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Abstract

As quantum metrology advanced, it has achieved better sensitivity scaling in estimation of
various parameters of different quantum mechanical systems. Interferometry is the most
suitable method to perform measurements and implement the parameter estimation
theories. We obtain interesting results when we merge the field of ultra-cold matter and
quantum metrology. Here, numerical simulations of using a two-mode Bose Einstein
condensate for performing Ramsay interferometry is presented. It is observed to attain the
sensitivity scaling better than Heisenberg limit.
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Chapter 1

Introduction

The physics of information and computing has been an acknowledged field since several

decades. Information is an entity which can be encoded/concealed in the state of a system

whereas computation is supposedly performed on a physical device. This would sum up

to the fact that information and computing is the study of elementary physical processes.

Before the advent of quantum mechanics into the world of physics, the transmission, storage

and the processing of information was predominantly done using classical ’bits’. Since the

laws of nature vary widely from atomic scale to our everyday object scale, it became essen-

tial to introduce theory which would best describe the observed phenomenon at microscopic

scales. This need allowed the gradual growth of quantum mechanics. Although, this ideol-

ogy sounded bizarre in the beginning, it did answer some serious observations such as the

photoelectric effect and black-body radiation.

In an attempt to generalize the classical information theory to the microscopic world,

quantum mechanics played a predominant role which lead to the emergence of quantum

information theory where the data processing occurs in a quantum bit or a ’qubit’. There was

a wild growth in this field when Peter Shor proved that the large numbers could be factorized

using a quantum computer. There are lot of subtopics which study the physical properties

of the information. Few include quantum cryptography, quantum error correction, quantum

metrology and measurements and many more. My initial focus in this thesis will be majorly

on the chronology of how quantum metrology came into picture along with describing the

general procedure of measurements and interferometry while the latter part would consist
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of the theoretical simulations of using Bose Einstein condensates from a metrological point

of view.

Metrology by definition is the science performing a measurement. The term metrology

originates from the greek word ’metron’ and ’logos’ which signifies ’the study of measure-

ment’.The result may or may not be ambiguous/uncertain, but the sole art of making a

measurement is the fundamental aspect of quantum information science. In other words,

metrology means the art of formulating new strategies which allows us to extract the precise

estimate of the parameter which is supposed to be measured. Estimation methods can be

classified into two theories, one is global and the other is local theory. The global method

lets us know the parameter needed to some precision without any initial knowledge about it

while local theory helps when there is information about the interval where the parameter

lies. It further enhances the achieved precision/accuracy. In these estimation theories the

statistical quantity which determines the accuracy of the measurement is the variance of the

estimator. We know from probability theory that cramer rao inequality lower bounds the

variance of an estimator with the inverse of fisher information (described later). This fisher

information contains the amount of information about the parameter in terms of probability

distribution function. This rule can also be applied when we have to estimate multiple pa-

rameters at the same time. Although there may arise a problem due to non-commutativity

of quantum measurements. The estimators corresponding to the lower bound are considered

to be the most efficient ones. In comparison to this estimator, one can compare the output

of the performed measurement check how much of error has occurred.

Formerly, these estimation theories were applied on classical or semi-classical systems. For

example mechanical systems or optical systems described by classical wave optics. Usually,

a typical estimation theory consists of 3 steps, probe preparation, interaction and then

the probe readout. The kind of probe states we use lets us know how much amount of

information about the parameter is encoded in the probe and helps in determining the

precision of the measurement. The statistical errors can be minimized by repeating the

interactions between the probe and the system independently for different measurements.

The best scaling achieved for classical systems is termed as standard quantum limit (SQL)

where the error scales as N−
1
2 . Here N corresponds to the size of the probe which can be

number of particles or modes of energy.

Eventually, when the quantum many body system problems were solved, these estimation
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theories were applied on quantum mechanical systems. When the quantum systems chosen

follow non-classical correlations, the precision obtained in called Heisenberg limit. This

scales as N−1. This enhanced scaling implies a better precision estimation in comparison to

the classical systems which is the main reason why quantum metrology was well accepted.

The fundamental limit can be obtained because of these precise estimations and they play

an important role in gravitational field sensing using laser interferometry, precise time mea-

surements in atomic clocks. It is observed that this Heisenberg limit could be achieved only

for noiseless quantum systems. Although quantum error correction is a technique used to

increase the precision where the system under consideration is shielded from noise.

Fundamental tasks of quantum metrology come under parameter estimation theory. The

main objective is to be able to choose the best measurement scheme and then extract maxi-

mum possible information from the data retrieved. Usually, the second part of the objective

is classical in nature. The experimental results can be looked at as outcomes of a classi-

cal random variable. As mentioned above, the fisher information can be maximized in the

quantum setting of the experiment and quantum fisher information can be obtained. This

will be the quantum version of the cramer rao bound rule (Quantum Cramer Rao rule). It

is recognized that when quantum effects such as entanglement and squeezing are used in the

quantum systems, there is a notable precision enhancement which occurs with respect to

any classical system.

3



Chapter 2

General Procedure of Measurements

As mentioned above, the most general way of performing a measurement consists of 3 steps.

Firstly, the probe is prepared in the required state and it should be let to evolve in time. This

evolution is directly or indirectly dependent on the parameter to be estimated. Information

about this parameter is extracted when the final measurement of the probe is performed.

We choose a suitable observable Ô which is dependent on the parameter, and operate it on

the final state. Then we will get the expectation value of Ô as a function of the parameter.

As per the error propagation formula:

∆θ =
∆Ô∣∣∂〈Ô〉/∂θ∣∣ (2.1)

where ∆θ is the error in measurement. ∆Ô is the variance in the Observable which is

dependent on θ and the denominator corresponds to the change of expectation value of the

observable with respect to the parameter θ. The standard deviation is given by

∆Ô =

√
〈Ô2〉 − 〈Ô〉2 (2.2)

We see that the standard deviation of the parameter is dependent on itself. It is also

described by POVM (Positive operator valued measure). The Positive operators Ex are

the POVM elements associated with the measurement, and the set of all the {Ex}’s is

a POVM. This set can be discrete or continuous or both. In POVM, the measurement
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outcome is arbitrary. We are interested in knowing the probabilities of different outcomes.

Projective Measurements are an example of POVM and these projective measurements are

the special cases of general measurement where the operators are Hermitian and orthogonal

projectors. They are known to give mathematical convenience and extra insight into quantum

measurements. This whole Quantum Parameter estimation protocol can be understood as

quantum network acting on a set of quantum systems. The probability distribution function

of the output is given by Born Rule:

p(x|θ) = Tr[Exρ(θ)] (2.3)

where p(x|θ) is the probability distribution function of the parameter θ.

As mentioned above the fisher information is dependent on the probability distribution

function and that the maximum information about the parameter can be extracted from it.

It is written as

F (θ) =

∫
dxp(x|θ)

(
∂ ln[p(x|θ)]

∂θ

)2

(2.4)

In words, we can say that fisher information is the change of the probability distribution

function with respect to the parameter i.e, for a little change in parameter there must be

a considerable change in the observable which we have assumed to be dependent on the

parameter. We can relate it to the understanding that the quantum system should be highly

sensitive to the minor changes in the parameter. High response can be linked to how fast

the system traverses in the Hilbert space.

2.0.1 Quantum Cramer Rao Rule

This rule sets a lower bound to the variance of the estimators in terms of Fisher Informa-

tion. If we find an estimator that achieves this bound, then we have found the Minimum

Variance Unbiased Estimator which is considered as the most efficient one. Although it is

not guaranteed that MVUE does exist. This rule states that
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V ar(θ) =
1

−E
(
∂ ln[p(x|θ)]

∂θ

)2 (2.5)

The fisher information is never a negative quantity and can be added for independent

observations made. It is a function on conditional probability of getting the value x when

the parameter has the value θ. However this rule can be applied to measurements done on

more than one parameter. When we have multi parameter estimation being done, there is a

chance of not saturating the cramer rao bound because of non-commutativity of the quantum

measurements. Few examples where multi parameter measurement is done is imaging of

electric, magnetic or gravitational fields in 3 or more than 3 dimensions.

2.0.2 Quantum Fisher Information

The fundamental limits the precision can achieve can be known from this term. This term

not only stores information about the estimated parameter, but also measures the sensi-

tivity a quantum system can provide, for example for performing phase sensitive tasks in

interferometry. Is is an extension of Classical Fisher Information. Surely, when entangled

systems are considered the information obtained is beyond that of classical limit. But this

does not occur for all entangled quantum systems. This may be because of the interaction

between the quantum system and its surroundings which would lead to noise in the system.

The effect the entanglement can be observed in the interaction terms of the hamiltonian.

The maximization of the quantum fisher information with respect to it the parameter under

consideration is done in the Quantum Cramer Rao rule. This whole theoretical structure

of of optimizing the sensitivity has had major impact in detecting the gravitational wave at

LIGO.

As I have mentioned before the linkage between quantum fisher information and sensi-

tivity, it can be better understood using the terms Bures metric. This metric signifies the

statistical distance between the initial density matrix and the final state’s density matrix.

Sudden changes in parameter can be reflected as infinitesimal change in the distance. The

quantum fisher information symbolizes the speed at which the initial state transforms into an

orthogonal state. It can be said that large fisher information implies high sensitivity of the

system, high speeds of evolution and high multi-particle entanglement. One advantageous
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aspect of quantum fisher information is that, we don’t necessarily have to know the process

of the measurement. The knowledge of the initial and final state of the probe is sufficient to

deduce the fisher information. Quantum fisher information in terms of initial and final state

is expressed as

FQ(θ) = 4
[
〈ψ′(θ)|ψ′(θ)〉 − | 〈ψ′(θ)|ψ(θ)〉 |2

]
(2.6)

Fisher information in terms of probability distribution function of the out come is given

by

FQ(θ) =

∫
dxp(x|θ)

(
∂ ln[p(x|θ)]

∂θ

)2

(2.7)
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Chapter 3

Multi-parameter Quantum Metrology

In all the metrological experiments, we try to optimize the quantum fisher information of

the parameter under consideration. This in principle is done by saturating the quantum

Cramer Rao bound. This bound can always be saturated if we are estimating a single

parameter in the proposed experiment. There happen to be cases where one has to estimate

the value of multiple variables. We try to get the best values of all the needed parameters

with minimal uncertainties and errors. But the challenge arises when all these parameters

have to saturate the quantum Cramer Rao bound simultaneously. This may not happen in

all the cases because the quantum measurements corresponding to every parameter may or

may not commute with each other. When this non-commutivity exists, one cannot saturate

the quantum Cramer Rao bound. This aspect of quantum metrology is of interest because,

it is observed that one obtains better precision results when these parameters are estimated

simultaneously rather than the individual estimation of parameters. Also the fact that high

precision multi-parameter quantum metrology has wide applications in fields like detection

of gravitational waves, non-commutative geometry, imaging of fields, spectroscopy, quantum

technology etc is responsible for the development in this field.

For a successful estimation of multiple parameters there should exist a state of the quan-

tum system which would give the maximum sensitivity of all the parameters and a particular

method which would be responsible for the non-commutativity of the individual paramet-

ric measurements i.e need for independent parameters. When these needs of the quantum

system and their parameters are met, one would obtain a precision equivalent or perhaps
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greater than the precision obtained by individual parameter estimation process. There were

multiple estimation processed done using parameters such as one unitary parameter and

the other noise parameter, say decoherence or estimation difference noise parameters in the

same quantum system itself. This would be an efficient way or minimizing the noise in the

system. Usually when we are focusing on one single parameter, we tend to build up the

estimation process from the perspective of this parameter. This may lead to blowing up

of the uncertainty of the other parameters under consideration. I find this mutual effect of

having control on the parameters uncertainties analogous to Heisenberg uncertainty princi-

ple where greater precision in position would signify greater uncertainty in momentum. We

can also relate it to spin squeezing in any of the two components. Therefore to avoid this

unnecessary shooting up of uncertainty which is completely against the fundamental motive,

we give specific weights to different parameters of interest and then device a protocol based

on this assumption.
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Chapter 4

Metrology using Interferometry

Interferometry is the most appropriate method used for performing measurements. It uses

the phenomenon of interference of waves with same frequency. The one’s in phase inter-

fere constructively and the ones out of phase interfere destructively. Small changes in the

differences in the optical path can be detected when two waves are made to interfere. In

order to generate an interference pattern of high precision, with distinctive fringes, we need a

stable wavelength source: Laser. Typically, an interferometric procedure has an input beam

which splits into two separate beams after hitting a beam splitter. These beams attain phase

change while they are exposed to external environment and recombine using another beam

splitter. The fringe pattern obtained can be used to make a measurement. This superim-

position of beams to generate an interference pattern is the common principle used in any

kind of interferometer.

As per theoretical and experimental observations, different initial states gave various

metrological bounds for the parameters under measurements. Quantum entangled/squeezed

states gave the Heisenberg limit whereas the classical states mostly reached the standard

quantum limit. In interferometric experiments using optical states, the parameter estimated

is usually the phase difference in the fringes. Mach-Zehnder interferometer is commonly used

for phase measurements. While using cold atomic ensembles, parameter under estimation

is coupling constant, phase shift between the modes and few other parameters (for Bose

Einstein condensates). For interferometry with atomic matter, Ramsay interferometer is

broadly used.
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Interferometry using quantum states can be classified into single particle and multi par-

ticle states. With single particle states, this kind of measurement can give us insight into the

degrees of freedom of the single particle used by comparing it to a simultaneous evolution of

an ancillary system. Multi particle states are the systems where we can introduce quantum

phenomenon such as entanglement or squeezing. This is how we know that the Heisenberg

limit is the new limit set on metrological terms and we now need to know if there are any

more effective systems which can result in a better precision oriented results. Theoretical

claims say that this limit is broken by using ’two mode Bose Einstein condensate’ in Ramsay

interferometry. The second part of this thesis consists of how the Heisenberg limit is broken

and better error scaling is obtained.

4.0.1 Single Particle States

For the sake of elaborate understanding of interferometry using single particle states, I

describe how the relative phase difference follows the standard quantum limit in two different

set ups. One is Mach-Zehnder interferometer and other is Ramsay interferometer.

Mach-Zehnder Interferometry

This interferometer was devised about a hundred years back and is still very commonly

used for optical experiments and is named after Ludwig Mach and Ludwig Zehnder. It

was devised in order to examine the wave-particle dual nature. This setup demonstrates

interferometry by a simple mechanism. Because of the diffraction of the light waves, there is

an interference pattern seen on the detector. The initial light beam is split into two modes by

a beam splitter and then is recombined by a second beam splitter after certain interaction

with external surroundings. During this exposure, two modes have had passed through

different spatial paths and have attained phase difference. These two modes recombine

either constructively or destructively at the detector/screen. From the resultant interference

pattern, we can get the phase difference between the two modes. The reflection and partial

transmission of the light waves at the beam splitters is responsible for change in phase. The

phase shift dynamics are modelled by Fresnel equations in terms of how the wave behaves

when it experiences spatial change in refractive index.
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Figure 4.1: Mach-Zehnder Interferometer

Conventional schematic diagram of a Mach-Zehnder interferometer is given above.

Say, initially the state of the incident atom is |a〉. When it is passes through the first

beam splitter |a〉 is split into a linear combination of two modes which can be written as

|Ψin〉 =
1√
2

(|a〉+ |b〉) (4.1)

As mentioned above, the effect of the reflections and transmissions at the beam splitters

can be expressed mathematically. Hence, the transformation matrix associated with the

beam splitter is given by:

T̂ =
1√
2

[
1 1

1 −1

]
(4.2)

This transformation matrix acts on Ψin. After the accumulation of relative phase due to

the external surroundings the state becomes

Ψout =
1√
2

(|a〉+ exp(iϕ) |b〉) (4.3)
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where ϕ is the relative phase difference. The two modes merge subsequently and the

state is converted into a final state given by

|Ψout〉 = T̂Ψout =
1√
2

[(1 + exp iϕ) |a〉+ (1− exp iϕ) |b〉] (4.4)

The above state implies that the atom being in |a〉 or |b〉 mode is probabilistic in nature.

The probability of it being in either state is given by

p(a|ϕ) = cos2(ϕ/2) (4.5)

p(b|ϕ) = sin2(ϕ/2) (4.6)

As we know the conditional probability of the outcome in terms of quantum fisher infor-

mation (2.7). It can be applied here and is expressed as

F (ϕ) =
1

p(a|ϕ)

[
∂p(a|ϕ)

∂ϕ

]2

+
1

p(b|ϕ)

[
∂p(b|ϕ)

∂ϕ

]2

,

= sin2(ϕ) + cos2(ϕ) = 1

(4.7)

Using Cramer Rao inequality, we can deduce the variance of the relative phase difference

since we know the quantum fisher information. If this measurement is performed N times,

the minimum uncertainty achieved is the standard quantum limit which is given by

δϕ =
1√

NF (ϕ)
=

1√
N

(4.8)

Ramsey Interferometry

This interferometry was developed in order to study internal properties of an atom like the

transition frequencies. The basic difference between Ramsey and Mach Zehnder interferom-
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etry is that here the two beam splitters are replaced by π/2 pulses. These beam splitters

are spatially or temporally separated which when acts on the atom, helps in acquiring of

relative phase between the energy levels. We can control the time difference as to when

the π/2 pulses are applied on the atom and it would reflect in the fringe pattern obtained.

It is observed that if this time separation is maximum, highest sensitivity measurement is

obtained. This technique is majorly used in atomic clocks where RF field is stabilized to

obtain high precision measurement. To get a better visual of how beam splitters act on

the two level atom, it is comfortable to view in a Bloch sphere. The first π/2 pulse would

act on the atom prepared in ground state, rotates it by π/2 angle about the y-axis. The

free evolution before the second pulse, would correspond to rotation by an $ around z-axis.

Final pulse would rotate it by π/2 around y-axis. The angle between the final state we have

arrived at and z-axis is $. If the atom is coupled to the external field, we can compare

the atomic transition frequency to the frequency of the field. Here the Ramsey fringes are

formed when the atom oscillates between the excited and ground state with respect to the

time difference of when the first and second pulse is applied. Although the initial state is

prepared in ground state, energies chosen for the ground and excited state is given by −w/2
and +w/2 . When the first pulse is applied the state becomes

|ϕin〉 =
1√
2

(|↓〉+ |↑〉) (4.9)

where |↓〉 is the ground state and |↑〉 is the excited state. Then comes the free evolution

of the states, hence the accumulation of the relative phase, which makes the state

|ψout〉 =
1√
2

(e−iϕ/2 |↓〉+ e+iϕ/2 |↑〉) (4.10)

where ϕ is the phase difference. The procedure to get the standard quantum limit bound

is similar to that of Mach-Zehnder interferometry. We get the probability distribution of

whether the atom is in the ground state or excited state similar to the above case (4.6).

Therefore the fisher information can be written as
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Figure 4.2: Bloch Representation of the process

F (ϕ) =
1

p(↓ |ϕ)

[
∂p(↓ |ϕ)

∂ϕ

]2

+
1

p(↑ |ϕ)

[
∂p(↑ |ϕ)

∂ϕ

]2

,

= sin2(ϕ) + cos2(ϕ) = 1

(4.11)

Hence the uncertainty from quantum Cramer Rao inequality in the relative phase is given

by

δϕ =
1√

NF (ϕ)
=

1√
N

(4.12)

We see that Ramsey interferometry performed with two level atom for phase estimation

between the two energy levels attains the standard quantum limit too. This whole process

can be represented diagrammatically by using a Bloch sphere (described above) as we know

that points on the Bloch sphere represent the pure state of any 2 level quantum system. A

simple figure showing this process is given above.

We consider the initial state as a vector pointing to the south pole of the sphere as shown

in the diagram. In this case, there are two π/2 pulses which represent the action of beam

splitters. The first one corresponds to the rotation of the initial state by π/2 degrees about

y axis and then comes the free evolution which is nothing but the rotation of the state about

z axis by an angle φ which is the phase difference accumulated. And the final come the final
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π/2 pulse which rotates the then state by an angle π/2 around z axis.

4.0.2 Multi Particle states

There are lot of multi particle states which are useful to implement quantum interferometry.

Since we have the control of introducing few quantum phenomenon like entanglement and

squeezing within the particles, it is interesting to see how far the limit of minimal retrieval

of error can be pushed beyond standard quantum limit. I will be discussing four such states:

coherent spin states, spin squeezed states, NOON states and twin fock states.

Coherent Spin States

Coherent spin states can be referred to as the pure quantum states of an ensemble of Spin

- 1/2 particles of size N. This as a whole can be treated as a single spin particle of length

N/2. If all these spins are aligned parallel to each other, it is called ferro-magnetic coupling

whereas anti-parallel alignment of spins is called anti ferro-magnetic coupling. If we assume

that all these N spin- 1/2 are polarized into one single state, the general form of coherent

state can be written as

|θ, ϕ〉CSS = ⊗Nl=1

[
sin(θ/2)e−iϕ/2 |↑〉l + cos(θ/2)eiϕ/2 |↓〉l

]
(4.13)

If we consider the initial state to be spin down state ( |↓〉 ), the above general equation

of the state can be obtained by performing unitary rotations on the initial state ( ⊗Nl=1 |↓〉l )

by an angle θ and φ. This state can also be shown diagrammatically by using a bloch sphere

whose radius will be given as N/2. The direction of the final point obtained on the Bloch

sphere is called as mean spin direction (MSD).

Ramsay interferometry with coherent spin states is done using the similar sequence of

π/2 pulses which is followed for single particle states. Here we assume that all the N spin-

1/2 particles aren’t correlated i.e the direction of spins of all the particles are independent

of each other. So as the first π/2 is applied to the initial state, it transforms to
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|Ψin〉 = ⊗Nl=1

[
1√
2

(|↑〉l + |↓〉l)
]

(4.14)

We see that the state is transformed into equal superposition of the two available states

similar to that of a two level atom splitting into two modes in a single particle state. After

the free evolution is completed each state acquires a phase of φ/2 with respect to each other,

and the final state is given by

|Ψout〉 = ⊗Nl=1

[
1√
2

(e−i
ϕ
2 |↑〉l + e+iϕ

2 |↓〉l)
]

(4.15)

This sequence of pulses can be represented as vector transformations and rotations on

the bloch sphere. Hence, the complete transformation to the final state can be expressed as

a unitary transformation Û , given by

Û = exp(−iπ/2Ĵy) exp(−iϕĴz) exp(−iπ/2Ĵy) (4.16)

This Û acts on the initial state as

|Ψf〉 = Û |Ψ0〉 (4.17)

Here, Ĵx, Ĵy, Ĵz are the three collective spin operators which obey the commutation

relation.

[Â, B̂] = ÂB̂ − B̂Â (4.18)

where Â and B̂ takes Ĵx, Ĵy, Ĵz in the same cyclic order.

According to the error propagation formula 2.1, we can obtain the standard deviation of

the phase difference. For this, we just need to know the variance of the Ĵz operator and the

rate of change of expectation value of Ĵz with respect to φ, which can be written as follows

18



(
∆Ĵz

)2

f
=
(
∆Ĵz

)2

o
cos2 ϕ+

(
∆Ĵy

)2

o
sin2 ϕ− sinϕ cosϕ

〈
ĴzĴz + ĴyĴz

〉
(4.19)

The standard deviation of the final state is given by

(
∆Ĵz

)
f

=

√
N

2
sinϕ (4.20)

Therefore we obtain the standard deviation of the phase ϕ as

∆ϕ =
(∆Ĵz)f∣∣∂〈Ĵz〉f/∂ϕ∣∣ =

1√
N

(4.21)

So we observe that Ramsey interferometry using uncorrelated coherent states as initial

states also obeys the precision bound set by standard quantum limit.

Spin Squeezed States

Spin squeezing was initially studied in order to visualize correlations between multiple spins

and also to produce entanglement between them as it is easy to produce them experimentally.

This concept is applied widely in Bose Einstein condensates where we cannot distinguish the

particles at that scale, but can introduce different kinds of correlations among them. They

can be observed by defining spin operators for the ensemble as a whole where all the particles

as a single unit. We know that there exist two complementary terms which satisfy the bound

set by the Heisenberg uncertainty principle. Just like we have position-momentum, energy-

time, we have the experimental control over the uncertainty on spins in different directions

of measurement. By squeezed states it means, the fluctuations are reduced in one coordinate

at the expense of the other one. The state where there are reduced fluctuations or reduced

uncertainty is termed as spin squeezed state. This spin squeezing can be attributed to

quantum entanglement in the system. This would lead to increase in the measurement

precision.

Before we see how Ramsay interferometry is performed using spin squeezed states, we

need to define certain terms named squeezing parameters. Since it is challenging to distin-
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guish each single particle and manipulate the state at those length scales, the below defined

parameters had to be constructed to describe the behaviour of the ensemble as a whole. The

first parameter εH is defined as follows

ξ2
H =

2(∆Ĵα)2∣∣〈Ĵγ〉∣∣ , α 6= γ ∈ (x, y, z) (4.22)

The subscript H represents Heisenberg uncertainty relation. α and γ are orthogonal unit

vectors. When the above quantity is less than 1, the state is said to be a spin squeezed state.

The second parameter, gives us the information about the least uncertainty in the direction

perpendicular to mean spin direction. It is given by:

ξ2
S =

min(∆Ĵ~n⊥)2

j/2
=

4 min(∆Ĵ~n⊥)2

N
(4.23)

where n⊥ represents the direction perpendicular to mean spin direction. The reference

state for these spin squeezed states are nothing but the coherent spin states. For uncorrelated

coherent spin states, this term is equal to one. The ratio of the phase fluctuations of any

general state to the uncorrelated coherent spin state gives us the third squeezing parameter.

It is written as

ξ2
R =

∆φ

(∆φ)CSS
=
N(∆Ĵ~n⊥)2∣∣〈Ĵ〉∣∣2 (4.24)

Now, while performing Ramsay interferometry using these spin squeezed states, we usu-

ally get a better precision in comparison to coherent spin states. The initial state in terms

of the above defined collective spin parameters reads as follows

〈
Ĵy

〉
0

= 0,
〈
Ĵz

〉
0

= −N
2
,
(
∆Ĵy

)
0

=

√
N

2
ξR, (4.25)

We observe that the squeezing is performed along y-axis. Now this state undergoes

a certain transformation due to the application of two π/2 pulses and the free evolution.

Therefore the expectation value of Jz reads as
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〈Ĵz〉f = − cosϕ〈Ĵz〉0 + sinϕ〈Ĵy〉0 (4.26)

Hence, the variance is

(
∆Ĵz

)2

f
=
(
∆Ĵz

)2

o
cos2 ϕ+

(
∆Ĵy

)2

o
sin2 ϕ− sinϕ cosϕ

〈
ĴzĴz + ĴyĴz

〉
(4.27)

Therefore from the error propagation formula, the standard deviation of φ is expressed

as

∆ϕ =
(∆Ĵz)0∣∣∂〈Ĵz〉f/∂ϕ∣∣ =

ξR
√
N/2

| sinϕ|N/2
=

ξR

| sinϕ|
√
N

(4.28)

This expression attains it minimum value when sinφ is 1. Therefore Heisenberg limit is

reached when ξR = 1/
√
N

It is observed that quantum fisher information has a strong condition to have entangle-

ment rather than these spin squeezing parameters. But spin squeezing has it’s own advan-

tages, it’s easy to experimentally measure it and the change in sensitivity of this state can

be relates to the rotations in SU(2) space. This makes it easy to detect any quantum chaos

in the evolution of the parameter.

NOON States

A NOON state is a many-body entangled state. It is the superposition of all the N particles

in say mode A and zero particles in mode B and vice versa. This state is said to give the

maximum information about the phase in an interferometer (this implies the best precision).

This entangled state doesn’t follow the bell’s inequality for quantum correlations. During

interferometry, the difference in the number of photons travelling in the different spatial

paths and the phase follow the number phase uncertainty relation. So this uncertainty in

number is maximized, by making sure that all the photons are in either one path or the

other. So, this would lead to the least uncertainty or fluctuation in the phase.

The general form of this state can be written as :

|NOON〉 =
1√
2

(|N〉a |0〉b + eiθ |0〉a |N〉b) (4.29)
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The θ represents the phase. These states are closely related to the GHZ states (Greenberger-

Horne-Zeilinger States). The general form of an N-particle GHZ state is given by

|GHZ〉 =
1√
2

(
|N

2
,+

N

2
〉+ eiθ |N

2
,−N

2
〉
)
, (4.30)

Consider Ramsay interferometry with these GHZ states. The initial state is written as

|Ψ〉in =
1√
2

(
|N

2
,+

N

2
〉+ |N

2
,−N

2
〉
)
, (4.31)

During the free evolution, all the particles in the up/down state get entangled. So they

acquire the same shift. The equation corresponding to this transformation of the state is

given by

|Ψ〉out =
1√
2

(
e−i

Nϕ
2 |N

2
,+

N

2
〉+ e+iNϕ

2 |N
2
,−N

2
〉
)
, (4.32)

We don’t need to know the probability distribution function of the output state to obtain

quantum fisher information. Knowledge of the final state and its derivative with respect to

the phase parameter is also sufficient to obtain quantum fisher information which is given as

FQ(θ) = 4
[
〈ψ′(θ)|ψ′(θ)〉 − | 〈ψ′(θ)|ψ(θ)〉 |2

]
, (4.33)

This equation is quite useful because we need not know about the procedure of the mea-

surement performed but just the initial and final states of the system. So, by differentiating

the final state with the phase φ, we will have

d |Ψ〉out
dϕ

= − iN

2
√

2

(
e−i

Nϕ
2 |N

2
,+

N

2
〉 − e+iNϕ

2 |N
2
,−N

2
〉
)

(4.34)

Substituting this in the expression of quantum fisher information (4.33) we get the infor-

mation term to be
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FN
Q = 4

[
〈ψ′(ϕ)|ψ′(ϕ)〉 − | 〈ψ′(ϕ)|ψ(ϕ)〉 |2

]
= 4

(
N2

4
− 0

)
= N2 (4.35)

Therefore, the error scales as

∆ϕ ≥ 1

FQ
=

1

N
, (4.36)

We see that the uncertainty in phase attains the Heisenberg limit. Although while per-

forming the experiment one should be careful as this state is quite vulnerable to particle

losses which would disturb the precision.

Twin Fock States

Twin fock states are the two mode states where the number of particles in each mode is

equal. The input state is given as

|TWIN〉 = |N〉a |N〉b (4.37)

Preparation of these states using non-linear devices experimentally are still under con-

struction. Twin fock states and spin squeezed states are said to be partially entangled states.

This input state does not really attain the Heisenberg limit exactly, but asymptotically tends

to it. We will see how that happens. The first beam splitter operator is given as follows

ÛBS1 = exp[
π

4
(âb̂− b̂â)] (4.38)

â and b̂ are the annihilation operators for the particles in the two modes. This beam

splitter operator acts on the the initial state (4.37) and it transforms the twin Fock state to

|ψ〉BS1 =
N∑
k=0

Ck
N |2k〉a |2N − 2k〉b (4.39)
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The coefficients, Ck
N take the form

Ck
N =

1

2N
(−1)N−k

([
2k

k

][
2N − 2k

N − k

])1/2

(4.40)

During the free evolution the two modes a and b acquire a phase difference and the state

then reads as

|ψ(ϕ)〉 =
N∑
k=0

exp iϕ(2N − 2k)Ck
N |2k〉a |2N − 2k〉b (4.41)

where, ϕ is the phase to be estimated. The second beam splitter operator is given by

ÛBS2 = exp[−iπ
4

(âb̂+ b̂â)] (4.42)

This operator acting on the state which contains the phase difference (4.41) gives us the

final state ÛBS2 |ψ(ϕ)〉

The last step performed is the parity measurement which should be done on either of

the two modes. It is seen that this step is sensitive to phase measurements. This also scales

the accuracy of measurement and helps in achieving the Heisenberg limit. This kind of

measurement is performed even in Bose Einstein condensates, but the two modes here are

analogous to the two hyper-fine levels in the atomic BEC. This parity operation acts at the

detector placed at either of the modes, say mode b which is given as

∏̂
b

= exp(iπb̂b̂) (4.43)

We know that there should be a hermition operator explicitly depending on the param-

eter, which we should let it evolve in time. It is from this operator we get to know the

uncertainty in the parameter. This is encoded in the error propagation formula (2.1). In

this case the hermition operator is the parity operator. Therefore from the error propagation

formula we will have
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∆ϕ =
∆
∏̂

b∣∣∂〈∏̂b〉/∂ϕ
∣∣ (4.44)

It can be noticed that when ϕ tends to zero, Heisenberg limit is achieved. This limit

goes below the standard quantum limit for some particular values of ϕ and total number

of particles. Not only through the error propagation formula, also using the dependence of

quantum fisher information on the initial and final states, we can derive the uncertainty in

phase. From the later method, get the quantum fisher information to be

FQ = 2N(1 +N) (4.45)

According to the quantum cramer rao bound, uncertainty scales with number of particles

as follows

∆ϕ =
1√

2N2 + 2N
(4.46)

This is observed to be in agreement with the phase uncertainty obtained by performing

parity measurements for certain values of phase difference (ϕ) and total number of particles

(N).
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Chapter 5

Metrology in noisy environment

In all the above mentioned experiments performed with N number of initial particles, it is

very natural for statistical (stochastic) and systematical errors to creep in. This may heavily

effect the precision limit achieved. To some extent the statistical errors can be minimized

by performing the measurement repeatedly which helps in better error scaling. We have

achieved Heisenberg limit for some particular initial states, but parameters like decoherence

or particle loss can go unnoticed which would lead to declined precision. This would have a

substantial effect on quantum fisher information.

There are two types of noise which would affect the precision measurement in different

ways. First one is when there is uncorrelated noise in the system. This can easily spoil

the Heisenberg limit and the limit would fall down to standard quantum limit. But it is

observed that this happens only for a certain limit of the particle number (N). Secondly,

when there is correlated noise in the system, which means, the system can be entangled with

an ancilla system which is seen to give higher quantum fisher information which in turn gives

better measurement. This occurs because when the quantum system is entangled with an

ancilla, it becomes difficult for noise to creep into this entangled system. This whole system

tends to act as one combined system only when the entanglement is optimized. We get

higher quantum fisher information because, once the quantum system is entangled with an

ancilla, we are expanding the hilbert space where the measurement can be performed. Now

this higher dimensional hilbert space gives us more information about the parameter to be

estimated.
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Usually, the parameter to be estimated is not measured directly, but instead we choose a

hermitian operator which explicitly depends on the parameter and this operator undergoes

a unitary evolution along with the state evolution with time. We know that any unitary

evolution can be distorted when the system interacts with the surroundings. Since the

noise and external interactions cannot be avoided, this becomes a non-unitary evolution

of the operator and the system as a whole. Because of this one cannot even maintain the

precision to be asymptotically equivalent to Heisenberg limit. This is where we can introduce

entanglement into the system to avoid various kinds of noise like phase damping, decoherence,

depolarization etc. Although there are ways where phase-estimation is optimized for a two

level system where entanglement was not used to enhance the precision.

Decoherence is the error that comes in due to the interaction with the environment when

the quantum system evolves. Due to this one can say that the quantum element of the

systems gets disrupted i.e there can be loss of entanglement in the system. It can either

be a prolonged loss or loss in a finite small time period. The time depends on the kind of

environment the system is in. Although, in spite of the noise being present everywhere, there

are well optimized methods which measure the parameter. For example, methods have been

devised for estimation of multiple phases (multi-parameter quantum metrology).

As I have explained above how the Heisenberg limit is achieved for maximally path

entangled states i.e the NOON states in performing Ramsay interferometry. We see here how

the noise brings about the fluctuations in the phase estimated. The major source of noise

here is particle loss, as it may be difficult to keep all the particles entangled in the presence of

an interacting environment. This makes it unsuitable for performing a measurement. States

termed as mm′ are seen to provide better robust metrological performance in the presence

of noise. These states are just the generalized versions of path entangled NOON states. It is

observed that performing parity detection measurements on the particles which are subjected

to quantum phase fluctuations is the best estimation procedure to get the phase in a noisy

environment.

General form of these mm′ states can be written as

|m :: m′〉a,b =
1√
2

(|m,m′〉a,b + |m′,m〉a,b) (5.1)
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Here, a and b represent the two paths of the interferometer and m, m′ are the number of

photons incident at the two modes. This number is to be made optimum given the dynamics

of loss i.e when the number of photons lost in the process in known. When we perform

Mach-Zehnder interferometry with these states, after the first beam splitter, there is a phase

shifter which is placed in one of the modes (say b). This change in phase would correspond

to the number of photons lost in the mode b. The state corresponding to the evolution up

till the phase shift is given by

|ψll〉 =
1√
2

(eim
′φ |m,m′〉+ eimφ |m′,m〉) (5.2)

After passing through the second beam splitter, just before the detection is performed

the state reads as follows

|ψll〉 =
1√
2

(eim
′(φ+∆φ) |m,m′〉+ eim(φ+∆φ) |m′,m〉) (5.3)

If we observe, we see that the state obtained before detection is a mixed state. This is

due to the induced phase fluctuations in the path of one of the beams. The phase precision

of both the NOON states and mm′ states is measured by choosing the observable to be

the parity operator. The general form of a parity operator is exp iπn. This allows us to

differentiate between even and odd number of photons. This parity operator operators only

near one mode of the detector and inside the interferometer the parity operator reads as

∏̂
= i(m+m′)

M∑
k=0

(−1)k |k, n− k〉 〈n− k, k| (5.4)

From the error propagation formula, we just need to know the variance and expectation

value of this parity operator to get to the final result.

∆φ =
∆
∏̂∣∣∂〈∏̂〉/∂φ∣∣ (5.5)

The error in phase measurement for the mm′ states looks like
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∆φmm′ =

√
1− e−2(∆m)2τL cos2 (∆mφ)

(∆m)2e−2(∆m)2τL sin2 (∆mφ)
(5.6)

For the NOON state, it takes the form

∆φNOON =

√
1− e−2N2τL cos2 (Nφ)

N2e−2N2τL sin2 (Nφ)
(5.7)

We see that even for zero de-phasing for the mm′ states, the precision of the phase can

never be equal to Heisenberg limit but can only tend to it. But for the case of NOON states,

this limit achieves Heisenberg precision under no de-phasing conditions.

Apart from all of this there is a method which is designed to protect the quantum system

from the noise around it’s surroundings. It is called quantum error correction. This can be

applied when the noise isn’t either too strong or highly correlated. If that is so it would be

difficult go differentiate the source of the signals. It may be from the evolving Hamiltonian or

from the noise in the system. This method helps in preserving the coherence in the system.

But apparently this method is proved to be successful in reaching the Heisenberg limit.
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Chapter 6

Quantum Zeno Effect

This effect can be said to be one of the paradoxical concepts of quantum mechanics. It is also

termed as Turing paradox because this first came into texts when Alan Turing, a British

scientist performed a thought experiment. Approximately, 30 years later the laboratory

experiments were performed confirming this paradox. Given a quantum system in a well

defined initial state. Under its free evolution according to its own Hamiltonian, if the observer

keeps on making a projective measurement of the system on to its initial state, one can

constrain the time evolution of the system and arrest the quantum system to the initial

state. The state where the measurement is repeatedly performed is said to be a meta-stable

quantum state. It is to be noted that this can occur only within a certain time limit which

is the characteristic time limit given by

τQZ =
2√

FQ[Q,A]
(6.1)

To actually witness this effect on should perform these measurements at a frequency

greater than 1/τ . We see that Zeno time is inversely related to quantum fisher information.

We can know information about the entanglement properties by observing the quantum Zeno

effect of the quantum system. Quantum Zeno effect was observed in two hyper-fine levels of

beryllium atom in ground state. These ions are trapped using penning trap or laser-cooling

where we can apply the Rf pulses as per convenience which is responsible for making a

measurement. Rf pulses are seen to easily manipulate the energy levels. The number of
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photons scattered by the atoms in different hyper-fine levels is different. In one level there

is no scattering which would make it easy for us to differentiate between the two hyper-fine

states. We see that active measurement of energy levels of an atom actually effect the atom

unlike from what happens in the macroscopic world where making a measurement wouldn’t

make a difference on the system. This occurs only at a quantum mechanical scale. When

there is a spontaneous emission occurring between the two hyper-fine levels, if we perform

a measurement continuously, it is observed that the way spontaneous emission occurs gets

affected. The deccay process of this transition process gets decelerated. This happens

because each time we confirm that the atom is in the excited state, we reset the state of

the atom to the excited state which means our activity of performing a measurement is

fiddling around with the time scales of spontaneous emission. So till we stop measuring the

state of the atom, it doesn’t really come down to its lower energy level. In contrast to this,

it was observed that frequent measurements in-fact accelerated the spontaneous emission

or the deccay process. This was termed as anti-Zeno effect. The speed of the deccay can

be attributed to the number of energy levels the electron can possibly jump into. More

number of energy levels implies more chances of spontaneous emission, hence greater speed

of deccay. On the vice versa, less energy levels implies that the emission occurs at relatively

low intervals of time which can be straight forwardly related to low deccay speeds. So,

it is possible to observe both Zeno effect and anti-Zeno effect experimentally by creating a

microscopic circuit with its energy levels analogous to those of the atom’s. The measurement

of the state can be done by probing the circuit using microwave light at it.

Since we can make use of penning traps, we can trap multiple ions instead of probing a

single ion with Rf pulses. Once there is an ensemble of ions in front of us, we will have to

deal with effects of interactions between them. There can be interactions due to collisions

when the observer probes the system with the Rf pulses. We can get to know the density

matrix of the initial and final state of the ensemble and try to understand how the system

has evolved irrespective of the repeated measurements being done. Also we can get a fair

distribution of the ions in the two hyper-fine levels.

Also, when we are performing the measurement each time, we need to do it with a certain

degree of accuracy so that the uncertainty of the measurement doesn’t shoot up. The time

required to make the measurement shouldn’t affect the evolution time of the quantum system.

It is seen that probability of this deccay (above mentioned) in an atom is increases by four

times, for short time intervals of repeated measurements. However to increase this time
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interval, this atom can be coupled to a mode of a cavity by placing the atom in a resonant

cavity. This coupling helps in increased oscillation of the atom between the two hyper-fine

levels. The resultant dependence of probability of the spontaneous emission on the time

intervals can be validated by actually demonstrating the experiment of atom coupled to a

single mode cavity using a resonant cavity.

If we assume the existence of two eigen states X and Y for a quantum system under

consideration. Say Y is the state where the system decays into. Whenever we perform a

measurement, we know that the system collapses into X. In the time interval between the

repeated measurements the system is said to exist in the superposition of the two states X an

Y . To observe strong quantum Zeno effect, there should be finite time interval (frequency)

between the measurements. Also the kind of system used to perform the measurement also

has a major affect in observing this paradoxical effect.

As we have seen the significant developments of quantum metrology, it is very advanta-

geous to know and understand it’s applications in quantum optics and cold atomic physics.

Since quantum mechanics has become the fundamental concept on which the technology

works, like communication, information processing, cryptography etc, there is a need as to

how the sensors in these technological devices work. This is a challenging task because in

real life usage of these devices, the sensors are prone to lot of noise from the environment.

So minimizing the error under these conditions is quite a useful task. This is where quantum

metrology and it’s precise measurements play a very major role. Major uses of quantum

metrology are in quantum sensing, quantum RADARS, gravitational wave detection, quan-

tum lithography etc. Interferometry is the significant tool to perform interferometry in the

optical aspects. Apart from all of this, quantum metrology has a major applications in

cold atomic matter and spectroscopy. The challenging part was to introduce entanglement

between the atoms at such temperatures. Interesting results have been obtained by using

cold atomic ensembles as the initial states of the interferometer. Phase estimation in atom

interferometers and frequency estimation in atomic clocks is of great interest.

In the second part of this thesis, I would describe how Bose Einstein condensates can be

used to perform Ramsey interferometry and how the Heisenberg limit of precision is broken

in estimating the relative phase.
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Chapter 7

Quantum metrology with cold atomic

ensembles

7.0.1 Introduction

The cold atomic ensemble we consider here is the fifth state of matter i.e Bose Einstein

condensate. In this state majority of the bosonic particles exist in their lowest quantum

energy level at temperatures close to absolute zero. At this level of the temperature the

quantum properties take over the classical ones. The condensate formed is observed to be a

super-fluid i.e zero viscosity and also superconducting in nature. This state of matter was

active in the theoretical context but wasn’t actually prepared in the laboratory till the 1990’s.

This was partially due to lack of experimental setup which could reach the temperatures

tending to absolute zero. The theoretical contribution was majorly done by Satyendranath

Bose, an Indian physicist before he later contacted Albert Einstein for further ideas. Hence

the name ’Bose-Einstein condensate’. At these low temperatures, the wave nature of the

bosons become predominant, since all the particle are identical, all the particles in the

ensemble will have similar wave functions. With the decrease in temperature, these wave

functions begin to condense and hence overlap with each other. After the overlap, the state

of the condensate is represented by a single wave function with the energy equal to that of

ground state energy of the particle’s. It is to be noted that the final state achieved isn’t a

solid state. If we have N identical bosons at a particular temperature T with the chemical

potential µ, the energy distribution of the condensate follows Bose Einstein statistics which
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is given by

f(ε) =
1

exp (ε− µ)/kBT − 1
(7.1)

From this expression we see that as the temperature approaches to absolute zero, the

lowest energy level is maximally occupied. This is when the whole ensemble of N bosons acts

as a single particle. This is termed as quantum phase transition. This doesn’t necessarily

happen at absolute zero temperatures experimentally, but close to it would result in phase

transition. The de-Broglie wavelength of the particles dependence on the temperature is

given by

λdb =
h2

2πmkBT
(7.2)

where h is the planck’s constant, m is the mass of the bosons and kB is the Boltzmann

constant.

We can confirm the formation of the condensate by observing the velocity distribution

of the bosons. At normal temperatures, the bosons are comparatively widely distributed on

a velocity space. As the temperature keeps on decreasing, we can observe a peak at lowest

(mostly zero) velocity and the peak drastically falls of with increasing velocities.

This phase transition occurs only when the system drops down below a certain temper-

ature. It is termed as critical temperature and is given by

Tc = 3.31
~2n2/3

mkB
(7.3)

where n is the particle density, m is the mass per each boson and kB is the Boltzmann

constant.

We can know the fraction of atoms in the condensed state by the formula

f(T ) = 1− (T/Tc)
3
2 (7.4)
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Figure 7.1: Velocity distribution at different temperatures

At this level there can be weak interactions in the condensate and we need to know how

to quantify them in order to understand the dynamics of the new state of matter obtained.

The effect of the interactions can be seen in the spatial spread of the wave function. Usually

at high temperatures, the gas of atoms or the bosons have their total energy contributed

by accessible degrees of freedom like rotational, translational and vibrational. They have

different thresholds of temperature for them to make a significant contribution. As the

temperature is dropped down to room temperatures, there is no vibrational energy as the

vibrations of the atoms/bosons is frozen out. There will just be rotational and translational

degrees of freedom. When the temperature is further lowered, we are left only with transla-

tional motion of the atoms. Quantization of this thermal energy occurs at low temperatures

where the quantum effects become predominant. This is when the overlap of all the similar

wave functions occur. There are chances that the gas may condense at these temperatures

because of the interactions. There should be measures taken to prevent this condensation.

So, ideally the gas should have zero interactions and in experiments minimal interactions

among the atoms is appreciated.

Clearly, this kind of phase transition occurs only with bosonic particles. By bosons, I

mean the spin of the whole atom (all the protons and electrons combined) should bear an

integral value. Any other fractional value is considered to be a fermion. These fermions are

subjected to Pauli exclusion principle which is responsible for interaction energy that makes

it not possible to achieve the zero-velocity state.
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We see that since the quantum nature of the bosons come into picture in the condensate,

the wave function of each particle extends up to it’s own wavelength. The dependence of

this wavelength with respect to the temperature is given as

λdeB =
h√

3mkBT
(7.5)

The explanation for the wave functions overlapping can be understood from this expres-

sion. As the temperature is lowered we can notice that wave function extends over a longer

length, which is responsible for the interaction of the wave functions. The extended state

of the whole interaction is the Bose Einstein condensate with a single wave function. These

condensates weren’t prepared till the 90’s in laboratory. The first basic step is to cool down

and trap the atoms using the laser cooling techniques and the second important step is to

further cool these atoms using the technique of evaporative cooling which helps us reach

temperatures to the order of micro kelvin.

Evaporative cooling technique is the most utilized technique and is immensly responsible

for the development of experimental aspects of ultra cold matter. The first step in this process

is to trap the atoms at the room temperature. Magnetic traps are used for this where the

highest velocity or the highest energy atoms let themselves out of the trap thus collecting

the lower energy atoms inside the trap. Small part of the temperature gets reduced here.

To thermalize the elastic collisions between the atoms, the height of the magnetic potential

walls are reduced. This accelerates the loss of higher energy particles. The counter effect of

this is the remaining particles in the trap get condensed eventually.

If we look into this, when the atoms are placed in the magnetic field, the splitting of

the energy levels occur due to the interaction between the dipole moment of the atom and

the magnetic field. Basically, Zeeman splitting occurs. There are two kinds of splitting

that occur in the magnetic field. The levels which whose energy rises in the presence of

the magnetic field are called as low-field seekers and the vice versa occurs for high-field

seeker energy levels. Depending of what kind of energy level atoms we want to trap, we can

create minimas or maximas for the atoms to get trapped. But creating a magnetic potential

maxima contradicts Earnshaw’s theorm. Therefore for experimental purposes, local minimas

are created in order to trap low-field seeking atoms.
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The experimental success of creating a BEC has lead to test different properties of a

condensate and a theoretical interest since then. The dynamics of the behaviour of these

Bose Einstein condensates in the magnetic trap potentials is described by Gross Pitaevskii

equations. This description of atomic behaviour at such temperature scales makes a BEC

more relevant in metrological aspects. Ramsay interferometry using a Bose Einstein con-

densate was performed and interesting results have been observed. The BEC used is said to

be a two mode BEC. Before I go into the precision measurements of the coupling constant

(estimated parameter) in the condensate, I would first explain what a two mode theory in a

Bose Einstein condensate is.

We know that when the condensate is formed all the bosons occupy a single ground state

which can be termed as a mode too. But while performing interferometric experiments, we

need interference between condensates present in different modes or energy levels because

we get the fringes due to the phase difference established. From the fringes obtained we can

know the information about the spatial positions of the bosons. When the condensates in the

two modes superpose, there obviously will exist interactions between the atoms. This may

introduce some non-linear terms in the hamiltonian which would be responsible for noise in

the fringes such as de-phasing. This disturbance in the interference patterns can be avoided

if the BEC is made up of photons or magnons, where there isn’t any kind of interaction.

So, to achieve two modes in a single condensate double well magnetic potentials are used,

where the lowest energy (ground state) mode is the condensed part of the system whereas

the other well would contain the atoms in the next immediate hyper-fine energy level, which

is the non-condensed part of the system. These two states co-exist and their evolution is

studied by solving Gross Pitaevskii equations.

The first step in interferometry using a BEC is that the initial state is prepared in a ground

state. All the N atoms are supposed to be in lowest energy state whose wave function is give

by φ1(r). After some time, the double well potential is turned on, which excite some of the

atoms into the next hyper-fine level. This excited state is the anti-symmetric one and the

ground state is the symmetric state. The symmetric breaking occurs when the double well

is created. The particle’s wave function in the excited energy level in given by φ2(r). This

initial state is created for not a large atom number, to avoid unnecessary interactions which

would affect the fringe pattern obtained. Therefore small boson number is considered to be

advantageous.
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The BEC fragmenting into two modes can be analytically studied by comparing it with

two harmonic oscillators separated by some finite distance and with a wall. These two

oscillators with same frequency can be considered as the eigen states of both the symmetric

and anti symmetric modes in a BEC. The potential felt by the condensed and non-condensed

particles of the BEC is different. Hence the difference in potential in the Schrodinger equation

would give us two different wave functions after certain period of evolution. BEC fragmenting

into two modes allows us to consider the ensemble as a gaint spin system of certain spin

length.

There is a factor ηN which signifies the spread of the BEC wave function. It is the inverse

of volume occupied by the ground state wave function which is written as

ηN =

∫
d3r
∣∣ψN(~r)

∣∣4 (7.6)

where ψN is the ground state condensate wave function which satisfies the below Schrodinger

equation

(
− ~2

2m
∇2 + V (~r) + g11N

∣∣ψN(~r)
∣∣2 )ψN(~r) = µNψN(~r) (7.7)

V (~r) is the trapping potential used to trap the bosons. The potential has two components,

one being transverse harmonic potential and other being power law potential. The general

form of the potential can be expressed as

V (ρ, z) =
1

2
(mω2

Tρ
2 + kzq) (7.8)

Graphically, the potential varies with respect to z for different values of q as given below.

In the longitudinal dimensions, it is the power law potential that traps the atoms whereas

in the transverse dimensions, it is the harmonic potential. q here is the significant parameter

in the whole experiment. The value of q defines the hardness of the longitudinal trap. The

hardest trap has infinite value of q. We can observe a significant change in the spread of the

wave function i.e ηN with a slight change in q. The existence of hard walled potential helps to

reduce the spread of the wave function in the longitudinal direction. This helps us to study
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Figure 7.2: Potential with respect to z

the dependence of number of atoms and the extent to which the wave function spreads.The

ρ here implies that the harmonic potential exists in the transverse coordinates. Atoms here

are trapped tightly in the transverse directions relative to the longitudinal direction. Hence

the spreading of the BEC wave function in the transverse direction is neglected.

g11 is the scattering coefficient which quantifies the intra species interaction in the BEC.

This is dependent on the s-wave scattering length as follows

g11 =
4π~2a11

m
(7.9)

a11 is the s-wave scattering length which exists for interaction among condensed atoms,

among non condensed atoms and between condensed and non-condensed atoms of the BEC

and m is the atomic mass.

While performing interferometry with Bose Einstein condensates, there are two approxi-

mations considered. First one being Josephson approximation and the other being Thomas-

Fermi approximation. Josephson approximation says that the two mode wave functions

retain their wave functions. This is approximated for a certain time interval, because it is

obvious that there will be interaction with the surroundings which would induce position

dependence phase shifts. Thomas Fermi approximation neglects the particle’s kinetic energy
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at low temperatures. This is a great approximation for large number of particles and doesn’t

really work well for small number.

The Josephson approximation works aptly when we do not give time for the each mode

wave functions to evolve. This can be done by allowing fast transitions between the two

energy levels. Apart from this, we assume that the depletion of ground state wave function

is small that it is neglected. Non-linear Ramsay interferometry performed with the rubidium

BEC which is maintained in two hyper fine levels, apparently gives us the best scaling of

the precision. In fact better that the Heisenberg limit (greater that 1/N). Although the

sensitivity is affected by external interactions (via surroundings), this effect can be minimized

by performing the metrological measurements at low time scales where significant interaction

which would lead to decoherence and phase irregularities haven’t creeped into the system.

Because of the Josephson approximation and the limit time scale window we have chosen

to make a measurement, the phase induced is the differential phase shit but not position

dependent phase shift.

The BEC used here for performing Ramsay interferometry is made up of rubidium-87

atoms which is confined to two hyper-fine levels. This condensate was first achieved in

1995 and approximately 170 nano kelvin of temperature was reached in preparing this. The

techniques used were laser cooling and magnetic evaporative cooling. This atomic sample is

observed to have negative scattering length.

7.0.2 Gross–Pitaevskii equations

After successfully achieving the condensates experimentally in laboratories, there was a push

in the theoretical front to predict the dynamics of the atoms in a BEC. Under few assump-

tions and approximations, modelling of the ultra cold matter has been done which lead to

Gross–Pitaevskii equations. Solving these equations gives us an accurate form of the wave

function of the condensate present in two hyper-fine levels. These equations are modelled

by mean field theory approximations which signify weak interactions at low temperatures.

Most of the solutions for these equations are solved within the Thomas-Fermi limit. In

the Thomas-Fermi range, the kinetic energy of the atoms individually is relatively less in

comparison to the interaction energy in the condensate. Therefore, the kinetic energy term
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in the Schrodinger equation is neglected. Although the size of the condensate can be know

by something called Thomas-Fermi limit which will be discusses later.

The nonlinear Schrodinger equation which describes the dynamics of a BEC trapped in

some potential is written as

µN
∂ψ

∂t
=
(
− ~2

2m
∇2 + Vext + gN |ψ|2

)
ψ (7.10)

Vext is the trapping potential uses to confine the bosons. g is the scattering coefficient

which is dependent on s-wave scattering length as g = 4π~2a11
m

, this is the interaction term.

|ψ|2 is the atomic density and N is the total number of atoms in the ground state.

µN is the chemical potential of the condensate. Chemical potential is basically the in-

crease in amount of energy of the condensate when one boson is added to the system. This

value of energy allows us to know how strong the interactions are among the bosons. When

one assumes zero interaction or if one can possibly switch of the interactions, the chemical

potential is equivalent to the single particle energy. It is written in terms of free energy of

the condensate as

µN =
( ∂F
∂N

)
V,T

(7.11)

The Hamiltonian of this two-mode Bose Einstein condensate can be expressed as

Ĥ = NEo +
1

2
ηN

2∑
α,β=1

gαβ(âβ)T (âα)T âαâβ (7.12)

(âT )α creates the atoms in the condensate i.e annihilation of the atoms in the state |α〉

After inculcating the Josephson approximation in knowing the dynamics, the two mode

hamiltonian of the system can be modified and written in terms of angular momentum

operators. Assume the expression of Ĵz to be (in terms of creation and annihilation operators)
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Ĵz =
ât1â1 − ât2â2

2
(7.13)

The two coupling constants, γ1 and γ2 signify the strength of the interaction between the

atoms are given as follows

γ1 =
1

2
(g11 − g22)

γ2 =
1

2
(g11 + g22)− g12

(7.14)

Now, the two mode hamiltonian can be modified for including Josephson approximation

as follows

Ĥ = γ1ηNNĴz + γ2ηN Ĵ2
z (7.15)

The Ĵ2
z term is responsible for entanglement between the two modes and also the phase

diffusion in the interference pattern where as the Ĵz term signifies the differential phase shift

induced in the beginning time interval where the surroundings don’t play a significant role

in interaction with the mode evolution.

We call this to be a non-linear Ramsay interferometry because this non-linearity in the

hamiltonian arises from the interactions between atoms. Because of these interaction between

the coherent atoms, interesting observations like nonlinear tunneling and new interference

patterns emerge in the system. From the experimental results, it is confirmed that the

frequency in the fringes obtained during a spread of time where the allowed approximations

break down, gives us significant information about the strength of the non-linear interactions

and the symmetry breaking between the two modes. The condensed, zero momentum state

is supposed to be symmetric in nature and the non-condensed, finite momentum state is

anti symmetric in nature. So, when we excite some of the ground state atoms into the

next hyper-fine level, symmetry breaking occurs. This can be interpreted from the obtained

nonlinear fringe pattern which significantly deviates from the linear type fringe pattern.
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7.0.3 Spreading of a BEC wave function

The fundamental need of using the term ηN to describe the volume of the condensate. As

mentioned previously, the effect of change in volume of wave function with respect to the

number of atoms in the condensate is responsible for the sensitivity in the precision obtained.

The change in volume is because of the change in energy levels of the atoms in the condensate

which affects the kinetic energy of the condensate as a whole. This can be controlled by

changing the hardness of the applied potential. We know that when there are less number

of atoms in the condensate, there will be less repulsive interactions. The opposite case is

slightly problematic because since with more number of atoms the repulsions are strong,

the condensate tends to push itself into new dimensions. When this occurs, the effective

interactions gets diminished as it is a function of the volume the condensate is present in.

This would affect the scaling in the sensitivity measured.

The potential used to trap the atoms in the condensate is of the form

V (ρ, z) =
1

2
(mω2

Tρ
2 + kzq) (7.16)

Greater the value of q, harder is the potential. With the increasing hardness in the

potential, we can say that the expansion of the BEC ground state wave function can reduced.

The transverse harmonic potential is higher than the power law potential in magnitude.

Hence, we can say that atoms in ρ direction are tightly confined spatially rather than the

ones in z direction.

We get the dependence of ηN on number of atoms (N) and the hardness of the potential

(q) by integrating the following equation

(
− ~2

2m
∇2 + V (r) + g11N(|ψN |)2

)
ψN(r) = µNψN(r) (7.17)

This is a time independent, three dimensional Gross Pitaevskii equation which is inte-

grated using GPE toolbox in MATLAB. In the process of solving this equation, the first

approximation considered is
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Figure 7.3: Ground state wave-function of transverse harmonic potential

ψN(ρ, z) = χo(ρ)φN(z) (7.18)

χo is the ground state wave function of the transverse harmonic oscillator and φN(z) is

the solution of one dimensional Gross Pitaevskii equation

(
− ~2

2m

∂2

∂z2
+

1

2
kzq + g11NηT (|φN |)2

)
φN(r) = µNφN(r) (7.19)

g11 quantifies the scattering interactions in the condensate and ηT is the inverse of the

transverse cross-section occupied by the condensate. It is given as

ηT =
1

2πρ2
o

ρo =

√
~

mωT

(7.20)

The graph of chio(ρ) and φN(z) is given above
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Figure 7.4: Ground state wave function for longitudinal potential

The relation between etaN and number of atoms in the condensate for different q is as

follows

ηN =
q

2q + 1

(q + 1

1

) q
q+1
( k

Ng11

) 1
q+1 ( 1

2πρ2
o

) q
q+1

(7.21)

If we observe the plots, there is a sudden change in slope in at a certain value of N .

This value of N is called critical atom number. At this or beyond this number of atoms in

the condensate, the scattering interactions rise drastically, which would lead to increase in

scattering energy greater than the transverse kinetic energy of the atoms. So, usually in the

equation (7.19) , when number of atoms reached the critical atom number the kinetic energy

terms can be neglected.

These results are compared with the solutions of the one dimensional and two dimensional

Gross Pitaevskii equations, where Thomas Fermi approximation is considered. Below the

critical atom limit, the condensate is restricted to transverse dimensions and it isn’t allowed

to spread in radial directions. The reason of the spread in radial direction beyond the

critical atom limit is because at this level of scattering energy, the longitudinal potential

isn’t sufficient to confine the atoms spatially.

However the relation between ηN and number of atoms in the condensate for different
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Figure 7.5: Change of ηN with for different q

q is not the above linear relation. It varies as N−(q+1)/(2q+1). The dependence of ηN with

respect to N for different values of q is given below

7.0.4 Ramsay Fringes

We need to observe and analyze the Ramsay fringes obtained after the spatial interference of

the atoms in the condensate. As per the Josephson approximation which we have inculcated,

metrological measurements can be performed for a certain time scale after the beginning of

the evolution. The Josephson approximation is valid only in this time scale. Beyond this,

the two modes |1〉 and |2〉 change significantly during evolution. This is because of the

interaction with the surrounding environment which would induce position dependent phase

difference into the fringes obtained from the accumulated differential phase shift.

Basically, when the Josephson approximation breaks down, the Ĵ2 term in the two mode

hamiltonian dominates. As mentioned, this term is responsible for phase diffusion (loss of

information) and entanglement with the surroundings. To get the solutions of these dynamics

of the two hyper-fine levels, we need to know the solutions of the time-dependent, coupled

Gross Pitaevskii equation below
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Figure 7.6: ψN,1

i~
∂ψN,α
∂t

=
(
− ~2

2m
∇2 + V +

2∑
β=1

gα,βNβ(
∣∣ψN,β∣∣)2

)
ψN,α (7.22)

α being 1 and 2 means the existence of wave function in the two hyper-fine modes. N1 and

N2 being the number of atoms in both the modes. The quantity Im(〈ψN1| |ψN2〉) represents

the spatial overlap of the two mode wave functions. In a simpler language, how clear a fringe

is obtained is what is being observed.

The wave functions of the two modes before they spatially evolve separately looks as

follows. For |1〉 hyper-fine level, it is given above

Whereas for the atoms in |2〉, the wave function looks as give below

The detection probabilities for each hyper fine level (|1〉 and |2〉) which is calculated

involving the Josephson approximation looks as follows

p1,2 =
1

2
[1∓ Im(〈ψN1| |ψN2〉)]

〈ψN1| |ψN2〉 =

∫
d3rψ∗N,2ψN,1

(7.23)
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Figure 7.7: ψN,2

But ideally, the the probabilities would look like

p1,2 =
1

2
[1∓ sin ΩN t] (7.24)

where ΩN is the fringe frequency given as

ΩN =
NηNγ1

~
(7.25)

γ1 is the coupling constant which we are going to estimate.

The graph for Ramsay fringes for a 1000 atom rubidium BEC is shown below:

We observe that when the longitudinal potential gets harder, i.e for increasing value of q,

the fringes obtained are much more clearer and close to the idealized fringe frequency. This

happens when we observe with respect to increasing time when the modes tend not to retain

their wave function.

This behaviour of fringe pattern can be observed for higher number of atoms, say 5000.

Here the behaviour digresses from the idealized frequency at the very beginning of the time
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Figure 7.8: Ramsay fringes for 87-Rb Bec for N=1000 atoms

interval. Here too, the visibility of the fringe gets better with the hardness of the trap.

Ramsay fringes for a BEC of 5000 atoms is given below

The uncertainty in estimation of the coupling constant of the condensate can be obtained

from the Ramsay fringes obtained. According to the error estimation formula, the error is

proportional to N as follows

δγ1 =
〈(∆Ĵy)2〉

1/2∣∣∣d 〈Ĵy〉 /dγ1

∣∣∣ =
1

N3/2ηN
(7.26)
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Figure 7.9: Ramsay fringes for 87-Rb Bec for N=5000 atoms
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Chapter 8

Conclusion

We observe that the sensitivity scaling we have obtained is better than the Heisenberg scaling

which scales as N1/2 for nonlinear Ramsay interferometry performed using a two-mode Bose

Einstein condensate using rubidium-87 atoms. This increased precision enhances the use of

quantum metrology extensively in various fields. Although, the numerical simulations can

also be performed when the position-dependent phase shift is acquired for a little longer time

scales. It is interesting to analyze the Ramsay fringes obtained for this phase shift before

the two modes spatially separate with time.
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