m) is 1 on ky and is o on ky,

2. ro(u) is [u™t] on ky and is 1 on ky,

rr s independent of the uniformizer.
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Proof. Let us see how 7,(w) and r,(w) act on k, = k(E,). Take X € E,

re(W)(A) = rx(mu)(A) = r=(m)(r2(u)(¢(1))), 1 € Ef

Since 7 () is identity on O and ¢ € O[[z]]

Since r.(m) is identity on k, and Frobenius on k., it is the reciprocity map.

Theorem 5.19 (Existence Theorem). For every open subroup M of finite index m in k*
there is a finite abelian extension l/k such that Nyjl* = M.

Proof. Since 1 € M, |v — 1| < ¢ C M implies U," C M for some n. M is of index m
implies 7™ € M. Say l,,,, = k.k,, where k,, is unramified extension of degree m. Consider
u.T® € by, u.T® € Ny, 7 & 0, ., (u.m) = 1.

0, (u.m") acts as [u™'] on k? and we know G(k?/k) = U, /U}'. Therefore [u™'] is identity
if and only if uw € U}. 0, (u.7®) acts as 0 where o is Frobenius element on k,,. Therefore
0, ., (u.m®) is identity on k,, if and only if a = 0(mod.m). Hence we have u.w* € U'.7™.
This implies N, [}, , C M. For case of convinience denote Ny, [, by NI*. We have
isomorphism

0, : k*/NU* — G(/k)

Let H = 6;(M). Let [ be abelian extension such that G(I'/k) = G®/H. This implies
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Chapter 6

Global Class Field Theory

6.1 Main Theorem

k denotes a finite extension of Q. [ a finite abelian extension of k£ with Galois group G
and order n. m,; denotes the set of all normalized valuations of k. v is used to denote a
normalized valuation of £ and w for [.

Let 0 € G, for a € I, |a|sy = |07 aly. 1, denote completion of [ with respect to w. Then
we have isomorphism o : [, — 4.

Lemma 6.1. Let v be restriction of w to k. l,/k, is a Galois extension with Galois group
gen by
Gw:{UEG:aw:w}

Proof. Observe that G,, C Gal(l,/k,). 0;, i € [r] be representative of G/G,,.
|G =7 |Gl < ko) <D [lui k] = |G
=1 wlv

From the isomorphism o : 1, — Iy, [lw : ky] is constant over w dividing v. Hence by the
above inequality we know that G acts transitively on the set of w dividing v and |G\,| = [l :
ko). m

Note that G, = 0G0~ t. If I/k is an abelian extension we use [, to denote [, since
Gy is same for all o. Throught this section S denotes(unless mentioned) the set of all
archimedean and ramified primes of k. We define the homomorphism

Fl/k:[S%G
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vV — 0y

where o, is the Frobenius element of unramified extension l,/k,. The aim of the Class Field
theory is to understand the finite abelian extensions of a Field. The main theorem can be
summarized into four points

1. Reciprocity Law. There exists a continous homomorphism 1/, : J; — G satisfying
the conditions

(a) Yiw(k”) =1
(b) k() = Fiyp((z)”) for all x € J;

2. Qﬂl/k(k’*Nl/kJL) = 1 and we have an iSOIIlOI‘phiSIIl 77Z)l/k : Ok/Nl/kCl — Gal(l/k:)

3. For abelian extensions m D | D k we have the following commutative diagram.

(0
Co/ Nk o —— . Gall(m /1)
7 res
(I

Here res takes an element in Gal(m/k) to it’s restriction on [. j is the natural surjective
map.

4. Existence Theorem. Given a subgroup N of finite index in C}, there exists a unique
abelian extension [/k such that N;/,C; = N

6.2 Cohomology of Ideles

Ay = A, ® [, action of o € G on A; can be seen as action of 1 ® o on Ay ®y, [.

Lemma 6.2. H"(G, J;) & [oeom, H7(Gy, 1,Y)

Proof. Let

Jis = H(H lw”) H(H Uw)

veES wlv vgS wlv

observe that J; = liﬂJl,S, S — M. Since U, has trivial cohomology,
S

H'(G, Js) =[2G ][ ")

ves wlv
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[T lw™ = Homegw(Z[G],1,,"), hence by Shapiro’s lemma we have H"(G, [Ty, = H (G, 1,%).
Taking S — 91, proves the lemma. ]

Consequence

1. HY(G, J) =
2. HX(G, ) = [ e, (Z/n.Z) where n, = [l, : k,]
Theorem 6.3 (First Inequality). If I/k is cyclic of degree n then [Jy/k* Ny Ji) > n
Proof. [h(G,Cy)] < [Cro/NyiCi] and Ji/k* Ny J; = Ci /Ny Cy. So it is enough to show that

[h(G, C))] = n. Choose S C 9 to be set of archimedean, unramified and primes generating
I;/l*. Then we have J, = [*J; g where S is restiction of S to k.

=J/l" = Jis/sN*

call JZ,S NI[* as ls. So we have h(Ol)h(lS) = h(Jl,S)

h(Js) =h( [ T%) < TTIqTU) =A%)

veS wlv vgS wlv veS wlv
H (I =TIMGo. 1) =]
veE wlv veS veES

V= {f S = ]R}. o€ G. (0.f)w:= f(o~ w). V is a vector space over R of dimension
|S’|. The set W = {f: f(s) c Z} spans V.

w=[z=1[]]2

weS’ veES wlv

= 1] fw)

wes’

0. [y Z C 1), Z. Hence by Shapiro’s lemma we have
H(GW)=][H(G.. 2)
vES

Here G, acts trivially on Z

= h(N) = [[IH°(G.,Z]/[H (G, Z)] = [ ] n

veS veS
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Now we construct another lattice that spans V' but with Herbrand quotient nh(lg). Define
v ls =V

a — fo, falw) = loglal,

by the proof of Dirichlet’s theorem we note that kernel of v is finite and image is lattice
spanning X = {f : Y, .o f(w) =0}. Hence, V = X ®R. Now the lattice U = img(y) ® Z
spans V.

h(U) = h(img).h(Z) = nh(ls)
Since W and U both span same vector space we have h(W) = h(U) refer pgl10 in [CF10]
nh(ls) = [[,es 7o = h(jis). This proves h(C;) = n O

Lemma 6.4. Let l/k be a cyclic extension of prime order n. Let k, = k[(,], (. is primitive
n' root of unity. Let k,, = lk,, if [Ck,, /[NCy, ] divides n so does [Cy,/NC]

Proof. The proof follows from the following diagram

Nyg
C > Cy > Cy/NiyCy 0
Con con Con
N kw7 '
Cl, - Ok, — O /N i, O, 0
Ny i N /1 Ny
N/k v \
C - Cy > Cr/NiyCi 0

Let [k, : k] = m. By definition of norm map if a € C, then a” € Ny, C;.
Nkn/k o OOTLkn/k : Ck/Nl/kCl — Ok/Nl/kOl

a—a™

Since (m,n) = 1 there exists k; and ky such that mk; + nky = 1. Hence the map
Ny, sk 0 Cony,, i s surjective, a* — a. Thus lemma follows from the fact the map N, k
Ckn/Nk;/kan; — Ci/NyiCy is surjective. O

Theorem 6.5. Let k contain n'* roots of unity for some prime n. 1 be an abelian extension
with Galois group, G = (Z/nZ)". Then [Cy/N;Cil|n".
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Proof. By Kummer theory (refer corollary on pg90 of [CF10]) [ = k[a}/ "o "] for some

a; € k. Let S be a finite subset of my, containing all the archimedean, ramified and unramified
primes that generate I, /k*. And also let S contain primes which divide n and primes such
that a;, € o} for all v ¢ S. Let Ug denote the set of S units, that is, a € Ug implies a € o for
allv € S. Let M = k[U;/n], by Dirichlet’s unit theorem Ug has finite basis. Let [M : k] = n®.
Let w be a prime of [, above a v ¢ S. M/k is unramified outside S hence Fj;/(w) makes
sense and it generates G, (M/l). Let G(M/l) be generated by Fi(w;), @ = 1,2..,t where
w; are unramified. T = {UZ} be the corresponding restrictions of w; to k. Claim is that
ly, = ko, for all i € [t]. Let v € {v;}, G,(M/k) is cyclic subgroup of (Z/nZ)*, implies
Gy(M/k) =Z/nZ or (0). My D ly D ky, Guw(M/l) = Fyy(w) is non trivial,

Guo(l/k) = Go(M/k)/Guw(M[1) = G(Lw/ky) = G(M, [ky)/G(lw/ky)

= Gy(l/k) = (0) = Gu(M/k) = Gu(M/k)

= by = ky and Fy(w) = Fyyp(v)

Claim: I""NUg = {a €eUs:a€ck]}Vve {UZ}} Ifael*™NUs, ac€o]foralve {U,}
a = b" for some b € [ and v,,(a) = 0 since o} = of. This implies b € o}, hence a € o} C k.
Now assume a € U,
=a="b",bek,

FMw/kval/n _ al/n

Fury ke = Fray 1, = a € 1", This proves the claim.

Define

v=][x">]]k>x 1] U

veS veT vgSUT

ay € ky, v € S, since k% /Nyjpl* = G, C Z/nZ" a}} € Nygl*. a, € ki, v € T, since 1, = k,,

a, € Nyl*. a, € U, for v unramified, a, € Nyl* since Ny Uy = Uy. Hence E C NyjiJ;. So
to prove the lemma it is enough to show [J;/k*E] divides n'.
Jk = k*Jk“g = k*Jk,SUT and
(k" Ji.sur /E*E|[k* N Jp sor/k™ N E] = [Jrsur/E]

Claim: [Jk,SUT/E]/[k* N JkyguT/k‘* N E] =n"

[Jrsur/E) = [ JIE"/E™]

vES

h(ky) = nflnly = [ky /K] /n
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Since |n|, = 1 for all v ¢ S we have
[Jr,sur/E] = Hn2/|n|v _n28H1/|n| =n* H 1/Inl, = n*
vES vES veEmMy,

By Dirichlet unit theorem the cardinality of basis for Ug is s. Thus we have [m : k] = n®,
[l : k] =n" and [m : l] = n' where s = r +t. By Kummer theory(pg91 [CF10]) we have
[Us Nm*™ : Us N k*"] = [Us; UZ] = n®. Replacing S by SUT we have [Usur; US| = n*t.
So it is enough to show k* N E = k% ;. This follows from the fact that kg — [],., Us/U,
refer pgl84 [CF10]. O

Now applying the ugly lemma and using previous two lemmas we have

Theorem 6.6. Ifl/k is Galois extension of degree n then

1. [HY(G,C)] and [H*(G,C))] divide n.
2. HY(G,C)) =

6.3 Reciprocity Map

Define
wﬁk II:#% xv

vEM,

where 1, is the local reciprocity map. Since v is unramified and z,, is unit for almost all v
the product is well defined. The continuity of the local map implies the continuity of the
product. If z € J7 then

Fr((x H Frok, (20) H Vo(@0) = Yr/i(z)

vgS vgS

So it remains to show that [[ ¢, (z) = 1 for all « € k. We prove this first in the cyclotomic
extension case, that is [ = k[(].

Lemma 6.7. If | = k[(] for some root of unity ¢, then [] ey, ¥u(a) =1 for all a € k.

Proof. (Niqr)y = I1,, Nk, /0,7 and locally we have seen that ¢,(Nk,/q,%) = ¥y(2). Hence

H Vu(a H% HNk,,/Q,,

vEM, v|p
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So it is enough to prove the lemma for a cyclotomic extension [ over Q

Let ¢ be m* root of unity and S be a finite set of primes of Q conatining the archimedean
and ramified primes. If (a,m) = 1 then (a)® = > wv,,(a)p; where p; /la. This implies
Fo((a)®)¢ = Cnp?ia = (. Let a € Q such that |a — 1|, < |m|, forallpe S. a =1+ mr
for some r € Z. (b,c) = 1 implies (b,m) =1 and (¢,m) = 1. Hence F,o((b)*)¢ = (" = (¢ =
Fo((©)%)¢. (a)¥ = (b)° — ()%, Fiyo((a)®)¢ = ¢Y¢ = (. Hence Fyg(a)® = 1. We found a €
such that for all @ € Q such that |a — 1|, <€, p € S, Fjg(a)® = 1. This property is called
admissibility. Using the above property we construct a continous ¢ : Jop — G(I/Q) such
that ¥(Q) = 1. Take = € Jy, by weak approximation theorem there exists (a,) € Q such
that a, — x," for all p € S.

Y(z) = lim Fy (a,z)®

Well definedness follows from admissibility. If a,/a,, — 1

Fiyo(an)® /Fyp(amn®)® = Folan/an)®

by admissibility we have Fg(an/an)® — 1. Taking a, = a~! we have ¢(a) = 1 for all
a € Q.

Homomorphism property of F} /g implies that ¢ defined is a homomorphism. ¥, (x) = ¥((z),)
where ((2),)p; = 0pp;- All is left to show is that 1, are indeed the local reciprocity maps.
From the commutative diagram whose proof will be given in next section

Y o
e Gal(L' /K"
Nk’/k res
ULk
Jk — Gal(L/k)

we can take [ to be the maximal cyclotomic extension. We have ¢, : [, — G(I,/Q,). Since
unramified extensions are cyclotomic, Q7" C I,. ¥,(a)g, = F*** where F is frobenious
element of Q)". This follows from definition. For any finite extension m over Q,, Py(a)
leaves m fixed. From the lemma in characterization of reciprocity map section, these three
properties show that v, is a local reciprocity map. This proves the lemma. O

Theorem 6.8. If a € Br(k) then ) inv,(a) =0

Proof. We will first prove this in the case where a € H 2(G,1*) for some cyclic cylotomic
extension (.

Consider a € k* and let @ be its image in H°(G,I*). If 6, € H*(G,Z) then a.0, €
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H2(G,I*) € Br(k). let a be image of a in H°(G, J;), then we have

inv(a.by) = Z invy(a.0y)

v

The map [* — J; — Y induces
HXG,I") & BX(G, 1) ™ (G, 1)
by definition inv,(a.dy) = inv,(j.res(a.dy)) = inv,(a.dy,) = xo(¥u(a))
X(@Z)l/k(a)) = X(H Yu(a)) = va(%(a)) = Zinvv(&‘éx)

Since we proved reciprocity law for cyclotomic extension, we have x(¢y/x(a)) = 0, implies
>, invy(a.6y) = 0. This proves the lemma for cyclotomic case.

To prove the general case we show that every a € Br(k) comes from a cyclic cyclotomic
extension. For a Galois extension [/k we have the exact sequence

0 — H%(G, 1) 2% Br(k) % Br())

From the above exact sequence we have res;/;(a) = 0 if and only if a € Br(k) comes from a
H?(G,1*). let w be a prime of | whose restriction to k is v. locally we know

invy(resyg(a)) = [ly : ky]invy(a)

Therefore res;/;(a) = 0 if and only if [I,, : ky]inv,(a) = 0 for all w over v. So we need to find
a cyclic cyclotomic extension {/k such that [l : k,)inv,(a) = 0 for every v. But inv,(a) =0
for almost all v, hence we boil down to proving the lemma

Lemma 6.9. Given a finite set of primes S C My, and a positive integer z. There exists a
cyclic cyclotomic extension | over k such that [, : k,| is divisible by z at non archimedean
places and by 2 at archimedean places.

Proof. t be a positive integer and p an odd prime. let m = Q((,t), then G(m/k) = Z/(p —
DZ @ Z/p 7. let m" be field with Galois group Z/p'~'Z

m:m]=p—1

:[mq:m;]gp—l
for a prime ¢. Hence we have [m,; Q,] — oo as t — oo.

Now for p = 2, take m = Q((x). If ¢ is a primitive element then Q(¢ — ¢~!) forms a
cyclic group of order 272, Since i € Q(¢ — ¢71), Q(¢ — ¢71) is complex. Hence the local
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degrees are divisible by 2. So given z = [[p!" the required [ would be the compositum of
required fields generated above. 0

[]

By the above theorem we have x(¢y/,(a)) = 0 for all characters x hence 1;/x(a) = 1.
This proves the reciprocity law.

Lemma 6.10. For abelian extension l/k and ' [k we have

wl'/k' .,
Iy - Gal(l' k')
Nk’/k res
(I
Ji — Gal(l/k)

Proof. let S" denote the finite set of primes consisting ramified and archimedean primes.

s b Fipe Gal(l' /K
Jkl . [kl a (l/ )
JNk//,c {Nk//k Jres
' Fii
2 s Gaagk

let S denote the restriction of these primes to [. Fix a prime v of k£ not in S. let o € J}f,,
such that a,, =1 for all w fv.

Nk’/k(j(a)) = Nk'/k(z w(aw)w) = Zw(aw)Nk’/k(w) = Zw(@w)fwv

wlv wlv wlv

Nk’/k(&>v = Hw|v Nkiu/kvaw Hence
Ny @) = D L3 (Nyg i, 0m) = D 0(Nyg g 00)v = D (o) fuw
wlv wlv wlv

This proves the left rectangle. let o, denote the Frobenius element for the unramified
extension [, /k,.
E/ka’/kw = E/kfwv = (Uv)fw

res(Fy pow) = res(oy,) = ofv
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This proves the second rectangle. But v (z) = Fl/k(x)s for all x € J. Hence Fikoj = Vi,
thus we have shown

S’ 77Z)l//k/ ’ /
g Gal(l' /k')
Ny i res
(e
JS — Gal(l/k)
The lemma follows from the fact that k*.J7 is dense in Jj. []

Substituting k£ and " by ! we have Yu(Niywdi) = 1, hence ¢y (k*NyJ;) = 1. Since
Cr/NiyiCy = Ji/k* Ny J; we can define the map

Yy 2 Cr/NiCr — Gal(l/k)

Using the cohomology inequalities we now show that this is indeed an isomorphism.
Surjectivity: We note two lemmas of the first inequality

Lemma 6.11. If D is a subgroup of Jy satisfying (a)D C NyJ; and (b)k*D is dense in Jj,
then | =k

Proof. Consider a cyclic field extension M over % in [. From local theory Ny, /x, M,," are
open sets of k, and contain U, for all v unramified. This implies Ny /,Jas is open so closed
in Ji. Hence k* Ny Jar is closed in Jy. D C Ny Ji, C NagiJu, from hypothesis we have
K*NuryxJu dense Jy,. Hence is entire Jj, and from first inequality M = k, implying [ = k. [

Lemma 6.12. let S be finite set of primes in My, containing the archimedean and ramified
primes. For a finite abelian extension l/k the map Fy, : I — Gal(l/k) is surjective.

Proof. let H be subgroup of G generated by F} v for all v ¢ S and M = [, For v unramified
since Gal(M/k) = G/H Fypv(x) = x for all x € M. Hence M,, = k, for all v ¢ S, this
implies from local theory k, = Ny, /kyM,. let D = J.° D c NuyiJy and from weak
approximation theorem D*.J? is dense in J;. From above consequence we conclude M = k
hence H = G. Since ¢y (x) = Fy((2)®) for all z € J; we have 1, surjective. O

Injectivity follows from the second inequality. H %G, C)) = Cy/Nyi,Cy divides |1 : k] hence
if [HY(G,C))] < [1 : k] we have [H*(G, Cy)] = [l : k]. And injectivity follows from surjectivity.

In this section we prove the diagram
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(LY

7 res
Yk
Ck/Nl/kCl Gal(l/k)

J in the above diagram is the natural injection obtained by observing that Ny /,Cyr C Ny C.
Consider fields I' D [ and k" D k such that I/k and I /k" are finite abelian extensions.

Now in the commuatative diagram proved in the last subsection put I’ = M and k' = k.
We can replace Jy, by Cj since (k*) = 1. Taking kernel will preserves the commutativity.
Thus the diagram follows. From this commuatative diagram we can pass to inverse limit to
get homomorphism

Ui 2 O — Im G(I/k) = G(k* /k)

where [ runs through finite abelian extensions and k% is maximal abelian extension. Thus
we have

Gk /k) 2= lim(Cy/Nyyil*)

Thus if we prove existence theorem we will have

G /) 2 jm(Ci /)
where N runs though open subgroups of finite index of C.

Throught this section H denotes an open subgroup of Cj, of finite index n. Call H normic
if and only if there exists an abelian extension L/k so that H = Ny ,,Cr,. Observe two points

1. If H is normic and is contained in H; then H; is normic. Let H = Ny /,Cr, we have the
isomorphism ¥y, : Cx/H — G. Say ¢y x(H1) = Gy, this gives a map e, 1 Cp —
G /Gy with kernel Hy = Np_, 1Cr_, .

2. Similarly we can also show that if Hy, Hy are normic so is H; N Hs.

Lemma 6.13. Let n be a prime and k a field not of characteristic n and containing the n*"
roots of unity. Then H is normic.

Proof. Let H' be inverge image of H in Jj,. Since H' is open for some finite set S, [Toeslx
vas U, C H. H is of index n, so Ji C H'. Since H' is a group we have [Les K" %
vas U, C H'. By the proof of second inequality there exists an abelian extension { such
that k*Nl/k]l = k* HUGS k" x vas Uv = k*U, say. Thus Nl/kCl = Uk*/k* C Hl/k* = H,

Since H contains a norm group, itself is a norm group. ]
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Lemma 6.14. If L/k is cyclic and NL_/lk(H) is normic in L then H is normic.

We use induction on index for proof of existence theorem. Let [C} : H] = n and p be a
prime dividing n. If n = 1 then k itself suffices as the abelian extension. Let k1 = k[(,)]
and H; = Nk_ll/kH, then by above lemma it is enough to show H; is normic. N,/ :
Chry /Ny wHy — Cy/H is injective hence [Cy, : Hy] divides [Cy, : H]. [Cy, : Hi] = n otherwise

by induction hypothesis H; is normic.

Choose Hs such that H C Hy and [Cy, : Ha] = p. Hs is normic since it is of prime index.
Say Hy = Ny, ;;m*, m is a cyclic extension. Hs = N;}lel. Npjiy + O/ Hs — Cy, JH,y is
injection with image Hy/H;. Hence [C,,/H3] < [Cy,/Hi] = n, by induction hypothesis Hj
is normic. Applying previous lemma H; is normic. This implies H is normic. This proves
the existence theorem.
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Chapter 7

Conclusion

For a local field k, we have seen that for every finite extension [/k there exists a subgroup
N of k* such that we have an isomorphism

Oy k* /N — Gal(l/k)™
This N is equal to NVy/l*.

For a number field k£ we have seen that for every finite abelian extension I/k we have
isomorphism

Yy + Cr/ NiywCr — Gal(l/k)

For a number field k£ we have constructed the map
Vi s Cp = Im G(I/k) =2 G(k™ /k)

Existence theorem gives us correspondence between norm subgroups of finite index in Cj
and finite abelian extensions. Thus we have

G(k**/k) 2 lim(Cy,/N)

where N runs though open subgroups of finite index of C}.
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