Influence of co-surfactant chain length on volume-induced electric percolation of n-heptane/water/AOT microemulsions

Rohit Chikkaraddy and Savita Ladage* Homi Bhabha Centre for Science Education (TIFR), V. N. Purav Marg, Mumbai 88

Introduction

The percolation of conductance is an interesting physical phenomenon in w/o microemulsion. At constant temperature after a threshold volume fraction of water, exhibit significant rise in the conductance.

water

Though percolation in microemulsions has been studied in detail, the role of co-surfactant hydrophobicity and nature of electrolytes on energetics of percolation is seldom understood. In recent years, significant efforts have been made to understand the effect of co-surfactant and electrolytes on percolation phenomenon. [1].

In the current study, attempts have been made to identify the role of alkyl chain length of n-alcohols on percolation phenomenon using conductivity measurements. The AOT/n-heptane/water system reported here is microemulsion in the presence of alcohols as cosurfactants. The co-surfactant chain length dependence on percolation threshold, Scaling behavior and activation energy for percolation are determined.

Experimental setup

Fig 5:	5: Differential variation in the conductivity of the system as a function of volume fraction of wa	ater at different AOT
	concentration.	

The following equations were used to analyses of these graphs and results are shown in the Table 1.		Table 1			
1. Scaling equation:- $\sigma = K (\Phi_d - \Phi_d^t)^{\alpha} (1)$	Line of study	(Φ ^t _d)	а	∆G _{cl} /kJmol ⁻¹	
2. Thermodynamic parameter: ΔG _{cl} = RT In (Φ ^t _d) (2)	10%	0.13	0.22	-5.17	
Where, σ = conductance of microemulsion system Φ_d = volume fraction of disperse phase Φ_d^t = volume fraction at the percolation threshold K = constant related to the specific conductance of dispersion		0.29	0.87	-3.13	
		0.42	0.91	-2.19	
		0.43	1.7	-2.14	

2. Function of co-surfactant

alcohols) concentrations

Similar experiments were repeated with binary mixed alcohols systems with initial concentration of (AOT + alcohols) in heptane = 40 % w/w. Results obtained are shown in Table 3.

Table 3

co-surfactant	Φ ^t d	a	ΔG _{cl}	
			/kJmol ⁻¹	
Butan-1-ol + Pentan-1-ol	0.13	0.19	-5.2	
Butan-1-ol + Hexan-1-ol	0.11	0.08	-5.6	
Pentan-1-ol + Hexan-1-ol	0.09	0.26	-6.1	

Fig 3: setup of conductivity method used for study of the percolation phenomenon.

Results 1. Effect of water content

10, 20, 30 and 40 w/w% of initial concentration of AOT in n-heptane.

350

Fig 6 : Phase diagram in presence of alcohol as co-surfactant

Fig 7 : Volume induced percolation for 40 w/w% of AOT + alcohol in heptane

Both microemulsion phase boundary and percolation threshold are affected by changes in alcohols chain length (Fig 6,7,8).

Table 2

Alcohol	w/w ratio of AOT + alcohol in heptane	Φ ^t d	a	∆G _{cl} /kJmol ⁻¹
Butanol	40%	0.15	0.33	-4.8
Pentanol	40%	0.11	0.43	-5.7
Hexanol	40%	0.07	0.64	-6.6
Butanol	30%	0.12	0.44	-5.4
Pentanol	30%	0.07	0.47	-6.7
Hexano1	30%	0.04	0.66	-8.1

Conclusions

alcohol system

- 1. Short chain alcohols such as butanol seldom affect the microemulsion phase boundary, long chain alcohols (pentanol and hexanol) significantly lowered water uptake in the microemulsion.
- 2. Alcohols decrease the percolation threshold of w/o microemulsion significantly.
- 3. Scaling laws of the percolation are obeyed by the system but the constant and exponents are different from the expected.
- 4. Percolation is more favored for the long C-chain alcohols.
- 5. A graph between number of C-atoms in alcohol and $\Delta \Phi_d^t = \Phi_p^t - \Phi_a^t$ (where Φ_p^t and Φ_a^t are the threshold volume fraction in presence and absence of co-surfactant) shows a linear relationship. Interestingly this trend is also followed by mixed alcohol systems with their average number of C-atom.

Reference

[1] S.K. Mehta, S. Shweta and K.K. Bhasin, J. Phys. Chem. B 109 (2005) 9751 – 9759

Acknowledgment

This work is carried out at Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research as part of National Initiative on

with water content as variable.

