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Abstract

The main theme of this thesis is based on non-local type elliptic equations.
In particular, existence of infinitely many nontrivial solutions for a class of
equations driven by non-local integro-differential operator £, with concave-
convex nonlinearities and homogeneous Dirichlet boundary conditions in
smooth bounded domain in R¥ is shown. Moreover, when .Z, reduces to the
fractional Laplace operator (—A)?®, and the nonlinearity is of critical-concave
type, existence of at least one sign changing solution has been established.
These are then further generalized to the case of non-local equations with
p-fractional Laplace operator. Existence of infinitely many nontrivial solu-
tions for the class of equations with (p,q) fractional Laplace operator and
concave-critical nonlinearities have also been studied together with existence
of multiple nonnegative solutions when nonlinearity is of convex-critical type.

Also in a different project we have studied the existence/nonexistence/
qualitative properties of the positive solutions of non-local semilinear elliptic

equations with critical and supercritical type nonlinearities.
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Notation

We collect here a list of notation commonly used in this thesis.

R : the set of real numbers.

N : the set of natural numbers.

RY : N — fold cartesian product of R with itself.

B, : Ball in RY of radius r centered at origin.

B,(z) : Ball in RN of radius r centered at .

C(RY) : the set of continuous functions on RY.

C.(RYN) : the set of continuous functions on RY with compact support.
CS°(RY) : the space of smooth functions from RY — R with compact support.
A : the Laplace Operator defined by Au = SN, %u for any function
u:RY = R.

(—A)* : the fractional-Laplacian Operator.

(=A); : the p-fractional-Laplacian Operator.

Ly . integro-differential operator.

| - [|x : Norm in the Banach space X.

D% : o — distributional derivative.

Np

ps : the fractional critical Sobolev exponent N

M(RY) : the space of finite measures on RY.

[1: end of a proof.
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Chapter 1

Introduction

A brief overview of the contents of the thesis is presented here.

The main topic of the thesis is the study of non-local elliptic equations.
Fractional and non-local operators of elliptic type has caught considerable
attention in the recent decades in both pure mathematics and real world ap-
plications. From physical point of view, non-local operators play fundamen-
tal role to describe several phenomena, for instance, thin obstacle problem,
optimization, phase transition, material science, water wave, mathematical
finance, geophysical fluid dynamics etc. To a great extent, the study of equa-
tions with integro-differential operator or non-local operator is motivated by
real world application. Indeed, there are many situations in which consider-
ing a non-local operator yields significantly better model than a local oper-
ator. In mathematical finance, it is particularly important to study models
involving Lévy process which is non-local in nature. Non-local operators also
appear in ecology considering natural phenomena in ecology. In fluid me-
chanics, an example is given by surface quasi-geostropic equation which is
used in oceanography to model the temperature on the surface. In elasticity,
an important example is peierls-nabarro arising in crystal dislocation model.

In quantum physics, fractional Schrodinger equation is also an important one



CHAPTER 1. INTRODUCTION

to consider.

In contrast to classical differential operators, such as Awu, whose value at
any point z can be computed by knowing the behavior of u in an arbitrarily
small neighborhood of x, where as to define (—A)*u (s € (0,1)), one needs
the information about u in the entire R,

In this thesis, we mainly focus on the following problem with general
integro-differential operator

Zxu+ plul a4+ MulP~lu =0 in €,
(Pk)
u=0 in RV\Q,
where € is an open, bounded domain in RY with smooth boundary, with
parameters p, A and p,q will be specified later. £k and the Kernel K are
defined in Section 2.3.3.

The thesis is divided into four parts. In the first part, we have shown the
existence of infinitely many nontrivial solutions for a class of elliptic equations
driven by general integro-differential operator £ and concave-convex type
nonlinearities. In the second part, existence of at least one sign-changing
solution is shown when Zx is reduced to (—A)® and the nonlinearity is of
concave-critical type. Also, we have generalized the results of first part in the
case of p-fractional type equations. The third part consists of existence and
multiplicity results of non-negative solutions for the class of (p, q) fractional
Laplace equations with convex-critical nonlinearities. All these three parts
are studied in bounded domains of RY with homogeneous Dirichlet boundary
conditions. In the last part, we have discussed various qualitative properties
of the positive solution to fractional Laplace equations in RY with critical
and super-critical nonlinearities .

(I) Multiplicity results of elliptic equations with operator %

An interesting problem in partial differential equations is whether one can

show existence of infinitely many solutions. First, we show existence of weak



solutions using variational formulation. Variational Methods (or Calculus of
Variations) are useful techniques to prove existence of solutions of differential
equations. The main idea is to convert the problem of solving equations into
the problem of finding critical points (i.e. minimum/maximum points or
saddle points) of a functional, and each critical point usually corresponds
to a weak solution. However, it is sometimes very difficult to find out such
critical points as we seek for critical points in an infinite-dimensional function
space.

A classical topic in nonlinear analysis is the study of existence and mul-
tiplicity of solutions for nonlinear equations. There are many results on
the subject of concave-convex nonlinearity involving different local and non-
local operators. Elliptic problems in bounded domains involving concave
and convex terms have been studied extensively since Ambrosetti, Brezis

and Cerami [2] considered the following equation:
—Au= pult+uP7t in Q,

(E,) u> 0 in €,

u= 0 on 09,

2N

=25, > 0 and Q is a bounded domain in RY. They

where 1 <g¢g<2<p<
found existence of py > 0 such that (E,,) admits at least two positive solutions
for 1 € (0, pp), one positive solution for u = py and no positive solution exists
for p1 > po (see also Ambrosetti, Azorero and Peral [3] for more references
therein). Later on Adimurthi-Pacella-Yadava [1], Damascelli, Grossi and
Pacella [36], Ouyang and Shi [67] and Tang [81] proved existence of g > 0
such that for p € (0, uo), there are exactly two positive solutions of (E,)
when € is the unit ball in RY and exactly one positive solution for pu = s
and no positive solution exists for u > pg. For the local operator we also

quote [11,21,29,31,46,87] and the references therein. In past couple of years

many of these results have been generalised to the case of non-local operators,
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CHAPTER 1. INTRODUCTION

we refer a few among them [9,22, 39,63, 68| and the references therein. We
also quote here a very important paper by Chen, Li and Ou [33], where the
authors have classified all the positive solutions of the fractional Yamabe
equation.

We have proved the existence of infinitely many solutions of the equation
(Pk) when 0 < ¢ < 1 < p and p is either critical or subcritical.

(IT) Existence of sign-changing solution

In the last two decades, much attention has been given to the study of
sign-changing solutions of nonlinear elliptic equations. There are richer struc-
tures of sign-changing solutions than that of positive and negative solutions
for generic nonlinear and linear elliptic equations. To find sign-changing so-
lutions are interesting challenges mathematically compared with positive and
negative solutions because of the number and shapes of nodal domains and
the measure of nodal sets. In practice, to find sign-changing solutions is an
easy task for ordinary differential equations since one may count the num-
ber of zeros of solutions to select and to distinguish sign-changing solutions.
One cannot implement such an idea to partial differential equations since the
nodal set of a sign-changing solution of a partial differential equation may
be very complicated.

In [56], the eigenvalue problem associated with (—A)> has been studied.
Some results about the existence of solutions have been considered in [48,50,
56].

On the other hand, the non-local nonlinear problems associated with
(—A), for p = 2 have been investigated by many researchers, see for exam-
ple [76] for the subcritical case and |9, 16, 78] for the critical case. In [22]
the authors studied the non-local equation involving a concave-convex non-
linearity in the subcritical case.

In the local case s = 1, equations with concave-convex nonlinearities were



studied by many authors, to mention few, see [2,3,11,29]. When s = 1 and
p = 2, existence of sign changing solution was studied in [31].

In [47], Goyal and Sreenadh studied the existence and multiplicity of non-
negative solutions of p-fractional equations with subcritical concave-convex
nonlinearities. In [27], Chen and Squassina have studied the concave-critical
system of equations with the p—fractional Laplace operator.

We have proved existence of at least one sign-changing solution for the
problem (Pg) where Zx = (—A)®,p = 2%, q and p are lying in certain range
of intervals.

We have further generalized this result in the case of p-fractional Laplace
equations.

(IIT) Multiplicity results for (p, ¢q) fractional Laplace equations

In this section, we have discussed the existence of multiple nontrivial
solutions of (p, q) fractional Laplacian equations involving concave-critical
type nonlinearities and existence of nonnegative solutions when nonlinearities
is of convex-critical type. More precisely, we have considered equations of

the type

(A u A+ (—A)2u = 0V (z)|u]u+ |u

. P2y 4 Nf(z,u), in €,

(Fo,)
u=0 in RY¥\Q,

where 2 C R¥ is a smooth, bounded domain, A\, § > 0,0 < sy <57 <1, 1<

r<qg<p< % and pi = N]\i’;p for any s € (0,1). The functions f and V'

satisfy certain assumptions, which have been made precise later.
For s; = sy = 1, the problem reduces to the (p, ¢q) Laplacian problem

which appears in more general reaction-diffusion system
up = div(&(u)Vu) + g(z, u), (1.0.1)

where a(u) = |Vu[P72Vu + |Vu|7?>Vu. This system has a wide range of ap-

plications in Physics which include biophysics, plasma physics and chemical

9



CHAPTER 1. INTRODUCTION

reaction-diffusion system, etc. In such applications, the function u describes
a concentration, the first term on the right-hand side of (1.0.1) corresponds
to the diffusion with a diffusion coefficient a(u) and the second one is the
reaction and relates to sources and loss processes. Typically, in chemical and
biological applications, the reaction term g(z,u) has a polynomial form with
respect to the concentration u. Consequently, quasilinear elliptic boundary
value problems involving this operator have been widely studied in the liter-
ature (see e.g., [12,58,59] and the references there-in). In particular, proving
the existence and multiplicity of nontrivial solutions and nonnegative so-
lutions were of major interest in many articles, see [28, 55,88, 89] and the
references there-in.

When p = ¢ and s; = s9, (Py\) reduces to p-fractional type equations
with concave-convex nonlinearities. In recent years, existence and multi-
plicity result for nontrivial, positive and sign-changing solutions for the p-
fractional type equations with concave-convex nonlinearities have gained
considerable interest. In this regard we cite some of the related recent
works [15,21,27,32,47] (also see the references there-in).

In the non-local case s € (0,1) and p,q > 1, equations with (p, ¢) frac-
tional Laplacian and superlinear nonlinearities have also started gaining in-
terest very recently. In this regard, we mention some of the very recent
works [5,30,45].

We have proved existence of infinitely many nontrivial solutions of (P )
involving concave-critical nonlinearities. Also, when the nonlinearity is of
convex-critical type, we have established the multiplicity of nonnegative so-
lutions.

(IV) Qualitative properties of solutions

In this section, we have studied the following problem:

10



(-AYu=u —u? in RY,
we H*(RY) N LTHY(RY), (1.0.2)
©w>0 in RY,
where s € (0, 1) is a fixed parameter, (—A)?® is the fractional Laplacian in RV
q>p> % and N > 2s. When s = 1, it follows by celebrated Pohozaev
identity that (1.0.2) does not have any solution when p = 2* — 1 and ¢ > p.
In this section, we have proved this result for all s € (0, 1) by establishing the
Pohozaev identity in RY for the equation (1.0.2). We recall that (1.0.2) has
an equivalent formulation by Caffarelli-Silvestre harmonic extension method
in RY™. For spectral fractional laplace equation in bounded domain, some
Pohozaev type identities were proved in [25,26]. In [43], Fall and Weth have
proved some nonexistence results associated with the problem (—A)%u =
f(x,u) in Q and u = 0 in RN \ Q by applying method of moving spheres.
Recently Ros-Oton and Serra [71, Theorem 1.1] have proved Pohozaev
identity by direct method for the bounded solution of Dirichlet boundary
value problem. More precisely they have proved the following:
Let u be a bounded solution of
(—=AYu= f(u) in €Q (1.03)
u=0 in RY¥\Q,
where Q is a bounded C*! domain in RY, f is locally Lipschitz and §(z) =
dist(x,0€2). Then u satisfies the following identity:

u

(2s — N) /Quf(u) dx + QN/QF(U) dr =T(1+ s)? /89(5)2@ -v)dS,
where F(t) = [¢ f and v is the unit outward normal to 952 at = and T is the
Gamma function. For nonexistence result with general integro-differential
operator we cite [72].

To apply the technique of [71] in the case of = RY, one needs to
know decay estimate of u and Vu at infinity. In [71], Ros-Oton and Serra

11



CHAPTER 1. INTRODUCTION

have remarked that assuming certain decay condition of v and Vu, one can

show that (—A)*u = u? in RY does not have any nontrivial solution for

N+2s

p > N-2s"

In this section, for (1.0.2) we have first established decay estimate
of uw and Vu at infinity and then using that we have established the Pohozaev
identity for the solution of (1.0.2) for all s € (0,1) and consequently we have
the nonexistence of nontrivial solution when p = 2* — 1.

On the contrary to the nonexistence result for p = 2* — 1, we have shown
that Eq.(1.0.2) admits a positive solution when p > 2* — 1. Moreover, we
have studied the qualitative properties of solutions. More precisely, using
Moser iteration technique we have proved that any solution, u, of (1.0.2) is
in L>=(RY) and we have established decay estimate of v and Vu at infinity.
Then using the Schauder estimate from [73] and the L> bound that we have
established, we have shown that v € C°°(R") if both p and ¢ are integer and
C?st25(RN) where k is the largest integer satisfying |2ks| < p if p € N and
|2ks] < qif p € N but ¢ ¢ N, where [2ks| denotes the greatest integer less
than equal to 2ks . We also have proved that u is a classical solution. We
further showed that solution of (1.0.2) is radially symmetric.

When (2 is a bounded domain, we have proved that our problem admits
a solution for every p > 2* — 1. For similar type of equations involving
critical and supercritical exponents in the case of local operator such as —A,
we cite [19], [53], [59], [60]. For similar kind of equations with non-local
operator we cite [18,37].

Let us now explain how the work is divided and the main results in each
section. The contents of the thesis mainly corresponds to a paper, or a
preprint as follows: which are joint works with my supervisor Dr. Mousomi

Bhakta.

e M. Bhakta and D. Mukherjee, Multiplicity results and sign changing

solutions of non-local equations with concave-convex nonlinearities, Dif-

12



ferential and Integral Equations. Vol 30, No. 5-6 (2017), 387-422.

e M. Bhakta and D. Mukherjee, Semilinear non-local elliptic equations

with critical and supercritical exponents, Commun. Pure Appl. Anal.

Vol. 16, No, 5, (2017).

e M. Bhakta and D. Mukherjee, Sign changing solutions of p-fractional
equations with concave-convex nonlinearities, Topol. Methods Nonlin-

ear Analysis. Volume 51, No. 2, (2018), 511-544.

e M. Bhakta and D. Mukherjee, Multiplicity results for (p,q) fractional
Laplace equations involving critical nonlinearities, (to appear in Adv.

Differential Equations), arXiv: 1801.09925
The thesis is organised as follows:

e Chapter 2 contains the main theoretical backgrounds necessary to
introduce non-local equations. We present an overview of non-local
operators and non-local equations, particularly the fractional Laplacian
and its definition using Fourier Transform. This chapter is written in

the spririt of [38,62].

e Chapter 3 corresponds to the existence of infinitely many nontrivial
solutions of the (Pg) with concave-convex nonlinearities and homoge-

neous Dirichlet boundary conditions, where 2 is a smooth bounded

N+2s

domain in RN, N > 2s, s € (0,1),0< ¢ <1 <p< 372

We mainly
use Fountain and Dual Fountain Theorem to prove multiplicity results.

This chapter is a part of the paper [16].

e Chapter 4 deals with the existence of at least one sign-changing solu-
tion. When .Zj reduces to the fractional laplacian operator —(—A)?,

= M2 L(BE2E) < g <1, N > 6s, A = 1, we find p* > 0 such that

for any pu € (0, u*), there exists at least one sign changing solution. We

13
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use the tools of Nehari manifold and fibering map to obtain the results
of sign changing solutions on N and ¢g. The contents of this chapter is

a part of the paper [16].

e Chapter 5 is the continuation of Chapter 4. In this chapter, we study
the existence of sign changing solution of the p-fractional problem with

concave-critical nonlinearities:

(=A)u = plult'u+ |uf* 20 in Q,

u = 0 in RY\Q,

where s € (0,1) and p > 2 are fixed parameters, 0 < g <p—1, p € Rt

*+ _ _Np
and pi = N s

Q is an open, bounded domain in RY with smooth
boundary and N > ps . The contents of this chapter is borrowed from

the paper [15].

e Chapter 6 corresponds to the existence of infinitely many nontrivial
solutions for the class of (p, ¢) fractional elliptic equations involving
concave-critical nonlinearities in bounded domains in RY. Further,
when the nonlinearity is of convex-critical type, we have established
the multiplicity of nonnegative solutions using variational methods.
In particular, using Lusternik-Schinerlmann category theory, we have
shown the existence of at least catq(§2) nonnegative solutions. This

chapter is based on our work [14].

e Chapter 7 is the last chapter of the dissertation. In this chapter, we
have studied the existence/nonexistence/qualitative properties of the
positive solutions of non-local semilinear elliptic equations with critical
and supercritical type nonlinearities. This chapter is based on the

paper [17].

14



Chapter 2

Fractional Framework

Partial Differential Equations are, in general, relations between the values of
an unknown function and its derivatives of different orders. To see whether
a partial differential equation is true at a particular point, one needs only
the values of the function in an arbitrarily small neighborhood, so that all
derivatives can be computed. In order to check whether a non-local equation
holds at a point, data about the values of the function in the entire domain
is required. This is because the equation involves integral operators. An
example of such operator is

Zyeu(x) = PV. | (u(x) = u(z +y)) K (y)dy (2.0.1)

RN

for some non-negative symmetric Kernel K(y) = K(—y) satisfying

/RN min{1, [y} K (y)dy < +oo.

where P.V. is a commonly used abbreviation for "in the principal value sense'
in (2.0.1). When the singularity at the origin of the kernel K is not integrable,
these operators are also called integro-differential operators. This is because,
due to the singularity of K, the operator (2.0.1) differentiates (in some sense)

the function u. The most canonical example of an elliptic integro-differential
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CHAPTER 2. FRACTIONAL FRAMEWORK

operator is the fractional Laplacian

(=A)u(z) = C(N,s)PV. | Wdy, s e (0,1). (2.0.2)

For details, see Section 2.3.

In recent years, a great deal of attention has been devoted to fractional
and non-local operators of elliptic type. One of the main reasons comes from
the fact that this operator naturally arises in several physical phenomenon
like flames propagation and chemical reaction of liquids, population dynam-
ics, geophysical fluid dynamics, mathematical finance etc (see [6,13,34,84,85]
and the references therein). In this chapter, we will address the definition and
some properties of the fractional Laplace operator. This chapter is written

in the spirit of [62] and [38]. We have omitted the proofs.

2.1 Fourier transform of tempered distribu-
tions

In this section, we will briefly discuss the notion of Fourier transform of a
tempered distribution. Let .# denotes the Schwartz space of rapidly decaying
C*>(RY) functions whose topology is generated by the seminorms {p;};en

defined as:
p;(¢) := sup (1+[z])) Y |D(x)

z€RN lal<j
where ¢ € . (RY). More precisely, .# contains the smooth functions ¢ sat-
isfying
sup |2°D ¢(x)| < +oo,

zeRN

for all multi-indices o and S.

We denote the Fourier transform of a function ¢ € . by
1 .
Fo(€) = —— —i : 2.1.1
FOE) = gy fo ¢SO (2.1.1)

16



2.2. Fractional Sobolev spaces

We note that, for every ¢ € ., we have .%¢ € .. The inverse Fourier

transform is given by

Flo(x) = (2;)]% /R eEg(e)de. (2.1.2)

Notice that the Fourier transform (2.1.1) and the inverse Fourier trans-
form (2.1.2) are both continuous from . (R") into .#(R") and is an isomor-
phism and a homeomorphism of .%(RY) onto .7 (R").

Now, let .¥” be the topological dual of .. A tempered distribution is an
element of .. If T € ./, the Fourier transform of T' can be defined as the

tempered distribution given by

for every ¢ € ., where (-,-) denotes the usual duality bracket between .
and its dual .. Using (2.1.1), we have

u € L*(RY) if and only if Fu € L*(RY) (2.1.3)
and
[ull2@yy = | Full 2@y, (2.1.4)

for every u € L*(RY). Formula (2.1.4) is the so-called Parseval-Plancherel
formula which will be used to establish the equivalence between the fractional

spaces H*(RY) and H*(RY) (see Proposition 2.3.2).

2.2 Fractional Sobolev spaces

Let © be an open, smooth set in RY and p € [1, +00). For any s > 0, we would
define the fractional Sobolev space W*P(Q). If s > 1 is a positive integer,

W#P(Q)) denotes the classical Sobolev space equipped with the standard norm

lullwer) == D D),

0<]al<s
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for every u € W*P?(Q2). We will look into the cases where s ¢ N. Now, for a
fixed s € (0,1), the Sobolev space W#P () is defined as:

WeP(Q) := {u e LP(Q) : W e LP(Q x Q)} (2.2.1)
[z —y[>

endowed with the norm

lullwsr@) = (/Q |u(z)Pdx + |u(:z’)—u(y)|pdxdy>1” (2.2.2)

axq |z —y|Nte

where the term

= ([ O )y

|z —y| Ve

is the Gagliardo seminorm of wu.

2.2.1 Embedding results

This subsection deals with the embeddings of fractional Sobolev spaces into
Lebesgue spaces. Some basic facts are recalled briefly. For details, see [38,

Sections 6 and 7], [62, Section 1].

Proposition 2.2.1. Let p € [1,+00) and let 2 be an open set in RY. Then

the following assertions hold true:
(a) If 0 < s < s <1, then the embedding
WP (Q) — WP(Q)
is continuous. Hence, there exists a constant C1(N,s,p) > 1 such that
[ullwer@) < CLN, s, p)l[ullyen ),
for any u € W'2(Q).

(b) If 0 < s <1 and Q is of class C" (that is, with the Lipschitz boundary)
and with bounded boundary 0S), then the embedding

WhP(Q) — W*P(Q)

18
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is continuous. Hence, there exists a constant Cy(N, s,p) > 1 such that
[ullwsr@) < Co(N, s, p)l[ullwirg),
for any u € WHP(Q).
(c) If 8 > s >1 and Q is of class C™, then the embedding
WP(Q) — WP(Q)
18 continuous.

Proof. For proofs, see Proposition 2.1, Proposition 2.2 and Corollary 2.3
in [38]. 0

Now let us recall some basic properties about continuous (compact) em-
beddings of the fractional Sobolev spaces W*? into Lebesgue spaces. Here,
we will discuss three different cases, sp < N,sp = N and sp > N. For proof,
we refer [38, Sections 6-8].

Case 1: sp < N

Theorem 2.2.2. Let s € (0,1) and p € [1,4+00) such that sp < N.
Then there ezists a positive constant C' := C(N,p,s) such that, for any
u € WP(RVN),

p u(z) — u(y)[”
|u|Lp§(RN) - /]RNX]RN |z — y|Ntps dzdy,

where the exponent

«._ Np
ps T N — ps
is the so-called fractional critical exponent .  Consequently, the space

WeP(RYN) is continuously embedded in LY(RYN) for any q € [p, pt]. Moreover,
the embedding WP(RN) — L1 (RY) is compact for every q € [p,p:).

loc

In an extension domain €2, the following embedding result holds:
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Theorem 2.2.3. Let s € (0,1) and p € [1,400) such that sp < N. Let Q C
RY be an extension domain for W*P. Then there exists a positive constant

C :=C(N,p,s,Q) such that, for any u € W*P(Q),
|ul Loy < Cllullwer),

for any q € [p,pi]; that is, the space W*P(Q) is continuously embedded in
Li(QY) for any q € [p,pt]. If, in addition, 2 is bounded, then the space W*P(S)

is compactly embedded in L1(Q2) for any q € [1,p).
Case 2: sp=N

Theorem 2.2.4. Let s € (0,1) and p € [1,400) such that sp = N.
Then there exists a positive constant C := C(N,p,s) such that for any
u € WP(RY),

|ulpaeyy < Cllullwss@ny,
for any q € [p,+00); that is, the space W*P(RY) is continuously embedded
in LY(RYN) for any q € [p, +00).

For an extension domain €2, we have the following embedding result:

Theorem 2.2.5. Let s € (0,1) and p € [1,400) such that sp = N. Let Q C
RY be an extension domain for W*P. Then there exists a positive constant

C :=C(N,p,s,Q) such that, for any u € WP(Q),
[ulpa(e) < Cllullwsr(0),

for any q € [p,+00); that is, the space W*P(Q) is continuously embedded
in LY(Q) for any q € [p,+00). If, in addition, Q2 is bounded, then the space
W=P(Q) is compactly embedded in LI(Y) for any q € [1,+00).

Case 3: sp > N

We denote by C%*(£2) the space of Holder continuous functions endowed with

20



2.2. Fractional Sobolev spaces

the standard norm

ulxr) —uly
||u||COvO‘(Q) = |U|Loo(Q) -+ sup M'
z,y€Qx#£y |{L‘ — y|

Theorem 2.2.6. Let s € (0,1) and p € [1,+00) such that sp > N. Let Q be
a C% domain of RN. Then there exists a positive constant C := C(N,p, s, )
such that for any u € W*P(Q), we have,

HUHCO*‘*(Q) < C“UHWW(Q),

with o := (sp— N)/p; that is, the space WP () is continuously embedded in
C%(Q).

As a consequence of Theorem 2.2.6, we have the following result.

Corollary 2.2.7. Let s € (0,1) and p € [1,400) such that sp > N. Let §2
be a C%' bounded domain of RN. Then the embedding

WeP(Q) — C%F(Q)

is compact for every B < a, with a :== (sp — N)/p.

2.2.2 The Sobolev space H*(?)

This section is devoted to the case p = 2 where we deal its relation with the

fractional Laplacian. Let Q be an open subset of RY and denote
H*(Q) := W*2(Q),

for any s € (0, 1). In this case, we note that the preceding fractional Sobolev
space turns out to be a Hilbert space. The inner product on H*(£2) is defined
by

_ (u(x) — u(y))(v(z) —v(y))
(U, V) o) = /Qu(x)v(x)dx + e 7 — g dxdy,
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for any u,v € H*(Q2) induces the norm given in (2.2.2) when p = 2. That is,

for every s € (0,1), we have,
HY(RY) := W(RY) = {u € L*(RY) : [u]pe@y) < +00}, (2.2.4)

where [-]ys2@ny is defined in (2.2.3).
Alternatively, we can also define the space H*(R") via a Fourier trans-

form, that is, we define
Hs(RY) := {u c L*(RY): /RN(I + y**)| Fuly) Pdx < —|—oo}, (2.2.5)
for any s > 0 and
Hs(RY) := {u e S /RN(l + Y1) | Fuly)|Pde < +oo},
for every s < 0.

The equivalence between the space H*(RY) defined in (2.2.5) and the one

defined by the Gagliardo norm in (2.2.4) is given in Proposition 2.3.2.

2.3 The fractional Laplacian operator

A very popular non-local operator is given by the fractional Laplacian (—A)*
with s € (0,1). This operator and its generalization appear in many areas
of mathematics, like harmonic analysis, probability theory, potential the-
ory, quantum machanics, statistical physics etc. This section deals with the
definition of this operator and its properties.
Let s € (0,1) and define the fractional Laplacian operator (—A)* : . —
L*(RY) by
(~A)u(e) = C(N,s) lim [ Wdy, reRY,  (2.3.1)
where B.(r) is the ball centred at z € RY with radius ¢ and C(N, s) is the

following (positive) normalization constant:
. 1—cos(&) .\
C(N,s) == (/RN g (2.3.2)
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2.3. The fractional Laplacian operator

with &€ = (£1,¢'),& € RV~1. One can also define (—A)?® in the principal-value

sense by setting

u(z) — u(y) . u(z) — u(y)
PV. dy = 1
r o — V2 T ok Jew o) o — gV
that is,
(—AYu(n) = (N, s)PV. [ U =uW) g gy (2.3.3)

RN |z — y|N+2s
The next proposition tells us that the singular integral defined in (2.3.3) can

be written as a weighted second-order differential quotient.

Proposition 2.3.1. Let s € (0,1). Then for any u € .7,

(~8)u(e) = —5C(N,s) [ MEEIEEE IR gy g e g

(2.3.4)

For proof, see [62, Proposition 1.10].
Remark: Let s € (0,1/2). Notice that for any v € . and for a fixed

x € RY, we have that,

u(z) — u(y) [z =yl
———dy < C/ ——d
/RN oy =Y = e oy

1
+ Julpe@y) /RN\B(%R) |z — y[N2s

R 1 +o0 1
C /0 szdp—l—/R p28+1dp < 400,

where C' is a positive constant depending only on the dimension N and the

dy

IN

L*- norm of the function u. So, in the case s € (0,1/2), the integral

[ M),

N |z — N2

is not singular near the point x, so one can get rid of the P.V. in (2.3.3).

Proposition 2.3.2. Let s € (0,1) and C(N,s) be the constant defined in
2.8.2. Then, for any u € H*(RY),

[l ey = 20N, 9)™ [ Jef2 | Fu(€) P, (2:3.5)

23



CHAPTER 2. FRACTIONAL FRAMEWORK

Moreover, H*(RN) = H*(R")

For proof, see [62, Corollary 1.15].

2.3.1 The fractional p-Laplacian

In recent years, great attention has been devoted to a new non-local and
non-linear operator, namely the fractional p-Laplacian operator (—A)Z, for

p € (1,40),s € (0,1), and u smooth enough, it is defined as,

(=AYu(z) = PV. lu(z) — uly)P?(u(z) — u(y))dy (2.3.6)
p V. RN ’x _ y’NJrSp ..
~ lim [u(z) —u@)P (@) —u) e
- RN\B. (2) 2z — y[NTrs dy, = e€R".

Up to some normalization constant depending on N,p, and s, this def-
inition is consistent with one of the fractional Laplacian (—A)® in the case

p=2.

2.3.2 The fractional Laplacian via Fourier transform

s

In this section, we show that the fractional Laplacian (—A)® can be viewed

as a pseudo-differential operator of symbol |£|* (see [38, Section 3]).

Proposition 2.3.3. Let s € (0,1). Then, for any u € .7,
(—=A)'u(z) = Z7HE*(Fu)(§))(x),z € RY, (2.3.7)
where F 1 is the inverse Fourier transform defined in (2.1.2).

For proof, (see [62, Proposition 1.17]).
The following lemma ensures the relation between the fractional Laplacian

operator (—A)* and the fractional Sobolev space H*(RY) (see [38]).

Proposition 2.3.4. Let s € (0,1) and C(N,s) be the constant defined in
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(2.3.2). Then , for any u € H*(RY),
[u]%S(RN) = 2C(N, S)_l‘(_A)S/2U|%2(RN). (2.3.8)

For proof, see [62, Proposition 1.18].

2.3.3 A generalization of (—A)*

In this section, we introduce a general integro-differential operator that gen-

eralizes (—A)®. For any fixed s € (0,1), the operator L is given by

Lru(zx) = /RN (u(a: +y) +u(x —y) — 2u(:c))K(y)dy, (2.3.9)

for every # € RY, where the Kernel K : RN \ {0} — (0, +00) is a function

satisfying the following:
mK(x) € L*(RY) with m(z) = min{|z|? 1}; (2.3.10)

there exists 6 >0 such that K(z) > 6|z|~ V2 for any z € RV \ {0};
(2.3.11)

and K(z)= K(—x) forany x¢cRY\{0}. (2.3.12)

A model for K is given by the singular kernel K () = |z|~™*P)_ In this case
Zk (up to a normalization constant) reduces to the fractional p-Laplace
operator — (—A)’, defined in (2.3.6) and to the fractional Laplace operator
— (—=A)” defined in (2.3.4) when p = 2.

2.4 Fractional Sobolev-type space

One of the goals of this chapter is to study non-local problems driven by

(—A)*® and its generalization and with Dirichlet boundary data via variational
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methods. To this purpose, we need to work in a suitable function space. For
this, we consider the following functional analytical setting (see [62, Section
1.5]).

Let s € (0,1) be fixed and © be an open-bounded subset of RY with
N > 2s. Define the set @ as:

Q= (RY x RM)\ (Q° x Q°),

where Q¢ = RM \ Q. Furthermore, assume K : RY \ {0} — (0,+00) be
a function satisfying (2.3.10) and (2.3.11). By X () we denote the linear

space of Lebesgue measurable functions from R" to R such that if g € X (Q)
then glo € L*(Q2) and

(9(x) — g/ K (x —y) € L*(Q, dzdy).

The space X (£2) is endowed with the norm defined:
, 1/2
fullxioy = lulue + | [u(e) —u@) K@ —)dady) . (24.0)

Moreover, X, x(Q2) = {u EX(Q):u=0 ae in RV Q} with the norm

g ey = ( [ ) — )P o~ yedy)

With this norm, Xy x(€2) is a Hilbert space with the scalar product

(1,0 5,00 = [ (00) = uw)) (v(2) = v()) K (& — y)drdy,

( see [75, Lemma 7]). For further details on X (£2) and Xy x(2) and also for
their properties, we refer to [38].

In place of general K, if we have fractional p-Laplacian operator, we define

Xsp(©)

_ p
= {u : RY — R measurable |u|q € LP(2) and dedy < 00.
Q |r—y|re
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The space X ,(2) is endowed with the norm defined as

e 1/p
Xop(@ = |ulzog@) + </ﬁ |N4sp dxdy) '

Then, we define Xo;,(Q) = {u € X;,(Q) :u =0 ae in RV Q}

Xs,p(92)

or equivalently as C2°(2)

[l

and for any p > 1, X(,(2) is a uniformly

convex Banach space (see [47]) endowed with the norm

lu(z) — u(y)‘pdxdy> l/p.

[l o0 0 = ( o Jo— gVt

Since u = 0 in RV \ 2, the above integral can be extended to all of RY.
The embedding Xo,,(2) < L"(f2) is continuous for any r € [1,p}] and
compact for r € [1,p¥). For further details on X ;,(€2) and it’s properties
we refer [38]. In the case p = 2, for the sake of convenience, we denote the
fractional space Xo(£2) = Xo2(£2) and the norm as || - || x,). In the next
result we give some connections between the space X (€2) and the usual

fractional Sobolev spaces H*(RY).

Lemma 2.4.1. The following assertions hold true.

(a) Let K : RN\ {0} — (0,400) satisfies (2.3.10),(2.3.11) and (2.5.12).
Then Xo (Q) € H*(RY) and moreover,

[llzs @) < l[olls@yy < llvllx@),
where c(0) = max{1,0/2} with 6 given in (2.5.11).
(b) Let K(x) = |z|~N*29): Then

Xoxg( Q) ={ve H*RY):v =0 aein RY\Q}.
For proof, see [ [78],lemma 7]. Now, we consider the function

1/2
Xox () 20 = ||v]xy k@) = (/ lv(z) —v(y)]PK (z — )dxdy) (2.4.2)
and we take (2.4.2) as norm on X .
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Lemma 2.4.2. Let s € (0,1), N > 2s and K : RV \ {0} — (0, +00) satisfy
(2.8.10),(2.3.11) and (2.3.12). Then

(a) there ezists a constant ¢ > 1, depending only on N, s,0 and Q such that

for any v € Xy g,

/Q (@) —v() 2K (r—y)dady < [v]% < c /Q (@) —v(y)PK (2 —y)dedy,

that is, (2.4.2) defines a norm on Xy i equivalent to the usual one given

in (2.4.1).

(b) (Xox, ||-llx0x) @5 a Hilbert space with the scalar product
(1.0) 5, = | () = @) (0(2) — v() K (& — y)drdy.

For proof, see [75, Lemmas 6 and 7].
Let us look into some results related to the embeddings of the spaces
Xo.x and H*(RY) into the usual Lebesgue spaces, explained in the following

results.

Lemma 2.4.3. Let s € (0,1), N > 2s and K : RV \ {0} — (0, +00) satisfy
(2.5.10),(2.3.11) and (2.3.12). Then the following assertions hold true:

(a) if Q has a Lipschitz boundary, then the embedding Xo x — L7(RY) is

compact for any v € [1,2*);
(b) the embedding Xo x — L* (RY) is continuous.

For proof, see [78, Lemma 9.
Thanks to the above lemma, we can define the positive constant Sk given
by

SK = SK(U), (243)

inf
’LLEXO’K\{O}
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where, for any u € Xy i \ {0},
Lo ) = ulm)PK (@ — y)dady
RN xRN

( /Q lu(z) Z*dx> "

Note that since in formula (2.4.4) this integral over € can be extended to all

Sk (u) == (2.4.4)

RN (being u = 0 a.e. in Q°), then the function u — Sk (u) does not depend
on the domain 2, while, in general, Sk does. The counterpart of the above
lemma in the usual functional Sobolev spaces is given by the following result
proved in [38, Theorem 6.5].

For s € (0,1), define

‘s . u(zr) —u(y)|?
WeP(RY) = {u € LPs(RY) : /R?N dedy < oo}

and

[u(z) — u(y)l?
/]RQN ‘x_y‘N+sp dIdy

Sep= _ inf . . (2.4.5)

ueWs» (RN)\{0} N\ 7E
[l
RN

For p = 2, we denote S as Sy for the sake of simplicity.

2.5 Harmonic extension to the upper half-
space

In this section we recall the other useful representation of fractional laplacian
(—A)®, which we will use to prove decay estimate of solution at infinity. Using
the celebrated Caffarelli and Silvestre extension method, (see [27]), fractional
laplacian (—A)® can be seen as a trace class operator (see [8,27,47]).

Let u € H*(RY) be a solution of the problem

(=A)u = f(u) in RY. (2.5.1)
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Define w := FE,(u) be its s- harmonic extension to the upper half space

]Rf *1 that is, there is a solution to the following problem:

div(y'"*Vw) =0 in Ry
’ (2.5.2)

w=u on RY x {y=0}.

Define the space X2*(RY™) := closure of C°(RY ™) w.r.t. the following

norm 1
2

[wllys = Hwa%(Rfﬂ) = <k23 /RN+1 y' Vw|2dxdy> ,
+

I'(s)

() 1S @ normalizing constant, chosen in such a way that

where ko, =

the extension operator E, : H*(RY) — X2(RY*™!) is an isometry (up

to constants), that is, |[Esully, = [lullgsgny = | (=A)" ul 2@y (see [39]).
Conversely, for a function w € X2*(RY*"), we denote its trace on RY x {y =
0} as:

Tr(w) := w(z,0).

This trace operator satisfies:

[[w(-, 0)]

Hs(RN) — ||Tr(w)| 5 (RN) < ||w||25- (2.5.3)

Consequently,

b
2" 1-2s 2
</RN lu(z)| da:) < S(N,s) /}M+1 y | Vw(x, y)|“dxdy. (2.5.4)
Inequality (2.5.4) is called the trace inequality. We note that H*'(RY ™! 41=25),
up to a normalizing factor, is isometric to X2*(RY ™) (see [47]). In [27], it is

shown that F(u) satisfies the following:

ow ow
= Y lim 22 ().
25 Fas oY By (2, y)

(=4)%u(z)
With this above representation, (2.5.2) can be rewritten as:

div(y"*Vw) =0 in RN
ow

81/25

(2.5.5)

= f(w(-,0)) on RN,
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Chapter 3

Multiplicity results of elliptic

equations with operator £

The aim of this chapter is to investigate the existence and multiplicity of
weak solutions to non-local equations involving a general integro-differential
operator of fractional type with concave-convex nonlinearities. This chapter
is based on the paper [16]. In literature, there are many tools to obtain mul-
tiplicity results, among them are Lusternik-Schnirelmann category theory,
Morse theory, minimax methods, critical point theory (to mention a few). In
this chapter, we have proved existence of infinitely many solutions via "Foun-
tain Theorem" and "Dual Fountain Theorem" due to the pioneering works of
Bartsch and Willem (see [10, 11, 86]).

In this chapter, we focus our attention on the following equations driven
by a non-local integro-differential operator £k with concave-convex nonlin-

earities and homogeneous Dirichlet boundary conditions,

Zxu+ plulu+ Muflu=0  in Q,
(Pk)
u=0 in RV\Q,

where € is a smooth bounded domain in RY, s € (0,1) is fixed, N > 2s,

0<g<l<p< %fgj and L is given in (2.3.9) with the Kernel
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K : RN¥\ {0} — (0,+00) is a function satisfying (2.3.10),(2.3.11) and
(2.3.12).

Definition 3.0.1. We say that u € Xo x(Q2) is a weak solution of (Px) if

[ o)~ u))(6() ~ o) K w — y)dady = p [ u(e)l u(a)o(e)da
oA /Q () P~ () (o) de

for all ¢ € Xo k().

3.1 Variational formulation

The weak solutions of (Px) can be found as critical points of the energy

functional
R = g [ )~ u)PE G — y)dedy — 2 [ e
K 2 Jr2N qg+1Ja
A
- PHdg. 1.1
S (3.1.1)

Thanks to the Sobolev embedding Xo x(Q) < L* (RY) (see [78, Lemma 9)]),
I is well defined C" functional on Xo x(€2). It is well known that there
exists a one-to-one correspondence between the weak solutions of (Px) and
the critical point of 1 ;1\ on Xox(€2). We define the best fractional critical

Sobolev constant Sk as

[ o) — o) K (@ — y)dady
Sk = inf R . (3.1.2)

vEXo, Kk (2)\{0} </ o(z) 2*>2/2*
Q

3.2 Abstract Theorems

To prove infinitely many nontrivial solutions of the above stated problems,
we apply the Fountain Theorem and the Dual Fountain theorem which were

proved by Bartsch [10] and Bartsch-Willem [11] respectively (also see [86]).
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As usual for critical point theorems, we need to study the compactness prop-
erties of the functional together with its geometric features. With respect
to the compactness, we need to prove that the functional satisfies the clas-
sical Palais-Smale (PS). assumption. But observe that X, x(Q) < L¥ ()
is not compact (see [78, Lemma 9-b]). Hence the (PS). condition does not
hold globally for all ¢ and we have to prove that the energy level of the cor-
responding energy functional lies below the threshold of application of the
(PS). condition.

We start this section by recalling two abstract theorems namely the Foun-
tain theorem and the Dual Fountain Theorem. For this, we need some defi-

nitions from [86].

Definition 3.2.1. The action of a topological group G on a Banach space

X is a continuous map

GxX— X:lg,u — gu,

such that

lu=u, (gh)u=g(hu), uw gu is linear.
The action is isometric if ||gu|| = ||u||. The space of invariant points is
defined by

Fiz (G):={ue X :gu=u VgeG}.

A set A C X is called invariant if gA = A for every g € G. A functional
p : X — R s called invariant if p o g = @ for every g € G. A map
f: X — X is called equivariant if go f = fog for every g € G.

Definition 3.2.2. Let G be a compact group on Banach space X. Assume
that G acts diagonally on V*

g(vl7"' 7Uk) = (gvh”' 7gvk)7
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where V' is a finite dimensional space. The action of G is admissible if
every continuous equivariant map OU — VF=1 where U is an open bounded

invariant neighborhood of 0 in V¥, k > 2, has a zero.

By Borsuk-Ulam Theorem , the antipodal action of G :=7/2 on'V :=R
is admissible (see [86, Theorem D.17]).

We consider the following situation:

(A1) The compact group G acts isometrically on the Banach space X =

Djen X, the spaces X; are invariant and there erists a finite dimensional
space V' such that, for every j € N, X; ~ V and the action of G on V is

admissible.

Definition 3.2.3. Let ¢ € CY(X,R). We say that {u,} is a Palais-Smale
sequence (in short, PS sequence) of ¢ at level c if p(u,) — ¢ and ¢'(u,) —
0 in (X)), the dual space of X. Moreover, we say that ¢ satisfies (PS).
condition if {u,} is any (PS) sequence in X at level ¢ implies {u,} has a

convergent subsequence in X.

Theorem 3.2.4. [Fountain Theorem, Bartsch, 1993] Under the assumption
(A1), let p € CY(X,R) be an invariant functional. If, for every k € N, there

exists 0 < rp < pg such that

(A2) ap = maxycy, |julj=p, (1) <0,

(A3) by = infuez, |ju)j=r, p(u) = 00 as k— oo.
(A4) ¢ satisfies (PS). condition for every ¢ > 0,
then ¢ has an unbounded sequence of critical values.

Theorem 3.2.5. [Dual Fountain Theorem, Bartsch-Willem, 1995] Under
the assumption (A1), let o € CY(X,R) be an invariant functional. If, for

every k > ko, there exists 0 < ry < px such that
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(D1) ay, := infyez, |jujj=p, (1) >0,
(D2) by, := maxycy,,||u||=r, (1) <0,
(D3) dy, := infuez, jju<p, p(u) =0 as k—oo.
(D4) For every sequence u,; € X and c € [dy,0) such that
uy, €Yy, o(ur) — ¢ and go|'yrj (ur;) =0 as r; — oo,
contains a subsequence converging to a critical point of v,

then ¢ has a sequence of negative critical values converging to 0.

3.3 Existence of infinitely many solutions

3.3.1 Critical Case

First we study the critical case p = 2* — 1, A\ = 1, that 1is,

) Lru+ plul u + u)* Pu =0 in €,
(P'k)
u=0 in RN\ Q.
Theorem 3.3.1. Let Q be a bounded domain in RN with smooth boundary,
N > 2s. Then there exists p* > 0 such that for all p € (0, u*), problem
(P'k) has a sequence of non-trivial solutions {u,},>1 such that I(u,) < 0
and I(u,) — 0 as n — oo where I(-) is the corresponding energy functional

associated with (P k).

Remark 3.3.2. Here we would like to mention that when K (z) = |z|~NV+29),
it has been proved in [9] that there exists A > 0 such that, (P'k) has at least
two positive solutions when p € (0, ), no positive solution when p > A and

at least one positive solution when p = A. Chen-Deng [32] have proved that
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(P'x) has at least two positive solutions when p € (0, ug) for some pg > 0

under the assumption that

N
There ezists ug € Xo x(2) withug > 0 a.e. in§Y, such that sup I(tug) < %S};.
>0
(3.3.1)
When K(x) = |x|~W+29)  condition (3.3.1) can be guaranteed by results of

[78].

We choose an orthonormal basis {e;}32, of Xox(S2) (see [76]). Neat, we
consider the antipodal action of G := Z/2. Define

k =
j=1 j=k
Lemma 3.3.3. If 1 < p+1 < 2% then we have that

B, := sup |u| oty = 0 as k— oo.
u€Z,|lullxg o (@)=t

Proof. Clearly, 0 < fBri1 < Pg. Thus there exists § > 0, such that
limg . 81 = B. By the definition of Sy, for every k > 1, there exists u; € Z;
such that ||uk||X07K(Q) =1 and |ug|rr+1(0) > 2. Using the definition of Zy, it
follows up — 0 in Xy g (€2). Therefore Sobolev embedding implies u;, — 0 in

LPTH(Q)) and this completes the proof. O
Proof of Theorem 3.3.1

Proof. The energy functional associated to (P'f) is the following

1

1 *
I(u) = lu(z) — u(y)]QK(x — y)dxdy — qil /Q |u\q+1dx ~ o /Q |u Y dx

5 R2N
Lo H / g+1 1
9 ||U||X07K(Q) q+ 1 /o |U| X 2 Jo ’u

where p > 0. We will show that I satisfies all the assumptions of Theorem
3.2.5. X;,Y;, Z; are chosen as in (3.3.2) and G := Z/2. Therefore (Al) is

VEESE

> da, (3.3.3)

satisfied.
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Next to check (D1) holds, we define

Br = sSup ’u‘Lq“(Q)? Ci= sup : Q)
UEZIWHUHXOYK(Q)ZI “GXO,K(Q)yHU“XO’K(Q):l
1
2% —2
;and R = | o It is easy to see, ||u||x, (@) < R implies 5+ @ =
illull%, (o) Therefore for u € Zy, ||ullx, () < R, we have
2
> HuHXo,K(Q) q+1 q+1 c 2%
Iw) > R oy — o Nl o
2
||U||X0,K(Q) q+1 q+1
+1
Choose py := ( ’f:l )1iq. Using Lemma 3.3.3, we see that f; — 0 as k — oo.

As a consequence py — 0. Thus for k large, u € Zj, and ||ul|y, () = pr We

have I(u) > 0 and (D1) holds true.

To see (D2) holds we note that Y} is finite dimensional and in finite
dimensional space all the norms are equivalent. Therefore (D2) is satisfied
if we choose ry > 0 small enough (since ¢ > 0) and therefore we can choose

Tk:p?k.

For k large, u € Z,||ully, @ < Pk, we have from (3.3.4) that d >
P 410 On the other hand as p > 0 from the definition of I(u) it
follows I(u) < %. Thus dy < %pi Using both upper and lower bounds of dj,

and Lemma 3.3.3, we see that (D3) is also satisfied.

To check the assertion (D4), we consider a sequence {u,, } C Xo ()

such that as

u y €Y, I(u.)—c, Ily (u.)—0 as r; — oo. 3.3.5
J J Jj T J J

Claim: There exists £ > 0 such that if p > 0 is arbitrarily chosen and

s 2*
c< NSK‘ — kpr=a1, (3.3.6)
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then {u,,} contains a subsequence converging to a critical point of I, where

{u,,} is as in (3.3.5).

Assuming the claim, first let us complete the proof. Towards this, we

2% —g—1
N 23

2s N *
choose p* = SJSV% . Then p € (0,p*) implies 757 > k,w*qul.

Thus, if ¢ € [dy,0) then we have
c<0< Sé} e
N a '

Hence applying the above claim, we see that (D4) holds true. Therefore the
result follows by Theorem 3.2.5.

Here we prove the claim dividing into four steps.

Step 1. {u,,} is bounded in Xg x(£2).
This follows by standard arguments. More precisely, since I(u,,) = ¢+ o(1)
and <]’(urj) urj> = o(1)||ur, || xo (), computing I(u,,)— 3 <I’(u7~j), urj> , We

get \ur < Cr H ur, | x40 (@)0(1) + Colu,, ‘YL?;L( Q) Therefore using the

@)
definition of I along with Sobolev inequality yields

1
e, 1 ey < € [1+ |l e 2)0(1) + T 1 ()]

and hence the boundedness follows. Therefore passing to a subsequence if
necessary we may assume u,, — u in Xox(Q), u,, — u in L7(RY) for

1 < v < 2* and point-wise.

Step 2: {u,,} is a PS sequence in X (f2) at level ¢, where c is as in
(3.3.6).
To see this, let v € X x(2) be arbitrarily chosen. Then

<I’(urj),v> Uy, V /|ur z Qurjvdx—u/ |y, |9 vdz. (3.3.7)
Q
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3.3. Existence of infinitely many solutions

Therefore, using Sobolev inequality and Step 1 we have,

[(I'(w),0) | < ||UrjHXO,K(Q)HUHXO,K(Q)+/Q|urj 2**1!U|d$+ﬂ/9\urj\q|v\d1f
<l xo @ |0l xo @) + el g e 10150,
+ capllun %, c@l1v]]xo k@)
< (I xo k@) + el g ) T catllun %, @) ol k@)
< Olollxo k(9

which in turn implies ||I'(u,,)||(x, @)y < M for all j > 1.
By the definition of Y, , there exists a sequence (v,nj) € Y, such that

v, — v in Xo g () as r; — oo. Thus

(I (ur,),0) |

IN

(T () vm, ) |+ (T ()0 = v ) |

< Ty () @y 101 x0 (@)

I )o@y l10 = v lxo -
Combining the hypothesis I’|y7,j (ur;) = 0 as r; — oo (see (3.3.5)), Step 1
and the fact that {I'(u,,)} is uniformly bounded, we have | <I "(ur,), v> | =0
as r; — oo. This in turn implies that {u, } is a PS sequence in Xo x(€2) at
level ¢, where ¢ is as in (3.3.6).

Step 3: u satisfies (P'k).

Using Vitali’s convergence theorem via Holder inequality and Sobolev in-
equality, it is not difficult to check that we can pass the limit r; — oo
in (3.3.7). Thus we obtain (/'(u),v) = 0 for every v in X, (£2). Hence,
Lreuw+ plultu + ul* Pu=0 in Q.

Step 4: Define v, := u,;, —u. Then it is not difficult to see that,
[lor ey et = Nt 1 o) — Nl @) + (D). (3.3.8)

On the other hand, by Brezis-Lieb lemma, we have

[tr, T2 = V7, 7200 + [|Z2() + (1) (3.3.9)
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Therefore by doing a straight forward computation and using I(u,,) — ¢, we

get
1 9 1 o
I(“) + §HUT‘]IHXO’K(Q) - ?’Urj‘Lz*(Q) — C. (3310)
Since <[’(urj),urj> — 0 and (I'(u),u) = 0, from (3.3.8) and (3.3.9), we also
have

||,U'f'j||§(07K(Q) - |U7"j|%*2*(ﬂ) — 0.

Therefore, we may assume that

Hver.%(o,K(Q) — b, oy, QLz*(Q) —b.

By Sobolev inequality, |[v,,|[%, @) = ([vr]72 ) As a result, we get

Q)
b > Sgb*? . We note that if b = 0, then we are done since that implies

N
U, — win Xox(€2). Assume b # 0. This in turn implies b > SZ Then by

J

(3.3.10), we have
b b
I(u)=c— -+ — 3.1
(u) =c 5t 5 (3.3.11)

It is easy to see that (I'(u),u) = 0 implies

I(u) = |

« 1 1
ul7ar () + <2 e 1>M|U|(fqri1 (3.3.12)

Combining (3.3.11) and (3.3.12) and using ¢ € (0,1), we obtain

11 ,
¢ = o+l +a3 - q+1> R
S 2s 2% 1 —1 +1
= N(SIJ(V L2*(Q) ) 2(1 + ):u’l %2*(9)
5 oz | 52 +1
where a := " > 0. We define
. 1
g(t) = R - apt™, t>0 and ki=-——Tp— mlng( ). (3.3.14)
N pTaT 20

By elementary analysis it is easy to check that if ¢y = (a”N )2*—q T, then

g(t) <0 fort € (0,t), g(t) > 0 for t >ty and g(0) = 0. Hence, there exists
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3.3. Existence of infinitely many solutions

t" € (0,ty) for which ¢ attains minimum and min;~ g(t) < 0. Thus k£ > 0.
Hence from (3.3.13) we have

s N 2*
c> NSIQ(S —kuQ*—q—l,

which is a contradiction to (3.3.6). Therefore, b = 0 and the claim follows.

O

3.3.2 Subcritical case

In the succeeding theorem, we prove the existence of infinitely many nontriv-

ial solutions in the subcritical case.

Theorem 3.3.4. Let Q) be a bounded domain in RN with smooth boundary,
N >2s,5€(0,1). Assume 1 <p <2*—1. Then

(a) For all A > 0, u € R, (Px) has a sequence of nontrivial solutions
{ur}r>1 such that I)(up) — oo as k — oo. Furthermore, if X >

0, p =0, then [lugl x, (@) — 00 as k — oco.

(b) For all p > 0, A € R, (Px) has a sequence of nontrivial solutions
{vr}r>1 such that I3 (vp) — 0 as k — oo. Furthermore, if >0, A <0,

then |lvkl| x, (@ — 0 as k — oc.

Remark 3.3.5. When K(z) = |z|~"+2%) Brandle, et. al [22] have proved
that there exists A > 0 such that, (Px) has at least two positive solutions
when p € (0,A), one positive solution when u = A and no positive solution
when p > A. For general K satisfying assumptions (2.3.10)-(2.3.12), Chen-
Deng [32] have proved that there ezists at least two positive solutions of (Px)
when A =1 and p € (0, o) for some py > 0.

Proof of Theorem 3.3.4
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Before starting the proof we like to remark that when p > 0, A > 0,
Theorem 3.3.4 (a) also follows from [20, Theorem 1]. Here we give a proof

which covers the entire range mentioned in Theorem 3.3.4.

Proof. (a)We assume g € R and A > 0. We prove part (a) using Fountain
theorem 3.2.4. Energy functional corresponding to (P ) is defined by I} (see
(5.1.1)). We need to verify that I satisfies (A1)-(A4) of Theorem 3.2.4. We
choose X;,Y;, Z; as in (3.3.2) and G := Z/2. Therefore, (Al) is satisfied.

Next to check (A2) holds, we observe that,

1 W 1 A 1
I(w) < 5llullk, @ Tlu T ~ o 1|U|§i+1 Q)"

Since on the finite dimensional space Y} all the norms are equivalent, A > 0
and 1 < g+1 <2< p+1,itis easy to see that (A2) is satisfied if we choose

pr > 0 large enough.

To see (A3) holds, we observe that

[|u ||x © M by
» 0.x(@) / atlyg / Py (3.3.15
) > M [ lae = 2 [t (33.15)

Applying Holder inequality followed by Young’s inequality we obtain
1
[ ulda < <i5 5 [ lude + 2,
P+

Substituting back in (3.3.15), we obtain

1 iz (P —q)|pl
Na) > = 2 S N el B / pl W I Q).
fitw) 2 5 el ey <p+1 ol 1) ul (p+1)(q+1)|QI

Define

B = sup |u| Lt1(q)-
u€Zy, llullx, o @=1

Hence on Z;, we have

()\ + ‘MD P || ||p+1 . (p - q)‘:u‘

il e CES

Lo
IS(U) 2 ) ||U||XO,K(Q)
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Choosing 7, ” = (A + |p|) 87", we have, for u € Z; and [l x, @) = Ths
11 (P —q)lyl
O R L .
00> (5= b= G
Lemma 3.3.3 yields f; — 0 and hence r, — oo as k — oco. Therefore (A3) is

satisfied.

In order to verify (A4), let {u,} C X, such that
I;L\(un) — ¢ and (I;/L\),(Un) =0 in (Xox(Q)),

where ¢ > 0 and (X x(€2))" denotes the dual space of X x(€2). Following the
same calculation as in Theorem 3.3.1, we get {u,, } is bounded in Xy x(€2) and
there exists u € X x(€2) such that up to a subsequence u,, — u in Xy x(2)
and u, — u in L"(RY) for every r € [1,2*). Since <(Iﬁ)’(un),v> = 0 for
every v in Xy x(€2), passing the limit using Vitali’s convergence theorem, it

follows <(]/;\)’(u), v> = 0 for every v in X x(€2). Therefore

o(1) = (1)) (un) = (1)) (u), up — u)
= ||un_u||§(07K(Q)
= (™ e =l ) — )

~ / (Jttn [PVt — P~ 0) (10 — )
Q

Again, passing the limit by Vitali, we obtain u, — u in Xy x(€2). Hence,
(A4) is satisfied. Therefore by Theorem 3.2.4, it follows that (Px) has a
sequence of nontrivial solution {wy}r>1 such that Il;\(wk) — o0 as k —
oo. Furthermore, if A > 0, p > 0, then Ij(wy) < |lwgll%, () and thus

||wk|\X07K(Q) — o0 as k — 0.

(b) This part follows from Theorem 3.2.5. We can proceed along the
same line of proof of Theorem 3.3.1 to show (D1)-(D3) of Theorem 3.2.5

are satisfied. To check the assertion (D4), we consider a sequence {u,,} C
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Xo,x(€2) such that as
{u, } €Yy, Ij(urj) —c, (I[L\)H/rj (ur,) =0 as r; — oo.

We can prove exactly in the same way as in Theorem 3.3.1 that {u,} is a
bounded PS sequence in X x(2) at level c. Therefore, it is easy to conclude,
as in part (a) that u, converges strongly in X x(£2). Hence (D4) is also
satisfied and as a result by Theorem 3.2.5, we conclude (Pf) has a sequence
of nontrivial solutions {vy}r>1 such that ¢ := I/;\(vk) < 0and ¢, — 0 as

k — oo. Using <(I;})’(uk), uk> = 0 in the definition of I)(uy), we have

2 2
1 = / gy 4 a[1— —2— / Py = ¢, < 0.
u( q—l—l) Q]u\ T+ ( p+1> Q|u| T = 2¢p

Therefore, if 4 > 0, A <0, then

2 2
0< -A[1—-—— / lu[PHde = —2¢, + p| 1 — —— / lu|?d,
p+1/)Ja g+1/)Ja

since 1 < ¢+ 1< 2 < p+ 1. This implies, —2¢;, > —,u(l — q%ﬁ Jq lu|ttd.

Hence [q |ug|?dr < ;(gﬂf) Moreover, <(Ié‘)’(uk),uk> = 0 implies

—2c
2 _ +1 +1 +1 kq
e By = 0 [ Jeel* 0 [ unl e < p [ o < S =0,

as k — oo. This completes the proof. Il

3.3.3 A related variational problem

In this section we consider a related problem that can be solved by doing
the similar type of analysis that we did in Section 3.3.1. More precisely we
consider the following problem:

() u— = MO g
(3.3.16)

u=0 in RYV\Q,

where N > 2s, Q) is an open, bounded domain in RY with smooth boundary,
N+23)

2
0§t<2s,0<q<1,2*(t)=%(VNf;?,a<aH:=22s%
4

is the best

46



3.3. Existence of infinitely many solutions

fractional Hardy constant on RY. Thanks to the following fractional Hardy

inequality :
Jul®

u % 9
H /RN |x|zsd~”‘7 = /RN [(=A)2ul*dz, (3.3.17)

which was proved by Herbst [49],

2\ 2

/N [(—=A)2ul?dx — a/ |I|L(x2)3| > is a norm equivalent to the norm (2.3.8)
R Q |

in Xo(€2). Interpolating the above Hardy inequality with (4.1.1) and fol-

lowed by simple calculation, we have the following fractional Hardy-Sobolev

inequality

2(t)  \ O 9 2
C ( [l da:) < [(—A)2ul*dr — a/ |U(TQ)S| .
Q Q

L R P

Therefore we can define the quotient Ss(c) > 0 as follows

A U i
[ =8 tufde —a | =

|

(3.3.18)

f :
u€Xo, u#0 2@ \T@
dx

o |z

The following theorem regarding existence of infinitely many nontrivial solu-

tions for fractional Hardy-Sobolev type equation can be proved in the spirit

of theorem 3.3.1.

Theorem 3.3.6. Let Q2 be a bounded domain in RN with smooth boundary,
N > 2s.Then there exists u* > 0 such that for all p € (0,p*), problem
(3.3.16) has a sequence of non-trivial solutions {uy,},>1 such that I(u,) <0
and I(u,) — 0 as n — oo where I(+) is the corresponding energy functional

associated with (3.3.16).

In order to prove this theorem one essentially needs to verify an ar-
gument similar to (3.3.6), where RHS of (3.3.6) should be replaced by
N

_ 2% (1)
%Ss(a)ﬁ — kpT®-a-1 and this would follow by the similar type of

arguments as in the proof of Theorem 3.3.1.
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Conclusion: In this chapter, we have established existence of infinitely
many solutions using Fountain and and Dual Fountain theorem. In the local
case, these results were proved by Bartsch and Bartsch-Willem (see [10, 11,

86]). We have extended these results in the non-local setting.
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Chapter 4

Sign Changing Solution for
fractional Laplacian type
equations with concave-critical

nonlinearities

In this chapter we study the existence of at least one sign-changing solution

of the following problem (P). More precisely, we study

(— A)u = plul? u + |u|? ~2u in Q,
(P)
u=>0 in R™\ Q.
Corresponding to (P), define the energy functional ,, as follows
_ ol Ju@) — @) T R

¥ de. (4.0.1)

Lo H +1 1
= lhula = g e = o [

We obtain existence of at least one sign-changing solution of the above
problem (P) under suitable assumptions on N and ¢. Our method is based
on the Nehari manifold technique. The main theorem of this chapter is stated

below:
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Theorem 4.0.1. Let Q be a bounded domain with smooth boundary in RY.

Assume s € (0,1), N > 6s, %(%f%i) < q < 1. Then there exists u* > 0 such

that for all p € (0, u*) problem (P) has at least one sign changing solution.

4.1 Sobolev minimizer

Using [78, Lemma 9], we know

S\ 22 ,
5 (/]RN [o(2)] > <llxgy ¥ v € Xo(9), (4.1.1)

where

v(z) —v(y)|?
/Rm |z — y[V+s dxdy

Ss = inf - 4.1.2
veHS (RN),v#£0 / () N 2/2 ( )
RN
It is known that (see [35]), S, is attained by v. € H*(RY), where
e g2
ve(a) = ——— with ¢>0,keR\{0}. (4.1.3)
(e +1aP) 5

4.2 Cut-off technique

We note that v, € Xo(€2). Therefore we multiply v. by a suitable cut-off
function v in order to put v. to 0 outside €2. For this, fix 6 > 0. Define )} =
{x € Q: dist(z,09) > 6}. We choose 1 € C°(RY) such that 0 < ¢ < 1,
Y =1inQ, 1 =0in RY\ Q and ¢ > 0 in Q. We define

us(x) = (x)v.(x). (4.2.1)

In the next section, we will discuss notions of some Nehari-type sets.

4.3 Nehari type sets

To obtain sign changing solution of (P), we need to study minimization

problems of I, over suitable Nehari-type sets. We define the following sets
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4.4. Some important lemmas

in the spirit of [82] (also see [31])

N = {u € Xo() \ {0} : (I,(u),u) = 0};
Noi={ueN: (1= g lul}ye ~ @ —a- Dlu

%*2*(9) = 0}5
2 * *

_ 2 * *
N~ = {u e N (L= g) lullyy @ = (27 = g = Dluffieig) <0}
From [32], it is known that there exists p, > 0 such that, if p € (0, u.), then
the following minimization problem:

ay = inf Jy(u) and @&, = inf J,(u) (4.3.1)

ueN+t ueEN™
achieve their minimum at wy and w; respectively, where

1

1 W x
Ju(u) = 5”“”%@(9) VS /Q(UJr)qu-T o /Q(UJF)Q dx. (4.3.2)

Moreover wg and w; are critical points of J,. Using maximum principle [79,
Proposition 2.2.8] and followed by a simple calculation , it can be checked
that, if u is a critical point of J,, then wu is strictly positive in 2 (see [9]).
Thus wy and w; are positive solution of (P). Applying the Moser iteration
technique it follows that any positive solution of (P) is in L>(€) (see [9,
Proposition 2.2]).

4.4 Some important lemmas

This section is devoted to some important lemmas which will be needed to

prove our main result Theorem 4.0.1.

Lemma 4.4.1. Suppose wy is a positive solution of (P) and u. is as defined

in (4.2.1). Then for every € > 0, small enough
(i) Ar = / w T hude < ket
Q
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N—2s
(ii) As ::/wi’ugdx <hkge 7 ;
Q

N—2s
(1i7) As ::/wlugdx <ksge * %
Q

N+2s

(iv) Ay = / wluz*_ldx < ke 4
Q

Proof. Let R, M > 0 be such that Q C B(0, R) and |w;|p~() < M. Then

. * * N—2s dﬂj
(Z) Al = / U}% luadx S M2 1|1/J|Loo(Q)]€€ 4 / N —2s
Q B(0,R) (g —+ ‘q;|2) 2

%_szs / dx
BOZ) (1+[af?) ™"

(VAN
Q
)

IA
7
=
™
IS

Proof of (ii) similar to (i).

_9s dx
i) A :/ Y4y < Myle. kq5N424/
(49i) As Wit < Y] 7 () BO.R) (2 + o) 52

N_(N- QS)Q/f rN=Lldr
2
(N— 25)q
(1+72) =

N—(N-2s)q
< C&?%_(N;Zs)q ﬁ
- Ve

IA

N—-2

S ]{73€qu.
(iv) can be proved as in (iii). O

Lemma 4.4.2. Let u. be as defined in (4.2.1) and 0 < q < 1. Then for

every € > 0, small

kse (") (gt D) if 0<qg<
/Q|U5|q+1d1' = k6€T|ln el, if q= 237

ez —(FF)(a+) if N2_2S <qg<l.

N 287

Proof. Choose 0 < R’ < R be such that B(0, R') C ; C Q. Then u. = v, in
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B(0, R'). Then

(N —25)(q+1) d
/ |ue| " dx > / O R / :(EN—2S)(<1+1) :
Q B(0,R") BOR) (e + |x|2)™ =2

Proceeding as in the proof of Lemma 4.4.1 (iii), we have

N 1
N (N=29)(at) f dr
e 17 < [l
(1+7 Q

(N=25)(a+1)
2) 2

R N-1
N—25)(g+1 r dr
SC'&%_( 4<q )/\/g
o0 (1+r

2y 2D
(4.4.1)
Case 1:0<q< 25
We note that
FN-1
% dr % N—1—(N—2s)(g+1) ¢
EE DY 20 PN gy > ey
0 +?”2 2 3
(4.4.2)
and
N 1d R O
f r Ve N—1—(N—9s
L | BTy < TN < . (443)
1 +r 0 c2 p)

Substituting back (4.4.2) and (4.4.3) into (4.4.1), we obtain / luc |9 dx =
Q

fese(CT @)

Case 2: q = N%’Q
Then

e

% rN=1dr %
/ >C / PN IN=29(at ) g > O €.
(N=2s)(g+1) = =
0 (1472 2 1

A N—1 1 A
[y < [N [N,
—2s)(q+1) —
0 (1 + 7"2) 5 0 1

IN

C(1+|Ing]) <2CIn €.

Substituting back the above two expressions in (4.4.1), we have

/ |ue| e = keed |In el
Q
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. 2s
Case 3 : S

Therefore (N — 2s)(¢ + 1) > N and consequently

s rN=ldr

(N—2s)(q+1) 25)(q+1)
0 + 712

f N ldT' 1 00
/ (N EDICERN S/ TN_ldT+/ pN—1=(N=25)(g+1) <,
1 +7r 0 1

N _ (N-2s)(g+1)
2

1 . [l

1
> C’/ TN ldr = C,
0

Hence/ |u5|q+1dx = kre
Q

Set

q
) 1—q \¥7F 292 s Nog g0
= —" — QT S * 2. 4.4.4

We prove the next three lemmas in the spirit of [82].

Lemma 4.4.3. Let p € (0,f1). For every u € Xo(), u # 0, there exists

unique

N-—-2s

0 <t (u) < to(u) = (( (1—q) H/U/HXOEQ) > 45 < tT(w),

2* —1— q)|u|ig*(m

such that

t(wueNT and I,("u)= min I,(tu),

te[0,to]

tT(w)u e NT and I,(tTu)= max I,(tu).

>to

Proof. From (4.0.1), for ¢t > 0,
2 1 2 o
I,(tu) = B lull @) — | ’th+1 T i?*(sz)

Therefore

0 B . i
g uttn) = (870l = 7 il ) = )

Define

o(t) =t ||U||§(0(Q 2 (@) (4.4.5)

o4



4.4. Some important lemmas

By a straight forward computation, it follows that ¢ attains maximum at the

point
1—q) ||ul3 7=
to = to(u) = ( ( )| ||X;£Q) ) . (4.4.6)
(2r—1- q)\u]LQ*(Q)
Thus
O (to) =0, ¢(t)>0 if t<ty, @) <0 if ¢>to. (4.4.7)
g 2 aeg [T T . .
Moreover, ¢(ty) = (2,_17(]) (2*717(]) ‘u|i;(*1(;;) . Therefore using
(4.1.1), we have
. (1-q)(N—25) o o ao
_ q 4s * L:
o(to) > (2*_1_q> m& = u ||qul (4.4.8)

Using Holder inequality followed by Sobolev inequality (4.1.1), and the fact
that € (0, i), we obtain

—ql

L Al ST

< é(to),

ol < gl §fgy S50

where in the last inequality we have used expression of i (see (4.4.4) and

(4.4.8)). Hence, there exists ¢*(u) > to >t~ (u) such that

Gt) = p [l =o(t7) and J() <O<H(E).  (449)

I #(t)

w(t)

tt t

This in turn, implies tTu € N~ and t"u € NT. Moreover, using (4.4.7)

and (4.4.9) in the expression of 21, (tu), we have

gtlﬂ(tu)>o when te€ (t7,t") and
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aat[u(tu)<0 when t€[0,¢t7)U (t*,00),

0
Efu(tu) =0 when =t

We note that I,(tu) = 0 at ¢ = 0 and strictly negative when ¢ > 0 is small

enough. Therefore it is easy to conclude that

max [, (tu) = I,(tTu) and min I,(tu) = I,(t"u).

t>tg te[0,to]

O

Lemma 4.4.4. Let i be defined as in (4.4.4). Then u € (0,/1), implies
No = 0.

Proof. Suppose not. Then there exists w € Ny such that w # 0 and

(1= ) [wlxy@ — 2" = g = Dlw[Fa ) = 0. (4.4.10)

The above expression combined with Sobolev inequality (4.1.1) yields

N—2s

> ghas (_1ma ) 4.4.11
”w”Xo(Q) Z s m : (4.4.11)

As w € Ny C N, using (4.4.10) and Hoélder inequality followed by Sobolev

inequality, we get

2 * 1
0 = ”wHXo(Q) - ‘wliw N|w|g+1
1-— q q+1
2 1
> ||wHX0(Q) N <2* —q— 1) ||w|]§(0( ulﬁll (qH /2||ng{T)(Q

Combining the above inequality with (4.4.11) and using p < fi, we have

(N—2s)(1—q)

2* _2 1 _ 4s N(1—q)
q+1 q s

— art Ss_(q+1)/2

> 0,

(4.4.12)
which is a contradiction. This completes the proof. O
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Lemma 4.4.5. Let i be defined as in (4.4.4) and p € (0, ). Given u € N,
there exists p, > 0 and a differential function g,, : B,,(0) — R* satisfying

the following:

9p.(0) =1,
(g () (u+w) €N ¥ w e B,,(0),

, 2 (u,6) = 2* fo |l ~2ud — (q + g Jo [ul*ug
0),¢) = L .
(55.(00.9) (1= )l @) — 2 — g — DlulZin g,

Proof. Define F': RT x Xy(2) — R as follows:

_ 2 *_ * 1
F(t,w) =t flu+wlly,q) — 2 u + w|%2*(9) — plu+ w|qLJg+1(Q)-
We note that u € N implies

OF ) *
F(1,0) =0, and E(LO) =(1-¢q) ||u||§(0(9) —(2"—q- 1)|U|%2*(Q) # 0.

Therefore, by Implicit function theorem, there exists neighbourhood B,,(0)

for some p, > 0 and a C! function g,, : B,,(0) = RT such that

(1) 9.(0) = 1, (ii) F(gp,(w), w) =0, Vw € B,,(0),

(95(1,0),¢)
o8(1,0)

Multiplying (ii) by (g,, (w))?, it follows that (g,, (w))(u+ w) € N. In fact,

(i) Fy(gp. (), w) # 0, ¥ w € B, (0), (iv) (g,,(0),6) = -

simplifying (iii), we obtain

(1=)(gp. () lutwli, o) = (2" == 1)(gp, (W) * [utwlLar ) # 0 Vw € By, (0).

Thus (gpu(w))(u +w) € N"UNT for every w € B,,(0). The last assertion

of the lemma follows from (iv). O

4.5 Existence of sign-changing solution

In this section, we will establish existence of at least one sign-changing solu-

tion by finding sign-changing critical points of 1,,.
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4.5.1 Sign changing critical points of I,

This subsection is very important in order to obtain the main result.
Define
Ny ={ueN:u"eN},

Ny ={ueN:—u e N},

We set

pr= inf I,(u) and [y = inf I,(u). (4.5.1)

ueENT uENy

Theorem 4.5.1. Assume 0 < p < min{[i, pix, pt1}, where py is as in Lemma
4.6.1, fu is as in (4.4.4) and p. is chosen such that & is achieved in (0, i.).
Let B1, Ba, a;, be defined as in (4.5.1) and (4.3.1) respectively.

(i) Let By < &, . Then there exists a sign changing critical point W, of I,

such that wy € Ny and I,,(i0,) = B1.

(i) If By < &, , then there exists a sign changing critical point Wy of I,

such that in wy € Ny and 1,,(3) = Bs.

Proof. (i) Let 1 < &,,.

Claim 1: N7 and N5 are closed sets.
To see this, let {u,,} C Ny such that u, — win X(€2). It is easy to note that
[un|, Ju] € Xo(2) and |u,| — |u| in Xo(€2). This in turn implies u,;} — u*
in Xo(Q) and LY(RY) for v € [1,2*] (by (4.1.1)). Since, u, € Ny, we have

ut € N™. Therefore

||U7J{H§(0(Q) - |U:

ig*(sz) — pluyy qLqu-‘l-l(Q) =0 (4.5.2)
and

(1= Dlluf o) = @ —a=Dug 7o) <OV > 1. (4.5.3)
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Passing to the limit as n — oo, we obtain u* € N and (1—¢q) ||u+|]§(0(9)—(2*—

q—1)|ut < 0. But, from Lemma 4.4.4, we know Ny = (). Therefore

2*
2" (@)
ut € N~ and hence N7 is closed. Similarly it can be shown that N5 is also

closed. Hence claim 1 follows.

By Ekeland Variational Principle there exists sequence {u,} C N7 such
that

1
IL(u,) = B and  I,(z) > 1,(u,)— - lun — 2llxy@) ¥V 2 €N. (454)

Claim 2: {u,} is uniformly bounded in Xy(£2).
To see this, we notice u, € Nj implies u,, € N and this in turn implies

<]L(un),un> = 0, that is,

2% q+1
2 @) T |, Lat1(Q)

2
Hun”Xo(Q) = |up,

Since I,(u,) — B1, using the above equality in the expression of I,(u,), we

get, for n large enough

S 2 1 1 +1
L ) LT

1
< OO [luallia)-

This implies {u,} is uniformly bounded in X,(€2).

Claim 3: There exists b > 0 such that [[u, ||y o) = 0 for all n > 1.
Suppose the claim is not true. Then for each & > 1, there exists wu,, such

that

1
||u;kHX0(Q) < % Vk >1. (455)
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We note that for any u € Xy(2), we have

2 _ Ju(@) —u(y)|?
HUHXO(Q) - /R?N W(i xdy
B B U R )
 Jren |:L‘—y|N+23 Yy
_ ut(z)u (y) +ut (y)u (z
= Py + e By +2 [, (=) (_> N+2<s) () gy
R |z =yl
> @ + v - (4.5.6)

By a simple calculation, it follows

= u” |L2* + |U_|%*2*(Q) and |u|%ﬂ1(g) = |u+|qu;i1 +Ju” |(1]jz_+11
(4.5.7)
Combining (4.5.6) and (4.5.7), we obtain
L(u)>L,u")+1,(u") V ue Xy(Q). (4.5.8)

Moreover, (4.5.5) implies ||u,, ||x,@) — 0 and therefore by Sobolev inequality
U, 1222 @) = 0, [uy, [Lavi) = 0, as k — oo.

Consequently, I,,(u,, ) — 0 as k — oo. As a result, we have

B1 = Lufuun,) +0(1) = L(uty) + Lu(u,) +o(1) = Ju(uit) +0(1) >

This is a contradiction to the hypothesis. Hence claim 3 follows.

Claim 4: I, (u,) — 0 in (Xo(92))" as n — oo,
Since u,, € N7 C N, by Lemma 4.4.5 applied to the element u,, there

exists
Prn = Pu, and g, = g,, (4.5.9)

such that
g(0) =1, (ga(w))(un+w) €N ¥V w e B, (0). (4.5.10)
Choose 0 < p, < py such that p, — 0. Let v € Xo(Q2) with [Jv]|x,@) = 1.
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Define
Un = =P [V X{un>0} — U7 X{un<o}]
and
= (gn(07)) (= v2)
=: z},n —zp%n,
where 2! = (g (v*))(zﬁ + 0 Xqunz01) and 22 = (g (v’))(u’ +
Pn n\"n n n Un = Pn n\%n n

PV X{un<oy)- Note that v, = pv™Xqu,>0- S0, [y [Ixo@) < Anllvllxo@) <
fn- Hence taking w = v, in (4.5.10) we have, z; =z, € N~ s0 z;, € Ny.
Hence,
1
L(25,) 2 Tu(un) — HHun = Zp. |l x0(92)-

This implies,

1
=zl 2 L) = L(z3,)

= (I (un) tn — 25, ) + 0(1) [t — 25, | x0()
= = (I(un), 75, ) + o(1)l|un — 2, || xo(e, (4.5.11)
as <Il;(un), un> = 0 for all n. Let w,, = p,v. Then,
1

e = Zp Loy 2 = (L), wn + 25,) + (1 (), wn)

+o(1)||un — 25, xo0)- (4.5.12)
Now, <IL(un),wn> = <[L(un),ﬁnv> = pn <[L(un),v>. Define
Tn = 0" X{un20) = U Xfun<0}-
So, 25, = gn(v, )(un — Ppn¥y). Hence we have,
<Il;(un),wn + Zﬁn> = <I;L(un),
= (I (un), pnv = Gn(v7 )T

= pn (T(un), v = ga(v7)7)  (45.13)

Wo + g (V) (1t = Pu¥))

61



CHAPTER 4. SIGN CHANGING SOLUTION FOR FRACTIONAL LAPLACIAN
TYPE EQUATIONS WITH CONCAVE-CRITICAL NONLINEARITIES

Using (4.5.13) in (4.5.12), we have

1 N
ﬁ”un Zpu || Xo(9) = —Pn <] (un), v —gn(vn)vn>

pn (1), (un), v) + 0(1) |t = 23, || xo(0)- (4.5.14)
First we will estimate <IZL(un), v — gn(vg)@>. For this,

V= gn(v,)0 = v —v = gu(v,)[v" X{un>0} — U X{un<0}]

= 07[92(0) = 92 (V7 )X 20} — 07 [9(0) = (V)X fun o]
= 0" [{g,(0), v ) + o) vy [ o] + v [(94,(0), v, )

+ o)y Il xo(0)]

= =0l {g,(0), ") + o(1)[[v7 [ xo(@)] + v 7nl(g4,(0), ")
+ o(1)][v" || xo(0)]

= —pn[ (94(0),0") + o(V) 0™ |y o

Therefore,

(1), = 90 )0) = = (0,07 ) + (1) [0

XO(Q)> <[lli<u”)’ v> '
(4.5.15)

Claim : g,(v;) is uniformly bounded in X(€2).
To see this, we observe that from (4.5.10) we have, g, (v, )(u} 4+ v;,) €
N~ C N, which implies,

chqan_on(Q) M\ann’q;ﬁl - ‘CH&HPL*?*(Q) =0,

where ¢, := g,(v;) and 9, ;= u} + v . Dividing by 2" we have,

7 1
Cq+1 z ¢n %—;rl W]n

(4.5.16)

bullxo@)

Note that |[¢,| Xo() is uniformly bounded above as ||u,||x,(q) is uniformly
bounded and p,, = o(1). Also, |||l xo@) > ||ut || x0() = Pnl|v||x0()- Note that

[t || xo() > b for large n. If not, then |ju;t|| x,@) — 0asn — co. Asu, € N7,
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sou, € N, . Now, N~ isa closed set and 0 ¢ N~ and therefore ||u,, || x,) /> 0
as n — co. Thus there exists b > 0 such that [t || xo() > b > 0. This in turn
implies that ||¢,]|x,«) > C, for some C' > 0 by choosing j, small enough.
Consequently, if ¢, is not uniformly bounded, we obtain LHS of (4.5.16)

converges to 0 as n — oo.

On the other hand,
|9l 12+ @) = st |12 () = Pnlv| 2 () > €,
for some positive constant ¢ as p, = o(1) and u,; € N implies

(2" = 1= Q)luf 7o ) > (1= D) 30 > (1 — )b

Hence, the claim follows.

Now using the fact that ¢,,(0) = 1 and the above claim we obtain

ltn =z 50 < Nt xo |1 = ga (0| + Bull Tl o) 9 (07
< nllxo@ 1 {g0(0), 07 ) [ + o(D) |7l xo(0 |
+ Bullvllxo(@ga(vy)
< paflunllxo@ (9,(0), 727 ) + o(D[v]l xo(@)
+ ollxo@gn(vn))]
< paC.

Substituting this and (4.5.15) in (4.5.14) yields

C
~ / + + / / ~ ~ ~
A 600,07 o e ) (7)) (). ) et o) < v

This implies

[(<9;(0)>U+>+0( o™ [ x00 )4—11 <1—L(un),v> < g—l—o(l) for all n > ny.

Since | (g/,(0),v™) | is uniformly bounded (see Lemma 4.6.1 in Appendix) ,
letting n — oo we have I/, (u,) — 0 in (Xo(€2))". Hence the step 4 follows.
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Therefore, {u,} is a (PS) sequence of I, at level 8, < &,. From [32,

Proposition 4.2], it follows that

T < S 5F - MpTe f € (0, )
au NS ,LL or M 7:u*7

where M =

(2NN -25)(a+1) ) 1) (1 20\ 525
4(q+1) ( s )2 Q.

Therefore,

o s N 2*
pr<a, < N 2 — Mp>-a1,

On the other hand, it follows from the proof of Theorem 3.3.1 (see (3.3.6))
that I, satisfies PS at level ¢ for

S QE 2*
¢ < ST — kpT,

where k is as in (3.3.14). By elementary analysis, it follows k = M. Therefore
there exists u € Xy(€2) such that u, — u in Xo(Q2). By doing a simple
calculation we get u, — u~ in Xo(€2). Consequently, by Claim 3 |lu™| x, ) =
b. As N7 is a closed set and u,, — u, we obtain v € N7, that is, ut € N~ and
ut # 0. Therefore u is a solution of (P) with u™ and u~ are both nonzero.

Hence, u is a sign-changing solution of (P). Define w; := u. This completes

the proof of part (i) of the theorem.

Proof of part (ii) is similar to part (i) and we omit the proof. O

Theorem 4.5.2. Let 1, B2, &, be defined as in (4.5.1) and (4.3.1) respec-
tively. Assume B, 32 > &, . Then there exists po > 0 such that for any

p € (0, 10), I, has a sign changing critical point.
We need the following Proposition to prove the above Theorem 4.5.2.

Proposition 4.5.3. Let N > 6s and %(%f%j) <qg<1. Assume0 < p <

min{ fi., i}, where i is as defined in (4.4.4) and p, > 0 is chosen such that
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&, is achieved in (0, pts). Then for e > 0 sufficiently small , we have

- s N
sup I, (aw; —bu.) < a, + =55,
a>0, beR N

where wy and u. are as in (4.3.1) and (4.2.1) respectively.
To prove the above proposition, we need the following lemmas.

Lemma 4.5.4. Let wy and i be as in Proposition 4.5.3. Then

sup I, (swy) = &

s>0 K

Proof. By the definition of &, we have &, = infyen- Ju(u) = Ju(w1) =
I,,(w). In the last equality we have used the fact that w; > 0. Define g(s) :=
I,,(swy). From the proof of Lemma 4.4.3, it follows that there exists only two
critical points of g, namely ¢*(w;) and ¢~ (wq) and max~g g(s) = g(t*(w)).
On the other hand (I’ (w;),v) = 0 for every v € Xy(€2). Therefore ¢’'(1) = 0.
This in turn implies either ¢*(w;) =1 or ¢t~ (wy) = 1.

Claim: t~(wy) # 1.

To see this, we note that ¢~ (w;) = 1 implies ¢t~ (wy)w; € N~ as w; € N™.
Also, from Lemma 4.4.3, we know ¢ (wi)w; € NT. Thus Nt NN~ £ 0,
which is a contradiction. Hence the claim follows.

Therefore t*(w;) = 1 and this completes the proof. O

Lemma 4.5.5. Let u. be as in (4.2.1) and p be as in Proposition 4.5.3.

Then for e > 0 sufficiently small, we have

S N (N—25)
sup I, (tu.) = —5¢° + Ce = Kg|uc |91
teR N

Proof. Define ¢(t) = %Hug”%(o(m — t22—|u6 Thus [,(tu.) = o(t) —

2*
L2* (Q) .
$at+1

g+
Pt

|ue Lat1(0)- On the other hand, applying the analysis done in Lemma
N—2s

1— - 2 4s
4.4.3 to u., we obtain there exists (tg). = ( (1) luellxg @) ) < tF such

*__1__ 2
CR e AL,
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that
7 (D™ e
sup I, (tuz) = sup I, (tu.) = L,(tu.) = o(t]) —p== |Ua|%f1+1 (©)
teR >0 q+1
7 (150)qul +1
< t) — I .
< s;zlgcb() | |te7at1q)

Substituting the value of (¢y). and using Sobolev inequality (4.1.1), we have

(N—2s)(g+1)

£ )41 1— s
o b Ls, = ks.
qrl “gri\2—q—1
Consequently,
iu}gl u(tue) < Su%) o(t) — k8|u6|q;;i1m). (4.5.17)
€

Using elementary analysis, it is easy to check that ¢ attains it’s maximum at

1 N
. ~ ”“E”§(0(9) -2 ~ s HU€H§(O(Q) 2s
the point £y = — and ¢(to) = R . Moreover, from

Proposition 21 and Proposition 22 of [78], it follows
2 2% N-2 2 2% N
e = SF +OE2), [ Jucf do = SF +O(Y).
RN

As a result,

N N N

~ 25 4 O(eN—25) ]2 Ole 2 N-25)N
gb(to)SS[( roe )] SN[ (+() )] < SsEoetE

(4.5.18)
In the last inequality we have used the fact that ¢ > 0 is arbitrary small.

Substituting back (4.5.18) into (4.5.17), completes the proof. O

Proof of Proposition 4.5.3: Note that, for fixed a and b, I, (n(awl —
bu6)> — —o00 as |n| — oo. Therefore sup,>q pep [u(aw; — bu.) exists and
supremum will be attained in a? + b? < R2, for some large R > 0. Thus it is
enough to estimate I,,(aw; —bu.) in {(a,b) € R* x R : a* 4+ b? < R*}. Using

elementary inequality, there exists d(m) > 0 such that

la+b]™ > |a|™+|b|™ —d(|a|™|b]+|alb]™ ) ¥V a, bER, m > 1. (4.5.19)
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Therefore, a® + b*> < R? implies

1 1
L(awy —bu.) < §||aw1||,2x0(9) — ab(wy, ue) + §||bu5||§(0(9)

1 . 1

- —/|aw12dx——/|bu5
2% Ja 2% Ja

— il/ |aw1|q+1dx—i1/ |bu. |7 dx
q Q q Q

+ c(/ jawr P b + [ \alebus\Z*ldx>
Q Q

4 o(/ Jaw || + [ |aw1||bu€\qd:c)
Q Q

= I,(awy) + 1,(bu.) — abu/ w1 |9 wy v da
0

Y dx

- ab/ lwi|? 2wy uada
Q

4 c(/ or P el + [ e 2*1dx)
Q Q

+ ([ Junflulde + [ fwudz).
Q Q

Using Lemmas 4.4.1, 4.5.4 and 4.5.5 we estimate in a® + b*> < R?,

- s N (N—2s)N N—2s (N—2s)q N42s
REY 2 —kslue|"T +C(e” 2 4e T He T e T ).

I,(aw—bu.) < &

N—-2s

Since N > 2s and ¢ € (0,1), clearly ("7 )9 is the dominating term among
all the terms inside the bracket. For the term kg|u.|?"!, we invoke Lemma

4.4.2. Therefore when N2_528 < q < 1, we have

N—2s

N
[u(awl - bua) < 64; + %Sszs — k9€%_ 7o) (a+1)

(N—2s)N

+C(e = 4+ 5T

2 N—2s)q N+2s

s (
+e T +e 1)

1 N-—2s

This in turn implies, when 5(%1@2) < qg<land N > 6s, e —(FF)(a+D)

should be the dominating one among all the € terms and hence in this case,

taking € > 0 to be small enough, we obtain

s N
sup [, (awy —bu.) < &, + =93°.
a>0,beR N
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Proof of Theorem 4.5.2: Define py := min{f, 1.} and

co: inf I,(u), (4.5.20)
ueN,
where
N, =Ny NN (4.5.21)

Let p € (0, po). Using Ekland’s variational principle and similar to the proof

of Theorem 4.5.1, we obtain a sequence {u, } € N} satisfying

L(uy) = cay I (u,) =0 in (Xo(Q)).

n

Thus {u,} is a (PS) sequence at level ¢;. From Lemma 4.5.6, it follows
that there exists @ > 0 and b € R such that aw; — bu. € N_. Therefore
Proposition 4.5.3 yields

e < a + %S?ﬂ (4.5.22)
Claim 1: There exists two positive constants ¢,C such that 0 < ¢ <
||Uf||xo(n) <C.
To see this, we note that {u,} C N, C Ny . Therefore using (4.5.6), Claim
2 and Claim 3 of the proof of Theorem 4.5.1, we have HuffHXO(Q) < C and
[t Nl o) = ¢ To show [[uy ||y, (@) = @ for some a > 0, we use method of
contradiction. Assume up to a subsequence ||uy | ¢, ) — 0 as n — oco. This
together with Sobolev embedding implies |u}|;2+(q) — 0. On the other hand,
uf € N~ implies (1 —q) [[uf |5, ) — (2 — ¢ = Dwf 22 ) < 0. Therefore by
(4.1.1), we have

2% -2

gl 27 —a—1
n +
Ss < - [ |22 (0

T l—gq 7

2
12 (@)
which is a contradiction to the fact that |u} |2+ ) — 0. Hence the claim

follows.

Going to a subsequence if necessary we have
wl =, u, = in Xo(Q). (4.5.23)
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Claim 2: 7, Z 0, 1y # 0.
Suppose not, that is 7, = 0. Then by compact embedding, u — 0 in
L7(Q). Moreover, u;f € N~ C N, implies <I;(u,f),u:> = 0. As a con-

sequence,
. 1
i 1) — s [72r @) = peluy | o) = 0(1)-
So we have \u+|L2* = H?ﬁHX0 + o(1). This together with [lu}]x o) = ¢
implies

+2*
D > 1 4 o(1).
||UX||X0(Q)

This along with Sobolev embedding gives |u;} |7 @ = SN/25 4 6(1). Thus we

have,

1

1 X S s
(1) = Sl By @ = 5 [Fe ) +0(1) = 28175 +0(1). (45.24)

Moreover, wu,, € N, implies —u,, € N~. Therefore using the given condition
on [35, we get

L(~u7) > o > a7, (4.5.25)

m

Also it follows I,(w}) + I, (—w,) < I, (u,) = c2 + o(1) (see (4.5.8)). Com-
bining this along with (4.5.25) and (4.5.22), we obtain

_ s .
L(uf) < e — a, +o(1) < NSéV/Q ,
which is a contradiction to (4.5.24). Therefore, 1; # 0. Similarly, 7 # 0 and

this proves the claim.

Set wy := 1 — 9.
Claim 3: wy =7, and wy; =1, a.e..

To see the claim we observe that 17;m, = 0 a.e. in Q. Indeed,
|/Q771772d$| = |/ n — MU d$+/ m(u, —n2)dz|
<y = mileze | | 2@) + mle2oluy, = n2lr2of4-5.26)
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By compact embedding we have uf — n; and u, — 7o in L?(Q). There-
fore using claim 1, we pass the limit in (4.5.26) and obtain [, mn.dx = 0.
Moreover by (4.5.23), n1, m2 > 0 a.e.. Hence mm, = 0 a.e. in . We have
wy —wy = wy =1, — . It is easy to check that wy < n; and wy < n,. To
show that equality holds a.e. we apply the method of contradiction. Sup-
pose, there exists F € Q such that |E| >0 and 0 < w3 (z) < m(z) V z € E.

Therefore 7, = 0 a.e. in E by the observation that we made. Hence
wy (x) — wy (z) = m(x) ae. in E. Clearly w; (z) # 0 a.e., otherwise
wy (z) = 0 a.e. and that would imply n,(z) = —wy () < 0 a.e, which is

not possible since 7; > 0 in E. Thus w; (x) = 0. This yields n;(z) = w; ()

a.e. in F, which is a contradiction. Thus the claim follows.

Therefore wsy is sign changing in € and w, — wy in Xy(£2). Moreover,
I (un) — 0 in (Xo(£2))" implies

(un() — un(y))(¢(z) — ¢(y)) 1 _
/R2N |z —yy|N+2s : drdy — IU/Q |un|* uppdr — /Q |Un| upPdx

= o(1),

for every ¢ € Xo(Q2). Passing the limit using Vitali’s convergence theorem
via Holder’s inequality we obtain <I L(wg), ¢> = 0. As a result, wy is a sign

changing weak solution to (P). O

Lemma 4.5.6. Let u. be as defined in (4.2.1) and wy be a positive solution
of (P) for which &, is achieved, when p € (0, 1.). Then there exists a, b €

R, a > 0 such that aw, — bu. € N, where N, is defined as in (4.5.21).

* J

Proof. We will show that there exists a > 0, b € R such that

a(w; —bu )" € N~ and  —a(w; —bu.)” € N™.

wi () wi ()

Let us denote 71 = inf,cq (o) To = SUD,cq RER

As both w; and u, are positive in €2, we have ;1 > 0 and 7, can be +o0.

Let r € (71,72). Then wy,u. € Xo(2) implies (w; — ru.) € Xo(2) and
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(wy — rue)t # 0. Otherwise, (wy — ru.)™ = 0 would imply 7o < 7, which is
not possible. Define v, := w; — ru.. Then 0 #Z v € X(Q) (since for any
u € Xo(Q2), we have |u| € X¢(€2)). Similarly, 0 # v, € Xo(Q2). Therefore, by
Lemma 4.4.3 there exists 0 < sT(r) < s7(r) such that s™(r)v;s € N7, and
—s7(r)(v;7) € N™. Let us consider the functions s* : R — (0, 00) defined as
above.

Claim: The functions r — s*(r) are continuous and

lim s™(r) =t"(v7)) and lim s¥(r) = +oo,
r—Ty

r—7
where the function ¢* is same as defined in Lemma 4.4.3.

To see the claim, choose ry € (1,72) and {r, }n>1 C (71, 72) such that r,, — 7
asn — 0o. We need to show that s (r,) — s (ry) asn — oo. Corresponding

_ + + _ +
to 7, and ro, we have v = (w; —ryu.)* and v = (w1 —rous)*. By Lemma

4.4.3. we note that s*(r) = t*(v}). Let us define the function

Fs,r) = s'7(wy = rue) i) — 5" 77 (wr = rue) |5 g
- :u|(w1 - rua)+|%ti1(g)

= o(s,7) — pl(wr —ruc)” |Lq+1(Q

where

¢ = 8" (w1 — ru) o) — 57T (wi — rue) [T ),

is defined similar to (4.4.5) (see Lemma 4.4.3). Doing the similar calculation
as in lemma 4.4.3, we obtain that for any fixed r, the function F'(s,r) has
only two zeros s = tT(v) and s =t~ (v]) (see (4.4.9)). Consequently s (r)
is the largest 0 of F(s,r) for any fixed r. As r, — 79 we have v — v}
in Xo(Q) . Indeed, by straight forward computation it follows v,, — v,, in

Xo(2). Therefore |v,, | = |vy,| in Xo(€2). This in turn implies v — v} in

Xo(€2). Hence ||v}! || xo2) = [Iv)% |x0(0)- Moreover by Sobolev inequality, we

have [v)f |12+ ) — |0 |L2* and |v)" [Let1(q) = |v) |Lat1(). As a result, we
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have F'(s,r,) — F(s,ro) uniformly. Therefore an elementary analysis yields
sT(rp) = st(ro).
Moreover, 7, > “* implies w; — 7ou. < 0. As a consequence 7 — Ty

* — 0 pointwise. Moreover, since |(w; — ru.)"|Le() <

implies (w; — Tu.)
|w1 | (), using dominated convergence theorem we have

|(wy — ru€)+|L2*(Q) — 0. From the analysis in Lemma 4.4.3, for any r,
we also have sT(r) > ty(v;), where function ¢y is defined as in (4.4.6),
which is the maximum point of ¢(-, 7). Therefore it is enough to show that

lim, -~ to(v;") = oo. Applying (4.1.1) in the definition of ¢o(v;") we get

(1= )lloy I T2 (8- \T
to(v+) _ ( 41V 1 x0(0) ) > ( 8( - q) ) |U+|_21* ‘
(2* —-1- Q)‘Uj‘%2*(g) TA\2r-1- q )

Thus lim, .- to(v;") = oo.
Similarly proceeding as above we can show that if r — 7 then v — vy,

and lim, -+ s7(r) = tT(vi) and

lim s~ (r) = +oo, lim s (r) =t"(v,) < +o0.
r—)rf r—=Ty

The continuity of s* implies that there exists b € (71, 7) such that s*(r) =

s~ (r) = a > 0. Therefore,
a(w; —bul) e N~ and —a(w; —buZ) € N7,

that is, the function a(w; — bu.) € N, and this completes the proof.

Now, we conclude the proof of our main theorem.
Proof of Theorem 4.0.1: Define p* = min{ ., fi, to, pt1 }. Combining Theorem
4.5.1 and Theorem 4.5.2, we complete the proof of this theorem for p € (0, u*)
O
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4.6 Appendix

Lemma 4.6.1. Let g, be as in (4.5.9) in the Theorem 4.5.1 and v € Xo(f2)
such that ||v||x,) = 1. Then there exists py > 0 such that, p € (0, )
implies (g}, (0),v) is uniformly bounded in Xy(2).

Proof. In view of Lemma 4.4.5 we have,

2 (Up,v) — 2*/ |un|2*_2unv — (¢ + 1)u/ | |7 v
Q Q

2 * *

(9(0),v) =

Using Claim 2 in theorem 4.5.1, there exists C' > 0 such that [u,||y o) < C
for all n > 1. Therefore applying Hélder inequality followed by (4.1.1), we

have

/ C||v||X (Q) oy s
0),v)| < o = . Hence it is enough to show
[ {gn(0), v} | < |(17q)Hun“%(0(0)7(2*7‘1*1”“”@2*(Q)| &

2 * *
(1= ) [lunllxy@) — 2 — ¢ = Dltnl2r ] > C,

for some C' > 0 and n large. Suppose it does not hold. Then up to a

subsequence
2 * *
(1= ) lually ey — (2" = 4 = DfunZie ) = 0o(1) a5 n = oc.
Hence,

el g = — 91,
Un, = —|u,

%*2*(9) +o(l) as n— oo. (4.6.1)

Combining the above expression along with the fact that u, € N, we obtain

2— 2% * 2% — 2
1 2 2
N|un’fg+1(9) R |Un 72+ () +0(1) = > _1-¢ [ty () + 0(1)-

(4.6.2)

After applying Holder inequality and followed by (4.1.1), expression (4.6.2)
yields

_1
+1

2 —qg—1, 2 g 3
[l oy < | 551012 S5 2 +o(1). (4.6.3)
) 2 — 2
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Combining (4.5.6) and Claim 3 in the proof of Theorem 4.5.1, we have

[tnl xo(q) = b, for some b > 0. Therefore from (4.6.1) we get
|t | 2o @ = C  for some constant C' > 0, and n large enough.  (4.6.4)

Define 1, : N — R as follows:

lulie\ ™=
RN i .
Q)
Nizs
where kg = (2*1__5_1) 4‘9 (2 2) Simplifying 1,,(u,) using (4.6.2), we obtain
2%_1 (2*=1)2* 5 _1
2% —q—1 [Unl o) 17 27 =2

RN (TRl 7 S O

L=q e 1=q .

(4.6.5)
On the other hand, using Hélder inequality in the definition of v, (u,), we

obtain
(2* 71)

Yu(u,) = ko (”"HX

2% 72 11
) - M\Un‘qmﬂ(m
(@)

[ AP
" *() T e )
Q

_ e+l Jo | ”HXS(;) T Q|55
- ’ Un, L2*(Q) 0 ‘11,7 W - /L| ‘ 2 :
() nIL2" ()

Y]

2(2%-1)\ 22
Using (4.1.1) and (4.6.3), we simplify the term <”n|X°(m> 4 and

| "|L2*<n>

L2* (@)
obtain
Ju nHXQ 2\ Newm
( w2 5T huli
() L2 (Q)
N+2s(g+1) _
> = lual
P
Ni2s(atl) [ 9% — g — 1  2%—g-1 _atl) 1-d
Z Ss 4 <M2*_2|Q| 2 Ss 2) .
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Substituting back (4.6.7) into (4.6.6) and using (4.6.4), we obtain

) 3 09 [k 12ty (V0 gy ot
2% — 2
2r—q-1
- pJ|Q| z > d,

(4.6.8)

for some dy > 0, n large and p < pq, where pu; = py(k, s, q, N, |€2|). This is a

contradiction to (4.6.5). Hence the lemma follows. O

Conclusion: To be precise, this chapter deals with the existence of at
least one sign-changing solution in the critical case using concave-convex
nonlinearities. Since we are working in the non-local case, the computations

are not straightforward. But one of the major difficulties that we have is

whereas in the classical case we have the equality. This created a lot of
difficulties in getting the desired estimates and overcoming these difficulties
were quiet challenging. The rectitude of our work lies in vanquishing these

difficulties.
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Chapter 5

Sign changing solutions for p
fractional Laplacian type
equations with concave-critical

nonlinearities

This chapter is the generalization of the previous chapter. We have done
similar kind of analysis but in the p-fractional case. This chapter is based
on [15].

We consider the fractional p-Laplace equation with concave-critical non-

linearities

(—A)u = plulr u+uf" 2w in Q,

(Pu)

where s € (0,1), p > 1 are fixed, N > ps, 2 is an open, bounded domain in

RY with smooth boundary, 0 < ¢ < p —1, pt = N]\i’;S and © € RT and the

non-local operator (—A)7 is defined in Section 2.3.1.

Definition 5.0.1. (Weak solution) We say that u € Xo,,(2) is a weak

7
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solution of (P,) if

[ 1) =) — ) =) gy~ [ -t

|z —y| NP
+ / |ulP* “2ugda,
Q

for all g € Xo5p(S2).

5.1 Variational formulation of the problem

The Euler-Lagrange energy functional associated to (P,,) is

Psdg

1 [u(z) — u(y)l? 1t 1
I :f/ —dd——/ q“d——/
() pJrex Tz — N T g Ul de P "

1 M 1 1 :
= el = gl = 1 ) (5.1.1)

S

We define the best fractional critical Sobolev constant S;,, as

v(z) —v(y)P
/RQN |x J— y|N+p8 dl‘dy

Ssp = inf Y (5.1.2)
vETEINO / ()P dx o
RN

which is positive by fractional Sobolev inequality. Thanks to the continuous

Sobolev embedding Xos,(Q) < LP*(RY), I, is well defined C' functional

on Xos,(€2). It is well known that there exists a one-to-one correspondence
between the weak solutions of (P,) and the critical points of I, on X 5 ,(€2).
Why studying the p-fractional case?
Since the embedding Xo 5,(2) < LP* is not compact, I, does not satisfy the
Palais-Smale condition globally, but that holds true when the energy level
falls inside a suitable range related to Ss,. As it was mentioned in [27], the
main difficulty dealing with critical fractional case with p # 2, is the lack of
an explicit formula for minimizers of S, which is very often a key tool to

handle the estimates leading to the compactness range of [,. This difficulty
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has been tactfully overcome in [27] and [64] by the optimal asymptotic be-
havior of minimizers, which was recently obtained in [20]. Using the same
optimal asymptotic behavior of minimizer of Ss,, we will establish suitable

compactness range.

5.2 Main result

The main result of this chapter is the following;:

Theorem 5.2.1. Let Q be a bounded domain with smooth boundary in RY.

Let s € (0,1), p > 2. Then there exist u* > 0, Ng > 0 and qo € (0, p — 1)

such that for all p € (0, 1), N > Ny and q € (qo, p—1), problem (P,) has at

least one sign changing solution, where Ny is given by the following relation:
sp(p+1) when 2<p< %,

0=

sp(p> —p+1) when p> 3*‘[

Define the Nehari-manifold NN, by

Ny 1= {1 € Xoup()\ {0} (L, (0), 00,00 = 0}

The Nehari manifold N, is closely linked to the behavior of the fibering map
¢y ¢ (0,00) = R defined by

*
*

Ps
Ul Q)

Pulr) 1= Tu(re) = Sl = ol oy =

which was first introduced by Drabek and Pohozaev in [41].

Lemma 5.2.2. For any u € Xo,(2) \ {0}, we have ru € N,, if and only if
@ (r) = 0.

Proof. We note that for r > 0, ¢! (r) = (I/’L(ru), U)X, ,(Q) = %([L(Tu), TU) Xg.4 . (Q)-
Hence, ¢/ (r) = 0 if and only if ru € N,,. O
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Therefore, we can conclude that the elements in N, corresponds to the

stationary point of the maps ¢,. Observe that

1 T
eu(r) ="Ml . ) = #rflulzei ) — 77l g (5.2.1)

and
L) = (p— D7 2 ull%, oy — apr ulth g — (0F — D72l
(5.2.2)

By Lemma 5.2.2, we note that u € N, if and only if ¢/ (1) = 0. Hence for
u € N, using (5.2.1) and (5.2.2), we obtain that

(1) = (p— Dllulh, ) — aulultitig — (08— 1)

= (0= Pl g + (1= Qnlulfis )

(5.2.3)

= (p -1- Q)Hu|’§(07&p(9) - (p: —-1- ) LP 5(Q)
= (p— D)l @ + (s — 1 = @nlulfaii)-
Therefore, we split the manifold into three parts corresponding to local min-

ima, maxima and points of inflection

N = {u €N, |l(1) > 0},

N, = {u €N, lpi(l) < 0},

N = {u €N, |en(l) = 0} .

In the next section, using the above Nehari type sets, we obtain existence
of non-negative solutions ,thereby using maximum principle, we get at least

two positive solutions of (P,).

5.3 Existence of positive solutions

From [27], it follows that inf, . y+ [, (u) and inf, .- I,(u) are achieved and

those two infimum points are two critical points of /,. Now if we define / :[
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as follows:
et utIP
) = Sl — gl e — T 63D
and
af = ulelfjl\/f+ IF(u) and @, = uleljl\f_ I (u), (5.3.2)

then repeating the same analysis as in [27] for T :[ , it can be shown that there
exists p, > 0 such that for u € (0, p,), there exists two non-trivial critical
points wy € N:[ and w; € N of I;[. It is not difficult to see that wy and w;

are nonnegative in RY. Indeed,

0 = (L)' (wo), wy )
o() = wo(y)P(wol) — woly)) (wh (@)~ wi W),

R2N ’$ __y+N+ﬁp
_ [ (@) o) (g (2) —wo (9) + 2wy (@)ug (9) 4
R2N |ZE _ y|N+Sp
wo () — wo (y)[”
=z /]RQN |ZE _ |N+sp dl’dy - ||w0 HXOSP

(5.3.3)

Thus, ||wg || x,.,@ = 0 and hence, wy = wg . Similarly we can show wy = wy .
Using maximum principle [23, Theorem A.1] we conclude that both wg, w;
are positive almost everywhere in 2. Hence (P,) has at least two positive

solutions.

Set

p—l—q
g+1-ps N(pp—1-9q) , g+l

_]__ pE—p * - S ) et
ﬂ—<€q> PP o s, L (5.34)
pi—q—1 pi—q—1

5.4 Preliminary lemmas

In this section, we prove three elementary lemmas which are needed to prove

the main result.
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Lemma 5.4.1. Let p € (0,f1). For every u € Xo,,(€2), u # 0, there exists

unIque

N—ps

—1—q)|ul
() < to(u) ::<(p q)ully 0.s( ) < t+(u),

(ps —1- Q) Lp ()

such that

t“(w)u e NI and I,(t"u)= min I,(tu),

K t€[0,to]

t"(w)u € N, and I,(t"u) = max [,(tu).
t>to

Proof. Fort >0,

*

t? g+1 e
Lu(tu) = EHUHXOSP | |Lq+1 - —lu P Q)
S
Therefore
0 q( 4p—1-q 3 g+1
Tty = (07l oy 7o~ Il
Define
¢(t) - o q||u||Xosp(Q) tps Lp 5(Q)° (541)

By a straight forward computation, it follows that v attains maximum at

the point
—1—9q)|u 7
to = to(u) = <( L “Xowm ) . (5.4.2)
(ps -1- Q)|u Lp:(ﬂ)
Thus
P(tg) =0, (t)>0 if t<ty, ¢'()<0 if ¢>to. (5.4.3)
p—1—gq ” ”p(P: 1-q) %
Moreover, 1 (tg) = ( ;—_11—_(1(1) PP (pfjf q) ( pf‘()ps Ii“?)) . Therefore us-
LP5 (9)

ing Sobolev embedding, we have
(p—1—q)(N—2s)
p—l—q 4s p: D N(p— 1Sq) 1
> (=57 ) R
(5.4.4)
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Using Holder inequality followed by Sobolev inequality, and the fact that
u € (0, 1), we obtain

1
pf ful e < g @S5

pr—q—1
Allull ) @Sl T < (),

IA

where in the last inequality we have used expression of i (see (5.3.4)) and

(5.4.4). Hence, there exists t*(u) >ty > ¢~ (u) such that
U(th) = u/Q |7t = (t7) and ¢(th) <0 < ¢/(t7). (5.4.5)

This in turn, implies t*u € N and t"u € N,I. Moreover, using (5.4.3) and
(5.4.5) in the expression of 2.1,,(tu), we have

aatlu(tu) >0 when t € (t,t") and gtlﬂ(tu) <0 when t € [0,¢7)U(t", 00),

0

&I“(tu) =0 when =t

We note that I,(tu) = 0 at ¢ = 0 and strictly negative when ¢ > 0 is small

enough. Therefore it is easy to conclude that

max I,(tu) = I,(tTu) and min J,(tu) = [,(t " u).

t€[0,to]

[]

Repeating the same argument as in Lemma 5.4.1, we can also prove that

the following lemma holds:

Lemma 5.4.2. Let p € (0, 1), where fi is defined as in (5.3.4). For every
u € Xosp(2), us#0, there exist unique

N —ps

- ~ —1—9q)|lu| »Zs ~
F(u) < Bofu) = ((p q)lulls 0400 ) < )
P5(Q)

(pr—1—4q)
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such that

" (wue NS and IF(i"u)= tg%lg] I (tu),

T+ — +(F) — -
t'(wyue N, and I;(t"u) —Itnzz%z(_f# (tu),
where I is defined as in (5.3.1).

Lemma 5.4.3. Let ji be defined as in (5.3.4). Then p € (0,f), implies
NO =.

I

Proof. Suppose not. Then there exists w € N S such that w # 0 and

(p=1=Dlwlk,, @ — @ —¢= D'} o =0 (5.4.6)

The above expression combined with Sobolev inequality yields

N 2
p—l—q)\
> SSPQS - - . 547
el xo..p000 > w(m_l_q> (547)

As w € NS C N, using (5.4.6) and Holder inequality followed by Sobolev

inequality, we get

M 1
0 = ”wHX()sp Q) |w ip;‘(g) - M‘w‘%j;rl(g)
p—1—q 1- 1
> ol = (B0 ) Tl — s S

Combining the above inequality with (5.4.7) and using u < fi, we have

¥ 1 E2p=t) Npo1-g)
J— - - ps P
0> ol >K*m ’ )(ﬁ q> o
o ps_q—l ps_q_l

-2 (g4l
— Q| Ss,;gq )/p

> 0, (5.4.8)

which is a contradiction. This completes the proof. O

Lemma 5.4.4. Let fi is as defined in (5.3.4) and p € (0, i). Givenu € N
there exists p, > 0 and a differentiable function g,, : B,,(0) = R* satisfying
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the following:

gpu(o) = 17
(gpu(w))(u+w) €N, V weB,,/0),
pA(u,0) = 9} [ Jul"~u6 — (g + n / i

! , = Y B,,(0),
(.00 0) = =l = e Dl € PO

Alu, &) = /RQN Ju(z) — u(y)\p—z|(;t(:czj|jv igg))(gzﬁ(x) =0 4oy

Proof. Define E : R x X ,(Q2) — R as follows:

s +1
ip: @ pl (u+ w) qu+1(9)-

E(r,w) = rP~ M+l @ — P2 (u 4 w)

We note that v € N, C N, implies

or

E(1,0) =0, and —=(1,0) = (p—1=q)|ull, @ —(Pi—¢—1)

< 0.
or

L" s (Q)

Therefore, by implicit function theorem, there exists neighborhood B, (0) C
N, for some p, > 0 and a C' function g,, : B,,(0) — R* such that

(i) 95, (0) = 1, (ii) E(gp, (w),w) =0, Vw € B,,(0),
(i) B (g, (w), w) < 0, ¥ w € B, (0), (iv) (g}, (0),¢) = —T55——"

Multiplying (ii) by (g,,(w))?", it follows that g,, (w)(u + w) € N,,. In fact,

simplifying (iii), we obtain

(u—l—w)

(p=1=a)gp, (W) llutwl, . )~ Pi=g—1)g,, (w)" i <0 Vwe B, (0).

Thus (gpu(w))(u +w) € N, for every w € B,,(0). The last assertion of the

lemma follows from (iv). O
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5.5 Sobolev Minimizer

Let S;, be as in (5.1.2). From [20], we know that for 1 < p < o0,s €
(0,1), N > ps, there exists a minimizer for S;,, and for every minimizer U,
there exist o € RY and a constant sign monotone function u : R — R such
that U(z) = u(|z — zo|). In the following, we shall fix a radially symmetric
nonnegative decreasing minimizer U = U(r) for S;,. Multiplying U by a

positive constant if necessary, we may assume that
(=AU =U""" in RY. (5.5.1)

For any € > 0 we note that the function function

AT pE— (!x\) (5.5.2)

£
e r
is also a minimizer for S,, satisfying (5.5.1). From [64], we also have the

following asymptotic estimates for U.

Lemma 5.5.1. [064] Let U be the solution of (5.5.1). Then, there exists

c1,c0 >0 and 6 > 1 such that for all r > 1,

< U() < 2 (5.5.3)
rr-1 r p-1
and
Uure) 1
< —. 5.5.4
U(r) — 2 ( )
Proof. See [lemma 2.2 [64]]. O
Therefore we have,
N—sp N—sp
5?(?-1) 617(17—1)
v S U(r) < o5 for |z]>e (5.5.5)
"= ol

We consider a cut-off function ¢ € C§°(€2) such that 0 < ¢ <1, ¢ =1
in Q5,9 =0 in RV \ Q, where

Q5 := {z € Q : dist(z,00) > d}.
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Define

us(z) = Y(x)U(2). (5.5.6)

5.6 Some Important estimates

In this section, we will prove some important estimates in order to establish

our main result.

Lemma 5.6.1. Suppose w; is a positive solution of (P,) and u. is as defined

in (5.5.6). Then for every e > 0, small enough
(i) Ay = /lezflugdx < klg%;

(ii) Ay = /Qw%ad:v < kpero 1T

(iii) Az = /leugdx < ]{335%‘1;

N(p—1)+ps

(iv) Ay = / wiul* " dr < kye” pED
Q

Proof. Applying the Moser iteration technique (see [24, Theorem 3.3]), it can
be shown that any positive solution of (P,) is in L>(€2) . Let R, M > 0 be
such that Q C B(0, R) and |w;|p~@) < M.

*_ N—sp d
() A= [l e < c[ [ Uderen [ x]
Q Qn{|z|<e} Qn{|z|>e} |x|pj
(N —sp)
< C’leN_ P / U(x)dx
{l=z|<1}
N—sp dz
+ 5p(p_1)/ Tspdl'
B(0,R) ’mlﬁ
—s —s R —s
< C[»SN(NP = +€Pj<vp—f>/ erjilpdr]
0
N—sp
< ]{;lgp(p—l),
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Proof of (ii) similar to (i).

(ii) A = / wlde < 0[ / Ul (x)dz + et 11 /
2 Qn(lal<e}
< O[eN“NZf”q / U(z)idx
{Jal<1)

(N—=sp)g dx
+ & plp—-1) — e dx
B(OvR) |:L" p—1

N_ (N=sp)g N—sp

N—ps
< k3epe-D) q’

since0<g<p—-1< %;II)). (iv) can be proved as in (iii).

__N-sp

R N-1
< (Cle P —|—gp(p—1)q/ r T T e Ay
0

dx

N—sp)g

nflal>e} |z =T

|

]

Lemma 5.6.2. Let u. be as defined in (5.5.6), 0 < q<p—1 and N > p?s.

Then for every € > 0, small

(N—ps)(qg+1)
kse™ »-1) if 0<qg< Neps
g+1 N . _ N({p—2)+ps
| hudttde = ke imel, i q = M
_ (N—ps)(etl) | —
ke N 2 if Me=2Dtps o 1,

N—ps

Proof. We recall that R" > 0 was chosen such that B(0, R') C Qs. Therefore,

for € > 0 small, we have

q+1 q+1

€ - £
[lultae > [ jufrtids
Q B(0,R")

= / Uit (z)dw
B(O,R)

_ (N—sp)(qg+1)
= CN P /B(o v Ut (y)dy

/B(O,IZ/)\B(O,l)

_ (N—ps)(g+1)
> eV »

/

R
(N—ps)(g+1) = (N—ps)(g+1)
N-E=ps)atl) [T g (Nops)(atl)
> (e P / r =1 dr.
1

. N(p—2)+ps
C’ase].0<q§1;vfpsp.
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5.7. The Palais-Smale condition

We note that

RI

e _1)_ (N—ps)(g+1) _ (N—ps)(g+1)
/ p(ND=EEE g S 0 NHEEETE g, (5.6.3)
1

Thus substituting back in (2.17), we obtain

N_ (¥=ps)(g+1) _ N4 (V=ps)(a+1)
/\u5|q+ldx > Ce p [Cre VT T = (O
Q
(N—ps)(g+1) _ (N—ps)(g+1)
= (e »-1)  — 45N P
(N—ps)(q+1)
> kg D (5.6.4)

Case 2 : q:]\[(’]’v%ﬁm.

In this case it follows

!

R
= (N—ps)(a+1)
/ N Clln €.
1
Plugging back in (2.17), we obtain
N_ (N=ps)(gtl)

/ |u5|q+1dx Z k65 p |1D€| = k66%| 1Il€|.
Q

Case 3: No=2tps 0 1.

N—ps
RHS of (2.16) > ke 5" / U () dae
B(0,1)
S (5.6.5)
Hence the lemma follows.
O]

5.7 The Palais-Smale condition

In this section, we prove that the functional I, satisfies Palais-Smale condi-

tion for some c as given in the lemma below.
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Let us define

(N = (N = ps)(g+ D)p—1-q) <<p—1—q><N—sp>>p:"—T—l "
P g+1) p*s '

M =

(5.7.1)

Lemma 5.7.1. Let M be as in (5.7.1). For any p > 0, and for
s N P
c < NSSS’% — M,upﬁqul,
1, satisfies (PS). condition.

Proof. Let {uy} C Xo,5,(€2) be a (PS). sequence for I,, that is, we have
I(ux) — c and I (ug) — 0 in (Xo,,(92))" as k& — oo. By the standard
method it is not difficult to see that {u} is bounded in X ;,(£2). Then up

to a subsequence, still denoted by wy, there exists uo, € X 5,(€2) such that

Up — Use  weakly in X, ,(Q) as k— oo,
Up — Usy weakly in L7 (RY) as k — oo,
Up — Uso strongly in  L'(RY) forany 1<r<p: as k— oo,

U — Us  ace. in RY as k — 0.
As 0 < g <p—1, we have
/ lug, |1 (2)doe — / lUso|T (2)dx  as k — oo.
Q Q

Using these above properties it can be shown that <I/'L(uoo), §0>X @ 0
0,s,p

for any ¢ € X ,(Q).
Indeed for any ¢ € X ;,(Q2),

_ / [thoo (%) = thoo (Y)[7~* (110 (%) — 1o () (0(2) — ©(y))

|z —y| Ve

- i </ |1 P ugp de —/ oo |1 Moo tp dx)
Q Q

- (/ ‘Uk p:_2uk90 dr — / |uoo p:_Quoogp dl‘) :
Q Q
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5.7. The Palais-Smale condition

sp
lz—y| '

As {luk(w)_u"’(y)lp;@k(w)_u’“(y))} is bounded in L¥ (R*), where p' = P
k>1
upto a subsequence
Jur (@) — we(@)P(wi () —un(y)) | [uoo(@) — Uoo(Y) [P (oo (7) — us(y))

N+sp N+sp

|z —y| 7 lz—y| 7

weakly in LP (R?Y) | up — us weakly in L7 (RY) and uy, — s strongly in
LY RY) as k — oo.
Combining these we have (I (uy), ) — (I}, (ux), ) — 0 as k — oo. But

as I}’L(uk) — 0 1in Xo5,(2) as k — oo, we have <[’,‘(u°°)’(’0>Xo,s,p(Q) — 0 for

any ¢ € Xo5,(€2). Hence, in particular <IL(uoo), u°°>x . 0.
0,s,p

Furthermore, by Brezis-Lieb lemma as k — oo, we get,

[y ) ) =) sl

— q|N+sp 2N — q|N+sp
|z —yl R |z —yl

—l—/Rw oo (@) = uoo(y)|pdxdy + o(1)

|z —y|Vrer
and
/Q|uk(m)|p:dx:/Q|(uk—uoo)(x)|pzdx+/9]uoo(x) Pidz + o(1).
Now,
<IL(U1¢),U1<:>X0,5,?(Q) - /Rzn ‘ujix)_;’,ﬁr(i)lpdxdy
— [ Junl@)| e = [ ()| da

_ / |up () — oo () — ug(y) + uoo(y)|pdxdy

|z — y[N+ep
— / lug () — oo () Ps dx
Q
!/
+ (L)) o FolD)
Since as <I’ (Uoo) uoo> = 0 and <]’ (ug) uk> —0as k — o0
# ’ XO,s,p(Q) # ’ XO,s,p(Q) ’

we have that there exists b € R with b > 0 such that

Up(T) — Uoo () — Ur(Y) + Uoo (y)|?
| — uoo||§(07s7p(ﬂ) = /Q Jielo) |; z y|Ni(Sp) ) dxdy — b (5.7.2)

91



CHAPTER 5. SIGN CHANGING SOLUTION FOR P FRACTIONAL LAPLACIAN
TYPE EQUATIONS WITH CONCAVE-CRITICAL NONLINEARITIES

and
Psdr —b as k — oo. (5.7.3)

= ) 2)

If b = 0, we are done. Suppose b > 0. Moreover, using Sobolev inequality we

have,
s = el a0 = e [ (1 = ) @)

Therefore, b > Ss7pbp/p§, and this implies b > Sé\fp/si’. On the other hand,

since <I};(uoo), uOO>Xo,s,p(Q) = (0 we obtain

Tylune) = Lu(us) = 7 (T (1), )

XO,SYP(Q)
= i/ oo (2)|P* da + 1 E / [Uoo ()7 dx.  (5.7.4)
N Jo' ™ p q+1)Ja" ™

Using (5.7.4) and <IL(uk), uk>X — 0 as k — oo, we get

0,s,p )

. 3 1
e = Jim () = Jim (1, () ~ <f (1), “k>xo o)

e v Lot o]

" 1 1
P - - q+1
)[P=dx + p (p ) / [too ()T dx

p.s

S S

S NJsp . S
zﬁs&p/p‘i‘ﬁ/gluoo(x

qg+1
* 1
)dex+u<p—>/ [Uoo ()7 dx (5.7.5)

q+1
— %s;gsp + T (us). (5.7.6)

Since, by assumption we have ¢ < J%Sévzf“”p the last inequality implies

I,,(us) < 0. In particular, us # 0 and

1 I 1 .
P +1 s
0< sl oy < g [l e+ [ ()

Moreover, by Holder inequality we have,

(+)
[ @z < jo* (] lusa
Q Q
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5.8. Existence of sign-changing solution

Thus, from (5.7.5)

g+1

-
pz) Ps

S oN/sp S
N AR A

)

" 1 1 ps—(g+1)
(- NI (] e
p q—+1 Q

1
ps—(g+1)

— 8D 1_ 1 I S — D s
where h(n) = 1P —|—,u(p q+1)\Q\ Nt with g (/Q|uoo(x) dm) :

By elementary analysis, we can show that A attains its minimum at ny =

(N(p—l—Q)(N—Sp)> e |Q|ﬁ and

p2s

h(ﬁo) =

s (pp—1-q)(N —sp) "3‘1@“),9,
N p3s

__q+1
plo =1 —q), 2t (p(p — 1 = q)(N — sp) \ "0FD) ot
W' : 2 Q¥

P
= —MMPs*(qul) ,

N *

AN Ps
with M given in (5.7.1). This in turn implies ¢ > £S5 — Mp»i-@) and
that gives a contradiction to our hypothesis. Hence b = 0. This concludes

that ug — ue strongly in Xo,,(£2). O

5.8 Existence of sign-changing solution

Lemma 5.8.1. Let N € N be such that N > 3 [p+ 1+ /(p+1)2 —4] and
q € (q1,p— 1), where

N*(p—1)
(N —sp)(N —s)

@ = ~ 1. (5.8.1)

Then, there ezists fiy > 0 and uy € Xo,(€2) such that

N p:

sup I} (tug) < %Sﬁ, — Mppi-a-1, (5.8.2)
t>0
for u € (0, fiy). In particular,
s N Py
& < S — MpF= (5.8.3)
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where I'T is defined as in (5.3.1) and o, and M are given as in (5.3.2) and
(5.7.1) respectively.

Proof. Let u. be as defined in (5.5.6). Then we claim

[ud |y = uel, >S b+ o(e7°T), (5.8.4)
To see this,
3 _ x *
|u6|Lp§(Q) - /Q|u6|p dIZ/Qé |ue|p dz
[ )
- U.(2)d —/ U. ()" da. 5.8.5
U@ Prdr = [ U@)Pdr (585)
Moreover,
/ |U. ()|p5dx< |U€(;p)|p§dx — i Up:(f)dx
RN\ Qs RN\ B(0,R’) eN RN\B(OR’) 3
< C * N 1- i 1d’l"
- i’
N
< (CerT,

Therefore substituting back to (5.8.5) we obtain

o N N
sp 1
Lps (Q) > Ssvp 0817 .

Furthermore, a similar analysis as in [78, Proposition 21] (see also [64,

Lemma 2.7]) yields, for € > 0 small (0 < £ < $) we have,

N—ps

el @) < S+ ofe 7). (5.8.6)
Define,
L
J(u) = *H ull%,. @ E'u U € Xosp()

and choose g > 0 small such that (5.8.6) and (5.8.4) hold and Lemma 5.6.2

is satisfied. Let € € (0,&¢). Then, consider corresponding ug := u.,. Let us
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consider the function h : [0,00) — R defined by h(t) = J(tug) for all t > 0.

. . ||uo|\§'(0 @ \ 7P
It can be shown that h attains its maximum at ¢t = ¢, = #
Ug ‘*p*

N
l[uoll s»
and sup;sg J(tug) = ;(W) . Using (5.8.6) and (5.8.4) a straight

forward computation yields,

sup J (tug) < NS T o). (5.8.7)

>0
Since I (tug) < 0 for ¢ small, we can find ¢, € (0,1) such that

sN _Pi

+
sup I (tug) < —Ssh — Mpri-a1,
o<t<to " (fuo) N
for o > 0 small. Hence, we are left to estimate sup, <, I, (tu).
+ AR
sup I, (tug) = sup[J(tuo) — Jug |70+1]
t>to t>to q+1
s N N-sp tatl 1
< =SSptolert) — | Th
= N S,p ( ) q+1| O‘Lqul
N N— (N —ps)(q+1) -~
~Ssp + e P T e U, 0<q< Mi)vfzs);ps
= N N _
< 9\ s,p—l—qu i — coue® |lnel, q:]\[(ﬁffﬁm
N (N—sp)(g+1) _
SS —|—015P1—02u5N P ; M?V%T<Q<p—1-

p
Choose € € (0, )suchthatsp T = pri-a-1 . Then for Xe=24ps o )1

N—sp
s Qv Nops N_ (¥ =sp)(a+D) N P
the term X555 + cie 71 — cpue P reduces to 5 Ssp + cypPs—t —
N e (6 =)
Cofb| ppP a1 . Now, note that we can make

(N— 9p)(q+1)
. NS =) o
CLuPs =1t — copu| prTma < —Mppmat,

for 1 > 0 small if we further choose (%)(%)[N]\i’;s —(q+1)] < 751
Jifg+1> # This proves (5.8.2). It is easy to see that (5.8.3)

follows by combining (5.8.2) along with Lemma 5.4.2 .
[
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5.8.1 Sign changing critical points of I,

Define
N, ={ueN,:u" e N},
N,g:= {fueN,:—u" € N;:}7
We set
pr = ueligl I(u) and [y = uelglsz I, (u). (5.8.8)

Theorem 5.8.2. Letp >2, N > Lp+1+,/(p+1)2 —4] andq; < g < p—1,
where q; s defined as in (5.8.1). Assume 0 < p < min{i, fi1, f«, i1}, where
[, ity and py are as in (5.3.4), Lemma 5.8.1 and Lemma 5.9.1 respectively.
fix is chosen such that &, is achieved in (0, p.). Let By, B2, &, be defined as
in (5.8.8) and (5.3.2) respectively.

(i) Let By < &, . Then, there exists a sign changing critical point @, of I,

such that w, € N, 1 and I,,(01) = f1.

(ii) If By < @, , then there exists a sign changing critical point wy of 1,

such that wy € N, 1 and I,,(;) = 5.
Proof. (i) Let 1 < &,. We prove the theorem in few steps.

Step 1: N, and N, are closed sets.
To see this, let {u,} C N, such that u, — u in Xg,,(2). It is easy to note
that |u,l, |u| € Xos,(2) and |u,| — |u| in Xos,(€2). This in turn implies
ul = ut in Xo,,(Q) and LY(RY) for v € [1,p] (by Sobolev inequality).

Since, u,, € N7,

Jr -
w1, we have u;- € N . Therefore

ZH?{OM,(Q) — Jusy

s 1
Hu I;P;‘ @ M\UZI%%(Q) =0 (5.8.9)

and

Py
L7 () <0Vn>1. (5.8.10)

(=1 =Dl ll,, @ — P: —a—Dlu,
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Passing to the limit as n — oo, we obtain u™ € N, and

(p—1-— )||u+||§(08p(9) —(pt—q—1)| [ps*( Q) < 0. But, from Lemma 5.4.3,
we know N 0 = (. Therefore u* € N, and hence N, is closed. Similarly it

can be shown that N, is also closed. Hence step 1 follows.

By Ekeland Variational Principle there exists sequence {u,} C N ; such
that

1
L(wn) > B and T(2) = () = — i = 2llxo. i) ¥ 2 €N,
(5.8.11)

Step 2: {u,} is uniformly bounded in X4 ,(€2).
To see this, we notice u,, € N, ; implies u,, € N, and this in turn implies

<IL(un),un> =0, that is,

q+1
Lps @) + ,U|un|Lq+1(Q

I

Since 1,(u,) — B1, using the above equality in the expression of I,(u,), we

get, for n large enough

1

S 1
2l < AL (W—p) lual %t o

< O+ llual, )

As p > g + 1, the above implies {u,,} is uniformly bounded in Xg,,(2).
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We note that for any u € X ,,(2), we have

[u(e) = uly)?
B = [ W e

|z — y| Ve
_ [ (u(z) —um)P)
= fon eyt

2 [y [ Sy oy
= 1%, + v, @ (5.8.12)
By a simple calculation, it follows
e U e o L P [ul Tt ) = lu 1 5em o) Tl o)
(5.8.13)
Combining (5.8.12) and (5.8.13), we obtain
L(uw) > L)+ L,(u") YV u€ Xos,(Q). (5.8.14)

Step 3: There exists b > 0 such that ||Ju, | x,, ) > b for all n > 1.

Suppose the step is not true. Then for each k£ > 1, there exists w,, such that
B 1
|y, | 50,00 (02) < z Vk >1. (5.8.15)
Therefore, [|u, [/x,.,@ — 0as k — oo and by Sobolev inequality

|uT_Lk|LP§(Q) =0, |u,, rar1i@ — 0, as k— oo.
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Consequently, I,,(u, ) — 0 as k — oo. As a result, using (5.8.14) we have

Br = Tulun,) +0(1) > Tu(u) + Lu(u) +0(1) = I (uf, ) +0(1) > a

This is a contradiction to the hypothesis. Hence step 3 follows.

Step 4: I, (u,) — 0 in (Xo,,(52)) as n — oco.

Since u, € N, 1,

we have u € N, . Thus by Lemma 5.4.4 applied to the

element u ', there exists
Pn = Py and  gn = o, (5.8.16)
such that
g(0) =1, (gu(w))(uf +w) €N, ¥ weB,/(0). (5.8.17)

Choose 0 < p,, < pp such that p, — 0. Let v € Xo,(Q2) with [[v]|x,, @) = 1.
Define

Un 3= =PV X {un20} = ¥ X{un<0}]
and
2 = (Gnl0)) (un = v2)
= z, —73,
where 25 = (gn(% ))(UZ + Pnv" X{unz0y) and 23 = (gn(vﬁ ))(UE +
ﬁnv_X{U7L§0}) NOte that ’UT: = ﬁnU+X{U7LZO} SO? H/UT:HXO,S,p(Q) S ﬁn”U”XO,S,p(Q) S
fn- Hence taking w = v, in (5.8.17) we have, 27 =z} € N, so z;, € N, .

Hence,

Lu(25,) > 1u(un)

B E”un — Zpn HXOvSvP(Q).
This implies,

1
gﬂun—zﬁnHXo,s,p(Q) > Lu(un) — 1i(25,)

= (I (un)stn = 2, ) + 0(1) [t = 25, | x6.. ()
= = (L), 2, )+ o(D)l[tn = 23, ]| x,. )

, (5.8.18)
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as <IL(un), un> = 0 for all n. Let w,, = p,v. Then,

inun — 2l xop@ = = (T (un), wa + 25,) + (I (), wp)

+o(Dllun = 25, [l x0 .- (5:8.19)
Now, (I (un), wn ) = {I/,(tn), o) = p (I} (un), v) . Define
Ty = U Xfup>0} = U~ X{un<0}-
So, 25, = gn(v, ) (Un — Pn¥y). Hence we have,
(I (un)s wn + 25, ) = (I} (un), wn + o (v, ) (tn — pnTn) )
= <I;(un)a Pr¥ — gn(U;)ﬁnﬁ>
= pn <I/:(un), v — gn(vg)m> (5.8.20)

Using (5.8.20) in (5.8.19), we have

1 . N
lun = 25, lx0.0 00 2 —Pn (I, (un), v = g0 )7m)
+pn (1, (1n), v) + 0(1) [t — 23, || x0.. (00)- (5.8.21)
First we will estimate <IL(un), v— gn(vg)ﬁn>. For this,

V= go(0,)0n = T =07 = ga(v) [V X qunz0 — VT X{un<0}]

= 0[9n(0) = gn (v )X{unz0}] = v [90(0) = gn (v, )X un<oy]
= —0"[(g,(0), v ) + o(V)l[og [1xo.., )]

+ 07 [(9n(0), 0 ) + o)l 0,00

= —0"3l(6,(0),0%) + oDt .. 0)]

+ 0 pal{90(0),0%) + oDV x5, (0]

= =/n[ (9000 ) oW1 I 0

Therefore,

(I (un), 0 = gn (v )00) = = ((9,(0), 0 ) + (D) 07 [ x0., (@) (L (), v) -
(5.8.22)
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Claim : g, (v, ) is uniformly bounded in X ,(€2).
To see this, we observe that from (5.8.17) we have, g, (v, )(u} + v;,) €

N, C Ny, which implies,

- g+l 7, |Ps
lentull’, . ) — M|Cn¢n|qLJg+1(Q) = lentnl s @ =0

where ¢, := g,(v;) and ¥, := u} + v, . Dividing by ¢ we have,

7p*
c

g+1—p*
CTL

7 og+1 1.7 |Ps
wn Lq+1(Q) - |wn Lp; (Q)

Dallk,. ) — 1 (5.8.23)

Note that ”1;71”)(0,5,17((2) is uniformly bounded above as |[u,| x,, ) is uni-
formly bounded and p, = o(l). Also, ||@Zn||XO?s’p(Q) >t llxo. @) —
pullvllxo. - Note that [juf|x,., > b for large n. If not, then
0. p@) — 0 as n — o0. As u, € Ny, so uf € N;. Now, N is a
closed set and 0 ¢ N, and therefore [lu,|x,,,@ 7/ 0 asn — oo. Thus
there exists b > 0 such that ||uf| x,.,(@ >b> 0. This in turn implies that
HQZJnHXO’S’p(Q) > C, for some C' > 0 by choosing p, small enough. Conse-
quently, if ¢, is not uniformly bounded, we obtain LHS of (5.8.23) converges
to 0 as n — oo.

On the other hand,

|77ZJTL|LP§(Q) > |U:L_|LP§(Q) - ﬁn|U|LP§(Q) > 6

for some positive constant c as p, = o(1) and u,} € N implies

iy > = 1=k, o> @—1-qb"

(ps—1—q)u}

Hence, the claim follows.
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Now using the fact that ¢,,(0) = 1 and the above claim we obtain

It = 25 %0mpi@ < Ntnllxo @)L = 9a(0)| + FulTall xo.29n (v7)
< Nl @ [1 {6 (0), 07 ) | + 0(D)[[7]l x,.. )]
+ Pnllvllxo. @ 9n(vy)
<l x0,0p@ (90(0),7F) + o) ][0l xi.. ,0
+ [0l 0.0 p(09n(v7)]
e

Substituting this and (5.8.22) in (5.8.21) yields

ﬁn(<g;<o>,v+> + o<1>r\v+uxo,s,p<m) (L) v) + (I (un),v) o+ pro(1)

This implies

[(<g;(0)’U+>+O(1)HU+HXO,S,,J(Q))"’1] <[L(un),v> < i—i—o(l) for all n > ny.

Since | (g},(0),v™) | is uniformly bounded (see Lemma 5.9.1 in Appendix) ,

letting n — oo we have I, (u,) — 0 in (Xo,(€2))". Hence the step 4 follows.

Therefore {u,} is a (PS) sequence of I, at level 3, < &,. From Lemma

5.8.1, it follows that

N j

Gy < oSty = My for e (0, ),

where M =

(PN -V 29)(a D) 010 [ (1)
p*(g+1) (

*‘1+1
)"S"H |©2|. Thus,

p2s
o s N P
Bl < OZM < Nsszip — M[Lps*q*l.

On the other hand, it follows from the Lemma 5.7.1 that I, satisfies PS at
level ¢ for

S N P;
s Ep—
C<NS§’,p—MuPsql,
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this yields, there exists u € X ,(12) such that u, — u in Xo,,(2). By
doing a simple calculation we get u,, — u~ in Xg,,(£2). Consequently, by
Step 3 [|u”||lxy. @ = b. As N, is a closed set and u, — u, we obtain
u € N, 4, that is, u™ € N and u™ # 0. Therefore u is a solution of (P,)
with 4t and u™ are both nonzero. Hence, u is a sign-changing solution of

(P,.). Define 1, := w. This completes the proof of part (i) of the theorem.
Proof of part (ii) is similar to part (i) and we omit the proof. O
Theorem 5.8.3. Let (31,82 > &, where 1, B2, &, be defined as in (5.8.8)

and (5.3.2) respectively. Then, there exists po > 0 such that for any

w € (0, p0), 1, has a sign changing critical point in the following cases:

(i) forp > 3+T‘/5, there exists qg := N]\iip — p%l such that when q > g2 and
N> sp(p* —p+1),
(ii) for 2 < p < 3+—2‘/5, there exists q3 := % — p% such that when

q>qs and N > sp(p+1).
We need the following Proposition to prove the above Theorem 5.8.3.

Proposition 5.8.4. Assume 0 < pu < min{ i, fi, fin }, where fi is as defined

in (5.3.4) and i, > 0 is chosen such that &, is achieved in (0, p.) and iy is

as in Lemma 5.8.1. Then, for p > 3+T‘/5, there exists qo := Nj\iip — ﬁ such

that when q > qz and N > sp(p* —p + 1) we have
s N
sup I, (aw; —bu.) < &, + —5%p,
a>0, ll?e]R u( ! 6) pel NP

for e > 0 sufficiently small , where wy is a positive solution of (P,) and u.

be as in (5.5.6).

Furthermore, when 2 < p < 3+T\/g’ there exists q3 = % — % such

that when q > g3 and N > sp(p + 1), it holds
I b S o

su aw; — bu.) < &, + —S¥&,

a>0, Il?GR plawn ) poNTP
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for e > 0 sufficiently small .
To prove the above proposition, we need the following lemmas.
Lemma 5.8.5. Let wy and p be as in Proposition 5.8.4. Then

sup [, (swy) = &

s>0 K

Proof. By the definition of &, , we have &, = inf - IT(u) = [ (w) =
I,(wq). In the last equality we have used the fact that w; > 0. Define
g(s) :== I,(sw). From the proof of Lemma 5.4.1, it follows that there exists
only two critical points of g, namely ¢*(w;) and ¢~ (w;) and max,s g(s) =
g(tT(wy)). On the other hand (I',(wy),v) = 0 for every v € Xg,,(Q).
Therefore ¢'(1) = 0 which implies either t™(w;) =1 or ¢~ (wy) = 1.

Claim: t~(wy) # 1.

To see this, we note that ¢t~ (w;) = 1 implies ¢~ (wy)w; € N, asw; € N
Using Lemma 5.4.1, we know ¢~ (wi)w; € NJ. Thus NS N N7 # (), which is
a contradiction. Hence we have the claim.

Therefore t™(w;) = 1 and this completes the proof. O

Lemma 5.8.6. Let u. be as in (5.5.6) and p be as in Proposition 5.8.4.

Then for € > 0 sufficiently small, we have

N —
sup I,(tus) = —NSs,p + Ce @0 — kslue|Tai1 (g
te

3

Proof. Define ¢(t) = Pl @ = 5l

D3

s Thus L (tu) = (1) -

tat+1
q+1

|ue %ﬁl @) On the other hand, applying the analysis done in Lemma

. p
(p—1 q)HUSHXo,s,p(Q)

D
p2s
5.4.1 to u., we obtain there exists (tp). = ( ) <t such

B
(pr—1—q)|uc|"
L

P ()
that
1
T — I — I (tF (Y (t:)q+ q+1
sup I, (tue) = sup I, (tue) = L,(t7u.) = o) —p |te| For1 (0
teR >0 q+1

7 (to)g+1 q+1
< Stggqb(t) — K q+1 |ua|Lq+1(Q)-
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Substituting the value of (¢y). and using Sobolev inequality, we have

(N—ps)(g+1)

to)at1 — 1= T p2s
/,[,( O)E 2 /"L p q Ssp P — k8.
¢g+1 “q+1\ps—q—17"
Consequently,
sup I, (tu.) < sup o(t) — k8|us|%ﬁ1(m. (5.8.24)
teR >0

Using elementary analysis, it is easy to check that ¢ attains it’s maximum

1 N
L~ luelle, @y \ P57 ~ luel, o)\ P*
at the point ¢y = <p°”’(> and ¢(ty) = + ﬁ”() .
El €

*
IUSILP: @ LPs (Q)

Moreover, using (5.8.6) and (5.8.4), we can deduce as in (5.8.7) that

o S s (N—ps)
to) < +Sdp + Ce @ (5.8.25)
Substituting back (5.8.25) into (5.8.24), completes the proof. O

Proof of Proposition 5.8.4: Note that, for fixed a and b, I, (n(awl —
bua,(g)) — —00 as |n| — oo. Therefore sup,~q peg Iu(aw; — bu.s) exists and
supremum will be attained in a? + b* < R?2, for some large R > 0. Thus it
is enough to estimate I,(aw; — bu.s) in {(a,b) € R* x R : a® +V* < R?}.

Using elementary inequality, there exists d(m) > 0 such that
la+b|™ > |a|™+|b|™ —d(|a|™ 6] +|alb]™) ¥V a, bER, m > 1. (5.8.26)
Define, f(v) := [[v]l%, .,(2)- Then using Taylor’s theorem

flawy = bues) = flaw) — (f'(awn), bue) + o([[buesl, , @)

< ||aw1||§(0,s,p(9)

/ |awy (z) — awy(y) P> (aw () — awy (y)) (bues(z) — bues(y))
R2N |SL‘ _ y|N+P5

+ CHbU@?& ||§(0,s,p(Q)’

(5.8.27)
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where ¢ > 0 is small enough. We also note that from the definition of u. g,
it follows that ||ue | x,, () is bounded away from 0. Therefore, since p > 2

we have chuE,(;Hg(Oﬁsﬁp(Q) < [bucsll, . (o) for ¢ > 0 small enough. Hence

lawy — b“aé”?(o,s,p(g) = Haw1||§<oys,p(9)
B law () — aw, (y)["~*(aw: (z) — aw (y)) (bue s(x) — bue5(y))
P Jgon |z — y| VP

+ buesl, . o

(5.8.28)
Consequently, a? + b*> < R? implies

1
Ip(awl - buEﬁ) S ];Haleg(O,s,p(Q)

[ el = @ o) — o) (esls) = esls)
R2N ‘x _ y‘N+ps

* 1
Pedx — —/ |bue s
ps Ja
aw | tdy — —4—— Ug.s b
P [aw | de = [ b |
Q qg+1Ja '

g+l
+C (/ law, pzldx)
Q

+C(/Qyaw1|qybu€,5|dx+/ﬂ|aw1||bu€,5|qu>

= [,(awy) + I, (bu.s) — aqbu/ |w1|q_1w1u€’5dx
Q

_api‘b/ |wy

Q

+O</ |w1
0

e (/Q |w1|q|u875|dx+/9|w1||u875|qu) .

Pidr

1 1
p
o lbues @ = o /Q oy

Py, s|d + /Q |y || 5

*7
Ps 2w1u5,5d1’

pi—ldx>

s lda + [ s

Using Lemmas 5.6.1, 5.8.5 and 5.8.6 we estimate in a? + b? < R?,

8 X
I,(awy —bu.5) < a, + NSsp,p — kg\ug\%ﬂl(m

(N —ps) N—ps (N—ps)q N(p1)+ps>

+ C (5 (r—-1) + gpp—1) + g pp—1) + g pl—-1)
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For the term k8|u€|‘éﬂ1(m, we invoke Lemma 5.6.2. Therefore when

N(p—2)+ps
Tps<q<p—1,wehave
s X N (N=ps)(a+1)
+ — spjy - ]{792’:‘ p
N
(N—ps) N—ps (N—ps)q N(p—1)+z76)

+ C (g -0 4 g1 4 ¢ -1 4 g pO-D

I(awy —bu.s) < &,

(5.8.29)

(N—ps)(a+1)
We will choose ¢ in such a way that the term koe™ % dominates the

N—ps
other term involving €. Note that among the terms in the bracket, £ D
(N—ps

)q .
and € »@-1 dominate the others.

This in turn implies we have to choose ¢ such that

(N —ps)(qg+1) _ N-ps

N 5.8.30
p p(p—1) ( )
and
N — 1 N —
N N =ps)a+1) (N —ps)g (5.58.31)
p p(p—1)
(5.8.30) and (5.8.31) implies ¢ > ¢» and ¢ > g3 respectively, where
Np p Nip—-1) p-1

= — d = — . 5.8.32
R s B L el s ; ( )

Case 1: p > HT\@
In this case by straight forward calculation it follows that ¢ > ¢3. So in
this case, we choose g > ¢o. Moreover, since ¢ < p — 1, to make the interval
(q2,p — 1) # 0, we have to take N > sp(p? —p+ 1).

Case 2: 2<p< 3+T\/5
In this case again by simple calculation it follows that g3 > ¢o. Thus, in this
case, we choose ¢ > ¢g3. Furthermore, as ¢ < p — 1, to make the interval

(g3,p— 1) # 0, we have to take N > sp(p + 1).

Hence in both the cases taking ¢ > 0 to be small enough in (5.8.29), we

obtain
s N
sup I, (aw; — bu.s) < &, + = S5p.

a>0,beR N

107



CHAPTER 5. SIGN CHANGING SOLUTION FOR P FRACTIONAL LAPLACIAN
TYPE EQUATIONS WITH CONCAVE-CRITICAL NONLINEARITIES

U
Proof of Theorem 5.8.3: Define py := min{ i, p.},
N, =N, NN, (5.8.33)
and
co = inf I,(u), (5.8.34)

uEN,

Let p € (0, ). Using Ekland’s variational principle and similar to the

proof of Theorem 5.8.2, we obtain a sequence {u,} € N, satisfying

L(up) = cay I(up) =0 in (Xos,p(R)).

I

Thus {u,} is a (PS) sequence at level ¢p. From Lemma 5.8.7, given below,
it follows that there exists @ > 0 and b € R such that aw; — bu. € N .
Therefore Proposition 5.8.4 yields
s N
¢2 < &, + 5. (5.8.35)
Claim 1: There exists two positive constants ¢, C such that 0 < ¢ <
[ 10,0 p0) < C-
To see this, we note that {u,} C N7 C N ;. Thus using (5.8.12), Step 2
and Step 3 of the proof of Theorem 5.8.2, we have |[u:|x,, @ < C and
|ty Ix0.. ) = ¢ To show ||u}||x,. @ > a for some a > 0, we use method
of contradiction. Assume up to a subsequence ||u; | x,,, ) — 0 as n — oo.
This together with Sobolev embedding implies |ug |/»zq) — 0. On the other

P
175 () < 0.

hand, w;f € N implies (p — 1 = q)lluz %, . @) — s — ¢ — Dy

Therefore by Sobolev inequality, we have

||u:‘|§(o,s,p(9) p: —q—
|u;t|]2p?;(g) p—1-

PP
LP5(Q)°

+
n

Ss,p S

1
lu
q

which is a contradiction to the fact that [u;|;z ) — 0. Hence the claim

follows.
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Going to a subsequence if necessary we have
ul = u, = in Xop(Q). (5.8.36)

Claim 2: 7, 0, 1y #Z 0.
Suppose not, that is 73 = 0. Then by compact embedding, u — 0 in
L), Moreover, uf € N C N,, implies <I/’L(uj),u:> = 0. Conse-

quently,
1
i 1.y — [t 173 ) = Hld | T ) = 0(1)-
»( (©)
So we have |u fp;(ﬂ) = |luy %,y To(1). This together with [lu;} [ x,, @) =
¢ implies
|,
. i o > 1+ o(1).
[ onw(ﬂ)
This along with Sobolev embedding gives Lp @) 2 SN/ P54 0(1). Thus we
have,
1 S <
[M(u:) 7“ +”X09p(Q) | a LPS(Q) + 0<1) > ngp/p + 0(1) (5837)

Moreover, u,, € N, implies —u,, € N,. Therefore using the given condition

on [3, we get

L) > 6 > a,. (5.8.38)

m

Also it follows I,(u}) + I,(—u;,) < I,(u,) = c2 + o(1) (see (5.8.14)). Com-
bining this along with (5.8.38) and (5.8.35), we obtain

_ s .
L(uf) < ey — a, +o(l) < NSéYp/p ,

which is a contradiction to (5.8.37). Therefore n; # 0. Similarly 7, # 0 and

this proves the claim.
Set wq := 1, — no.
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Claim 3: wj =n; and w; = 15 a.e..

To see the claim we observe that 11, = 0 a.e. in . Indeed,

IémmMIZ\/ ‘”hUW+/U1_—%Wﬂ
< fuy — mlee@)lu, |LP @ T e (®) | — m2|r()

(5.8.39)

where % + z% = 1. By compact embedding we have u,;” — n; and u, —

in LP(Q). Asp >
limit in (5.8.39) and obtain [, mnedx = 0. Moreover by (5.8.36), 11, 172 > 0

N +S, then p’ < pi. Therefore, using claim 1, we pass the
a.e.. Hence mm; = 0 a.e. in Q. We have wy —wy; = wy = 0y — ny. It
is easy to check that wy < m; and wy; < 75. To show that equality holds
a.e. we apply method of contradiction. Suppose, there exists £ C () such
that |[E] > 0 and 0 < w3 (z) < ni(z) V 2 € E. Therefore 7, = 0 a.e. in
E by the observation that we made. Hence w3 (x) — w5 () = n1(z) a.e. in
E. Clearly wy (x) # 0 a.e., otherwise w3 () = 0 a.e. and that would imply
m(z) = —wsy (x) < 0 a.e, which is not possible since 7; > 0 in £. Thus
w; () = 0. Hence 1;(z) = w3 (z) a.e. in £, which is a contradiction. Hence

the claim follows.

Therefore wy is sign changing in Q and u,, — ws in Xg,,(2). Moreover,

I (un) — 0 in (Xo,,(€2))" implies

[ ) = ) ono) — O = D 1, [ o
R2N | — y[ NP o T

[ o
= o(1)

P2y, ddx

(5.8.40)

for every ¢ € Xo;,(€2). Passing the limit using Vitali’s convergence theo-
rem via Hoélder’s inequality we obtain <I l:(’lUg), ¢> = 0. Hence w, is a sign

changing weak solution to (P,). O
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5.9. Appendix

Lemma 5.8.7. Let u.s be as defined in (5.5.6) and wy be a positive solution
of (Py) for which & is achieved, when p € (0, ). Then there exists a, b €
R, a > 0 such that aw, — bu. € N, where N, is defined as in (5.8.33).

This lemma can be proved in the spirit of [21, Lemma 4.8], for the con-

venience of the reader we again sketch the proof in the appendix.

We finally conclude the proof of our main result.
Proof of Theorem 5.2.1: Define p* = min{ ., f, fi1, to, pt1}, where g, is cho-
sen such that &, is achieved in (0, ). fi, fir, po and py are as in (5.3.4),
Lemma 5.8.1, Theorem 5.8.3 and Lemma 5.9.1 respectively. Furthermore,

define gy and Ny as follows:

" max{qi, g2} when p > 3*—2\/5,
0=
max{q;,q3} when 2<p< 3+2‘/5.
sp(p? —p+1) when p>3H5,
N() =

sp(p+1) when 2<p< 3*—2*/5

Note that Ny > Z[p+14/(p+ 1)? — 4], where the RHS appeared in Theo-
rem 5.8.2. Hence combining Theorem 5.8.2 and Theorem 5.8.3, we complete

the proof of this theorem for p € (0, u*), ¢ > go and N > Nj. O

5.9 Appendix

Lemma 5.9.1. Let g, be as in (5.8.16) in the Theorem 5.8.2 and v €
Xo,5p(Q2) such that ||v||x,,,@ = 1. Then there exists 1 > 0 such that
if p€ (0, ) implies (g,,(0),v") is uniformly bounded in X ,(€2).
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Proof. In view of Lemma 5.4.4 we have,

pA(unaU+) _p:/ |un
Q
=1l o — 7 —a—1)

T R T e

(9:,(0),0%) =

Ifiz Q)

Using Claim 2 in Theorem 5.8.2, there exists C' > 0 such that |[u,|/x,, @) <
C for all n > 1. Therefore applying Holder inequality followed by Sobolev
inequality, we have

[(9,.(0),0) | < |

show

Cllvllx, Q oy -
0.0.p(%) . Hence it is enough to

(p=1=)llunll’, | ()= (Pi=a=Dlunl” ‘; .

)>C,

p = 1= Dllwallk, @~ ¥F— 0~ 1)
for some C' > 0 and n large. Suppose it does not hold. Then up to a

subsequence

(0= 1= Dlluallyy 0 — ¥ — 1~ Dl o = 0(1) as n o0
Hence,
[ |15 = p*i +0o(1) as n — oo. (5.9.1)
"1 Xo,5,p(2) p—l LPS(Q)

Combining the above expression along with the fact that u,, € N,, we obtain

q+1 _ bs—D + 0(1> . bs—P

:U/‘unqu-H(Q) = m |u n|Lp 1(Q) T —1— q“uan( @t o(1).

(5.9.2)

0,s,p

After applying Holder inequality and followed by Sobolev inequality, expres-
sion (5.9.2) yields

1
p: —q— 1 pﬁ—g 1 q+1\ p—1—q
tn | xo.. ,(0) < (Mp*_p|Q| i Sep” +o(1). (5.9.3)

S

Combining (5.8.12) and Claim 3 in the proof of Theorem 5.8.2, we have

|| xq.,.,2) = b, for some b > 0. Therefore from (5.9.1) we get

> (' for some constant C' > 0, and n large enough.  (5.9.4)

LP @) =
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Define ¢, : N, — R as follows:

e\ 77 e
() = ko| —=55 — plulTe )

Ju LP5 ()
ps=1
where kg = (é%lq’_ql)pz”’ (pps £ ) Simplifying 1, (u,) using (5.9.2), we ob-
tain
p* q 1 p: (ps*_l)p: = p* p
_ C—q- @ |FT P - p: _
i) =k (B ) T T hol1) = o),

175 (@)
(5.9.5)

On the other hand, using Hélder inequality in the definition of v, (u,), we

obtain

om0 \ 77
@/Ju(un) = ko m —#|Un|Lq+1
Unl e (@)

un p(ps_l) p;},p 1)277
k:(””x()> A

- PGy @
LIPS ()
p(ps -
_ g+1 I "‘Xos sTp 1 ot
Un LP§ (Q) 2 (V)

(5.9.6)

lunler® oy \ 7
Using Sobolev embedding and (4.6.3), we simplify the term ( ot 0.0.p SZ)> : |qu

LP5 () LPS ()
and obtain
1 1 .
a3\ 57 1 =
¢ U *
\u ps(p 1) |u |<1+1 = 7ep LS (Q)
nlpps(Q) Unl et ()
pi=l g
ps—p P q
> Sp " Ml o
p§71+1 p* — q — 1 p*—g—1 _ g+l _P—g—q
> Sip " T\ Q] 7 Sep? :
pbs—D
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Substituting back (5.9.7) into (5.9.6) and using (5.9.4), we obtain

q

P§*1+ - g —1 ps—q—1\ p—1—g
wu(un) > Catl lkosﬁi_p p=l q/[p—‘f—q (psq‘m [H )
Ps— 0D

.
Ps—4
[H

— 1|9

Z d07

for some dy > 0, n large and p < pq, where u; = pq(ko, s,q, N, |Q2|). This is

a contradiction to (5.9.5). Hence the lemma follows. O
Proof of Lemma 5.8.7
Proof. We will show that there exists a > 0, b € R such that

a(wy —bu )" € Ny and  —a(w; —bu)” € N,

Let us denote 7; = inf,cq %, Ty = SUP,cq ‘::((i))

As both w; and u, are positive in €2, we have ;1 > 0 and 7, can be +o0.

Let r € (r1,72). Then wy,u. € Xo;,(€2) implies (w; — ru.) € Xo5,(€2) and
(wy — ru.)™ # 0. Otherwise, (w; — ru.)™ = 0 would imply 7, < r, which
is not possible. Define v, := w; — ru.. Hence 0 # v} € Xo;,(2) (since for
any u € Xo,(2), we have |u] € Xo,,(2). Similarly 0 # v, € Xo,,(9).
Therefore by lemma 5.4.1 there exists 0 < s™(r) < s~ (r) such that s*(r)v,} €
N, ,and —s~(r)(v;) € N,. Let us consider the functions s* : R — (0, o0)
defined as above.

Claim: The functions r — s*(r) are continuous and

lim st(r)=t"(v) and lim s*(r) = +oo,
r—Ty,

r~>F1
where the function ¢+ is same as defined in lemma 5.4.1.
To see the claim, choose r¢ € (71, 72) and {r, },>1 C (71, 72) such that r, — ry

asn — 0o. We need to show that s™(r,) — s7(ry) asn — oo. Corresponding

to r, and o, we have v = (w; —rpu.)™ and vf = (w; —rou.)*. By lemma
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5.4.1. we note that s™(r) = t*(v;}). Let us define the function

)—i— Ps

F(s,r) = s (wy —ru.)t [ — 8P (wy — ru,

LP5 ()
— l(ws = ru)HE )
= o(s,7) — pf (w1 —ru)” %ﬁl(m,
where
¢(s,) = "7 (wr = ru) |5, L) — 5T (wn = rue) @)

Doing the similar calculation as in lemma 5.4.1, we obtain that for any fixed
7, the function F'(s,r) has only two zeros s = t*(v,7) and s = ¢t~ (v;]). Conse-
quently sT(r) is the largest 0 of F(s,r) for any fixed r. As r, — ro we have
vf = vhin Xosp(Q2). Indeed, by straight forward computation it follows
Uy, — Upy 0 X 5,(€2). Therefore |v,, | — |vy,| in Xo5,(€2). This in turn im-
plies v — vt in Xo,,(€2). Hence |[v) |Ix,.,@) — |0 [1x0..,()- Moreover
by Sobolev inequality, we have |v} |1rq) = [V} |0t (q) and [0 [peni) —
[0 | Lat1 (). As a result, we have F(s,r,) — F(s,r) uniformly. Therefore
an elementary analysis yields s (r,) — s (rg).

Moreover, 1y > % implies w; — mu. < 0. As a consequence
r — 75 implies (w; — ru.)™ — 0 pointwise. Moreover, since |(w; —
TUe) T reo() < |wi|pee(q), using dominated convergence theorem we have
(w1 — rus)*| gy — 0. From the analysis in Lemma 5.4.1, for any r,
we also have s™(r) > to(v,"), where function ¢, is defined as in lemma 5.4.1,
which is the maximum point of ¢(-,7). Therefore it is enough to show that
lim, _,— to(v;") = oo. Applying Sobolev inequality in the definition of to(v;")

we get

_1 _1
" L ( _1_q)HU+||XOSp (Q) pz—p> Ss7p(p_1_Q) P3P +
O(UT)_ ( . - *_]__q | |Lp s(Q)
s (€2)

ps_l_q>|v7—"—|LP Q DPs
Hence lim, ;- to(v;) = 0.

115



CHAPTER 5. SIGN CHANGING SOLUTION FOR P FRACTIONAL LAPLACIAN
TYPE EQUATIONS WITH CONCAVE-CRITICAL NONLINEARITIES

Proceeding similarly we can show that if » — 7, then v — vz and

lim, .+ s7(r) = tT(v) and

lim s~ (r) = 400, lim s (r) =t" (v, ) < +o0.
r—>r1~' Ty

The continuity of s* implies that there exists b € (7,72) such that s™(r) =

s~ (r) = a > 0. Therefore,
a(wy, —bu.)"™ € N, and —a(w; —bu.)” € N,

that is, the function a(w; — bu.) € N, and this completes the proof.
0

Conclusion: This chapter is a protraction of the previous chapter in the
p-fractional case. We have used the same techniques as used in the previous
chapter but in a meticulous way because of the lack of an explicit formula

for Sobolev minimizer.
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Chapter 6

Multiplicity results for (p, q)
fractional Laplace type
equations with critical

nonlinearities

In this chapter we discuss the existence of multiple nontrivial solutions of
(p, q) fractional Laplace equations involving concave-critical type nonlinear-
ities and existence of nonnegative solutions when nonlinearities is of convex-

critical type. More precisely, first we consider equations of the type

P2y + Af(z,u), in Q,

(=A) u+ (—A)Pu = OV () |u|""*u + |u
(Po)
u=0 in RY¥\Q,
where 0 C R¥ is a smooth, bounded domain, X\, § > 0,0 < s, < s, <1,1<

Np
N—sp

T<q<p<gandp;‘: for any s € (0,1).

For the sake of simplicity, we use the following two notations in this

chapter:

(a) || - ]lo,s,p denotes the norm in the space X ,(€2).

117



CHAPTER 6. MULTIPLICITY RESULTS FOR (P, @) FRACTIONAL LAPLACIAN
TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES

(b) |- |, denotes the norm in the space LP(£2).

We assume the functions V(-), f(-,-) satisfy the following:

(A1) V € L>*(Q) and there exists ¢ > 0, n > 0 such that V(z) > ¢ > 0 for

all z € © and
/QV(x>|u|’“da: < nllullfs,.

for all v € Xo, ().

(A2) |f(z,t)] < ai|t]* ' +agftfft forall z € Q,t € R, a;,a; > 0,1 <

a, f<pj,-
(A3) There exists a3 > 0 and [ € (1,p) such that
fla, )t = p;, F(x,t) > —aslt|
for all € Q,t € R where F(z,t) = [ f(z,7)dr.

(A4) f(x,t) > 0 for all x € Q,;t € R and f(z,t) = —f(x,—t) for all
reQteR.

Definition 6.0.1. We say that u € X5, ,(€2) is a weak solution of (Py ) if
for all ¢ € Xos,,(Q), we have

[ e =P 0l) ~ )(60e) =0 1

|z — y|Ntes

[ ) ) ) 00D,

|x _ y|N+qs2

=0 [ V@)lu(@)| u(@)é(e)de + [ [u()

Por 2 (2) o (x)d + )\/Qf(x,u)gbdx.

Here we note that, thanks to the Lemma 6.2.4, the above definition makes

sense.

118



6.1. Main Results

6.1 Main Results

Our first main result is the following:

Theorem 6.1.1. Let 0 < so <s1 <1, 1<r<qg<p< % and assumptions
(A1)-(A4) being satisfied. Then there exists \* > 0 such that for any A\ €
(0, A*), there exists 0* > 0 such that for any 6 € (0,0%), problem (Py ) has

infinitely many nontrivial weak solutions in Xo s, ,(£2).

Next, for V(z) = 1 and A = 0, we have studied the nonnegative solutions

of (Py ) and obtained the following results:

Theorem 6.1.2. Let 0 < sy <81 <1land2 < q<p<r <p;. Then there

exists 0* > 0 such that for any 6 > 0*, the problem

(A u+ (—A)Pu = Olu| 2w + |ufPa 2
(P) u>0 in Q, (6.1.1)

u=0 in RY\Q.

u in o €,

has a nontrivial nonnegative weak solution.
To state our next theorem, we need the following definition.

Definition 6.1.3. Let M be a topological space and consider a closed subset
A C M. We say that A has category k relative to M (caty (A) = k), if A is
covered by k closed sets A;, 1 < j < k, which are contractible in M, and if
k is minimal with this property. If no such finite covering exists, we define

catp(A) = oo. Moreover, we define caty (0)) = 0.
Using Lusternik—Schnirelmann category theory , we prove our next result.

Theorem 6.1.4. Let 0 < s9 < 51 <1 and

N(p—1)

N>p's, 2<q<—; ;
- 921

* q *
<p < max{p, p;, — q—il} <7 <Py

119



CHAPTER 6. MULTIPLICITY RESULTS FOR (P, @) FRACTIONAL LAPLACIAN
TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES

Then there exists O, > 0 such that for any 6 € (0, 60..), problem (P) has at

least catq(§2) nontrivial nonnegative solutions in Xo s, »(€2).

The chapter is concluded with an appendix where we recall the statement
of classical deformation lemma, general mountain pass lemma and some stan-

dard properties of genus.

6.2 Besov Spaces

6.2.1 Besov-Sobolev embeddings

In this subsection first we define Besov space of RY and . For 1 <i < N
and h € R, let Au denote the difference quotient defined by Ahu(x) =
u(z + he;) —u(z), =€ RN

Definition 6.2.1. [5/, pg. 415] Let 1 < p,q < 0o and 0 < s < 1. A
function u € Lj, (RY) belong to the Besov space B (RY) if

lull s, @~y = |ulLr@yy + [u]B; @Yy < o0,
where
N 1
0o dh q
3 ([ 1l oy i ) < 0
— 0 hl+sq
N e (6.2.1)

Lan .
;S}'Llilg hSH ZuHLp(RN)7 q oo

Definition 6.2.2. Let D'(Q2) denote the set of all distributions over Q. For

1<p,qg< o0, and < s <1, we set
B () ={ueD(Q):3ge B RY) with glo=u}

and

ullBs @) = inf ~_llgl

g€B; (RN), glo=

B () is called the Besov Space over ).

B;,q(RN) .
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For more details about Besov space, we refer [54] and [83].

Lemma 6.2.3. Let 1 <g<p<oo and 0 < sy < s <1. Then
WerP(Q) € We24(Q).

Proof. Since ¢ < p and sy < s; implies sy — % < 81 — %, from [83, Theorem
(i), pg. 196], we have

BL()) C B2(Q).
|u(x) — uly)l”

1

dady )’

axq |z —y|Ntep a:y)
Bs, @ Therefore, B, () = WP(Q) for

Further, from [83, pg. 209]), it follows that |u|.» )+

is an equivalent norm for |u|

1 <p<ooand0 < s < 1. Hence the lemma follows. O]

Note that, the assertion of the above Lemma fails when s; = sy, see [61]

for the counterexample.

Lemma 6.2.4. Let 0 < s9 < s1 < 1,1 <q<p and 2 be a smooth bounded
domain in RN, where N > sip. Then Xg 5, ,(Q) C Xo.45,4() and there exists
C =C(|Q],N,p,q,s1,82) >0 such that

||U||0,S2,q < OHUHO,SLP Vue XO,SMJ(Q)-

Proof. Let u € Xo (). Then u € W P(RY) with u = 0 a.e. in RV \ Q.
Note that, thanks to Holder inequality and Sobolev inequality, we have

|u(z) = u(y)”
|Iu||€VSl’P(Q) = |U|g+/ﬂxﬂ |$—y|N+51p d
-k ju(z) = u(y)lP
p Ps
< lulpy 19 ™+ A P LY dxd

-2
< (C1Q] "+ 1)][ull

p
07517p'

This proves that Xo,, ,(€2) C W*P(Q). Consequently, by Lemma 6.2.3 we
also have W*P(Q) C W*24(Q). As a result, u € W*>4(Q)) with u = 0 a.e. in
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RY \ Q. Further, as 92 is smooth, the embedding W*2:4(Q) — W24(RY) is

continuous, that is,
ul|weza@mny < O, ¢, N)||lullws2aiy for all uwe W=4(Q).  (6.2.2)
Therefore,

[ullwrszaeeyy < CUQ N, p, g, 51, 82)[ullos,p forall u € Xo,,5(6).
(6.2.3)

Since, [[ull6,s,q < llulljyssany, it follows

]l xo,0p o) < CUQLL N, 51, 52,0, @) [ullxo., (20 forall u € Xog, ().
(6.2.4)

Hence the lemma follows. O

6.3 Concentration-compactness Lemma
For s € (0,1), define
irsp MmNy Ny L lu(z) —u(y)[?

and

[ o=y,

_ | N+sp
Ssp= _ inf [z — | -
ueWs»(RN)\{0} AYH
(Lo+)
RN

— p
Next, we fix some notations: Du(x) := / Mdy. Thus,
RV |z — y|[VEep

(6.3.1)

|D*ult = ||ull§ 5, Ce(RY) denotes the set of all continuous functions with
compact support. ||u|| = fenx du. M(RY) denotes the space of finite mea-

sures on RY. We say a sequence (ju,) converges weakly to u in M(RY), if

(ns6) = [ dun = (.6) ¥ 6 € C(RY)
and it is denoted by pu,, — p.
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Theorem 6.3.1. Let s € (0,1) and p > 1. Assume {u,} C Xos,(2) is a

nonnegative sequence such that |uy|p: = 1 and ||u,lf,, — Ssp as n — oo.
Then, there exists a sequence {yn, \n} € RY x RY such that

(N —sp)

Un(2) = 7 up( A + ) (6.3.2)

has a convergent subsequence (still denoted by v,) such that v, — v in
WeP(RN) where v(z) > 0 in RN. In particular, there exists a minimizer

for Sy . Moreover, we have, X\, — 0 and y, — y € Q as n — oo.

Proof. For p = 2, this lemma has been proved by Palatucci-Pisante in [68,
Theorem 1.3]. For general p > 1, using the next Lemma 6.3.2 (see the
next lemma), the proof can be completed following the similar steps as in
[86, Lemma 1.41](also see [57, Section 1.4, Example (iii)] ). We omit the
details. O

Lemma 6.3.2. Let s € (0,1) and p > 1. Assume {u,} be a sequence in
WeP(RN) such that

Uy —u in WHP(RN),

D — )P = i in MRY),

(6.3.3)
[, —ulPs = v in M(RY),
U, = u ae on RV,
and define
foo := limp o lim supn_m/ | D%, |Pde,
lel2R (6.3.4)
Voo := limp_,o0 lim supn_mo/ |y, P da.
el>R
Then, we have
Sspllvl?s < lull; (6.3.5)
Syt < fise, (6.3.6)
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lim sup | D*u, b = [Dulb + || ] + fos, (6.3.7)
n—oo
lim sup |u,, ﬁ% = |u Z% +|V]] + Voo- (6.3.8)
n—oo
Moreover, if u = 0 and S,,||v|[P/P* = ||ull, then p,v are concentrated at a

single point.

Remark 6.3.3. (i) In the local case, Lemma 6.3.2 has been proved in [57,
Lemma 1.1] (see also [86, Lemma 1.40] for s = 1,p = 2). For the
concentration-compactness result in the bounded domain, i.e., when u, — u
in Wg*(Q), we cite [65, Theorem 2.5]. Combining the ideas of [57], [65]
and [86], one expects the above lemma to hold for general s € (0,1) and
p > 1 (see [57, Section 1.4}]), but as best of our knowledge this lemma has
not been proved exclusively anywhere. For s € (0,1), p = 2, concentration-
compactness result in RY has been proved in [39] using the harmonic exten-
sion method of Caffarelli-Silvestre, which clearly does not work for p # 2
case. Therefore we give here the proof for reader’s convenience. Qur proof is
much different from [65].

(i) It’s easy to see that for ¢ € CP(RY), D¢ does not have compact
support. Thus, when u, — 0 in W”’(RN), one can not just apply Rellich
compactness result to

lim,, o0 Jgn [un|P|D%@|P in order to pass the limit. This makes the situa-
tion much different from the local case [57] or the nonlocal case when u, — u

in W5P(QY), which was treated in [65].

Proof. Let us first consider the case u = 0.

Step 1: In this step we prove S, ,(||v|)?/P* < ||ul.
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Choosing ¢ € C$°(RY) and applying Sobolev inequality, we have

pr < Mundllbs, = 1D (ung)ly

< (+0) [ ID*wlPloPdr+cp [ D6 P,
RN RN
(6.3.9)

Ss.p|Und®

where, in the last line we have used [65, (2.1)]. Let, supp(¢) € B(0,r) for

some r > 0. Then for a.e. |z| > 7,

s 41P( ) [o(y)[? [o(y)[” K
|D ¢| (l’) - /B(O,r) ‘iL‘ — y‘N+8p Y= B0 <|.T’ . T)(N—i—sp) — (|x| _ r)N+Sp’
(6.3.10)

Fix, Ry > r large enough (will be chosen later) . Then,

co / D36 [unlPds = co / | D* [P |un|[Pdz + c / | D3[P [un [Pde
RN B(0,Rg) RN\B(0,Rg)
=: Ji(n) + Ja(n), (6.3.11)

We observe that as u, — u in W*P(RY) and u = 0, it holds u, — 0 in

Lp

loc

(RN). Also, ¢ € C°(RY) implies, |[D*¢[P € L®(RY). Therefore,

lim J;(n) = 0. (6.3.12)

n—oo

Clearly,

gg <¢ forall n>1 (6.3.13)

s

|,

for some ¢; > 0. Consequently, applying Hoélder inequality followed by

(6.3.10) yields

sp

/p? v A
Bin) < el (/ |D8¢|sda:)
RN\B(0,Rqg)
Iy 0o tN—l %
< Ps / 3.
< cpdy ¢|p<wN . (t_r)(NJFSp)ﬁ)dt) : (6.3.14)

where wy denotes the surface measure of unit sphere in RY. A straight-
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forward computation yields,

R N -
Ry (t— 7ﬁ)(N+sp)% N N2 (Ry — r)N?/sp

e
N(N + sp) — sp (RQ_MN‘%SP)A '

sp

Choose Ry such that

7 o® N—2
cocy” Wy @],2

sp

ﬁ 1 N TNflsp 1 %
N> (Ry = )N " \N(N + sp) = sp) (g, — ) o1
<0 (6.3.15)

As a consequence,

Jo(n) <0, Vn>1 (6.3.16)

Combining this with (6.3.12) and (6.3.11) yields
- S|Pl P
dim ¢ /]RN |D?o|P|u, |Pdx < 6.
Hence, taking the limit n — oo in (6.3.9) we obtain

&m(@NW

Since 6 > 0 is arbitrary, so letting # — 0 in (6.3.17) gives

&m<@NW

Hence, taking supremum over C5°(RY), we get

p/p;
Pﬁdu> <(1+96) /RN 6P dp + 6. (6.3.17)

p/ps
pﬁdu> g/ |p|Pdu ¥V ¢ € C(RY), (6.3.18)
RN

Sep(l 177+ < ||l
Step 2: In this step we prove S, 2P+ < i
For this first fix R > 1 and choose ¥z € C*(R") be such that

L, |z| > R+1,
Vr(z) = 0<¢r<1 in R". (6.3.19)

0, |z| <R,
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Thanks to Sobolev inequality, we have

. p/Ds
S( | lorul da:) < [ 1D (unton) .

Therefore, as before we get

Ss,p(/RN YR

Py

p/p;
wlids) < (14) [ D Plonpstes [ oD un s

(6.3.20)
Doing an easy computation, it follows that D*ir € L®(R"). Therefore, for
any R > R+ 1,
co lim sup/ |un[P|D*Yp|Pdr = cglimsup _Nual?|D*Yr[Pda
n—oo JRN n—oo JB(0,R)
~+cg lim sup (U [P| D |Pd
n—oo JRN\B(0,R)
= ¢plimsup _Nun[P|D*g|Pdz.
n—oo JRN\B(0,R
(6.3.21)
Moreover, for x € m07
11— Yr(y)|P . L+ ¢r(y)”
Do) = [ O [ ey
| D*Yr(2)] 'Y |z — y| Ve y = B(0,R+1) |x — y|N+tsp Y
2}7*1 p d
< 1+
T (= (R4 1))V /13(0,R+1)< vrly))dy
op—1

(lz] = (R4 1))N*sp
where oy is volume of unit ball in RY. Therefore, doing the similar analysis

as in Step 1, we get an existence of R > R + 1, for which

@/ lun|[P| Do |Pdz < 6.
RN\B(0,R)

Hence, combining this along with (6.3.21) and (6.3.20) and then taking 6 — 0
yields

P

p/p;
Up, pzdx) < limsup/ |URr|P| D*uy, |Pdz.
n—oo JRN
(6.3.22)

lim sup S ( /R Y

127



CHAPTER 6. MULTIPLICITY RESULTS FOR (P, @) FRACTIONAL LAPLACIAN
TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES

On the other hand, we have

/ | DS up|Pda < / OB Do Pda < | DS up|Pdi
|z|>R+1 RN

lz|=R

and

|z|>R+1

From (6.3.4) we obtain,

Psdy < / [, p:w%;dx < |[un, Ps dz.
RN |z|>R

.
u, [Pdz.

(6.3.23)

liso = lim lim sup YR | D% uy|Pde, v = hm lim sup s
R—oo nooo JRN —00 n—oo JRN

Substituting (6.3.23) into (6.3.22) yields
Ssypygc{pz S Moo

Step 3: Assume S,,|[v||P/?* = ||u||. Then following the exact similar
analysis as in [86, Step 3, Lemma 1.40] we get p and v are concentrated at
a single point.

Step 4: For the general case write v,, = u,, —u. Since v, — 0 in W‘W(RN),
it follows |D%v, [P — p + |D*ulP in M(RY).

Using Brezis-Lieb lemma, for all h € C.(RY), we obtain

/ hl|ulPsdr = lim hlu,
RN RN

n—0o0

Pidy — / h|v, |P* da.
RN
This in turn implies

p:4|u

s rvoin M(RY).

|t

(6.3.5) follows from corresponding inequality of (vy,).

Step 5: Since ,

lim sup | D*vy, |Pdz = lim sup | Du,|Pdx — / | D*u|Pdzx,
n—oo J|z|>R n—00 |z|>R |z|>R
we obtain fio, = hm lim sup | D?vy, |Pd.
R—0o p—oo” Jiz|>R
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Psdx yields

Similarly, applying Brezis-Lieb lemma to / lu
|z|>R

v, [Pdx.

Voo = hm lim sup ]
R—o0 n—oo J|z|>R

Now, (6.3.6) follows from corresponding inequality for (v,).

Step 6: For R > 1, we have

n—00 R n—00

limsup | |D*u,[Pdz = limsup (/]RN VYr|Duy|? —i—/RN(l - wR)]DSunV’)

= limsup (/]RN Yr|D*uy, [P

# [ =vndn+ [ —¢R)|Dsu|pdm>.

Hence, taking the limit R — oo yields

limsup | [D*un[Pdz = poo + [|pll + [ullf s -

n—00 RN

Proof of (6.3.8) is similar. O

6.4 Proof of Theorem 6.1.1

6.4.1 Existence of infinitely many nontrivial solutions

The energy functional associated to (FPy.) is given by:

1 1
1) = Sl + 0l — / V(@)lul’ dx——|u

P:

P )\/ x,u)dx.
(6.4.1)

We note that I(u) = I(—u) for all u € Xy, ,(2) and I € C*( X4, , R).

Lemma 6.4.1. Assume (A1)-(A3) are satisfied. Then, there exists ci,co >
0 such that any (PS). sequence {u,} C Xos »(2) of I has a convergent
subsequence where

N psl

s
€= Nl(SShp) 0T — e\
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Proof. Let {u,} C Xo 5 ,(92) be a (PS). sequence of I. Therefore,

I(u,) = c+o(1), I'(u,) = o(1). (6.4.2)

Claim 1: |luy||o,s,,, is uniformly bounded.

We prove the Claim by method of contradiction. Thus assume the claim

does not hold, that is, up to a subsequence ||u,||os, , — 00 as n — oco. Let us

Un
lun”O,SpP

define ,, := | . Then ||,/o,s; p = 1. Therefore, up to a subsequence,

we may take
U, =0 in Xog,p(Q), and 4, >0 in LYRY), 1<~y <pl (6.4.3)

for some @ € Xo 5, ,(€2). From (6.4.2) using Tl = o(1), we have

||081P
6 T
p”unHOslp ||un||081 p”unHOszq ||un||031p/ V |Un| dl’
D5, —P, ~ P —
ot iyt = Muallo?,p [ Fla,un)da

S1

=o(1), (6.4.4)
and

L [ e R [ oy A COI e

P5,—P| A \Ps _
it Vit = MualloZp | F(a,un)unda
= o(1). (6.4.5)

As V € L*>*(Q), using (6.4.3) we have

/v ek d:z:—>/ 2)[a| de. (6.4.6)
From (6.4.4) and (6.4.5), we obtain
Py _ ps, Ps, "
(= Dlnllhs o5 = Dllwnllo T 16,00 = 0 /V )|ty |"d

Al (7, [ [P - f<x,un>un]dx) ~ o)

(6.4.7)
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Using (A3), (6.4.3) and (6.4.6), we can write

v A s
(pl - 1) ||un||18781,p = (1 - pl ) HUNHO ,51 P||u"||052 q
ps ror
+ ( L — )H nHOmP/ (.T)’Un| dz

+)\Hun1|&§1,p(/QPZ}F(?C,%) - f(x,un)undx> +0(1)
Ds,

(1— ‘ )Hunnownunuom
D, ,

b 0(% )i, [ Veollrds

+Aasllunllo ] lal; +o(1)

= o),

IN

as n — oo. This is a contradiction as |[u,||os,, = 1 and hence Claim 1

follows.
Consequently, there exists u € X 4, ,(£2) such that up to a subsequence
up, = u in X, (),
up, = u a.e. in RY,
u, — u strongly in L7(RY) for 1<7v< Dy, -
Applying (A1) and (A2), we have

/Qf(x,un)undx :/Qf(x,u)udw+0(1),
/QF(:E,un)d:E = /QF(x,u)d:U—i-o(l),

and
/V@WJMz/V@WMMmm.
Q Q
Note that by Lemma 6.2.4, ||uy]|o.s,,4 is also bounded. Since u,, — w a.e. in

RY, we obtain

[un () = un ()P (un(z) —unly)) | |u(z) —uly )lp’Q(u(fv) — u(y))

|z — y|(%+81)(p—1) |z — y| Hts1)(p-1)
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a.e. (r,y) € RY x RN, On the other hand, ||u,l/os,, is uniformly bounded

implies there exists C' > 0 such that

p
/ <|un( x) — un(y)|> dedy < C forall n>1,
RQN

|ZL‘ _ y| +s1
that is,
/ [un(2) = un(y )!p‘Q(Un(x) ) ‘pld:cdy <C.
R2N |I o y| +31 )
Therefore,

|t () — un (Y2 (un(@) —un(y))  |ulz) — u(y)P~*(u(z) — u(y))

— Ere) 1) - — Erea) 1)
|z =y |z =y
weakly in LF' (R x RV) with p/ = -E-. Similarly, as [|t,]|o.s,.q is uniformly
bounded,
[tn () = wn ()2 (un (@) — un(y))  Julz) — u(y)|"*(u(z) — u(y))
z — y|(%+52)(q—1) 1z — y|(%+sz)(q—1)

weakly in L7 (RN x RY) with ¢/ = 45 If ¢ € Xo,,, ,(Q), it follows 222w ¢

+
lz—y| P "1

]
LP(RN x RN) and 2@—2W) ¢ 19(RN x RN). As a result,

lz—y| @ T+

[, ) =t onl) =t 0)(01) = 005,

R T
L ) — )l 2|<u<a:> = u(w))(0(x) = o)) ;0
R2N T —y +s1p

and

[, ) = I l) ) (6) = 60

|z — y|(%+82)(471)’x y| Nt sy
L ) = ) — )0l — 9,
R2N |z — y[Nts2a

These together with (6.4.2) via Vitali’s convergence theorem implies I'(u) = 0

that is u is weak solution of (P ).
Claim 2: u,, — v in X ,(Q).
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To prove this claim, define v, := u, — u. As ||un||0.s,p a0d ||ty ||0.55.4 are
uniformly bounded and u,, — v a.e. in RY, applying Brezis-Lieb lemma, we
obtain

[ @y, @ wl,

|z — y|NFep |z — y|Ntsp

/]R |’LL([)3) B u(y)|pd$dy + 0(1)’

2N | — y| Nt

Le., [unll6,s,p = Nvnll6,s,p + llu

010 T 0(1).

Similarly, we have [[tn||§ 5.4 = [1Vnll6,55.4 71116554 70(1). Therefore, a straight

forward computation yields

1 1 0 . 1
cto() = ~oullop+ ~lonllfng — = [ V@) uldz — —fo [
p q rJo P 1
1 p 1 q 1 pzl
[ )l 4l — bz (648

On the other hand, using |1’ (u,)u,| < o(1)||unllos,p = 0(1), we also have

[onl6,61,0 + 1100116520 = dU+9LV@NMWx+W

A S wude =l , = b
(6.4.9)

P, P,
29 + |Un Psy

Combining (6.4.9) with I'(u) = 0 yields

P (1), (6.4.10)

9

anHg,s1,p + HUnH(q),sg,q - ‘UTL

Since |[vpllos1.p0 [[Vnlloss,9: [Unlps, all are bounded sequence of real numbers,

we may assume that:

P dto(l) (6.4.11)

o650 = @+ 0(1), Noallgsyg =0+ 0(1), onlp =

for some a,b,d > 0. Hence, (6.4.10) implies

a+b=d. (6.4.12)
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Thus a < d. Therefore, Sobolev inequality yields
a > S, ,dP/P > S, al/Pe (6.4.13)

If a = 0, we are done. If a > 0, then (6.4.13) implies

N

a > (Ss,p)17.

(6.4.14)

Using (6.4.8), (6.4.11), (6.4.12), (6.4.14) and the fact that ¢ < p < p} , taking

the limit n — oo we have

o b (a+ ) 1 1, p
c = = - pSI 7” ||Os1p q”u“Oszq ]E|up;i
—f/V |u|Tdac—)\/ x,u)
CLSl p,s
> Sl + g = ol - Y [v@hlrde = [ Py
S1 N q Ty
Z N(SSLP) 1P+ E”uHO,shp + &HUHO,SQ,C] - T|u 2

S1

~ V[ V@)= [ Fuds

(6.4.15)

Also from < I'(u),u >= 0, it follows

lull o = =l sy + by +6 [ V@)l do+ A | fla,ujudr. (6.4.16)

Substituting (6.4.16) into (6.4.15) and using (A1) yields

Pt 1 1 ,
i 0<T - p) | V@lufds

1 11, L,
AP = e s (3= D)l

p* 1 1 ,
U L= 977( - ]; Hu”(),sg,r

[ () - Ef(x,u)u)dx + (2 - ;) lult,, .. (6.4.17)

S1 N S1
c = N(Sshp)slp—'_ﬁm

S1

N

N S1
(551,13) 1P+ N

Vv
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Note that from (A4) it is easy to see f(a: t)t > 0forallt € R, z € Qand
from (A3), it follows that F(xz,t) < (x )t + 22 ¢[". Thus,

)\&3 )\a3

1
/Q)\<F(a:,u) — Z;f(:z:,u) )da: < ?]u\ﬁ <

l
p 51

\Q\

7

(6.4.18)

l

1- -k
where ¢y = %|Q| Ps1. Applying Lemma 6.2.4 and Young’s inequality, for

any 0 > 0 we obtain

LN 11\ e o
’7<r - p> Ielleo < ”(T - p>6‘ Flly g < Slullg g + G5 (6.4.20)

Substituting (6.4.18) and (6.4.19) into (6.4.17) we have

S1 N P 1 1
C Z N(Ssl,p> sip —‘ o1 96”“”032 q 005 — é;«l + (q - p) Hqu),s%q.
(6.4.20)
Now choose § = %(% — 7) This implies C5 = 010#, for some ¢; =

c1(p,q,r, N, s1,82,]€2]) > 0. Substituting this in (6.4.20) yields

S1 N
¢ 2 5(Su,) + Siluly:

psl

L
J— Cleq—r —

Note that the constants ¢; and ¢y are independent of #, \. Let us consider
the function ¢ : (0,00) — R by
S1

g(x) = prﬂ — Aoz

1
We note that g attains its minimum at zy = (C(;f#)pzl_’. Therefore,
81

*
P3,

9(x) = g(wo) = —c2A™1 7",

l
pr =l —
where ¢y = co—t—(2) 5~ > (. Consequently,
51 N ppsl
¢z N(Sa,p)sl” — 0T — e\

which is a contradiction to the assumption on c¢. Hence, a = 0 and this

completes the proof of the lemma.
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Using (A1) and Lemma 6.2.4, for 1 <r <p

[V@lers <l < Callull,, (6.421)
Moreover, by Sobolev embedding we have S,

(A2), we obtain

vz, < llull6 s, and using

ay a ag B
F , d < = + =
| Pawde < 2l ﬁwﬁ

=
< 2ol Flal” i ull,
_ (e5) 1--2- _
< 20T (S,,,) a/puuuasl,ﬁg\m P (So1p) G ey

This together with (6.4.21) and Sobolev embedding gives:

*

(Ssup) P2/P ot nCO
I(u) = *|| ullgsrp = llullozp = == lellosp
S1
p51 pSlfﬁ
—A*|Q| " ( Ssrp)” lullg s, — |Q| i (Serp)” »
2
= C3||U||0 51,0 ,1 R C50||u“6,31,p - CG)‘HUHO,sl,p
, (6.4.22)
(S )_pzl/p p:%
where C3 = %7 C4 = %7 Cs = gcy Ce = %’Q’ "ol (Ssl,p)_a/pa C7 =
ps, =P
a %1 (S,,,)P/P are all positive constants. Let us define a function h :
(0,00) — R by
h(z) = c3aP — cqaPss — csfx” — ceAax® — crha’. (6.4.23)

Asl<r<pandl<a, <pi, wesee that there exists A\g > A* > 0 such
that for any A € (0, \*), there exists > 0 such that h(x) > 0. Therefore, we
conclude that for any A € (0, \*), there exists

0" = 6*(\) > 0 (6.4.24)
such that for any 6 € (0, 6%),
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(a) h(z) attains its maximum and maxX,e(o,00) h(2) > 0,

*
Psq

q L
= — co AP > 0,

(b) 2577 — ¢,

where ¢y, ¢y are given in Lemma 6.4.1. From the definition of h, it is not
difficult to see that h has finitely many positive roots, say 0 < r; < 19 <
-+ <1y, < 00, where h(r;) = 0.

As a result, we note that,

" <0 Vae (0,11)U(ry,rs) U U (rm, 00), (6.4.25)

>0 Vo e (r,r)U(rs,ra) U U (rm1,Tm).

Denote,
A= (0,11)U(rg,r3) U--- U (ry,00), B:=A\ (ry,,0).
We choose 7 € C°(R*; [0, 1]) such that

1, v € B,
T(x) = (6.4.26)

0, = € (rp,00).

Set ¢(u) := 7(||ullo,s, p) and the truncated functional

1 1 0 .
Ioo(u) = Z;IIUII@,sl,p + §|IUI|3,SM - /Q V(@)|ul"dz

1
WAL
Ps, /0

o1 gy(u)da — )\/QF(JJ,U)Qﬁ(u)dx.

(6.4.27)

Similarly, as (6.4.23) we can consider the function h : (0,00) — R as

h(z) = c3a® — cyaP 1 7(x) — cs02” — cgha®T(x) — crda’r(x), Y >0 (6.4.28)

and have

Lo (1) = h(|lullo sy 5)- (6.4.29)
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It is not difficult to check that from the definition of 7, A, B that

h(z) > h(z) Vo >0, h(x)=hz)Vz e B, hx)>0Vz>r, (6.4.30)
Therefore, we conclude
I(u) = Io(u) for ||ullos,p € B. (6.4.31)

Also we note that 7 € C=(R", [0,1]) implies Io(u) € C*(Xo.5, p, R).

Lemma 6.4.2. (i) Let Io(u) < 0. Then ||ullos,p, € B and there ezists a
neighborhood Ny, of u such that I(v) = I(v) Vv € N,.

(it) For any A € (0, X*), there exists 8* > 0 such that for any 6 € (0, 6*),
I (u) satisfies (PS). condition for ¢ < 0.

Proof. We prove (i) by method of contradiction. Suppose ||u||os,, ¢ B, that
is, [|ullo,s;p € RT\ B for u with Io(u) < co. Now, two cases may happen.
Case 1: If |lullos, p € RT\ A, then using (6.4.29), (6.4.30) and (6.4.25), we
have

Lo () = h(|lullo,s, ) = h(l[ullosp) > 0.
This contradicts I (u) < 0.

Case 2: If ||ullos, p € (rm,00) = A\ B. Then by (6.4.29) and (6.4.30), we
have Ioo(u) > h(||ullos,,) > 0, which again contradicts I,(u) < 0. Hence,
|lullos,p € B. Moreover as B is an open set, applying (6.4.31), we obtain
there exists a neighborhood N,, of u such that I(v) = I.(v) Vv € N,.

To prove (ii), let 8* > 0 be as in (6.4.24). Suppose ¢ < 0 and {u,} C

Xo,5,,p(€2) is a (PS). sequence of 1. Therefore, for n large we may take
Io(uy) <0 and I (u,) = o(1).

Using (i) it follows that ||u,|los,, € B. Therefore, I(u,) = Is(u,) and
I'(u,) = I'so(u,) = o(1). Since (b) holds for # € (0,6*), applying Lemma
6.4.1, we obtain I(u) satisfies (PS). condition for ¢ < 0. Therefore, I (u)
satisfies (PS), condition for ¢ < 0. O
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Define,
Y:={AC Xos,\{0}: A isclosed, A=—-A} (6.4.32)

Definition 6.4.3. Let A € ¥. We denote by v(A) the genus of A which is
the smallest positive integer n such that there exists an odd continuous map
from A into R\ {0}. We set v(0) = 0 and if no such n exists for A, then
we set y(A) = oo.

Proof of Theorem 6.1.1

Proof. Define

c = Alélsz sup Io(u),

where

Yp={AeX:y(A4) >k},
and ¥ is as in (6.4.32) . Let,
K. :={u € Xos5,(Q): Io(u) =c¢, I (u) =0}

and 6* be as in (6.4.24) and 6 € (0,6%).

Claim: If £, € N such that ¢, = cx41 = -+ = g1y = ¢, then ¢ < 0 and
Y(K) > 1+ 1.

Let us consider the set
I3 = {u € Xou ()t Lulu) < —<}.

We will show that for any & € N, there exists ¢ = (k) > 0 such that
V(I35 (u)) > k. Fix k € N. Let X, be a k—dimensional subspace of X, ,-

[e o]

Take u € X}, with ||ullos, , = 1. Thus for 0 < p < ry, using (6.4.31) we have

1 P’ 0p" .
Hpu) = L) =+ T ull g = = [ V@l da
P e A [ F(e, puyda (6.4.33)
P o W pUaL. e
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As X} is a finite dimensional subspace of Xy, ,(§2), all norms in X are

equivalent and therefore

= sup{ [l g+ 0 € X ulloss = 1} < 00, (6.4.34)
By = inf{Jul;?  u € X, |[ullosp = 1} >0, (6.4.35)
e = inf{[ul” : w € X, [ullosp = 1} > 0. (6.4.36)

Since using (A4), it follows that F'(x, pu) > 0, applying (6.4.33)-(6.4.36),

we obtain
0p" P’
— B—.

*
r 2

For any € > 0, there exists p € (0,71) such that I.(pu) < —¢ for u € X with

1 p?
Io(pu) < ];Pp +05k; — 0k

llullos,p = 1. Define, S, = {u € Xo s, : ||ullo,s,,, = p}- Then S, N Xy C I °.
By Lemma 6.7.3, it follows that

k=15, N X3) < 115,

Therefore, we conclude I ° € Xy, since [, is continuous and even. Conse-
quently,
c=cp <suply(u) < —e<0. (6.4.37)

I~

Note that by (6.4.29) and (6.4.30), we have I.(u) > h(||ullos,p), for all
u € Xos,p- Consequently, using (6.4.25) and (6.4.26) in the definition of I,
it follows that I, is bounded from below. Thus ¢ = ¢, > —o0. By Lemma
6.4.2, I, satisfies (PS). condition. We note that K. is a compact set. To see
this, let {u,} be a sequence in K.. Then I (u,) = c and I’ (u,) = 0. Thus,

. . . / o
Jim Io(uy,) =c, Jim I’ (u,) =0.

Therefore, {u,} is a (PS). sequence in K.. As ¢ < 0, by Lemma 6.4.2, there
exists a subsequence and u € X 4, ,(£2) such that u,, — v in X4 ,(2) and
Io(u) = ¢, Il (u) = 0. As a result, u € K., that is, {u,} has a convergent

subsequence in K.
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Now let us complete the proof of our claim. Suppose the claim is not true,
that is, v(K.) < l. Then, by Lemma 6.7.3, there exists a neighbourhood of
K., say N,.(K.) such that v(N,(K.)) < [. Since ¢ < 0, we may consider
N,.(K.) € I?. By Lemma 6.7.1, there exists an odd homeomorphism 7 :
Xo.s:.p(2) = Xo5, (92) such that

NI\ N (K,)) C IS° for some 0< 6 < —c.
From the definition of ¢ = ¢x4;, we know there exists an A € ¥, such that

sup Ioo(u) < ¢+ 9,
u€A

that is, A C I¢F° and
A\ N(K.)) € (IS0 \ No(KL)) € 157,

This yields us:

sup Io(u) <c—6. (6.4.38)
uen(A\Ny(Kc))

Again, by Lemma 6.7.3, we have,
YA\ N(KL))) = YA\ N(Eo)) = 7(A) = y(No(Ke) 2 k+1—1=k.

Therefore, we have (A \ N,.(K.)) € ¥ and sup Io(u) > ¢, =c.

uen(A\Nr(Ke))

This is a contradiction to (6.4.38). Hence, we have the claim.

Now let us complete the proof of Theorem 6.1.1. Since ¥j ;1 C Xk, we

have ¢ < cxy1 V k. If all ¢’s are distinct then (K,

o) > 1, since K, is
a compact set and by Lemma 6.7.3 (7), genus of a compact set is finite.
Therefore, in that case I, has infinitely many distinct critical points. If for
some k, there exists [ such that ¢, = cxy1 = -+ = cxy = ¢, then by the above
claim, v(K.) > [+ 1 and therefore K. has infinitely many distinct elements,
i.e, I, has infinitely many distinct critical points. Hence combining (6.4.37)

along with Lemma 6.4.2, we conclude that [ has infinitely many distinct

critical points. O
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6.5 Proof of Theorem 6.1.2

6.5.1 Existence of nontrivial nonnegative solutions

First, we consider the problem

(P)

—A)Y¥'u “A)2u = O(ut) ! w1 i
~{( Astu+ (—A)2u = 0(u™) !+ (u”) Q, 651

u=0 in RY¥\Q.
Definition 6.5.1. We say that u € Xo4, ,(Q) is a weak solution of (P) if

for all ¢ € Xy, , we have,

[, o)~ P20~ )60 =00 1

|z — y| NP

[ )~ ) — e 6l) = 80

|z — y|Vtas
= 0 [ (@) ) o(a)de + [ (@) o) d.
Q Q
The Euler-Lagrange energy functional associated to (P) is

1 1 0 . 1 .
o) = b+ ey = [ de = o= [P

(6.5.2)

It can be checked that Iy € 02(X0,517P,R) and any critical points of Iy is a

weak solution of (P) and conversely.

We define,
cog = uienj\f]’e Iy(u),
where
Ny :={u € Xos,,(2)\ {0} : (Iy(w),u) = 0}. (6.5.3)

We will show that I, has the Mountain Pass (MP) Geometry.

Lemma 6.5.2. Let 1 <q <p <r <pj . Then for any 6 > 0,

(a) there exist constants p, 3 > 0 such that Io(u) > B for all u € Xo 4, ()

with |[ullo,s.p = £,
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(b) there exist uy € Xos, () such that Ig(ug) < 0 and ||uollos, p > p-

Proof. Using Sobolev inequality and Holder inequality in the definition of Iy,

we obtain
1 1 o rar 1
I@(u) Z ];||U||g,s1,p+gHUHg,sQ,q—;|Q| PS5y |U+ ;:1 o |U+ pi‘i
S1
1 1 6 P e 1 P -
> ];HUHJS,sl,er 5\|U|!3,52,q— C1Qp e Satpllullos p = - Sakh llullos
S1

As 1 < g < p < r < p}, there exist two constants p,3 > 0 such that
Iy(u) > B for all u € X4, , with |Jullos, , = p and that proves (a).
To prove (b), we fix u € X 5, ,(2) with u™ # 0. Then it is easy to see that

limy 400 Ip(tu) = —oo. Thus we can choose t; > 0 such that [[toullos,, > p

and Ip(tou) < 0. Hence (b) holds. O
Define,

Cy = inf  sup lp(tu). (6.5.4)

u€Xo,s1,p\{0} >0
Lemma 6.5.3. Let 1 < g <p <71 <p;. Then for any 6 > 0, Iy satisfies
the (PS). conditions for all ¢ € (0, %(Ssl,p)s%). Furthermore, there exists
0* > 0 such that

S1 N %
Cy € <0, N<581,p)3”’> for 6 >0".

Proof. Let c € (O, %(Sshp)%) and {u, bn>1 C Xos, () bea (PS), sequence
of Iy(-). From Claim 1 in the proof of Lemma 6.4.1, it follows that {u,} is
uniformly bounded in X, ,(£2). Therefore, there exists u € Xo s, ,(£2) such
that up to a subsequence, u,, — u in Xg4 ,(92) and u, — u in L7(Q) for
1 <~ <p; and u, — v ae. in RY. Also, following the same arguments as
in the proof of Lemma 6.4.1, we see that u is a critical point of Iy, that is
(Iy(u), ¢) = 0. Next, to prove u, — u strongly in X4, ,(€2), we follow the

arguments along the same line as in the proof of claim 2 of Lemma 6.4.1 and
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obtain either |u, — ullos, , = 0(1) or (6.4.17) holds with A = 0. Thus in the

second case,

51 . Nty LTy, 1 1
¢ = 3Su B e (5 - DT+ (5 3 )l
S1 N
> N(Sshp)slp'

This contradicts the fact that ¢ € (O, %(Ssl,p)”ip). Hence |u, — ullos,p =
o(1). Therefore, Iy satisfies (PS), condition for ¢ € (0, %(Sshp)s%).

Next, to prove Cy € (0, %(Sshp)%) we choose 1y € Xo s, »(2) with vy =
0 and

luo p;, = L. As limy o lp(tug) = —oo and limy_,g Iy(tug) = 0, there exists

tg > 0 such that sup,~ lo(tug) = Ig(tgug). Therefore,

_ _ _ pi —1
tg 1||u0|‘g,517p + tg 1||u0||g,82,q - etg 1|u0’: - t6‘ ' = 0.
So, we get, tg_r||u0||g75hp + tZ_THuOHg’SQ’q — tzslir =0Olug|". As 1 < g<p<

r < ps,, we get tp — 0 as 0 — oo. Thus, there exists 6" > 0 such that for any

0 > 0* we have,

Sq N
sup Ip(tug) < —(Ss, p)17.
0 N
N
Hence, Cy € (0, %(Ssl,p) 1) for 6 > 0. O

Proof of theorem 6.1.2: Using Lemma 6.5.2, Lemma 6.5.3 and Lemma
6.7.2, we conclude that Iy has a critical point u € X, , for 6 > 0* where 0*
is given in (6.4.24).

Claim: u > 0 almost everywhere.

Indeed,

o= () = [ MO HOP O 0 ) g,

|z — y| Vs

[ 1) = I H0le) ~ 0 =)

@ — y| N2

— K+ K, (6.5.5)
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Note that,

(u(e) —u()(w (@) —u () = —u*@u (@) — " @ (y) - (u (@) —u (y))?
< (@) —u (k) <0 (6.5.6)

and

N

(@) = u(w)] = (ju@) — uP)* = (fu2) = ()P)* =l () = u ()]
(6.5.7)
Since 2 < ¢ < p, using (6.5.6) and (6.5.7), we obtain

ju” (@) —w= @I,
K2 S _/RQN ‘:C _ y‘N_;'_qu dwdy - _Hu HO,SQ,q'

Similarly, K1 < —[ju~||§ ,, ,- Therefore, (6.5.5) implies, [[u™[[5 4, [t [[§ .54 <
0 that is, v~ = 0 a.e and this proves the claim.

Further, we observe that Cy > 0, since [y satisfies the mountain pass
geometry. Therefore, as u is the critical point corresponding to Cy, u must be

nontrivial. Thus, v is nontrivial nonnegative solution of (P). Consequently,

u is nontrivial nonnegative solution of (P).

6.6 Proof of Theorem 6.1.4

6.6.1 Existence of catg({2) nontrivial nonnegative solu-

tions

We break the proof of Theorem 6.1.4 into several lemmas. For the rest of

the section, we assume

Np-1) q

2 * *

N>p51 and 2§q<Ni_s<p§max{p,p51—q_71}<r<p51
(6.6.1)

Let U be a radially symmetric and decreasing minimizer for the Sobolev

constant defined in (6.3.1) for s = s; and it is known from [20] that there
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exists constants cq, co > 0 and # > 1 such that

1 C2

vy JU(7)) £ —5—=5 Vliz[>1, (6.6.2)
|77 || 7
Ur)y 1
< Vr>1 6.
0 =2 "= (6.6.3)

Multiplying U by a positive constant if necessary, we may assume that U
satisfies the following:

P (S )N (6.6.4)

Py

(i) (=AU =U"" (i) UG, = U

For any ¢ > 0, the function

Us(t) = =z U (S

N—s1p
p

is also a minimizer for Sy, , satisfying (i) and (ii). Let 6 be the universal
constant defined as in (6.6.3). We may assume without loss of generality
that 0 € Q2. For 6, R > 0, we define some auxiliary functions as in [64].

ms g = %, and gs g : [0,4+00) = R by

0, 0 <t<Us(0R)

95.0(t) = 3 mf o(t — Us(0R)), Us(OR) <t < Us(R) (6.6.5)

t+ Us(R)(mbp — 1), t > Us(R),

and G5 : [0,00) — R by

0, 0 <t<Us(OR)

<ﬁﬂw—[@@vw”w— msr(t — Us(OR)), Us(OR) <t < Us(R)

¢, t > Us(R).
(6.6.6)

We note that g.s; and Gsr are non-decreasing and absolutely continuous.
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Note that by definition,

0, 0<t< U5(9R>

=

sr(®) = (952(1)" = msn, Us(BR) <t < Us(R)

1, t > Us(R),
Therefore,
5,r(t) < max{msp, 1} <msp+ 1. (6.6.7)
Next, we estimate m; g as follows
Us(R) U(?)

= Us(B) - Us(6R)  U(F) - U(%y (6:6.8)

me,r

RO
Choose 0 > 0, small enough so that % > 1 and thus L([J(( g)) < % Therefore,
S
using (6.6.2) we have
RO\ it
_u®m o u® o ()7 o e
M&R = TR RO\ = T7(RO\ = N ¥ =0 1
(5)—UC) UG (5)7 ¢ )
5

(6.6.9)
Consider the radially symmetric non-increasing function s g : [0, +00) —
R by
us r(r) = Gsr(Us(r)).

Then we observe that, us p satisfies:

Us(r), <R
iis m(r) = o), r< (6.6.10)

0, r>6R.
Therefore, we have the following estimates from [64].

Lemma 6.6.1. [64, Lemma 2.7] For any R > 0, there exists C =
C(N,p,s1) > 0 such that for any § < %,

N=sip

T S 5 p—1
HU&R”{)),SLp < <551,p)N/ P+ O(E) , (6.6.11)
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£6Plog(R/8), N = s1p?

|ts,rlj > (6.6.12)
%5515", N > s1p?
and
* O \N/(p—1
@ lyi! > (Sup)" = C(F) [ (6.6.13)

Let ¢ > 0. Take R > 0 be fixed such that Bgr CC 2. Let us define the
function u. g : [0,4+00) — R by

_(N—s1p)

wer(r) =¢ 7 Gsp(r) with d=c7, Vr>0. (6.6.14)

Clearly, u. g C Xo.s (), that is, uc g = 0 in RV \ Q. Therefore, applying
(6.6.11) to (6.6.14) yields

(N—s1p)

e, rllf s p < (Serp)¥*Pe™ 77 + O(1). (6.6.15)

N—sip _ (N=s1p)

P = () e L O),

Lemma 6.6.2. |u. g

Proof. Applying (6.6.13), it is easy to see that

N—s1p _ (N-s1p)

> (Ssp) r e 7 +0().

p
ps; =

|UE,R
To see the upper estimate, we observe that
Pt (N—s1p)P%, ) N/
s ——— | — _
o /Q e 7 Jugplde = N /Q 1Gs.r(Us(x))
p?;l/ Us(x
[ |Us)

< e Mrmax{mi, 1} [ Us()
’ Q

Psidr

|ua,R

P51 dr

IN

3 _N/p|GZ$,R

P, dr,

where in the last line we have used (6.6.7). Next, applying (6.6.9) to the last

line, we have

Psidr

P - , _ 1 x
|ue,rlp:, < Ce N/p/RN |Us()[Prde < Cem NP g /RN u(3)

(N—s1p)pg;

P35, dy

= cer [ u(y)
R

P35,

P35,

= C’e’N/p]U

= CE_N/p<SS1 p)N/swa



6.6. Proof of Theorem 6.1.4

where, in the last line we have used (6.6.4)(ii). Hence, we have,

N—s1p N-—s1p

< (C<Ss’1,p)N/Sl%_N/p)g = C(Ss,p) =7 € 7

p
P:l -

|ue,R

This completes the proof of the lemma. O

Lemma 6.6.3. Let u. g be defined as above. Then the following estimates

hold, that is, fort > 1,

N(p=1)~t(N=sp) N(p-1)
ke P +0(1), t>JE
lue rli > { kline| + O(1), t = ¥l (6.6.16)
and
N({p-1
[te Rllos0e < O(1), 1<t < Np=1) (6.6.17)
e N — S1
In particular, we have
pQSlfN
ke v +0(1), N >p’s
|ue,rly = { k|line| + O(1), N = p%s, (6.6.18)
0(1)7 N < p231

where k is a positive constant independent of ¢.
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Proof. We have,

uenlt = [ Juen(o)ldr = [ fuen(o)lde > [ juep(o)l'ds

_ (N=syp)t t
= g 7 / usr(x)) dx
BR(O)( 7 ( ))
_ (N—s1p)t
= g / Uk(z)dx
Br(0)
7(N751p)t

g P T
= UYZ)d
s /BR(O) (5) o

_ (N—sip)t _ (N—syp)t
= ¢ 2 N / U'(x)dx
BR (0)

Np-1) (N— 511))
> ¢ 5 ! / Ut(r)r™tdr
‘ N(P—l)_t(N*sw) N 1
Z e ? P WCZT’.
1 1pt
r p-1
Ift > ]]\\[,(pisl then we have
N(p—1) ,(N—s1p)
cfig P L R Nf%
2 (N—s1p)t N [1 - (5) ]
Cop-1

—1
Since § = 5p7, choosing ¢ > 0 small enough we can make ¢ suitably
7(N751p)t

small so that 1 — (E)N P> % Therefore,

0

N(p=1) _,(N=s1p)
|u€,R|§ 2 ]{35 P P 9

P
4

where k = —1——.
Q(t(l\;:sllp)_]v)

If “WN=312) — N then
p

R
51
luz plt > ctl/l(S ;dr:ctl(lnR Ine' v )> k|llne| + O(1).

On the other hand for ‘&Y= Sl)p ) < N, we have

N— (N 911?)

|u |t > Cth(z; D t(N— 81;0) (R/é) —1
Rl = 41 N — t(N—s1p)
p—1
t(N—s1p) N(p-—1)—t(N—s1p)
’ [RN_ p—1  — P
= Cl
_ t(N-sip)
N P

v
Q
=

150



6.6. Proof of Theorem 6.1.4

To see the proof of (6.6.17), first we note that from Lemma 6.2.4 we have
Usp € Xosy p(2) C Xospyt(2), 1<t<p, 0<s2<s <1

and

HUE,R”O,Sg,t S ||UE,R||0,51,t~

Therefore,

e 816,550 < N1l 5,0

7(N7521P)t _ t
=c 7 |usr()lo..

_(N=syp)t
—c 7 |G aUs())srs
o [ [Genllile) ~ Gon(Uss)
R2N

|z —y| Vst

s [ 1G5 (Us() + 7(Us(y) — Us(@)) || Us(x) — Us(y)|"
£ P
R2N |x — y|N+51t

dxdy

IN

dxdy,

(6.6.19)

for some 7 € (0,1). In the last line, we have used mean value theorem.

Thus from (6.6.7), we obtain

/ Co  Ntsip
5r(Us(@) + 7(Us(x) = Us(y)) <1+ 20701 =5, (6.6.20)

C1

Substituting (6.6.20) into (6.6.19) yields
_ (N—syp)t U ) — U t
luerllbs,, < & 7= Cg/RZN| 5(2) 5(y)] ddy

|LZ' _ y|N+81t

(N—syp)t SIN—s1t . t
i /N UG) = U@ )
RQ

(N*;w)f |Z _ w|N+51t

_ (N=s1p)t N(p—t)(p—1)

= Ce 7P & 7 |Ulos.

1

_ cep(wonom ey

—1
where we have used that § = ¢ 7 . Note that ¢ < %;P which implies,

N(p—=1)(p—1) = (N —sip)t > 0.
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Therefore, we obtain

N@—D‘

||UE,R||6,32¢ <O0(1) for 1<t< -
— 51

(6.6.21)

This completes the proof of Lemma 6.6.3.
O

Lemma 6.6.4. Assume (6.6.1) holds. Then, for any 6 > 0, Cy €
(O, %(Ssl,p)N/slp), where Cy is defined as in (6.5.4).

Proof. As we have fixed R, we take u, := u, r. Define

ve () =:|u€(x)- (6.6.22)
Ug | pr
Thus |vc|y:, = 1. Define
g(t) L= IO(tUE>
p q tT r tpzl
- EHUEHO,Sl:p + gHUEHO7827q - 6?|Us’r - :1 .
Since ¢ is a continuous function and ¢(0) = 0, lim;_, ., g(f) = —o0, there

exists t. > 0 such that

sup lp(tve) = Ip(tove).
£>0

Then, t. satisfies ¢'(t.) =0 i.e.,

s —1
B 0 10 e g — 01 el — 29T =0, (6.6.23)

Consequently,
10l 01 + 127 0|8 > 227 (6.6.24)
Asq < N(p 1) , combining (6.6.15), Lemma 6.6.2 and (6.6.17) we have

a(N—s1p)
2

. ol
ol < S+ OF), el < Lol — o
elpg,

(6.6.25)

152



6.6. Proof of Theorem 6.1.4

Therefore, from (6.6.24) and (6.6.25), we see that for any £ > 0 small enough,
there exists t2 > 0 such that for all ¢ < & we have, t. < t2. Using (6.6.23) we

have,

[Vellf s < OFPlocy + 22 (6.6.26)

Using (6.6.25)-(6.6.26) we say there exists 7" > 0 such that for any ¢ > 0,
t. > T.

*

Let h(t) = %HUEH{;’SW - t;:;ll Then h(t) attains its maximum at ¢, =

1

([lvell6.5, )71 . We note that, N > p*s; > ps; implies N (p—1) < p(N —ps1),

]]\Q(f;sll) < p < r. Hence, for ¢ < &, applying Lemma 6.6.3 and

Therefore,

Lemma 6.6.2 we obtain,

td tr
g(ts> = h(ts) + EaH%Hg,sz,q - 8f|7j€|:

t2)4 1"
U o~ 6 el

< h(ty) +

S1 N (N=s1p) (N =s1p) (p=1) (y_r(N=s1p)
< yGsp) T as T tes 7~ o P

with ¢, ¢g,¢3 > 0 (independent of £.) As

N — N — —1 N —
S1P q( 28110) > (p )<N— r( Slp)> >0,
p p p

choose € > 0 small so that g(t.) = sup;>q Ip(tve) < %(Ssl,p)s%.

Hence, Cy € (0, %(5’51@)8%) for any 6 > 0. O
Lemma 6.6.5. Assume (6.6.1) holds. Then for any 0 > 0, cg = Cy, where

cg and Cy are defined as in (6.5.1) and (6.5.4) respectively.

Proof. Using lemmas 6.5.2 and 6.5.3 we conclude that, for any 6 > 0 there
exists up € Xos, p(€2) such that Iy(up) = Cp and Ij(up) = 0. Also for any

u € Ny, we have

0= (Ig(w),u) = ||ullf

0,s1,p

P (6.6.27)

+ ||u||(q),82,q - 0|u+|; - |u+ Pt
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Therefore, if we define f(t) := Iy(tu), where u € Ny, then a straight forward
computation yields that f'(1) =0 and f”(1) <0, i.e,

max Iy(tu) = Ip(u). (6.6.28)

£>0
Observe that, from the definition of Cy it follows Cy < max;>o Iy(tu).

Consequently, we obtain Iy(u) > Cjp for all u € Ny. Hence,

Cop = inf ]g(u) Z Cg. (6629)

uENy
On the other hand, uy € Ny and Iy(up) = Cp implies Cp > cy. Hence
Cyp = Cg. ]

From the definition of Cpy, it is easy to see that
Cy, < Cp, if 0y < b4
Therefore, using Lemma 6.6.5, we also have
co, < cp, if By <Oy,

which implies ¢y is non-increasing in 6. Therefore, for any A > 0, there exists

p = p(A) (depending on the Mountain Pass Geometry) such that 0 < p <

cg < ¢ for all 6 € [0, A], where ¢ is the MP level associated to the functional
1 1 1

Io(u) = —lullos, + 5||U||8,82,q —
S1

Lemma 6.6.6. ¢y = %(S;, ,)"/*P.

Proof. Recall v.(z) = % where u. = u, g is defined asin (6.6.14). Arguing
PE;

as in Lemma 6.6.4, there exists t. > 0 such that %Io(tve)h:ts = 0, that is,

— - ps, —1
tg 1|’U5Hg,51,p + tg 1||U€Hg7527q - t€ ! . (6630)
Hence, tgzlip > ||vell6.s, p- Also, t. is bounded. Using 1 < ¢ < p < pi,

(6.6.30) and (6.6.25) we have,

g(N—s1p) 1

te=(Su,+0(c »# )=
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Therefore,

<Dt = (St OET )T (80,4 0(EF)

q(N g1p) f1(N 9119)

(581,p +0(e )7 0(e

1 (N—s1p) fgl
—p—*(sshp O )

S1

—s1p a(N—s1p)

- ]19(<Ssl,p)Nsw +0(e 7)) (Suyp+ O - Slp)))

1 a(N—s1p) a(N—-s1p) ) a(N—s1p)
g

+7((SS1,p) 0@ 7 v

q
1 N M)

——((Ssyp)" +O(e #*
pzl(( ») (

11
= (=))W + 0 )
- %H&M#WWZ as € —0. (6.6.31)

q(N— Selp) N— sslp

)+0(e

Let {un}n>1 C Xos () such that Ip(u,) — co and Ij(u,) — 0 in
(Xos,p) as n — oo. Arguing as in Claim 1 of Lemma 6.4.1, it follows
{l|unllo.sy.p}n>1 is bounded. Moreover, as in (6.4.12) w.l.g up to a subse-

quence we can assuine

Psy

unllfsp = a+0(1),  |lunllfs,q =b+o0(1),  Jurl: =

a+b+o(1).

Since 2 < ¢ < p, estimating (I)(u,,),u, ) as in the proof of Theorem 6.1.2, we

’on

obtain |ju — 0 and ||lu — 0 as n — oc.

n”Oslp nHOsgq

Therefore, we may assume u, > 0. Hence, |u, zgi =a+ b+ o(l). Set

() = |u | . Then |v,,: =1 and
a+o(1) o
SS1;D — “UTLHO ,81,D = p/Dk S (CL + 0(1)) p/N'
(a+b+o(1)"™
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Hence, we have,

51 N/sip s1(a +o(1))
N(Sslap) / S N
s1(a+o(1)) 1 1
< N <q - ps*1> (b+o(1))
— o, as n — 0. (6.6.32)

Combining (6.6.31) and (6.6.32), we have cq = 5(S,, ,)/*'*. Hence, proved.
[

Remark:

(i) For any bounded domain Q C RY, the MP level of the functionals

1 1 1 Pk
Ino(u) = ~llullfs, p + = llullf g — — w2
p q 51 !
and
~ 1 1 pE
loa(u) = ~[[ullg s, p + = 1ullf srq — = lulp'
p q s1 !

is %(Ssl,p)%, so the MP level is independent of €.

(ii) Using the proof of Lemma 6.6.6, we may assume that all the PS se-

quence of [y are non-negative.
Lemma 6.6.7. Let 0, — 0 as n — oco. Then cy, — co as n — 00.

Proof. From the definition of ¢y, ¢y we note that
cy, <cg V¥V neN. (6.6.33)

Let {un}n>1 C Xos,,(2) such that w, > 0 and satisfies Iy, (u,) =
co,, 1 (un) = 0 and let {t,},>1 C R such that t,u, € Ny. Hence,

co < Iy (tnun) = [9n (tnun) + %th|un|: Consequently,

Ot
co < cg, + r" |[Un ;.. (6.6.34)
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As ¢y, < co, we can show as before {||uy,||o.s,.p tn>1 is bounded. We also claim
that {t,,},>1 is bounded. Suppose not. Then up to a subsequence, ¢, — 0.

Note that, t,u,, € Ny implies

PPy o (6.6.35)

HUTLH:S,SMD + tZ_pHun g,sz,q = t” | n p;*l

Since ¢ < p < pi, and max{||un||oss.q, [tn

RHS of (6.6.35) — oo but LHS remains bounded. Hence the claim follows.

p:l} < Cllunllosp » We obtain

By the above claim and (6.6.34), we have

co < liminfcy, <limsupey, < co.
n—oo n—soo

Hence, ¢y = lim,,_, cp,. This completes the proof. O

Since 2 C RY is a smooth domain, there exists § > 0 such that
Qf = {r € RY | dist(z,Q) < J}
and
Q5 = {z € RY | dist(x, Q) > §}

are homotopically equivalent to (2. Without loss of generality, we may assume
that
Bs = B(0,9) C €. Define,

Xpt (Bs) i= {u € Xo,(Bs) | u is radial }.

0,s1,p

Let Ny g, := inf {u € Xp2 (Bs) \ {0} <Ig735(u),u> = O} where

0,51,p

1 1 0 1 "
Iy, (u) = =||ullf,, , + = llulld —7/ u*rdx——/ ut P da.
0.5 (1) pH 16,51, qH 1500 = f,, 1071 - o, 1]

Denote ng = infyen, 55 Iy s (u). We note that ng is non-increasing in 6. Let

us denote the MP level for Iy g, on X ,(Q) 4 (Bs) by 159. We also observe
that 17y > 0 for all 8 > 0.
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Lemma 6.6.8. Assume (6.6.1) holds. Then, for any 6 > 0, the following
holds:

N

(a) Iy g, satisfies the (PS). condition for all c € (0, N (Sspp) 17

) . Moreover,

1y € (0, i]\}(ssl,p)%).

(b) Ng = ﬁg.
N
(c) ng — 3 (Ss,p)"17 as 0 — 0.
Proof. Applying Brezis-Lieb lemma, it is not difficult to check that Iy 5, in
X¢o? (Bs) satisfies the (PS), condition for all ¢ € (0, %(Ssl,p)s%) By a
similar argument as in Lemma 6.5.3, we also obtain 1y € (0, %(st)s%).
Further, following the same argument as in Lemma 6.6.6 and Lemma 6.6.7,

N
it yields ng — 3(Ss, )7 and 6 — 0 respectively. O
Let us define a map 7 : Ny — RY by

(W) = (Sup) 7 [ @)z da

Let us denote 1;° = {u € Xo 4 () : Iy < ng}.

Lemma 6.6.9. There exists 0* > 0 such that for any 0 € (0,0%) and u €
Ny N I)°, it holds T(u) € Qf .

Proof. We will prove this by contradiction. Let us suppose 6, — 0 and
u, € Ng, N I;° but 7(u,) ¢ Qf . We observe that

1 0.,

1
Con < Lo (tn) = Zlltllossp + 2 lltnllosog "

P,
nlpr < g

Ps, —

1
|up [y — —u
S1

- )
and

.
PS5y

= (Ig(up), un) = 0.

||un||g,s1,p + ”uan,SQ,q - 6n|u$|; - |u:
It can be shown as before that ||uy|os, , is bounded. Therefore, we have,

.
f 2
.

f 2

+0(1) < mng, +o(1)
(6.6.36)

1 1 1
Co, < 1o, (un) = ];Ilunllﬁ,sl,p + gllunllg,sm - pTM
S1
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and

P = o(1). (6.6.37)

n Ipt,

[tnl[6,51. + 1 16,5,.q

Using (6.6.36) and (6.6.37) we have,

1
7” nHOs1p— p

Consequently, applying Lemma 6.6.8(c) it yields

1 1
>H wlary + (q -2 )Hunuz,m < o, +o(1).

S1

N
[tnl[§.s,p < (Ss1.p)*17 + 0(1). (6.6.38)

From (6.6.37), it follows

| b+ of1). (6.6.39)
Define w,, = |u}j‘" , which implies |wy|,: = 1. Using (6.6.38) and (6.6.39),
n p;fl
we obtain

p2

I n|| e 7
Sevp < l[wnllos, p < Tt < ||uTLH05p1 +o(1) < 84 p+o(1). (6.6.40)

Hence, the function w, () := w; (z) satisfies
|U7n‘p7;1 =1 and ||Wnl6s, = Sap as n— oo,

Using Theorem 6.3.1, there exists a sequence (y,,, \,) € RY x R such that
the sequence v,, defined by
(N—psj)

Un(x) =An 7 W (A + Yn),

converges strongly to some v € W*P(RY). Combining (6.6.40) and (6.6.39),

we get
4 P3
Ss1pltin Z;l +0(1) = [[unllg 5 p < |t ], L o(1).
Hence,
s N
|t = (Ss1p)*7 +0(1), n— oo (6.6.41)

nlpy, =
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Further, from (6.6.40) and (6.6.38) it follows

N
nlpe +0(1) = [[unl§ s p < (Ssy.p) 717 + 0(1).

Hence,

P < (4, )77 +o(1). (6.6.42)

p3

|t
Using (6.6.41) and (6.6.42) we conclude that,

pg1

1

— (st)s% as n — oo. (6.6.43)
Now,

Psi g dx

() = (Sur) / ()

= (Ss1p) Sp /w p81 )z dx

— s — S yn
= (S 1 /Q xAanﬁl(T)dx
= (Soug) Pl 2 [, Oz ga)en (2) d.

An
Applying dominated convergence theorem via (6.6.43) and Theorem 6.3.1

to the last line of the above expression we obtain

) <y [ o

which is a contradiction to the assumption. Hence the lemma follows.

Pudz =y e,

]

Using Lemma 6.6.8, we can find a non-negative radial function vy € Ny p,
such that Iy(vg) = Ipp,(vg) = ne. Let us define a map v : Q5 — Iy? by
v(y) = v, where 1, is defined as follows

ve(x —y), if x € Bs(y),
b, (z) = (6.6.44)
0, otherwise.
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Now, for each y € €25 we have,

(oW =Ty, = (Sup) [ wle—yhade
B;s(y)

= (Sp) 7 [ (2 + )z
Bs(0)

5(0) B(;(O)
(6.6.45)
Further, using the fact that vy is radial, it is easy to check that
ve(2)P1zdz = 0. 6.6.46
L, 2002 (6.6.46)
Substitution of (6.6.46) into (6.6.45) yields
(ToM(y) = vy, (6.6.47)
_ N .
where, ap = (Ss, ) 17 / vg(z)Psrdz.
B;(0)
Lemma 6.6.10. oy — 1 if 0 — 0.
Proof. From Lemma 6.6.8, we observe that
1 1 0 1 .8 v
:] [ p - q _7/ 7‘_7/ Ps <7SS s1p
ng = Iy p,(vy) p||Ue||o,sl,p+q||Ue||o,52,q . |vel o I, [vo]™1 < 5 (Ssip)
and
r P,
1061[0,51,p + 11061[,55,4 = Olvaly — lvelpz = 0.

P — (S )% asf — 0
P:l S1,P :

By similar argument as in Lemma 6.6.9 we have, |vg
Hence the lemma follows.

]

Let us define a map Hy : [0,1] x (Ny N I)?) — RY by

1—1¢
Hy(t,u) = (t—i— - )T(U) (6.6.48)
9
Lemma 6.6.11. There exists 0, > 0 such that for any 0 € (0,6,), it holds
Hy([0,1] x (Ng N 1)) C QF .
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Proof. We will prove it by method of contradiction. Suppose there exists

sequence 60, — 0 and (¢, u,) € [0,1] x (Ng N 15?) such that
Ho, (tn,u) ¢ QF Vn € N. (6.6.49)

As t, € [0,1], up to a subsequence, we assume t,, — to € [0, 1]. Moreover, by
Lemma 6.6.10 and from the proof of the Lemma 6.6.9, we have ay, — 1 and
7(u,) — y € Q. Hence, Hy, (t,,u,) = (tn + %)T(un) — y € Q. This is a

contradiction to (6.6.49). Hence the lemma follows. ]

Lemma 6.6.12. Let ug be a critical point of Iy on Ny. Then, ugy is a critical

point of Iy on Xos, »(€2).
Proof. Suppose, ug is a critical point of Iy on Ny. Therefore,

Using Lagrange multiplier method, there exists 1 € R such that

Ty(ug) = pdj(us), (6.6.51)
where
r Ps
To(u) 5= [l g+ [l — Ol 7 — e 2 (6.6.52)
Therefore,
w{(Jp(ug), ug) = 0. (6.6.53)
Observe that,
r * P
(Jo(u),uo) = pllugllf s, p + allwolld e.q — r0lug [; — P, lug |y:!

f 2
pi, < 0.

= (o= )usllts,p + (a = P)llualld s — 05, =)y

(6.6.54)

Consequently, from (6.6.53) we conclude that p = 0 and therefore by (6.6.51)
we have Ij(ug) = 0 and this completes the proof. O
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In the next two lemmas, we denote Iy, := Iy|y, (restriction of I, on Np.)

Lemma 6.6.13. Assume (6.6.1) holds and 0 > 0 is fizred. Then for any

sequence {u,} C Ny such that

S1 S%
Ig(un)—>c<N(Sshp) L Iy, (un) = 0,

there exists uw € Ny such that up to a subsequence, u, — u as n — oo.

Proof. From the given assumption, we get there exists a sequence {u,} C R
such that

1 1y (un) — pndy(us)|| =0 as n— oo.

Hence,

Iy(uy) = pndp(uy) + o(1). (6.6.55)

By (6.6.54), we have (Jj(u,),u,) < 0 for every n > 1. Note that, up to a
subsequence, (Jj(uy,), u,) — 1 < 0 as n — oco. Otherwise, if (Jg(uy,), un) — 0

as n — 0o, then

||u71||0781ap — 0, HUNHO,qu — 0, |u$

p;1—>0 as n — oo.

On the other hand, as u, € Ny using Sobolev embedding theorem, there
exists C' > 0 such that

p§1 )

p*
pg < C(eHun“ashp—i_Hu” 0,51,p/

16,000 < Nttn 651+ 16,52, = Ol 17+t

This in turn implies

pi, P
07517p ) ’

1< COllunllosyp + llun

1,P

which is a contradiction. Hence, up to a subsequence, we have,
(Jo(un),up) = 1<0 as n— oo.

Moreover, u,, € Ny for all n > 1, implies (Iy(u,),u,) = 0 for all n > 1.

As a consequence, from (6.6.55) we have, p, — 0 as n — oo. Therefore,
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N

Ij(up) — 0asn — o00. As Iy(u,) = ¢ < %(Ssl,p) 17 " using Lemma 6.5.3 we

conclude the result. ]

Define,
0.. = min{6*,0.}, (6.6.56)

where 6* is same as in Lemma 6.6.9 and 6, is as found in Lemma 6.6.11 .

Lemma 6.6.14. Assume (6.6.1) holds and 0 € (0,0,.), where 0., is as de-
fined in (6.6.56). Then

cat o (IN,) > cato(Q2).
0

This follows exactly by the same argument as in [89, Lemma 4.4]. For

the convenience of the reader, we briefly sketch the proof below.

Proof. Let, catrs (Iy,) = n. By the definition of cat o (I\,), we can write
0 0

I, = Ay U Ay U---U A, where {A;}5_, are closed and contractible in Iy,

that is, there exists h; € C([0,1] x Aj; IY) such that

hj(O,u) = u, h](l,u) = Ug v UEAj,

where ug € A; is fixed. Let v be as defined in (6.6.44). Define, B; :=
v 1(A;),1 <j <n. Then, B;is closed for 1 < j < n and Up_ B; = Q5. Set,
95+ [0,1] x B; — Qf by

gj(ta y) = H9(t’ hj<t77(y))>7 for 0 € (07 0**)?

where Hy is as defined in (6.6.48). Therefore,

35(0.) = Haf0, (0, ()) = ZOIWN 2] 0y, ¢

here we have have used (6.6.47). Further,

9;(L,y) = Hy(1, hy(1,7(y) = 7(h;(1,7())) = 7(uo) € O,
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which follows from Lemma 6.6.9. Therefore, the sets { B;}}_, are contractible
in QF . Hence,

catq(Q) = catﬂg(Qg) <n.

This proves the lemma. O

Proof of Theorem 6.1.4: Using Lemma 6.5.3 and Lemma 6.6.8, we
have for all 8 > 0,
S1 N

Co, Ny < N(Ssl’p)slip.

By Lemma 6.6.13, I, satisfies the (PS). condition for all ¢ € (0, %(55171))511%).
Hence, by Lemma 6.6.14, a standard deformation argument implies that, for
0 € (0,0.), Iy contains at least cato(f2) critical points of the restriction of
Iy on Ny. Now, Lemma 6.6.12 implies that I, has at least catq(2) critical
points on X, ,(€2). Now, following the same argument as in Theorem 6.1.2,

it follows (P) has at least cato(§2) nontrivial nonnegative solutions.

6.7 Appendix

Here we first recall the classical deformation lemma from [4, Lemma 1.3].

Lemma 6.7.1. Let J € CY(X,R) satisfy (PS)-condition. If c € R and N is
any neighborhood of K. = {u € X : J(u) = ¢, J'(u) = 0}, then there exists
n(t,z) =mn(x) € C([0,1] x X, X) and constants 0 < € < & such that

(1) no(x) =z for all z € X.

(2) ni(z) =z for allx € J Yc— & c+él.

(3) ni(x) is a homeomorphism of X onto X for allt € [0, 1].

(4) J(n(x)) < J(x) for all x € X,t € [0,1].

(5) ni(Aere — N) C Ae_e where A, ={x € X : J(x) < c} for any c € R.
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(6) If KC = wynt(Achg) C Acfs.
(7) If J is even, n; is odd in x.

Note that the above lemma is also true if J satisfies (PS). condition for
¢ < ¢g for some ¢y € R. Next, recall the general version of Mountain Pass

Lemma (see [7]).

Lemma 6.7.2. Let X be a Banach space. Let I € C*'(X,R). Let us assume

for some 3, p > 0, we have,
(i) I(u) > B for all uw € X with |Jul]|x = p.

(i) 1(0) =0 and I(vy) < B for some vy € X with ||v||x > p.
Then there exists a sequence {u,} C X such that I(u,) — « and I'(u,) — 0
in X' asn — oo, where « is given by:
a:= inf maxI(tu).

ueX\{0} t=>0

The next lemma is regarding the elementary properties of Krasnoselskii

genus.

Lemma 6.7.3. Let A,B € X. Then,
(1) if there exists f € C(A, B), odd, then v(A) < v(B).
(2) if A C B, then v(A) < ~(B).

(3) if there exists an odd homeomorphism between A and B, then v(A) =
7(B).

(4) if SN1 denotes the unit sphere in RN, then y(S™~1) = N.
(5) V(AU B) < y(A) +~(B),
(6) If v(A) < oo, then (AU B) 2 y(A) — v(B).
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(7) If A is compact, then v(A) < oo and there exists 6 > 0 such that
v(A) = v(Ns(A)) where Ns(A) ={z € X : d(x,A) <5}

(8) If Xy is a subspace of X with codimension k and v(A) > k, then AN
Xo # 0.

Proof. See [4, Lemma 1.2] . O

Remark 6.7.4. It’s easy to observe that if A contains finitely many antipodal
points u;, —u; u; # 0, then y(A) = 1.

Conclusion: In this chapter, we have studied the existence of multiple
nontrivial solutions of (p, ¢) fractional Laplacian equations involving concave-
critical type nonlinearities and existence of nonnegative solutions when non-
linearities is of convex-critical type.

There are two major difficulties which we had faced in obtaining the re-
sults, first to get the right function space to look for the solution, where
we used Besov-Sobolev embedding to obtain Lemma 6.2.4 and secondly, one
variant of Concentration Compactness result which is Lemma 6.3.2. (men-

tioned in Remark 6.3.3). Nobility of our work lies here.

o
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Chapter 7

Equations involving fractional
Laplacian with critical and

supercritical exponents

The aim of this chapter is to study the following problem
(~AYu=uP —u! in RY,
u € H¥(RY) N LITHRY), (7.0.1)
w>0 in RY,

and
(—AYu=uP —u? in £,

u=0 in RY\Q,
(7.0.2)
u>0 in €,

u € H*(Q) N LITHQ),
where s € (0,1) is fixed, (—A)® denotes the fractional Laplace operator

defined, up to a normalization factors,

~ (=A) ulx) = 3 /RN uz+y) _éﬁéfgf UT=Y) gy e RY. (7.0.3)
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In (7.0.1) and (7.0.2), ¢ > p > 2* — 1 = FE2 and N > 2s. In (7.0.2), Qis a
bounded subset of RY with smooth boundary.

7.1 Preliminaries: Schauder type estimates

Recalling Section 2.5, we note that for u € H*(RY) to be a solution of
(7.0.1),we define w := E4(u) be its s— harmonic extension to the upper half

space RY*! that is, there is a solution to the following problem:

div(y'>Vw) =0  in RYTL

(7.1.1)
w=1u on RY x {y=0}.
Hence, (7.1.1) can be rewritten as:
div(y'" >Vw) =0 in RN*
;;;)s — w”(,0) —w'(,0) on RV 72

A function w € X(RY ™) is said to be a weak solution to (7.1.2) if for

all p € X2(RY™), we have

kgs/ y TV wVe dudy :/ wP(z,0)p(x,0) dw—/ wi(z,0)p(x,0) dz.
RYT! RN RN
(7.1.3)
Note that for any weak solution w € X2(RY™) to (7.1.2), the function
u = Tr(w) = w(.,0) € H*(RY) is a weak solution to (7.0.1).
Next, we recall Schauder estimate for the nonlocal equation by Ros-Oton

and Serra [73].

Theorem 7.1.1. [Ros-Oton and Serra, [73]] Let s € (0,1) and u be any

bounded weak solution to

(—=A)Y’u=f in B;(0).
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Then,
(a) If u € L=(RY) and f € L>=(B1(0)),

. 1
llullc2s (B, 0)) < Ol pee@ny + | flreio)) o s# 3

Nl

and
. 1
HUHCZS‘E(B%(O)) < C(Julgee@ny + [ flre o)) if s= 5

for all e > 0.
(b) If f € C*(B,(0)) and u € C*(RY) for some a > 0, then

|ul|cates (s, (o)) < Cllullca@yy + || fllcasi o))

(S

whenever a+2s is not an integer. The constant C' depends only on N, s, o, €.

We conclude this section by recalling some weighted embedding results

from Tan and Xiong [80]. For this, we introduce the following notations
Qr = Br x [0, R) C R"",

where Bp is a ball in RY with radius R and centered at origin. Note that,

Br x {0} C Qr. We define,

H(Qg,y'™) = {U c H'(Qg) : /Q y' T (U? + |VUP)dady < oo}

R

and X2%(Qpr) is the closure of C§°(Qg) with respect to the norm

2
lwllxzs(@r) = (/ y123!Vw|2dxdy> :
QRr

We note that, s € (0,1) implies the weight =2 belongs to the Mucken-
houpt class Ay (see [66]) which consists of all non-negative functions w on

RN*! satisfying for some constant C, the estimate

1 1 B
— N <
s%p <|B| /dex> <|B] /Bw dx) <,

where the supremum is taken over all balls B in RV,
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Lemma 7.1.2. Let f € X2*(Qr). Then there exists constant C' and § > 0
depending only on N and s such that for any 1 < k < "TH + 0,

L

( [ y”slf\%d:cdy> o c<R>( [ Z/IQSWf\Qd:cdy> |

Proof. 1t is known from [80, Lemma 2.1] that the lemma holds for f €

CH(Qr) (also see [42]). For general f, the lemma can be easily proved ap-

plying density argument and Fatou’s lemma. O]

Lemma 7.1.3. Let [ € X25(Qgr). Then there exists a positive constant §

depending only on N and s such that

C(R)

eo

/ fPde < e [y = Pdady + =52 [y fdedy,
Brx{y=0} Qr Qr

for any e > 0.

Proof. It f € C}(Qgr), then the lemma holds (see [80, Lemma 2.3]). For
[ € X§°(Qr), there exists f, € C5°(Qr) such that f, — f in [|.|[xzs(q,) and
for f,, we have
[ Pde e [ g Py + S5 [y Py
(7.1.4)
for any € > 0. Clearly the 1st integral on RHS converges to/ y' 2|V f [Pdady.
Thanks to Lemma 7.1.2, it follows that the embeddiﬁg X2 (Qr) —
L*(Qr,y' %) is continuous. Therefore, we can also pass to the limit in
the 2nd integral of the RHS. On the other hand, using the trace embedding

result, we can also pass to the limit on LHS. Hence, the lemma follows. [J

In the next section, we will recall some basic definitions.
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7.2 Definitions

Definition 7.2.1. (Weak solution) We say that u € H*(RY) 0 LItH(RY)
is a weak solution of Eq. (7.0.1), if u > 0 in RN and for every ¢ € H*(RN),

[, [, L) = 00 gy [ s [ o

or equivalently,

L)

Similarly, when Q is a bounded domain, we say u € Xo N LI(Q) is a weak

Wl

u(—=A)2p dr = /RN uPo dr — /RN ulp dx.

solution of Eq. (7.0.2) if u > 0 in Q and for every ¢ € Xy, the above integral

expression holds.

Definition 7.2.2. (Classical solution) A positive function u € C*T*(RN)N

LY (RY, (14-&%) is said to be a classical solution of

(=A)u= f(u) in RY, (7.2.1)

if (—A)*u can be written as (7.0.3) and (7.2.1) is satisfied pointwise in all
RY.

7.3 Main results

We turn now to a brief description of the main theorems presented below.

Theorem 7.3.1. Let s € (0,1), p >2*—1 and ¢ > (p — 1)% — 1. Ifu is
any weak solution of Eq.(7.0.1) or Eq.(7.0.2), then u € L>(RY). Moreover,

if Q = RY, then there exist two positive constants Cy, Cy such that
Cula|” =2 < u(z) < Colz| M=) |z| > Ry, (7.3.1)

for some Ry > 0.
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Theorem 7.3.2. Let s,p,q are as in Theorem 7.3.1.

(i) If u is a weak solution of Eq. (7.0.1), then u € C®(RY) if both p and
q are integer and u € C*T2(RN), where k is the largest integer satisfying
|2ks] <pifp & N and [2ks| < q if p € N but ¢ ¢ N, where |2ks]| denotes
the greatest integer less than equal to 2ks .

(ii) If u is a weak solution of Eq.(7.0.2), then u € C*(RN) N CEF(Q), for

loc

some a € (0,1).

Theorem 7.3.3. Let s,p,q are as in Theorem 7.3.1. If u is a solution of
Eq.(7.0.1), then

\Vu(z)| < Cla|~WV=2D " |z| > R, (7.3.2)
for some positive constants C' and R'.
Theorem 7.3.4. Let s € (0,1) andp =2*—1 and ¢ > p. Then (7.0.1) does

not have any solution.

We define the functional
1
%) = IV jrd 7/ . 3.
2/RN/RN |x— |N+2s YT el e (733)
Define,
X :=inf {F(U,RN) cv € HY(RY) N LY RY), /N [P de = 1}. (7.3.4)
R

Theorem 7.3.5. Let s € (0,1) and ¢ > p > 2* — 1. Then X in (7.34)
is achieved by a radially decreasing function u € H*(RY) N LITY(RY) and
FEq.(7.0.1) admits a nonnegative solution. Furthermore, if ¢ > (p — 1)% -1,
then Eq. (7.0.1) admits a positive solution.

When €2 is a smooth bounded domain, we define

Sq := inf {F(v, Q) :v € Xo(Q) N L), /Q lo[PTde = 1}. (7.3.5)
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Theorem 7.3.6. Let s € (0,1) and ¢ > p > 2* — 1. Then 8q in (7.3.5)
is achieved by a function u € Xo(Q2) N LITH(Q). Furthermore, there exists a
constant X > 0, such that u satisfies
(=A)*u = MulP™ u — |[u| M in Q,
(7.3.6)
u=0 in RY\Q.

Furthermore, if p > 2* — 1 and ¢ > (p — 1)% — 1, then FEq.(7.3.6) admits a
positive solution.

Note that the scaled function U = ATy satisfies the equation

q—1

(=AU =0 —c'U?, " =\"»r1, (7.3.7)

Few notations:
We use the notation C#(RY), with 8 > 0 to refer the space C*# (RY), where
k is the greatest integer such that k < § and ' = 8 — k. According to this,
[-lcs@wy denotes the following seminorm

| D*u(z) — D*u(y)|
[u]cs@ny = [U] orsr @y = sup -
&) ChIERY) z, yeRN x4y |$ - y|ﬁ

Throughout this paper, C' denotes the generic constant, which may vary from

line to line and n denotes the unit outward normal.

7.4 Decay estimates and Regularity results

In this section we prove Theorem 7.3.1, Theorem 7.3.2 and Theorem 7.3.3.

Proof of Theorem 7.3.1

Proof. Case 1: Suppose Q = RV,

Let u be an arbitrary weak solution of Eq.(7.0.1). We first prove that

loc

u € L (RY) by Moser iterative technique (see, for example [52,80]). From
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Section-2, we know that w(x,y), the s—harmonic extension of u, is a solution

of (7.1.2).
Let B, denote the ball in RY of radius r and centered at origin. We define

Q.= B, x[0,7).

Set w = w™ + 1 and for L > 1, define

w if w<lL
wyr, =
1+ L if w> L.

For ¢ > 1, we choose the test function ¢ in (7.1.3) as follows:

ez, y) =1 (x,y) (@, y)wi ™ (@,y) - 1), (7.4.1)

where n € CP(Qr) with0 < n <1, n=1inQ,, 0<r <R <1and

|Vn| < 2. Note that ¢ € X**(RY*™"). Using this test function ¢, we

obtain from (7.1.3)

ks /szl yl—stw(x,y)V<n2(x,y) (w@,y)wi(t_l)(l’? y) — 1)>dxdy

= [ (@7,0) — e, 0))o2,0) (i, 00, 0) — 1)z

(7.4.2)
Direct calculation yields

V(i (0w = 1)) = 2n(wwi Y — 1)V

+ 2w VG 4 2t — Dfow YV V. (7.4.3)

Here we observe that on the set {w < 0}, we have ¢ = 0 and V¢ = 0.
Thus (7.4.2) remains same if we change the domain of integration to {w >

0}. Therefore, in the support of the integrand Vw = Vw. As a result,
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substituting (7.4.3) into (7.4.2), it follows

Ko /RNH y' (2?7(717“@(“) —1)VnVw
+
1+ 2 VeV + 2t — D)2V Ve, vV dzd
nw wVw + 2(t n wry, wVwrVw |(z,y)dzdy

</ (x,0)wP(x,0)w(x, O)wL(t U(x 0)dz.

Notice that in the support of the integrand of second integral on the LHS
Vw = Vw and in the third integral w;, = w, Vw;, = Vw. Hence the above

expression reduces to

]{525 /RNJrl y1—2s (277(151“?:@_1) - 1)V77V'(I)
+
+7 w2(t 1))|Vw|2 +2(t — 1)772wi(t_1)|va|2> (z,y)dxdy

</ (z,0)w” ™ (z, 0)wi ™ (z, 0)d, (7.4.4)

where for the RHS, we have used the fact that w < w

Using Young’s inequality we have,
‘Qn(wwi( Van‘ < 772 200 T2 4 202w V|V (7.4.5)

Using (7.4.5), from (7.4.4) we obtain,

k23

N+1
2 RY

yLﬂs(ﬁhm2+-@-—1nvmuﬁ)n2w§“*kx4»dxdy

<2k [y et Ol y)dedy

+

Lo @ w2 (2, 0)d, (7.4.6)
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Ast > 1 and Vwy =0 for w > L , it is not difficult to observe that,
Joyer vV i) Peady
—os( —2  2(t—1) 2(t—1) | —
<3 v yl=2s <w2w( ‘V77|2+772wL( )|Vw|2
. 1>2n2wi“‘”|m|2)dxdy

<3t y' B wy 2 )|V7)| dxdy

N+1
Ry

+ 3t /R]+V+1 y' (leD|2 + (t — 1)|VwL]2> nPwi D dady. (7.4.7)

Combining (7.4.7) and (7.4.6), we have

kas /]R v YRV (powi ) Pdedy
+

< 3thsy, /RN-H e 2sw2w2(t 1) \V77|2dxdy

+

+3t{4kzs /]R oo ¥R P (2, y) dady

+

+2 [ a2y n?(x, O)d:r}

RN
(7.4.8)
For p > 2* — 1, choose a > 1 as follows:
N qg+1
—<a< —. 7.4.9
2s “ p—1 ( )

Note that for p = 2* — 1 the interval (ﬁ %) is always a nonempty set. On
the other hand, as ¢ > (p—1)% — 1, it follows (£, qJ_rl) # (), when p > 2* —1.

From (7.4.9) we have,

2a

(p—la<g+1 and 2

As supp(n(+,0)) C Bg and w(z,0) = u € LITY(RY), it follows w(-,0) =
wh(2,0)+1 =u+1€ LI (B;). This along with the fact that supp n C Qr,

where R < 1, we obtain
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. W w02 (2, 0)da

= [ @iV (z,0)de
By

_ / Inww!™Y (z,0)[2a? ! (z, 0)dx
By

< ( wa(p_l)(x,())dx>a </ |nwwL |a T (x, O)dx)
B1 BR

a—l

< =0R L, A
C’|77ww |L%(BR) (7.4.10)
By interpolation inequality,
_ o (t-1 t—1 _ t 1
L P T A P s A P (7.4.11)
where 6 is determined by
a—1 6 1-46
== 7.4.12
2a 2 * 2% ( )
Applying Young’s inequality, (7.4.11) yields
t—1 1
ol e < Ol )il e )
(1-6)
+ C(a, s, N)e™ | 1228, (7.4.13)

Therefore, using Sobolev Trace inequality (2.5.3) and the value of 6 from
(7.4.12), we have

2 2 Y2 2
\nww |La B < C(s,a,N)e /Rf“ % (nwwL ) |“dxdy
—f—C’(a,s,N)e*?aQSIXN/ Ipww!™ (z,0)[*dz.

Br

(7.4.14)

Thanks to Lemma 7.1.3, for > 0 we have
| ol @, 0)Pde = [ ppwef (e, 0)Pds
BR B
< 5/ y' |V (nww; D)\ dxdy
+ 5&/ g2 owY Pdedy,  (7.4.15)
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with some 1 < s’ < ;=. Substituting (7.4.15) in (7.4.14)

where [ = , 1 ,

and then (7.4.14) in (7.4.10) yields

@, 0)de

< C(s,a, N)e? /RN+1 v (nwwL )| dxdy

+C(a, s, N)e™ Tas- N5/ y' |V (nwwg b ) |*dxdy

N+1

av 1

+ C(a, s, N)e™ s~ Vi o Y y 2 now( ™ Pdady. (7.4.16)
+

Consequently, substituting (7.4.16) in (7.4.8), we obtain

/R v VTEIV (powg ) Pdrdy

+

<Ct y'- QSwait b |V77] dxdy

RN+1

+Ct (82 f TN (5> /RN+1 v (nww; b ) ?dxdy
+

+ Cte anw 5_5/ y1_2s|nwwL |2dxdy (7.4.17)
]RN+1
Choose
1 45 5%
=——— an = —.
2/ C't 4C't

Hence, from (7.4.17), a direct calculation yields

1 e
5| v 0PIV el ) Pdady
< Ct/N+1 yl_QSwzwi(tfl)\szdxdy

2as(B+1)

+ Ct 2ae-N /R wor U I ™Y Pdady
2(t—1
<O [y (o + 1V0) @tV dady.
+

(7.4.18)

2as(B+1

where v = - N). Applying Sobolev inequality (see Lemma 7.1.2), we ob-
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tain from (7.4.18)

x|

( /Q yl‘Qslnwth_ll2xdr€dy>
< C/ y' |V (pow )| dedy

< Ct”/ y'- 77 + |V )w wL( Ydxdy,

where y = M > 1. Now using the fact that 0 <r < R <1, n=1in Q,,
V| <

= Qr, we get

1

1-2s,-2x, 2(t=1)x X ct / 1-2s,-2  2(t—1)
wXw dxd R ww dxdy.
( er L y) _(R—T)2 QRy L Yy

As wy, < w, the above expression yields,

ct”

1-2s. 2tx 1—2s —2t
wi *dxd ) < wdxdy,
(/er L Y B=1) Jon ¥ y

provided the right-hand side is bounded. Passing to the limit L — oo via

X |=

Fatou’s lemma we obtain

(/ yl—stQthxdy> < ctY / yl—QSthdxdy
Qr ~ (R—1)? Jan ’

x|

that is,

7 oo\ 2
1=25 520 . ) < (Y ( 1=25 52 g0 ) . (7.4.19
( oY v <\Gm-p 0.V Y ( )

Now we iterate the above relation. We take t; = x* and r; = % + Ql% for
1 =20,1,2,... Note that t; = xt;_1, ri_q1 —1r; = 21% Hence from (7.4.19),

with ¢t =1¢;, r =r;, R =1r;_1, we have

1
1-2s *Qti+1 2ti+1 %
/ Y Pfwtt dady <C¥ /
Q'I“i Q

where C' depend only on N, s, p,q. Hence, by iteration we have

26
yl_%w%d:rdy) , 1=0,1,2,---

Ti—1

1

2t1 260
( y123u‘12ti+1dwdy> +1 < CZ (/ Y 2t0dxdy> ’ , 1=0,1,2,---
Qr;
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Letting ¢+ — oo we have

supw < Clw|p2(g, yi-20)

Q1

which in turn implies

supu = supw”’ <supw’ < Clw|z(g, y1-29-
B By Q1
2 2 2
Hence, u € L>(B
u € L2 (RY).

loc

(0)). Translating the equation, similarly it follows that

D=

To show the L* bound at infinity, we define the Kelvin transform of
by the function @ as follows:

ii(x) = lesu(’;), z € RY\ {0},

It follows from [70, Proposition A.1],

(—A)*i(z) = |x|N1+2s(—A)Su <I> (7.4.20)

]2

Thus

V) = i () w5

|z
1

— i (,z‘p(N—QS)ap(m) _ \x|q<N—25)ﬁq(x)) '

This implies @ satisfies the following equation

(—A)*u = |x|p(N—28)—(N+28)ap _ |:E|Q(N—28)—(N+2S)aq in RN,

i€ H¥(RY) N LIHYRY || (N2 @t D) =21y (7.4.21)
@>0 RN
That is,
(=AY = f(x,a) in RY, (7.4.22)
where
Fla, @) = ’m‘p(N—Qs)—(N-i-?s)ap _ ’m‘q(N—Qs)—(N-i-Qs)ﬂq. (7.4.23)
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Since ¢ > p > %28 we get (—A)*a < @ in (By(0)). Applying the Moser

iteration technique along the same line of arguments as above with a suitable
modification, we get suppg )@ < C, for some p > 0 and C' is a positive

constant. This in turn implies,

u(z) < ¢

— ‘x’N72S’

|z > R, (7.4.24)

for some large Ry. Hence, u € L*(RY). As a consequence & € L*®(R")
and therefore (—A)*a € L*>°(B;(0)). Applying Theorem 7.1.1, it follows that
S C’(B% (0)). Thus there exists C| > 0 such that @ > C} in (B%(O)), which
in turn implies u(z) > |x|§371_23, for |x| > 2. This along with (7.4.24), yields
(7.3.1) .

Case 2: ) is a bounded domain.

Arguing along the same line with minor modifications, it can be shown

that u € L>(£2). Therefore the conclusion follows as u =0 in RN\ Q. O

Proof of Theorem 7.3.2:

Proof. (i) From Theorem 7.3.1, we know any solution u of Eq.(7.0.1) is in
L>(RY). Therefore, we have

(=A)'u = f(u), f(u):=uP —u? € L=®RY). (7.4.25)
As a result, applying Theorem 7.1.1(a) , we obtain

||u||C2S(B%(0)) < C(|U|L°°(]RN)+|f(u)|L°°(B1(O)))

. 1
< Cllulimry + [ 0)limry) I 54 5, (74.26)

|u|lc2s—<(B,0)) < C(‘U|L°°(]RN)+ | f(w)| Lo (B1(0)))

Nj—=

< COlulpee@yy + [f(W)|ro@my) i s = 5,(7.4.27)

DN | —
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for all € > 0. Here the constants C' are independent of u, but may depend
on radius % and centre 0. Since the equation is invariant under translation,

translating the equation, we obtain

||U||C2S(B%(y)) < C(|U|L°°(RN) + |f(u)|L°°(RN)

1
< C(1+ |ulpe@ny)? when s # 3 (7.4.28)
1
||u||02575(3%(y)) S C(l + |U|LOO(RN)>q when s = 5, (7429)
Note that in (7.4.28) and (7.4.29) constants C' are same as in (7.4.26) and
(7.4.27) respectively. Thus, in (7.4.28) and (7.4.29) constants do not depend
on y. This implies u € C*(RY) when s # 3 and in C*=(RY), when

s = 5. Hence, f(u) € C*(RY) when s # £ and in C*#(RY), when s = 3.
Therefore, applying Theorem 7.1.1(b), we have
lullossy o) = Cllullezs@yy + 1 (wlle2:50)
< C(llullo2s@my + 1| f (W)l o2s @)
< CO(1+ |ufpee@n))® if s # i, ; i. (7.4.30)
Similarly,
ey oy < Cllullozs—e@y) + [ f(Wllez-<0))
< C(1+ |ufpee@n))® if s= ; and 4s —e ¢ N.
(7.4.31)

Arguing as before, we can show that u € C*(RY) when s # 1 and in
C*~¢(RN), when s = 1. We can repeat this argument to improve the regu-
larity C°°(RY) if both p and ¢ are integer and C?***25(RY) where k is the
largest integer satisfying |2ks] < p if p ¢ N and [2ks| < ¢q if p € N but
q ¢ N, where |2ks| denotes the greatest integer less than equal to 2ks .

(ii) Suppose, u is an arbitrary solution of (7.0.2), then by Theorem 7.3.1,
u € L®(RY) and thus f(u) = v?» —u? € L>®(RY). Consequently, by [70,
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Proposition 1.1], it follows u € C*(RY). Since ¢,p > 1, we have f(u) €
C3 (RY). Therefore by Theorem 7.1.1(ii), u € C22H* () for some a € (0, 1).
[l

loc

Proposition 7.4.1. Let p, q, s are as in Theorem 7.3.1. If u is any non-

negative weak solution of Eq.(7.0.1) or (7.0.2), then u is a classical solution.

Proof. Case 1: Let u be a weak solution of (7.0.1).
First, we show that (—A)*u(z) can be defined as in (7.0.3). Using u €
L>®(RY), we see that

< OQ.

u(z +y) —2ulz) tu(z—y) , | _ - dy
RN\B (0 |y|N+2s R |y N2
0 Y \B1(0) 1Y

On the other hand, since by Theorem 7.3.2, u € C2F*(RY) for some a €

loc
(0,1), it follows that / o u(@ +y) — 2u(z) + u(z — y)dy
2

< 0. Hence

|y|N+25

(—A)*u(x) is defined pointwise.
Next, we show that the Eq. (7.0.1) is satisfied in pointwise sense. u is a

weak solution implies

L=

This in turn implies

Nl®

u(—A)3p dx = /RN uPo dr — /RN wlp dr Vo € C°(RY).

_ s — p _ q 00 N

/Ran( A)udx—/RNugodx /RNuwdx Vo € C5°(RY).

Therefore, (—A)*u = uP —u? in RY almost everywhere and u € C*T* implies
(—A)u(z) = vP(z) —ul(z) Vo e RN,

Hence, u is a classical solution of (7.0.1).

Case 2: Suppose u is a weak solution of (7.0.2). Then applying Theorem
7.3.1 and Theorem 7.3.2, we can show as in Case 1 that (—A)%u(z) can be

defined in pointwise sense.
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Now we are left to show that (7.0.2) is satisfied in pointwise sense. To-

wards this goal, we define
fu)=uP —u?, wu.:=uxp. and f.:= f(u)*p.,

where p. is the standard molifier. Namely, we take p. = e~V p(%) where
p € CEMRN) with 0 < p <1, supp p C {|z| < 1} and/dile.
R
Then w., f. € C*. Proceeding along the same line as in the proof

of [77, Proposition 5], we can show that, for € > 0 small enough it holds
(=AYu. = f. in U, (7.4.32)

in the classical sense, where U is any arbitrary subset of (2 with U CC .
Moreover, it is easy to note that u. — w and f. — f(u) locally uniformly
and

el roo(Bi0)) < |ulree@yy  and [ felre o) < Clul ey
Taking the limit ¢ — 0 on both the sides of (7.4.32) and using the regularity

estimate of u. from Theorem 7.3.2, we obtain,

lim us(x + y) — 2ue(z) + ue(z — y)
e—0 JRN |y‘N+25

dy = f(u).

Using the arguments used before, it is not difficult to check that LHS of
above relation converges to (—A)%u as € — 0 and hence the result follows.

[]

Proof of Theorem 7.3.3. First, we observe that from Theorem 7.3.2, it fol-
lows u is differentiable as p > 1. Let Ry be as in Theorem 7.3.1. For R > Ry,
define v(z) = RN~%u(Rxz). Then

(=A)*v(w) =RN((~A)*u)(Rx)
=RY(u"(Rx) — ul(Rx))

—RN-P(N=25),p _ pN-q(N=2s),q (7.4.33)
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From Theorem 7.3.1, we have |u(z)| < va\% for |z| > Ry. Consequently,

we get

for |z| > @, (7.4.34)

lv(z)] < ELE Ia

where C'is independent of R. Let A; := {1 < |z| < 2} and 2y € A;. Suppose
r > 0 is such that By,.(z) C A;. We choose n € C5°(RY) such that n =1 in
B, (o) and supp n C Bs, (). Clearly vn € L>(RY) and ||nv||pe@y) < Ch,

where (] is independent of R. Moreover,

(—A)*(vn) = (=A)v + (=A)*((n = ). (7.4.35)
Note that, for z € B,(xy) we have

—((n—1)v
(=8 (= e)(e) = e, /RN\BTQEO) ?i"_ y\zi)zfy) dy.

From this expression we obtain

R

v(y)
—C/ ——d +O/ ——d 7.4.36
By Tt e (459

o) (- 1>v)||Loo<BT<zo>> <, ity

Now, using the definition of v and the fact that u € L>(RY), we get

v(y) N_2s / u(Ry)
gy =R g
/ o (L + [y Brg 0 T

#O
Br,(0) (R + |z|)N+2s

N

R ’
<C | B 0)] < ' (7.4.37)

where C” is independent of R (since, R™* < 1). On the other hand, using
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(7.4.34) we have

v(y) dy
/ R (1 Nr2s 0y :C/ Ry [ylN=2s(] N+2s
wi>5¢ (1+y]) wi>5 |y|N =2 (1 + [yl)

dy
<C
TRy |y V(1 4 |y )N
dy dy
<C 7 +/
Bi(0) |y|N=2 0 s |y2Y
<C, (7.4.38)

for some constant C' > 0, which does not depend on R. Plugging (7.4.37)
and (7.4.38) into (7.4.36) we have

1(=2)°((n = D)o)l| (B (20)) < C, (7.4.39)

where C' depends only on N, s, p, q, Ry. Furthermore, we observe that if z €
B,(zg) C A then |Rz| > R > Ry and thus |u(Rz)| < M%' Consequently,
from (7.4.33), it follows that

(—A)v(z)| < RN(up<RZ) +uq(Rz)) < RN-P(N-25) | pN-g(N-25) _ .

In the last inequality we have use the fact that N — p(N — 2s) < 0 and
N —q(N —2s) <0, as q,p > 2* — 1. Hence,

[[(=A)* ||z (B,(20)) < C, (7.4.40)

where C' is independent of R. Combining (7.4.39) and (7.4.40) along
with (7.4.35) yields |[(=A)*(nv)||L=(B,(z)) < C, where C' depends only on
N, s,p,q, Ry. Consequently, using [70, Proposition 2.3] (see also [73]), we

obtain

N)les @y < C VB €(0,25),

T
2

where C' depends only on N, s, p, q, Rg. As a consequence,

10lles @@ < C
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Thus, thanks to [70, Corollary 2.4] we have

||U’|cﬁ+2s(m) <C.

[eel]

We continue to apply this bootstrap argument and after a finitely many steps

we have |]v|]cﬁ+ks(m) < C. for some 79 > 0 and  + ks > 1. This in turn

implies || V|| o 5z < C- This further yields to

0 (-TO)
V]| (ay) < C,
where C' depends only on N, s,p,q, Ry. Therefore, using the definition of v,

we obtain

|Vu(Rz) for 1 < |z| < 2.

S RN—25+1

From the above expression, it is easy to deduce that

Vu(y)| < for R < |y| < 2R.

|y|N—25+1

As R > Ry was arbitrary we get

[Vau(y)| < for [y| > R,

’y|N—25+1

for some R large. O

7.5 Existence and nonexistence results

Proof of Theorem 7.3.4. We prove this theorem by establishing Pohozaev
identity in the spirit of Ros-Oton and Serra [71]. For A > 0, define
ux(z) = u(Ax). Multiplying the equation (7.0.1) by u, yields,
p q o . s . s
/RN(u u?)urdx 7/sz( A)zu(—A)2uydx
—)s /RN(—A)%u(x)((—m%u)(mdx

:)\S/ wwydz, (7.5.1)
RN
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where, w(z) := (—A)3u(z) and wy(z) = w(Az). With the change of variable
z = /Ay, we have

s _ \s o _NEQS
A . wwydr = A /RN w(z)w(Azr)dr = A . wﬁw\%dy. (7.5.2)
Therefore,
_ N-2s
/sz(up —ul)uydr = N7 "2 . wﬁw%dy. (7.5.3)

Observe that using the decay estimate at infinity of v and Vu from Theorem

7.3.1 and Theorem 7.3.3 , we get [pn(u? — u?)(z - Vu)dz is well defined and

uPt1 wdtl

p+1 q+1

that integral can be written as [y -V dx. Again using the

decay estimate of u from Theorem 7.3.1, we justify the following integration

by parts
N N p+1 q+1
— | Wdr+ —— | uldx = / O v . dx.
p+ 1 JrN q+1Jry RN p+1 q+1
(7.5.4)

Thus, using (7.5.3) we simplify the LHS of above expression as follows:

LHS of (7.5.4) = / (v —u?)(x - Vu)dz

RN
d
- P uDusd
x|, /RN(“ wurde
d _N-2s
—CD\A1<)\ 2 RNU}ﬁU}\&)d%.

N —2s 9 d
——< 5 >/RNwdx+d>\

(552

On the other hand, multiplying (7.0.1) by u we have,

oy = /RN(MD+1 —u")dz.

Combining the above two expressions, we obtain the Pohozaev identity

N-2s N / Py — N—-2s N / .
2 p+1) J/ry 2 qg+1) JrN

Clearly, from the above identity, it follows that (7.0.1) does not admit any

d
oo

2
Hs(RN)"

||l

solution when p = 2* — 1 and ¢ > p. This completes the theorem. O
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7.5.1 Symmetry and monotonically decreasing prop-
erty

Theorem 7.5.1. Letp,q,s are as in Theorem 7.3.1 and u be any solution of
Eq.(7.0.1). Then u is radially symmetric and strictly decreasing about some

point in RY.

Proof. By Proposition 7.4.1, u is a classical solution of (7.0.1). Define f(u) =
uP — u?. Then clearly f is locally Lipschitz.
Claim: There exists sg, v, C' > 0 such that

fw) = f(u)

V—Uu

<C(u+wv)” foral 0<u<v<sg.

To see the claim,

fw) = fu) =(0° —u”) = (V1 —u?)
:p(@lv + (1 - Hl)u)p_l(v —u) — q(@zv + (1 - 92)u)q_1(v —u),

for some 601,05 € (0,1). Thus, for 0 < u <wv

M :p((%v + (1 - Hl)u)p_l - C]<92U + (1 - ‘92>u>q_1

v—u
-1
§p<01v +(1— Gl)u)p
<p(u+ vy~
Therefore, the claim holds with C' = p and v = p — 1 and for any positive sq.

Moreover, from Theorem 7.3.2, we have

1
u(x) = O(W) as || = oo.
Since p > %fgz, it is easy to check that

2 N
N — 25 > max —8,7,
vy +2

where v = p — 1, as found in the above claim. Hence, the theorem follows

from [44, Theorem 1.2]. O
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Theorem 7.5.2. Suppose ) is a smooth bounded convexr domain, p,q,s are
as in Theorem 7.3.1 . Assume further that € is convex in xy direction and
symmetric w.r.t. to the hyperplane ©1 = 0. Let s € (0,1) and u be any
solution of Eq.(7.0.2). Then u is symmetric w.r.t. x1 and strictly decreasing

in x1 direction for x = (x1,2') € Q, x; > 0.
Proof. Follows from [43, Theorem 3.1] (also see [51, Cor. 1.2]). O

Existence results

Lemma 7.5.3. Let s € (0,1). If u is any radially symmetric decreasing
function in H*(RN), then

) <
Proof. Tt is enough to show that if u € H*(RY) with u(z) = u(|z|) and
u(ry) < u(ry), when 1 > 79, then it holds u(R) < RT% for any R > 0. To

see this, we note that by Sobolev inequality we can write,

1

Q*dq,')
> /R/ ()| dSdr :
~\Jo JoB,

R 3
2u(R)</ wnerdr>

0

1 s
Sl ([ o

1

:(‘“j\f) u(R)R . (7.5.5)
As u € H*(RN) implies LHS is bounded above, the above inequality yields
1
N 2F 1 s —2s —2s
U(R) S () 7”(—A)§UHL2(RN)R_N2 S CR_NT
WN Ss

Proof of Theorem 7.3.5. We are going to work on the manifold

N = {u € H*(RY) N LTH(RY) /N lu[Pdr = 1},
R
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and F(-) on N reduces as

u(y)f? 1
——————dxd / Ty,
Q/RN/RN |a:— |N+23 y+q—|—1 RN ful*™"dz

Let u, be a minimizing sequence in N such that
F(u,) — X with /N |, [P de = 1.
R

Thus, {u,} is a bounded sequence in H*(RM) and L9*'(RY). Therefore,
there exists u € H*(RY) and LI (RY) such that u, — u in H*(RY) and
L YRY). Consequently u,, — u pointwise almost everywhere.

Using symmetric rearrangement technique, without loss of generality, we
can assume that w, is radially symmetric and decreasing (see [69]). We claim
that u,, — u in LPTL(RY).
To see the claim, we note that u?™ — wP*! pointwise almost everywhere.
Since {u,} is uniformly bounded in LIT}(R¥Y), using Vitali’s convergence
theorem, it is easy to check that [y |u,|P™ dz — [} |u[PT1dx for any compact
set K in RY containing the origin. Furthermore, applying Lemma 7.5.3 it
follows, [pn |w, [P1da is very small and hence we have strong convergence.
Moreover, [ |u, [P de = 1 implies [pn [u[PTdr = 1.

Now we show that K = F(u).

We note that u s [|u||? is weakly lower semicontinuous. Using this fact

along with Fatou’s lemma, we have
|un (y>’2 1 q+1
_r}gﬁlo[ /RN /RN |$_y|N+2s drdy + i+l | un| e
BERT 1 2 1 g+1
e g M

1
>l + —— [ \urq“dx]
4q

>F(u).

This proves F'(u) = K. Moreover, using the symmetric rearrangement tech-

nique via. Polya-Szego inequality (see [69]), it is easy to check that u is
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nonnegative, radially symmetric and radially decreasing Applying the La-

grange multiplier rule, we obtain u satisfies
— Au+u? = P,
for some A > 0. This in turn implies
(=A)Yu= P —u? in RV,

Finally, if ¢ > (p — 1)% — 1, then we know that wu is a classical solution.
Therefore, if there exists 7o € RY such that u(zy) = 0, that that would
imply (—A)*u(zg) < 0 (since, u is a nontrivial solution). On the other hand,
(AuP — u?)(zo) = 0 and that yields a contradiction. Hence u > 0 in RY.

Furthermore, we observe that by setting v(z) = )qulpu()\_#—lmx), it
holds

(=A)v =vP —v? in RV,
Hence the theorem follows. O

Proof of Theorem 7.3.6. We are going to work on the manifold

N = {u € Xo(Q) N LITL(Q) - /Q P+t = 1}.

Then Fy reduces to

u(y)|® 1
N dwd 7/ g
Q/RN/RN |x— |N+2s y+q+1 Q|u| T

Let u,, be a minimizing sequence in N such that Fo(u,) — S, then
F(uy) — So with / P e = 1.
Q

Then u,, is bounded in Xo(2) N L9T(Q2). Consequently, u, — u on H*(Q)
and u, — u on L?(Q). As a result, u, — u pointwise almost everywhere.

By the interpolation inequality, we must have u, — u on LP*(2). Hence,

Jo luPttdz = 1.
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Now we show that Sq = Fo(u). Using Fatou’s Lemma and the fact that

u > |ul]? is Weakly lower semicontinuous ,

li [t () — wn )P dy + —— a1y
Q_ngngo RN JRN |$_ |N+25 + Iunl x

() 1 1
‘l— _H/ |U|Q+ dl‘
q Q

[ /RN/RN |$_ |N+25 T Nres dy

By the Lagrange multiplier rule, we obtain wu satisfies
(—A)u + |ul? 'y = MulP~ .

Now we replace N by Ny := {u € Xo(QNLITHQ) : [ouT)Pt = 1}, the
functional Fq(-) by Fo(-) defined as follows

y)I? 1
) = W91 g 7/ Yo+ g
Q/RN/RN |x— |N+2s e AU

and Sq by Sq := inf {F(’U, Q) :ve J\u}. Repeating the same argument as
before (with a little modification), it can be easily shown that there exists
u € Xo(Q) N L(Q) which satisfies

(—AYu+ (uH)?2=Au")? in Q. (7.5.6)

Taking u~ as the test function for (7.5.6) we obtain from Definition 7.2.1
that

/]RN /RN ot ) = v ) dzdy = 0. (7.5.7)

’.7} _ ’N+23

Furthermore,

LHS of ( 757)
y) (@) —u (y))
_/RN /RN |m— N dxdy

:/ / u x —1U (?J))_(Uf(x)—uf(y)))(u’(x)—u*(y))

|[E _ y|N+23

dxdy

= —u” (x)ut (y) —ut(@)u(y) = ||u” |50

<~ ey (758)
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Hence, from (7.5.7) we obtain v~ = 0, i.e, u > 0. Moreover, since for
p>2—1land q> (p— 1)2—1\; — 1, Proposition 7.4.1 implies u is a classical
solution, applying maximum principle as in Theorem 7.3.5, we conclude u > 0

in 2. This completes the proof. O

Conclusion: In this chapter, we have discussed qualitative properties of
solutions and obtained decay of v and Vu at infinity but the computations
are not effortless as we are in the non-local case. Probity of our result lies in

overcoming pitfall of the computations.
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Some open-problems and

Remarks

e To characterize the properties of Sobolev minimizer like symmetry,
asymptotic property etc. under some additional conditions on K will

be a good topic for future research.

e With the weight V' used in Chapter 6, one can try to find sign-changing

solutions and deduce the results obtained in Chapter 4 and 5.

e With the following K, (see [74])

K(y) = |Z’(N|Zitzs=

wherea € L'(SV™') is nonnegative and even,

and K(x,y) ~ gfjﬁ;@s, where a(z,y) is homogeneous in y of order zero
and a(z,y) and derivatives of a(x,y) w.r.t y are uniformly continuous
in z, (see [40]), one could try to establish the results obtained in the

thesis.
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