Non-local elliptic equations: existence and multiplicity results

A thesis
submitted in partial fulfillment of the requirements
of the degree of
Doctor of Philosophy

by

Debangana Mukherjee
ID: 20133288

IISER PUNE

INDIAN INSTITUTE OF SCIENCE EDUCATION AND
RESEARCH PUNE

July 18, 2018

Dedicated to
My mother

Certificate

Certified that the work incorporated in the thesis entitled "Non-local elliptic equations: existence and multiplicity results", submitted by Debangana Mukherjee was carried out by the candidate, under my supervision. The work presented here or any part of it has not been included in any other thesis submitted previously for the award of any degree or diploma from any other university or institution.

Date: July 18, 2018
Dr. Mousomi Bhakta
Thesis Supervisor

Declaration

I declare that this written submission represents my ideas in my own words and where others' ideas have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that violation of the above will be cause for disciplinary action by the institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

Acknowledgements

It is my great pleasure to express my deep gratitude to my advisor Dr. Mousomi Bhakta for proposing me the study of these problems, for her extreme patience, great inspirations and constant encouragement through my entire study and research experience. Her scientific exactitude and passion for mathematics significantly influence and benefit my own research.

I take this opportunity to thank one of my Research Advisory Committee member, Dr. Anup Biswas from whom I have learnt a lot about mathematics. I appreciate very much all his contributions of time and ideas, and also his support and encouragement. Moreover, I thank Dr. Anindya Goswami for teaching us measure theory course and functional analysis so nicely.

Other very important people in my relationship with mathematics since the beginning of school days of my career is my twin sister Debopriya Mukherjee, research scholar in Mathematics at Indian Institute of Science, Education and Research (IISER) Trivandrum. I have enjoyed and learnt much when discussing mathematics with her. I am indebted to her for her unconditional support and having faith in me to do good research.

I would also like to thank all my friends who made my stay so nice during the time I spent at IISER.

Moreover, I thank the unknown referees for having accepted to refer this thesis.

Last but not the least, I thank my family: my parents for their uncon-
ditional and endless support throughout my research studies and my life in general.

Debangana Mukherjee

Contents

Acknowledgements ix
Abstract 1
Notation 3
1 Introduction 5
2 Fractional Framework 15
2.1 Fourier transform of tempered distributions 16
2.2 Fractional Sobolev spaces 17
2.2.1 Embedding results 18
2.2.2 The Sobolev space $H^{s}(\Omega)$ 21
2.3 The fractional Laplacian operator 22
2.3.1 The fractional p-Laplacian 24
2.3.2 The fractional Laplacian via Fourier transform 24
2.3.3 A generalization of $(-\Delta)^{s}$ 25
2.4 Fractional Sobolev-type space 25
2.5 Harmonic extension to the upper half-space 29
3 Multiplicity results for equations involving the operator 33
3.1 Variational formulation 34
3.2 Abstract Theorems 34
3.3 Existence of infinitely many solutions 37
3.3.1 Critical Case 37
3.3.2 Subcritical case 43
3.3.3 A related variational problem 46
4 Sign Changing Solution for fractional Laplacian type equa- tions with concave-critical nonlinearities 49
4.1 Sobolev minimizer 50
4.2 Cut-off technique 50
4.3 Nehari type sets 50
4.4 Some important lemmas 51
4.5 Existence of sign-changing solution 57
4.5.1 Sign changing critical points of I_{μ} 58
4.6 Appendix 73
5 Sign changing solution for p fractional Laplacian type equa- tions with concave-critical nonlinearities 77
5.1 Variational formulation of the problem 78
5.2 Main result 79
5.3 Existence of positive solutions 80
5.4 Preliminary lemmas 81
5.5 Sobolev Minimizer 86
5.6 Some Important estimates 87
5.7 The Palais-Smale condition 89
5.8 Existence of sign-changing solution 93
5.8.1 Sign changing critical points of I_{μ} 96
5.9 Appendix 111
6 Multiplicity results for (p, q) fractional Laplacian type equa- tions involving critical nonlinearities 117
6.1 Main Results 119
6.2 Besov Spaces 120
6.2.1 Besov-Sobolev embeddings 120
6.3 Concentration-compactness Lemma 122
6.4 Proof of Theorem 6.1.1 129
6.4.1 Existence of infinitely many nontrivial solutions 129
6.5 Proof of Theorem 6.1.2 142
6.5.1 Existence of nontrivial nonnegative solutions 142
6.6 Proof of Theorem 6.1.4 145
6.6.1 Existence of $\operatorname{cat}_{\Omega}(\Omega)$ nontrivial nonnegative solutions 145
6.7 Appendix 165
7 Equations involving fractional Laplacian with critical and su- percritical exponents 169
7.1 Preliminaries: Schauder type estimates 170
7.2 Definitions 173
7.3 Main results 173
7.4 Decay estimates and Regularity results 175
7.5 Existence and nonexistence results 189
7.5.1 Symmetry and monotonically decreasing property 191
Open-problems 197
Bibliography 199
Index 211

Abstract

The main theme of this thesis is based on non-local type elliptic equations. In particular, existence of infinitely many nontrivial solutions for a class of equations driven by non-local integro-differential operator \mathscr{L}_{K} with concaveconvex nonlinearities and homogeneous Dirichlet boundary conditions in smooth bounded domain in \mathbb{R}^{N} is shown. Moreover, when \mathscr{L}_{K} reduces to the fractional Laplace operator $(-\Delta)^{s}$, and the nonlinearity is of critical-concave type, existence of at least one sign changing solution has been established. These are then further generalized to the case of non-local equations with p-fractional Laplace operator. Existence of infinitely many nontrivial solutions for the class of equations with (p, q) fractional Laplace operator and concave-critical nonlinearities have also been studied together with existence of multiple nonnegative solutions when nonlinearity is of convex-critical type.

Also in a different project we have studied the existence/nonexistence/ qualitative properties of the positive solutions of non-local semilinear elliptic equations with critical and supercritical type nonlinearities.

Notation

We collect here a list of notation commonly used in this thesis.
\mathbb{R} : the set of real numbers.
\mathbb{N} : the set of natural numbers.
$\mathbb{R}^{N}: N$ - fold cartesian product of \mathbb{R} with itself.
$B_{r}:$ Ball in \mathbb{R}^{N} of radius r centered at origin.
$B_{r}(x):$ Ball in \mathbb{R}^{N} of radius r centered at x.
$C\left(\mathbb{R}^{N}\right)$: the set of continuous functions on \mathbb{R}^{N}.
$C_{c}\left(\mathbb{R}^{N}\right)$: the set of continuous functions on \mathbb{R}^{N} with compact support.
$C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$: the space of smooth functions from $\mathbb{R}^{N} \rightarrow \mathbb{R}$ with compact support.
Δ : the Laplace Operator defined by $\Delta u=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}} u$ for any function
$u: \mathbb{R}^{N} \rightarrow \mathbb{R}$.
$(-\Delta)^{s}$: the fractional-Laplacian Operator.
$(-\Delta)_{p}^{s}$: the p-fractional-Laplacian Operator.
\mathscr{L}_{K} : integro-differential operator.
$\|\cdot\|_{X}:$ Norm in the Banach space X.
$D^{\alpha}: \alpha$ - distributional derivative.
p_{s}^{*} : the fractional critical Sobolev exponent $\frac{N p}{N-p s}$.
$\mathcal{M}\left(\mathbb{R}^{N}\right)$: the space of finite measures on \mathbb{R}^{N}.: end of a proof.

Chapter 1

Introduction

A brief overview of the contents of the thesis is presented here.
The main topic of the thesis is the study of non-local elliptic equations. Fractional and non-local operators of elliptic type has caught considerable attention in the recent decades in both pure mathematics and real world applications. From physical point of view, non-local operators play fundamental role to describe several phenomena, for instance, thin obstacle problem, optimization, phase transition, material science, water wave, mathematical finance, geophysical fluid dynamics etc. To a great extent, the study of equations with integro-differential operator or non-local operator is motivated by real world application. Indeed, there are many situations in which considering a non-local operator yields significantly better model than a local operator. In mathematical finance, it is particularly important to study models involving Lévy process which is non-local in nature. Non-local operators also appear in ecology considering natural phenomena in ecology. In fluid mechanics, an example is given by surface quasi-geostropic equation which is used in oceanography to model the temperature on the surface. In elasticity, an important example is peierls-nabarro arising in crystal dislocation model. In quantum physics, fractional Schrödinger equation is also an important one
to consider.
In contrast to classical differential operators, such as Δu, whose value at any point x can be computed by knowing the behavior of u in an arbitrarily small neighborhood of x, where as to define $(-\Delta)^{s} u(s \in(0,1))$, one needs the information about u in the entire \mathbb{R}^{N}.

In this thesis, we mainly focus on the following problem with general integro-differential operator

$$
\left(P_{K}\right) \begin{cases}\mathscr{L}_{K} u+\mu|u|^{q-1} u+\lambda|u|^{p-1} u=0 & \text { in } \quad \Omega \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where Ω is an open, bounded domain in \mathbb{R}^{N} with smooth boundary, with parameters μ, λ and p, q will be specified later. \mathscr{L}_{K} and the Kernel K are defined in Section 2.3.3.

The thesis is divided into four parts. In the first part, we have shown the existence of infinitely many nontrivial solutions for a class of elliptic equations driven by general integro-differential operator \mathscr{L}_{K} and concave-convex type nonlinearities. In the second part, existence of at least one sign-changing solution is shown when \mathscr{L}_{K} is reduced to $(-\Delta)^{s}$ and the nonlinearity is of concave-critical type. Also, we have generalized the results of first part in the case of p-fractional type equations. The third part consists of existence and multiplicity results of non-negative solutions for the class of (p, q) fractional Laplace equations with convex-critical nonlinearities. All these three parts are studied in bounded domains of \mathbb{R}^{N} with homogeneous Dirichlet boundary conditions. In the last part, we have discussed various qualitative properties of the positive solution to fractional Laplace equations in \mathbb{R}^{N} with critical and super-critical nonlinearities .
(I) Multiplicity results of elliptic equations with operator \mathscr{L}_{K}

An interesting problem in partial differential equations is whether one can show existence of infinitely many solutions. First, we show existence of weak
solutions using variational formulation. Variational Methods (or Calculus of Variations) are useful techniques to prove existence of solutions of differential equations. The main idea is to convert the problem of solving equations into the problem of finding critical points (i.e. minimum/maximum points or saddle points) of a functional, and each critical point usually corresponds to a weak solution. However, it is sometimes very difficult to find out such critical points as we seek for critical points in an infinite-dimensional function space.

A classical topic in nonlinear analysis is the study of existence and multiplicity of solutions for nonlinear equations. There are many results on the subject of concave-convex nonlinearity involving different local and nonlocal operators. Elliptic problems in bounded domains involving concave and convex terms have been studied extensively since Ambrosetti, Brezis and Cerami [2] considered the following equation:

$$
\left(E_{\mu}\right)\left\{\begin{array}{rl}
-\Delta u= & \mu u^{q-1}+u^{p-1} \text { in } \Omega, \\
u & > \\
u= & \text { in } \Omega \\
u & 0 \text { on } \partial \Omega,
\end{array}\right.
$$

where $1<q<2<p \leq \frac{2 N}{N-2}, \mu>0$ and Ω is a bounded domain in \mathbb{R}^{N}. They found existence of $\mu_{0}>0$ such that $\left(E_{\mu}\right)$ admits at least two positive solutions for $\mu \in\left(0, \mu_{0}\right)$, one positive solution for $\mu=\mu_{0}$ and no positive solution exists for $\mu>\mu_{0}$ (see also Ambrosetti, Azorero and Peral [3] for more references therein). Later on Adimurthi-Pacella-Yadava [1], Damascelli, Grossi and Pacella [36], Ouyang and Shi [67] and Tang [81] proved existence of $\mu_{0}>0$ such that for $\mu \in\left(0, \mu_{0}\right)$, there are exactly two positive solutions of $\left(E_{\mu}\right)$ when Ω is the unit ball in \mathbb{R}^{N} and exactly one positive solution for $\mu=\mu_{0}$ and no positive solution exists for $\mu>\mu_{0}$. For the local operator we also quote $[11,21,29,31,46,87]$ and the references therein. In past couple of years many of these results have been generalised to the case of non-local operators,
we refer a few among them $[9,22,39,63,68]$ and the references therein. We also quote here a very important paper by Chen, Li and Ou [33], where the authors have classified all the positive solutions of the fractional Yamabe equation.

We have proved the existence of infinitely many solutions of the equation (P_{K}) when $0<q<1<p$ and p is either critical or subcritical.

(II) Existence of sign-changing solution

In the last two decades, much attention has been given to the study of sign-changing solutions of nonlinear elliptic equations. There are richer structures of sign-changing solutions than that of positive and negative solutions for generic nonlinear and linear elliptic equations. To find sign-changing solutions are interesting challenges mathematically compared with positive and negative solutions because of the number and shapes of nodal domains and the measure of nodal sets. In practice, to find sign-changing solutions is an easy task for ordinary differential equations since one may count the number of zeros of solutions to select and to distinguish sign-changing solutions. One cannot implement such an idea to partial differential equations since the nodal set of a sign-changing solution of a partial differential equation may be very complicated.

In [56], the eigenvalue problem associated with $(-\Delta)_{p}^{s}$ has been studied. Some results about the existence of solutions have been considered in [48,50, 56].

On the other hand, the non-local nonlinear problems associated with $(-\Delta)_{p}^{s}$ for $p=2$ have been investigated by many researchers, see for example [76] for the subcritical case and [9, 16, 78] for the critical case. In [22] the authors studied the non-local equation involving a concave-convex nonlinearity in the subcritical case.

In the local case $s=1$, equations with concave-convex nonlinearities were
studied by many authors, to mention few, see $[2,3,11,29]$. When $s=1$ and $p=2$, existence of sign changing solution was studied in [31].

In [47], Goyal and Sreenadh studied the existence and multiplicity of nonnegative solutions of p-fractional equations with subcritical concave-convex nonlinearities. In [27], Chen and Squassina have studied the concave-critical system of equations with the p-fractional Laplace operator.

We have proved existence of at least one sign-changing solution for the problem $\left(P_{K}\right)$ where $\mathscr{L}_{K}=(-\Delta)^{s}, p=2^{*}, q$ and μ are lying in certain range of intervals.

We have further generalized this result in the case of p-fractional Laplace equations.
(III) Multiplicity results for (p, q) fractional Laplace equations

In this section, we have discussed the existence of multiple nontrivial solutions of (p, q) fractional Laplacian equations involving concave-critical type nonlinearities and existence of nonnegative solutions when nonlinearities is of convex-critical type. More precisely, we have considered equations of the type

$$
\left(P_{\theta, \lambda}\right)\left\{\begin{aligned}
(-\Delta)_{p}^{s_{1}} u+(-\Delta)_{q}^{s_{2}} u & =\theta V(x)|u|^{r-2} u+|u|^{p_{s_{1}}^{*}-2} u+\lambda f(x, u), \quad \text { in } \quad \Omega, \\
u & =0 \quad \text { in } \quad \mathbb{R}^{N} \backslash \Omega,
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth, bounded domain, $\lambda, \theta>0,0<s_{2}<s_{1}<1,1<$ $r<q<p<\frac{N}{s_{1}}$ and $p_{s}^{*}=\frac{N p}{N-s p}$ for any $s \in(0,1)$. The functions f and V satisfy certain assumptions, which have been made precise later.

For $s_{1}=s_{2}=1$, the problem reduces to the (p, q) Laplacian problem which appears in more general reaction-diffusion system

$$
\begin{equation*}
u_{t}=\operatorname{div}(a(u) \nabla u)+g(x, u), \tag{1.0.1}
\end{equation*}
$$

where $a(u)=|\nabla u|^{p-2} \nabla u+|\nabla u|^{q-2} \nabla u$. This system has a wide range of applications in Physics which include biophysics, plasma physics and chemical
reaction-diffusion system, etc. In such applications, the function u describes a concentration, the first term on the right-hand side of (1.0.1) corresponds to the diffusion with a diffusion coefficient $a(u)$ and the second one is the reaction and relates to sources and loss processes. Typically, in chemical and biological applications, the reaction term $g(x, u)$ has a polynomial form with respect to the concentration u. Consequently, quasilinear elliptic boundary value problems involving this operator have been widely studied in the literature (see e.g., $[12,58,59]$ and the references there-in). In particular, proving the existence and multiplicity of nontrivial solutions and nonnegative solutions were of major interest in many articles, see $[28,55,88,89]$ and the references there-in.

When $p=q$ and $s_{1}=s_{2},\left(P_{\theta, \lambda}\right)$ reduces to p-fractional type equations with concave-convex nonlinearities. In recent years, existence and multiplicity result for nontrivial, positive and sign-changing solutions for the pfractional type equations with concave-convex nonlinearities have gained considerable interest. In this regard we cite some of the related recent works $[15,21,27,32,47]$ (also see the references there-in).

In the non-local case $s \in(0,1)$ and $p, q>1$, equations with (p, q) fractional Laplacian and superlinear nonlinearities have also started gaining interest very recently. In this regard, we mention some of the very recent works [5, 30, 45].

We have proved existence of infinitely many nontrivial solutions of ($P_{\theta, \lambda}$) involving concave-critical nonlinearities. Also, when the nonlinearity is of convex-critical type, we have established the multiplicity of nonnegative solutions.

(IV) Qualitative properties of solutions

In this section, we have studied the following problem:

$$
\left\{\begin{align*}
(-\Delta)^{s} u & =u^{p}-u^{q} \quad \text { in } \quad \mathbb{R}^{N}, \tag{1.0.2}\\
u & \in \dot{H}^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right), \\
u & >0 \quad \text { in } \mathbb{R}^{N},
\end{align*}\right.
$$

where $s \in(0,1)$ is a fixed parameter, $(-\Delta)^{s}$ is the fractional Laplacian in \mathbb{R}^{N}, $q>p \geq \frac{N+2 s}{N-2 s}$ and $N>2 s$. When $s=1$, it follows by celebrated Pohozaev identity that (1.0.2) does not have any solution when $p=2^{*}-1$ and $q>p$. In this section, we have proved this result for all $s \in(0,1)$ by establishing the Pohozaev identity in \mathbb{R}^{N} for the equation (1.0.2). We recall that (1.0.2) has an equivalent formulation by Caffarelli-Silvestre harmonic extension method in \mathbb{R}_{+}^{N+1}. For spectral fractional laplace equation in bounded domain, some Pohozaev type identities were proved in [25, 26]. In [43], Fall and Weth have proved some nonexistence results associated with the problem $(-\Delta)^{s} u=$ $f(x, u)$ in Ω and $u=0$ in $\mathbb{R}^{N} \backslash \Omega$ by applying method of moving spheres.

Recently Ros-Oton and Serra [71, Theorem 1.1] have proved Pohozaev identity by direct method for the bounded solution of Dirichlet boundary value problem. More precisely they have proved the following:

Let u be a bounded solution of

$$
\left\{\begin{align*}
(-\Delta)^{s} u=f(u) & \text { in } \quad \Omega \tag{1.0.3}\\
u=0 & \text { in } \quad \mathbb{R}^{N} \backslash \Omega
\end{align*}\right.
$$

where Ω is a bounded $C^{1,1}$ domain in \mathbb{R}^{N}, f is locally Lipschitz and $\delta(x)=$ $\operatorname{dist}(x, \partial \Omega)$. Then u satisfies the following identity:

$$
(2 s-N) \int_{\Omega} u f(u) d x+2 N \int_{\Omega} F(u) d x=\Gamma(1+s)^{2} \int_{\partial \Omega}\left(\frac{u}{\delta^{s}}\right)^{2}(x \cdot \nu) d S
$$

where $F(t)=\int_{0}^{t} f$ and ν is the unit outward normal to $\partial \Omega$ at x and Γ is the Gamma function. For nonexistence result with general integro-differential operator we cite [72].

To apply the technique of [71] in the case of $\Omega=\mathbb{R}^{N}$, one needs to know decay estimate of u and ∇u at infinity. In [71], Ros-Oton and Serra
have remarked that assuming certain decay condition of u and ∇u, one can show that $(-\Delta)^{s} u=u^{p}$ in \mathbb{R}^{N} does not have any nontrivial solution for $p>\frac{N+2 s}{N-2 s}$. In this section, for (1.0.2) we have first established decay estimate of u and ∇u at infinity and then using that we have established the Pohozaev identity for the solution of $(1.0 .2)$ for all $s \in(0,1)$ and consequently we have the nonexistence of nontrivial solution when $p=2^{*}-1$.

On the contrary to the nonexistence result for $p=2^{*}-1$, we have shown that Eq.(1.0.2) admits a positive solution when $p>2^{*}-1$. Moreover, we have studied the qualitative properties of solutions. More precisely, using Moser iteration technique we have proved that any solution, u, of (1.0.2) is in $L^{\infty}\left(\mathbb{R}^{N}\right)$ and we have established decay estimate of u and ∇u at infinity. Then using the Schauder estimate from [73] and the L^{∞} bound that we have established, we have shown that $u \in C^{\infty}\left(\mathbb{R}^{N}\right)$ if both p and q are integer and $C^{2 k s+2 s}\left(\mathbb{R}^{N}\right)$, where k is the largest integer satisfying $\lfloor 2 k s\rfloor<p$ if $p \notin \mathbb{N}$ and $\lfloor 2 k s\rfloor<q$ if $p \in \mathbb{N}$ but $q \notin \mathbb{N}$, where $\lfloor 2 k s\rfloor$ denotes the greatest integer less than equal to $2 k s$. We also have proved that u is a classical solution. We further showed that solution of (1.0.2) is radially symmetric.

When Ω is a bounded domain, we have proved that our problem admits a solution for every $p \geq 2^{*}-1$. For similar type of equations involving critical and supercritical exponents in the case of local operator such as $-\Delta$, we cite [19], [53], [59], [60]. For similar kind of equations with non-local operator we cite $[18,37]$.

Let us now explain how the work is divided and the main results in each section. The contents of the thesis mainly corresponds to a paper, or a preprint as follows: which are joint works with my supervisor Dr. Mousomi Bhakta.

- M. Bhakta and D. Mukherjee, Multiplicity results and sign changing solutions of non-local equations with concave-convex nonlinearities, Dif-
ferential and Integral Equations. Vol 30, No. 5-6 (2017), 387-422.
- M. Bhakta and D. Mukherjee, Semilinear non-local elliptic equations with critical and supercritical exponents, Commun. Pure Appl. Anal. Vol. 16, No, 5, (2017).
- M. Bhakta and D. Mukherjee, Sign changing solutions of p-fractional equations with concave-convex nonlinearities, Topol. Methods Nonlinear Analysis. Volume 51, No. 2, (2018), 511-544.
- M. Bhakta and D. Mukherjee, Multiplicity results for (p, q) fractional Laplace equations involving critical nonlinearities, (to appear in Adv. Differential Equations), arXiv: 1801.09925

The thesis is organised as follows:

- Chapter 2 contains the main theoretical backgrounds necessary to introduce non-local equations. We present an overview of non-local operators and non-local equations, particularly the fractional Laplacian and its definition using Fourier Transform. This chapter is written in the spririt of $[38,62]$.
- Chapter 3 corresponds to the existence of infinitely many nontrivial solutions of the $\left(P_{K}\right)$ with concave-convex nonlinearities and homogeneous Dirichlet boundary conditions, where Ω is a smooth bounded domain in $\mathbb{R}^{N}, N>2 s, s \in(0,1), 0<q<1<p \leq \frac{N+2 s}{N-2 s}$. We mainly use Fountain and Dual Fountain Theorem to prove multiplicity results. This chapter is a part of the paper [16].
- Chapter 4 deals with the existence of at least one sign-changing solution. When \mathscr{L}_{K} reduces to the fractional laplacian operator $-(-\Delta)^{s}$, $p=\frac{N+2 s}{N-2 s}, \frac{1}{2}\left(\frac{N+2 s}{N-2 s}\right)<q<1, N>6 s, \lambda=1$, we find $\mu^{*}>0$ such that for any $\mu \in\left(0, \mu^{*}\right)$, there exists at least one sign changing solution. We
use the tools of Nehari manifold and fibering map to obtain the results of sign changing solutions on N and q. The contents of this chapter is a part of the paper [16].
- Chapter 5 is the continuation of Chapter 4. In this chapter, we study the existence of sign changing solution of the p-fractional problem with concave-critical nonlinearities:

$$
\begin{aligned}
(-\Delta)_{p}^{s} u & =\mu|u|^{q-1} u+|u|^{p_{s}^{*}-2} u \quad \text { in } \quad \Omega, \\
u & =0 \quad \text { in } \mathbb{R}^{N} \backslash \Omega,
\end{aligned}
$$

where $s \in(0,1)$ and $p \geq 2$ are fixed parameters, $0<q<p-1, \mu \in \mathbb{R}^{+}$ and $p_{s}^{*}=\frac{N p}{N-p s}$. Ω is an open, bounded domain in \mathbb{R}^{N} with smooth boundary and $N>p s$. The contents of this chapter is borrowed from the paper [15].

- Chapter 6 corresponds to the existence of infinitely many nontrivial solutions for the class of (p, q) fractional elliptic equations involving concave-critical nonlinearities in bounded domains in \mathbb{R}^{N}. Further, when the nonlinearity is of convex-critical type, we have established the multiplicity of nonnegative solutions using variational methods. In particular, using Lusternik-Schinerlmann category theory, we have shown the existence of at least $\operatorname{cat}_{\Omega}(\Omega)$ nonnegative solutions. This chapter is based on our work [14].
- Chapter 7 is the last chapter of the dissertation. In this chapter, we have studied the existence/nonexistence/qualitative properties of the positive solutions of non-local semilinear elliptic equations with critical and supercritical type nonlinearities. This chapter is based on the paper [17].
\qquad

Chapter 2

Fractional Framework

Partial Differential Equations are, in general, relations between the values of an unknown function and its derivatives of different orders. To see whether a partial differential equation is true at a particular point, one needs only the values of the function in an arbitrarily small neighborhood, so that all derivatives can be computed. In order to check whether a non-local equation holds at a point, data about the values of the function in the entire domain is required. This is because the equation involves integral operators. An example of such operator is

$$
\begin{equation*}
\mathscr{L}_{K} u(x)=P . V . \int_{\mathbb{R}^{N}}(u(x)-u(x+y)) K(y) d y \tag{2.0.1}
\end{equation*}
$$

for some non-negative symmetric Kernel $K(y)=K(-y)$ satisfying

$$
\int_{\mathbb{R}^{N}} \min \left\{1,|y|^{2}\right\} K(y) d y<+\infty
$$

where P.V. is a commonly used abbreviation for "in the principal value sense" in (2.0.1). When the singularity at the origin of the kernel K is not integrable, these operators are also called integro-differential operators. This is because, due to the singularity of K, the operator (2.0.1) differentiates (in some sense) the function u. The most canonical example of an elliptic integro-differential
operator is the fractional Laplacian

$$
\begin{equation*}
(-\Delta)^{s} u(x)=C(N, s) P . V \cdot \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y, s \in(0,1) . \tag{2.0.2}
\end{equation*}
$$

For details, see Section 2.3.
In recent years, a great deal of attention has been devoted to fractional and non-local operators of elliptic type. One of the main reasons comes from the fact that this operator naturally arises in several physical phenomenon like flames propagation and chemical reaction of liquids, population dynamics, geophysical fluid dynamics, mathematical finance etc (see [6,13,34, 84, 85] and the references therein). In this chapter, we will address the definition and some properties of the fractional Laplace operator. This chapter is written in the spirit of [62] and [38]. We have omitted the proofs.

2.1 Fourier transform of tempered distributions

In this section, we will briefly discuss the notion of Fourier transform of a tempered distribution. Let \mathscr{S} denotes the Schwartz space of rapidly decaying $C^{\infty}\left(\mathbb{R}^{N}\right)$ functions whose topology is generated by the seminorms $\left\{p_{j}\right\}_{j \in \mathbb{N}}$ defined as:

$$
p_{j}(\phi):=\sup _{x \in \mathbb{R}^{N}}(1+|x|)^{j} \sum_{|\alpha| \leq j}\left|D^{\alpha} \phi(x)\right|,
$$

where $\phi \in \mathscr{S}\left(\mathbb{R}^{N}\right)$. More precisely, \mathscr{S} contains the smooth functions ϕ satisfying

$$
\sup _{x \in \mathbb{R}^{N}}\left|x^{\alpha} D^{\beta} \phi(x)\right|<+\infty,
$$

for all multi-indices α and β.
We denote the Fourier transform of a function $\phi \in \mathscr{S}$ by

$$
\begin{equation*}
\mathscr{F} \phi(\xi):=\frac{1}{(2 \pi)^{N / 2}} \int_{\mathbb{R}^{N}} e^{-i \xi \cdot x} \phi(x) d x . \tag{2.1.1}
\end{equation*}
$$

We note that, for every $\phi \in \mathscr{S}$, we have $\mathscr{F} \phi \in \mathscr{S}$. The inverse Fourier transform is given by

$$
\begin{equation*}
\mathscr{F}^{-1} \phi(x):=\frac{1}{(2 \pi)^{N / 2}} \int_{\mathbb{R}^{N}} e^{i x . \xi} \phi(\xi) d \xi . \tag{2.1.2}
\end{equation*}
$$

Notice that the Fourier transform (2.1.1) and the inverse Fourier transform (2.1.2) are both continuous from $\mathscr{S}\left(\mathbb{R}^{N}\right)$ into $\mathscr{S}\left(\mathbb{R}^{N}\right)$ and is an isomorphism and a homeomorphism of $\mathscr{S}\left(\mathbb{R}^{N}\right)$ onto $\mathscr{S}\left(\mathbb{R}^{N}\right)$.

Now, let \mathscr{S}^{\prime} be the topological dual of \mathscr{S}. A tempered distribution is an element of \mathscr{S}^{\prime}. If $T \in \mathscr{S}^{\prime}$, the Fourier transform of T can be defined as the tempered distribution given by

$$
\langle\mathscr{F} T, \phi\rangle:=\langle T, \mathscr{F} \phi\rangle,
$$

for every $\phi \in \mathscr{S}$, where $\langle\cdot, \cdot\rangle$ denotes the usual duality bracket between and its dual \mathscr{S}^{\prime}. Using (2.1.1), we have

$$
\begin{equation*}
u \in L^{2}\left(\mathbb{R}^{N}\right) \quad \text { if and only if } \quad \mathscr{F} u \in L^{2}\left(\mathbb{R}^{N}\right) \tag{2.1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{L^{2}\left(\mathbb{R}^{N}\right)}=\|\mathscr{F} u\|_{L^{2}\left(\mathbb{R}^{N}\right)}, \tag{2.1.4}
\end{equation*}
$$

for every $u \in L^{2}\left(\mathbb{R}^{N}\right)$. Formula (2.1.4) is the so-called Parseval-Plancherel formula which will be used to establish the equivalence between the fractional spaces $H^{s}\left(\mathbb{R}^{N}\right)$ and $\hat{H}^{s}\left(\mathbb{R}^{N}\right)$ (see Proposition 2.3.2).

2.2 Fractional Sobolev spaces

Let Ω be an open, smooth set in \mathbb{R}^{N} and $p \in[1,+\infty)$. For any $s>0$, we would define the fractional Sobolev space $W^{s, p}(\Omega)$. If $s \geq 1$ is a positive integer, $W^{s, p}(\Omega)$ denotes the classical Sobolev space equipped with the standard norm

$$
\|u\|_{W^{s, p}(\Omega)}:=\sum_{0 \leq|\alpha| \leq s}\left|D^{\alpha} u\right|_{L^{p}(\Omega)},
$$

for every $u \in W^{s, p}(\Omega)$. We will look into the cases where $s \notin \mathbb{N}$. Now, for a fixed $s \in(0,1)$, the Sobolev space $W^{s, p}(\Omega)$ is defined as:

$$
\begin{equation*}
W^{s, p}(\Omega):=\left\{u \in L^{p}(\Omega): \frac{|u(x)-u(y)|}{|x-y|^{\frac{N}{p}+s}} \in L^{p}(\Omega \times \Omega)\right\} \tag{2.2.1}
\end{equation*}
$$

endowed with the norm

$$
\begin{equation*}
\|u\|_{W^{s, p}(\Omega)}:=\left(\int_{\Omega}|u(x)|^{p} d x+\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{\frac{1}{p}}, \tag{2.2.2}
\end{equation*}
$$

where the term

$$
\begin{equation*}
[u]_{W^{s, p}(\Omega)}:=\left(\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{\frac{1}{p}} \tag{2.2.3}
\end{equation*}
$$

is the Gagliardo seminorm of u.

2.2.1 Embedding results

This subsection deals with the embeddings of fractional Sobolev spaces into Lebesgue spaces. Some basic facts are recalled briefly. For details, see [38, Sections 6 and 7], [62, Section 1].

Proposition 2.2.1. Let $p \in[1,+\infty)$ and let Ω be an open set in \mathbb{R}^{N}. Then the following assertions hold true:
(a) If $0<s \leq s^{\prime}<1$, then the embedding

$$
W^{s^{\prime}, p}(\Omega) \hookrightarrow W^{s, p}(\Omega)
$$

is continuous. Hence, there exists a constant $C_{1}(N, s, p) \geq 1$ such that

$$
\|u\|_{W^{s, p}(\Omega)} \leq C_{1}(N, s, p)\|u\|_{W^{s^{\prime}, p}(\Omega)}
$$

for any $u \in W^{s^{\prime}, p}(\Omega)$.
(b) If $0<s<1$ and Ω is of class $C^{0,1}$ (that is, with the Lipschitz boundary) and with bounded boundary $\partial \Omega$, then the embedding

$$
W^{1, p}(\Omega) \hookrightarrow W^{s, p}(\Omega)
$$

is continuous. Hence, there exists a constant $C_{2}(N, s, p) \geq 1$ such that

$$
\|u\|_{W^{s, p}(\Omega)} \leq C_{2}(N, s, p)\|u\|_{W^{1, p}(\Omega)},
$$

for any $u \in W^{1, p}(\Omega)$.
(c) If $s^{\prime} \geq s>1$ and Ω is of class $C^{0,1}$, then the embedding

$$
W^{s^{\prime}, p}(\Omega) \hookrightarrow W^{s, p}(\Omega)
$$

is continuous.

Proof. For proofs, see Proposition 2.1, Proposition 2.2 and Corollary 2.3 in [38].

Now let us recall some basic properties about continuous (compact) embeddings of the fractional Sobolev spaces $W^{s, p}$ into Lebesgue spaces. Here, we will discuss three different cases, $s p<N, s p=N$ and $s p>N$. For proof, we refer [38, Sections 6-8].

Case 1: $s p<N$
Theorem 2.2.2. Let $s \in(0,1)$ and $p \in[1,+\infty)$ such that $s p<N$. Then there exists a positive constant $C:=C(N, p, s)$ such that, for any $u \in W^{s, p}\left(\mathbb{R}^{N}\right)$,

$$
|u|_{L^{p_{s}^{*}\left(\mathbb{R}^{N}\right)}}^{p} \leq C \int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+p s}} d x d y
$$

where the exponent

$$
p_{s}^{*}:=\frac{N p}{N-p s}
$$

is the so-called fractional critical exponent. Consequently, the space $W^{s, p}\left(\mathbb{R}^{N}\right)$ is continuously embedded in $L^{q}\left(\mathbb{R}^{N}\right)$ for any $q \in\left[p, p_{s}^{*}\right]$. Moreover, the embedding $W^{s, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right)$ is compact for every $q \in\left[p, p_{s}^{*}\right)$.

In an extension domain Ω, the following embedding result holds:

Theorem 2.2.3. Let $s \in(0,1)$ and $p \in[1,+\infty)$ such that $s p<N$. Let $\Omega \subset$ \mathbb{R}^{N} be an extension domain for $W^{s, p}$. Then there exists a positive constant $C:=C(N, p, s, \Omega)$ such that, for any $u \in W^{s, p}(\Omega)$,

$$
|u|_{L^{q}(\Omega)} \leq C\|u\|_{W^{s, p}(\Omega)},
$$

for any $q \in\left[p, p_{s}^{*}\right]$; that is, the space $W^{s, p}(\Omega)$ is continuously embedded in $L^{q}(\Omega)$ for any $q \in\left[p, p_{s}^{*}\right]$. If, in addition, Ω is bounded, then the space $W^{s, p}(\Omega)$ is compactly embedded in $L^{q}(\Omega)$ for any $q \in\left[1, p_{s}^{*}\right)$.

Case 2: $s p=N$

Theorem 2.2.4. Let $s \in(0,1)$ and $p \in[1,+\infty)$ such that $s p=N$. Then there exists a positive constant $C:=C(N, p, s)$ such that for any $u \in W^{s, p}\left(\mathbb{R}^{N}\right)$,

$$
|u|_{L^{q}\left(\mathbb{R}^{N}\right)} \leq C\|u\|_{W^{s, p}\left(\mathbb{R}^{N}\right)},
$$

for any $q \in[p,+\infty)$; that is, the space $W^{s, p}\left(\mathbb{R}^{N}\right)$ is continuously embedded in $L^{q}\left(\mathbb{R}^{N}\right)$ for any $q \in[p,+\infty)$.

For an extension domain Ω, we have the following embedding result:
Theorem 2.2.5. Let $s \in(0,1)$ and $p \in[1,+\infty)$ such that $s p=N$. Let $\Omega \subset$ \mathbb{R}^{N} be an extension domain for $W^{s, p}$. Then there exists a positive constant $C:=C(N, p, s, \Omega)$ such that, for any $u \in W^{s, p}(\Omega)$,

$$
|u|_{L^{q}(\Omega)} \leq C\|u\|_{W^{s, p}(\Omega)},
$$

for any $q \in[p,+\infty)$; that is, the space $W^{s, p}(\Omega)$ is continuously embedded in $L^{q}(\Omega)$ for any $q \in[p,+\infty)$. If, in addition, Ω is bounded, then the space $W^{s, p}(\Omega)$ is compactly embedded in $L^{q}(\Omega)$ for any $q \in[1,+\infty)$.

Case 3: $s p>N$
We denote by $C^{0, \alpha}(\Omega)$ the space of Hölder continuous functions endowed with
the standard norm

$$
\|u\|_{C^{0, \alpha}(\Omega)}:=|u|_{L^{\infty}(\Omega)}+\sup _{x, y \in \Omega, x \neq y} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}
$$

Theorem 2.2.6. Let $s \in(0,1)$ and $p \in[1,+\infty)$ such that $s p>N$. Let Ω be a $C^{0,1}$ domain of \mathbb{R}^{N}. Then there exists a positive constant $C:=C(N, p, s, \Omega)$ such that for any $u \in W^{s, p}(\Omega)$, we have,

$$
\|u\|_{C^{0, \alpha}(\Omega)} \leq C\|u\|_{W^{s, p}(\Omega)},
$$

with $\alpha:=(s p-N) / p$; that is, the space $W^{s, p}(\Omega)$ is continuously embedded in $C^{0, \alpha}(\Omega)$.

As a consequence of Theorem 2.2.6, we have the following result.
Corollary 2.2.7. Let $s \in(0,1)$ and $p \in[1,+\infty)$ such that $s p>N$. Let Ω be a $C^{0,1}$ bounded domain of \mathbb{R}^{N}. Then the embedding

$$
W^{s, p}(\Omega) \hookrightarrow C^{0, \beta}(\Omega)
$$

is compact for every $\beta<\alpha$, with $\alpha:=(s p-N) / p$.

2.2.2 The Sobolev space $H^{s}(\Omega)$

This section is devoted to the case $p=2$ where we deal its relation with the fractional Laplacian. Let Ω be an open subset of \mathbb{R}^{N} and denote

$$
H^{s}(\Omega):=W^{s, 2}(\Omega)
$$

for any $s \in(0,1)$. In this case, we note that the preceding fractional Sobolev space turns out to be a Hilbert space. The inner product on $H^{s}(\Omega)$ is defined by

$$
\langle u, v\rangle_{H^{s}(\Omega)}:=\int_{\Omega} u(x) v(x) d x+\int_{\Omega \times \Omega} \frac{(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+2 s}} d x d y
$$

for any $u, v \in H^{s}(\Omega)$ induces the norm given in (2.2.2) when $p=2$. That is, for every $s \in(0,1)$, we have,

$$
\begin{equation*}
H^{s}\left(\mathbb{R}^{N}\right):=W^{s, 2}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right):[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}<+\infty\right\} \tag{2.2.4}
\end{equation*}
$$

where $[\cdot]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}$ is defined in (2.2.3).
Alternatively, we can also define the space $H^{s}\left(\mathbb{R}^{N}\right)$ via a Fourier transform, that is, we define

$$
\begin{equation*}
\hat{H}^{s}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}\left(1+|y|^{2 s}\right)|\mathscr{F} u(y)|^{2} d x<+\infty\right\} \tag{2.2.5}
\end{equation*}
$$

for any $s>0$ and

$$
\hat{H}^{s}\left(\mathbb{R}^{N}\right):=\left\{u \in \mathscr{S}^{\prime}: \int_{\mathbb{R}^{N}}\left(1+|y|^{2}\right)^{s}|\mathscr{F} u(y)|^{2} d x<+\infty\right\}
$$

for every $s<0$.
The equivalence between the space $\hat{H}^{s}\left(\mathbb{R}^{N}\right)$ defined in (2.2.5) and the one defined by the Gagliardo norm in (2.2.4) is given in Proposition 2.3.2.

2.3 The fractional Laplacian operator

A very popular non-local operator is given by the fractional Laplacian $(-\Delta)^{s}$ with $s \in(0,1)$. This operator and its generalization appear in many areas of mathematics, like harmonic analysis, probability theory, potential theory, quantum machanics, statistical physics etc. This section deals with the definition of this operator and its properties.

Let $s \in(0,1)$ and define the fractional Laplacian operator $(-\Delta)^{s}: \mathscr{S} \rightarrow$ $L^{2}\left(\mathbb{R}^{N}\right)$ by

$$
\begin{equation*}
(-\Delta)^{s} u(x):=C(N, s) \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(x)} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y, x \in \mathbb{R}^{N}, \tag{2.3.1}
\end{equation*}
$$

where $B_{\varepsilon}(x)$ is the ball centred at $x \in \mathbb{R}^{N}$ with radius ε and $C(N, s)$ is the following (positive) normalization constant:

$$
\begin{equation*}
C(N, s):=\left(\int_{\mathbb{R}^{N}} \frac{1-\cos \left(\xi_{1}\right)}{|\xi|^{N+2 s}} d \xi\right)^{-1} \tag{2.3.2}
\end{equation*}
$$

with $\xi=\left(\xi_{1}, \xi^{\prime}\right), \xi^{\prime} \in \mathbb{R}^{N-1}$. One can also define $(-\Delta)^{s}$ in the principal-value sense by setting

$$
\text { P.V. } \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y:=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(x)} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y,
$$

that is,

$$
\begin{equation*}
(-\Delta)^{s} u(x):=C(N, s) P . V \cdot \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y, x \in \mathbb{R}^{N} \tag{2.3.3}
\end{equation*}
$$

The next proposition tells us that the singular integral defined in (2.3.3) can be written as a weighted second-order differential quotient.

Proposition 2.3.1. Let $s \in(0,1)$. Then for any $u \in \mathscr{S}$,

$$
\begin{equation*}
(-\Delta)^{s} u(x)=-\frac{1}{2} C(N, s) \int_{\mathbb{R}^{N}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{N+2 s}} d y, x \in \mathbb{R}^{N} \tag{2.3.4}
\end{equation*}
$$

For proof, see [62, Proposition 1.10].
Remark: Let $s \in(0,1 / 2)$. Notice that for any $u \in \mathscr{S}$ and for a fixed $x \in \mathbb{R}^{N}$, we have that,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y & \leq C \int_{B(x, R)} \frac{|x-y|}{|x-y|^{N+2 s}} d y \\
& +|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \int_{\mathbb{R}^{N} \backslash B(x, R)} \frac{1}{|x-y|^{N+2 s}} d y \\
& \leq C\left(\int_{0}^{R} \frac{1}{\rho^{2 s}} d \rho+\int_{R}^{+\infty} \frac{1}{\rho^{2 s+1}} d \rho\right)<+\infty,
\end{aligned}
$$

where C is a positive constant depending only on the dimension N and the L^{∞} - norm of the function u. So, in the case $s \in(0,1 / 2)$, the integral

$$
\int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y
$$

is not singular near the point x, so one can get rid of the P.V. in (2.3.3).

Proposition 2.3.2. Let $s \in(0,1)$ and $C(N, s)$ be the constant defined in 2.3.2. Then, for any $u \in H^{s}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
[u]_{H^{s}\left(\mathbb{R}^{N}\right)}^{2}=2 C(N, s)^{-1} \int_{\mathbb{R}^{N}}|\xi|^{2 s}|\mathscr{F} u(\xi)|^{2} d \xi \tag{2.3.5}
\end{equation*}
$$

Moreover, $H^{s}\left(\mathbb{R}^{N}\right)=\hat{H}^{s}\left(\mathbb{R}^{N}\right)$

For proof, see [62, Corollary 1.15].

2.3.1 The fractional p-Laplacian

In recent years, great attention has been devoted to a new non-local and non-linear operator, namely the fractional p-Laplacian operator $(-\Delta)_{p}^{s}$, for $p \in(1,+\infty), s \in(0,1)$, and u smooth enough, it is defined as,

$$
\begin{align*}
(-\Delta)_{p}^{s} u(x) & =P \cdot V \cdot \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+s p}} d y \tag{2.3.6}\\
& =\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(x)} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+p s}} d y, \quad x \in \mathbb{R}^{N} .
\end{align*}
$$

Up to some normalization constant depending on N, p, and s, this definition is consistent with one of the fractional Laplacian $(-\Delta)^{s}$ in the case $p=2$.

2.3.2 The fractional Laplacian via Fourier transform

In this section, we show that the fractional Laplacian $(-\Delta)^{s}$ can be viewed as a pseudo-differential operator of symbol $|\xi|^{2 s}$ (see [38, Section 3]).

Proposition 2.3.3. Let $s \in(0,1)$. Then, for any $u \in \mathscr{S}$,

$$
\begin{equation*}
(-\Delta)^{s} u(x)=\mathscr{F}^{-1}\left(|\xi|^{2 s}(\mathscr{F} u)(\xi)\right)(x), x \in \mathbb{R}^{N} \tag{2.3.7}
\end{equation*}
$$

where \mathscr{F}^{-1} is the inverse Fourier transform defined in (2.1.2).
For proof, (see [62, Proposition 1.17]).
The following lemma ensures the relation between the fractional Laplacian operator $(-\Delta)^{s}$ and the fractional Sobolev space $H^{s}\left(\mathbb{R}^{N}\right)$ (see [38]).

Proposition 2.3.4. Let $s \in(0,1)$ and $C(N, s)$ be the constant defined in
(2.3.2). Then, for any $u \in H^{s}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
[u]_{H^{s}\left(\mathbb{R}^{N}\right)}^{2}=2 C(N, s)^{-1}\left|(-\Delta)^{s / 2} u\right|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2} . \tag{2.3.8}
\end{equation*}
$$

For proof, see [62, Proposition 1.18].

2.3.3 A generalization of $(-\Delta)^{s}$

In this section, we introduce a general integro-differential operator that generalizes $(-\Delta)^{s}$. For any fixed $s \in(0,1)$, the operator \mathscr{L}_{K} is given by

$$
\begin{equation*}
\mathscr{L}_{K} u(x):=\int_{\mathbb{R}^{N}}(u(x+y)+u(x-y)-2 u(x)) K(y) d y \tag{2.3.9}
\end{equation*}
$$

for every $x \in \mathbb{R}^{N}$, where the Kernel $K: \mathbb{R}^{N} \backslash\{0\} \rightarrow(0,+\infty)$ is a function satisfying the following:

$$
\begin{equation*}
m K(x) \in L^{1}\left(\mathbb{R}^{N}\right) \quad \text { with } \quad m(x)=\min \left\{|x|^{2}, 1\right\} \tag{2.3.10}
\end{equation*}
$$

there exists $\theta>0$ such that $K(x) \geq \theta|x|^{-(N+2 s)}$ for any $x \in \mathbb{R}^{N} \backslash\{0\} ;$

$$
\begin{equation*}
\text { and } \quad K(x)=K(-x) \quad \text { for any } \quad x \in \mathbb{R}^{N} \backslash\{0\} \tag{2.3.12}
\end{equation*}
$$

A model for K is given by the singular kernel $K(x)=|x|^{-(N+s p)}$. In this case \mathscr{L}_{K} (up to a normalization constant) reduces to the fractional p-Laplace operator $-(-\Delta)_{p}^{s}$, defined in (2.3.6) and to the fractional Laplace operator $-(-\Delta)^{s}$ defined in (2.3.4) when $p=2$.

2.4 Fractional Sobolev-type space

One of the goals of this chapter is to study non-local problems driven by $(-\Delta)^{s}$ and its generalization and with Dirichlet boundary data via variational
methods. To this purpose, we need to work in a suitable function space. For this, we consider the following functional analytical setting (see [62, Section 1.5]).

Let $s \in(0,1)$ be fixed and Ω be an open-bounded subset of \mathbb{R}^{N} with $N>2 s$. Define the set Q as:

$$
Q:=\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right) \backslash\left(\Omega^{c} \times \Omega^{c}\right),
$$

where $\Omega^{c}=\mathbb{R}^{N} \backslash \Omega$. Furthermore, assume $K: \mathbb{R}^{N} \backslash\{0\} \rightarrow(0,+\infty)$ be a function satisfying (2.3.10) and (2.3.11). By $X(\Omega)$ we denote the linear space of Lebesgue measurable functions from \mathbb{R}^{N} to \mathbb{R} such that if $g \in X(\Omega)$ then $\left.g\right|_{\Omega} \in L^{2}(\Omega)$ and

$$
(g(x)-g(y)) \sqrt{K(x-y)} \in L^{2}(Q, d x d y) .
$$

The space $X(\Omega)$ is endowed with the norm defined:

$$
\begin{equation*}
\|u\|_{X(\Omega)}=|u|_{L^{2}(\Omega)}+\left(\int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y\right)^{1 / 2} \tag{2.4.1}
\end{equation*}
$$

Moreover, $X_{0, K}(\Omega)=\left\{u \in X(\Omega): u=0 \quad\right.$ a.e. in $\left.\quad \mathbb{R}^{N} \backslash \Omega\right\}$ with the norm

$$
\|u\|_{X_{0, K}(\Omega)}=\left(\int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y\right)^{1 / 2} .
$$

With this norm, $X_{0, K}(\Omega)$ is a Hilbert space with the scalar product

$$
\langle u, v\rangle_{X_{0, K}(\Omega)}=\int_{Q}(u(x)-u(y))(v(x)-v(y)) K(x-y) d x d y
$$

(see [75, Lemma 7]). For further details on $X(\Omega)$ and $X_{0, K}(\Omega)$ and also for their properties, we refer to [38].

In place of general K, if we have fractional p-Laplacian operator, we define
$X_{s, p}(\Omega)$
$:=\left\{u: \mathbb{R}^{N} \rightarrow \mathbb{R}\right.$ measurable $|u|_{\Omega} \in L^{p}(\Omega)$ and $\left.\int_{Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y<\infty.\right\}$

The space $X_{s, p}(\Omega)$ is endowed with the norm defined as

$$
\|u\|_{X_{s, p}(\Omega)}=|u|_{L^{p}(\Omega)}+\left(\int_{Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p}
$$

Then, we define $X_{0, s, p}(\Omega):=\left\{u \in X_{s, p}(\Omega): u=0 \quad\right.$ a.e. in $\left.\mathbb{R}^{N} \backslash \Omega\right\}$ or equivalently as ${\overline{C_{c}^{\infty}(\Omega)}}^{X_{s, p}(\Omega)}$ and for any $p>1, X_{0, s, p}(\Omega)$ is a uniformly convex Banach space (see [47]) endowed with the norm

$$
\|u\|_{X_{0, s, p}(\Omega)}=\left(\int_{Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p} .
$$

Since $u=0$ in $\mathbb{R}^{N} \backslash \Omega$, the above integral can be extended to all of \mathbb{R}^{N}. The embedding $X_{0, s, p}(\Omega) \hookrightarrow L^{r}(\Omega)$ is continuous for any $r \in\left[1, p_{s}^{*}\right]$ and compact for $r \in\left[1, p_{s}^{*}\right)$. For further details on $X_{0, s, p}(\Omega)$ and it's properties we refer [38]. In the case $p=2$, for the sake of convenience, we denote the fractional space $X_{0}(\Omega)=X_{0, s, 2}(\Omega)$ and the norm as $\|\cdot\|_{X_{0}(\Omega)}$. In the next result we give some connections between the space $X_{0, K}(\Omega)$ and the usual fractional Sobolev spaces $H^{s}\left(\mathbb{R}^{N}\right)$.

Lemma 2.4.1. The following assertions hold true.
(a) Let $K: \mathbb{R}^{N} \backslash\{0\} \rightarrow(0,+\infty)$ satisfies (2.3.10),(2.3.11) and (2.3.12). Then $X_{0, K}(\Omega) \subset H^{s}\left(\mathbb{R}^{N}\right)$ and moreover,

$$
\|v\|_{H^{s}(\Omega)} \leq\|v\|_{H^{s}\left(\mathbb{R}^{N}\right)} \leq\|v\|_{X(\Omega)},
$$

where $c(\theta)=\max \left\{1, \theta^{-1 / 2}\right\}$ with θ given in (2.3.11).
(b) Let $K(x)=|x|^{-(N+2 s)}$. Then

$$
X_{0, K}(\Omega)=\left\{v \in H^{s}\left(\mathbb{R}^{N}\right): v=0 \quad \text { a.e in } \quad \mathbb{R}^{N} \backslash \Omega\right\}
$$

For proof, see [[78],lemma 7]. Now, we consider the function

$$
\begin{equation*}
X_{0, K}(\Omega) \ni v \mapsto\|v\|_{X_{0, K}(\Omega)}=\left(\int_{Q}|v(x)-v(y)|^{2} K(x-y) d x d y\right)^{1 / 2} \tag{2.4.2}
\end{equation*}
$$

and we take (2.4.2) as norm on $X_{0, K}$.

Lemma 2.4.2. Let $s \in(0,1), N>2 s$ and $K: \mathbb{R}^{N} \backslash\{0\} \rightarrow(0,+\infty)$ satisfy (2.3.10), (2.3.11) and (2.3.12). Then
(a) there exists a constant $c>1$, depending only on N, s, θ and Ω such that for any $v \in X_{0, K}$,
$\int_{Q}|v(x)-v(y)|^{2} K(x-y) d x d y \leq\|v\|_{X}^{2} \leq c \int_{Q}|v(x)-v(y)|^{2} K(x-y) d x d y$, that is, (2.4.2) defines a norm on $X_{0, K}$ equivalent to the usual one given in (2.4.1).
(b) $\left(X_{0, K},\|\cdot\|_{X_{0, K}}\right)$ is a Hilbert space with the scalar product

$$
\langle u, v\rangle_{X_{0, K}}=\int_{Q}(u(x)-u(y))(v(x)-v(y)) K(x-y) d x d y
$$

For proof, see [75, Lemmas 6 and 7].
Let us look into some results related to the embeddings of the spaces $X_{0, K}$ and $H^{s}\left(\mathbb{R}^{N}\right)$ into the usual Lebesgue spaces, explained in the following results.

Lemma 2.4.3. Let $s \in(0,1), N>2 s$ and $K: \mathbb{R}^{N} \backslash\{0\} \rightarrow(0,+\infty)$ satisfy (2.3.10),(2.3.11) and (2.3.12). Then the following assertions hold true:
(a) if Ω has a Lipschitz boundary, then the embedding $X_{0, K} \hookrightarrow L^{\gamma}\left(\mathbb{R}^{N}\right)$ is compact for any $\gamma \in\left[1,2^{*}\right)$;
(b) the embedding $X_{0, K} \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right)$ is continuous.

For proof, see [78, Lemma 9].
Thanks to the above lemma, we can define the positive constant S_{K} given by

$$
\begin{equation*}
S_{K}:=\inf _{u \in X_{0, K} \backslash\{0\}} S_{K}(u), \tag{2.4.3}
\end{equation*}
$$

where, for any $u \in X_{0, K} \backslash\{0\}$,

$$
\begin{equation*}
S_{K}(u):=\frac{\int_{\mathbb{R}^{N} \times \mathbb{R}^{N}}|u(x)-u(y)|^{2} K(x-y) d x d y}{\left(\int_{\Omega}|u(x)|^{2^{*}} d x\right)^{2 / 2^{*}}} \tag{2.4.4}
\end{equation*}
$$

Note that since in formula (2.4.4) this integral over Ω can be extended to all \mathbb{R}^{N} (being $u=0$ a.e. in Ω^{c}), then the function $u \rightarrow S_{K}(u)$ does not depend on the domain Ω, while, in general, S_{K} does. The counterpart of the above lemma in the usual functional Sobolev spaces is given by the following result proved in [38, Theorem 6.5].

For $s \in(0,1)$, define

$$
\dot{W}^{s, p}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y<\infty\right\}
$$

and

$$
\begin{equation*}
S_{s, p}=\inf _{u \in \dot{W}^{s, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y}{\left(\int_{\mathbb{R}^{N}}|u|^{p_{s}^{*}}\right)^{\frac{p}{p_{s}^{*}}}} . \tag{2.4.5}
\end{equation*}
$$

For $p=2$, we denote $S_{s, 2}$ as S_{s} for the sake of simplicity.

2.5 Harmonic extension to the upper halfspace

In this section we recall the other useful representation of fractional laplacian $(-\Delta)^{s}$, which we will use to prove decay estimate of solution at infinity. Using the celebrated Caffarelli and Silvestre extension method, (see [27]), fractional laplacian $(-\Delta)^{s}$ can be seen as a trace class operator (see [8, 27, 47]).

Let $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$ be a solution of the problem

$$
\begin{equation*}
(-\Delta)^{s} u=f(u) \quad \text { in } \quad \mathbb{R}^{N} \tag{2.5.1}
\end{equation*}
$$

Define $w:=E_{s}(u)$ be its s - harmonic extension to the upper half space \mathbb{R}_{+}^{N+1}, that is, there is a solution to the following problem:

$$
\begin{cases}\operatorname{div}\left(y^{1-2 s} \nabla w\right)=0 & \text { in } \mathbb{R}_{+}^{N+1} \tag{2.5.2}\\ w=u & \text { on } \quad \mathbb{R}^{N} \times\{y=0\}\end{cases}
$$

Define the space $X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right):=$ closure of $C_{0}^{\infty}\left(\overline{\mathbb{R}_{+}^{N+1}}\right)$ w.r.t. the following norm

$$
\|w\|_{2 s}=\|w\|_{X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)}:=\left(k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}|\nabla w|^{2} d x d y\right)^{\frac{1}{2}},
$$

where $k_{2 s}=\frac{\Gamma(s)}{2^{1-2 s} \Gamma(1-s)}$ is a normalizing constant, chosen in such a way that the extension operator $E_{s}: \dot{H}^{s}\left(\mathbb{R}^{N}\right) \longrightarrow X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$ is an isometry (up to constants), that is, $\left\|E_{s} u\right\|_{2 s}=\|u\|_{\dot{H}^{s}\left(\mathbb{R}^{N}\right)}=\left|(-\Delta)^{s} u\right|_{L^{2}\left(\mathbb{R}^{N}\right)}$. (see [39]). Conversely, for a function $w \in X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$, we denote its trace on $\mathbb{R}^{N} \times\{y=$ $0\}$ as:

$$
\operatorname{Tr}(w):=w(x, 0)
$$

This trace operator satisfies:

$$
\begin{equation*}
\|w(\cdot, 0)\|_{\dot{H}^{s}\left(\mathbb{R}^{N}\right)}=\|\operatorname{Tr}(w)\|_{\dot{H}^{s}\left(\mathbb{R}^{N}\right)} \leq\|w\|_{2 s} . \tag{2.5.3}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|u(x)|^{2^{*}} d x\right)^{\frac{2}{2^{*}}} \leq S(N, s) \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}|\nabla w(x, y)|^{2} d x d y \tag{2.5.4}
\end{equation*}
$$

Inequality (2.5.4) is called the trace inequality. We note that $H^{1}\left(\mathbb{R}_{+}^{N+1}, y^{1-2 s}\right)$, up to a normalizing factor, is isometric to $X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$ (see [47]). In [27], it is shown that $E_{s}(u)$ satisfies the following:

$$
(-\Delta)^{s} u(x)=\frac{\partial w}{\partial \nu^{2 s}}:=-k_{2 s} \lim _{y \rightarrow 0^{+}} y^{1-2 s} \frac{\partial w}{\partial y}(x, y)
$$

With this above representation, (2.5.2) can be rewritten as:

$$
\left\{\begin{align*}
\operatorname{div}\left(y^{1-2 s} \nabla w\right) & =0 \quad \text { in } \quad \mathbb{R}^{N+1} \tag{2.5.5}\\
\frac{\partial w}{\partial \nu^{2 s}} & =f(w(\cdot, 0)) \text { on } \mathbb{R}^{N}
\end{align*}\right.
$$

Chapter 3

Multiplicity results of elliptic equations with operator \mathscr{L}_{K}

The aim of this chapter is to investigate the existence and multiplicity of weak solutions to non-local equations involving a general integro-differential operator of fractional type with concave-convex nonlinearities. This chapter is based on the paper [16]. In literature, there are many tools to obtain multiplicity results, among them are Lusternik-Schnirelmann category theory, Morse theory, minimax methods, critical point theory (to mention a few). In this chapter, we have proved existence of infinitely many solutions via "Fountain Theorem" and "Dual Fountain Theorem" due to the pioneering works of Bartsch and Willem (see [10, 11, 86]).

In this chapter, we focus our attention on the following equations driven by a non-local integro-differential operator \mathscr{L}_{K} with concave-convex nonlinearities and homogeneous Dirichlet boundary conditions,

$$
\left(\mathcal{P}_{K}\right) \begin{cases}\mathscr{L}_{K} u+\mu|u|^{q-1} u+\lambda|u|^{p-1} u=0 & \text { in } \quad \Omega, \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega,\end{cases}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N}, s \in(0,1)$ is fixed, $N>2 s$, $0<q<1<p \leq \frac{N+2 s}{N-2 s}$ and \mathscr{L}_{K} is given in (2.3.9) with the Kernel

CHAPTER 3. MULTIPLICITY RESULTS FOR EQUATIONS INVOLVING THE OPERATOR \mathscr{L}_{K}
$K: \mathbb{R}^{N} \backslash\{0\} \rightarrow(0,+\infty)$ is a function satisfying (2.3.10),(2.3.11) and (2.3.12).

Definition 3.0.1. We say that $u \in X_{0, K}(\Omega)$ is a weak solution of $\left(\mathcal{P}_{K}\right)$ if

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}}(u(x)-u(y))(\phi(x)-\phi(y)) K(x-y) d x d y & =\mu \int_{\Omega}|u(x)|^{q-1} u(x) \phi(x) d x \\
& +\lambda \int_{\Omega}|u(x)|^{p-1} u(x) \phi(x) d x
\end{aligned}
$$

for all $\phi \in X_{0, K}(\Omega)$.

3.1 Variational formulation

The weak solutions of $\left(\mathcal{P}_{K}\right)$ can be found as critical points of the energy functional

$$
\begin{align*}
I_{\mu}^{\lambda}(u) & =\frac{1}{2} \int_{\mathbb{R}^{2 N}}|u(x)-u(y)|^{2} K(x-y) d x d y-\frac{\mu}{q+1} \int_{\Omega}|u|^{q+1} d x \\
& -\frac{\lambda}{p+1} \int_{\Omega}|u|^{p+1} d x \tag{3.1.1}
\end{align*}
$$

Thanks to the Sobolev embedding $X_{0, K}(\Omega) \hookrightarrow L^{2^{*}}\left(\mathbb{R}^{N}\right)$ (see [78, Lemma 9]), I_{μ}^{λ} is well defined C^{1} functional on $X_{0, K}(\Omega)$. It is well known that there exists a one-to-one correspondence between the weak solutions of $\left(\mathcal{P}_{K}\right)$ and the critical point of I_{μ}^{λ} on $X_{0, K}(\Omega)$. We define the best fractional critical Sobolev constant S_{K} as

$$
\begin{equation*}
S_{K}:=\inf _{v \in X_{0, K}(\Omega) \backslash\{0\}} \frac{\int_{\mathbb{R}^{2 N}}|v(x)-v(y)|^{2} K(x-y) d x d y}{\left(\int_{\Omega}|v(x)|^{2^{*}}\right)^{2 / 2^{*}}} . \tag{3.1.2}
\end{equation*}
$$

3.2 Abstract Theorems

To prove infinitely many nontrivial solutions of the above stated problems, we apply the Fountain Theorem and the Dual Fountain theorem which were proved by Bartsch [10] and Bartsch-Willem [11] respectively (also see [86]).

As usual for critical point theorems, we need to study the compactness properties of the functional together with its geometric features. With respect to the compactness, we need to prove that the functional satisfies the classical Palais-Smale $(\mathrm{PS})_{c}$ assumption. But observe that $X_{0, K}(\Omega) \hookrightarrow L^{2^{*}}(\Omega)$ is not compact (see [78, Lemma 9-b]). Hence the $(\mathrm{PS})_{c}$ condition does not hold globally for all c and we have to prove that the energy level of the corresponding energy functional lies below the threshold of application of the $(\mathrm{PS})_{c}$ condition.

We start this section by recalling two abstract theorems namely the Fountain theorem and the Dual Fountain Theorem. For this, we need some definitions from [86].

Definition 3.2.1. The action of a topological group G on a Banach space X is a continuous map

$$
G \times X \longrightarrow X:[g, u] \longrightarrow g u,
$$

such that

$$
\text { 1. } u=u, \quad(g h) u=g(h u), \quad u \mapsto g u \quad \text { is linear. }
$$

The action is isometric if $\|g u\|=\|u\|$. The space of invariant points is defined by

$$
\text { Fix }(G):=\{u \in X: g u=u \quad \forall g \in G\} .
$$

A set $A \subset X$ is called invariant if $g A=A$ for every $g \in G$. A functional $\varphi: X \longrightarrow \mathbb{R}$ is called invariant if $\varphi \circ g=\varphi$ for every $g \in G$. A map $f: X \longrightarrow X$ is called equivariant if $g \circ f=f \circ g$ for every $g \in G$.

Definition 3.2.2. Let G be a compact group on Banach space X. Assume that G acts diagonally on V^{k}

$$
g\left(v_{1}, \cdots, v_{k}\right):=\left(g v_{1}, \cdots, g v_{k}\right)
$$

CHAPTER 3. MULTIPLICITY RESULTS FOR EQUATIONS INVOLVING THE OPERATOR \mathscr{L}_{K}

where V is a finite dimensional space. The action of G is admissible if every continuous equivariant map $\partial U \longrightarrow V^{k-1}$, where U is an open bounded invariant neighborhood of 0 in $V^{k}, k \geq 2$, has a zero.

By Borsuk-Ulam Theorem, the antipodal action of $G:=\mathbb{Z} / 2$ on $V:=\mathbb{R}$ is admissible (see [86, Theorem D.17]).

We consider the following situation:
(A1) The compact group G acts isometrically on the Banach space $X=$ $\overline{\bigoplus_{j \in \mathbb{N}} X_{j}}$, the spaces X_{j} are invariant and there exists a finite dimensional space V such that, for every $j \in \mathbb{N}, X_{j} \simeq V$ and the action of G on V is admissible.

Definition 3.2.3. Let $\varphi \in C^{1}(X, \mathbb{R})$. We say that $\left\{u_{n}\right\}$ is a Palais-Smale sequence (in short, PS sequence) of φ at level c if $\varphi\left(u_{n}\right) \rightarrow c$ and $\varphi^{\prime}\left(u_{n}\right) \rightarrow$ 0 in $(X)^{\prime}$, the dual space of X. Moreover, we say that φ satisfies $(P S)_{c}$ condition if $\left\{u_{n}\right\}$ is any (PS) sequence in X at level c implies $\left\{u_{n}\right\}$ has a convergent subsequence in X.

Theorem 3.2.4. [Fountain Theorem, Bartsch, 1993] Under the assumption (A1), let $\varphi \in C^{1}(X, \mathbb{R})$ be an invariant functional. If, for every $k \in \mathbb{N}$, there exists $0<r_{k}<\rho_{k}$ such that
(A2) $a_{k}:=\max _{u \in Y_{k},\|u\|=\rho_{k}} \varphi(u) \leq 0$,
(A3) $b_{k}:=\inf _{u \in Z_{k},\|u\|=r_{k}} \varphi(u) \rightarrow \infty \quad$ as $\quad k \rightarrow \infty$.
(A4) φ satisfies $(P S)_{c}$ condition for every $c>0$,
then φ has an unbounded sequence of critical values.

Theorem 3.2.5. [Dual Fountain Theorem, Bartsch-Willem, 1995] Under the assumption (A1), let $\varphi \in C^{1}(X, \mathbb{R})$ be an invariant functional. If, for every $k \geq k_{0}$, there exists $0<r_{k}<\rho_{k}$ such that
(D1) $a_{k}:=\inf _{u \in Z_{k},\|u\|=\rho_{k}} \varphi(u) \geq 0$,
(D2) $b_{k}:=\max _{u \in Y_{k},\|u\|=r_{k}} \varphi(u)<0$,
(D3) $d_{k}:=\inf _{u \in Z_{k},\|u\| \leq \rho_{k}} \varphi(u) \rightarrow 0 \quad$ as $\quad k \rightarrow \infty$.
(D4) For every sequence $u_{r_{j}} \in X$ and $c \in\left[d_{k}, 0\right)$ such that

$$
u_{r_{j}} \in Y_{r_{j}}, \quad \varphi\left(u_{r_{j}}\right) \rightarrow c \quad \text { and }\left.\quad \varphi\right|_{Y_{r_{j}}} ^{\prime}\left(u_{r_{j}}\right) \rightarrow 0 \quad \text { as } \quad r_{j} \rightarrow \infty
$$

contains a subsequence converging to a critical point of φ,
then φ has a sequence of negative critical values converging to 0 .

3.3 Existence of infinitely many solutions

3.3.1 Critical Case

First we study the critical case $p=2^{*}-1, \lambda=1$, that is,

$$
\left(\mathcal{P}_{K}^{\prime}\right) \begin{cases}\mathscr{L}_{K} u+\mu|u|^{q-1} u+|u|^{2^{*}-2} u=0 & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

Theorem 3.3.1. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary, $N>2 s$. Then there exists $\mu^{*}>0$ such that for all $\mu \in\left(0, \mu^{*}\right)$, problem $\left(\mathcal{P}^{\prime}{ }_{K}\right)$ has a sequence of non-trivial solutions $\left\{u_{n}\right\}_{n \geq 1}$ such that $I\left(u_{n}\right)<0$ and $I\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ where $I(\cdot)$ is the corresponding energy functional associated with $\left(\mathcal{P}^{\prime}{ }_{K}\right)$.

Remark 3.3.2. Here we would like to mention that when $K(x)=|x|^{-(N+2 s)}$, it has been proved in [9] that there exists $\Lambda>0$ such that, $\left(\mathcal{P}^{\prime}{ }_{K}\right)$ has at least two positive solutions when $\mu \in(0, \Lambda)$, no positive solution when $\mu>\Lambda$ and at least one positive solution when $\mu=\Lambda$. Chen-Deng [32] have proved that

CHAPTER 3. MULTIPLICITY RESULTS FOR EQUATIONS INVOLVING THE OPERATOR \mathscr{L}_{K}
$\left(\mathcal{P}^{\prime}{ }_{K}\right)$ has at least two positive solutions when $\mu \in\left(0, \mu_{0}\right)$ for some $\mu_{0}>0$ under the assumption that

There exists $u_{0} \in X_{0, K}(\Omega)$ with $u_{0} \geq 0$ a.e. in Ω, such that $\sup _{t \geq 0} I\left(t u_{0}\right)<\frac{s}{N} S_{K}^{\frac{N}{2 s}}$.
When $K(x)=|x|^{-(N+2 s)}$, condition (3.3.1) can be guaranteed by results of [78].

We choose an orthonormal basis $\left\{e_{j}\right\}_{j=1}^{\infty}$ of $X_{0, K}(\Omega)$ (see [76]). Next, we consider the antipodal action of $G:=\mathbb{Z} / 2$. Define

$$
\begin{equation*}
X_{j}=\mathbb{R} e_{j}, \quad Y_{k}:=\bigoplus_{j=1}^{k} X_{j}, \quad Z_{k}:=\bigoplus_{j=k}^{\infty} X_{j} . \tag{3.3.2}
\end{equation*}
$$

Lemma 3.3.3. If $1 \leq p+1<2^{*}$, then we have that

$$
\beta_{k}:=\sup _{u \in Z_{k},\|u\|_{X_{0, K}(\Omega)}=1}|u|_{L^{p+1}(\Omega)} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Proof. Clearly, $0<\beta_{k+1} \leq \beta_{k}$. Thus there exists $\beta \geq 0$, such that $\lim _{k \rightarrow \infty} \beta_{k}=\beta$. By the definition of β_{k}, for every $k \geq 1$, there exists $u_{k} \in Z_{k}$ such that $\left\|u_{k}\right\|_{X_{0, K}(\Omega)}=1$ and $\left|u_{k}\right|_{L^{p+1}(\Omega)}>\frac{\beta_{k}}{2}$. Using the definition of Z_{k}, it follows $u_{k} \rightharpoonup 0$ in $X_{0, K}(\Omega)$. Therefore Sobolev embedding implies $u_{k} \rightarrow 0$ in $L^{p+1}(\Omega)$ and this completes the proof.

Proof of Theorem 3.3.1

Proof. The energy functional associated to $\left(\mathcal{P}^{\prime}{ }_{K}\right)$ is the following

$$
\begin{align*}
I(u) & =\frac{1}{2} \int_{\mathbb{R}^{2 N}}|u(x)-u(y)|^{2} K(x-y) d x d y-\frac{\mu}{q+1} \int_{\Omega}|u|^{q+1} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \\
& =\frac{1}{2}\|u\|_{X_{0, K}(\Omega)}^{2}-\frac{\mu}{q+1} \int_{\Omega}|u|^{q+1} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \tag{3.3.3}
\end{align*}
$$

where $\mu>0$. We will show that I satisfies all the assumptions of Theorem 3.2.5. X_{j}, Y_{j}, Z_{j} are chosen as in (3.3.2) and $G:=\mathbb{Z} / 2$. Therefore (A1) is satisfied.

Next to check (D1) holds, we define

$$
\beta_{k}:=\sup _{u \in Z_{k},\|u\|_{X_{0, K}(\Omega)}=1}|u|_{L^{q+1}(\Omega)}, \quad c:=\sup _{u \in X_{0, K}(\Omega),\|u\|_{X_{0, K}(\Omega)}=1}|u|_{L^{2^{*}}(\Omega)}^{2^{*}}
$$

, and $R:=\left(\frac{2^{*}}{4 c}\right)^{\frac{1}{2^{*}-2}}$. It is easy to see, $\|u\|_{X_{0, K}(\Omega)} \leq R$ implies $\frac{c}{2^{*}}\|u\|_{X_{0, K}(\Omega)}^{2^{*}} \leq$ $\frac{1}{4}\|u\|_{X_{0, K}(\Omega)}^{2}$. Therefore for $u \in Z_{k},\|u\|_{X_{0, K}(\Omega)} \leq R$, we have

$$
\begin{align*}
I(u) & \geq \frac{\|u\|_{X_{0, K}(\Omega)}^{2}}{2}-\frac{\mu}{q+1} \beta_{k}^{q+1}\|u\|_{X_{0, K}(\Omega)}^{q+1}-\frac{c}{2^{*}}\|u\|_{X_{0, K}(\Omega)}^{2^{*}} \\
& \geq \frac{\|u\|_{X_{0, K}(\Omega)}^{2}}{4}-\frac{\mu}{q+1} \beta_{k}^{q+1}\|u\|_{X_{0, K}(\Omega)}^{q+1} \tag{3.3.4}
\end{align*}
$$

Choose $\rho_{k}:=\left(\frac{4 \mu \mu_{k}^{q+1}}{q+1}\right)^{\frac{1}{1-q}}$. Using Lemma 3.3.3, we see that $\beta_{k} \rightarrow 0$ as $k \rightarrow \infty$. As a consequence $\rho_{k} \rightarrow 0$. Thus for k large, $u \in Z_{k}$ and $\|u\|_{X_{0, K}(\Omega)}=\rho_{k}$ we have $I(u) \geq 0$ and (D1) holds true.

To see (D2) holds we note that Y_{k} is finite dimensional and in finite dimensional space all the norms are equivalent. Therefore (D2) is satisfied if we choose $r_{k}>0$ small enough (since $\mu>0$) and therefore we can choose $r_{k}=\frac{\rho_{k}}{2}$.

For k large, $u \in Z_{k},\|u\|_{X_{0, K}(\Omega)} \leq \rho_{k}$, we have from (3.3.4) that $d_{k} \geq$ $\frac{-\mu}{q+1} \beta_{k}^{q+1} \rho_{k}^{q+1}$. On the other hand as $\mu>0$ from the definition of $I(u)$ it follows $I(u) \leq \frac{\rho_{k}^{2}}{2}$. Thus $d_{k} \leq \frac{1}{2} \rho_{k}^{2}$. Using both upper and lower bounds of d_{k} and Lemma 3.3.3, we see that (D3) is also satisfied.

To check the assertion (D4), we consider a sequence $\left\{u_{r_{j}}\right\} \subset X_{0, K}(\Omega)$ such that as

$$
\begin{equation*}
\left\{u_{r_{j}}\right\} \in Y_{r_{j}}, \quad I\left(u_{r_{j}}\right) \rightarrow c,\left.\quad I^{\prime}\right|_{Y_{r_{j}}}\left(u_{r_{j}}\right) \rightarrow 0 \quad \text { as } \quad r_{j} \rightarrow \infty \tag{3.3.5}
\end{equation*}
$$

Claim: There exists $k>0$ such that if $\mu>0$ is arbitrarily chosen and

$$
\begin{equation*}
c<\frac{s}{N} S_{K}^{\frac{N}{2 s}}-k \mu^{\frac{2^{*}}{2 *-q-1}}, \tag{3.3.6}
\end{equation*}
$$

then $\left\{u_{r_{j}}\right\}$ contains a subsequence converging to a critical point of I, where $\left\{u_{r_{j}}\right\}$ is as in (3.3.5).

Assuming the claim, first let us complete the proof. Towards this, we choose $\mu^{*}=\left(\frac{s S_{K}^{\frac{N}{s} s}}{N k}\right)^{\frac{2^{*}-q-1}{2^{* s}}}$. Then $\mu \in\left(0, \mu^{*}\right)$ implies $\frac{s}{N} S_{K}^{\frac{N}{S s}}>k \mu^{\frac{2^{*}}{2 *-q-1}}$. Thus, if $c \in\left[d_{k}, 0\right)$ then we have

$$
c<0<\frac{s}{N} S_{K}^{\frac{N}{2 s}}-k \mu^{\frac{2^{*}}{2 *-q-1}} .
$$

Hence applying the above claim, we see that (D4) holds true. Therefore the result follows by Theorem 3.2.5.

Here we prove the claim dividing into four steps.
Step 1: $\left\{u_{r_{j}}\right\}$ is bounded in $X_{0, K}(\Omega)$.
This follows by standard arguments. More precisely, since $I\left(u_{r_{j}}\right)=c+o(1)$ and $\left\langle I^{\prime}\left(u_{r_{j}}\right), u_{r_{j}}\right\rangle=o(1)\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}$, computing $I\left(u_{r_{j}}\right)-\frac{1}{2}\left\langle I^{\prime}\left(u_{r_{j}}\right), u_{r_{j}}\right\rangle$, we get $\left|u_{r_{j}}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \leq C_{1}+\| u_{r_{j}}| |_{X_{0, K}(\Omega)} o(1)+C_{2}\left|u_{r_{j}}\right|_{L^{q+1}(\Omega)}^{q+1}$. Therefore using the definition of I along with Sobolev inequality yields

$$
\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2} \leq C\left[1+\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)} o(1)+\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{q+1}\right]
$$

and hence the boundedness follows. Therefore passing to a subsequence if necessary we may assume $u_{r_{j}} \rightharpoonup u$ in $X_{0, K}(\Omega), u_{r_{j}} \rightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$ for $1 \leq \gamma<2^{*}$ and point-wise.

Step 2: $\left\{u_{r_{j}}\right\}$ is a PS sequence in $X_{0, K}(\Omega)$ at level c, where c is as in (3.3.6).

To see this, let $v \in X_{0, K}(\Omega)$ be arbitrarily chosen. Then

$$
\begin{equation*}
\left\langle I^{\prime}\left(u_{r_{j}}\right), v\right\rangle=\left\langle u_{r_{j}}, v\right\rangle-\int_{\Omega}\left|u_{r_{j}}\right|^{2^{*}-2} u_{r_{j}} v d x-\mu \int_{\Omega}\left|u_{r_{j}}\right|^{q-1} u_{r_{j}} v d x \tag{3.3.7}
\end{equation*}
$$

Therefore, using Sobolev inequality and Step 1 we have,

$$
\begin{aligned}
\left|\left\langle I^{\prime}\left(u_{r_{j}}\right), v\right\rangle\right| & \leq\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}\|v\|_{X_{0, K}(\Omega)}+\int_{\Omega}\left|u_{r_{j}}\right|^{2^{*}-1}|v| d x+\mu \int_{\Omega}\left|u_{r_{j}}\right|^{q}|v| d x \\
& \leq\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}\|v\|_{X_{0, K}(\Omega)}+c_{1}\left|\left\|\left.u_{r_{j}}\right|_{X_{0, K}(\Omega)} ^{2^{*}-1}\right\| v \|_{X_{0, K}(\Omega)}\right. \\
& +c_{2} \mu\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{q}\|v\|_{X_{0, K}(\Omega)} \\
& \leq\left(\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}+c_{1}\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2^{*}-1}+c_{2} \mu\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{q}\right)\|v\|_{X_{0, K}(\Omega)} \\
& \leq C\|v\|_{X_{0, K}(\Omega)},
\end{aligned}
$$

which in turn implies $\left\|I^{\prime}\left(u_{r_{j}}\right)\right\|_{\left(X_{0, K}(\Omega)\right)^{\prime}} \leq M$ for all $j \geq 1$.
By the definition of $Y_{r_{j}}$, there exists a sequence $\left(v_{r_{j}}\right) \in Y_{r_{j}}$ such that $v_{r_{j}} \rightarrow v$ in $X_{0, K}(\Omega)$ as $r_{j} \rightarrow \infty$. Thus

$$
\begin{aligned}
\left|\left\langle I^{\prime}\left(u_{r_{j}}\right), v\right\rangle\right| & \leq\left|\left\langle I^{\prime}\left(u_{r_{j}}\right), v_{r_{j}}\right\rangle\right|+\left|\left\langle I^{\prime}\left(u_{r_{j}}\right), v-v_{r_{j}}\right\rangle\right| \\
& \leq\left\|\left.I^{\prime}\right|_{Y_{r_{j}}}\left(u_{r_{j}}\right)\right\|_{\left(X_{0, K}(\Omega)\right)^{\prime}} \|\left. v_{r_{j}}\right|_{X_{0, K}(\Omega)} \\
& +\left\|I^{\prime}\left(u_{r_{j}}\right)\right\|_{\left(X_{0, K}(\Omega)\right)^{\prime}}| | v-v_{r_{j}} \|_{X_{0, K}(\Omega)} .
\end{aligned}
$$

Combining the hypothesis $\left.I^{\prime}\right|_{r_{r_{j}}}\left(u_{r_{j}}\right) \rightarrow 0$ as $r_{j} \rightarrow \infty$ (see (3.3.5)), Step 1 and the fact that $\left\{I^{\prime}\left(u_{r_{j}}\right)\right\}$ is uniformly bounded, we have $\left|\left\langle I^{\prime}\left(u_{r_{j}}\right), v\right\rangle\right| \rightarrow 0$ as $r_{j} \rightarrow \infty$. This in turn implies that $\left\{u_{r_{j}}\right\}$ is a PS sequence in $X_{0, K}(\Omega)$ at level c, where c is as in (3.3.6).

Step 3: u satisfies $\left(\mathcal{P}^{\prime}{ }_{K}\right)$.
Using Vitali's convergence theorem via Hölder inequality and Sobolev inequality, it is not difficult to check that we can pass the limit $r_{j} \rightarrow \infty$ in (3.3.7). Thus we obtain $\left\langle I^{\prime}(u), v\right\rangle=0$ for every v in $X_{0, K}(\Omega)$. Hence, $\mathscr{L}_{K} u+\mu|u|^{q-1} u+|u|^{2^{*}-2} u=0 \quad$ in $\quad \Omega$.

Step 4: Define $v_{r_{j}}:=u_{r_{j}}-u$. Then it is not difficult to see that,

$$
\begin{equation*}
\left\|v_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2}=\left\|u_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2}-\|u\|_{X_{0, K}(\Omega)}^{2}+o(1) . \tag{3.3.8}
\end{equation*}
$$

On the other hand, by Brezis-Lieb lemma, we have

$$
\begin{equation*}
\left|u_{r_{j}}\right|_{L^{2 *}(\Omega)}^{2^{*}}=\left|v_{r_{j}}\right|_{L^{2 *}(\Omega)}^{2^{*}}+|u|_{L^{2 *}(\Omega)}^{2^{*}}+o(1) . \tag{3.3.9}
\end{equation*}
$$

CHAPTER 3. MULTIPLICITY RESULTS FOR EQUATIONS INVOLVING THE

 OPERATOR \mathscr{L}_{K}Therefore by doing a straight forward computation and using $I\left(u_{r_{j}}\right) \rightarrow c$, we get

$$
\begin{equation*}
I(u)+\frac{1}{2}\left\|v_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2}-\frac{1}{2^{*}}\left|v_{r_{j}}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \rightarrow c \tag{3.3.10}
\end{equation*}
$$

Since $\left\langle I^{\prime}\left(u_{r_{j}}\right), u_{r_{j}}\right\rangle \rightarrow 0$ and $\left\langle I^{\prime}(u), u\right\rangle=0$, from (3.3.8) and (3.3.9), we also have

$$
\left\|v_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2}-\left|v_{r_{j}}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \rightarrow 0 .
$$

Therefore, we may assume that

$$
\|\left. v_{r_{j}}\right|_{X_{0, K}(\Omega)} ^{2} \rightarrow b, \quad\left|v_{r_{j}}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \rightarrow b .
$$

By Sobolev inequality, $\left\|v_{r_{j}}\right\|_{X_{0, K}(\Omega)}^{2} \geq\left(\left|v_{r_{j}}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}\right)^{2 / 2^{*}}$. As a result, we get $b \geq S_{K} b^{2 / 2^{*}}$. We note that if $b=0$, then we are done since that implies $u_{r_{j}} \rightarrow u$ in $X_{0, K}(\Omega)$. Assume $b \neq 0$. This in turn implies $b \geq S_{K}^{\frac{N}{2 s}}$ Then by (3.3.10), we have

$$
\begin{equation*}
I(u)=c-\frac{b}{2}+\frac{b}{2^{*}} \tag{3.3.11}
\end{equation*}
$$

It is easy to see that $\left\langle I^{\prime}(u), u\right\rangle=0$ implies

$$
\begin{equation*}
I(u)=\frac{s}{N}|u|_{L^{2^{*}}(\Omega)}^{2^{*}}+\left(\frac{1}{2}-\frac{1}{q+1}\right) \mu|u|_{L^{q+1}(\Omega)}^{q+1} \tag{3.3.12}
\end{equation*}
$$

Combining (3.3.11) and (3.3.12) and using $q \in(0,1)$, we obtain

$$
\begin{align*}
c & =\frac{s}{N}\left(b+|u|_{L^{2^{*}}(\Omega)}^{2^{*}}\right)+\mu\left(\frac{1}{2}-\frac{1}{q+1}\right)|u|_{L^{q+1}(\Omega)}^{q+1} \\
& \geq \frac{s}{N}\left(S_{K}^{\frac{2 s}{N}}+|u|_{L^{2^{*}}(\Omega)}^{2^{*}}\right)-\frac{1-q}{2(1+q)} \mu|\Omega|^{2^{*}-q-1} 2^{2^{*}} \\
& \left.u\right|_{L^{2^{*}}(\Omega)} ^{q+1} \tag{3.3.13}\\
& =\frac{s}{N} S_{K}^{\frac{N}{2 s}}+\frac{s}{N}|u|_{L^{2^{*}}(\Omega)}^{2^{*}}-a \mu|u|_{L^{2^{*}}(\Omega)}^{q+1},
\end{align*}
$$

where $a:=\frac{1-q}{2(1+q)}|\Omega|^{\frac{2^{*}-q-1}{2^{*}}}>0$. We define

$$
\begin{equation*}
g(t)=\frac{s}{N} t^{2^{*}}-a \mu t^{q+1}, \quad t \geq 0 \quad \text { and } \quad k:=-\frac{1}{\mu^{\frac{2^{*}}{2^{*}-q-1}}} \min t \geq 0 \tag{3.3.14}
\end{equation*}
$$

By elementary analysis it is easy to check that if $t_{0}=\left(\frac{a \mu N}{s}\right)^{\frac{1}{2^{*}-q-1}}$, then $g(t)<0$ for $t \in\left(0, t_{0}\right), g(t) \geq 0$ for $t \geq t_{0}$ and $g(0)=0$. Hence, there exists
$t^{\prime} \in\left(0, t_{0}\right)$ for which g attains minimum and $\min _{t>0} g(t)<0$. Thus $k>0$. Hence from (3.3.13) we have

$$
c \geq \frac{s}{N} S_{K}^{\frac{N}{2 s}}-k \mu^{\frac{2^{*}}{2^{*}-q-1}}
$$

which is a contradiction to (3.3.6). Therefore, $b=0$ and the claim follows.

3.3.2 Subcritical case

In the succeeding theorem, we prove the existence of infinitely many nontrivial solutions in the subcritical case.

Theorem 3.3.4. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary, $N>2 s, s \in(0,1)$. Assume $1<p<2^{*}-1$. Then
(a) For all $\lambda>0, \mu \in \mathbb{R},\left(\mathcal{P}_{K}\right)$ has a sequence of nontrivial solutions $\left\{u_{k}\right\}_{k \geq 1}$ such that $I_{\mu}^{\lambda}\left(u_{k}\right) \rightarrow \infty$ as $k \longrightarrow \infty$. Furthermore, if $\lambda>$ $0, \mu \geq 0$, then $\left\|u_{k}\right\|_{X_{0, K}(\Omega)} \rightarrow \infty$ as $k \rightarrow \infty$.
(b) For all $\mu>0, \lambda \in \mathbb{R},\left(\mathcal{P}_{K}\right)$ has a sequence of nontrivial solutions $\left\{v_{k}\right\}_{k \geq 1}$ such that $I_{\mu}^{\lambda}\left(v_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Furthermore, if $\mu>0, \lambda \leq 0$, then $\left\|v_{k}\right\|_{X_{0, K}(\Omega)} \rightarrow 0$ as $k \rightarrow \infty$.

Remark 3.3.5. When $K(x)=|x|^{-(N+2 s)}$, Brandle, et. al [22] have proved that there exists $\Lambda>0$ such that, $\left(\mathcal{P}_{K}\right)$ has at least two positive solutions when $\mu \in(0, \Lambda)$, one positive solution when $\mu=\Lambda$ and no positive solution when $\mu>\Lambda$. For general K satisfying assumptions (2.3.10)-(2.3.12), ChenDeng [32] have proved that there exists at least two positive solutions of $\left(\mathcal{P}_{K}\right)$ when $\lambda=1$ and $\mu \in\left(0, \mu_{0}\right)$ for some $\mu_{0}>0$.

Proof of Theorem 3.3.4

CHAPTER 3. MULTIPLICITY RESULTS FOR EQUATIONS INVOLVING THE OPERATOR \mathscr{L}_{K}

Before starting the proof we like to remark that when $\mu \geq 0, \lambda>0$, Theorem 3.3.4 (a) also follows from [20, Theorem 1]. Here we give a proof which covers the entire range mentioned in Theorem 3.3.4.

Proof. (a)We assume $\mu \in \mathbb{R}$ and $\lambda>0$. We prove part (a) using Fountain theorem 3.2.4. Energy functional corresponding to $\left(\mathcal{P}_{K}\right)$ is defined by I_{μ}^{λ} (see (5.1.1)). We need to verify that I_{μ}^{λ} satisfies (A1)-(A4) of Theorem 3.2.4. We choose X_{j}, Y_{j}, Z_{j} as in (3.3.2) and $G:=\mathbb{Z} / 2$. Therefore, (A1) is satisfied.

Next to check (A2) holds, we observe that,

$$
I_{\mu}^{\lambda}(u) \leq \frac{1}{2} \|\left. u\right|_{X_{0, K}(\Omega)} ^{2}+\frac{|\mu|}{q+1}|u|_{L^{q+1}(\Omega)}^{q+1}-\frac{\lambda}{p+1}|u|_{L^{p+1}(\Omega)}^{p+1} .
$$

Since on the finite dimensional space Y_{k} all the norms are equivalent, $\lambda>0$ and $1<q+1<2<p+1$, it is easy to see that (A2) is satisfied if we choose $\rho_{k}>0$ large enough.

To see (A3) holds, we observe that

$$
\begin{equation*}
I_{\mu}^{\lambda}(u) \geq \frac{\|u\|_{X_{0, K}(\Omega)}^{2}}{2}-\frac{|\mu|}{q+1} \int_{\Omega}|u|^{q+1} d x-\frac{\lambda}{p+1} \int_{\Omega}|u|^{p+1} d x . \tag{3.3.15}
\end{equation*}
$$

Applying Hölder inequality followed by Young's inequality we obtain

$$
\int_{\Omega}|u|^{q+1} d x \leq \frac{q+1}{p+1} \int_{\Omega}|u|^{p+1} d x+\frac{p-q}{p+1}|\Omega| .
$$

Substituting back in (3.3.15), we obtain

$$
I_{\mu}^{\lambda}(u) \geq \frac{1}{2}\|u\|_{X_{0, K}(\Omega)}^{2}-\left(\frac{|\mu|}{p+1}+\frac{\lambda}{p+1}\right) \int_{\Omega}|u|^{p+1}-\frac{(p-q)|\mu|}{(p+1)(q+1)}|\Omega| .
$$

Define

$$
\beta_{k}:=\sup _{u \in Z_{k},\|u\|_{X_{0, K}(\Omega)}=1}|u|_{L^{p+1}(\Omega)} .
$$

Hence on Z_{k} we have

$$
I_{\mu}^{\lambda}(u) \geq \frac{1}{2}\|u\|_{X_{0, K}(\Omega)}^{2}-\frac{(\lambda+|\mu|) \beta_{k}^{p+1}}{p+1}\|u\|^{p+1}-\frac{(p-q)|\mu|}{(p+1)(q+1)}|\Omega| .
$$

Choosing $r_{k}^{1-p}=(\lambda+|\mu|) \beta_{k}^{p+1}$, we have, for $u \in Z_{k}$ and $\|u\|_{X_{0, K}(\Omega)}=r_{k}$,

$$
I_{\mu}^{\lambda}(u) \geq\left(\frac{1}{2}-\frac{1}{p+1}\right) r_{k}^{2}-\frac{(p-q)|\mu|}{(p+1)(q+1)}|\Omega| .
$$

Lemma 3.3.3 yields $\beta_{k} \rightarrow 0$ and hence $r_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Therefore (A3) is satisfied.

In order to verify (A4), let $\left\{u_{n}\right\} \subset X_{0}$ such that

$$
I_{\mu}^{\lambda}\left(u_{n}\right) \rightarrow c \quad \text { and } \quad\left(I_{\mu}^{\lambda}\right)^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } \quad\left(X_{0, K}(\Omega)\right)^{\prime},
$$

where $c>0$ and $\left(X_{0, K}(\Omega)\right)^{\prime}$ denotes the dual space of $X_{0, K}(\Omega)$. Following the same calculation as in Theorem 3.3.1, we get $\left\{u_{n}\right\}$ is bounded in $X_{0, K}(\Omega)$ and there exists $u \in X_{0, K}(\Omega)$ such that up to a subsequence $u_{n} \rightharpoonup u$ in $X_{0, K}(\Omega)$ and $u_{n} \rightarrow u$ in $L^{r}\left(\mathbb{R}^{N}\right)$ for every $r \in\left[1,2^{*}\right)$. Since $\left\langle\left(I_{\mu}^{\lambda}\right)^{\prime}\left(u_{n}\right), v\right\rangle=0$ for every v in $X_{0, K}(\Omega)$, passing the limit using Vitali's convergence theorem, it follows $\left\langle\left(I_{\mu}^{\lambda}\right)^{\prime}(u), v\right\rangle=0$ for every v in $X_{0, K}(\Omega)$. Therefore

$$
\begin{aligned}
o(1) & =\left\langle\left(I_{\mu}^{\lambda}\right)^{\prime}\left(u_{n}\right)-\left(I_{\mu}^{\lambda}\right)^{\prime}(u), u_{n}-u\right\rangle \\
& =\left\|u_{n}-u\right\|_{X_{0, K}(\Omega)}^{2} \\
& -\mu \int_{\Omega}\left(\left|u_{n}\right|^{q-1} u_{n}-|u|^{q-1} u\right)\left(u_{n}-u\right) d x \\
& -\lambda \int_{\Omega}\left(\left|u_{n}\right|^{p-1} u_{n}-|u|^{p-1} u\right)\left(u_{n}-u\right) d x .
\end{aligned}
$$

Again, passing the limit by Vitali, we obtain $u_{n} \rightarrow u$ in $X_{0, K}(\Omega)$. Hence, (A4) is satisfied. Therefore by Theorem 3.2.4, it follows that $\left(\mathcal{P}_{K}\right)$ has a sequence of nontrivial solution $\left\{w_{k}\right\}_{k \geq 1}$ such that $I_{\mu}^{\lambda}\left(w_{k}\right) \rightarrow \infty$ as $k \rightarrow$ ∞. Furthermore, if $\lambda>0, \mu \geq 0$, then $I_{\mu}^{\lambda}\left(w_{k}\right) \leq\left\|w_{k}\right\|_{X_{0, K}(\Omega)}^{2}$ and thus $\left\|w_{k}\right\|_{X_{0, K}(\Omega)} \rightarrow \infty$ as $k \rightarrow \infty$.
(b) This part follows from Theorem 3.2.5. We can proceed along the same line of proof of Theorem 3.3.1 to show (D1)-(D3) of Theorem 3.2.5 are satisfied. To check the assertion (D4), we consider a sequence $\left\{u_{r_{j}}\right\} \subset$
$X_{0, K}(\Omega)$ such that as

$$
\left\{u_{r_{j}}\right\} \in Y_{r_{j}}, \quad I_{\mu}^{\lambda}\left(u_{r_{j}}\right) \rightarrow c,\left.\quad\left(I_{\mu}^{\lambda}\right)\right|_{Y_{r_{j}}} ^{\prime}\left(u_{r_{j}}\right) \rightarrow 0 \quad \text { as } \quad r_{j} \rightarrow \infty
$$

We can prove exactly in the same way as in Theorem 3.3.1 that $\left\{u_{n}\right\}$ is a bounded PS sequence in $X_{0, K}(\Omega)$ at level c. Therefore, it is easy to conclude, as in part (a) that u_{n} converges strongly in $X_{0, K}(\Omega)$. Hence (D4) is also satisfied and as a result by Theorem 3.2.5, we conclude $\left(\mathcal{P}_{K}\right)$ has a sequence of nontrivial solutions $\left\{v_{k}\right\}_{k \geq 1}$ such that $c_{k}:=I_{\mu}^{\lambda}\left(v_{k}\right)<0$ and $c_{k} \rightarrow 0$ as $k \rightarrow \infty$. Using $\left\langle\left(I_{\mu}^{\lambda}\right)^{\prime}\left(u_{k}\right), u_{k}\right\rangle=0$ in the definition of $I_{\mu}^{\lambda}\left(u_{k}\right)$, we have

$$
\mu\left(1-\frac{2}{q+1}\right) \int_{\Omega}|u|^{q+1} d x+\lambda\left(1-\frac{2}{p+1}\right) \int_{\Omega}|u|^{p+1} d x=2 c_{k}<0 .
$$

Therefore, if $\mu>0, \lambda \leq 0$, then

$$
0 \leq-\lambda\left(1-\frac{2}{p+1}\right) \int_{\Omega}|u|^{p+1} d x=-2 c_{k}+\mu\left(1-\frac{2}{q+1}\right) \int_{\Omega}|u|^{q+1} d x
$$

since $1<q+1<2<p+1$. This implies, $-2 c_{k} \geq-\mu\left(1-\frac{2}{q+1}\right) \int_{\Omega}|u|^{q+1} d x$. Hence $\int_{\Omega}\left|u_{k}\right|^{q+1} d x \leq \frac{-2 c_{k} q}{\mu(2-q)}$. Moreover, $\left\langle\left(I_{\mu}^{\lambda}\right)^{\prime}\left(u_{k}\right), u_{k}\right\rangle=0$ implies $\left\|u_{k}\right\|_{X_{0, K}(\Omega)}^{2}=\mu \int_{\Omega}\left|u_{k}\right|^{q+1} d x+\lambda \int_{\Omega}\left|u_{k}\right|^{p+1} d x \leq \mu \int_{\Omega}\left|u_{k}\right|^{q+1} d x \leq \frac{-2 c_{k} q}{2-q} \rightarrow 0$, as $k \rightarrow \infty$. This completes the proof.

3.3.3 A related variational problem

In this section we consider a related problem that can be solved by doing the similar type of analysis that we did in Section 3.3.1. More precisely we consider the following problem:

$$
\begin{cases}(-\Delta)^{s} u-\frac{\alpha u}{|x|^{2 s}}=\frac{|u|^{2^{*}(t)-2} u}{|x|^{2}}+\mu|u|^{q-1} u & \text { in } \Omega \tag{3.3.16}\\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where $N>2 s, \Omega$ is an open, bounded domain in \mathbb{R}^{N} with smooth boundary, $0 \leq t<2 s, 0<q<1,2^{*}(t)=\frac{2(N-t)}{N-2 s}, \alpha<\alpha_{H}:=2^{2 s} \frac{\Gamma^{2}\left(\frac{N+2 s}{} \Gamma^{2}\left(\frac{N-2 s}{4}\right)\right.}{1 s}$ the best
fractional Hardy constant on \mathbb{R}^{N}. Thanks to the following fractional Hardy inequality :

$$
\begin{equation*}
\alpha_{H} \int_{\mathbb{R}^{N}} \frac{|u|^{2}}{|x|^{2 s}} d x \leq \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x \tag{3.3.17}
\end{equation*}
$$

which was proved by Herbst [49],
$\left(\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x-\alpha \int_{\Omega} \frac{|u(x)|^{2}}{|x|^{2 s}}\right)^{\frac{1}{2}}$ is a norm equivalent to the norm in $X_{0}(\Omega)$. Interpolating the above Hardy inequality with (4.1.1) and followed by simple calculation, we have the following fractional Hardy-Sobolev inequality

$$
C\left(\int_{\Omega} \frac{|u|^{2^{*}(t)}}{|x|^{t}} d x\right)^{\frac{2}{2^{*}(t)}} \leq \int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x-\alpha \int_{\Omega} \frac{|u(x)|^{2}}{|x|^{2 s}}
$$

Therefore we can define the quotient $S_{s}(\alpha)>0$ as follows

$$
\begin{equation*}
S_{s}(\alpha):=\inf _{u \in X_{0}, u \neq 0} \frac{\int_{\mathbb{R}^{N}}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x-\alpha \int_{\Omega} \frac{|u(x)|^{2}}{|x|^{2 s}}}{\left(\int_{\Omega} \frac{|u|^{2^{*}(t)}}{|x|^{t}} d x\right)^{\frac{2}{2^{*}(t)}}} \tag{3.3.18}
\end{equation*}
$$

The following theorem regarding existence of infinitely many nontrivial solutions for fractional Hardy-Sobolev type equation can be proved in the spirit of theorem 3.3.1.

Theorem 3.3.6. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary, $N>2 s$.Then there exists $\mu^{*}>0$ such that for all $\mu \in\left(0, \mu^{*}\right)$, problem (3.3.16) has a sequence of non-trivial solutions $\left\{u_{n}\right\}_{n \geq 1}$ such that $I\left(u_{n}\right)<0$ and $I\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ where $I(\cdot)$ is the corresponding energy functional associated with (3.3.16).

In order to prove this theorem one essentially needs to verify an argument similar to (3.3.6), where RHS of (3.3.6) should be replaced by $\frac{2 s-t}{2(N-t)} S_{s}(\alpha)^{\frac{N-t}{2 s-t}}-k \mu^{\frac{2^{*}(t)}{2 \times(t)-q-1}}$ and this would follow by the similar type of arguments as in the proof of Theorem 3.3.1.

CHAPTER 3. MULTIPLICITY RESULTS FOR EQUATIONS INVOLVING THE OPERATOR \mathscr{L}_{K}

Conclusion: In this chapter, we have established existence of infinitely many solutions using Fountain and and Dual Fountain theorem. In the local case, these results were proved by Bartsch and Bartsch-Willem (see [10, 11, 86]). We have extended these results in the non-local setting.

Chapter 4

Sign Changing Solution for

fractional Laplacian type

equations with concave-critical

nonlinearities

In this chapter we study the existence of at least one sign-changing solution of the following problem (P). More precisely, we study

$$
(P) \begin{cases}(-\Delta)^{s} u=\mu|u|^{q-1} u+|u|^{2^{*}-2} u & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

Corresponding to (P), define the energy functional I_{μ} as follows

$$
\begin{align*}
I_{\mu}(u) & :=\frac{1}{2} \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y-\frac{\mu}{q+1} \int_{\Omega}|u|^{q+1} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \\
& =\frac{1}{2}\|u\|_{X_{0}(\Omega)}^{2}-\frac{\mu}{q+1} \int_{\Omega}|u|^{q+1} d x-\frac{1}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x \tag{4.0.1}
\end{align*}
$$

We obtain existence of at least one sign-changing solution of the above problem (P) under suitable assumptions on N and q. Our method is based on the Nehari manifold technique. The main theorem of this chapter is stated below:

Theorem 4.0.1. Let Ω be a bounded domain with smooth boundary in \mathbb{R}^{N}. Assume $s \in(0,1), N>6 s, \frac{1}{2}\left(\frac{N+2 s}{N-2 s}\right)<q<1$. Then there exists $\mu^{*}>0$ such that for all $\mu \in\left(0, \mu^{*}\right)$ problem (P) has at least one sign changing solution.

4.1 Sobolev minimizer

Using [78, Lemma 9], we know

$$
\begin{equation*}
S_{s}\left(\int_{\mathbb{R}^{N}}|v(x)|^{2^{*}}\right)^{2 / 2^{*}} \leq\|v\|_{X_{0}(\Omega)}^{2} \quad \forall \quad v \in X_{0}(\Omega) \tag{4.1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{s}=\inf _{v \in H^{s}\left(\mathbb{R}^{N}\right), v \neq 0} \frac{\int_{\mathbb{R}^{2 N}} \frac{|v(x)-v(y)|^{2}}{|x-y|^{N+2 s}} d x d y}{\left(\int_{\mathbb{R}^{N}}|v(x)|^{2^{*}}\right)^{2 / 2^{*}}} . \tag{4.1.2}
\end{equation*}
$$

It is known that (see [35]), S_{s} is attained by $v_{\varepsilon} \in H^{s}\left(\mathbb{R}^{N}\right)$, where

$$
\begin{equation*}
v_{\varepsilon}(x):=\frac{k \varepsilon^{\frac{N-2 s}{4}}}{\left(\varepsilon+|x|^{2}\right)^{\frac{N-2 s}{2}}}, \quad \text { with } \quad \varepsilon>0, k \in \mathbb{R} \backslash\{0\} . \tag{4.1.3}
\end{equation*}
$$

4.2 Cut-off technique

We note that $v_{\varepsilon} \notin X_{0}(\Omega)$. Therefore we multiply v_{ε} by a suitable cut-off function ψ in order to put v_{ε} to 0 outside Ω. For this, fix $\delta>0$. Define $\Omega_{1}=$ $\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\delta\}$. We choose $\psi \in C^{\infty}\left(\mathbb{R}^{N}\right)$ such that $0 \leq \psi \leq 1$, $\psi=1$ in $\Omega_{1}, \psi=0$ in $\mathbb{R}^{N} \backslash \Omega$ and $\psi>0$ in Ω. We define

$$
\begin{equation*}
u_{\varepsilon}(x):=\psi(x) v_{\varepsilon}(x) . \tag{4.2.1}
\end{equation*}
$$

In the next section, we will discuss notions of some Nehari-type sets.

4.3 Nehari type sets

To obtain sign changing solution of (P), we need to study minimization problems of I_{μ} over suitable Nehari-type sets. We define the following sets
in the spirit of [82] (also see [31])

$$
\begin{aligned}
& \mathcal{N}:=\left\{u \in X_{0}(\Omega) \backslash\{0\}:\left\langle I_{\mu}^{\prime}(u), u\right\rangle=0\right\} ; \\
& \mathcal{N}_{0}:=\left\{u \in \mathcal{N}:(1-q)\|u\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)|u|_{L^{2^{*}}(\Omega)}^{2^{*}}=0\right\} ; \\
& \mathcal{N}^{+}:=\left\{u \in \mathcal{N}:(1-q)\|u\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)|u|_{L^{2^{*}}(\Omega)}^{2^{*}}>0\right\} ; \\
& \mathcal{N}^{-}:=\left\{u \in \mathcal{N}:(1-q)\|u\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)|u|_{L^{2^{*}}(\Omega)}^{2^{*}}<0\right\} .
\end{aligned}
$$

From [32], it is known that there exists $\mu_{*}>0$ such that, if $\mu \in\left(0, \mu_{*}\right)$, then the following minimization problem:

$$
\begin{equation*}
\tilde{\alpha}_{\mu}^{+}:=\inf _{u \in \mathcal{N}^{+}} J_{\mu}(u) \quad \text { and } \quad \tilde{\alpha}_{\mu}^{-}:=\inf _{u \in \mathcal{N}^{-}} J_{\mu}(u) \tag{4.3.1}
\end{equation*}
$$

achieve their minimum at w_{0} and w_{1} respectively, where

$$
\begin{equation*}
J_{\mu}(u):=\frac{1}{2}\|u\|_{X_{0}(\Omega)}^{2}-\frac{\mu}{q+1} \int_{\Omega}\left(u^{+}\right)^{q+1} d x-\frac{1}{2^{*}} \int_{\Omega}\left(u^{+}\right)^{2^{*}} d x . \tag{4.3.2}
\end{equation*}
$$

Moreover w_{0} and w_{1} are critical points of J_{μ}. Using maximum principle [79, Proposition 2.2.8] and followed by a simple calculation, it can be checked that, if u is a critical point of J_{μ}, then u is strictly positive in Ω (see [9]). Thus w_{0} and w_{1} are positive solution of (P). Applying the Moser iteration technique it follows that any positive solution of (P) is in $L^{\infty}(\Omega)$ (see [9, Proposition 2.2]).

4.4 Some important lemmas

This section is devoted to some important lemmas which will be needed to prove our main result Theorem 4.0.1.

Lemma 4.4.1. Suppose w_{1} is a positive solution of (P) and u_{ε} is as defined in (4.2.1). Then for every $\varepsilon>0$, small enough
(i) $A_{1}:=\int_{\Omega} w_{1}^{2^{*}-1} u_{\varepsilon} d x \leq k_{1} \varepsilon^{\frac{N-2 s}{4}}$;
(ii) $A_{2}:=\int_{\Omega} w_{1}^{q} u_{\varepsilon} d x \leq k_{2} \varepsilon^{\frac{N-2 s}{4}}$;
(iii) $A_{3}:=\int_{\Omega} w_{1} u_{\varepsilon}^{q} d x \leq k_{3} \varepsilon^{\frac{N-2 s}{4} q}$;
(iv) $A_{4}:=\int_{\Omega} w_{1} u_{\varepsilon}^{2^{*}-1} d x \leq k_{4} \varepsilon^{\frac{N+2 s}{4}}$.

Proof. Let $R, M>0$ be such that $\Omega \subset B(0, R)$ and $\left|w_{1}\right|_{L^{\infty}(\Omega)}<M$. Then

$$
\text { (i) } \begin{aligned}
A_{1}=\int_{\Omega} w_{1}^{2^{*}-1} u_{\varepsilon} d x & \leq M^{2^{*}-1}|\psi|_{L^{\infty}(\Omega)} k \varepsilon^{\frac{N-2 s}{4}} \int_{B(0, R)} \frac{d x}{\left(\varepsilon+|x|^{2}\right)^{\frac{N-2 s}{2}}} \\
& \leq C \varepsilon^{\frac{N}{2}-\frac{N-2 s}{4}} \int_{B\left(0, \frac{R}{\sqrt{\varepsilon}}\right)} \frac{d x}{\left(1+|x|^{2}\right)^{\frac{N-2 s}{2}}} \\
& \leq k_{1} \varepsilon^{\frac{N-2 s}{4}} .
\end{aligned}
$$

Proof of (ii) similar to (i).

$$
\text { (iii) } \begin{aligned}
A_{3}=\int_{\Omega} w_{1} u_{\varepsilon}^{q} d x & \leq M|\psi|_{L^{\infty}(\Omega)}^{q} k^{q} \varepsilon^{\frac{N-2 s}{4} q} \int_{B(0, R)} \frac{d x}{\left(\varepsilon+|x|^{2}\right)^{\frac{N-2 s}{2} q}} \\
& \leq C \varepsilon^{\frac{N}{2}-\frac{(N-2 s) q}{4}} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s) q}{2}}} \\
& \leq C \varepsilon^{\frac{N}{2}-\frac{(N-2 s) q}{4}}\left(\frac{R}{\sqrt{\varepsilon}}\right)^{N-(N-2 s) q} \\
& \leq k_{3} \varepsilon^{\frac{N-2 s}{4} q} .
\end{aligned}
$$

(iv) can be proved as in (iii).

Lemma 4.4.2. Let u_{ε} be as defined in (4.2.1) and $0<q<1$. Then for every $\varepsilon>0$, small

$$
\int_{\Omega}\left|u_{\epsilon}\right|^{q+1} d x= \begin{cases}k_{5} \varepsilon^{\left(\frac{N-2 s}{4}\right)(q+1)} & \text { if } 0<q<\frac{2 s}{N-2 s} \\ k_{6} \varepsilon^{\frac{N}{4}}|\ln \varepsilon|, & \text { if } q=\frac{2 s}{N-2 s}, \\ k_{7} \varepsilon^{\frac{N}{2}-\left(\frac{N-2 s}{4}\right)(q+1)} & \text { if } \frac{2 s}{N-2 s}<q<1 .\end{cases}
$$

Proof. Choose $0<R^{\prime}<R$ be such that $B\left(0, R^{\prime}\right) \subset \Omega_{1} \subset \Omega$. Then $u_{\varepsilon}=v_{\varepsilon}$ in
$B\left(0, R^{\prime}\right)$ ．Then
$\int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x \geqslant \int_{B\left(0, R^{\prime}\right)}\left|u_{\varepsilon}\right|^{q+1} d x=k^{q+1} \varepsilon^{\frac{(N-2 s)(q+1)}{4}} \int_{B\left(0, R^{\prime}\right)} \frac{d x}{\left(\varepsilon+|x|^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}}$.
Proceeding as in the proof of Lemma 4．4．1（iii），we have

$$
\begin{align*}
C \varepsilon^{\frac{N}{2}-\frac{(N-2 s)(q+1)}{4}} \int_{0}^{\frac{R^{\prime}}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}} & \leq \int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x \\
& \leq C \varepsilon^{\frac{N}{2}-\frac{(N-2 s)(q+1)}{4}} \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}} . \tag{4.4.1}
\end{align*}
$$

Case 1： $0<q<\frac{2 s}{N-2 s}$ ．
We note that

$$
\begin{equation*}
\int_{0}^{\frac{R^{\prime}}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}} \geq C \int_{\frac{R^{\prime}}{2 \sqrt{\varepsilon}}}^{\frac{R^{\prime}}{\sqrt{\varepsilon}}} r^{N-1-(N-2 s)(q+1)} d r \geq \frac{C}{\varepsilon^{\frac{N}{2}-\frac{(N-2 s)(q+1)}{2}}} \tag{4.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}} \leq \int_{0}^{\frac{R}{\sqrt{\varepsilon}}} r^{N-1-(N-2 s)(q+1)} d r \leq \frac{C}{\varepsilon^{\frac{N}{2}-\frac{(N-2 s)(q+1)}{2}}} \tag{4.4.3}
\end{equation*}
$$

Substituting back（4．4．2）and（4．4．3）into（4．4．1），we obtain $\int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x=$ $k_{5} \varepsilon^{\left(\frac{N-2 s}{4}\right)(q+1)}$ ．

Case 2：$q=\frac{2 s}{N-2 s}$ ．
Then

$$
\begin{aligned}
\int_{0}^{\frac{R^{\prime}}{\sqrt{\varepsilon}}} & \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}}
\end{aligned} \geq C \int_{1}^{\frac{R^{\prime}}{\sqrt{\varepsilon}}} r^{N-1-(N-2 s)(q+1)} d r \geq C^{\prime}|\ln \varepsilon| . ~=\frac{r^{N-1} d r}{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{2}}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}}} ⿻ ⿻ 一 𠃋 \int_{0}^{1} r^{N-1} d r+\int_{1}^{\frac{R}{\sqrt{\varepsilon}}} r^{N-1-(N-2 s)(q+1)} d r .
$$

Substituting back the above two expressions in（4．4．1），we have $\int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x=k_{6} \varepsilon^{\frac{N}{4}}|\ln \varepsilon|$ ．

Case 3: $\frac{2 s}{N-2 s}<q<1$.
Therefore $(N-2 s)(q+1)>N$ and consequently

$$
\begin{gathered}
\int_{0}^{\frac{R^{\prime}}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}} \geq C \int_{0}^{1} r^{N-1} d r=C}, \\
\int_{0}^{\frac{R}{\sqrt{\varepsilon}}} \frac{r^{N-1} d r}{\left(1+r^{2}\right)^{\frac{(N-2 s)(q+1)}{2}} \leq \int_{0}^{1} r^{N-1} d r+\int_{1}^{\infty} r^{N-1-(N-2 s)(q+1)} \leq C,}
\end{gathered}
$$

Hence $\int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x=k_{7} \varepsilon^{\frac{N}{2}-\frac{(N-2 s)(q+1)}{4}}$.

Set

$$
\begin{equation*}
\tilde{\mu}=\left(\frac{1-q}{2^{*}-q-1}\right)^{\frac{1-q}{2^{*}-2}} \frac{2^{*}-2}{2^{*}-q-1}|\Omega|^{\frac{q+1-2^{*}}{2^{*}}} S_{s}^{\frac{N(1-q)}{4 s}+\frac{q+1}{2}} . \tag{4.4.4}
\end{equation*}
$$

We prove the next three lemmas in the spirit of [82].
Lemma 4.4.3. Let $\mu \in(0, \tilde{\mu})$. For every $u \in X_{0}(\Omega), u \neq 0$, there exists unique

$$
0<t^{-}(u)<t_{0}(u)=\left(\frac{(1-q)\|u\|_{X_{0}(\Omega)}^{2}}{\left(2^{*}-1-q\right)|u|_{L^{2 *}(\Omega)}^{2 *}}\right)^{\frac{N-2 s}{4 s}}<t^{+}(u),
$$

such that

$$
\begin{array}{lll}
t^{-}(u) u \in \mathcal{N}^{+} & \text {and } \quad I_{\mu}\left(t^{-} u\right)=\min _{t \in\left[0, t_{0}\right]} I_{\mu}(t u), \\
t^{+}(u) u \in \mathcal{N}^{-} \quad \text { and } \quad I_{\mu}\left(t^{+} u\right)=\max _{t \geq t_{0}} I_{\mu}(t u) .
\end{array}
$$

Proof. From (4.0.1), for $t \geq 0$,

$$
I_{\mu}(t u)=\frac{t^{2}}{2}\|u\|_{X_{0}(\Omega)}^{2}-\frac{\mu t^{q+1}}{q+1}|u|_{L^{q+1}(\Omega)}^{q+1}-\frac{t^{2^{*}}}{2^{*}}|u|_{L^{2^{*}}(\Omega)}^{2^{2}}
$$

Therefore

$$
\frac{\partial}{\partial t} I_{\mu}(t u)=t^{q}\left(t^{1-q}\|u\|_{X_{0}(\Omega)}^{2}-t^{2^{*}-q-1}|u|_{L^{2^{*}}(\Omega)}^{2^{*}}-\mu|u|_{L^{q+1}(\Omega)}^{q+1}\right) .
$$

Define

$$
\begin{equation*}
\phi(t)=t^{1-q}\|u\|_{X_{0}(\Omega)}^{2}-t^{2^{*}-q-1}|u|_{L^{2}(\Omega)}^{2^{*}} . \tag{4.4.5}
\end{equation*}
$$

By a straight forward computation, it follows that ϕ attains maximum at the point

$$
\begin{equation*}
t_{0}=t_{0}(u)=\left(\frac{(1-q)\|u\|_{X_{0}(\Omega)}^{2}}{\left(2^{*}-1-q\right)|u|_{L^{2}(\Omega)}^{2 *}}\right)^{\frac{1}{2^{*}-2}} . \tag{4.4.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\phi^{\prime}\left(t_{0}\right)=0, \quad \phi^{\prime}(t)>0 \quad \text { if } \quad t<t_{0}, \quad \phi^{\prime}(t)<0 \quad \text { if } \quad t>t_{0} . \tag{4.4.7}
\end{equation*}
$$

Moreover, $\phi\left(t_{0}\right)=\left(\frac{1-q}{2^{*}-1-q}\right)^{\frac{1-q}{2^{*}-2}}\left(\frac{2^{*}-2}{2^{*}-1-q}\right)\left(\frac{\|u\|_{0^{*}(\Omega)}^{\left(2^{*}-q-1\right)}}{|u|_{L^{2}\left(2^{*}\right)(\Omega)}^{2^{*}(\Omega)}}\right)^{\frac{N-2 s}{4 s}}$. Therefore using (4.1.1), we have

$$
\begin{equation*}
\phi\left(t_{0}\right) \geq\left(\frac{1-q}{2^{*}-1-q}\right)^{\frac{(1-q)(N-2 s)}{4 s}} \frac{2^{*}-2}{2^{*}-1-q} S_{s}^{\frac{N(1-q)}{4 s}}\|u\|_{X_{0}(\Omega)}^{q+1} . \tag{4.4.8}
\end{equation*}
$$

Using Hölder inequality followed by Sobolev inequality (4.1.1), and the fact that $\mu \in(0, \tilde{\mu})$, we obtain

$$
\begin{aligned}
\mu \int_{\Omega}|u|^{q+1} d x \leq \mu\|u\|_{X_{0}(\Omega)}^{q+1} S_{s}^{-(q+1) / 2}|\Omega|^{2^{*-q-1}} 2^{2^{*}} & \leq \tilde{\mu}\|u\|_{X_{0}(\Omega)}^{q+1} S_{s}^{-(q+1) / 2}|\Omega|^{\frac{2^{*}-q-1}{2^{*}}} \\
& \leq \phi\left(t_{0}\right),
\end{aligned}
$$

where in the last inequality we have used expression of $\tilde{\mu}$ (see (4.4.4) and (4.4.8)). Hence, there exists $t^{+}(u)>t_{0}>t^{-}(u)$ such that

$$
\begin{equation*}
\phi\left(t^{+}\right)=\mu \int_{\Omega}|u|^{q+1}=\phi\left(t^{-}\right) \quad \text { and } \quad \phi^{\prime}\left(t^{+}\right)<0<\phi^{\prime}\left(t^{-}\right) . \tag{4.4.9}
\end{equation*}
$$

This in turn, implies $t^{+} u \in \mathcal{N}^{-}$and $t^{-} u \in \mathcal{N}^{+}$. Moreover, using (4.4.7) and (4.4.9) in the expression of $\frac{\partial}{\partial t} I_{\mu}(t u)$, we have

$$
\frac{\partial}{\partial t} I_{\mu}(t u)>0 \quad \text { when } \quad t \in\left(t^{-}, t^{+}\right) \quad \text { and }
$$

$$
\begin{gathered}
\frac{\partial}{\partial t} I_{\mu}(t u)<0 \quad \text { when } \quad t \in\left[0, t^{-}\right) \cup\left(t^{+}, \infty\right), \\
\frac{\partial}{\partial t} I_{\mu}(t u)=0 \quad \text { when } \quad t=t^{ \pm}
\end{gathered}
$$

We note that $I_{\mu}(t u)=0$ at $t=0$ and strictly negative when $t>0$ is small enough. Therefore it is easy to conclude that

$$
\max _{t \geq t_{0}} I_{\mu}(t u)=I_{\mu}\left(t^{+} u\right) \quad \text { and } \quad \min _{t \in\left[0, t_{0}\right]} I_{\mu}(t u)=I_{\mu}\left(t^{-} u\right) .
$$

Lemma 4.4.4. Let $\tilde{\mu}$ be defined as in (4.4.4). Then $\mu \in(0, \tilde{\mu})$, implies $\mathcal{N}_{0}=\emptyset$.

Proof. Suppose not. Then there exists $w \in \mathcal{N}_{0}$ such that $w \neq 0$ and

$$
\begin{equation*}
(1-q)\|w\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)|w|_{L^{2^{*}}(\Omega)}^{2^{*}}=0 \tag{4.4.10}
\end{equation*}
$$

The above expression combined with Sobolev inequality (4.1.1) yields

$$
\begin{equation*}
\|w\|_{X_{0}(\Omega)} \geq S_{s}^{N / 4 s}\left(\frac{1-q}{2^{*}-1-q}\right)^{\frac{N-2 s}{4 s}} \tag{4.4.11}
\end{equation*}
$$

As $w \in \mathcal{N}_{0} \subseteq \mathcal{N}$, using (4.4.10) and Hölder inequality followed by Sobolev inequality, we get

$$
\begin{aligned}
0 & =\|w\|_{X_{0}(\Omega)}^{2}-|w|_{L^{2^{*}}(\Omega)}^{2^{*}}-\mu|w|_{L^{q+1}(\Omega)}^{q+1} \\
& \geq\|w\|_{X_{0}(\Omega)}^{2}-\left(\frac{1-q}{2^{*}-q-1}\right)\|w\|_{X_{0}(\Omega)}^{2}-\mu|\Omega|^{1-\frac{q+1}{2^{*}}} S_{s}^{-(q+1) / 2}\|w\|_{X_{0}(\Omega)}^{q+1} .
\end{aligned}
$$

Combining the above inequality with (4.4.11) and using $\mu<\tilde{\mu}$, we have

$$
\begin{align*}
0 & \geq\|w\|_{X_{0}(\Omega)}^{q+1}\left[\left(\frac{2^{*}-2}{2^{*}-q-1}\right)\left(\frac{1-q}{2^{*}-q-1}\right)^{\frac{(N-2 s)(1-q)}{4 s}} S_{s}^{\frac{N(1-q)}{4 s}}\right. \\
& \left.-\mu|\Omega|^{1-\frac{q+1}{2^{*}}} S_{s}^{-(q+1) / 2}\right]>0, \tag{4.4.12}
\end{align*}
$$

which is a contradiction. This completes the proof.

Lemma 4.4.5. Let $\tilde{\mu}$ be defined as in (4.4.4) and $\mu \in(0, \tilde{\mu})$. Given $u \in \mathcal{N}$, there exists $\rho_{u}>0$ and a differential function $g_{\rho_{u}}: B_{\rho_{u}}(0) \rightarrow \mathbb{R}^{+}$satisfying the following:

$$
\begin{aligned}
& g_{\rho_{u}}(0)=1, \\
& \left(g_{\rho_{u}}(w)\right)(u+w) \in \mathcal{N} \quad \forall \quad w \in B_{\rho_{u}}(0), \\
& \left\langle g_{\rho_{u}}^{\prime}(0), \phi\right\rangle=\frac{2\langle u, \phi\rangle-2^{*} \int_{\Omega}|u|^{2^{*}-2} u \phi-(q+1) \mu \int_{\Omega}|u|^{q-1} u \phi}{(1-q)\|u\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)|u|_{L^{2^{*}}(\Omega)}^{2^{*}}} .
\end{aligned}
$$

Proof. Define $F: \mathbb{R}^{+} \times X_{0}(\Omega) \rightarrow \mathbb{R}$ as follows:

$$
F(t, w)=t^{1-q}\|u+w\|_{X_{0}(\Omega)}^{2}-t^{2^{*}-q-1}|u+w|_{L^{2^{*}}(\Omega)}^{2^{*}}-\mu|u+w|_{L^{q+1}(\Omega)}^{q+} .
$$

We note that $u \in \mathcal{N}$ implies

$$
F(1,0)=0, \quad \text { and } \quad \frac{\partial F}{\partial t}(1,0)=(1-q)\|u\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)|u|_{L^{2^{*}}(\Omega)}^{2^{*}} \neq 0 .
$$

Therefore, by Implicit function theorem, there exists neighbourhood $B_{\rho_{u}}(0)$ for some $\rho_{u}>0$ and a C^{1} function $g_{\rho_{u}}: B_{\rho_{u}}(0) \rightarrow \mathbb{R}^{+}$such that
(i) $g_{\rho_{u}}(0)=1, \quad(i i) F\left(g_{\rho_{u}}(w), w\right)=0, \forall w \in B_{\rho_{u}}(0)$,
(iii) $F_{t}\left(g_{\rho_{u}}(w), w\right) \neq 0, \forall w \in B_{\rho_{u}}(0), \quad(i v)\left\langle g_{\rho_{u}}^{\prime}(0), \phi\right\rangle=-\frac{\left\langle\frac{\partial F}{\partial w}(1,0), \phi\right\rangle}{\frac{\partial F}{\partial t}(1,0)}$.

Multiplying (ii) by $\left(g_{\rho_{u}}(w)\right)^{q+1}$, it follows that $\left(g_{\rho_{u}}(w)\right)(u+w) \in \mathcal{N}$. In fact, simplifying (iii), we obtain
$(1-q)\left(g_{\rho_{u}}(w)\right)^{2}\|u+w\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\left(g_{\rho_{u}}(w)\right)^{2^{*}}|u+w|_{L^{2^{*}}(\Omega)}^{2^{*}} \neq 0 \forall w \in B_{\rho_{u}}(0)$.
Thus $\left(g_{\rho_{u}}(w)\right)(u+w) \in \mathcal{N}^{-} \cup \mathcal{N}^{+}$for every $w \in B_{\rho_{u}}(0)$. The last assertion of the lemma follows from (iv).

4.5 Existence of sign-changing solution

In this section, we will establish existence of at least one sign-changing solution by finding sign-changing critical points of I_{μ}.

4.5.1 Sign changing critical points of I_{μ}

This subsection is very important in order to obtain the main result.
Define

$$
\begin{gathered}
\mathcal{N}_{1}^{-}:=\left\{u \in \mathcal{N}: u^{+} \in \mathcal{N}^{-}\right\}, \\
\mathcal{N}_{2}^{-}:=\left\{u \in \mathcal{N}:-u^{-} \in \mathcal{N}^{-}\right\},
\end{gathered}
$$

We set

$$
\begin{equation*}
\beta_{1}=\inf _{u \in \mathcal{N}_{1}^{-}} I_{\mu}(u) \quad \text { and } \quad \beta_{2}=\inf _{u \in \mathcal{N}_{2}^{-}} I_{\mu}(u) . \tag{4.5.1}
\end{equation*}
$$

Theorem 4.5.1. Assume $0<\mu<\min \left\{\tilde{\mu}, \mu_{*}, \mu_{1}\right\}$, where μ_{1} is as in Lemma 4.6.1, $\tilde{\mu}$ is as in (4.4.4) and μ_{*} is chosen such that $\tilde{\alpha}_{\mu}^{-}$is achieved in $\left(0, \mu_{*}\right)$. Let $\beta_{1}, \beta_{2}, \tilde{\alpha}_{\mu}^{-}$be defined as in (4.5.1) and (4.3.1) respectively.
(i) Let $\beta_{1}<\tilde{\alpha}_{\mu}^{-}$. Then there exists a sign changing critical point \tilde{w}_{1} of I_{μ} such that $\tilde{w}_{1} \in \mathcal{N}_{1}^{-}$and $I_{\mu}\left(\tilde{w}_{1}\right)=\beta_{1}$.
(ii) If $\beta_{2}<\tilde{\alpha}_{\mu}^{-}$, then there exists a sign changing critical point \tilde{w}_{2} of I_{μ} such that in $\tilde{w}_{2} \in \mathcal{N}_{1}^{-}$and $I_{\mu}\left(\tilde{w}_{2}\right)=\beta_{2}$.

Proof. (i) Let $\beta_{1}<\tilde{\alpha}_{\mu}^{-}$.
Claim 1: \mathcal{N}_{1}^{-}and \mathcal{N}_{2}^{-}are closed sets.
To see this, let $\left\{u_{n}\right\} \subset \mathcal{N}_{1}^{-}$such that $u_{n} \rightarrow u$ in $X_{0}(\Omega)$. It is easy to note that $\left|u_{n}\right|,|u| \in X_{0}(\Omega)$ and $\left|u_{n}\right| \rightarrow|u|$ in $X_{0}(\Omega)$. This in turn implies $u_{n}^{+} \rightarrow u^{+}$ in $X_{0}(\Omega)$ and $L^{\gamma}\left(\mathbb{R}^{N}\right)$ for $\gamma \in\left[1,2^{*}\right]$ (by (4.1.1)). Since, $u_{n} \in \mathcal{N}_{1}^{-}$, we have $u_{n}^{+} \in \mathcal{N}^{-}$. Therefore

$$
\begin{equation*}
\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}-\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}-\mu\left|u_{n}^{+}\right|_{L^{q+1}(\Omega)}^{q+1}=0 \tag{4.5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-q)\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}<0 \forall n \geq 1 . \tag{4.5.3}
\end{equation*}
$$

Passing to the limit as $n \rightarrow \infty$, we obtain $u^{+} \in \mathcal{N}$ and $(1-q)\left\|u^{+}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-\right.$ $q-1)\left|u^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \leq 0$. But, from Lemma 4.4.4, we know $\mathcal{N}_{0}=\emptyset$. Therefore $u^{+} \in \mathcal{N}^{-}$and hence \mathcal{N}_{1}^{-}is closed. Similarly it can be shown that \mathcal{N}_{2}^{-}is also closed. Hence claim 1 follows.

By Ekeland Variational Principle there exists sequence $\left\{u_{n}\right\} \subset \mathcal{N}_{1}^{-}$such that

$$
\begin{equation*}
I_{\mu}\left(u_{n}\right) \rightarrow \beta_{1} \quad \text { and } \quad I_{\mu}(z) \geq I_{\mu}\left(u_{n}\right)-\frac{1}{n}\left\|u_{n}-z\right\|_{X_{0}(\Omega)} \quad \forall \quad z \in \mathcal{N}_{1}^{-} \tag{4.5.4}
\end{equation*}
$$

Claim 2: $\left\{u_{n}\right\}$ is uniformly bounded in $X_{0}(\Omega)$.
To see this, we notice $u_{n} \in \mathcal{N}_{1}^{-}$implies $u_{n} \in \mathcal{N}$ and this in turn implies $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$, that is,

$$
\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}=\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}+\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1} .
$$

Since $I_{\mu}\left(u_{n}\right) \rightarrow \beta_{1}$, using the above equality in the expression of $I_{\mu}\left(u_{n}\right)$, we get, for n large enough

$$
\begin{aligned}
\frac{s}{N}\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2} & \leq \beta_{1}+1+\left(\frac{1}{q+1}-\frac{1}{2^{*}}\right)\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& \leq C\left(1+\left\|u_{n}\right\|_{X_{0}(\Omega)}^{q+1}\right)
\end{aligned}
$$

This implies $\left\{u_{n}\right\}$ is uniformly bounded in $X_{0}(\Omega)$.
Claim 3: There exists $b>0$ such that $\left\|u_{n}^{-}\right\|_{X_{0}(\Omega)} \geq b$ for all $n \geq 1$.
Suppose the claim is not true. Then for each $k \geq 1$, there exists $u_{n_{k}}$ such that

$$
\begin{equation*}
\left\|u_{n_{k}}^{-}\right\|_{X_{0}(\Omega)}<\frac{1}{k} \forall k \geq 1 \tag{4.5.5}
\end{equation*}
$$

We note that for any $u \in X_{0}(\Omega)$, we have

$$
\begin{align*}
\|u\|_{X_{0}(\Omega)}^{2} & =\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y \\
& =\int_{\mathbb{R}^{2 N}} \frac{\left|\left(u^{+}(x)-u^{+}(y)\right)-\left(u^{-}(x)-u^{-}(y)\right)\right|^{2}}{|x-y|^{N+2 s}} d x d y \\
& =\left\|u^{+}\right\|_{X_{0}(\Omega)}^{2}+\left\|u^{-}\right\|_{X_{0}(\Omega)}^{2}+2 \int_{\mathbb{R}^{2 N}} \frac{u^{+}(x) u^{-}(y)+u^{+}(y) u^{-}(x)}{|x-y|^{N+2 s}} d x d y \\
& \geq\left\|u^{+}\right\|_{X_{0}(\Omega)}^{2}+\left\|u^{-}\right\|_{X_{0}(\Omega)}^{2} . \tag{4.5.6}
\end{align*}
$$

By a simple calculation, it follows
$|u|_{L^{2^{*}}(\Omega)}^{2^{*}}=\left|u^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}+\left|u^{-}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \quad$ and $\quad|u|_{L^{q+1}(\Omega)}^{q+1}=\left|u^{+}\right|_{L^{q+1}(\Omega)}^{q+1}+\left|u^{-}\right|_{L^{q+1}(\Omega)}^{q+1}$.

Combining (4.5.6) and (4.5.7), we obtain

$$
\begin{equation*}
I_{\mu}(u) \geq I_{\mu}\left(u^{+}\right)+I_{\mu}\left(u^{-}\right) \quad \forall \quad u \in X_{0}(\Omega) \tag{4.5.8}
\end{equation*}
$$

Moreover, (4.5.5) implies $\left\|u_{n_{k}}^{-}\right\|_{X_{0}(\Omega)} \rightarrow 0$ and therefore by Sobolev inequality

$$
\left|u_{n_{k}}^{-}\right|_{L^{2^{*}}(\Omega)} \rightarrow 0, \quad\left|u_{n_{k}}^{-}\right|_{L^{q+1}(\Omega)} \rightarrow 0, \quad \text { as } \quad k \rightarrow \infty
$$

Consequently, $I_{\mu}\left(u_{n_{k}}^{-}\right) \rightarrow 0$ as $k \rightarrow \infty$. As a result, we have
$\beta_{1}=I_{\mu}\left(u_{n_{k}}\right)+o(1) \geq I_{\mu}\left(u_{n_{k}}^{+}\right)+I_{\mu}\left(u_{n_{k}}^{-}\right)+o(1)=J_{\mu}\left(u_{n_{k}}^{+}\right)+o(1) \geq \tilde{\alpha}_{\mu}^{-}+o(1)$.

This is a contradiction to the hypothesis. Hence claim 3 follows.
Claim 4: $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0}(\Omega)\right)^{\prime}$ as $n \rightarrow \infty$.
Since $u_{n} \in \mathcal{N}_{1}^{-} \subset \mathcal{N}$, by Lemma 4.4.5 applied to the element u_{n}, there exists

$$
\begin{equation*}
\rho_{n}:=\rho_{u_{n}} \quad \text { and } \quad g_{n}:=g_{\rho_{u_{n}}} \tag{4.5.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
g_{n}(0)=1, \quad\left(g_{n}(w)\right)\left(u_{n}+w\right) \in N \quad \forall \quad w \in B_{\rho_{n}}(0) . \tag{4.5.10}
\end{equation*}
$$

Choose $0<\tilde{\rho}_{n}<\rho_{n}$ such that $\tilde{\rho}_{n} \rightarrow 0$. Let $v \in X_{0}(\Omega)$ with $\|v\|_{X_{0}(\Omega)}=1$.

Define

$$
v_{n}:=-\tilde{\rho}_{n}\left[v^{+} \chi_{\left\{u_{n} \geq 0\right\}}-v^{-} \chi_{\left\{u_{n} \leq 0\right\}}\right]
$$

and

$$
\begin{aligned}
z_{\tilde{\rho}_{n}} & :=\left(g_{n}\left(v_{n}^{-}\right)\right)\left(u_{n}-v_{n}\right) \\
& =: z_{\tilde{\rho}_{n}}^{1}-z_{\tilde{\rho}_{n}}^{2},
\end{aligned}
$$

where $z_{\tilde{\rho}_{n}}^{1}:=\left(g_{n}\left(v_{n}^{-}\right)\right)\left(u_{n}^{+}+\tilde{\rho}_{n} v^{+} \chi_{\left\{u_{n} \geq 0\right\}}\right)$ and $z_{\tilde{\rho}_{n}}^{2}:=\left(g_{n}\left(v_{n}^{-}\right)\right)\left(u_{n}^{-}+\right.$ $\left.\tilde{\rho}_{n} v^{-} \chi_{\left\{u_{n} \leq 0\right\}}\right)$. Note that $v_{n}^{-}=\tilde{\rho}_{n} v^{+} \chi_{\left\{u_{n} \geq 0\right\}}$. So, $\left\|v_{n}^{-}\right\|_{X_{0}(\Omega)} \leq \tilde{\rho}_{n}\|v\|_{X_{0}(\Omega)} \leq$ $\tilde{\rho}_{n}$. Hence taking $w=v_{n}^{-}$in (4.5.10) we have, $z_{\tilde{\rho}_{n}}^{+}=z_{\tilde{\rho}_{n}}^{1} \in \mathcal{N}^{-}$so $z_{\tilde{\rho}_{n}} \in \mathcal{N}_{1}^{-}$. Hence,

$$
I_{\mu}\left(z_{\tilde{\rho}_{n}}\right) \geq I_{\mu}\left(u_{n}\right)-\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} .
$$

This implies,

$$
\begin{align*}
\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} & \geq I_{\mu}\left(u_{n}\right)-I_{\mu}\left(z_{\tilde{\rho}_{n}}\right) \\
& =\left\langle I_{\mu}^{\prime}\left(u_{n}\right), u_{n}-z_{\tilde{\rho}_{n}}\right\rangle+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} \\
& =-\left\langle I_{\mu}^{\prime}\left(u_{n}\right), z_{\tilde{\rho}_{n}}\right\rangle+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)}, \tag{4.5.11}
\end{align*}
$$

as $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$ for all n. Let $w_{n}=\tilde{\rho}_{n} v$. Then,

$$
\begin{array}{r}
\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} \geq-\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}+z_{\tilde{\rho}_{n}}\right\rangle+\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}\right\rangle \\
+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} . \tag{4.5.12}
\end{array}
$$

Now, $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}\right\rangle=\left\langle I_{\mu}^{\prime}\left(u_{n}\right), \tilde{\rho}_{n} v\right\rangle=\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle$. Define

$$
\overline{v_{n}}:=v^{+} \chi_{\left\{u_{n} \geq 0\right\}}-v^{-} \chi_{\left\{u_{n} \leq 0\right\}} .
$$

So, $z_{\tilde{\rho}_{n}}=g_{n}\left(v_{n}^{-}\right)\left(u_{n}-\tilde{\rho}_{n} \overline{v_{n}}\right)$. Hence we have,

$$
\begin{array}{r}
\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}+z_{\tilde{\rho}_{n}}\right\rangle=\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}+g_{n}\left(v_{n}^{-}\right)\left(u_{n}-\tilde{\rho}_{n} \overline{v_{n}}\right)\right\rangle \\
=\left\langle I_{\mu}^{\prime}\left(u_{n}\right), \tilde{\rho}_{n} v-g_{n}\left(v_{n}^{-}\right) \tilde{\rho}_{n} \overline{v_{n}}\right\rangle \\
=\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle \tag{4.5.13}
\end{array}
$$

Using (4.5.13) in (4.5.12), we have

$$
\begin{array}{r}
\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} \geq-\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle \\
+\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} . \tag{4.5.14}
\end{array}
$$

First we will estimate $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle$. For this,

$$
\begin{aligned}
v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}} & =v^{+}-v^{-}-g_{n}\left(v_{n}^{-}\right)\left[v^{+} \chi_{\left\{u_{n} \geq 0\right\}}-v^{-} \chi_{\left\{u_{n} \leq 0\right\}}\right] \\
& =v^{+}\left[g_{n}(0)-g_{n}\left(v_{n}^{-}\right) \chi_{\left\{u_{n} \geq 0\right\}}\right]-v^{-}\left[g_{n}(0)-g_{n}\left(v_{n}^{-}\right) \chi_{\left\{u_{n} \leq 0\right\}}\right] \\
& =-v^{+}\left[\left\langle g_{n}^{\prime}(0), v_{n}^{-}\right\rangle+o(1)\left\|v_{n}^{-}\right\|_{X_{0}(\Omega)}\right]+v^{-}\left[\left\langle g_{n}^{\prime}(0), v_{n}^{-}\right\rangle\right. \\
& \left.+o(1)\left\|v_{n}^{-}\right\|_{X_{0}(\Omega)}\right] \\
& =-v^{+} \tilde{\rho}_{n}\left[\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0}(\Omega)}\right]+v^{-} \tilde{\rho}_{n}\left[\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle\right. \\
& \left.+o(1)\left\|v^{+}\right\|_{X_{0}(\Omega)}\right] \\
& =-\tilde{\rho}_{n}\left[\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0}(\Omega)}\right] v .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle=-\tilde{\rho}_{n}\left(\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0}(\Omega)}\right)\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle . \tag{4.5.15}
\end{equation*}
$$

Claim : $g_{n}\left(v_{n}^{-}\right)$is uniformly bounded in $X_{0}(\Omega)$.
To see this, we observe that from (4.5.10) we have, $g_{n}\left(v_{n}^{-}\right)\left(u_{n}^{+}+v_{n}^{-}\right) \in$ $\mathcal{N}^{-} \subset \mathcal{N}$, which implies,

$$
\left\|c_{n} \tilde{\psi}_{n}\right\|_{X_{0}(\Omega)}^{2}-\mu\left|c_{n} \tilde{\psi}_{n}\right|_{L^{q+1}(\Omega)}^{q+1}-\left|c_{n} \tilde{\psi}_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}=0
$$

where $c_{n}:=g_{n}\left(v_{n}^{-}\right)$and $\tilde{\psi}_{n}:=u_{n}^{+}+v_{n}^{-}$. Dividing by $c_{n}^{2^{*}}$ we have,

$$
\begin{equation*}
c_{n}^{2-2^{*}}\left\|\tilde{\psi}_{n}\right\|_{X_{0}(\Omega)}^{2}-\mu c_{n}^{q+1-2^{*}}\left|\tilde{\psi}_{n}\right|_{L^{q+1}(\Omega)}^{q+1}=\left|\tilde{\psi}_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \tag{4.5.16}
\end{equation*}
$$

Note that $\left\|\tilde{\psi}_{n}\right\|_{X_{0}(\Omega)}$ is uniformly bounded above as $\left\|u_{n}\right\|_{X_{0}(\Omega)}$ is uniformly bounded and $\tilde{\rho}_{n}=o(1)$. Also, $\left\|\tilde{\psi}_{n}\right\|_{X_{0}(\Omega)} \geq\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}-\tilde{\rho}_{n}\|v\|_{X_{0}(\Omega)}$. Note that $\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)} \geq \tilde{b}$ for large n. If not, then $\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. As $u_{n} \in \mathcal{N}_{1}^{-}$,
so $u_{n}^{+} \in N_{\mu}^{-}$. Now, \mathcal{N}^{-}is a closed set and $0 \notin \mathcal{N}^{-}$and therefore $\left\|u_{n}^{-}\right\|_{X_{0}(\Omega)} \nrightarrow 0$ as $n \rightarrow \infty$. Thus there exists $\tilde{b} \geq 0$ such that $\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)} \geq \tilde{b}>0$. This in turn implies that $\left\|\tilde{\psi}_{n}\right\|_{X_{0}(\Omega)} \geq C$, for some $C>0$ by choosing $\tilde{\rho}_{n}$ small enough. Consequently, if c_{n} is not uniformly bounded, we obtain LHS of (4.5.16) converges to 0 as $n \rightarrow \infty$.

On the other hand,

$$
\left|\tilde{\psi}_{n}\right|_{L^{2^{*}}(\Omega)} \geq\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}-\tilde{\rho}_{n}|v|_{L^{2^{*}}(\Omega)}>c,
$$

for some positive constant c as $\rho_{n}=o(1)$ and $u_{n}^{+} \in N_{\mu}^{-}$implies

$$
\left(2^{*}-1-q\right)\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}>(1-q)\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}>(1-q) \tilde{b}^{2}
$$

Hence, the claim follows.
Now using the fact that $g_{n}(0)=1$ and the above claim we obtain

$$
\begin{aligned}
\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0}(\Omega)} & \leq\left\|u_{n}\right\|_{X_{0}(\Omega)}\left|1-g_{n}\left(v_{n}^{-}\right)\right|+\tilde{\rho}_{n}\left\|\overline{v_{n}}\right\|_{X_{0}(\Omega)} g_{n}\left(v_{n}^{-}\right) \\
& \leq\left\|u_{n}\right\|_{X_{0}(\Omega)}\left[\left|\left\langle g_{n}^{\prime}(0), v_{n}^{-}\right\rangle\right|+o(1)\left\|\bar{v}_{n}\right\|_{X_{0}(\Omega)}\right] \\
& +\tilde{\rho}_{n}\|v\|_{X_{0}(\Omega)} g_{n}\left(v_{n}^{-}\right) \\
& \leq \tilde{\rho}_{n}\left[\left\|u_{n}\right\|_{X_{0}(\Omega)}\left\langle g_{n}^{\prime}(0),{\overline{v_{n}}}^{+}\right\rangle+o(1)\|v\|_{X_{0}(\Omega)}\right. \\
& \left.+\|v\|_{X_{0}(\Omega)} g_{n}\left(v_{n}^{-}\right)\right] \\
& \leq \tilde{\rho}_{n} C .
\end{aligned}
$$

Substituting this and (4.5.15) in (4.5.14) yields

$$
\tilde{\rho}_{n}\left(\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0}(\Omega)}\right)\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle+\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle \tilde{\rho}_{n}+\tilde{\rho}_{n} o(1) \leq \tilde{\rho}_{n} \cdot \frac{C}{n} .
$$

This implies

$$
\left[\left(\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0}(\Omega)}\right)+1\right]\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle \leq \frac{C}{n}+o(1) \quad \text { for all } \quad n \geq n_{0} .
$$

Since $\left|\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle\right|$is uniformly bounded (see Lemma 4.6.1 in Appendix), letting $n \rightarrow \infty$ we have $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0}(\Omega)\right)^{\prime}$. Hence the step 4 follows.

Therefore, $\left\{u_{n}\right\}$ is a (PS) sequence of I_{μ} at level $\beta_{1}<\tilde{\alpha}_{\mu}^{-}$. From [32, Proposition 4.2], it follows that

$$
\tilde{\alpha}_{\mu}^{-}<\frac{s}{N} S_{s}^{\frac{N}{2 s}}-M \mu^{\frac{2^{*}}{2^{*}-q-1}} \quad \text { for } \quad \mu \in\left(0, \mu_{*}\right),
$$

where $M=\frac{(2 N-(N-2 s)(q+1))(1-q)}{4(q+1)}\left(\frac{(1-q)(N-2 s)}{4 s}\right)^{\frac{q+1}{2^{*}-q-1}}|\Omega|$.
Therefore,

$$
\beta_{1}<\tilde{\alpha}_{\mu}^{-}<\frac{s}{N} S_{s}^{\frac{N}{2 s}}-M \mu^{\frac{2^{*}}{2^{*}-q-1}} .
$$

On the other hand, it follows from the proof of Theorem 3.3.1 (see (3.3.6)) that I_{μ} satisfies PS at level c for

$$
c<\frac{s}{N} S_{s}^{\frac{N}{2 s}}-k \mu^{\frac{2^{*}}{2^{*}-q-1}}
$$

where k is as in (3.3.14). By elementary analysis, it follows $k=M$. Therefore there exists $u \in X_{0}(\Omega)$ such that $u_{n} \rightarrow u$ in $X_{0}(\Omega)$. By doing a simple calculation we get $u_{n}^{-} \rightarrow u^{-}$in $X_{0}(\Omega)$. Consequently, by Claim $3\left\|u^{-}\right\|_{X_{0}(\Omega)} \geq$ b. As \mathcal{N}_{1}^{-}is a closed set and $u_{n} \rightarrow u$, we obtain $u \in \mathcal{N}_{1}^{-}$, that is, $u^{+} \in \mathcal{N}^{-}$and $u^{+} \neq 0$. Therefore u is a solution of (P) with u^{+}and u^{-}are both nonzero. Hence, u is a sign-changing solution of (P). Define $\tilde{w}_{1}:=u$. This completes the proof of part (i) of the theorem.

Proof of part (ii) is similar to part (i) and we omit the proof.

Theorem 4.5.2. Let $\beta_{1}, \beta_{2}, \tilde{\alpha}_{\mu}^{-}$be defined as in (4.5.1) and (4.3.1) respectively. Assume $\beta_{1}, \beta_{2} \geq \tilde{\alpha}_{\mu}^{-}$. Then there exists $\mu_{0}>0$ such that for any $\mu \in\left(0, \mu_{0}\right), I_{\mu}$ has a sign changing critical point.

We need the following Proposition to prove the above Theorem 4.5.2.
Proposition 4.5.3. Let $N>6 s$ and $\frac{1}{2}\left(\frac{N+2 s}{N-2 s}\right)<q<1$. Assume $0<\mu<$ $\min \left\{\mu_{*}, \tilde{\mu}\right\}$, where $\tilde{\mu}$ is as defined in (4.4.4) and $\mu_{*}>0$ is chosen such that
$\tilde{\alpha}_{\mu}^{-}$is achieved in $\left(0, \mu_{*}\right)$. Then for $\varepsilon>0$ sufficiently small, we have

$$
\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right)<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s}^{\frac{N}{2_{s}^{s}}},
$$

where w_{1} and u_{ε} are as in (4.3.1) and (4.2.1) respectively.

To prove the above proposition, we need the following lemmas.

Lemma 4.5.4. Let w_{1} and μ be as in Proposition 4.5.3. Then

$$
\sup _{s>0} I_{\mu}\left(s w_{1}\right)=\tilde{\alpha}_{\mu}^{-} .
$$

Proof. By the definition of $\tilde{\alpha}_{\mu}^{-}$, we have $\tilde{\alpha}_{\mu}^{-}=\inf _{u \in \mathcal{N}^{-}} J_{\mu}(u)=J_{\mu}\left(w_{1}\right)=$ $I_{\mu}\left(w_{1}\right)$. In the last equality we have used the fact that $w_{1}>0$. Define $g(s):=$ $I_{\mu}\left(s w_{1}\right)$. From the proof of Lemma 4.4.3, it follows that there exists only two critical points of g, namely $t^{+}\left(w_{1}\right)$ and $t^{-}\left(w_{1}\right)$ and $\max _{s>0} g(s)=g\left(t^{+}\left(w_{1}\right)\right)$. On the other hand $\left\langle I^{\prime}{ }_{\mu}\left(w_{1}\right), v\right\rangle=0$ for every $v \in X_{0}(\Omega)$. Therefore $g^{\prime}(1)=0$. This in turn implies either $t^{+}\left(w_{1}\right)=1$ or $t^{-}\left(w_{1}\right)=1$.

Claim: $t^{-}\left(w_{1}\right) \neq 1$.
To see this, we note that $t^{-}\left(w_{1}\right)=1$ implies $t^{-}\left(w_{1}\right) w_{1} \in \mathcal{N}^{-}$as $w_{1} \in \mathcal{N}^{-}$. Also, from Lemma 4.4.3, we know $t^{-}\left(w_{1}\right) w_{1} \in \mathcal{N}^{+}$. Thus $\mathcal{N}^{+} \cap \mathcal{N}^{-} \neq \emptyset$, which is a contradiction. Hence the claim follows.

Therefore $t^{+}\left(w_{1}\right)=1$ and this completes the proof.

Lemma 4.5.5. Let u_{ε} be as in (4.2.1) and μ be as in Proposition 4.5.3. Then for $\varepsilon>0$ sufficiently small, we have

$$
\sup _{t \in \mathbb{R}} I_{\mu}\left(t u_{\varepsilon}\right)=\frac{s}{N} S_{s}^{\frac{N}{s s}}+C \varepsilon^{\frac{(N-2 s) N}{2 s}}-k_{8}\left|u_{\varepsilon}\right|^{q+1} .
$$

Proof. Define $\tilde{\phi}(t)=\frac{t^{2}}{2}\left\|u_{\varepsilon}\right\|_{X_{0}(\Omega)}^{2}-\frac{t^{2^{*}}}{2^{*}}\left|u_{\varepsilon}\right|_{L^{2^{*}}(\Omega)}^{2}$. Thus $I_{\mu}\left(t u_{\varepsilon}\right)=\tilde{\phi}(t)-$ $\mu^{\frac{q+1}{q+1}}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1}$. On the other hand, applying the analysis done in Lemma 4.4.3 to u_{ε}, we obtain there exists $\left(t_{0}\right)_{\varepsilon}=\left(\frac{(1-q)\left\|u_{\varepsilon}\right\|_{X_{0}(\Omega)}^{2}}{\left(2^{*}-1-q\right)\left|u_{\varepsilon}\right|_{L^{2}}^{*}(\Omega)}\right)^{\frac{N-2 s}{4 s}}<t_{\varepsilon}^{+}$such
that

$$
\begin{aligned}
\sup _{t \in \mathbb{R}} I_{\mu}\left(t u_{\varepsilon}\right)=\sup _{t \geq 0} I_{\mu}\left(t u_{\varepsilon}\right)=I_{\mu}\left(t_{\varepsilon}^{+} u_{\varepsilon}\right) & =\tilde{\phi}\left(t_{\varepsilon}^{+}\right)-\mu \frac{\left(t_{\varepsilon}^{+}\right)^{q+1}}{q+1}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& \leq \sup _{t \geq 0} \tilde{\phi}(t)-\mu \frac{\left(t_{0}\right)_{\varepsilon}^{q+1}}{q+1}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1}
\end{aligned}
$$

Substituting the value of $\left(t_{0}\right)_{\varepsilon}$ and using Sobolev inequality (4.1.1), we have

$$
\mu \frac{\left(t_{0}\right)_{\varepsilon}^{q+1}}{q+1} \geq \frac{\mu}{q+1}\left(\frac{1-q}{2^{*}-q-1} S_{s}\right)^{\frac{(N-2 s)(q+1)}{4 s}}=k_{8}
$$

Consequently,

$$
\begin{equation*}
\sup _{t \in \mathbb{R}} I_{\mu}\left(t u_{\varepsilon}\right) \leq \sup _{t \geq 0} \tilde{\phi}(t)-k_{8}\left|u_{\varepsilon}\right|_{L^{a+1}(\Omega)}^{q+1} . \tag{4.5.17}
\end{equation*}
$$

Using elementary analysis, it is easy to check that $\tilde{\phi}$ attains it's maximum at the point $\tilde{t}_{0}=\left(\frac{\left\|u_{\varepsilon}\right\|_{X_{0}(\Omega)}^{2}}{\left|u_{\varepsilon}\right|_{L^{*}}^{*}(\Omega)}\right)^{\frac{1}{2^{*}-2}}$ and $\tilde{\phi}\left(t_{0}\right)=\frac{s}{N}\left(\frac{\left\|u_{\varepsilon}\right\|_{X_{0}(\Omega)}^{2}}{\left|u_{\varepsilon}\right|_{L^{2}}(\Omega)}\right)^{\frac{N}{2 s}}$. Moreover, from Proposition 21 and Proposition 22 of [78], it follows

$$
\left\|u_{\varepsilon}\right\|_{X_{0}(\Omega)}^{2}=S_{s}^{\frac{N}{2 s}}+O\left(\varepsilon^{N-2 s}\right), \quad \int_{\mathbb{R}^{N}}\left|u_{\varepsilon}\right|^{2^{*}} d x=S_{s}^{\frac{N}{2 s}}+O\left(\varepsilon^{N}\right)
$$

As a result,

$$
\begin{equation*}
\tilde{\phi}\left(t_{0}\right) \leq \frac{s}{N}\left[\frac{S_{s}^{\frac{N}{2 s}}+O\left(\varepsilon^{N-2 s}\right)}{\left(S_{s}^{\frac{N}{2 s}}+O\left(\varepsilon^{N}\right)\right)^{\frac{2}{2 s}}}\right]^{\frac{N}{2 s}} \leq \frac{s}{N}\left[\frac{S_{s}^{\frac{N}{2 s}}+O\left(\varepsilon^{N-2 s}\right)}{\left(S_{s}^{\frac{N}{2 s}}\right)}\right]^{\frac{2}{2 s}} \leq \frac{s}{2^{2 s}} S_{s}^{\frac{N}{2 s}}+C \varepsilon^{\frac{(N-2 s) N}{2 s}} \tag{4.5.18}
\end{equation*}
$$

In the last inequality we have used the fact that $\varepsilon>0$ is arbitrary small.
Substituting back (4.5.18) into (4.5.17), completes the proof.

Proof of Proposition 4.5.3: Note that, for fixed a and $b, I_{\mu}\left(\eta\left(a w_{1}-\right.\right.$ $\left.\left.b u_{\varepsilon}\right)\right) \rightarrow-\infty$ as $|n| \rightarrow \infty$. Therefore $\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right)$ exists and supremum will be attained in $a^{2}+b^{2} \leq R^{2}$, for some large $R>0$. Thus it is enough to estimate $I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right)$ in $\left\{(a, b) \in \mathbb{R}^{+} \times \mathbb{R}: a^{2}+b^{2} \leq R^{2}\right\}$. Using elementary inequality, there exists $d(m)>0$ such that

$$
\begin{equation*}
|a+b|^{m} \geq|a|^{m}+|b|^{m}-d\left(|a|^{m-1}|b|+|a \| b|^{m-1}\right) \quad \forall \quad a, b \in \mathbb{R}, m>1 . \tag{4.5.19}
\end{equation*}
$$

Therefore, $a^{2}+b^{2} \leq R^{2}$ implies

$$
\begin{aligned}
I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right) & \leq \frac{1}{2}\left\|a w_{1}\right\|_{X_{0}(\Omega)}^{2}-a b\left\langle w_{1}, u_{\varepsilon}\right\rangle+\frac{1}{2}\left\|b u_{\varepsilon}\right\|_{X_{0}(\Omega)}^{2} \\
& -\frac{1}{2^{*}} \int_{\Omega}\left|a w_{1}\right|^{2^{*}} d x-\frac{1}{2^{*}} \int_{\Omega}\left|b u_{\varepsilon}\right|^{2^{*}} d x \\
& -\frac{\mu}{q+1} \int_{\Omega}\left|a w_{1}\right|^{q+1} d x-\frac{\mu}{q+1} \int_{\Omega}\left|b u_{\varepsilon}\right|^{\mid+1} d x \\
& +C\left(\int_{\Omega}\left|a w_{1}\right|^{2^{*}-1}\left|b u_{\varepsilon}\right| d x+\int_{\Omega}\left|a w_{1} \| b u_{\varepsilon}\right|^{2^{*}-1} d x\right) \\
& +C\left(\int_{\Omega}\left|a w_{1}\right|^{q}\left|b u_{\varepsilon}\right| d x+\int_{\Omega}\left|a w_{1} \| b u_{\varepsilon}\right|^{q} d x\right) \\
& =I_{\mu}\left(a w_{1}\right)+I_{\mu}\left(b u_{\varepsilon}\right)-a b \mu \int_{\Omega}\left|w_{1}\right|^{q-1} w_{1} u_{\varepsilon} d x \\
& -a b \int_{\Omega}\left|w_{1}\right|^{2^{*}-2} w_{1} u_{\varepsilon} d x \\
& +C\left(\int_{\Omega}\left|w_{1}\right|^{2^{*}-1}\left|u_{\varepsilon}\right| d x+\int_{\Omega}\left|w_{1} \| u_{\varepsilon}\right|^{2^{*}-1} d x\right) \\
& +C\left(\int_{\Omega}\left|w_{1}\right|^{q}\left|u_{\varepsilon}\right| d x+\int_{\Omega}\left|w_{1} \| u_{\varepsilon}\right|^{q} d x\right) .
\end{aligned}
$$

Using Lemmas 4.4.1, 4.5.4 and 4.5.5 we estimate in $a^{2}+b^{2} \leq R^{2}$,
$I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right) \leq \tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s}^{\frac{N}{2 s}}-k_{8}\left|u_{\varepsilon}\right|^{q+1}+C\left(\varepsilon^{\frac{(N-2 s) N}{2 s}}+\varepsilon^{\frac{N-2 s}{4}}+\varepsilon^{\frac{(N-2 s) q}{4}}+\varepsilon^{\frac{N+2 s}{4}}\right)$.
Since $N>2 s$ and $q \in(0,1)$, clearly $\varepsilon^{\left(\frac{N-2 s}{4}\right) q}$ is the dominating term among all the terms inside the bracket. For the term $k_{8}\left|u_{\varepsilon}\right|^{q+1}$, we invoke Lemma 4.4.2. Therefore when $\frac{2 s}{N-2 s}<q<1$, we have

$$
\begin{aligned}
I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right) \leq & \tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s}^{\frac{N}{2 s}}-k_{9} \varepsilon^{\frac{N}{2}-\left(\frac{N-2 s}{4}\right)(q+1)} \\
& +C\left(\varepsilon^{\frac{(N-2 s) N}{2 s}}+\varepsilon^{\frac{N-2 s}{4}}+\varepsilon^{\frac{(N-2 s) q}{4}}+\varepsilon^{\frac{N+2 s}{4}}\right)
\end{aligned}
$$

This in turn implies, when $\frac{1}{2}\left(\frac{N+2 s}{N-2 s}\right)<q<1$ and $N>6 s, \varepsilon^{\frac{N}{2}-\left(\frac{N-2 s}{4}\right)(q+1)}$ should be the dominating one among all the ε terms and hence in this case, taking $\varepsilon>0$ to be small enough, we obtain

$$
\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right)<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s}^{\frac{N}{2 s}} .
$$

Proof of Theorem 4.5.2: Define $\mu_{0}:=\min \left\{\tilde{\mu}, \mu_{*}\right\}$ and

$$
\begin{equation*}
c_{2}: \inf _{u \in \mathcal{N}_{*}^{*}} I_{\mu}(u), \tag{4.5.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{N}_{*}^{-}:=\mathcal{N}_{1}^{-} \cap \mathcal{N}_{2}^{-} \tag{4.5.21}
\end{equation*}
$$

Let $\mu \in\left(0, \mu_{0}\right)$. Using Ekland's variational principle and similar to the proof of Theorem 4.5.1, we obtain a sequence $\left\{u_{n}\right\} \in \mathcal{N}_{*}^{-}$satisfying

$$
I_{\mu}\left(u_{n}\right) \rightarrow c_{2}, \quad I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } \quad\left(X_{0}(\Omega)\right)^{\prime} .
$$

Thus $\left\{u_{n}\right\}$ is a (PS) sequence at level c_{2}. From Lemma 4.5.6, it follows that there exists $a>0$ and $b \in R$ such that $a w_{1}-b u_{\varepsilon} \in \mathcal{N}_{*}^{-}$. Therefore Proposition 4.5.3 yields

$$
\begin{equation*}
c_{2}<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s}^{\frac{N}{s_{s}}} . \tag{4.5.22}
\end{equation*}
$$

Claim 1: There exists two positive constants c, C such that $0<c \leq$ $\left\|u_{n}^{ \pm}\right\|_{X_{0}(\Omega)} \leq C$.
To see this, we note that $\left\{u_{n}\right\} \subset \mathcal{N}_{*}^{-} \subset \mathcal{N}_{1}^{-}$. Therefore using (4.5.6), Claim 2 and Claim 3 of the proof of Theorem 4.5.1, we have $\left\|u_{n}^{ \pm}\right\|_{X_{0}(\Omega)} \leq C$ and $\left\|u_{n}^{-}\right\|_{X_{0}(\Omega)} \geq c$. To show $\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)} \geq a$ for some $a>0$, we use method of contradiction. Assume up to a subsequence $\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. This together with Sobolev embedding implies $\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)} \rightarrow 0$. On the other hand, $u_{n}^{+} \in \mathcal{N}^{-}$implies $(1-q)\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}<0$. Therefore by (4.1.1), we have

$$
S_{s} \leq \frac{\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}}{\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2}}<\frac{2^{*}-q-1}{1-q}\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*} 2},
$$

which is a contradiction to the fact that $\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)} \rightarrow 0$. Hence the claim follows.

Going to a subsequence if necessary we have

$$
\begin{equation*}
u_{n}^{+} \rightharpoonup \eta_{1}, u_{n}^{-} \rightharpoonup \eta_{2} \quad \text { in } \quad X_{0}(\Omega) . \tag{4.5.23}
\end{equation*}
$$

Claim 2: $\eta_{1} \not \equiv 0, \eta_{2} \not \equiv 0$.
Suppose not, that is $\eta_{1} \equiv 0$. Then by compact embedding, $u_{n}^{+} \rightarrow 0$ in $L^{q+1}(\Omega)$. Moreover, $u_{n}^{+} \in \mathcal{N}^{-} \subset \mathcal{N}$, implies $\left\langle I_{\mu}^{\prime}\left(u_{n}^{+}\right), u_{n}^{+}\right\rangle=0$. As a consequence,

$$
\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}-\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}=\mu\left|u_{n}^{+}\right|_{L^{q+1}(\Omega)}^{q+1}=o(1) .
$$

So we have $\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}=\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}+o(1)$. This together with $\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)} \geq c$ implies

$$
\frac{\left|u_{n}^{+}\right|_{L^{*}(\Omega)}^{2^{*}}}{\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}} \geq 1+o(1)
$$

This along with Sobolev embedding gives $\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \geq S_{s}^{N / 2 s}+o(1)$. Thus we have,

$$
\begin{equation*}
I_{\mu}\left(u_{n}^{+}\right)=\frac{1}{2}\left\|u_{n}^{+}\right\|_{X_{0}(\Omega)}^{2}-\frac{1}{2^{*}}\left|u_{n}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}+o(1) \geq \frac{s}{N} S_{s}^{N / 2 s}+o(1) . \tag{4.5.24}
\end{equation*}
$$

Moreover, $u_{n} \in \mathcal{N}_{*}^{-}$implies $-u_{n}^{-} \in \mathcal{N}^{-}$. Therefore using the given condition on β_{2}, we get

$$
\begin{equation*}
I_{\mu}\left(-u_{n}^{-}\right) \geq \beta_{2} \geq \tilde{\alpha}_{\mu}^{-} . \tag{4.5.25}
\end{equation*}
$$

Also it follows $I_{\mu}\left(u_{n}^{+}\right)+I_{\mu}\left(-u_{n}^{-}\right) \leq I_{\mu}\left(u_{n}\right)=c_{2}+o(1)$ (see (4.5.8)). Combining this along with (4.5.25) and (4.5.22), we obtain

$$
I_{\mu}\left(u_{n}^{+}\right) \leq c_{2}-\tilde{\alpha}_{\mu}^{-}+o(1)<\frac{s}{N} S_{s}^{N / 2 s}
$$

which is a contradiction to (4.5.24). Therefore, $\eta_{1} \neq 0$. Similarly, $\eta_{2} \neq 0$ and this proves the claim.

Set $w_{2}:=\eta_{1}-\eta_{2}$.
Claim 3: $w_{2}^{+}=\eta_{1}$ and $w_{2}^{-}=\eta_{2}$ a.e..
To see the claim we observe that $\eta_{1} \eta_{2}=0$ a.e. in Ω. Indeed,

$$
\begin{aligned}
\left|\int_{\Omega} \eta_{1} \eta_{2} d x\right| & =\left|\int_{\Omega}\left(u_{n}^{+}-\eta_{1}\right) u_{n}^{-} d x+\int_{\Omega} \eta_{1}\left(u_{n}^{-}-\eta_{2}\right) d x\right| \\
& \left.\leq\left|u_{n}^{+}-\eta_{1}\right|_{L^{2}(\Omega)}\left|u_{n}^{-}\right|_{L^{2}(\Omega)}+\left|\eta_{1}\right|_{L^{2}(\Omega)}\left|u_{n}^{-}-\eta_{2}\right|_{L^{2}(\Omega)} 4.5 .26\right)
\end{aligned}
$$

By compact embedding we have $u_{n}^{+} \rightarrow \eta_{1}$ and $u_{n}^{-} \rightarrow \eta_{2}$ in $L^{2}(\Omega)$. Therefore using claim 1, we pass the limit in (4.5.26) and obtain $\int_{\Omega} \eta_{1} \eta_{2} d x=0$. Moreover by (4.5.23), $\eta_{1}, \eta_{2} \geq 0$ a.e.. Hence $\eta_{1} \eta_{2}=0$ a.e. in Ω. We have $w_{2}^{+}-w_{2}^{-}=w_{2}=\eta_{1}-\eta_{2}$. It is easy to check that $w_{2}^{+} \leq \eta_{1}$ and $w_{2}^{-} \leq \eta_{2}$. To show that equality holds a.e. we apply the method of contradiction. Suppose, there exists $E \in \Omega$ such that $|E|>0$ and $0 \leq w_{2}^{+}(x)<\eta_{1}(x) \forall x \in E$. Therefore $\eta_{2}=0$ a.e. in E by the observation that we made. Hence $w_{2}^{+}(x)-w_{2}^{-}(x)=\eta_{1}(x)$ a.e. in E. Clearly $w_{2}^{-}(x) \ngtr 0$ a.e., otherwise $w_{2}^{+}(x)=0$ a.e. and that would imply $\eta_{1}(x)=-w_{2}^{-}(x)<0$ a.e, which is not possible since $\eta_{1}>0$ in E. Thus $w_{2}^{-}(x)=0$. This yields $\eta_{1}(x)=w_{2}^{+}(x)$ a.e. in E, which is a contradiction. Thus the claim follows.

Therefore w_{2} is sign changing in Ω and $u_{n} \rightharpoonup w_{2}$ in $X_{0}(\Omega)$. Moreover, $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0}(\Omega)\right)^{\prime}$ implies

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}} \frac{\left(u_{n}(x)-u_{n}(y)\right)(\phi(x)-\phi(y))}{|x-y|^{N+2 s}} & d x d y-\mu \int_{\Omega}\left|u_{n}\right|^{q-1} u_{n} \phi d x-\int_{\Omega}\left|u_{n}\right|^{\left.\right|^{*}-2} u_{n} \phi d x \\
& =o(1)
\end{aligned}
$$

for every $\phi \in X_{0}(\Omega)$. Passing the limit using Vitali's convergence theorem via Hölder's inequality we obtain $\left\langle I_{\mu}^{\prime}\left(w_{2}\right), \phi\right\rangle=0$. As a result, w_{2} is a sign changing weak solution to (P).

Lemma 4.5.6. Let u_{ε} be as defined in (4.2.1) and w_{1} be a positive solution of (P) for which $\tilde{\alpha}_{\mu}^{-}$is achieved, when $\mu \in\left(0, \mu_{*}\right)$. Then there exists $a, b \in$ $\mathbb{R}, a \geq 0$ such that $a w_{1}-b u_{\varepsilon} \in \mathcal{N}_{*}^{-}$, where \mathcal{N}_{*}^{-}is defined as in (4.5.21).

Proof. We will show that there exists $a>0, b \in \mathbb{R}$ such that

$$
a\left(w_{1}-b u_{\varepsilon}\right)^{+} \in \mathcal{N}^{-} \quad \text { and } \quad-a\left(w_{1}-b u_{\varepsilon}\right)^{-} \in N^{-}
$$

Let us denote $\bar{r}_{1}=\inf _{x \in \Omega} \frac{w_{1}(x)}{u_{\varepsilon}(x)}, \bar{r}_{2}=\sup _{x \in \Omega} \frac{w_{1}(x)}{u_{\varepsilon}(x)}$.
As both w_{1} and u_{ε} are positive in Ω, we have $\bar{r}_{1} \geq 0$ and \bar{r}_{2} can be $+\infty$. Let $r \in\left(\bar{r}_{1}, \bar{r}_{2}\right)$. Then $w_{1}, u_{\varepsilon} \in X_{0}(\Omega)$ implies $\left(w_{1}-r u_{\varepsilon}\right) \in X_{0}(\Omega)$ and
$\left(w_{1}-r u_{\varepsilon}\right)^{+} \not \equiv 0$. Otherwise, $\left(w_{1}-r u_{\varepsilon}\right)^{+} \equiv 0$ would imply $\bar{r}_{2} \leq r$, which is not possible. Define $v_{r}:=w_{1}-r u_{\varepsilon}$. Then $0 \not \equiv v_{r}^{+} \in X_{0}(\Omega)$ (since for any $u \in X_{0}(\Omega)$, we have $\left.|u| \in X_{0}(\Omega)\right)$. Similarly, $0 \not \equiv v_{r}^{-} \in X_{0}(\Omega)$. Therefore, by Lemma 4.4.3 there exists $0<s^{+}(r)<s^{-}(r)$ such that $s^{+}(r) v_{r}^{+} \in \mathcal{N}^{-}$, and $-s^{-}(r)\left(v_{r}^{-}\right) \in \mathcal{N}^{-}$. Let us consider the functions $s^{ \pm}: \mathbb{R} \rightarrow(0, \infty)$ defined as above.

Claim: The functions $r \mapsto s^{ \pm}(r)$ are continuous and

$$
\lim _{r \rightarrow \bar{r}_{1}^{+}} s^{+}(r)=t^{+}\left(v_{\bar{r}_{1}}^{+}\right) \quad \text { and } \quad \lim _{r \rightarrow \bar{r}_{2}^{-}} s^{+}(r)=+\infty,
$$

where the function t^{+}is same as defined in Lemma 4.4.3.
To see the claim, choose $r_{0} \in\left(\bar{r}_{1}, \bar{r}_{2}\right)$ and $\left\{r_{n}\right\}_{n \geq 1} \subset\left(\bar{r}_{1}, \bar{r}_{2}\right)$ such that $r_{n} \rightarrow r_{0}$ as $n \rightarrow \infty$. We need to show that $s^{+}\left(r_{n}\right) \rightarrow s^{+}\left(r_{0}\right)$ as $n \rightarrow \infty$. Corresponding to r_{n} and r_{0}, we have $v_{r_{n}}^{+}=\left(w_{1}-r_{n} u_{\varepsilon}\right)^{+}$and $v_{r_{0}}^{+}=\left(w_{1}-r_{0} u_{\varepsilon}\right)^{+}$. By Lemma 4.4.3. we note that $s^{+}(r)=t^{+}\left(v_{r}^{+}\right)$. Let us define the function

$$
\begin{aligned}
F(s, r) & :=s^{1-q}\left\|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right\|_{X_{0}(\Omega)}^{2}-s^{2^{*}-q-1}\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \\
& -\mu\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& =\phi(s, r)-\mu\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{q+1}(\Omega)}^{q+1},
\end{aligned}
$$

where

$$
\phi:=s^{1-q}\left\|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right\|_{X_{0}(\Omega)}^{2}-s^{2^{*}-q-1}\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}},
$$

is defined similar to (4.4.5) (see Lemma 4.4.3). Doing the similar calculation as in lemma 4.4.3, we obtain that for any fixed r, the function $F(s, r)$ has only two zeros $s=t^{+}\left(v_{r}^{+}\right)$and $s=t^{-}\left(v_{r}^{+}\right)$(see (4.4.9)). Consequently $s^{+}(r)$ is the largest 0 of $F(s, r)$ for any fixed r. As $r_{n} \rightarrow r_{0}$ we have $v_{r_{n}}^{+} \rightarrow v_{r_{0}}^{+}$ in $X_{0}(\Omega)$. Indeed, by straight forward computation it follows $v_{r_{n}} \rightarrow v_{r_{0}}$ in $X_{0}(\Omega)$. Therefore $\left|v_{r_{n}}\right| \rightarrow\left|v_{r_{0}}\right|$ in $X_{0}(\Omega)$. This in turn implies $v_{r_{n}}^{+} \rightarrow v_{r_{0}}^{+}$in $X_{0}(\Omega)$. Hence $\left\|v_{r_{n}}^{+}\right\|_{X_{0}(\Omega)} \rightarrow\left\|v_{r_{0}}^{+}\right\|_{X_{0}(\Omega)}$. Moreover by Sobolev inequality, we have $\left|v_{r_{n}}^{+}\right|_{L^{2^{*}}(\Omega)} \rightarrow\left|v_{r_{0}}^{+}\right|_{L^{2^{*}}(\Omega)}$ and $\left|v_{r_{n}}^{+}\right|_{L^{q+1}(\Omega)} \rightarrow\left|v_{r_{0}}^{+}\right|_{L^{q+1}(\Omega)}$. As a result, we
have $F\left(s, r_{n}\right) \rightarrow F\left(s, r_{0}\right)$ uniformly. Therefore an elementary analysis yields $s^{+}\left(r_{n}\right) \rightarrow s^{+}\left(r_{0}\right)$.

Moreover, $\bar{r}_{2} \geq \frac{w_{1}}{u_{\varepsilon}}$ implies $w_{1}-\bar{r}_{2} u_{\varepsilon} \leq 0$. As a consequence $r \rightarrow \bar{r}_{2}^{-}$ implies $\left(w_{1}-r u_{\varepsilon}\right)^{+} \rightarrow 0$ pointwise. Moreover, since $\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{\infty}(\Omega)} \leq$ $\left|w_{1}\right|_{L^{\infty}(\Omega)}$, using dominated convergence theorem we have $\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{2^{*}(\Omega)}} \rightarrow 0$. From the analysis in Lemma 4.4.3, for any r, we also have $s^{+}(r)>t_{0}\left(v_{r}^{+}\right)$, where function t_{0} is defined as in (4.4.6), which is the maximum point of $\phi(\cdot, r)$. Therefore it is enough to show that $\lim _{r \rightarrow \bar{r}_{2}^{-}} t_{0}\left(v_{r}^{+}\right)=\infty$. Applying (4.1.1) in the definition of $t_{0}\left(v_{r}^{+}\right)$we get

$$
t_{0}\left(v_{r}^{+}\right)=\left(\frac{(1-q)\left\|v_{r}^{+}\right\|_{X_{0}(\Omega)}^{2}}{\left(2^{*}-1-q\right)\left|v_{r}^{+}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}}\right)^{\frac{1}{2^{*}-2}} \geq\left(\frac{S_{s}(1-q)}{2^{*}-1-q}\right)^{\frac{1}{2^{*}-2}}\left|v_{r}^{+}\right|_{L^{2^{*}}(\Omega)}^{-1}
$$

Thus $\lim _{r \rightarrow \bar{r}_{2}^{-}} t_{0}\left(v_{r}^{+}\right)=\infty$.
Similarly proceeding as above we can show that if $r \rightarrow \bar{r}_{1}^{-}$then $v_{r}^{+} \rightarrow v_{\bar{r}_{1}}$ and $\lim _{r \rightarrow \bar{r}_{1}^{+}} s^{+}(r)=t^{+}\left(v_{\bar{r}_{1}}^{+}\right)$and

$$
\lim _{r \rightarrow r_{1}^{+}} s^{-}(r)=+\infty, \lim _{r \rightarrow r_{2}^{-}} s^{-}(r)=t^{+}\left(v_{r}^{-}\right)<+\infty
$$

The continuity of $s^{ \pm}$implies that there exists $b \in\left(\bar{r}_{1}, \bar{r}_{2}\right)$ such that $s^{+}(r)=$ $s^{-}(r)=a>0$. Therefore,

$$
a\left(w_{1}-b u_{\varepsilon}^{+}\right) \in \mathcal{N}^{-} \quad \text { and } \quad-a\left(w_{1}-b u_{\varepsilon}^{-}\right) \in \mathcal{N}^{-}
$$

that is, the function $a\left(w_{1}-b u_{\varepsilon}\right) \in \mathcal{N}_{*}^{-}$and this completes the proof.

Now, we conclude the proof of our main theorem.
Proof of Theorem 4.0.1: Define $\mu^{*}=\min \left\{\mu_{*}, \tilde{\mu}, \mu_{0}, \mu_{1}\right\}$. Combining Theorem 4.5.1 and Theorem 4.5.2, we complete the proof of this theorem for $\mu \in\left(0, \mu^{*}\right)$

4.6 Appendix

Lemma 4.6.1. Let g_{n} be as in (4.5.9) in the Theorem 4.5.1 and $v \in X_{0}(\Omega)$ such that $\|v\|_{X_{0}(\Omega)}=1$. Then there exists $\mu_{1}>0$ such that, $\mu \in\left(0, \mu_{1}\right)$ implies $\left\langle g_{n}^{\prime}(0), v\right\rangle$ is uniformly bounded in $X_{0}(\Omega)$.

Proof. In view of Lemma 4.4.5 we have,

$$
\left\langle g_{n}^{\prime}(0), v\right\rangle=\frac{2\left\langle u_{n}, v\right\rangle-2^{*} \int_{\Omega}\left|u_{n}\right|^{2^{*}-2} u_{n} v-(q+1) \mu \int_{\Omega}\left|u_{n}\right|^{q-1} u_{n} v}{(1-q)\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}} .
$$

Using Claim 2 in theorem 4.5.1, there exists $C>0$ such that $\left\|u_{n}\right\|_{X_{0}(\Omega)} \leq C$ for all $n \geq 1$. Therefore applying Hölder inequality followed by (4.1.1), we have
$\left|\left\langle g_{n}^{\prime}(0), v\right\rangle\right| \leq \frac{C\|v\|_{X_{0}(\Omega)}}{\left.\left|(1-q)\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\right| u_{n}\right|_{L^{2}}{ }^{*}(\Omega)}$. Hence it is enough to show

$$
\left.\left|(1-q)\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\right| u_{n}\right|_{L^{2^{*}}(\Omega)} ^{2^{*}} \mid>C,
$$

for some $C>0$ and n large. Suppose it does not hold. Then up to a subsequence

$$
(1-q)\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}-\left(2^{*}-q-1\right)\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}=o(1) \quad \text { as } \quad n \rightarrow \infty .
$$

Hence,

$$
\begin{equation*}
\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}=\frac{2^{*}-q-1}{1-q}\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}+o(1) \quad \text { as } \quad n \rightarrow \infty . \tag{4.6.1}
\end{equation*}
$$

Combining the above expression along with the fact that $u_{n} \in \mathcal{N}$, we obtain

$$
\begin{equation*}
\mu\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1}=\frac{2-2^{*}}{1-q}\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}+o(1)=\frac{2^{*}-2}{2^{*}-1-q}\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2}+o(1) . \tag{4.6.2}
\end{equation*}
$$

After applying Hölder inequality and followed by (4.1.1), expression (4.6.2) yields

$$
\begin{equation*}
\left\|u_{n}\right\|_{X_{0}(\Omega)} \leq\left(\mu \frac{2^{*}-q-1}{2^{*}-2}|\Omega|^{\frac{2^{*}-q-1}{2^{*}}} S_{s}^{-\frac{q+1}{2}}\right)^{\frac{1}{1-q}}+o(1) \tag{4.6.3}
\end{equation*}
$$

Combining (4.5.6) and Claim 3 in the proof of Theorem 4.5.1, we have $\left\|u_{n}\right\|_{X_{0}(\Omega)} \geq b$, for some $b>0$. Therefore from (4.6.1) we get

$$
\begin{equation*}
\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}} \geq C \quad \text { for some constant } C>0, \text { and } n \text { large enough. } \tag{4.6.4}
\end{equation*}
$$

Define $\psi_{\mu}: \mathcal{N} \rightarrow \mathbb{R}$ as follows:

$$
\psi_{\mu}(u)=k_{0}\left(\frac{\|u\|_{X_{0}(\Omega)}^{2\left(2^{*}-1\right)}}{|u|_{L^{2^{*}}(\Omega)}^{2^{*}}}\right)^{\frac{1}{2^{*}-2}}-\mu|u|_{L^{q+1}(\Omega)}^{q+1},
$$

where $k_{0}=\left(\frac{1-q}{2^{*}-q-1}\right)^{\frac{N+2 s}{4 s}}\left(\frac{2^{*}-2}{1-q}\right)$. Simplifying $\psi_{\mu}\left(u_{n}\right)$ using (4.6.2), we obtain $\psi_{\mu}\left(u_{n}\right)=k_{0}\left[\left(\frac{2^{*}-q-1}{1-q}\right)^{2^{*}-1} \frac{\left|u_{n}\right|_{L^{2}(\Omega)}^{\left(2^{*}-1\right) 2^{*}}}{\left|u_{n}\right|_{L^{2}}^{2^{*}(\Omega)}}\right]^{\frac{1}{2^{*}-2}}-\frac{2^{*}-2}{1-q}\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}+o(1)=o(1)$.

On the other hand, using Hölder inequality in the definition of $\psi_{\mu}\left(u_{n}\right)$, we obtain

$$
\begin{align*}
\psi_{\mu}\left(u_{n}\right) & =k_{0}\left(\frac{\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2\left(2^{*}-1\right)}}{\left|u_{n}\right|_{L^{*}(\Omega)}^{2^{*}}}\right)^{\frac{1}{2^{*}-2}}-\mu\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& \geq k_{0}\left(\frac{\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2\left(2^{*}-1\right)}}{\left|u_{n}\right|_{L^{*}(\Omega)}^{2^{*}}}\right)^{\frac{1}{2^{*}-2}}-\mu|\Omega|^{\frac{2^{*}-q-1}{2^{*}}}\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{q+1} \\
& =\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{q+1}\left\{k_{0}\left(\frac{\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2\left(2^{*}-1\right)}}{\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}}\right)^{\frac{1}{2^{*}-2}} \frac{1}{\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{q+1}}-\mu|\Omega|^{\frac{2^{*}-q-1}{2^{*}}}\right\} . \tag{4.6.6}
\end{align*}
$$

Using (4.1.1) and (4.6.3), we simplify the term $\left(\frac{\left\|u_{n}\right\|_{X_{0}}^{2\left(2^{*}-1\right)}}{\left|u_{n}\right|_{L^{2}}^{*}(\Omega)}\right)^{\frac{1}{2^{*}-2}} \frac{1}{\left|u_{n}\right|_{L^{2}}+\frac{1}{2}(\Omega)}$ and obtain

$$
\begin{align*}
\left(\frac{\left\|u_{n}\right\|_{X_{0}(\Omega)}^{2\left(2^{*}-1\right)}}{\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{2^{*}}}\right)^{\frac{1}{2^{*}-2}} \frac{1}{\left|u_{n}\right|_{L^{2}(\Omega)}^{q+1}} & \geq S^{\frac{N+2 s}{\frac{q+1 s}{s s}}\left|u_{n}\right|_{L^{2^{*}}(\Omega)}^{-q}} \\
& \geq S^{\frac{N+2 s(q+1)}{4 s}}\left\|u_{n}\right\|^{-q} \\
& \geq S^{\frac{N+2 s(q+1)}{4 s}}\left(\mu \frac{2^{*}-q-1}{2^{*}-2}|\Omega|^{\frac{2^{*}-q-1}{2^{*}}} S_{s}^{-\frac{q+1}{2}}\right)^{-\frac{q}{1-q}} \tag{4.6.7}
\end{align*}
$$

Substituting back (4.6.7) into (4.6.6) and using (4.6.4), we obtain

$$
\begin{align*}
\psi_{\mu}\left(u_{n}\right) & \geq C^{q+1}\left[k_{0} S^{\frac{N+2 s(q+1)}{4 s}+\left(\frac{1+q}{1-q} \frac{q}{2}\right)} \mu^{-\frac{q}{1-q}}\left(\frac{2^{*}-q-1}{2^{*}-2}|\Omega|^{\frac{2^{*}-q-1}{2^{*}}}\right)^{-\frac{q}{1-q}}\right. \\
& \left.-\mu|\Omega|^{\frac{2^{*}-q-1}{2^{*}}}\right] \geq d_{0} \tag{4.6.8}
\end{align*}
$$

for some $d_{0}>0, n$ large and $\mu<\mu_{1}$, where $\mu_{1}=\mu_{1}(k, s, q, N,|\Omega|)$. This is a contradiction to (4.6.5). Hence the lemma follows.

Conclusion: To be precise, this chapter deals with the existence of at least one sign-changing solution in the critical case using concave-convex nonlinearities. Since we are working in the non-local case, the computations are not straightforward. But one of the major difficulties that we have is

$$
\|u\|_{X_{0}}^{2} \geq\left\|u^{+}\right\|_{X_{0}}^{2}+\left\|u^{-}\right\|_{X_{0}}^{2}
$$

whereas in the classical case we have the equality. This created a lot of difficulties in getting the desired estimates and overcoming these difficulties were quiet challenging. The rectitude of our work lies in vanquishing these difficulties.
\qquad

CHAPTER 4. SIGN CHANGING SOLUTION FOR FRACTIONAL LAPLACIAN TYPE EQUATIONS WITH CONCAVE-CRITICAL NONLINEARITIES

Chapter 5

Sign changing solutions for p
 fractional Laplacian type
 equations with concave-critical
 nonlinearities

This chapter is the generalization of the previous chapter. We have done similar kind of analysis but in the p-fractional case. This chapter is based on [15].

We consider the fractional p-Laplace equation with concave-critical nonlinearities

$$
\left(\mathcal{P}_{\mu}\right) \begin{cases}(-\Delta)_{p}^{s} u=\mu|u|^{q-1} u+|u|^{p_{s}^{*}-2} u & \text { in } \Omega \\ u=0 & \text { in } \mathbb{R}^{N} \backslash \Omega\end{cases}
$$

where $s \in(0,1), p>1$ are fixed, $N>p s, \Omega$ is an open, bounded domain in \mathbb{R}^{N} with smooth boundary, $0<q<p-1, p_{s}^{*}=\frac{N p}{N-p s}$ and $\mu \in \mathbb{R}^{+}$and the non-local operator $(-\Delta)_{p}^{s}$ is defined in Section 2.3.1.

Definition 5.0.1. (Weak solution) We say that $u \in X_{0, s, p}(\Omega)$ is a weak
solution of $\left(\mathcal{P}_{\mu}\right)$ if

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+p s}} d x d y & =\mu \int_{\Omega}|u|^{q-1} u \phi d x \\
& +\int_{\Omega}|u|^{p_{s}^{*}-2} u \phi d x
\end{aligned}
$$

for all $\phi \in X_{0, s, p}(\Omega)$.

5.1 Variational formulation of the problem

The Euler-Lagrange energy functional associated to $\left(\mathcal{P}_{\mu}\right)$ is

$$
\begin{align*}
I_{\mu}(u) & =\frac{1}{p} \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+p s}} d x d y-\frac{\mu}{q+1} \int_{\Omega}|u|^{q+1} d x-\frac{1}{p_{s}^{*}} \int_{\Omega}|u|^{p_{s}^{*}} d x \\
& =\frac{1}{p}\|u\|_{X_{0, s, p}(\Omega)}^{p}-\frac{\mu}{q+1}|u|_{L^{q+1}(\Omega)}^{q+1}-\frac{1}{p_{s}^{*}}|u|_{L^{p_{s}^{*}}(\Omega)}^{p^{*}} \tag{5.1.1}
\end{align*}
$$

We define the best fractional critical Sobolev constant $S_{s, p}$ as

$$
\begin{equation*}
S_{s, p}:=\inf _{v \in W^{s, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{2 N}} \frac{|v(x)-v(y)|^{p}}{|x-y|^{N+p s}} d x d y}{\left(\int_{\mathbb{R}^{N}}|v(x)|^{p_{s}^{*}} d x\right)^{p / p_{s}^{*}}} \tag{5.1.2}
\end{equation*}
$$

which is positive by fractional Sobolev inequality. Thanks to the continuous Sobolev embedding $X_{0, s, p}(\Omega) \hookrightarrow L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right), I_{\mu}$ is well defined C^{1} functional on $X_{0, s, p}(\Omega)$. It is well known that there exists a one-to-one correspondence between the weak solutions of $\left(\mathcal{P}_{\mu}\right)$ and the critical points of I_{μ} on $X_{0, s, p}(\Omega)$.

Why studying the p-fractional case?

Since the embedding $X_{0, s, p}(\Omega) \hookrightarrow L^{p_{s}^{*}}$ is not compact, I_{μ} does not satisfy the Palais-Smale condition globally, but that holds true when the energy level falls inside a suitable range related to $S_{s, p}$. As it was mentioned in [27], the main difficulty dealing with critical fractional case with $p \neq 2$, is the lack of an explicit formula for minimizers of $S_{s, p}$ which is very often a key tool to handle the estimates leading to the compactness range of I_{μ}. This difficulty
has been tactfully overcome in [27] and [64] by the optimal asymptotic behavior of minimizers, which was recently obtained in [20]. Using the same optimal asymptotic behavior of minimizer of $S_{s, p}$, we will establish suitable compactness range.

5.2 Main result

The main result of this chapter is the following:
Theorem 5.2.1. Let Ω be a bounded domain with smooth boundary in \mathbb{R}^{N}. Let $s \in(0,1), p \geq 2$. Then there exist $\mu^{*}>0, N_{0}>0$ and $q_{0} \in(0, p-1)$ such that for all $\mu \in\left(0, \mu^{*}\right), N>N_{0}$ and $q \in\left(q_{0}, p-1\right)$, problem $\left(\mathcal{P}_{\mu}\right)$ has at least one sign changing solution, where N_{0} is given by the following relation:

$$
N_{0}:=\left\{\begin{array}{l}
s p(p+1) \quad \text { when } \quad 2 \leq p<\frac{3+\sqrt{5}}{2} \\
s p\left(p^{2}-p+1\right) \quad \text { when } \quad p \geq \frac{3+\sqrt{5}}{2} .
\end{array}\right.
$$

Define the Nehari-manifold N_{μ} by

$$
N_{\mu}:=\left\{u \in X_{0, s, p}(\Omega) \backslash\{0\} \mid\left\langle I_{\mu}^{\prime}(u), u\right\rangle_{X_{0, s, p}(\Omega)}=0\right\} .
$$

The Nehari manifold N_{μ} is closely linked to the behavior of the fibering map $\varphi_{u}:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\varphi_{u}(r):=I_{\mu}(r u)=\frac{r^{p}}{p}\|u\|_{X_{0, s, p}(\Omega)}^{p}-\frac{\mu r^{q+1}}{q+1}|u|_{L^{q+1}(\Omega)}^{q+1}-\frac{r^{p_{s}^{*}}}{p_{s}^{*}}|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}},
$$

which was first introduced by Drabek and Pohozaev in [41].
Lemma 5.2.2. For any $u \in X_{0, s, p}(\Omega) \backslash\{0\}$, we have $r u \in N_{\mu}$ if and only if $\varphi_{u}^{\prime}(r)=0$.

Proof. We note that for $r>0, \varphi_{u}^{\prime}(r)=\left\langle I_{\mu}^{\prime}(r u), u\right\rangle_{X_{0, s, p}(\Omega)}=\frac{1}{r}\left\langle I_{\mu}^{\prime}(r u), r u\right\rangle_{X_{0, s, p}(\Omega)}$. Hence, $\varphi_{u}^{\prime}(r)=0$ if and only if $r u \in N_{\mu}$.

CHAPTER 5. SIGN CHANGING SOLUTION FOR P FRACTIONAL LAPLACIAN TYPE EQUATIONS WITH CONCAVE-CRITICAL NONLINEARITIES

Therefore, we can conclude that the elements in N_{μ} corresponds to the stationary point of the maps φ_{u}. Observe that

$$
\begin{equation*}
\varphi_{u}^{\prime}(r)=r^{p-1}\|u\|_{X_{0, s, p}(\Omega)}^{p}-\mu r^{q}|u|_{L^{q+1}(\Omega)}^{q+1}-r^{r_{s}^{p_{s}^{*}}-1}|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \tag{5.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{u}^{\prime \prime}(r)=(p-1) r^{p-2}\|u\|_{X_{0, s, p}(\Omega)}^{p}-q \mu r^{q-1}|u|_{L^{q+1}(\Omega)}^{q+1}-\left(p_{s}^{*}-1\right) r^{p_{s}^{*}-2}|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{(}^{*}} \tag{5.2.2}
\end{equation*}
$$

By Lemma 5.2.2, we note that $u \in N_{\mu}$ if and only if $\varphi_{u}^{\prime}(1)=0$. Hence for $u \in N_{\mu}$, using (5.2.1) and (5.2.2), we obtain that

$$
\begin{align*}
\varphi_{u}^{\prime \prime}(1) & =(p-1)\|u\|_{X_{0, s, p}(\Omega)}^{p}-q \mu|u|_{L^{q+1}(\Omega)}^{q+1}-\left(p_{s}^{*}-1\right)|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \\
& =\left(p-p_{s}^{*}\right)|u|_{L^{*}}^{p_{s}^{*}(\Omega)} \\
& =(1-q) \mu|u|_{L^{q+1}(\Omega)}^{q+1} \tag{5.2.3}\\
& \left.=(p-1-q)\|u\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-1-q\right)|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}}\right)\|u\|_{X_{0, s, p}(\Omega)}^{p}+\left(p_{s}^{*}-1-q\right) \mu|u|_{L^{q+1}(\Omega)}^{q+1} .
\end{align*}
$$

Therefore, we split the manifold into three parts corresponding to local minima, maxima and points of inflection

$$
\begin{aligned}
N_{\mu}^{+} & :=\left\{u \in N_{\mu} \mid \varphi_{u}^{\prime \prime}(1)>0\right\}, \\
N_{\mu}^{-} & :=\left\{u \in N_{\mu} \mid \varphi_{u}^{\prime \prime}(1)<0\right\}, \\
N_{\mu}^{0} & :=\left\{u \in N_{\mu} \mid \varphi_{u}^{\prime \prime}(1)=0\right\} .
\end{aligned}
$$

In the next section, using the above Nehari type sets, we obtain existence of non-negative solutions ,thereby using maximum principle, we get at least two positive solutions of $\left(\mathcal{P}_{\mu}\right)$.

5.3 Existence of positive solutions

From [27], it follows that $\inf _{u \in N_{\mu}^{+}} I_{\mu}(u)$ and $\inf _{u \in N_{\mu}^{-}} I_{\mu}(u)$ are achieved and those two infimum points are two critical points of I_{μ}. Now if we define I_{μ}^{+}
as follows:

$$
\begin{equation*}
I_{\mu}^{+}(u):=\frac{1}{p}\|u\|_{X_{0, s, p}(\Omega)}^{p}-\frac{\mu}{q+1}\left|u^{+}\right|_{L^{q+1}(\Omega)}^{q+1}-\frac{1}{p_{s}^{*}}\left|u^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{(}^{*}} \tag{5.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\alpha}_{\mu}^{+}:=\inf _{u \in N_{\mu}^{+}} I_{\mu}^{+}(u) \quad \text { and } \quad \tilde{\alpha}_{\mu}^{-}:=\inf _{u \in N_{\mu}^{-}} I_{\mu}^{+}(u), \tag{5.3.2}
\end{equation*}
$$

then repeating the same analysis as in [27] for I_{μ}^{+}, it can be shown that there exists $\mu_{*}>0$ such that for $\mu \in\left(0, \mu_{*}\right)$, there exists two non-trivial critical points $w_{0} \in N_{\mu}^{+}$and $w_{1} \in N_{\mu}^{-}$of I_{μ}^{+}. It is not difficult to see that w_{0} and w_{1} are nonnegative in \mathbb{R}^{N}. Indeed,

$$
\begin{align*}
& 0=\left\langle\left(I_{\mu}^{+}\right)^{\prime}\left(w_{0}\right), w_{0}^{-}\right\rangle \\
& =\int_{\mathbb{R}^{2 N}} \frac{\left|w_{0}(x)-w_{0}(y)\right|^{p-2}\left(w_{0}(x)-w_{0}(y)\right)\left(w_{0}^{-}(x)-w_{0}^{-}(y)\right)}{|x-y|^{N+s p}} d x d y \\
& =\int_{\mathbb{R}^{2 N}} \frac{\left|w_{0}(x)-w_{0}(y)\right|^{p-2}\left(\left(w_{0}^{-}(x)-w_{0}^{-}(y)\right)^{2}+2\left(w_{0}^{-}(x) w_{0}^{+}(y)\right)\right)}{|x-y|^{N+s p}} d x d y \\
& \geq \int_{\mathbb{R}^{2 N}} \frac{\left|w_{0}^{-}(x)-w_{0}^{-}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y=\left\|w_{0}^{-}\right\|_{X_{0, s, p}(\Omega)}^{p} . \tag{5.3.3}
\end{align*}
$$

Thus, $\left\|w_{0}^{-}\right\|_{X_{0, s, p}(\Omega)}=0$ and hence, $w_{0}=w_{0}^{+}$. Similarly we can show $w_{1}=w_{1}^{+}$. Using maximum principle [23, Theorem A.1] we conclude that both w_{0}, w_{1} are positive almost everywhere in Ω. Hence $\left(\mathcal{P}_{\mu}\right)$ has at least two positive solutions.

Set

$$
\begin{equation*}
\tilde{\mu}=\left(\frac{p-1-q}{p_{s}^{*}-q-1}\right)^{\frac{p-1-q}{p_{s}^{*}-p}} \frac{p_{s}^{*}-p}{p_{s}^{*}-q-1}|\Omega|^{\frac{q+1-p_{s}^{*}}{p_{p}^{*}}} S_{s, p}^{\frac{N(p-1-q)}{p^{2} s}+\frac{q+1}{p}} . \tag{5.3.4}
\end{equation*}
$$

5.4 Preliminary lemmas

In this section, we prove three elementary lemmas which are needed to prove the main result.

Lemma 5.4.1. Let $\mu \in(0, \tilde{\mu})$. For every $u \in X_{0, s, p}(\Omega), u \neq 0$, there exists unique

$$
t^{-}(u)<t_{0}(u)=\left(\frac{(p-1-q)\|u\|_{X_{0, s, p}(\Omega)}^{p}}{\left(p_{s}^{*}-1-q\right)|u|_{L^{p}(\Omega)}^{p_{s}^{*}}(\Omega)}\right)^{\frac{N-p s}{p^{2} s}}<t^{+}(u),
$$

such that

$$
\begin{array}{ll}
t^{-}(u) u \in N_{\mu}^{+} \quad \text { and } \quad I_{\mu}\left(t^{-} u\right)=\min _{t \in\left[0, t_{0}\right]} I_{\mu}(t u), \\
t^{+}(u) u \in N_{\mu}^{-} \quad \text { and } \quad I_{\mu}\left(t^{+} u\right)=\max _{t \geq t_{0}} I_{\mu}(t u) .
\end{array}
$$

Proof. For $t \geq 0$,

$$
I_{\mu}(t u)=\frac{t^{p}}{p}\|u\|_{X_{0, s, p}(\Omega)}^{p}-\frac{\mu t^{q+1}}{q+1}|u|_{L^{q+1}(\Omega)}^{q+1}-\frac{t^{p_{s}^{*}}}{p_{s}^{*}}|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}} .
$$

Therefore

$$
\frac{\partial}{\partial t} I_{\mu}(t u)=t^{q}\left(t^{p-1-q}\|u\|_{X_{0, s, p}(\Omega)}^{p}-t^{p_{s}^{*}-q-1}|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}-\mu|u|_{L^{q+1}(\Omega)}^{q+1}\right) .
$$

Define

$$
\begin{equation*}
\psi(t)=t^{p-1-q}\|u\|_{X_{0, s, p}(\Omega)}^{p}-t^{p_{s}^{*}-q-1}|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} . \tag{5.4.1}
\end{equation*}
$$

By a straight forward computation, it follows that ψ attains maximum at the point

$$
\begin{equation*}
t_{0}=t_{0}(u)=\left(\frac{(p-1-q)\|u\|_{X_{0, s, p}(\Omega)}^{p}}{\left(p_{s}^{*}-1-q\right)|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}}}\right)^{\frac{1}{p_{s}^{-}-p}} . \tag{5.4.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\psi^{\prime}\left(t_{0}\right)=0, \quad \psi^{\prime}(t)>0 \quad \text { if } \quad t<t_{0}, \quad \psi^{\prime}(t)<0 \quad \text { if } \quad t>t_{0} \tag{5.4.3}
\end{equation*}
$$

 ing Sobolev embedding, we have

$$
\begin{equation*}
\psi\left(t_{0}\right) \geq\left(\frac{p-1-q}{p_{s}^{*}-1-q}\right)^{\frac{(p-1-q)(N-2 s)}{4 s}}\left(\frac{p_{s}^{*}-p}{p_{s}^{*}-1-q}\right) S_{s, p}^{\frac{N(p-1-q)}{p^{2} s}}\|u\|_{X_{0, s, p}(\Omega)}^{q+1} \tag{5.4.4}
\end{equation*}
$$

Using Hölder inequality followed by Sobolev inequality, and the fact that $\mu \in(0, \tilde{\mu})$, we obtain

$$
\begin{aligned}
\mu \int_{\Omega}|u|^{q+1} d x & \leq \mu\|u\|_{X_{0, s, p}(\Omega)}^{q+1} S_{s, p}^{-(q+1) / p}|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}} \\
& \leq \tilde{\mu}\|u\|_{X_{0, s, p}(\Omega)}^{q+1} S_{s, p}^{-(q+1) / p}|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}} \leq \psi\left(t_{0}\right)
\end{aligned}
$$

where in the last inequality we have used expression of $\tilde{\mu}$ (see (5.3.4)) and (5.4.4). Hence, there exists $t^{+}(u)>t_{0}>t^{-}(u)$ such that

$$
\begin{equation*}
\psi\left(t^{+}\right)=\mu \int_{\Omega}|u|^{q+1}=\psi\left(t^{-}\right) \quad \text { and } \quad \psi^{\prime}\left(t^{+}\right)<0<\psi^{\prime}\left(t^{-}\right) \tag{5.4.5}
\end{equation*}
$$

This in turn, implies $t^{+} u \in N_{\mu}^{-}$and $t^{-} u \in N_{\mu}^{+}$. Moreover, using (5.4.3) and (5.4.5) in the expression of $\frac{\partial}{\partial t} I_{\mu}(t u)$, we have

$$
\begin{gathered}
\frac{\partial}{\partial t} I_{\mu}(t u)>0 \text { when } t \in\left(t^{-}, t^{+}\right) \text {and } \frac{\partial}{\partial t} I_{\mu}(t u)<0 \text { when } t \in\left[0, t^{-}\right) \cup\left(t^{+}, \infty\right), \\
\frac{\partial}{\partial t} I_{\mu}(t u)=0 \text { when } t=t^{ \pm} .
\end{gathered}
$$

We note that $I_{\mu}(t u)=0$ at $t=0$ and strictly negative when $t>0$ is small enough. Therefore it is easy to conclude that

$$
\max _{t \geq t_{0}} I_{\mu}(t u)=I_{\mu}\left(t^{+} u\right) \quad \text { and } \quad \min _{t \in\left[0, t_{0}\right]} J_{\mu}(t u)=I_{\mu}\left(t^{-} u\right)
$$

Repeating the same argument as in Lemma 5.4.1, we can also prove that the following lemma holds:

Lemma 5.4.2. Let $\mu \in(0, \tilde{\mu})$, where $\tilde{\mu}$ is defined as in (5.3.4). For every $u \in X_{0, s, p}(\Omega), u \neq 0$, there exist unique

$$
\tilde{t}^{-}(u)<\tilde{t}_{0}(u)=\left(\frac{(p-1-q)\|u\|_{X_{0, s, p}(\Omega)}^{p}}{\left(p_{s}^{*}-1-q\right)\left|u^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}}\right)^{\frac{N-p s}{p^{2} s}}<\tilde{t}^{+}(u),
$$

such that

$$
\begin{aligned}
& \tilde{t}^{-}(u) u \in N_{\mu}^{+} \quad \text { and } \quad I_{\mu}^{+}\left(\tilde{t}^{-} u\right)=\min _{t \in\left[0, t_{0}\right]} I_{\mu}^{+}(t u), \\
& \tilde{t}^{+}(u) u \in N_{\mu}^{-} \quad \text { and } \quad I_{\mu}^{+}\left(\tilde{t}^{+} u\right)=\max _{t \geq t_{0}} I_{\mu}^{+}(t u),
\end{aligned}
$$

where I_{μ}^{+}is defined as in (5.3.1).
Lemma 5.4.3. Let $\tilde{\mu}$ be defined as in (5.3.4). Then $\mu \in(0, \tilde{\mu})$, implies $N_{\mu}^{0}=\emptyset$.

Proof. Suppose not. Then there exists $w \in N_{\mu}^{0}$ such that $w \neq 0$ and

$$
\begin{equation*}
(p-1-q)\|w\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\left|w^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}=0 \tag{5.4.6}
\end{equation*}
$$

The above expression combined with Sobolev inequality yields

$$
\begin{equation*}
\|w\|_{X_{0, s, p}(\Omega)} \geq S_{s, p}^{\frac{N}{p_{s} s}}\left(\frac{p-1-q}{p_{s}^{*}-1-q}\right)^{\frac{N-p s}{p^{2} s}} \tag{5.4.7}
\end{equation*}
$$

As $w \in N_{\mu}^{0} \subseteq N_{\mu}$, using (5.4.6) and Hölder inequality followed by Sobolev inequality, we get

$$
\begin{aligned}
0 & =\|w\|_{X_{0, s, p}(\Omega)}^{p}-|w|_{L^{p}(\Omega)}^{p_{s}^{*}}-\mu|w|_{L^{q+1}(\Omega)}^{q+1} \\
& \geq\|w\|_{X_{0, s, p}(\Omega)}^{p}-\left(\frac{p-1-q}{p_{s}^{*}-q-1}\right)\|w\|_{X_{0, s, p}(\Omega)}^{p}-\mu|\Omega|^{1-\frac{q+1}{p_{s}^{*}}} S_{s, p}^{-(q+1) / p}\|w\|_{X_{0, s, p}(\Omega)}^{q+1} .
\end{aligned}
$$

Combining the above inequality with (5.4.7) and using $\mu<\tilde{\mu}$, we have

$$
\begin{align*}
0 & \geq\|w\|_{X_{0, s, p}(\Omega)}^{q+1}\left[\left(\frac{p_{s}^{*}-p}{p_{s}^{*}-q-1}\right)\left(\frac{p-1-q}{p_{s}^{*}-q-1}\right)^{\frac{(N-p s)(p-1-q)}{p^{2}}} S_{s, p}^{\frac{N(p-1-q)}{p^{2} s}}\right. \\
& \left.-\mu|\Omega|^{1-\frac{q+1}{p_{s}^{*}}} S_{s, p}^{-(q+1) / p}\right]>0 \tag{5.4.8}
\end{align*}
$$

which is a contradiction. This completes the proof.
Lemma 5.4.4. Let $\tilde{\mu}$ is as defined in (5.3.4) and $\mu \in(0, \tilde{\mu})$. Given $u \in N_{\mu}^{-}$, there exists $\rho_{u}>0$ and a differentiable function $g_{\rho_{u}}: B_{\rho_{u}}(0) \rightarrow \mathbb{R}^{+}$satisfying
the following:

$$
\begin{aligned}
& g_{\rho_{u}}(0)=1, \\
& \left(g_{\rho_{u}}(w)\right)(u+w) \in N_{\mu}^{-} \quad \forall \quad w \in B_{\rho_{u}}(0), \\
& \left\langle g_{\rho_{u}}^{\prime}(0), \phi\right\rangle=\frac{p A(u, \phi)-p_{s}^{*} \int_{\Omega}|u|^{p_{s}^{*}-2} u \phi-(q+1) \mu \int_{\Omega}|u|^{q-1} u \phi}{(p-1-q)\|u\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)|u|_{L_{s}^{p_{s}^{*}}(\Omega)}^{p_{(\Omega)}^{*}}} \quad \forall \phi \in B_{\rho_{u}}(0),
\end{aligned}
$$

where

$$
A(u, \phi)=\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+p s}} d x d y
$$

Proof. Define $E: \mathbb{R} \times X_{0, s, p}(\Omega) \rightarrow \mathbb{R}$ as follows:
$E(r, w)=r^{p-1-q}\|u+w\|_{X_{0, s, p}(\Omega)}^{p}-r^{p_{s}^{*}-q-1}|(u+w)|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}-\mu|(u+w)|_{L^{q+1}(\Omega)}^{q+1}$.
We note that $u \in N_{\mu}^{-} \subset N_{\mu}$ implies
$E(1,0)=0, \quad$ and $\quad \frac{\partial E}{\partial r}(1,0)=(p-1-q)\|u\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{(}^{*}}<0$.
Therefore, by implicit function theorem, there exists neighborhood $B_{\rho_{u}}(0) \subset$ N_{μ} for some $\rho_{u}>0$ and a C^{1} function $g_{\rho_{u}}: B_{\rho_{u}}(0) \rightarrow \mathbb{R}^{+}$such that
(i) $g_{\rho_{u}}(0)=1, \quad(i i) E\left(g_{\rho_{u}}(w), w\right)=0, \forall w \in B_{\rho_{u}}(0)$,
(iii) $E_{r}\left(g_{\rho_{u}}(w), w\right)<0, \forall w \in B_{\rho_{u}}(0), \quad(i v)\left\langle g_{\rho_{u}}^{\prime}(0), \phi\right\rangle=-\frac{\left\langle\frac{\partial E}{\partial w}(1,0), \phi\right\rangle}{\frac{\partial E}{\partial r}(1,0)}$.

Multiplying (ii) by $\left(g_{\rho_{u}}(w)\right)^{q+1}$, it follows that $g_{\rho_{u}}(w)(u+w) \in N_{\mu}$. In fact, simplifying (iii), we obtain
$(p-1-q) g_{\rho_{u}}(w)^{p}\|u+w\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right) g_{\rho_{u}}(w)^{p_{s}^{*}}|(u+w)|_{L_{s}^{p_{s}^{*}(\Omega)}}^{p_{*}^{*}}<0 \forall w \in B_{\rho_{u}}(0)$.
Thus $\left(g_{\rho_{u}}(w)\right)(u+w) \in N_{\mu}^{-}$, for every $w \in B_{\rho_{u}}(0)$. The last assertion of the lemma follows from (iv).

5.5 Sobolev Minimizer

Let $S_{s, p}$ be as in (5.1.2). From [20], we know that for $1<p<\infty, s \in$ $(0,1), N>p s$, there exists a minimizer for $S_{s, p}$, and for every minimizer U, there exist $x_{0} \in \mathbb{R}^{N}$ and a constant sign monotone function $u: \mathbb{R} \rightarrow \mathbb{R}$ such that $U(x)=u\left(\left|x-x_{0}\right|\right)$. In the following, we shall fix a radially symmetric nonnegative decreasing minimizer $U=U(r)$ for $S_{s, p}$. Multiplying U by a positive constant if necessary, we may assume that

$$
\begin{equation*}
(-\Delta)_{p}^{s} U=U^{p_{s}^{*}-1} \quad \text { in } \quad \mathbb{R}^{N} \tag{5.5.1}
\end{equation*}
$$

For any $\varepsilon>0$ we note that the function function

$$
\begin{equation*}
U_{\varepsilon}(x)=\frac{1}{\varepsilon^{\frac{(N-s p)}{p}}} U\left(\frac{|x|}{\varepsilon}\right) \tag{5.5.2}
\end{equation*}
$$

is also a minimizer for $S_{s, p}$ satisfying (5.5.1). From [64], we also have the following asymptotic estimates for U .

Lemma 5.5.1. [64] Let U be the solution of (5.5.1). Then, there exists $c_{1}, c_{2}>0$ and $\theta>1$ such that for all $r \geq 1$,

$$
\begin{equation*}
\frac{c_{1}}{r^{\frac{N-s p}{p-1}}} \leq U(r) \leq \frac{c_{2}}{r^{\frac{N-s p}{p-1}}} \tag{5.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{U(r \theta)}{U(r)} \leq \frac{1}{2} \tag{5.5.4}
\end{equation*}
$$

Proof. See [lemma 2.2 [64]].
Therefore we have,

$$
\begin{equation*}
c_{1} \frac{\varepsilon^{\frac{N-s p}{p(p-1)}}}{|x|^{\frac{N-s p}{p-1}}} \leq U_{\varepsilon}(x) \leq c_{2} \frac{\varepsilon^{\frac{N-s p}{p(p-1)}}}{|x|^{\frac{N-s p}{p-1}}} \quad \text { for } \quad|x|>\varepsilon \tag{5.5.5}
\end{equation*}
$$

We consider a cut-off function $\psi \in C_{0}^{\infty}(\Omega)$ such that $0 \leq \psi \leq 1, \psi \equiv 1$ in $\Omega_{\delta}, \psi \equiv 0$ in $\mathbb{R}^{N} \backslash \Omega$, where

$$
\Omega_{\delta}:=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega)>\delta\} .
$$

Define

$$
\begin{equation*}
u_{\varepsilon}(x)=\psi(x) U_{\varepsilon}(x) . \tag{5.5.6}
\end{equation*}
$$

5.6 Some Important estimates

In this section, we will prove some important estimates in order to establish our main result.

Lemma 5.6.1. Suppose w_{1} is a positive solution of $\left(\mathcal{P}_{\mu}\right)$ and u_{ε} is as defined in (5.5.6). Then for every $\varepsilon>0$, small enough
(i) $A_{1}:=\int_{\Omega} w_{1}^{p_{s}^{*}-1} u_{\varepsilon} d x \leq k_{1} \varepsilon^{\frac{N-p s}{p(p-1)}}$;
(ii) $A_{2}:=\int_{\Omega} w_{1}^{q} u_{\varepsilon} d x \leq k_{2} \varepsilon^{\frac{N-p s}{p(p-1)}}$;
(iii) $A_{3}:=\int_{\Omega} w_{1} u_{\varepsilon}^{q} d x \leq k_{3} \varepsilon^{\frac{N-p s}{p(p-1)}}$;
(iv) $A_{4}:=\int_{\Omega} w_{1} u_{\varepsilon}^{p_{s}^{*}-1} d x \leq k_{4} \varepsilon^{\frac{N(p-1)+p s}{p(p-1)}}$.

Proof. Applying the Moser iteration technique (see [24, Theorem 3.3]), it can be shown that any positive solution of $\left(\mathcal{P}_{\mu}\right)$ is in $L^{\infty}(\Omega)$. Let $R, M>0$ be such that $\Omega \subset B(0, R)$ and $\left|w_{1}\right|_{L^{\infty}(\Omega)}<M$.
(i) $\quad A_{1}=\int_{\Omega} w_{1}^{p_{1}^{*}-1} u_{\varepsilon} d x \leq C\left[\int_{\Omega \cap\{|x| \leq \varepsilon\}} U_{\varepsilon}(x) d x+\varepsilon^{\frac{N-s p}{p(p-1)}} \int_{\Omega \cap\{|x|>\varepsilon\}} \frac{d x}{|x|^{\frac{N-s p}{p-1}}}\right]$

$$
\leq C\left[\varepsilon^{N-\frac{(N-s p)}{p}} \int_{\{|x|<1\}} U(x) d x\right.
$$

$$
\left.+\varepsilon^{\frac{N-s p}{p(p-1)}} \int_{B(0, R)} \frac{d x}{|x|^{\frac{N-s p}{p-1}}} d x\right]
$$

$$
\leq C\left[\varepsilon^{N-\frac{(N-s p)}{p}}+\varepsilon^{\frac{N-s p}{p(p-1)}} \int_{0}^{R} r^{N-1-\frac{N-s p}{p-1}} d r\right]
$$

$$
\leq k_{1} \varepsilon^{\frac{N-s p}{p(p-1)}} .
$$

Proof of (ii) similar to (i).
(iii) $\quad A_{3}=\int_{\Omega} w_{1} u_{\varepsilon}^{q} d x \leq C\left[\int_{\Omega \cap\{|x| \leq \varepsilon\}} U_{\varepsilon}^{q}(x) d x+\varepsilon^{\frac{N-s p}{p(p-1)} q} \int_{\Omega \cap\{|x|>\varepsilon\}} \frac{d x}{|x|^{\frac{(N-s p) q}{p-1}}}\right]$
$\leq C\left[\varepsilon^{N-\frac{(N-s p) q}{p}} \int_{\{|x|<1\}} U(x)^{q} d x\right.$
$\left.+\varepsilon^{\frac{(N-s p) q}{p(p-1)}} \int_{B(0, R)} \frac{d x}{|x|^{\frac{(N-s p) q}{p-1}}} d x\right]$
$\leq C\left[\varepsilon^{N-\frac{(N-s p) q}{p}}+\varepsilon^{\frac{N-s p}{p(p-1)} q} \int_{0}^{R} r^{N-1-\frac{N-s p}{p-1} q} d r\right]$
$\leq \quad k_{3} \varepsilon^{\frac{N-p s}{p(p-1)} q}$,
since $0<q<p-1<\frac{N(p-1)}{N-s p}$. (iv) can be proved as in (iii).

Lemma 5.6.2. Let u_{ε} be as defined in (5.5.6), $0<q<p-1$ and $N>p^{2} s$.
Then for every $\varepsilon>0$, small

$$
\int_{\Omega}\left|u_{\epsilon}\right|^{q+1} d x \geq \begin{cases}k_{5} \varepsilon^{\frac{(N-p s)(q+1)}{p(p-1)}} & \text { if } 0<q<\frac{N(p-2)+p s}{N-p s} \\ k_{6} \varepsilon^{\frac{N}{p}}|l n \varepsilon|, & \text { if } q=\frac{N(p-2)+p s}{N-p s} \\ k_{7} \varepsilon^{N-\frac{(N-p s)(q+1)}{p}} & \text { if } \quad \frac{N(p-2)+p s}{N-p s}<q<p-1\end{cases}
$$

Proof. We recall that $R^{\prime}>0$ was chosen such that $B\left(0, R^{\prime}\right) \subset \Omega_{\delta}$. Therefore, for $\varepsilon>0$ small, we have

$$
\begin{align*}
\int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x & \geq \int_{B\left(0, R^{\prime}\right)}\left|u_{\varepsilon}\right|^{q+1} d x \\
& =\int_{B\left(0, R^{\prime}\right)} U_{\varepsilon}^{q+1}(x) d x \\
& =C \varepsilon^{N-\frac{(N-s p)(q+1)}{p}} \int_{B\left(0, \frac{R^{\prime}}{\varepsilon}\right)} U^{q+1}(y) d y \tag{5.6.1}\\
& \geq C \varepsilon^{N-\frac{(N-p s)(q+1)}{p}} \int_{B\left(0, \frac{R^{\prime}}{\varepsilon}\right) \backslash B(0,1)} U^{q+1}(y) d y \\
& \geq C \varepsilon^{N-\frac{(N-p s)(q+1)}{p}} \int_{1}^{\frac{R^{\prime}}{\varepsilon}} r^{N-1-\frac{(N-p s)(q+1)}{p-1}} d r \tag{5.6.2}
\end{align*}
$$

Case 1: $0<q \leq \frac{N(p-2)+p s}{N-p s}$.

We note that

$$
\begin{equation*}
\int_{1}^{\frac{R^{\prime}}{\varepsilon}} r^{(N-1)-\frac{(N-p s)(q+1)}{p-1}} d r \geq C_{1} \varepsilon^{-N+\frac{(N-p s)(q+1)}{p-1}}-C_{2} \tag{5.6.3}
\end{equation*}
$$

Thus substituting back in (2.17), we obtain

$$
\begin{align*}
\int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x & \geq C \varepsilon^{N-\frac{(N-p s)(q+1)}{p}}\left[C_{1} \varepsilon^{-N+\frac{(N-p s)(q+1)}{p-1}}-C_{2}\right] \\
& =C_{3} \varepsilon^{\frac{(N-p s)(q+1)}{p(p-1)}}-C_{4} \varepsilon^{N-\frac{(N-p s)(q+1)}{p}} \\
& \geq k_{5} \varepsilon^{\frac{(N-p s)(q+1)}{p(p-1)}} . \tag{5.6.4}
\end{align*}
$$

Case 2 : $q=\frac{N(p-2)+p s}{N-p s}$.
In this case it follows

$$
\int_{1}^{\frac{R^{\prime}}{\varepsilon}} r^{N-1-\frac{(N-p s)(q+1)}{p-1}} d r \geq C|\ln \varepsilon| .
$$

Plugging back in (2.17), we obtain

$$
\begin{align*}
& \qquad \int_{\Omega}\left|u_{\varepsilon}\right|^{q+1} d x \geq k_{6} \varepsilon^{N-\frac{(N-p s)(q+1)}{p}}|\ln \varepsilon|=k_{6} \varepsilon^{\frac{N}{p}}|\ln \varepsilon| . \\
& \text { Case 3: } \frac{N(p-2)+p s}{N-p s}<q<p-1 . \\
& \operatorname{RHS} \text { of }(2.16) \geq k_{7} \varepsilon^{N-\frac{(N-s p)(q+1)}{p}} \int_{B(0,1)} U^{q+1}(x) d x \\
& \geq k_{7} \varepsilon^{N-\frac{(N-s p)(q+1)}{p}} . \tag{5.6.5}
\end{align*}
$$

Hence the lemma follows.

5.7 The Palais-Smale condition

In this section, we prove that the functional I_{μ} satisfies Palais-Smale condition for some c as given in the lemma below.

Let us define

$$
\begin{equation*}
M:=\frac{(p N-(N-p s)(q+1))(p-1-q)}{p^{2}(q+1)}\left(\frac{(p-1-q)(N-s p)}{p^{2} s}\right)^{\frac{q+1}{p_{s}^{\frac{q}{-q-1}}}}|\Omega| \tag{5.7.1}
\end{equation*}
$$

Lemma 5.7.1. Let M be as in (5.7.1). For any $\mu>0$, and for

$$
c<\frac{s}{N} S_{s, p}^{\frac{N}{s p}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}}}
$$

I_{μ} satisfies $(P S)_{c}$ condition.
Proof. Let $\left\{u_{k}\right\} \subset X_{0, s, p}(\Omega)$ be a $(P S)_{c}$ sequence for I_{μ}, that is, we have $I_{\mu}\left(u_{k}\right) \rightarrow c$ and $I_{\mu}^{\prime}\left(u_{k}\right) \rightarrow 0$ in $\left(X_{0, s, p}(\Omega)\right)^{\prime}$ as $k \rightarrow \infty$. By the standard method it is not difficult to see that $\left\{u_{k}\right\}$ is bounded in $X_{0, s, p}(\Omega)$. Then up to a subsequence, still denoted by u_{k}, there exists $u_{\infty} \in X_{0, s, p}(\Omega)$ such that

$$
\begin{array}{ll}
u_{k} & \rightharpoonup u_{\infty} \\
\text { weakly in } \quad X_{0, s, p}(\Omega) \text { as } k \rightarrow \infty \\
u_{k} \rightharpoonup u_{\infty} & \text { weakly in } L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right) \text { as } k \rightarrow \infty \\
u_{k} \rightarrow u_{\infty} & \text { strongly in } L^{r}\left(\mathbb{R}^{N}\right) \text { for any } 1 \leq r<p_{s}^{*} \quad \text { as } k \rightarrow \infty, \\
u_{k} \rightarrow u_{\infty} & \text { a.e. in } \mathbb{R}^{N} \text { as } k \rightarrow \infty .
\end{array}
$$

As $0<q<p-1$, we have

$$
\int_{\Omega}\left|u_{k}\right|^{q+1}(x) d x \rightarrow \int_{\Omega}\left|u_{\infty}\right|^{q+1}(x) d x \quad \text { as } \quad k \rightarrow \infty
$$

Using these above properties it can be shown that $\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), \varphi\right\rangle_{X_{0, s, p}(\Omega)}=0$ for any $\varphi \in X_{0, s, p}(\Omega)$.
Indeed for any $\varphi \in X_{0, s, p}(\Omega)$,

$$
\begin{aligned}
\left\langle I_{\mu}^{\prime}\left(u_{k}\right), \varphi\right\rangle-\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), \varphi\right\rangle & =\int_{\mathbb{R}^{2 N}} \frac{\left|u_{k}(x)-u_{k}(y)\right|^{p-2}\left(u_{k}(x)-u_{k}(y)\right)(\varphi(x)-\varphi(y))}{|x-y|^{N+s p}} \\
& -\int_{\mathbb{R}^{2 N}} \frac{\left|u_{\infty}(x)-u_{\infty}(y)\right|^{p-2}\left(u_{\infty}(x)-u_{\infty}(y)\right)(\varphi(x)-\varphi(y))}{|x-y|^{N+s p}} \\
& -\mu\left(\int_{\Omega}\left|u_{k}\right|^{q-1} u_{k} \varphi d x-\int_{\Omega}\left|u_{\infty}\right|^{q-1} u_{\infty} \varphi d x\right) \\
& -\left(\int_{\Omega}\left|u_{k}\right|^{p_{s}^{*-2}} u_{k} \varphi d x-\int_{\Omega}\left|u_{\infty}\right|^{p_{s}^{*}-2} u_{\infty} \varphi d x\right) .
\end{aligned}
$$

As $\left\{\frac{\left|u_{k}(x)-u_{k}(y)\right|^{p-2}\left(u_{k}(x)-u_{k}(y)\right)}{\left.|x-y|\right|^{\frac{N+s p}{p^{\prime}}}}\right\}_{k \geq 1}$ is bounded in $L^{p^{\prime}}\left(\mathbb{R}^{2 N}\right)$, where $p^{\prime}=\frac{p}{p-1}$, upto a subsequence

$$
\frac{\left|u_{k}(x)-u_{k}(y)\right|^{p-2}\left(u_{k}(x)-u_{k}(y)\right)}{|x-y|^{\frac{N+s p}{p^{\prime}}}} \rightharpoonup \frac{\left|u_{\infty}(x)-u_{\infty}(y)\right|^{p-2}\left(u_{\infty}(x)-u_{\infty}(y)\right)}{|x-y|^{\frac{N+s p}{p^{\prime}}}}
$$

weakly in $L^{p^{\prime}}\left(\mathbb{R}^{2 N}\right), u_{k} \rightharpoonup u_{\infty}$ weakly in $L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right)$ and $u_{k} \rightarrow u_{\infty}$ strongly in $L^{q+1}\left(\mathbb{R}^{N}\right)$ as $k \rightarrow \infty$.

Combining these we have $\left\langle I_{\mu}^{\prime}\left(u_{k}\right), \varphi\right\rangle-\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), \varphi\right\rangle \rightarrow 0$ as $k \rightarrow \infty$. But as $I_{\mu}^{\prime}\left(u_{k}\right) \rightarrow 0$ in $X_{0, s, p}(\Omega)^{\prime}$ as $k \rightarrow \infty$, we have $\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), \varphi\right\rangle_{X_{0, s, p}(\Omega)}=0$ for any $\varphi \in X_{0, s, p}(\Omega)$. Hence, in particular $\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), u_{\infty}\right\rangle_{X_{0, s, p}(\Omega)}=0$.

Furthermore, by Brezis-Lieb lemma as $k \rightarrow \infty$, we get,

$$
\begin{array}{r}
\int_{\mathbb{R}^{2 N}} \frac{\left|u_{k}(x)-u_{k}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y=\int_{\mathbb{R}^{2 N}} \frac{\left|u_{k}(x)-u_{\infty}(x)-u_{k}(y)+u_{\infty}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \\
\quad+\int_{\mathbb{R}^{2 N}} \frac{\left|u_{\infty}(x)-u_{\infty}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y+o(1)
\end{array}
$$

and

$$
\int_{\Omega}\left|u_{k}(x)\right|^{p_{s}^{*}} d x=\int_{\Omega}\left|\left(u_{k}-u_{\infty}\right)(x)\right|^{p_{s}^{*}} d x+\int_{\Omega}\left|u_{\infty}(x)\right|^{p_{s}^{*}} d x+o(1)
$$

Now,

$$
\begin{aligned}
\left\langle I_{\mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0, s, p}(\Omega)} & =\int_{\mathbb{R}^{2 n}} \frac{\left|u_{k}(x)-u_{k}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \\
& -\mu \int_{\Omega}\left|u_{k}(x)\right|^{q+1} d x-\int_{\Omega}\left|u_{k}(x)\right|^{p_{s}^{*}} d x \\
& =\int_{\mathbb{R}^{2 n}} \frac{\left|u_{k}(x)-u_{\infty}(x)-u_{k}(y)+u_{\infty}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \\
& -\int_{\Omega}\left|u_{k}(x)-u_{\infty}(x)\right|^{p_{s}^{*}} d x \\
& +\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), u_{\infty}\right\rangle_{X_{0, s, p}(\Omega)}+o(1) .
\end{aligned}
$$

Since as $\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), u_{\infty}\right\rangle_{X_{0, s, p}(\Omega)}=0$ and $\left\langle I_{\mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0, s, p}(\Omega)} \rightarrow 0$ as $k \rightarrow \infty$, we have that there exists $b \in \mathbb{R}$ with $b \geq 0$ such that

$$
\begin{equation*}
\left\|u_{k}-u_{\infty}\right\|_{X_{0, s, p}(\Omega)}^{p}=\int_{Q} \frac{\left|u_{k}(x)-u_{\infty}(x)-u_{k}(y)+u_{\infty}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \rightarrow b \tag{5.7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|\left(u_{k}-u_{\infty}\right)(x)\right|^{p_{s}^{*}} d x \rightarrow b \quad \text { as } \quad k \rightarrow \infty \tag{5.7.3}
\end{equation*}
$$

If $b=0$, we are done. Suppose $b>0$. Moreover, using Sobolev inequality we have,

$$
\left\|u_{k}-u_{\infty}\right\|_{X_{0, s, p}(\Omega)}^{p} \geq S_{s, p}\left(\left.\int_{\Omega}\left(\mid u_{k}-u_{\infty}\right)(x)\right|^{p_{s}^{*}} d x\right)^{p / p_{s}^{*}}
$$

Therefore, $b \geq S_{s, p} b^{p / p_{s}^{*}}$, and this implies $b \geq S_{s, p}^{N / s p}$. On the other hand, since $\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), u_{\infty}\right\rangle_{X_{0, s, p}(\Omega)}=0$ we obtain

$$
\begin{align*}
I_{\mu}\left(u_{\infty}\right) & =I_{\mu}\left(u_{\infty}\right)-\frac{1}{p}\left\langle I_{\mu}^{\prime}\left(u_{\infty}\right), u_{\infty}\right\rangle_{X_{0, s, p}(\Omega)} \\
& =\frac{s}{N} \int_{\Omega}\left|u_{\infty}(x)\right|^{p_{s}^{*}} d x+\mu\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{\Omega}\left|u_{\infty}(x)\right|^{q+1} d x \tag{5.7.4}
\end{align*}
$$

Using (5.7.4) and $\left\langle I_{\mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0, s, p}(\Omega)} \rightarrow 0$ as $k \rightarrow \infty$, we get

$$
\begin{align*}
c & =\lim _{k \rightarrow \infty} I_{\mu}\left(u_{k}\right)=\lim _{k \rightarrow \infty}\left[I_{\mu}\left(u_{k}\right)-\frac{1}{p}\left\langle I_{\mu}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{X_{0, s, p}(\Omega)}\right] \\
& =\lim _{k \rightarrow \infty}\left[\frac{s}{N} \int_{\Omega}\left|\left(u_{k}-u_{\infty}\right)\right|^{p_{s}^{*}}+\frac{s}{N} \int_{\Omega}\left|u_{\infty}\right|^{p_{s}^{*}}+\mu\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{\Omega}\left|u_{k}\right|^{q+1}\right] \\
& =\frac{s}{N} b+\frac{s}{N} \int_{\Omega}\left|u_{\infty}(x)\right|^{p_{s}^{*}} d x+\mu\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{\Omega}\left|u_{\infty}(x)\right|^{q+1} d x \\
& \geq \frac{s}{N} S_{s, p}^{N / s p}+\frac{s}{N} \int_{\Omega}\left|u_{\infty}(x)\right|^{p_{s}^{*}} d x+\mu\left(\frac{1}{p}-\frac{1}{q+1}\right) \int_{\Omega}\left|u_{\infty}(x)\right|^{q+1} d x \tag{5.7.5}\\
& =\frac{s}{N} S_{s, p}^{N / s p}+I_{\mu}\left(u_{\infty}\right) . \tag{5.7.6}
\end{align*}
$$

Since, by assumption we have $c<\frac{s}{N} S_{s, p}^{N / s p}$, the last inequality implies $I_{\mu}\left(u_{\infty}\right)<0$. In particular, $u_{\infty} \not \equiv 0$ and

$$
0<\frac{1}{p}\left\|u_{\infty}\right\|_{X_{0, s, p}(\Omega)}^{p}<\frac{\mu}{q+1} \int_{\Omega}\left(u_{\infty}(x)\right)^{q+1} d x+\frac{1}{p_{s}^{*}} \int_{\Omega}\left(u_{\infty}(x)\right)^{p_{s}^{*}} d x .
$$

Moreover, by Hölder inequality we have,

$$
\int_{\Omega}\left|u_{\infty}(x)\right|^{q+1} d x \leq|\Omega|^{\frac{p_{s}^{*}-(q+1)}{p_{s}^{*}}}\left(\int_{\Omega}\left|u_{\infty}(x)\right|^{p_{s}^{*}} d x\right)^{\frac{q+1}{p_{s}^{*}}}
$$

Thus, from (5.7.5)

$$
\begin{aligned}
c & \geq \frac{s}{N} S_{s, p}^{N / s p}+\frac{s}{N} \int_{\Omega}\left|u_{\infty}\right|^{p_{s}^{*}}+\mu\left(\frac{1}{p}-\frac{1}{q+1}\right)|\Omega|^{\frac{p_{s}^{*}-(q+1)}{p_{s}^{*}}}\left(\int_{\Omega}\left|u_{\infty}\right|^{p_{s}^{*}}\right)^{\frac{q+1}{p_{s}^{*}}} \\
& :=\frac{s}{N} S_{s, p}^{N / s p}+h(\eta)
\end{aligned}
$$

where $h(\eta)=\frac{s}{N} \eta^{p_{s}^{*}}+\mu\left(\frac{1}{p}-\frac{1}{q+1}\right)|\Omega|^{\frac{p_{s}^{*}-(q+1)}{p_{s}^{*}}} \eta^{q+1}$ with $\eta=\left(\int_{\Omega}\left|u_{\infty}(x)\right|^{p_{s}^{*}} d x\right)^{\frac{1}{p_{s}^{*}}}$. By elementary analysis, we can show that h attains its minimum at $\eta_{0}=$ $\left(\frac{\mu(p-1-q)(N-s p)}{p^{2} s}\right)^{\frac{1}{p_{s}^{*}-(q+1)}}|\Omega|^{\frac{1}{p_{s}^{*}}}$ and

$$
\begin{aligned}
h\left(\eta_{0}\right) & =\frac{s}{N}\left(\frac{\mu(p-1-q)(N-s p)}{p^{2} s}\right)^{\frac{p_{s}^{*}}{p_{s}^{*}-(q+1)}}|\Omega| \\
& -\frac{\mu(p-1-q)}{p(q+1)}|\Omega|^{\frac{p_{s}^{*}-(q+1)}{p_{s}^{*}}}\left(\frac{\mu(p-1-q)(N-s p)}{p^{2} s}\right)^{\frac{q+1}{p_{s}^{*}-(q+1)}}|\Omega|^{\frac{q+1}{p_{s}^{*}}} \\
& =-M \mu^{p_{s}^{*}-(q+1)}
\end{aligned}
$$

with M given in (5.7.1). This in turn implies $c \geq \frac{s}{N} S_{s, p}^{\frac{N}{s p}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-(q+1)}}$ and that gives a contradiction to our hypothesis. Hence $b=0$. This concludes that $u_{k} \rightarrow u_{\infty}$ strongly in $X_{0, s, p}(\Omega)$.

5.8 Existence of sign-changing solution

Lemma 5.8.1. Let $N \in \mathbb{N}$ be such that $N>\frac{s p}{2}\left[p+1+\sqrt{(p+1)^{2}-4}\right]$ and $q \in\left(q_{1}, p-1\right)$, where

$$
\begin{equation*}
q_{1}:=\frac{N^{2}(p-1)}{(N-s p)(N-s)}-1 . \tag{5.8.1}
\end{equation*}
$$

Then, there exists $\tilde{\mu}_{1}>0$ and $u_{0} \in X_{0, s, p}(\Omega)$ such that

$$
\begin{equation*}
\sup _{t \geq 0} I_{\mu}^{+}\left(t u_{0}\right)<\frac{s}{N} S_{s, p}^{\frac{N}{s p}}-M \mu^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}}, \tag{5.8.2}
\end{equation*}
$$

for $\mu \in\left(0, \tilde{\mu}_{1}\right)$. In particular,

$$
\begin{equation*}
\tilde{\alpha}_{\mu}^{-}<\frac{s}{N} S_{s, p}^{\frac{N}{s p}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-q-1}} \tag{5.8.3}
\end{equation*}
$$

where I_{μ}^{+}is defined as in (5.3.1) and α_{μ}^{-}and M are given as in (5.3.2) and (5.7.1) respectively.

Proof. Let u_{ε} be as defined in (5.5.6). Then we claim

$$
\begin{equation*}
\left|u_{\varepsilon}^{+}\right|_{L^{p_{s}^{*}}}=\left|u_{\varepsilon}\right|_{L^{p_{s}^{*}}}^{p_{s}^{*}} \geq S_{s, p}^{\frac{N}{s p}}+o\left(\varepsilon^{\frac{N}{p-1}}\right) . \tag{5.8.4}
\end{equation*}
$$

To see this,

$$
\begin{align*}
\left|u_{\varepsilon}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}} & =\int_{\Omega}\left|u_{\varepsilon}\right|^{p_{s}^{*}} d x \geq \int_{\Omega_{\delta}}\left|u_{\varepsilon}\right|^{p_{s}^{*}} d x \\
& =\int_{\Omega_{\delta}}\left|U_{\varepsilon}(x)\right|^{p_{s}^{*}} d x \\
& =\int_{\mathbb{R}^{N}}\left|U_{\varepsilon}(x)\right|^{p_{s}^{*}} d x-\int_{\mathbb{R}^{N} \backslash \Omega_{\delta}}\left|U_{\varepsilon}(x)\right|^{p_{s}^{*}} d x . \tag{5.8.5}
\end{align*}
$$

Moreover,

$$
\begin{aligned}
\int_{\mathbb{R}^{N} \backslash \Omega_{\delta}}\left|U_{\varepsilon}(x)\right|^{p_{s}^{*}} d x \leq \int_{\mathbb{R}^{N} \backslash B\left(0, R^{\prime}\right)}\left|U_{\varepsilon}(x)\right|^{p_{s}^{*}} d x & =\frac{1}{\varepsilon^{N}} \int_{\mathbb{R}^{N} \backslash B\left(0, R^{\prime}\right)} U^{p_{s}^{*}}\left(\frac{x}{\varepsilon}\right) d x \\
& \leq C \int_{\frac{R^{\prime}}{\varepsilon}}^{\infty} r^{N-1-\frac{N p}{p-1}} d r \\
& \leq C \varepsilon^{\frac{N}{p-1}} .
\end{aligned}
$$

Therefore substituting back to (5.8.5) we obtain

$$
\left|u_{\varepsilon}\right|_{p^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \geq S_{s, p}^{\frac{N}{s p}}-C \varepsilon^{\frac{N}{p-1}}
$$

Furthermore, a similar analysis as in [78, Proposition 21] (see also [64, Lemma 2.7]) yields, for $\varepsilon>0$ small $\left(0<\varepsilon<\frac{\delta}{2}\right)$ we have,

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{X_{0, s, p}(\Omega)}^{p} \leq S_{s, p}^{\frac{N}{s p}}+o\left(\varepsilon^{\frac{N-p s}{p-1}}\right) \tag{5.8.6}
\end{equation*}
$$

Define,

$$
J(u):=\frac{1}{p}\|u\|_{X_{0, s, p}(\Omega)}^{p}-\frac{1}{p_{s}^{*}}\left|u^{+}\right|_{L^{p_{s}^{*}}}^{p_{*}^{*}}, \quad u \in X_{0, s, p}(\Omega)
$$

and choose $\varepsilon_{0}>0$ small such that (5.8.6) and (5.8.4) hold and Lemma 5.6.2 is satisfied. Let $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Then, consider corresponding $u_{0}:=u_{\varepsilon_{0}}$. Let us
consider the function $h:[0, \infty) \rightarrow \mathbb{R}$ defined by $h(t)=J\left(t u_{0}\right)$ for all $t \geq 0$. It can be shown that h attains its maximum at $t=t_{*}=\left(\frac{\left\|u_{0}\right\|_{X_{0, s, p}(\Omega)}^{p}}{\left|u_{0}^{+}\right|_{L^{p}}^{p_{s}^{*}}}\right)^{\frac{1}{p^{*}-p}}$ and $\sup _{t \geq 0} J\left(t u_{0}\right)=\frac{s}{N}\left(\frac{\left\|u_{0}\right\|_{X_{0, s, p}(\Omega)}^{p}}{\left|u_{0}^{+}\right|_{L^{p}}^{p}}\right)^{\frac{N}{s p}}$. Using (5.8.6) and (5.8.4) a straight forward computation yields,

$$
\begin{equation*}
\sup _{t \geq 0} J\left(t u_{0}\right) \leq \frac{s}{N} S_{s, p}^{\frac{N}{s p}}+o\left(\varepsilon^{\frac{N-s p}{p-1}}\right) \tag{5.8.7}
\end{equation*}
$$

Since $I_{\mu}^{+}\left(t u_{0}\right)<0$ for t small, we can find $t_{0} \in(0,1)$ such that

$$
\sup _{0 \leq t \leq t_{0}} I_{\mu}^{+}\left(t u_{0}\right) \leq \frac{s}{N} S_{s, p}^{\frac{N}{s p}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{-q-1}}}
$$

for $\mu>0$ small. Hence, we are left to estimate $\sup _{t_{0} \leq t} I_{\mu}^{+}\left(t u_{0}\right)$.

$$
\begin{aligned}
\sup _{t \geq t_{0}} I_{\mu}^{+}\left(t u_{0}\right) & =\sup _{t \geq t_{0}}\left[J\left(t u_{0}\right)-\frac{t^{q+1}}{q+1}\left|u_{0}^{+}\right|_{L^{q+1}}^{q+1}\right] \\
& \leq \frac{s}{N} S_{s, p}^{S_{s, p}^{s p}}+o\left(\varepsilon^{\frac{N-s p}{p-1}}\right)-\frac{t^{q+1}}{q+1}\left|u_{0}\right|_{L^{q+1}}^{q+1} \\
& \leq \begin{cases}\frac{s}{N} S_{s, p}^{\frac{N}{s p}}+c_{1} \varepsilon^{\frac{N-p s}{p-1}}-c_{2} \mu \varepsilon^{\frac{(N-p s)(q+1)}{p(p-1)}}, \quad 0<q<\frac{N(p-2)+p s}{N-s p} \\
\frac{s}{N} S_{s, p}^{\frac{N}{s p}}+c_{1} \varepsilon^{\frac{N-p s}{p-1}}-c_{2} \mu \varepsilon^{\frac{N}{p}}|l n \varepsilon|, \quad q=\frac{N(p-2)+p s}{N-s p} \\
\frac{s}{N} S_{s, p}^{\frac{N}{s p}}+c_{1} \varepsilon^{\frac{N-p s}{p-1}}-c_{2} \mu \varepsilon^{N-\frac{(N-s p)(q+1)}{p}}, \quad \frac{N(p-2)+p s}{N-s p}<q<p-1 .\end{cases}
\end{aligned}
$$

Choose $\varepsilon \in\left(0, \frac{\delta}{2}\right)$ such that $\varepsilon^{\frac{N-s p}{p-1}}=\mu^{\frac{p_{s}^{*}}{p_{s}^{-q-1}}}$. Then for $\frac{N(p-2)+p s}{N-s p}<q<p-1$, the term $\frac{s}{N} S_{s, p}^{\frac{N}{s p}}+c_{1} \varepsilon^{\frac{N-p s}{p-1}}-c_{2} \mu \varepsilon^{N-\frac{(N-s p)(q+1)}{p}}$ reduces to $\frac{s}{N} S_{s, p}^{\frac{N}{s p}}+c_{1} \mu^{\frac{p_{s}^{p}-q-1}{*}}-$ $c_{2} \mu\left(\mu^{\frac{p^{*}}{p^{*}-q-1}}\right)^{\left(N-\frac{(N-s p)(q+1)}{p}\right)\left(\frac{p-1}{N-p s}\right)}$. Now, note that we can make

$$
c_{1} \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-q-1}}-c_{2} \mu\left(\mu^{\frac{p^{*}}{p^{*}-q-1}}\right)^{\left(N-\frac{(N-s p)(q+1)}{p}\right)\left(\frac{p-1}{N-p s}\right)}<-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-q-1}},
$$

for $\mu>0$ small if we further choose $\left(\frac{p_{s}^{*}}{p_{s}^{*}-q-1}\right)\left(\frac{p-1}{p}\right)\left[\frac{N p}{N-p s}-(q+1)\right]<\frac{p_{s}^{*}}{p_{s}^{*}-q-1}-1$ i.e., if $q+1>\frac{N^{2}(p-1)}{(N-s p)(N-s)}$. This proves (5.8.2). It is easy to see that (5.8.3) follows by combining (5.8.2) along with Lemma 5.4.2 .

5.8.1 Sign changing critical points of I_{μ}

Define

$$
\begin{gathered}
\mathcal{N}_{\mu, 1}^{-}:=\left\{u \in N_{\mu}: u^{+} \in N_{\mu}^{-}\right\}, \\
\mathcal{N}_{\mu, 2}^{-}:=\left\{u \in N_{\mu}:-u^{-} \in N_{\mu}^{-}\right\},
\end{gathered}
$$

We set

$$
\begin{equation*}
\beta_{1}=\inf _{u \in \mathcal{N}_{\mu, 1}^{-}} I_{\mu}(u) \quad \text { and } \quad \beta_{2}=\inf _{u \in \mathcal{N}_{\mu, 2}^{-}} I_{\mu}(u) . \tag{5.8.8}
\end{equation*}
$$

Theorem 5.8.2. Let $p \geq 2, N>\frac{s p}{2}\left[p+1+\sqrt{(p+1)^{2}-4}\right]$ and $q_{1}<q<p-1$, where q_{1} is defined as in (5.8.1). Assume $0<\mu<\min \left\{\tilde{\mu}, \tilde{\mu}_{1}, \mu_{*}, \mu_{1}\right\}$, where $\tilde{\mu}, \tilde{\mu}_{1}$ and μ_{1} are as in (5.3.4), Lemma 5.8.1 and Lemma 5.9.1 respectively. μ_{*} is chosen such that $\tilde{\alpha}_{\mu}^{-}$is achieved in $\left(0, \mu_{*}\right)$. Let $\beta_{1}, \beta_{2}, \tilde{\alpha}_{\mu}^{-}$be defined as in (5.8.8) and (5.3.2) respectively.
(i) Let $\beta_{1}<\tilde{\alpha}_{\mu}^{-}$. Then, there exists a sign changing critical point \tilde{w}_{1} of I_{μ} such that $\tilde{w}_{1} \in \mathcal{N}_{\mu, 1}^{-}$and $I_{\mu}\left(\tilde{w}_{1}\right)=\beta_{1}$.
(ii) If $\beta_{2}<\tilde{\alpha}_{\mu}^{-}$, then there exists a sign changing critical point \tilde{w}_{2} of I_{μ} such that $\tilde{w}_{2} \in \mathcal{N}_{\mu, 1}^{-}$and $I_{\mu}\left(\tilde{w}_{2}\right)=\beta_{2}$.

Proof. (i) Let $\beta_{1}<\tilde{\alpha}_{\mu}^{-}$. We prove the theorem in few steps.
Step 1: $\mathcal{N}_{\mu, 1}^{-}$and $\mathcal{N}_{\mu, 2}^{-}$are closed sets.
To see this, let $\left\{u_{n}\right\} \subset \mathcal{N}_{\mu, 1}^{-}$such that $u_{n} \rightarrow u$ in $X_{0, s, p}(\Omega)$. It is easy to note that $\left|u_{n}\right|,|u| \in X_{0, s, p}(\Omega)$ and $\left|u_{n}\right| \rightarrow|u|$ in $X_{0, s, p}(\Omega)$. This in turn implies $u_{n}^{+} \rightarrow u^{+}$in $X_{0, s, p}(\Omega)$ and $L^{\gamma}\left(\mathbb{R}^{N}\right)$ for $\gamma \in\left[1, p_{s}^{*}\right]$ (by Sobolev inequality). Since, $u_{n} \in \mathcal{N}_{\mu, 1}^{-}$, we have $u_{n}^{+} \in N_{\mu}^{-}$. Therefore

$$
\begin{equation*}
\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p^{*}}-\mu\left|u_{n}^{+}\right|_{L^{q+1}(\Omega)}^{q+1}=0 \tag{5.8.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(p-1-q)\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\left|u_{n}^{+}\right|_{L^{p} p_{s}^{*}(\Omega)}^{p^{*}}<0 \forall n \geq 1 . \tag{5.8.10}
\end{equation*}
$$

Passing to the limit as $n \rightarrow \infty$, we obtain $u^{+} \in N_{\mu}$ and $(p-1-q)\left\|u^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\left|u^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{\left[p^{*}\right.} \leq 0$. But, from Lemma 5.4.3, we know $N_{\mu}^{0}=\emptyset$. Therefore $u^{+} \in N_{\mu}^{-}$and hence $\mathcal{N}_{\mu, 1}^{-}$is closed. Similarly it can be shown that $\mathcal{N}_{\mu, 2}^{-}$is also closed. Hence step 1 follows.

By Ekeland Variational Principle there exists sequence $\left\{u_{n}\right\} \subset \mathcal{N}_{\mu, 1}^{-}$such that

$$
\begin{equation*}
I_{\mu}\left(u_{n}\right) \rightarrow \beta_{1} \quad \text { and } \quad I_{\mu}(z) \geq I_{\mu}\left(u_{n}\right)-\frac{1}{n}\left\|u_{n}-z\right\|_{X_{0, s, p}(\Omega)} \quad \forall z \in \mathcal{N}_{\mu, 1}^{-} \tag{5.8.11}
\end{equation*}
$$

Step 2: $\left\{u_{n}\right\}$ is uniformly bounded in $X_{0, s, p}(\Omega)$.
To see this, we notice $u_{n} \in \mathcal{N}_{\mu, 1}^{-}$implies $u_{n} \in N_{\mu}$ and this in turn implies $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$, that is,

$$
\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}=\left|u_{n}\right|_{L_{s}^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}+\mu\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1} .
$$

Since $I_{\mu}\left(u_{n}\right) \rightarrow \beta_{1}$, using the above equality in the expression of $I_{\mu}\left(u_{n}\right)$, we get, for n large enough

$$
\begin{aligned}
\frac{s}{N}\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p} & \leq \beta_{1}+1+\left(\frac{1}{q+1}-\frac{1}{p_{s}^{*}}\right) \mu\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& \leq C\left(1+\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{q+1}\right)
\end{aligned}
$$

As $p>q+1$, the above implies $\left\{u_{n}\right\}$ is uniformly bounded in $X_{0, s, p}(\Omega)$.

We note that for any $u \in X_{0, s, p}(\Omega)$, we have

$$
\begin{align*}
& \|u\|_{X_{0, s, p}(\Omega)}^{p}=\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+p s}} d x d y \\
& =\int_{\mathbb{R}^{2 N}} \frac{\left(|u(x)-u(y)|^{2}\right)^{\frac{p}{2}}}{|x-y|^{N+p s}} d x d y \\
& =\int_{\mathbb{R}^{2 N}} \frac{\left(\left|\left(u^{+}(x)-u^{+}(y)\right)-\left(u^{-}(x)-u^{-}(y)\right)\right|^{2}\right)^{\frac{p}{2}}}{|x-y|^{N+p s}} d x d y \\
& =\int_{\mathbb{R}^{2 N}} \frac{\left(\left(u^{+}(x)-u^{+}(y)\right)^{2}+\left(u^{-}(x)-u^{-}(y)\right)^{2}+2 u^{+}(x) u^{-}(y)+2 u^{+}(y) u^{-}(x)\right)^{\frac{p}{2}}}{|x-y|^{N+p s}} d x d y \\
& \geq \int_{\mathbb{R}^{2 N}} \frac{\left(\left(u^{+}(x)-u^{+}(y)\right)^{2}+\left(u^{-}(x)-u^{-}(y)\right)^{2}\right)^{\frac{p}{2}}}{|x-y|^{N+p s}} d x d y \\
& \geq \int_{\mathbb{R}^{2 N}} \frac{\left(\left(u^{+}(x)-u^{+}(y)\right)^{2}\right)^{\frac{p}{2}}}{|x-y|^{N+p s}} d x d y+\int_{\mathbb{R}^{2 N}} \frac{\left(\left(u^{-}(x)-u^{-}(y)\right)^{2}\right)^{\frac{p}{2}}}{|x-y|^{N+p s}} d x d y \\
& =\left\|u^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}+\left\|u^{-}\right\|_{X_{0, s, p}(\Omega)}^{p} \tag{5.8.12}
\end{align*}
$$

By a simple calculation, it follows
$|u|_{L^{p_{s}^{*}}(\Omega)}^{p_{i}^{*}}=\left|u^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}+\left|u^{-}\right|_{L_{s}^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}} \quad$ and $\quad|u|_{L^{q+1}(\Omega)}^{q+1}=\left|u^{+}\right|_{L^{q+1}(\Omega)}^{q+1}+\left|u^{-}\right|_{L^{q+1}(\Omega)}^{q+1}$.

Combining (5.8.12) and (5.8.13), we obtain

$$
\begin{equation*}
I_{\mu}(u) \geq I_{\mu}\left(u^{+}\right)+I_{\mu}\left(u^{-}\right) \quad \forall \quad u \in X_{0, s, p}(\Omega) . \tag{5.8.14}
\end{equation*}
$$

Step 3: There exists $b>0$ such that $\left\|u_{n}^{-}\right\|_{X_{0, s, p}(\Omega)} \geq b$ for all $n \geq 1$.
Suppose the step is not true. Then for each $k \geq 1$, there exists $u_{n_{k}}$ such that

$$
\begin{equation*}
\left\|u_{n_{k}}^{-}\right\|_{X_{0, s, p}(\Omega)}<\frac{1}{k} \forall k \geq 1 . \tag{5.8.15}
\end{equation*}
$$

Therefore, $\left\|u_{n_{k}}^{-}\right\|_{X_{0, s, p}(\Omega)} \rightarrow 0$ as $k \rightarrow \infty$ and by Sobolev inequality

$$
\left|u_{n_{k}}^{-}\right|_{L^{p_{s}^{*}}(\Omega)} \rightarrow 0, \quad\left|u_{n_{k}}^{-}\right|_{L^{q+1}(\Omega)} \rightarrow 0, \quad \text { as } \quad k \rightarrow \infty
$$

Consequently, $I_{\mu}\left(u_{n_{k}}^{-}\right) \rightarrow 0$ as $k \rightarrow \infty$. As a result, using (5.8.14) we have $\beta_{1}=I_{\mu}\left(u_{n_{k}}\right)+o(1) \geq I_{\mu}\left(u_{n_{k}}^{+}\right)+I_{\mu}\left(u_{n_{k}}^{-}\right)+o(1)=I_{\mu}^{+}\left(u_{n_{k}}^{+}\right)+o(1) \geq \tilde{\alpha}_{\mu}^{-}+o(1)$.

This is a contradiction to the hypothesis. Hence step 3 follows.
Step 4: $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0, s, p}(\Omega)\right)^{\prime}$ as $n \rightarrow \infty$.
Since $u_{n} \in \mathcal{N}_{\mu, 1}^{-}$, we have $u_{n}^{+} \in N_{\mu}^{-}$. Thus by Lemma 5.4.4 applied to the element u_{n}^{+}, there exists

$$
\begin{equation*}
\rho_{n}:=\rho_{u_{n}^{+}} \quad \text { and } \quad g_{n}:=g_{\rho_{u_{n}^{+}}}, \tag{5.8.16}
\end{equation*}
$$

such that

$$
\begin{equation*}
g_{n}(0)=1, \quad\left(g_{n}(w)\right)\left(u_{n}^{+}+w\right) \in N_{\mu}^{-} \quad \forall \quad w \in B_{\rho_{n}}(0) . \tag{5.8.17}
\end{equation*}
$$

Choose $0<\tilde{\rho}_{n}<\rho_{n}$ such that $\tilde{\rho}_{n} \rightarrow 0$. Let $v \in X_{0, s, p}(\Omega)$ with $\|v\|_{X_{0, s, p}(\Omega)}=1$. Define

$$
v_{n}:=-\tilde{\rho}_{n}\left[v^{+} \chi_{\left\{u_{n} \geq 0\right\}}-v^{-} \chi_{\left\{u_{n} \leq 0\right\}}\right]
$$

and

$$
\begin{aligned}
z_{\tilde{\rho}_{n}} & :=\left(g_{n}\left(v_{n}^{-}\right)\right)\left(u_{n}-v_{n}\right) \\
& =: z_{\tilde{\rho}_{n}}^{1}-z_{\tilde{\rho}_{n}}^{2},
\end{aligned}
$$

where $z_{\tilde{\rho}_{n}}^{1}:=\left(g_{n}\left(v_{n}^{-}\right)\right)\left(u_{n}^{+}+\tilde{\rho}_{n} v^{+} \chi_{\left\{u_{n} \geq 0\right\}}\right)$ and $z_{\tilde{\rho}_{n}}^{2}:=\left(g_{n}\left(v_{n}^{-}\right)\right)\left(u_{n}^{-}+\right.$ $\left.\tilde{\rho}_{n} v^{-} \chi_{\left\{u_{n} \leq 0\right\}}\right)$. Note that $v_{n}^{-}=\tilde{\rho}_{n} v^{+} \chi_{\left\{u_{n} \geq 0\right\}}$. So, $\left\|v_{n}^{-}\right\|_{X_{0, s, p}(\Omega)} \leq \tilde{\rho}_{n}\|v\|_{X_{0, s, p}(\Omega)} \leq$ $\tilde{\rho}_{n}$. Hence taking $w=v_{n}^{-}$in (5.8.17) we have, $z_{\tilde{\rho}_{n}}^{+}=z_{\tilde{\rho}_{n}}^{1} \in N_{\mu}^{-}$so $z_{\tilde{\rho}_{n}} \in N_{\mu, 1}^{-}$. Hence,

$$
I_{\mu}\left(z_{\tilde{\rho}_{n}}\right) \geq I_{\mu}\left(u_{n}\right)-\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} .
$$

This implies,

$$
\begin{align*}
\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} & \geq I_{\mu}\left(u_{n}\right)-I_{\mu}\left(z_{\tilde{\rho}_{n}}\right) \\
& =\left\langle I_{\mu}^{\prime}\left(u_{n}\right), u_{n}-z_{\tilde{\rho}_{n}}\right\rangle+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} \\
& =-\left\langle I_{\mu}^{\prime}\left(u_{n}\right), z_{\tilde{\rho}_{n}}\right\rangle+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} \tag{5.8.18}
\end{align*}
$$

as $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$ for all n. Let $w_{n}=\tilde{\rho}_{n} v$. Then,

$$
\begin{array}{r}
\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} \geq-\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}+z_{\tilde{\rho}_{n}}\right\rangle+\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}\right\rangle \\
+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} . \tag{5.8.19}
\end{array}
$$

Now, $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}\right\rangle=\left\langle I_{\mu}^{\prime}\left(u_{n}\right), \tilde{\rho}_{n} v\right\rangle=\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle$. Define

$$
\overline{v_{n}}:=v^{+} \chi_{\left\{u_{n} \geq 0\right\}}-v^{-} \chi_{\left\{u_{n} \leq 0\right\}} .
$$

So, $z_{\tilde{\rho}_{n}}=g_{n}\left(v_{n}^{-}\right)\left(u_{n}-\tilde{\rho}_{n} \overline{v_{n}}\right)$. Hence we have,

$$
\begin{array}{r}
\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}+z_{\tilde{\rho}_{n}}\right\rangle=\left\langle I_{\mu}^{\prime}\left(u_{n}\right), w_{n}+g_{n}\left(v_{n}^{-}\right)\left(u_{n}-\tilde{\rho}_{n} \overline{v_{n}}\right)\right\rangle \\
=\left\langle I_{\mu}^{\prime}\left(u_{n}\right), \tilde{\rho}_{n} v-g_{n}\left(v_{n}^{-}\right) \tilde{\rho}_{n} \overline{v_{n}}\right\rangle \\
=\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle \tag{5.8.20}
\end{array}
$$

Using (5.8.20) in (5.8.19), we have

$$
\begin{array}{r}
\frac{1}{n}\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} \geq-\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle \\
+\tilde{\rho}_{n}\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle+o(1)\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} . \tag{5.8.21}
\end{array}
$$

First we will estimate $\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle$. For this,

$$
\begin{aligned}
v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}} & =v^{+}-v^{-}-g_{n}\left(v_{n}^{-}\right)\left[v^{+} \chi_{\left\{u_{n} \geq 0\right\}}-v^{-} \chi_{\left\{u_{n} \leq 0\right\}}\right] \\
& =v^{+}\left[g_{n}(0)-g_{n}\left(v_{n}^{-}\right) \chi_{\left\{u_{n} \geq 0\right\}}\right]-v^{-}\left[g_{n}(0)-g_{n}\left(v_{n}^{-}\right) \chi_{\left\{u_{n} \leq 0\right\}}\right] \\
& =-v^{+}\left[\left\langle g_{n}^{\prime}(0), v_{n}^{-}\right\rangle+o(1)\left\|v_{n}^{-}\right\|_{X_{0, s, p}(\Omega)}\right] \\
& +v^{-}\left[\left\langle g_{n}^{\prime}(0), v_{n}^{-}\right\rangle+o(1)\left\|v_{n}^{-}\right\|_{X_{0, s, p}(\Omega)}\right] \\
& =-v^{+} \tilde{\rho}_{n}\left[\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0, s, p}(\Omega)}\right] \\
& +v^{-} \tilde{\rho}_{n}\left[\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0, s, p}(\Omega)}\right] \\
& =-\tilde{\rho}_{n}\left[\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0, s, p}(\Omega)}\right] v .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v-g_{n}\left(v_{n}^{-}\right) \overline{v_{n}}\right\rangle=-\tilde{\rho}_{n}\left(\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0, s, p}(\Omega)}\right)\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle . \tag{5.8.22}
\end{equation*}
$$

Claim : $g_{n}\left(v_{n}^{-}\right)$is uniformly bounded in $X_{0, s, p}(\Omega)$.
To see this, we observe that from (5.8.17) we have, $g_{n}\left(v_{n}^{-}\right)\left(u_{n}^{+}+v_{n}^{-}\right) \in$ $N_{\mu}^{-} \subset N_{\mu}$, which implies,

$$
\left\|c_{n} \tilde{\psi}_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}-\mu\left|c_{n} \tilde{\psi}_{n}\right|_{L^{q+1}(\Omega)}^{q+1}-\left|c_{n} \tilde{\psi}_{n}\right|_{L^{p_{s}^{*}(\Omega)}}^{p_{*}^{*}}=0,
$$

where $c_{n}:=g_{n}\left(v_{n}^{-}\right)$and $\tilde{\psi}_{n}:=u_{n}^{+}+v_{n}^{-}$. Dividing by $c_{n}^{p^{*}}$ we have,

$$
\begin{equation*}
c_{n}^{p-p^{*}}\left\|\tilde{\psi}_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}-\mu c_{n}^{q+1-p^{*}}\left|\tilde{\psi}_{n}\right|_{L^{q+1}(\Omega)}^{q+1}=\left|\tilde{\psi}_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}} . \tag{5.8.23}
\end{equation*}
$$

Note that $\left\|\tilde{\psi}_{n}\right\|_{X_{0, s, p}(\Omega)}$ is uniformly bounded above as $\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}$ is uniformly bounded and $\tilde{\rho}_{n}=o(1)$. Also, $\left\|\tilde{\psi}_{n}\right\|_{X_{0, s, p}(\Omega)} \geq\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}-$ $\tilde{\rho}_{n}\|v\|_{X_{0, s, p}(\Omega)}$. Note that $\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)} \geq \tilde{b}$ for large n. If not, then $\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. As $u_{n} \in N_{\mu, 1}^{-}$, so $u_{n}^{+} \in N_{\mu}^{-}$. Now, N_{μ}^{-}is a closed set and $0 \notin N_{\mu}^{-}$and therefore $\left\|u_{n}^{-}\right\|_{X_{0, s, p}(\Omega)} \nrightarrow 0$ as $n \rightarrow \infty$. Thus there exists $\tilde{b} \geq 0$ such that $\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)} \geq \tilde{b}>0$. This in turn implies that $\left\|\tilde{\psi}_{n}\right\|_{X_{0, s, p}(\Omega)} \geq C$, for some $C>0$ by choosing $\tilde{\rho}_{n}$ small enough. Consequently, if c_{n} is not uniformly bounded, we obtain LHS of (5.8.23) converges to 0 as $n \rightarrow \infty$.

On the other hand,

$$
\left|\tilde{\psi}_{n}\right|_{L^{p_{s}^{*}}(\Omega)} \geq\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}-\tilde{\rho}_{n}|v|_{L^{p_{s}^{*}}(\Omega)}>c,
$$

for some positive constant c as $\rho_{n}=o(1)$ and $u_{n}^{+} \in N_{\mu}^{-}$implies

$$
\left(p_{s}^{*}-1-q\right)\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p^{*}}>(p-1-q)\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}>(p-1-q) \tilde{b}^{p} .
$$

Hence, the claim follows.

Now using the fact that $g_{n}(0)=1$ and the above claim we obtain

$$
\begin{aligned}
\left\|u_{n}-z_{\tilde{\rho}_{n}}\right\|_{X_{0, s, p}(\Omega)} & \leq\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}\left|1-g_{n}\left(v_{n}^{-}\right)\right|+\tilde{\rho}_{n}\left\|\bar{v}_{n}\right\|_{X_{0, s, p}(\Omega)} g_{n}\left(v_{n}^{-}\right) \\
& \leq\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}\left[\left|\left\langle g_{n}^{\prime}(0), v_{n}^{-}\right\rangle\right|+o(1)\left\|\bar{v}_{n}\right\|_{X_{0, s, p}(\Omega)}\right] \\
& +\tilde{\rho}_{n}\|v\|_{X_{0, s, p}(\Omega)} g_{n}\left(v_{n}^{-}\right) \\
& \leq \tilde{\rho}_{n}\left[\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}\left\langle g_{n}^{\prime}(0), \bar{v}_{n}^{+}\right\rangle+o(1)\|v\|_{X_{0, s, p}(\Omega)}\right. \\
& \left.+\|v\|_{X_{0, s, p}(\Omega)} g_{n}\left(v_{n}^{-}\right)\right] \\
& \leq \tilde{\rho}_{n} C .
\end{aligned}
$$

Substituting this and (5.8.22) in (5.8.21) yields

$$
\begin{aligned}
\tilde{\rho}_{n}\left(\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0, s, p}(\Omega)}\right)\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle & +\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle \tilde{\rho}_{n}+\tilde{\rho}_{n} o(1) \\
& \leq \tilde{\rho}_{n} \cdot \frac{C}{n} .
\end{aligned}
$$

This implies

$$
\left[\left(\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle+o(1)\left\|v^{+}\right\|_{X_{0, s, p}(\Omega)}\right)+1\right]\left\langle I_{\mu}^{\prime}\left(u_{n}\right), v\right\rangle \leq \frac{C}{n}+o(1) \text { for all } n \geq n_{0}
$$

Since $\left|\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle\right|$is uniformly bounded (see Lemma 5.9.1 in Appendix), letting $n \rightarrow \infty$ we have $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0, s, p}(\Omega)\right)^{\prime}$. Hence the step 4 follows.

Therefore $\left\{u_{n}\right\}$ is a (PS) sequence of I_{μ} at level $\beta_{1}<\tilde{\alpha}_{\mu}^{-}$. From Lemma 5.8.1, it follows that

$$
\tilde{\alpha}_{\mu}^{-}<\frac{s}{N} S_{s, p}^{\frac{N}{p s}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-q-1}} \quad \text { for } \quad \mu \in\left(0, \tilde{\mu}_{1}\right)
$$

where $M=\frac{(p N-(N-p s)(q+1))(p-1-q)}{p^{2}(q+1)}\left(\frac{(p-1-q)(N-p s)}{p^{2} s}\right)^{\frac{q+1}{p_{s}^{q}-q-1}}|\Omega|$. Thus,

$$
\beta_{1}<\tilde{\alpha}_{\mu}^{-}<\frac{s}{N} S_{s, p}^{\frac{N}{p s}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-q-1}} .
$$

On the other hand, it follows from the Lemma 5.7.1 that I_{μ} satisfies $P S$ at level c for

$$
c<\frac{s}{N} S_{s, p}^{\frac{N}{p s}}-M \mu^{\frac{p_{s}^{*}}{p_{s}^{*}-q-1}},
$$

this yields, there exists $u \in X_{0, s, p}(\Omega)$ such that $u_{n} \rightarrow u$ in $X_{0, s, p}(\Omega)$. By doing a simple calculation we get $u_{n}^{-} \rightarrow u^{-}$in $X_{0, s, p}(\Omega)$. Consequently, by Step $3\left\|u^{-}\right\|_{X_{0, s, p}(\Omega)} \geq b$. As $\mathcal{N}_{\mu, 1}^{-}$is a closed set and $u_{n} \rightarrow u$, we obtain $u \in \mathcal{N}_{\mu, 1}^{-}$, that is, $u^{+} \in N_{\mu}^{-}$and $u^{+} \neq 0$. Therefore u is a solution of $\left(\mathcal{P}_{\mu}\right)$ with u^{+}and u^{-}are both nonzero. Hence, u is a sign-changing solution of $\left(\mathcal{P}_{\mu}\right)$. Define $\tilde{w}_{1}:=u$. This completes the proof of part (i) of the theorem.

Proof of part (ii) is similar to part (i) and we omit the proof.

Theorem 5.8.3. Let $\beta_{1}, \beta_{2} \geq \tilde{\alpha}_{\mu}^{-}$where $\beta_{1}, \beta_{2}, \tilde{\alpha}_{\mu}^{-}$be defined as in (5.8.8) and (5.3.2) respectively. Then, there exists $\mu_{0}>0$ such that for any $\mu \in\left(0, \mu_{0}\right), I_{\mu}$ has a sign changing critical point in the following cases:
(i) for $p \geq \frac{3+\sqrt{5}}{2}$, there exists $q_{2}:=\frac{N p}{N-s p}-\frac{p}{p-1}$ such that when $q>q_{2}$ and $N>s p\left(p^{2}-p+1\right)$,
(ii) for $2 \leq p<\frac{3+\sqrt{5}}{2}$, there exists $q_{3}:=\frac{N(p-1)}{N-s p}-\frac{p-1}{p}$ such that when $q>q_{3}$ and $N>\operatorname{sp}(p+1)$.

We need the following Proposition to prove the above Theorem 5.8.3.
Proposition 5.8.4. Assume $0<\mu<\min \left\{\mu_{*}, \tilde{\mu}, \tilde{\mu}_{1}\right\}$, where $\tilde{\mu}$ is as defined in (5.3.4) and $\mu_{*}>0$ is chosen such that $\tilde{\alpha}_{\mu}^{-}$is achieved in $\left(0, \mu_{*}\right)$ and $\tilde{\mu_{1}}$ is as in Lemma 5.8.1. Then, for $p \geq \frac{3+\sqrt{5}}{2}$, there exists $q_{2}:=\frac{N p}{N-s p}-\frac{p}{p-1}$ such that when $q>q_{2}$ and $N>s p\left(p^{2}-p+1\right)$ we have

$$
\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right)<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s, p}^{\frac{N}{p s}},
$$

for $\varepsilon>0$ sufficiently small, where w_{1} is a positive solution of $\left(\mathcal{P}_{\mu}\right)$ and u_{ε} be as in (5.5.6).

Furthermore, when $2 \leq p<\frac{3+\sqrt{5}}{2}$, there exists $q_{3}:=\frac{N(p-1)}{N-s p}-\frac{p-1}{p}$ such that when $q>q_{3}$ and $N>s p(p+1)$, it holds

$$
\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon}\right)<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s, p}^{\frac{N}{p s}},
$$

for $\varepsilon>0$ sufficiently small.
To prove the above proposition, we need the following lemmas.
Lemma 5.8.5. Let w_{1} and μ be as in Proposition 5.8.4. Then

$$
\sup _{s>0} I_{\mu}\left(s w_{1}\right)=\tilde{\alpha}_{\mu}^{-} .
$$

Proof. By the definition of $\tilde{\alpha}_{\mu}^{-}$, we have $\tilde{\alpha}_{\mu}^{-}=\inf _{u \in N_{\mu}^{-}} I_{\mu}^{+}(u)=I_{\mu}^{+}\left(w_{1}\right)=$ $I_{\mu}\left(w_{1}\right)$. In the last equality we have used the fact that $w_{1}>0$. Define $g(s):=I_{\mu}\left(s w_{1}\right)$. From the proof of Lemma 5.4.1, it follows that there exists only two critical points of g, namely $t^{+}\left(w_{1}\right)$ and $t^{-}\left(w_{1}\right)$ and $\max _{s>0} g(s)=$ $g\left(t^{+}\left(w_{1}\right)\right)$. On the other hand $\left\langle I^{\prime}{ }_{\mu}\left(w_{1}\right), v\right\rangle=0$ for every $v \in X_{0, s, p}(\Omega)$. Therefore $g^{\prime}(1)=0$ which implies either $t^{+}\left(w_{1}\right)=1$ or $t^{-}\left(w_{1}\right)=1$.
Claim: $t^{-}\left(w_{1}\right) \neq 1$.
To see this, we note that $t^{-}\left(w_{1}\right)=1$ implies $t^{-}\left(w_{1}\right) w_{1} \in N_{\mu}^{-}$as $w_{1} \in N_{\mu}^{-}$. Using Lemma 5.4.1, we know $t^{-}\left(w_{1}\right) w_{1} \in N_{\mu}^{+}$. Thus $N_{\mu}^{+} \cap N_{\mu}^{-} \neq \emptyset$, which is a contradiction. Hence we have the claim.
Therefore $t^{+}\left(w_{1}\right)=1$ and this completes the proof.
Lemma 5.8.6. Let u_{ε} be as in (5.5.6) and μ be as in Proposition 5.8.4. Then for $\varepsilon>0$ sufficiently small, we have

$$
\sup _{t \in \mathbb{R}} I_{\mu}\left(t u_{\varepsilon}\right)=\frac{s}{N} S_{s, p}^{\frac{N}{p s}}+C \varepsilon^{\frac{(N-p s)}{(p-1)}}-\left.k_{8}\right|_{u_{\varepsilon}} ^{q+1} L_{L^{q+1}(\Omega)}^{q+}
$$

Proof. Define $\left.\tilde{\phi}(t)=\frac{t^{p}}{p}\left\|u_{\varepsilon}\right\|_{X_{0, s, p}(\Omega)}^{p}-\frac{t^{p} p_{s}^{*}}{p_{s}^{*}} \right\rvert\, u_{\varepsilon}{\underset{L}{p_{s}^{*}}(\Omega)}_{p_{s}^{*}}$. Thus $I_{\mu}\left(t u_{\varepsilon}\right)=\tilde{\phi}(t)-$ $\mu \frac{t^{q+1}}{q+1}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1}$. On the other hand, applying the analysis done in Lemma 5.4.1 to u_{ε}, we obtain there exists $\left(t_{0}\right)_{\varepsilon}=\left(\frac{(p-1-q)\left\|u_{\varepsilon}\right\|_{X_{0, s, p}(\Omega)}^{p}}{\left(p_{s}^{*}-1-q\right)\left|u_{\varepsilon}\right|_{L_{s}^{p_{s}^{*}}(\Omega)}^{p_{s}}}\right)^{\frac{N-p s}{p^{2} s}}<t_{\varepsilon}^{+}$such that

$$
\begin{aligned}
\sup _{t \in \mathbb{R}} I_{\mu}\left(t u_{\varepsilon}\right)=\sup _{t \geq 0} I_{\mu}\left(t u_{\varepsilon}\right)=I_{\mu}\left(t_{\varepsilon}^{+} u_{\varepsilon}\right) & =\tilde{\phi}\left(t_{\varepsilon}^{+}\right)-\mu \frac{\left(t_{\varepsilon}^{+}\right)^{q+1}}{q+1}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& \leq \sup _{t \geq 0}^{\tilde{\phi}(t)-\mu \frac{\left(t_{0}\right)_{\varepsilon}^{q+1}}{q+1}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1}}
\end{aligned}
$$

Substituting the value of $\left(t_{0}\right)_{\varepsilon}$ and using Sobolev inequality, we have

$$
\mu \frac{\left(t_{0}\right)_{\varepsilon}^{q+1}}{q+1} \geq \frac{\mu}{q+1}\left(\frac{p-1-q}{p_{s}^{*}-q-1} S_{s, p}\right)^{\frac{(N-p s)(q+1)}{p^{2} s}}=k_{8} .
$$

Consequently,

$$
\begin{equation*}
\sup _{t \in \mathbb{R}} I_{\mu}\left(t u_{\varepsilon}\right) \leq \sup _{t \geq 0} \tilde{\phi}(t)-k_{8}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1} . \tag{5.8.24}
\end{equation*}
$$

Using elementary analysis, it is easy to check that $\tilde{\phi}$ attains it's maximum at the point $\tilde{t}_{0}=\left(\frac{\left\|u_{\varepsilon}\right\|_{X_{0, s, p}(\Omega)}^{p}}{\left|u_{\varepsilon}\right|_{L^{p}}^{p_{s}^{*}(\Omega)}}\right)^{\frac{1}{p_{s}^{*}-p}}$ and $\tilde{\phi}\left(t_{0}\right)=\frac{s}{N}\left(\frac{\left\|u_{\varepsilon}\right\|_{X_{0, s, p}(\Omega)}^{p}}{\mid u_{\varepsilon}{ }_{L^{p}}^{p}(\Omega)}\right)^{\frac{N}{p s}}$. Moreover, using (5.8.6) and (5.8.4), we can deduce as in (5.8.7) that

$$
\begin{equation*}
\tilde{\phi}\left(t_{0}\right) \leq \frac{s}{N} S_{s, p}^{\frac{N}{p s}}+C \varepsilon^{\frac{(N-p s)}{(p-p)}} . \tag{5.8.25}
\end{equation*}
$$

Substituting back (5.8.25) into (5.8.24), completes the proof.

Proof of Proposition 5.8.4: Note that, for fixed a and $b, I_{\mu}\left(\eta\left(a w_{1}-\right.\right.$ $\left.\left.b u_{\varepsilon, \delta}\right)\right) \rightarrow-\infty$ as $|\eta| \rightarrow \infty$. Therefore $\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon, \delta}\right)$ exists and supremum will be attained in $a^{2}+b^{2} \leq R^{2}$, for some large $R>0$. Thus it is enough to estimate $I_{\mu}\left(a w_{1}-b u_{\varepsilon, \delta}\right)$ in $\left\{(a, b) \in \mathbb{R}^{+} \times \mathbb{R}: a^{2}+b^{2} \leq R^{2}\right\}$. Using elementary inequality, there exists $d(m)>0$ such that

$$
\begin{equation*}
|a+b|^{m} \geq|a|^{m}+|b|^{m}-d\left(|a|^{m-1}|b|+\left|a \||b|^{m-1}\right) \quad \forall \quad a, b \in \mathbb{R}, m>1 .\right. \tag{5.8.26}
\end{equation*}
$$

Define, $f(v):=\|v\|_{X_{0, s, p}(\Omega)}^{p}$. Then using Taylor's theorem

$$
\begin{align*}
& f\left(a w_{1}-b u_{\varepsilon, \delta}\right)=f\left(a w_{1}\right)-\left\langle f^{\prime}\left(a w_{1}\right), b u_{\varepsilon}\right\rangle+o\left(\left\|b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{2}\right) \\
& \leq\left\|a w_{1}\right\|_{X_{0, s, p}(\Omega)}^{p} \\
& -p \int_{\mathbb{R}^{2 N}} \frac{\left|a w_{1}(x)-a w_{1}(y)\right|^{p-2}\left(a w_{1}(x)-a w_{1}(y)\right)\left(b u_{\varepsilon, \delta}(x)-b u_{\varepsilon, \delta}(y)\right)}{|x-y|^{N+p s}} \\
& +c\left\|b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{2}, \tag{5.8.27}
\end{align*}
$$

where $c>0$ is small enough. We also note that from the definition of $u_{\varepsilon, \delta}$, it follows that $\left\|u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}$ is bounded away from 0 . Therefore, since $p \geq 2$ we have $c\left\|b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{2} \leq\left\|b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{p}$, for $c>0$ small enough. Hence

$$
\begin{align*}
& \left\|a w_{1}-b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{p}=\left\|a w_{1}\right\|_{X_{0, s, p}(\Omega)}^{p} \\
& -p \int_{\mathbb{R}^{2 N}} \frac{\left|a w_{1}(x)-a w_{1}(y)\right|^{p-2}\left(a w_{1}(x)-a w_{1}(y)\right)\left(b u_{\varepsilon, \delta}(x)-b u_{\varepsilon, \delta}(y)\right)}{|x-y|^{N+p s}} \\
& +\left\|b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{p} \tag{5.8.28}
\end{align*}
$$

Consequently, $a^{2}+b^{2} \leq R^{2}$ implies

$$
\begin{aligned}
& I_{\mu}\left(a w_{1}-b u_{\varepsilon, \delta}\right) \leq \frac{1}{p}\left\|a w_{1}\right\|_{X_{0, s, p}(\Omega)}^{p} \\
& -\int_{\mathbb{R}^{2 N}} \frac{\left|a w_{1}(x)-a w_{1}(y)\right|^{p-2}\left(a w_{1}(x)-a w_{1}(y)\right)\left(b u_{\varepsilon, \delta}(x)-b u_{\varepsilon, \delta}(y)\right)}{|x-y|^{N+p s}} d x d y \\
& +\frac{1}{p}\left\|b u_{\varepsilon, \delta}\right\|_{X_{0, s, p}(\Omega)}^{p}-\frac{1}{p_{s}^{*}} \int_{\Omega}\left|a w_{1}\right|^{p_{s}^{*}} d x-\frac{1}{p_{s}^{*}} \int_{\Omega}\left|b u_{\varepsilon, \delta}\right|^{p_{s}^{*}} d x \\
& -\frac{\mu}{q+1} \int_{\Omega}\left|a w_{1}\right|^{q+1} d x-\frac{\mu}{q+1} \int_{\Omega}\left|b u_{\varepsilon, \delta}\right|^{q+1} d x \\
& +C\left(\int_{\Omega}\left|a w_{1}\right|^{p_{s}^{*}-1}\left|b u_{\varepsilon, \delta}\right| d x+\int_{\Omega}\left|a w_{1} \| b u_{\varepsilon, \delta}\right|^{p_{s}^{*}-1} d x\right) \\
& +C\left(\int_{\Omega}\left|a w_{1}\right|^{q}\left|b u_{\varepsilon, \delta}\right| d x+\int_{\Omega}\left|a w_{1}\right|\left|b u_{\varepsilon, \delta}\right|^{q} d x\right) \\
& =I_{\mu}\left(a w_{1}\right)+I_{\mu}\left(b u_{\varepsilon, \delta}\right)-a^{q} b \mu \int_{\Omega}\left|w_{1}\right|^{q-1} w_{1} u_{\varepsilon, \delta} d x \\
& -a^{p_{s}^{*}} b \int_{\Omega}\left|w_{1}\right|^{p_{s}^{*}-2} w_{1} u_{\varepsilon, \delta} d x \\
& +C\left(\int_{\Omega}\left|w_{1}\right|^{p_{s}^{*}-1}\left|u_{\varepsilon, \delta}\right| d x+\int_{\Omega}\left|w_{1} \| u_{\varepsilon, \delta}\right|^{p_{s}^{*}-1} d x\right) \\
& +C\left(\int_{\Omega}\left|w_{1}\right|^{q}\left|u_{\varepsilon, \delta}\right| d x+\int_{\Omega}\left|w_{1} \| u_{\varepsilon, \delta}\right|^{q} d x\right) .
\end{aligned}
$$

Using Lemmas 5.6.1, 5.8.5 and 5.8.6 we estimate in $a^{2}+b^{2} \leq R^{2}$,

$$
\begin{aligned}
I_{\mu}\left(a w_{1}-b u_{\varepsilon, \delta}\right) & \leq \tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s, p}^{\frac{N}{s s}}-k_{8}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& +C\left(\varepsilon^{\frac{(N-p s)}{(p-1)}}+\varepsilon^{\frac{N-p s}{p(p-1)}}+\varepsilon^{\frac{(N-p s) q}{p(p-1)}}+\varepsilon^{\frac{N(p-1)+p s}{p(p-1)}}\right) .
\end{aligned}
$$

For the term $k_{8}\left|u_{\varepsilon}\right|_{L^{q+1}(\Omega)}^{q+1}$, we invoke Lemma 5.6.2. Therefore when $\frac{N(p-2)+p s}{N-p s}<q<p-1$, we have

$$
\begin{align*}
I_{\mu}\left(a w_{1}-b u_{\varepsilon, \delta}\right) \leq \tilde{\alpha}_{\mu}^{-} & +\frac{s}{N} S_{S, p}^{\frac{N}{p s}}-k_{9} \varepsilon^{N-\frac{(N-p s)(q+1)}{p}} \\
& +C\left(\varepsilon^{\frac{(N-p s)}{(p-1)}}+\varepsilon^{\frac{N-p s}{p(p-1)}}+\varepsilon^{\frac{(N-p s s q}{p(p-1)}}+\varepsilon^{\frac{N(p-1)+p s}{p(p-1)}}\right) \tag{5.8.29}
\end{align*}
$$

We will choose q in such a way that the term $k_{9} \varepsilon^{N-\frac{(N-p s)(q+1)}{p}}$ dominates the other term involving ε. Note that among the terms in the bracket, $\varepsilon^{\frac{N-p s}{p(p-1)}}$ and $\varepsilon^{\frac{(N-p s) q}{p(p-1)}}$ dominate the others.

This in turn implies we have to choose q such that

$$
\begin{equation*}
N-\frac{(N-p s)(q+1)}{p}<\frac{N-p s}{p(p-1)} \tag{5.8.30}
\end{equation*}
$$

and

$$
\begin{equation*}
N-\frac{(N-p s)(q+1)}{p}<\frac{(N-p s) q}{p(p-1)} \tag{5.8.31}
\end{equation*}
$$

(5.8.30) and (5.8.31) implies $q>q_{2}$ and $q>q_{3}$ respectively, where

$$
\begin{equation*}
q_{2}:=\frac{N p}{N-s p}-\frac{p}{p-1} \quad \text { and } \quad q_{3}:=\frac{N(p-1)}{N-s p}-\frac{p-1}{p} . \tag{5.8.32}
\end{equation*}
$$

Case 1: $p \geq \frac{3+\sqrt{5}}{2}$
In this case by straight forward calculation it follows that $q_{2}>q_{3}$. So in this case, we choose $q>q_{2}$. Moreover, since $q<p-1$, to make the interval $\left(q_{2}, p-1\right) \neq \emptyset$, we have to take $N>s p\left(p^{2}-p+1\right)$.

Case 2: $2 \leq p<\frac{3+\sqrt{5}}{2}$
In this case again by simple calculation it follows that $q_{3}>q_{2}$. Thus, in this case, we choose $q>q_{3}$. Furthermore, as $q<p-1$, to make the interval $\left(q_{3}, p-1\right) \neq \emptyset$, we have to take $N>\operatorname{sp}(p+1)$.

Hence in both the cases taking $\varepsilon>0$ to be small enough in (5.8.29), we obtain

$$
\sup _{a \geq 0, b \in \mathbb{R}} I_{\mu}\left(a w_{1}-b u_{\varepsilon, \delta}\right)<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s, p}^{\frac{N}{p s}} .
$$

Proof of Theorem 5.8.3: Define $\mu_{0}:=\min \left\{\tilde{\mu}, \mu_{*}\right\}$,

$$
\begin{equation*}
\mathcal{N}_{*}^{-}:=\mathcal{N}_{\mu, 1}^{-} \cap \mathcal{N}_{\mu, 2}^{-} \tag{5.8.33}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}:=\inf _{u \in \mathcal{N}_{*}^{-}} I_{\mu}(u), \tag{5.8.34}
\end{equation*}
$$

Let $\mu \in\left(0, \mu_{0}\right)$. Using Ekland's variational principle and similar to the proof of Theorem 5.8.2, we obtain a sequence $\left\{u_{n}\right\} \in \mathcal{N}_{*}^{-}$satisfying

$$
I_{\mu}\left(u_{n}\right) \rightarrow c_{2}, \quad I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { in } \quad\left(X_{0, s, p}(\Omega)\right)^{\prime}
$$

Thus $\left\{u_{n}\right\}$ is a (PS) sequence at level c_{2}. From Lemma 5.8.7, given below, it follows that there exists $a>0$ and $b \in R$ such that $a w_{1}-b u_{\varepsilon} \in \mathcal{N}_{*}^{-}$. Therefore Proposition 5.8.4 yields

$$
\begin{equation*}
c_{2}<\tilde{\alpha}_{\mu}^{-}+\frac{s}{N} S_{s, p}^{\frac{N}{s s}} \tag{5.8.35}
\end{equation*}
$$

Claim 1: There exists two positive constants c, C such that $0<c \leq$ $\left\|u_{n}^{ \pm}\right\|_{X_{0, s, p}(\Omega)} \leq C$.
To see this, we note that $\left\{u_{n}\right\} \subset \mathcal{N}_{*}^{-} \subset \mathcal{N}_{\mu, 1}^{-}$. Thus using (5.8.12), Step 2 and Step 3 of the proof of Theorem 5.8.2, we have $\left\|u_{n}^{ \pm}\right\|_{X_{0, s, p}(\Omega)} \leq C$ and $\left\|u_{n}^{-}\right\|_{X_{0, s, p}(\Omega)} \geq c$. To show $\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)} \geq a$ for some $a>0$, we use method of contradiction. Assume up to a subsequence $\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)} \rightarrow 0$ as $n \rightarrow \infty$. This together with Sobolev embedding implies $\left|u_{n}^{+}\right|_{L^{p_{s}^{*}(\Omega)}} \rightarrow 0$. On the other hand, $u_{n}^{+} \in N_{\mu}^{-}$implies $(p-1-q)\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\left|u_{n}^{+}\right|_{L_{s}^{p_{s}^{*}(\Omega)}}^{p_{*}^{*}}<0$. Therefore by Sobolev inequality, we have

$$
S_{s, p} \leq \frac{\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}}{\left|u_{n}^{+}\right|_{L^{p}(\Omega)}^{p}}<\frac{p_{s}^{*}-q-1}{p-1-q}\left|u_{n}^{+}\right|_{L^{p}(\Omega)}^{p_{s}^{*}-p}(\Omega)
$$

which is a contradiction to the fact that $\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)} \rightarrow 0$. Hence the claim follows.

Going to a subsequence if necessary we have

$$
\begin{equation*}
u_{n}^{+} \rightharpoonup \eta_{1}, u_{n}^{-} \rightharpoonup \eta_{2} \quad \text { in } \quad X_{0, s, p}(\Omega) . \tag{5.8.36}
\end{equation*}
$$

Claim 2: $\eta_{1} \not \equiv 0, \eta_{2} \not \equiv 0$.
Suppose not, that is $\eta_{1} \equiv 0$. Then by compact embedding, $u_{n}^{+} \rightarrow 0$ in $L^{q+1}(\Omega)$. Moreover, $u_{n}^{+} \in N_{\mu}^{-} \subset N_{\mu}$, implies $\left\langle I_{\mu}^{\prime}\left(u_{n}^{+}\right), u_{n}^{+}\right\rangle=0$. Consequently,

$$
\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{(\Omega)}^{*}}=\mu\left|u_{n}^{+}\right|_{L^{q+1}(\Omega)}^{q+1}=o(1) .
$$

So we have $\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}=\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}+o(1)$. This together with $\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)} \geq$ c implies

$$
\frac{\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{*}^{*}}}{\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}} \geq 1+o(1) .
$$

This along with Sobolev embedding gives $\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p^{*}} \geq S_{s, p}^{N / p s}+o(1)$. Thus we have,

$$
\begin{equation*}
I_{\mu}\left(u_{n}^{+}\right)=\frac{1}{p}\left\|u_{n}^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-\frac{1}{p_{s}^{*}}\left|u_{n}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p^{*}}+o(1) \geq \frac{s}{N} S_{s, p}^{N / p s}+o(1) . \tag{5.8.37}
\end{equation*}
$$

Moreover, $u_{n} \in \mathcal{N}_{*}^{-}$implies $-u_{n}^{-} \in N_{\mu}^{-}$. Therefore using the given condition on β_{2}, we get

$$
\begin{equation*}
I_{\mu}\left(-u_{n}^{-}\right) \geq \beta_{2} \geq \tilde{\alpha}_{\mu}^{-} \tag{5.8.38}
\end{equation*}
$$

Also it follows $I_{\mu}\left(u_{n}^{+}\right)+I_{\mu}\left(-u_{n}^{-}\right) \leq I_{\mu}\left(u_{n}\right)=c_{2}+o(1)$ (see (5.8.14)). Combining this along with (5.8.38) and (5.8.35), we obtain

$$
I_{\mu}\left(u_{n}^{+}\right) \leq c_{2}-\tilde{\alpha}_{\mu}^{-}+o(1)<\frac{s}{N} S_{s, p}^{N / p s}
$$

which is a contradiction to (5.8.37). Therefore $\eta_{1} \neq 0$. Similarly $\eta_{2} \neq 0$ and this proves the claim.

Set $w_{2}:=\eta_{1}-\eta_{2}$.

Claim 3: $w_{2}^{+}=\eta_{1}$ and $w_{2}^{-}=\eta_{2}$ a.e..
To see the claim we observe that $\eta_{1} \eta_{2}=0$ a.e. in Ω. Indeed,

$$
\begin{align*}
\left|\int_{\Omega} \eta_{1} \eta_{2} d x\right| & =\left|\int_{\Omega}\left(u_{n}^{+}-\eta_{1}\right) u_{n}^{-} d x+\int_{\Omega} \eta_{1}\left(u_{n}^{-}-\eta_{2}\right) d x\right| \\
& \leq\left|u_{n}^{+}-\eta_{1}\right|_{L^{p}(\Omega)}\left|u_{n}^{-}\right|_{L^{p^{\prime}}(\Omega)}+\left|\eta_{1}\right|_{L^{p^{\prime}}(\Omega)}\left|u_{n}^{-}-\eta_{2}\right|_{L^{p}(\Omega)} \tag{5.8.39}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. By compact embedding we have $u_{n}^{+} \rightarrow \eta_{1}$ and $u_{n}^{-} \rightarrow \eta_{2}$ in $L^{p}(\Omega)$. As $p \geq \frac{2 N}{N+s}$, then $p^{\prime} \leq p_{s}^{*}$. Therefore, using claim 1 , we pass the limit in (5.8.39) and obtain $\int_{\Omega} \eta_{1} \eta_{2} d x=0$. Moreover by (5.8.36), $\eta_{1}, \eta_{2} \geq 0$ a.e.. Hence $\eta_{1} \eta_{2}=0$ a.e. in Ω. We have $w_{2}^{+}-w_{2}^{-}=w_{2}=\eta_{1}-\eta_{2}$. It is easy to check that $w_{2}^{+} \leq \eta_{1}$ and $w_{2}^{-} \leq \eta_{2}$. To show that equality holds a.e. we apply method of contradiction. Suppose, there exists $E \subset \Omega$ such that $|E|>0$ and $0 \leq w_{2}^{+}(x)<\eta_{1}(x) \forall x \in E$. Therefore $\eta_{2}=0$ a.e. in E by the observation that we made. Hence $w_{2}^{+}(x)-w_{2}^{-}(x)=\eta_{1}(x)$ a.e. in E. Clearly $w_{2}^{-}(x) \ngtr 0$ a.e., otherwise $w_{2}^{+}(x)=0$ a.e. and that would imply $\eta_{1}(x)=-w_{2}^{-}(x)<0$ a.e, which is not possible since $\eta_{1}>0$ in E. Thus $w_{2}^{-}(x)=0$. Hence $\eta_{1}(x)=w_{2}^{+}(x)$ a.e. in E, which is a contradiction. Hence the claim follows.

Therefore w_{2} is sign changing in Ω and $u_{n} \rightharpoonup w_{2}$ in $X_{0, s, p}(\Omega)$. Moreover, $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0, s, p}(\Omega)\right)^{\prime}$ implies

$$
\begin{align*}
\int_{\mathbb{R}^{2 N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)(\phi(x)-\phi(y))}{|x-y|^{N+p s}} d x d y & -\mu \int_{\Omega}\left|u_{n}\right|^{q-1} u_{n} \phi d x \\
& -\int_{\Omega}\left|u_{n}\right|^{p_{s}^{*}-2} u_{n} \phi d x \\
& =o(1) \tag{5.8.40}
\end{align*}
$$

for every $\phi \in X_{0, s, p}(\Omega)$. Passing the limit using Vitali's convergence theorem via Hölder's inequality we obtain $\left\langle I_{\mu}^{\prime}\left(w_{2}\right), \phi\right\rangle=0$. Hence w_{2} is a sign changing weak solution to $\left(\mathcal{P}_{\mu}\right)$.

Lemma 5.8.7. Let $u_{\varepsilon, \delta}$ be as defined in (5.5.6) and w_{1} be a positive solution of $\left(\mathcal{P}_{\mu}\right)$ for which $\tilde{\alpha}_{\mu}^{-}$is achieved, when $\mu \in\left(0, \mu_{*}\right)$. Then there exists $a, b \in$ $\mathbb{R}, a \geq 0$ such that $a w_{1}-b u_{\varepsilon} \in \mathcal{N}_{*}^{-}$, where \mathcal{N}_{*}^{-}is defined as in (5.8.33).

This lemma can be proved in the spirit of [21, Lemma 4.8], for the convenience of the reader we again sketch the proof in the appendix.

We finally conclude the proof of our main result.
Proof of Theorem 5.2.1: Define $\mu^{*}=\min \left\{\mu_{*}, \tilde{\mu}, \tilde{\mu}_{1}, \mu_{0}, \mu_{1}\right\}$, where μ_{*} is chosen such that $\tilde{\alpha}_{\mu}^{-}$is achieved in $\left(0, \mu_{*}\right) . \tilde{\mu}, \tilde{\mu}_{1}, \mu_{0}$ and μ_{1} are as in (5.3.4), Lemma 5.8.1, Theorem 5.8.3 and Lemma 5.9.1 respectively. Furthermore, define q_{0} and N_{0} as follows:

$$
\begin{aligned}
& q_{0}:= \begin{cases}\max \left\{q_{1}, q_{2}\right\} \quad \text { when } \quad p \geq \frac{3+\sqrt{5}}{2} \\
\max \left\{q_{1}, q_{3}\right\} \quad \text { when } \quad 2 \leq p<\frac{3+\sqrt{5}}{2} .\end{cases} \\
& N_{0}:= \begin{cases}\operatorname{sp}\left(p^{2}-p+1\right) & \text { when } \quad p \geq \frac{3+\sqrt{5}}{2} \\
s p(p+1) & \text { when } \quad 2 \leq p<\frac{3+\sqrt{5}}{2}\end{cases}
\end{aligned}
$$

Note that $N_{0}>\frac{s p}{2}\left[p+1+\sqrt{(p+1)^{2}-4}\right]$, where the RHS appeared in Theorem 5.8.2. Hence combining Theorem 5.8.2 and Theorem 5.8.3, we complete the proof of this theorem for $\mu \in\left(0, \mu^{*}\right), q>q_{0}$ and $N>N_{0}$.

5.9 Appendix

Lemma 5.9.1. Let g_{n} be as in (5.8.16) in the Theorem 5.8.2 and $v \in$ $X_{0, s, p}(\Omega)$ such that $\|v\|_{X_{0, s, p}(\Omega)}=1$. Then there exists $\mu_{1}>0$ such that if $\mu \in\left(0, \mu_{1}\right)$ implies $\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle$is uniformly bounded in $X_{0, s, p}(\Omega)$.

Proof. In view of Lemma 5.4.4 we have,

$$
\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle=\frac{p A\left(u_{n}, v^{+}\right)-p_{s}^{*} \int_{\Omega}\left|u_{n}\right|^{p_{s}^{*}-p} u_{n} v^{+}-(q+1) \mu \int_{\Omega}\left|u_{n}\right|^{q-1} u_{n} v^{+}}{(p-1-q)\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p^{*}}}
$$

Using Claim 2 in Theorem 5.8.2, there exists $C>0$ such that $\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)} \leq$ C for all $n \geq 1$. Therefore applying Hölder inequality followed by Sobolev inequality, we have
$\left|\left\langle g_{n}^{\prime}(0), v^{+}\right\rangle\right| \leq \frac{C\|v\|_{X_{0, s, p}(\Omega)}}{\sqrt{(p-1-q)\left\|u_{n}\right\|_{X_{0, s, p}}^{p}(\Omega)^{-}-\left(p_{s}^{*}-q-1\right)\left|u_{n}\right|_{L^{p}}^{p_{s}^{*}}(\Omega)}}$. Hence it is enough to show

$$
\left.\left|(p-1-q)\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\right| u_{n}\right|_{L^{p_{s}^{*}}(\Omega)} ^{p^{*}} \mid>C
$$

for some $C>0$ and n large. Suppose it does not hold. Then up to a subsequence

$$
(p-1-q)\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}-\left(p_{s}^{*}-q-1\right)\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{(\Omega)}^{*}}=o(1) \quad \text { as } \quad n \rightarrow \infty
$$

Hence,

$$
\begin{equation*}
\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}=\frac{p^{*}-q-1}{p-1-q}\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}}+o(1) \quad \text { as } \quad n \rightarrow \infty \tag{5.9.1}
\end{equation*}
$$

Combining the above expression along with the fact that $u_{n} \in N_{\mu}$, we obtain

$$
\begin{equation*}
\mu\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1}=\frac{p_{s}^{*}-p}{p-1-q}\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{(\Omega)}^{*}}+o(1)=\frac{p_{s}^{*}-p}{p_{s}^{*}-1-q}\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p}+o(1) \tag{5.9.2}
\end{equation*}
$$

After applying Hölder inequality and followed by Sobolev inequality, expression (5.9.2) yields

$$
\begin{equation*}
\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)} \leq\left(\mu \frac{p_{s}^{*}-q-1}{p_{s}^{*}-p}|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}} S_{s, p^{-\frac{q+1}{p}}}^{-\frac{1}{p-1-q}}+o(1)\right. \tag{5.9.3}
\end{equation*}
$$

Combining (5.8.12) and Claim 3 in the proof of Theorem 5.8.2, we have $\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)} \geq b$, for some $b>0$. Therefore from (5.9.1) we get

$$
\begin{equation*}
\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{2}^{*}} \geq C \text { for some constant } C>0, \text { and } n \text { large enough. } \tag{5.9.4}
\end{equation*}
$$

Define $\psi_{\mu}: N_{\mu} \rightarrow \mathbb{R}$ as follows:

$$
\psi_{\mu}(u)=k_{0}\left(\frac{\|u\|_{X_{0, s, p}(\Omega)}^{p\left(p_{s}^{*}-1\right)}}{|u|_{L_{s}^{p}(p-1)}^{p_{s}^{*}(\Omega)}}\right)^{\frac{1}{p_{s}^{\frac{1}{p}-p}}}-\mu|u|_{L^{q+1}(\Omega)}^{q+1},
$$

where $k_{0}=\left(\frac{p-1-q}{p_{s}^{*}-q-1}\right)^{\frac{p_{s}^{*}-1}{p_{s}^{s}-p}}\left(\frac{p_{s}^{*}-p}{p-1-q}\right)$. Simplifying $\psi_{\mu}\left(u_{n}\right)$ using (5.9.2), we obtain

$$
\begin{equation*}
\psi_{\mu}\left(u_{n}\right)=k_{0}\left[\left(\frac{p_{s}^{*}-q-1}{p-1-q}\right)^{p_{s}^{*}-1} \frac{\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{\left(p_{s}^{*}-1\right) p_{s}^{*}}}{\left|u_{n}\right|_{L_{s}^{p_{s}^{*}(p-1)}}^{p_{s}^{*}(\Omega)}}\right]^{\frac{1}{p_{s}^{*}-p}}-\frac{p_{s}^{*}-p}{p-1-q}\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}}+o(1)=o(1) . \tag{5.9.5}
\end{equation*}
$$

On the other hand, using Hölder inequality in the definition of $\psi_{\mu}\left(u_{n}\right)$, we obtain

$$
\begin{align*}
\psi_{\mu}\left(u_{n}\right) & =k_{0}\left(\frac{\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p\left(p_{s}^{*}-1\right)}}{\left|u_{n}\right|_{L_{s}^{p}(p-1)}^{p^{p}(\Omega)}}\right)^{\frac{1}{p_{s}^{*}-p}}-\mu\left|u_{n}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& \geq k_{0}\left(\frac{\left\|u_{n}\right\|_{X_{0, s, p}^{p}(\Omega)}^{p\left(p_{s}^{*}-1\right)}}{\left|u_{n}\right|_{L^{p}(p-1)}^{p_{s}^{*}(\Omega)}}\right)^{\frac{1}{p_{s}^{*}-p}}-\mu|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}}\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{q+1} \\
& =\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{q+1}\left\{k_{0}\left(\frac{\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p\left(p_{s}^{*}-1\right)}}{\left|u_{n}\right|_{L^{p}(p-1)}^{p_{s}^{*}(\Omega)}}\right)^{\frac{1}{p_{s}^{*}-p}} \frac{1}{\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{q+1}}-\mu|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}}\right\} . \tag{5.9.6}
\end{align*}
$$

Using Sobolev embedding and (4.6.3), we simplify the term $\left.\left(\frac{\left\|u_{n}\right\|_{\chi_{0}, s, p}^{p(\Omega)}}{\left|u_{n}^{*}\right|_{L^{*}(p)}^{\left.p_{s}^{*}-1\right)}}\right)^{\frac{1}{p_{s}^{p}(\Omega)}}\right)^{\frac{1}{p_{s}^{-p}-p}} \frac{1}{\mid u_{n}{ }_{L^{p_{s}^{*}}(\Omega)}^{q+1}}$ and obtain

$$
\begin{align*}
\left(\frac{\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{p\left(p_{s}^{*}-1\right)}}{\left|u_{n}\right|_{L_{s}^{p}(p-1)}^{p_{s}^{*}(\Omega)}}\right)^{\frac{1}{p_{s}^{*}-p}} \frac{1}{\left|u_{n}\right|_{L_{s}^{p_{s}^{*}}(\Omega)}^{q+1}} & \geq S_{s, p}^{\frac{p_{s}^{*}-1}{p_{s}^{s}-p}}\left|u_{n}\right|_{L^{p_{s}^{*}}(\Omega)}^{-q} \\
& \geq S_{s, p}^{\frac{p_{s}^{*}-1}{p_{s}^{*}-p}+\frac{q}{p}}\left\|u_{n}\right\|_{X_{0, s, p}(\Omega)}^{-q} \\
& \geq S_{s, p}^{\frac{p_{s}^{*}-1}{p_{s, p}^{*}-1}+\frac{q}{p}}\left(\mu \frac{p_{s}^{*}-q-1}{p_{s}^{*}-p}|\Omega|^{\frac{p^{*}-q-1}{p_{s}^{*}}} S_{s, p}^{-\frac{q+1}{p}}\right)^{-\frac{q}{p-1-q}} . \tag{5.9.7}
\end{align*}
$$

Substituting back (5.9.7) into (5.9.6) and using (5.9.4), we obtain

$$
\begin{aligned}
\psi_{\mu}\left(u_{n}\right) & \geq C^{q+1}\left[k_{0} S_{s, p}^{\frac{p_{s}^{*}-1}{p_{s}^{*}-p}+\frac{q}{p-1-q}} \mu^{-\frac{q}{p-1-q}}\left(\frac{p_{s}^{*}-q-1}{p_{s}^{*}-p}|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}}\right)^{-\frac{q}{p-1-q}}\right. \\
& \left.-\mu|\Omega|^{\frac{p_{s}^{*}-q-1}{p_{s}^{*}}}\right] \geq d_{0},
\end{aligned}
$$

for some $d_{0}>0, n$ large and $\mu<\mu_{1}$, where $\mu_{1}=\mu_{1}\left(k_{0}, s, q, N,|\Omega|\right)$. This is a contradiction to (5.9.5). Hence the lemma follows.

Proof of Lemma 5.8.7

Proof. We will show that there exists $a>0, b \in \mathbb{R}$ such that

$$
a\left(w_{1}-b u_{\varepsilon}\right)^{+} \in N_{\mu}^{-} \quad \text { and } \quad-a\left(w_{1}-b u_{\varepsilon}\right)^{-} \in N_{\mu}^{-} .
$$

Let us denote $\bar{r}_{1}=\inf _{x \in \Omega} \frac{w_{1}(x)}{u_{\varepsilon}(x)}, \bar{r}_{2}=\sup _{x \in \Omega} \frac{w_{1}(x)}{u_{\varepsilon}(x)}$.
As both w_{1} and u_{ε} are positive in Ω, we have $\bar{r}_{1} \geq 0$ and \bar{r}_{2} can be $+\infty$. Let $r \in\left(\bar{r}_{1}, \bar{r}_{2}\right)$. Then $w_{1}, u_{\varepsilon} \in X_{0, s, p}(\Omega)$ implies $\left(w_{1}-r u_{\varepsilon}\right) \in X_{0, s, p}(\Omega)$ and $\left(w_{1}-r u_{\varepsilon}\right)^{+} \not \equiv 0$. Otherwise, $\left(w_{1}-r u_{\varepsilon}\right)^{+} \equiv 0$ would imply $\bar{r}_{2} \leq r$, which is not possible. Define $v_{r}:=w_{1}-r u_{\varepsilon}$. Hence $0 \not \equiv v_{r}^{+} \in X_{0, s, p}(\Omega)$ (since for any $u \in X_{0, s, p}(\Omega)$, we have $|u| \in X_{0, s, p}(\Omega)$. Similarly $0 \not \equiv v_{r}^{-} \in X_{0, s, p}(\Omega)$. Therefore by lemma 5.4.1 there exists $0<s^{+}(r)<s^{-}(r)$ such that $s^{+}(r) v_{r}^{+} \in$ N_{μ}^{-}, and $-s^{-}(r)\left(v_{r}^{-}\right) \in N_{\mu}^{-}$. Let us consider the functions $s^{ \pm}: \mathbb{R} \rightarrow(0, \infty)$ defined as above.

Claim: The functions $r \mapsto s^{ \pm}(r)$ are continuous and

$$
\lim _{r \rightarrow \bar{r}_{1}^{+}} s^{+}(r)=t^{+}\left(v_{\bar{r}_{1}}^{+}\right) \quad \text { and } \quad \lim _{r \rightarrow \bar{r}_{2}^{-}} s^{+}(r)=+\infty
$$

where the function t^{+}is same as defined in lemma 5.4.1.
To see the claim, choose $r_{0} \in\left(\bar{r}_{1}, \bar{r}_{2}\right)$ and $\left\{r_{n}\right\}_{n \geq 1} \subset\left(\bar{r}_{1}, \bar{r}_{2}\right)$ such that $r_{n} \rightarrow r_{0}$ as $n \rightarrow \infty$. We need to show that $s^{+}\left(r_{n}\right) \rightarrow s^{+}\left(r_{0}\right)$ as $n \rightarrow \infty$. Corresponding to r_{n} and r_{0}, we have $v_{r_{n}}^{+}=\left(w_{1}-r_{n} u_{\varepsilon}\right)^{+}$and $v_{r_{0}}^{+}=\left(w_{1}-r_{0} u_{\varepsilon}\right)^{+}$. By lemma
5.4.1. we note that $s^{+}(r)=t^{+}\left(v_{r}^{+}\right)$. Let us define the function

$$
\begin{aligned}
F(s, r) & :=s^{p-1-q}\left\|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-s^{p_{s}^{*}-q-1}\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}} \\
& -\mu\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{q+1}(\Omega)}^{q+1} \\
& =\phi(s, r)-\mu\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{q+1}(\Omega)}^{q+1}
\end{aligned}
$$

where

$$
\phi(s, r):=s^{p-1-q}\left\|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right\|_{X_{0, s, p}(\Omega)}^{p}-s^{p_{s}^{*}-q-1}\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{p_{i}^{*}} .
$$

Doing the similar calculation as in lemma 5.4.1, we obtain that for any fixed r, the function $F(s, r)$ has only two zeros $s=t^{+}\left(v_{r}^{+}\right)$and $s=t^{-}\left(v_{r}^{+}\right)$. Consequently $s^{+}(r)$ is the largest 0 of $F(s, r)$ for any fixed r. As $r_{n} \rightarrow r_{0}$ we have $v_{r_{n}}^{+} \rightarrow v_{r_{0}}^{+}$in $X_{0, s, p}(\Omega)$. Indeed, by straight forward computation it follows $v_{r_{n}} \rightarrow v_{r_{0}}$ in $X_{0, s, p}(\Omega)$. Therefore $\left|v_{r_{n}}\right| \rightarrow\left|v_{r_{0}}\right|$ in $X_{0, s, p}(\Omega)$. This in turn implies $v_{r_{n}}^{+} \rightarrow v_{r_{0}}^{+}$in $X_{0, s, p}(\Omega)$. Hence $\left\|v_{r_{n}}^{+}\right\|_{X_{0, s, p}(\Omega)} \rightarrow\left\|v_{r_{0}}^{+}\right\|_{X_{0, s, p}(\Omega)}$. Moreover by Sobolev inequality, we have $\left|v_{r_{n}}^{+}\right|_{L^{p_{s}^{*}}(\Omega)} \rightarrow\left|v_{r_{0}}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}$ and $\left|v_{r_{n}}^{+}\right|_{L^{q+1}(\Omega)} \rightarrow$ $\left|v_{r_{0}}^{+}\right|_{L^{q+1}(\Omega)}$. As a result, we have $F\left(s, r_{n}\right) \rightarrow F\left(s, r_{0}\right)$ uniformly. Therefore an elementary analysis yields $s^{+}\left(r_{n}\right) \rightarrow s^{+}\left(r_{0}\right)$.

Moreover, $\bar{r}_{2} \geq \frac{w_{1}}{u_{\varepsilon}}$ implies $w_{1}-\bar{r}_{2} u_{\varepsilon} \leq 0$. As a consequence $r \rightarrow \bar{r}_{2}^{-}$implies $\left(w_{1}-r u_{\varepsilon}\right)^{+} \rightarrow 0$ pointwise. Moreover, since $\mid\left(w_{1}-\right.$ $\left.r u_{\varepsilon}\right)\left.^{+}\right|_{L^{\infty}(\Omega)} \leq\left|w_{1}\right|_{L^{\infty}(\Omega)}$, using dominated convergence theorem we have $\left|\left(w_{1}-r u_{\varepsilon}\right)^{+}\right|_{L^{p_{s}^{*}(\Omega)}} \rightarrow 0$. From the analysis in Lemma 5.4.1, for any r, we also have $s^{+}(r)>t_{0}\left(v_{r}^{+}\right)$, where function t_{0} is defined as in lemma 5.4.1, which is the maximum point of $\phi(\cdot, r)$. Therefore it is enough to show that $\lim _{r \rightarrow \bar{r}_{2}^{-}} t_{0}\left(v_{r}^{+}\right)=\infty$. Applying Sobolev inequality in the definition of $t_{0}\left(v_{r}^{+}\right)$ we get
$t_{0}\left(v_{r}^{+}\right)=\left(\frac{(p-1-q)\left\|v_{r}^{+}\right\|_{X_{0, s, p}}^{p}(\Omega)}{\left(p_{s}^{*}-1-q\right)\left|v_{r}^{+}\right|_{L_{s}^{p_{s}^{*}}(\Omega)}^{p_{s}^{*}}}\right)^{\frac{1}{p_{s}^{*}-p}} \geq\left(\frac{S_{s, p}(p-1-q)}{p_{s}^{*}-1-q}\right)^{\frac{1}{p_{s}^{*}-p}}\left|v_{r}^{+}\right|_{L^{p_{s}^{*}}(\Omega)}^{-1}$.
Hence $\lim _{r \rightarrow \bar{r}_{2}^{-}} t_{0}\left(v_{r}^{+}\right)=\infty$.

Proceeding similarly we can show that if $r \rightarrow \bar{r}_{1}^{-}$then $v_{r}^{+} \rightarrow v_{\bar{r}_{1}}$ and $\lim _{r \rightarrow \bar{r}_{1}^{+}} s^{+}(r)=t^{+}\left(v_{\bar{r}_{1}}^{+}\right)$and

$$
\lim _{r \rightarrow r_{1}^{+}} s^{-}(r)=+\infty, \lim _{r \rightarrow r_{2}^{-}} s^{-}(r)=t^{+}\left(v_{r}^{-}\right)<+\infty .
$$

The continuity of $s^{ \pm}$implies that there exists $b \in\left(\bar{r}_{1}, \bar{r}_{2}\right)$ such that $s^{+}(r)=$ $s^{-}(r)=a>0$. Therefore,

$$
a\left(w_{1}-b u_{\varepsilon}\right)^{+} \in N_{\mu}^{-} \quad \text { and } \quad-a\left(w_{1}-b u_{\varepsilon}\right)^{-} \in N_{\mu}^{-}
$$

that is, the function $a\left(w_{1}-b u_{\varepsilon}\right) \in \mathcal{N}_{*}^{-}$and this completes the proof.

Conclusion: This chapter is a protraction of the previous chapter in the p-fractional case. We have used the same techniques as used in the previous chapter but in a meticulous way because of the lack of an explicit formula for Sobolev minimizer.

Chapter 6

Multiplicity results for (p, q) fractional Laplace type equations with critical
 nonlinearities

In this chapter we discuss the existence of multiple nontrivial solutions of (p, q) fractional Laplace equations involving concave-critical type nonlinearities and existence of nonnegative solutions when nonlinearities is of convexcritical type. More precisely, first we consider equations of the type

$$
\left(P_{\theta, \lambda}\right)\left\{\begin{aligned}
(-\Delta)_{p}^{s_{1}} u+(-\Delta)_{q}^{s_{2}} u & =\theta V(x)|u|^{r-2} u+|u|^{p_{s_{1}}^{*}-2} u+\lambda f(x, u), \quad \text { in } \quad \Omega, \\
u & =0 \quad \text { in } \quad \mathbb{R}^{N} \backslash \Omega
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth, bounded domain, $\lambda, \theta>0,0<s_{2}<s_{1}<1,1<$ $r<q<p<\frac{N}{s_{1}}$ and $p_{s}^{*}=\frac{N p}{N-s p}$ for any $s \in(0,1)$.

For the sake of simplicity, we use the following two notations in this chapter:
(a) $\|\cdot\|_{0, s, p}$ denotes the norm in the space $X_{0, s, p}(\Omega)$.
(b) $|\cdot|_{p}$ denotes the norm in the space $L^{p}(\Omega)$.

We assume the functions $V(\cdot), f(\cdot, \cdot)$ satisfy the following:
(A1) $V \in L^{\infty}(\Omega)$ and there exists $\sigma>0, \eta>0$ such that $V(x)>\sigma>0$ for all $x \in \Omega$ and

$$
\int_{\Omega} V(x)|u|^{r} d x \leq \eta\|u\|_{0, s_{2}, r}^{r}
$$

for all $u \in X_{0, s_{2}, r}(\Omega)$.
(A2) $|f(x, t)| \leq a_{1}|t|^{\alpha-1}+a_{2}|t|^{\beta-1}$ for all $x \in \Omega, t \in \mathbb{R}, a_{1}, a_{2}>0,1<$ $\alpha, \beta<p_{s_{1}}^{*}$.
(A3) There exists $a_{3}>0$ and $l \in(1, p)$ such that

$$
f(x, t) t-p_{s_{1}}^{*} F(x, t) \geq-a_{3}|t|^{l}
$$

for all $x \in \Omega, t \in \mathbb{R}$ where $F(x, t)=\int_{0}^{t} f(x, \tau) d \tau$.
(A4) $f(x, t)>0$ for all $x \in \Omega, t \in \mathbb{R}^{+}$and $f(x, t)=-f(x,-t)$ for all $x \in \Omega, t \in \mathbb{R}$.

Definition 6.0.1. We say that $u \in X_{0, s_{1}, p}(\Omega)$ is a weak solution of $\left(P_{\theta, \lambda}\right)$ if for all $\phi \in X_{0, s_{1}, p}(\Omega)$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+p s_{1}}} d x d y \\
& +\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{q-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+q s_{2}}} d x d y \\
& =\theta \int_{\Omega} V(x)|u(x)|^{r-2} u(x) \phi(x) d x+\int_{\Omega}|u(x)|^{p_{s_{1}}^{*}-2} u(x) \phi(x) d x+\lambda \int_{\Omega} f(x, u) \phi d x .
\end{aligned}
$$

Here we note that, thanks to the Lemma 6.2.4, the above definition makes sense.

6.1 Main Results

Our first main result is the following:
Theorem 6.1.1. Let $0<s_{2}<s_{1}<1,1<r<q<p<\frac{N}{s_{1}}$ and assumptions (A1)-(A4) being satisfied. Then there exists $\lambda^{*}>0$ such that for any $\lambda \in$ $\left(0, \lambda^{*}\right)$, there exists $\theta^{*}>0$ such that for any $\theta \in\left(0, \theta^{*}\right)$, problem $\left(P_{\theta, \lambda}\right)$ has infinitely many nontrivial weak solutions in $X_{0, s_{1}, p}(\Omega)$.

Next, for $V(x) \equiv 1$ and $\lambda=0$, we have studied the nonnegative solutions of $\left(P_{\theta, \lambda}\right)$ and obtained the following results:

Theorem 6.1.2. Let $0<s_{2}<s_{1}<1$ and $2 \leq q<p<r<p_{s_{1}}^{*}$. Then there exists $\theta^{*}>0$ such that for any $\theta>\theta^{*}$, the problem

$$
(P)\left\{\begin{align*}
&(-\Delta)_{p}^{s_{1}} u+(-\Delta)_{q}^{s_{2}} u=\theta|u|^{r-2} u+|u|^{p_{s_{1}}^{*}-2} u \quad \text { in } \Omega \tag{6.1.1}\\
& u>0 \\
& \text { in } \Omega \\
& u=0 \quad \text { in } \quad \mathbb{R}^{N} \backslash \Omega
\end{align*}\right.
$$

has a nontrivial nonnegative weak solution.

To state our next theorem, we need the following definition.

Definition 6.1.3. Let M be a topological space and consider a closed subset $A \subset M$. We say that A has category k relative to $M\left(\operatorname{cat}_{M}(A)=k\right)$, if A is covered by k closed sets $A_{j}, 1 \leq j \leq k$, which are contractible in M, and if k is minimal with this property. If no such finite covering exists, we define $\operatorname{cat}_{M}(A)=\infty$. Moreover, we define cat $(\emptyset)=0$.

Using Lusternik-Schnirelmann category theory, we prove our next result.
Theorem 6.1.4. Let $0<s_{2}<s_{1}<1$ and

$$
N>p^{2} s_{1}, \quad 2 \leq q<\frac{N(p-1)}{N-s_{1}}<p \leq \max \left\{p, p_{s_{1}}^{*}-\frac{q}{q-1}\right\}<r<p_{s_{1}}^{*} .
$$

Then there exists $\theta_{* *}>0$ such that for any $\theta \in\left(0, \theta_{* *}\right)$, problem (P) has at least $\operatorname{cat}_{\Omega}(\Omega)$ nontrivial nonnegative solutions in $X_{0, s_{1}, p}(\Omega)$.

The chapter is concluded with an appendix where we recall the statement of classical deformation lemma, general mountain pass lemma and some standard properties of genus.

6.2 Besov Spaces

6.2.1 Besov-Sobolev embeddings

In this subsection first we define Besov space of \mathbb{R}^{N} and Ω. For $1 \leq i \leq N$ and $h \in \mathbb{R}$, let $\Delta_{i}^{h} u$ denote the difference quotient defined by $\Delta_{i}^{h} u(x)=$ $u\left(x+h e_{i}\right)-u(x), \quad x \in \mathbb{R}^{N}$.

Definition 6.2.1. [54, pg. 415] Let $1 \leq p, q \leq \infty$ and $0<s<1$. A function $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$ belong to the Besov space $B_{p, q}^{s}\left(\mathbb{R}^{N}\right)$ if

$$
\|u\|_{B_{p, q}^{s}\left(\mathbb{R}^{N}\right)}=|u|_{L^{p}\left(\mathbb{R}^{N}\right)}+[u]_{B_{p, q}^{s}\left(\mathbb{R}^{N}\right)}<\infty
$$

where

$$
[u]_{B_{p, q}^{s}\left(\mathbb{R}^{N}\right)}=\left\{\begin{array}{l}
\sum_{i=1}^{N}\left(\int_{0}^{\infty}\left\|\Delta_{i}^{h} u\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{q} \frac{d h}{h^{1+s q}}\right)^{\frac{1}{q}}, q<\infty \tag{6.2.1}\\
\sum_{i=1}^{N} \sup _{h>0} \frac{1}{h^{s}}\left\|\Delta_{i}^{h} u\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}, \quad q=\infty
\end{array}\right.
$$

Definition 6.2.2. Let $\mathcal{D}^{\prime}(\Omega)$ denote the set of all distributions over Ω. For $1 \leq p, q \leq \infty$, and $0<s<1$, we set

$$
B_{p, q}^{s}(\Omega)=\left\{u \in \mathcal{D}^{\prime}(\Omega): \exists g \in B_{p, q}^{s}\left(\mathbb{R}^{N}\right) \text { with }\left.\quad g\right|_{\Omega}=u\right\}
$$

and

$$
\|u\|_{B_{p, q}^{s}(\Omega)}=\inf _{\left.g \in B_{p, q}^{s} \mathbb{R}^{N}\right), g \mid \Omega=u}\|g\|_{B_{p, q}^{s}\left(\mathbb{R}^{N}\right)} .
$$

$B_{p, q}^{s}(\Omega)$ is called the Besov Space over Ω.

For more details about Besov space, we refer [54] and [83].
Lemma 6.2.3. Let $1 \leq q \leq p \leq \infty$ and $0<s_{2}<s_{1}<1$. Then

$$
W^{s_{1}, p}(\Omega) \subset W^{s_{2}, q}(\Omega)
$$

Proof. Since $q \leq p$ and $s_{2}<s_{1}$ implies $s_{2}-\frac{N}{q}<s_{1}-\frac{N}{p}$, from [83, Theorem (i), pg. 196], we have

$$
B_{p, p}^{s_{1}}(\Omega) \subset B_{q, q}^{s_{2}}(\Omega) .
$$

Further, from [83, pg. 209]), it follows that $|u|_{L^{p}(\Omega)}+\left(\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{\frac{1}{p}}$ is an equivalent norm for $\|u\|_{B_{p, p}^{s}(\Omega)}$. Therefore, $B_{p, p}^{s}(\Omega)=W^{s, p}(\Omega)$ for $1 \leq p \leq \infty$ and $0<s<1$. Hence the lemma follows.

Note that, the assertion of the above Lemma fails when $s_{1}=s_{2}$, see [61] for the counterexample.

Lemma 6.2.4. Let $0<s_{2}<s_{1}<1,1<q \leq p$ and Ω be a smooth bounded domain in \mathbb{R}^{N}, where $N>s_{1} p$. Then $X_{0, s_{1}, p}(\Omega) \subset X_{0, s_{2}, q}(\Omega)$ and there exists $C=C\left(|\Omega|, N, p, q, s_{1}, s_{2}\right)>0$ such that

$$
\|u\|_{0, s_{2}, q} \leq C\|u\|_{0, s_{1}, p} \quad \forall u \in X_{0, s_{1}, p}(\Omega)
$$

Proof. Let $u \in X_{0, s_{1}, p}(\Omega)$. Then $u \in W^{s_{1}, p}\left(\mathbb{R}^{N}\right)$ with $u \equiv 0$ a.e. in $\mathbb{R}^{N} \backslash \Omega$. Note that, thanks to Hölder inequality and Sobolev inequality, we have

$$
\begin{aligned}
\|u\|_{W^{s_{1}, p}(\Omega)}^{p} & =|u|_{p}^{p}+\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s_{1} p}} d x d y \\
& \leq|u|_{p_{s_{1}}^{*}}^{p}|\Omega|^{1-\frac{p}{p_{s_{1}}^{*}}}+\int_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s_{1} p}} d x d y \\
& \leq\left(C|\Omega|^{1-\frac{p}{p_{s_{1}}}}+1\right)\|u\|_{0, s_{1}, p}^{p} .
\end{aligned}
$$

This proves that $X_{0, s_{1}, p}(\Omega) \subset W^{s_{1}, p}(\Omega)$. Consequently, by Lemma 6.2 .3 we also have $W^{s_{1}, p}(\Omega) \subset W^{s_{2}, q}(\Omega)$. As a result, $u \in W^{s_{2}, q}(\Omega)$ with $u \equiv 0$ a.e. in
$\mathbb{R}^{N} \backslash \Omega$. Further, as $\partial \Omega$ is smooth, the embedding $W^{s_{2}, q}(\Omega) \hookrightarrow W^{s_{2}, q}\left(\mathbb{R}^{N}\right)$ is continuous, that is,

$$
\begin{equation*}
\|u\|_{W^{s_{2}, q}\left(\mathbb{R}^{N}\right)} \leq C(|\Omega|, q, N)\|u\|_{W^{s_{2}, q}(\Omega)} \quad \text { for all } \quad u \in W^{s_{2}, q}(\Omega) \tag{6.2.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\|u\|_{W^{s_{2}, q}\left(\mathbb{R}^{N}\right)} \leq C\left(|\Omega|, N, p, q, s_{1}, s_{2}\right)\|u\|_{0, s_{1}, p} \quad \text { for all } \quad u \in X_{0, s_{1}, p}(\Omega) . \tag{6.2.3}
\end{equation*}
$$

Since, $\|u\|_{0, s_{2}, q}^{q} \leq\|u\|_{W^{s_{2}, q}\left(\mathbb{R}^{N}\right)}^{q}$, it follows

$$
\begin{equation*}
\|u\|_{X_{0, s_{2}, q}(\Omega)} \leq C\left(|\Omega|, N, s_{1}, s_{2}, p, q\right)\|u\|_{X_{0, s_{1}, p}(\Omega)} \quad \text { for all } \quad u \in X_{0, s_{1}, p}(\Omega) . \tag{6.2.4}
\end{equation*}
$$

Hence the lemma follows.

6.3 Concentration-compactness Lemma

For $s \in(0,1)$, define

$$
\dot{W}^{s, p}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{p_{s}^{*}}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y<\infty\right\}
$$

and

$$
\begin{equation*}
S_{s, p}=\inf _{u \in \dot{W}^{s, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y}{\left(\int_{\mathbb{R}^{N}}|u|^{p_{s}^{*}}\right)^{\frac{p}{p_{s}^{*}}}} \tag{6.3.1}
\end{equation*}
$$

Next, we fix some notations: $D^{s} u(x):=\int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d y$. Thus, $\left|D^{s} u\right|_{p}^{p}=\|u\|_{0, s, p}^{p}, C_{c}\left(\mathbb{R}^{N}\right)$ denotes the set of all continuous functions with compact support. $\|\mu\|:=\int_{\mathbb{R}^{N}} d \mu . \mathcal{M}\left(\mathbb{R}^{N}\right)$ denotes the space of finite measures on \mathbb{R}^{N}. We say a sequence $\left(\mu_{n}\right)$ converges weakly to μ in $\mathcal{M}\left(\mathbb{R}^{N}\right)$, if

$$
\left\langle\mu_{n}, \phi\right\rangle:=\int_{\mathbb{R}^{N}} \phi d \mu_{n} \rightarrow\langle\mu, \phi\rangle \quad \forall \quad \phi \in C_{c}\left(\mathbb{R}^{N}\right)
$$

and it is denoted by $\mu_{n} \rightharpoonup \mu$.

Theorem 6.3.1. Let $s \in(0,1)$ and $p>1$. Assume $\left\{u_{n}\right\} \subset X_{0, s, p}(\Omega)$ is a nonnegative sequence such that $\left|u_{n}\right|_{p_{s}^{*}}=1$ and $\left\|u_{n}\right\|_{0, s, p}^{p} \rightarrow S_{s, p}$ as $n \rightarrow \infty$. Then, there exists a sequence $\left\{y_{n}, \lambda_{n}\right\} \in \mathbb{R}^{N} \times \mathbb{R}^{+}$such that

$$
\begin{equation*}
v_{n}(x):=\lambda_{n}^{\frac{\left(N-s_{p}\right)}{p}} u_{n}\left(\lambda_{n} x+y_{n}\right) \tag{6.3.2}
\end{equation*}
$$

has a convergent subsequence (still denoted by v_{n}) such that $v_{n} \rightarrow v$ in $\dot{W}^{s, p}\left(\mathbb{R}^{N}\right)$ where $v(x)>0$ in \mathbb{R}^{N}. In particular, there exists a minimizer for $S_{s, p}$. Moreover, we have, $\lambda_{n} \rightarrow 0$ and $y_{n} \rightarrow y \in \bar{\Omega}$ as $n \rightarrow \infty$.

Proof. For $p=2$, this lemma has been proved by Palatucci-Pisante in [68, Theorem 1.3]. For general $p>1$, using the next Lemma 6.3.2 (see the next lemma), the proof can be completed following the similar steps as in [86, Lemma 1.41](also see [57, Section I.4, Example (iii)]). We omit the details.

Lemma 6.3.2. Let $s \in(0,1)$ and $p>1$. Assume $\left\{u_{n}\right\}$ be a sequence in $\dot{W}^{s, p}\left(\mathbb{R}^{N}\right)$ such that

$$
\left\{\begin{array}{l}
u_{n} \rightharpoonup u \quad \text { in } \quad \dot{W}^{s, p}\left(\mathbb{R}^{N}\right), \tag{6.3.3}\\
\left|D^{s}\left(u_{n}-u\right)\right|^{p} \rightharpoonup \mu \quad \text { in } \quad \mathcal{M}\left(\mathbb{R}^{N}\right), \\
\left|u_{n}-u\right|^{p_{s}^{*}} \rightharpoonup \nu \quad \text { in } \quad \mathcal{M}\left(\mathbb{R}^{N}\right), \\
u_{n} \rightarrow u \quad \text { a.e. on } \quad \mathbb{R}^{N},
\end{array}\right.
$$

and define

$$
\left\{\begin{array}{l}
\mu_{\infty}:=\lim _{R \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \int_{|x| \geq R}\left|D^{s} u_{n}\right|^{p} d x, \tag{6.3.4}\\
\nu_{\infty}:=\lim _{R \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \int_{|x| \geq R}\left|u_{n}\right|^{p_{s}^{*}} d x .
\end{array}\right.
$$

Then, we have

$$
\begin{gather*}
S_{s, p}\|\nu\|^{\frac{p}{p_{s}^{*}}} \leq\|\mu\|, \tag{6.3.5}\\
S_{s, p} \nu_{\infty}^{\frac{p}{p_{s}^{*}}} \leq \mu_{\infty}, \tag{6.3.6}
\end{gather*}
$$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|D^{s} u_{n}\right|_{p}^{p}=\left|D^{s} u\right|_{p}^{p}+\|\mu\|+\mu_{\infty} \tag{6.3.7}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|u_{n}\right|_{p_{s}^{*}}^{p_{s}^{*}}=|u|_{p_{s}^{*}}^{p_{s}^{*}}+\|\nu\|+\nu_{\infty} . \tag{6.3.8}
\end{equation*}
$$

Moreover, if $u=0$ and $S_{s, p}\|\nu\|^{p / p_{s}^{*}}=\|\mu\|$, then μ, ν are concentrated at a single point.

Remark 6.3.3. (i) In the local case, Lemma 6.3.2 has been proved in [57, Lemma I.1] (see also [86, Lemma 1.40] for $s=1, p=2$). For the concentration-compactness result in the bounded domain, i.e., when $u_{n} \rightharpoonup u$ in $W_{0}^{s, p}(\Omega)$, we cite [65, Theorem 2.5]. Combining the ideas of [57], [65] and [86], one expects the above lemma to hold for general $s \in(0,1)$ and $p \geq 1$ (see [57, Section I.4]), but as best of our knowledge this lemma has not been proved exclusively anywhere. For $s \in(0,1), p=2$, concentrationcompactness result in \mathbb{R}^{N} has been proved in [39] using the harmonic extension method of Caffarelli-Silvestre, which clearly does not work for $p \neq 2$ case. Therefore we give here the proof for reader's convenience. Our proof is much different from [65].
(ii) It's easy to see that for $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, $D^{s} \phi$ does not have compact support. Thus, when $u_{n} \rightharpoonup 0$ in $\dot{W}^{s, p}\left(\mathbb{R}^{N}\right)$, one can not just apply Rellich compactness result to
$\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p}\left|D^{s} \phi\right|^{p}$ in order to pass the limit. This makes the situation much different from the local case [57] or the nonlocal case when $u_{n} \rightharpoonup u$ in $W_{0}^{s, p}(\Omega)$, which was treated in [65].

Proof. Let us first consider the case $u \equiv 0$.
Step 1: In this step we prove $S_{s, p}(\|\nu\|)^{p / p_{s}^{*}} \leq\|\mu\|$.

Choosing $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ and applying Sobolev inequality, we have

$$
\begin{align*}
S_{s, p}\left|u_{n} \phi\right|_{p_{s}^{*}}^{p_{s}^{*}} \leq\left\|u_{n} \phi\right\|_{0, s, p}^{p} & =\left|D^{s}\left(u_{n} \phi\right)\right|_{p}^{p} \\
& \leq(1+\theta) \int_{\mathbb{R}^{N}}\left|D^{s} u_{n}\right|^{p}|\phi|^{p} d x+c_{\theta} \int_{\mathbb{R}^{N}}\left|D^{s} \phi\right|^{p}\left|u_{n}\right|^{p} d x \tag{6.3.9}
\end{align*}
$$

where, in the last line we have used $[65,(2.1)]$. Let, $\operatorname{supp}(\phi) \in B(0, r)$ for some $r>0$. Then for a.e. $|x|>r$,

$$
\begin{equation*}
\left|D^{s} \phi\right|^{p}(x)=\int_{B(0, r)} \frac{|\phi(y)|^{p}}{|x-y|^{N+s p}} d y \leq \int_{B(0, r)} \frac{|\phi(y)|^{p}}{(|x|-r)^{(N+s p)}} d y \leq \frac{|\phi|_{p}^{p}}{(|x|-r)^{N+s p}}, \tag{6.3.10}
\end{equation*}
$$

Fix, $R_{\theta}>r$ large enough (will be chosen later). Then,

$$
\begin{align*}
c_{\theta} \int_{\mathbb{R}^{N}}\left|D^{s} \phi\right|^{p}\left|u_{n}\right|^{p} d x & =c_{\theta} \int_{B\left(0, R_{\theta}\right)}\left|D^{s} \phi\right|^{p}\left|u_{n}\right|^{p} d x+c_{\theta} \int_{\mathbb{R}^{N} \backslash B\left(0, R_{\theta}\right)}\left|D^{s} \phi\right|^{p}\left|u_{n}\right|^{p} d x \\
& =: J_{1}(n)+J_{2}(n), \tag{6.3.11}
\end{align*}
$$

We observe that as $u_{n} \rightharpoonup u$ in $\dot{W}^{s, p}\left(\mathbb{R}^{N}\right)$ and $u \equiv 0$, it holds $u_{n} \rightarrow 0$ in $L_{l o c}^{p}\left(\mathbb{R}^{N}\right)$. Also, $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ implies, $\left|D^{s} \phi\right|^{p} \in L^{\infty}\left(\mathbb{R}^{N}\right)$. Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} J_{1}(n)=0 \tag{6.3.12}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left|u_{n}\right| p_{p_{s}^{*}}^{p_{s}^{*}} \leq c_{1} \text { for all } n \geq 1 \tag{6.3.13}
\end{equation*}
$$

for some $c_{1}>0$. Consequently, applying Hölder inequality followed by (6.3.10) yields

$$
\begin{align*}
J_{2}(n) & \leq c_{\theta} c_{1}^{p / p_{s}^{*}}\left(\int_{\mathbb{R}^{N} \backslash B\left(0, R_{\theta}\right)}\left|D^{s} \phi\right|^{\frac{N}{s}} d x\right)^{\frac{s p}{N}} \\
& \leq c_{\theta} c_{1}^{p / p_{s}^{*}}|\phi|_{p}\left(\omega_{N} \int_{R_{\theta}}^{\infty} \frac{t^{N-1}}{(t-r)^{(N+s p) \frac{N}{s p}}} d t\right)^{\frac{s p}{N}} \tag{6.3.14}
\end{align*}
$$

where ω_{N} denotes the surface measure of unit sphere in R^{N}. A straight-
forward computation yields,

$$
\begin{aligned}
\int_{R_{\theta}}^{\infty} \frac{t^{N-1}}{(t-r)^{(N+s p) \frac{N}{s p}}} d t & =2^{N-2}\left[\frac{s p}{N^{2}} \frac{1}{\left(R_{\theta}-r\right)^{N^{2} / s p}}\right. \\
& \left.+\left(\frac{r^{N-1} s p}{N(N+s p)-s p}\right) \frac{1}{\left(R_{\theta}-r\right)^{\frac{N(N+s p)}{s p}-1}}\right]^{\frac{s p}{N}}
\end{aligned}
$$

Choose R_{θ} such that

$$
\begin{align*}
c_{\theta} c_{1}^{\frac{p}{p_{*}^{*}}} \omega_{N}^{\frac{s p}{N}}|\phi|_{p} 2^{N-2} & {\left[\frac{s p}{N^{2}} \frac{1}{\left(R_{\theta}-r\right)^{N^{2} / s p}}+\left(\frac{r^{N-1} s p}{N(N+s p)-s p}\right) \frac{1}{\left(R_{\theta}-r\right)^{\frac{N(N+s p)}{s p}}-1}\right]^{\frac{s p}{N}} } \\
& <\theta \tag{6.3.15}
\end{align*}
$$

As a consequence,

$$
\begin{equation*}
J_{2}(n)<\theta, \quad \forall n \geq 1 . \tag{6.3.16}
\end{equation*}
$$

Combining this with (6.3.12) and (6.3.11) yields

$$
\lim _{n \rightarrow \infty} c_{\theta} \int_{\mathbb{R}^{N}}\left|D^{s} \phi\right|^{p}\left|u_{n}\right|^{p} d x<\theta
$$

Hence, taking the limit $n \rightarrow \infty$ in (6.3.9) we obtain

$$
\begin{equation*}
S_{s, p}\left(\int_{\mathbb{R}^{N}}|\phi|^{p_{s}^{*}} d \nu\right)^{p / p_{s}^{*}} \leq(1+\theta) \int_{\mathbb{R}^{N}}|\phi|^{p} d \mu+\theta \tag{6.3.17}
\end{equation*}
$$

Since $\theta>0$ is arbitrary, so letting $\theta \rightarrow 0$ in (6.3.17) gives

$$
\begin{equation*}
S_{s, p}\left(\int_{\mathbb{R}^{N}}|\phi|^{p_{s}^{*}} d \nu\right)^{p / p_{s}^{*}} \leq \int_{\mathbb{R}^{N}}|\phi|^{p} d \mu \quad \forall \quad \phi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) \tag{6.3.18}
\end{equation*}
$$

Hence, taking supremum over $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$, we get

$$
S_{s, p}(\|\nu\|)^{p / p_{s}^{*}} \leq\|\mu\|
$$

Step 2: In this step we prove $S_{s, p} \nu_{\infty}^{p / p_{s}^{*}} \leq \mu_{\infty}$.
For this first fix $R>1$ and choose $\psi_{R} \in C^{\infty}\left(\mathbb{R}^{N}\right)$ be such that

$$
\psi_{R}(x)=\left\{\begin{array}{ll}
1, & |x|>R+1, \tag{6.3.19}\\
0, & |x|<R,
\end{array} \quad 0 \leq \psi_{R} \leq 1 \quad \text { in } \quad \mathbb{R}^{N}\right.
$$

Thanks to Sobolev inequality, we have

$$
S_{s, p}\left(\int_{\mathbb{R}^{N}}\left|\psi_{R} u_{n}\right|^{p_{s}^{*}} d x\right)^{p / p_{s}^{*}} \leq \int_{\mathbb{R}^{N}}\left|D^{s}\left(u_{n} \psi_{R}\right)\right|^{p} d x
$$

Therefore, as before we get

$$
\begin{equation*}
S_{s, p}\left(\int_{\mathbb{R}^{N}}\left|\psi_{R}\right|^{p_{s}^{*}}\left|u_{n}\right|^{p_{s}^{*}} d x\right)^{p / p_{s}^{*}} \leq(1+\theta) \int_{\mathbb{R}^{N}}\left|D^{s} u_{n}\right|^{p}\left|\psi_{R}\right|^{p} d x+c_{\theta} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p}\left|D^{s} \psi_{R}\right|^{p} d x . \tag{6.3.20}
\end{equation*}
$$

Doing an easy computation, it follows that $D^{s} \psi_{R} \in L^{\infty}\left(\mathbb{R}^{N}\right)$. Therefore, for any $\tilde{R}>R+1$,

$$
\begin{align*}
c_{\theta} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p}\left|D^{s} \psi_{R}\right|^{p} d x= & c_{\theta} \limsup _{n \rightarrow \infty} \int_{B(0, \tilde{R})}\left|u_{n}\right|^{p}\left|D^{s} \psi_{R}\right|^{p} d x \\
& +c_{\theta} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N} \backslash B(0, \tilde{R})}\left|u_{n}\right|^{p}\left|D^{s} \psi_{R}\right|^{p} d x \\
= & c_{\theta} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N} \backslash B(0, \tilde{R})}\left|u_{n}\right|^{p}\left|D^{s} \psi_{R}\right|^{p} d x . \tag{6.3.21}
\end{align*}
$$

Moreover, for $x \in \overline{B(0, R+1)}^{c}$,

$$
\begin{aligned}
\left|D^{s} \psi_{R}(x)\right|=\int_{\mathbb{R}^{N}} \frac{\left|1-\psi_{R}(y)\right|^{p}}{|x-y|^{N+s p}} d y & \leq 2^{p-1} \int_{B(0, R+1)} \frac{1+\psi_{R}(y)^{p}}{|x-y|^{N+s p}} d y \\
& \leq \frac{2^{p-1}}{(|x|-(R+1))^{N+s p}} \int_{B(0, R+1)}\left(1+\psi_{R}(y)^{p}\right) d y \\
& \leq \frac{2^{p-1} \alpha_{N}}{(|x|-(R+1))^{N+s p}}\left(2(R+1)^{N}-R^{N}\right)
\end{aligned}
$$

where α_{N} is volume of unit ball in \mathbb{R}^{N}. Therefore, doing the similar analysis as in Step 1, we get an existence of $\tilde{R}>R+1$, for which

$$
c_{\theta} \int_{\mathbb{R}^{N} \backslash B(0, \tilde{R})}\left|u_{n}\right|^{p}\left|D^{s} \psi_{R}\right|^{p} d x<\theta .
$$

Hence, combining this along with (6.3.21) and (6.3.20) and then taking $\theta \rightarrow 0$ yields

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} S_{s, p}\left(\int_{\mathbb{R}^{N}}\left|\psi_{R}\right|^{p_{s}^{*}}\left|u_{n}\right|^{p_{s}^{*}} d x\right)^{p / p_{s}^{*}} \leq \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|\psi_{R}\right|^{p}\left|D^{s} u_{n}\right|^{p} d x \tag{6.3.22}
\end{equation*}
$$

On the other hand, we have

$$
\int_{|x|>R+1}\left|D^{s} u_{n}\right|^{p} d x \leq \int_{\mathbb{R}^{N}} \psi_{R}^{p}\left|D^{s} u_{n}\right|^{p} d x \leq \int_{|x| \geq R}\left|D^{s} u_{n}\right|^{p} d x
$$

and

$$
\int_{|x|>R+1}\left|u_{n}\right|^{p_{s}^{*}} d x \leq \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p_{s}^{*}} \psi_{R}^{p_{s}^{*}} d x \leq \int_{|x| \geq R}\left|u_{n}\right|^{p_{s}^{*}} d x .
$$

From (6.3.4) we obtain,

$$
\begin{equation*}
\mu_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \psi_{R}^{p}\left|D^{s} u_{n}\right|^{p} d x, \quad \nu_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} \psi_{R}^{p_{s}^{*}}\left|u_{n}\right|^{p_{s}^{*}} d x \tag{6.3.23}
\end{equation*}
$$

Substituting (6.3.23) into (6.3.22) yields

$$
S_{s, p} \nu_{\infty}^{p / p_{s}^{*}} \leq \mu_{\infty}
$$

Step 3: Assume $S_{s, p}\|\nu\|^{p / p_{s}^{*}}=\|\mu\|$. Then following the exact similar analysis as in [86, Step 3, Lemma 1.40] we get μ and ν are concentrated at a single point.

Step 4: For the general case write $v_{n}=u_{n}-u$. Since $v_{n} \rightharpoonup 0$ in $\dot{W}^{s, p}\left(\mathbb{R}^{N}\right)$, it follows $\left|D^{s} v_{n}\right|^{p} \rightharpoonup \mu+\left|D^{s} u\right|^{p}$ in $\mathcal{M}\left(\mathbb{R}^{N}\right)$.

Using Brezis-Lieb lemma, for all $h \in C_{c}\left(\mathbb{R}^{N}\right)$, we obtain

$$
\int_{\mathbb{R}^{N}} h|u|^{p_{s}^{*}} d x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} h\left|u_{n}\right|^{p_{s}^{*}} d x-\int_{\mathbb{R}^{N}} h\left|v_{n}\right|^{p_{s}^{*}} d x .
$$

This in turn implies

$$
\left|u_{n}\right|^{p_{s}^{*}} \rightharpoonup|u|^{p_{s}^{*}}+\nu \quad \text { in } \quad \mathcal{M}\left(\mathbb{R}^{N}\right) .
$$

(6.3.5) follows from corresponding inequality of $\left(v_{n}\right)$.

Step 5: Since,

$$
\limsup _{n \rightarrow \infty} \int_{|x|>R}\left|D^{s} v_{n}\right|^{p} d x=\limsup _{n \rightarrow \infty} \int_{|x|>R}\left|D^{s} u_{n}\right|^{p} d x-\int_{|x|>R}\left|D^{s} u\right|^{p} d x,
$$

we obtain $\mu_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R}\left|D^{s} v_{n}\right|^{p} d x$.

Similarly, applying Brezis-Lieb lemma to $\int_{|x|>R}|u|^{p_{s}^{*}} d x$ yields

$$
\nu_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x| \geq R}\left|v_{n}\right|^{p_{s}^{*}} d x .
$$

Now, (6.3.6) follows from corresponding inequality for $\left(v_{n}\right)$.
Step 6: For $R>1$, we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|D^{s} u_{n}\right|^{p} d x= & \limsup _{n \rightarrow \infty}\left(\int_{\mathbb{R}^{N}} \psi_{R}\left|D^{s} u_{n}\right|^{p}+\int_{\mathbb{R}^{N}}\left(1-\psi_{R}\right)\left|D^{s} u_{n}\right|^{p}\right) \\
= & \limsup _{n \rightarrow \infty}\left(\int_{\mathbb{R}^{N}} \psi_{R}\left|D^{s} u_{n}\right|^{p}\right. \\
& \left.+\int_{\mathbb{R}^{N}}\left(1-\psi_{R}\right) d \mu+\int_{\mathbb{R}^{N}}\left(1-\psi_{R}\right)\left|D^{s} u\right|^{p} d x\right) .
\end{aligned}
$$

Hence, taking the limit $R \rightarrow \infty$ yields

$$
\limsup _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left|D^{s} u_{n}\right|^{p} d x=\mu_{\infty}+\|\mu\|+\|u\|_{0, s, p}^{p}
$$

Proof of (6.3.8) is similar.

6.4 Proof of Theorem 6.1.1

6.4.1 Existence of infinitely many nontrivial solutions

The energy functional associated to $\left(P_{\theta, \lambda}\right)$ is given by:

$$
\begin{equation*}
I(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{\theta}{r} \int_{\Omega} V(x)|u|^{r} d x-\frac{1}{p_{s_{1}}^{*}}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}-\lambda \int_{\Omega} F(x, u) d x . \tag{6.4.1}
\end{equation*}
$$

We note that $I(u)=I(-u)$ for all $u \in X_{0, s_{1}, p}(\Omega)$ and $I \in C^{1}\left(X_{0, s_{1}, p}, \mathbb{R}\right)$.
Lemma 6.4.1. Assume (A1)-(A3) are satisfied. Then, there exists $c_{1}, c_{2}>$ 0 such that any $(P S)_{c}$ sequence $\left\{u_{n}\right\} \subset X_{0, s_{1}, p}(\Omega)$ of I has a convergent subsequence where

$$
c<\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}-c_{1} \theta^{\frac{q}{q-r}}-c_{2} \lambda^{\frac{p_{s_{1}}^{*}}{p_{1}}-l} .
$$

Proof. Let $\left\{u_{n}\right\} \subset X_{0, s_{1}, p}(\Omega)$ be a $(\mathrm{PS})_{c}$ sequence of I. Therefore,

$$
\begin{equation*}
I\left(u_{n}\right)=c+o(1), I^{\prime}\left(u_{n}\right)=o(1) . \tag{6.4.2}
\end{equation*}
$$

Claim 1: $\left\|u_{n}\right\|_{0, s_{1}, p}$ is uniformly bounded.

We prove the Claim by method of contradiction. Thus assume the claim does not hold, that is, up to a subsequence $\left\|u_{n}\right\|_{0, s_{1}, p} \rightarrow \infty$ as $n \rightarrow \infty$. Let us define $\hat{u_{n}}:=\frac{u_{n}}{\left\|u_{n}\right\|_{0, s_{1}, p}}$. Then $\left\|\hat{u_{n}}\right\|_{0, s_{1}, p}=1$. Therefore, up to a subsequence, we may take

$$
\begin{equation*}
\hat{u_{n}} \rightharpoonup \hat{u} \quad \text { in } \quad X_{0, s_{1}, p}(\Omega), \quad \text { and } \quad \hat{u_{n}} \rightarrow \hat{u} \quad \text { in } \quad L^{\gamma}\left(\mathbb{R}^{N}\right), 1 \leq \gamma<p_{s_{1}}^{*} \tag{6.4.3}
\end{equation*}
$$

for some $\hat{u} \in X_{0, s_{1}, p}(\Omega)$. From (6.4.2) using $\frac{1}{\left\|u_{n}\right\|_{0, s_{1}, p}}=o(1)$, we have

$$
\begin{align*}
& \frac{1}{p}\left\|\hat{u_{n}}\right\|_{0, s_{1}, p}^{p}+\frac{1}{q}\left\|u_{n}\right\|_{0, s_{1}, p}^{q-p}\left\|\hat{u_{n}}\right\|_{0, s_{2}, q}^{q}-\frac{\theta}{r}\left\|u_{n}\right\|_{0, s_{1}, p}^{r-p} \int_{\Omega} V(x)\left|\hat{u_{n}}\right|^{r} d x \\
& -\frac{1}{p_{s_{1}}^{*}}\left\|u_{n}\right\|_{0, s_{1}, p}^{p_{s_{1}}^{*}-p}\left|\hat{u_{n}}\right|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}}-\lambda\left\|u_{n}\right\|_{0, s_{1}, p}^{-p} \int_{\Omega} F\left(x, u_{n}\right) d x \\
& =o(1), \tag{6.4.4}
\end{align*}
$$

and

$$
\begin{align*}
&\left\|\hat{u_{n}}\right\|_{0, s_{1}, p}^{p}+\left\|u_{n}\right\|_{0, s_{1}, p}^{q-p}\left\|\hat{u_{n}}\right\|_{0, s_{2}, q}^{q}-\theta\left\|u_{n}\right\|_{0, s_{1}, p}^{r-p} \int_{\Omega} V(x)\left|\hat{u_{n}}\right|^{r} d x \\
&-\left\|u_{n}\right\|_{0, s_{1}, p}^{p_{s_{1}}^{*}-p}\left|\hat{u_{n}}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}}-\lambda\left\|u_{n}\right\|_{0, s_{1}, p}^{-p} \int_{\Omega} f\left(x, u_{n}\right) u_{n} d x \\
&=o(1) . \tag{6.4.5}
\end{align*}
$$

As $V \in L^{\infty}(\Omega)$, using (6.4.3) we have

$$
\begin{equation*}
\int_{\Omega} V(x)\left|\hat{u_{n}}\right|^{r} d x \rightarrow \int_{\Omega} V(x)|\hat{u}|^{r} d x . \tag{6.4.6}
\end{equation*}
$$

From (6.4.4) and (6.4.5), we obtain

$$
\begin{gather*}
\left(\frac{p_{s_{1}}^{*}}{p}-1\right)\left\|\hat{u_{n}}\right\|_{0, s_{1}, p}^{p}+\left(\frac{p_{s_{1}}^{*}}{q}-1\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{q-p}\left\|\hat{u_{n}}\right\|_{0, s_{2}, q}^{q}-\theta\left(\frac{p_{s_{1}}^{*}}{r}-1\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{r-p} \int_{\Omega} V(x)\left|\hat{u_{n}}\right|^{r} d x \\
-\lambda\left\|u_{n}\right\|_{0, s_{1}, p}^{-p}\left(p_{s_{1}}^{*} \int_{\Omega}\left[F\left(x, u_{n}\right)-f\left(x, u_{n}\right) u_{n}\right] d x\right)=o(1) . \tag{6.4.7}
\end{gather*}
$$

Using (A3), (6.4.3) and (6.4.6), we can write

$$
\begin{aligned}
\left(\frac{p_{s_{1}}^{*}}{p}-1\right)\left\|\hat{u}_{n}\right\|_{0, s_{1}, p}^{p}= & \left(1-\frac{p_{s_{1}}^{*}}{p}\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{q-p}\left\|\hat{u}_{n}\right\|_{0, s_{2}, q}^{q} \\
+ & \theta\left(\frac{p_{s_{1}}^{*}}{r}-1\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{r-p} \int_{\Omega} V(x)\left|\hat{u}_{n}\right|^{r} d x \\
& +\lambda\left\|u_{n}\right\|_{0, s_{1}, p}^{-p}\left(\int_{\Omega} p_{s_{1}}^{*} F\left(x, u_{n}\right)-f\left(x, u_{n}\right) u_{n} d x\right)+o(1) \\
\leq & \left(1-\frac{p_{s_{1}}^{*}}{p}\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{q-p}\left\|\hat{u}_{n}\right\|_{0, s_{2}, q}^{q} \\
+ & \theta\left(\frac{p_{s_{1}}^{*}}{r}-1\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{r-p} \int_{\Omega} V(x)|\hat{u}|^{r} d x \\
& +\lambda a_{3}\left\|u_{n}\right\|_{0, s_{1}, p}^{l-p} \mid \hat{u} l_{l}^{l}+o(1) \\
= & o(1)
\end{aligned}
$$

as $n \rightarrow \infty$. This is a contradiction as $\left\|\hat{u_{n}}\right\|_{0, s_{1}, p}=1$ and hence Claim 1 follows.

Consequently, there exists $u \in X_{0, s_{1}, p}(\Omega)$ such that up to a subsequence

$$
\begin{aligned}
& u_{n} \rightharpoonup u \quad \text { in } \quad X_{0, s_{1}, p}(\Omega) \\
& u_{n} \rightarrow u \quad \text { a.e. in } \mathbb{R}^{N}, \\
& u_{n} \rightarrow u \quad \text { strongly in } L^{\gamma}\left(\mathbb{R}^{N}\right) \text { for } 1 \leq \gamma<p_{s_{1}}^{*} .
\end{aligned}
$$

Applying (A1) and (A2), we have

$$
\begin{aligned}
\int_{\Omega} f\left(x, u_{n}\right) u_{n} d x & =\int_{\Omega} f(x, u) u d x+o(1), \\
\int_{\Omega} F\left(x, u_{n}\right) d x & =\int_{\Omega} F(x, u) d x+o(1),
\end{aligned}
$$

and

$$
\int_{\Omega} V(x)\left|u_{n}\right|^{r} d x=\int_{\Omega} V(x)|u|^{r} d x+o(1)
$$

Note that by Lemma 6.2.4, $\left\|u_{n}\right\|_{0, s_{2}, q}$ is also bounded. Since $u_{n} \rightarrow u$ a.e. in \mathbb{R}^{N}, we obtain

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)}{|x-y|^{\left(\frac{N}{p}+s_{1}\right)(p-1)}} \rightarrow \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{\left(\frac{N}{p}+s_{1}\right)(p-1)}}
$$

CHAPTER 6. MULTIPLICITY RESULTS FOR (P, Q) FRACTIONAL LAPLACIAN TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES
a.e. $(x, y) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$. On the other hand, $\left\|u_{n}\right\|_{0, s_{1}, p}$ is uniformly bounded implies there exists $C>0$ such that

$$
\int_{\mathbb{R}^{2 N}}\left(\frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|^{\frac{N}{p}+s_{1}}}\right)^{p} d x d y \leq C \quad \text { for all } \quad n \geq 1
$$

that is,

$$
\int_{\mathbb{R}^{2 N}}\left|\frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)}{|x-y|^{\left(\frac{N}{p}+s_{1}\right)(p-1)}}\right|^{\frac{p}{p-1}} d x d y \leq C .
$$

Therefore,

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)}{|x-y|^{\left(\frac{N}{p}+s_{1}\right)(p-1)}} \rightharpoonup \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{\left(\frac{N}{p}+s_{1}\right)(p-1)}}
$$

weakly in $L^{p^{\prime}}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ with $p^{\prime}=\frac{p}{p-1}$. Similarly, as $\left\|u_{n}\right\|_{0, s_{2}, q}$ is uniformly bounded,

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|^{q-2}\left(u_{n}(x)-u_{n}(y)\right)}{|x-y|^{\left(\frac{N}{q}+s_{2}\right)(q-1)}} \rightharpoonup \frac{|u(x)-u(y)|^{q-2}(u(x)-u(y))}{|x-y|^{\left(\frac{N}{q}+s_{2}\right)(q-1)}}
$$

weakly in $L^{q^{\prime}}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ with $q^{\prime}=\frac{q}{q-1}$. If $\phi \in X_{0, s_{1}, p}(\Omega)$, it follows $\frac{\phi(x)-\phi(y)}{|x-y|^{\frac{N}{p}+s_{1}}} \in$ $L^{p}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ and $\frac{\phi(x)-\phi(y)}{|x-y|^{\frac{N}{q}+s_{2}}} \in L^{q}\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)$. As a result,

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)(\phi(x)-\phi(y))}{|x-y|^{\left(\frac{N}{p}+s_{1}\right)(p-1)}|x-y|^{\frac{N}{p}+s_{1}}} d x d y \\
& \longrightarrow \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+s_{1} p}} d x d y
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{q-2}\left(u_{n}(x)-u_{n}(y)\right)(\phi(x)-\phi(y))}{|x-y|^{\left(\frac{N}{q}+s_{2}\right)(q-1)}|x-y|^{\frac{N}{q}+s_{2}}} d x d y \\
& \longrightarrow \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{q-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+s_{2} q}} d x d y .
\end{aligned}
$$

These together with (6.4.2) via Vitali's convergence theorem implies $I^{\prime}(u)=0$ that is u is weak solution of $\left(P_{\theta, \lambda}\right)$.

Claim 2: $u_{n} \rightarrow u$ in $X_{0, s_{1}, p}(\Omega)$.

To prove this claim, define $v_{n}:=u_{n}-u$. As $\left\|u_{n}\right\|_{0, s_{1}, p}$ and $\left\|u_{n}\right\|_{0, s_{2}, q}$ are uniformly bounded and $u_{n} \rightarrow u$ a.e. in \mathbb{R}^{N}, applying Brezis-Lieb lemma, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{2 N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p}}{|x-y|^{N+s_{1} p}} d x d y & =\int_{\mathbb{R}^{2 N}} \frac{\left|v_{n}(x)-v_{n}(y)\right|^{p}}{|x-y|^{N+s_{1} p}} d x d y \\
& +\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s_{1} p}} d x d y+o(1),
\end{aligned}
$$

i.e., $\left\|u_{n}\right\|_{0, s_{1}, p}^{p}=\left\|v_{n}\right\|_{0, s_{1}, p}^{p}+\|u\|_{0, s_{1}, p}^{p}+o(1)$.

Similarly, we have $\left\|u_{n}\right\|_{0, s_{2}, q}^{q}=\left\|v_{n}\right\|_{0, s_{2}, q}^{q}+\|u\|_{0, s_{2}, q}^{q}+o(1)$. Therefore, a straight forward computation yields

$$
\begin{align*}
c+o(1)= & \frac{1}{p}\left\|v_{n}\right\|_{0, s_{1}, p}^{p}+\frac{1}{q}\left\|v_{n}\right\|_{0, s_{2}, q}^{q}-\frac{\theta}{r} \int_{\Omega} V(x)|u|^{r} d x-\frac{1}{p^{*}}\left|v_{n}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} \\
& -\lambda \int_{\Omega} F(x, u) d x+\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p^{*}}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}} .(6 . \tag{6.4.8}
\end{align*}
$$

On the other hand, using $\left|I^{\prime}\left(u_{n}\right) u_{n}\right| \leq o(1)\left\|u_{n}\right\|_{0, s_{1}, p}=o(1)$, we also have

$$
\begin{align*}
\left\|v_{n}\right\|_{0, s_{1}, p}^{p}+\left\|v_{n}\right\|_{0, s_{2}, q}^{q}= & o(1)+\theta \int_{\Omega} V(x)|u|^{r} d x+|u|_{p_{s_{1}}}^{p_{1}^{*}}+\left|v_{n}\right|_{p_{s_{1}}}^{p_{1}^{*}} \\
& +\lambda \int_{\Omega} f(x, u) u d x-\|u\|_{0, s_{1}, p}^{p}-\|u\|_{0, s_{2}, q}^{q} . \tag{6.4.9}
\end{align*}
$$

Combining (6.4.9) with $I^{\prime}(u)=0$ yields

$$
\begin{equation*}
\left\|v_{n}\right\|_{0, s_{1}, p}^{p}+\left\|v_{n}\right\|_{0, s_{2}, q}^{q}-\left|v_{n}\right|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}}=o(1) . \tag{6.4.10}
\end{equation*}
$$

Since $\left\|v_{n}\right\|_{0, s_{1}, p},\left\|v_{n}\right\|_{0, s_{2}, q},\left|v_{n}\right|_{p_{s_{1}^{*}}}$ all are bounded sequence of real numbers, we may assume that:

$$
\begin{equation*}
\left\|v_{n}\right\|_{0, s_{1}, p}^{p}=a+o(1), \quad\left\|v_{n}\right\|_{0, s_{2}, q}^{q}=b+o(1), \quad\left|v_{n}\right|_{p_{s_{1}}}^{p_{1}^{*}}=d+o(1) \tag{6.4.11}
\end{equation*}
$$

for some $a, b, d \geq 0$. Hence, (6.4.10) implies

$$
\begin{equation*}
a+b=d \tag{6.4.12}
\end{equation*}
$$

Thus $a \leq d$. Therefore, Sobolev inequality yields

$$
\begin{equation*}
a \geq S_{s_{1}, p} d^{p / p_{s_{1}}^{*}} \geq S_{s_{1}, p} a^{p / p_{s_{1}}^{*}} \tag{6.4.13}
\end{equation*}
$$

If $a=0$, we are done. If $a>0$, then (6.4.13) implies

$$
\begin{equation*}
a \geq\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}} . \tag{6.4.14}
\end{equation*}
$$

Using (6.4.8), (6.4.11), (6.4.12), (6.4.14) and the fact that $q<p<p_{s_{1}}^{*}$, taking the limit $n \rightarrow \infty$ we have

$$
\begin{align*}
c= & \frac{a}{p}+\frac{b}{q}-\frac{(a+b)}{p_{s_{1}}^{*}}+\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}|u|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}} \\
& -\frac{\theta}{r} \int_{\Omega} V(x)|u|^{r} d x-\lambda \int_{\Omega} F(x, u) d x . \\
\geq & \frac{a s_{1}}{N}+\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}-\frac{\theta}{r} \int_{\Omega} V(x)|u|^{r} d x-\lambda \int_{\Omega} F(x, u) d x . \\
\geq & \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}} \\
- & \frac{\theta}{r} \int_{\Omega} V(x)|u|^{r} d x-\lambda \int_{\Omega} F(x, u) d x . \tag{6.4.15}
\end{align*}
$$

Also from $<I^{\prime}(u), u>=0$, it follows

$$
\begin{equation*}
\|u\|_{0, s_{1}, p}^{p}=-\|u\|_{0, s_{2}, q}^{q}+|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}+\theta \int_{\Omega} V(x)|u|^{r} d x+\lambda \int_{\Omega} f(x, u) u d x \tag{6.4.16}
\end{equation*}
$$

Substituting (6.4.16) into (6.4.15) and using (A1) yields

$$
\begin{align*}
c \geq & \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+\frac{s_{1}}{N}|u|_{p_{s_{1}}^{*}}^{p_{s_{1}^{*}}^{*}}-\theta\left(\frac{1}{r}-\frac{1}{p}\right) \int_{\Omega} V(x)|u|^{r} d x \\
& -\lambda \int_{\Omega}\left(F(x, u)-\frac{1}{p} f(x, u) u\right) d x+\left(\frac{1}{q}-\frac{1}{p}\right)\|u\|_{0, s_{2}, q}^{q} \\
\geq & \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+\frac{s_{1}}{N}|u|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}}-\theta \eta\left(\frac{1}{r}-\frac{1}{p}\right)\|u\|_{0, s_{2}, r}^{r} \\
& -\lambda \int_{\Omega}\left(F(x, u)-\frac{1}{p} f(x, u) u\right) d x+\left(\frac{1}{q}-\frac{1}{p}\right)\|u\|_{0, s_{2}, q}^{q} . \tag{6.4.17}
\end{align*}
$$

Note that from (A4) it is easy to see $f(x, t) t \geq 0$ for all $t \in \mathbb{R}, x \in \Omega$ and from (A3), it follows that $F(x, t) \leq \frac{1}{p_{s_{1}}^{*}} f(x, t) t+\frac{a_{3}}{p_{s_{1}}}|t|^{l}$. Thus,

$$
\begin{equation*}
\int_{\Omega} \lambda\left(F(x, u)-\frac{1}{p} f(x, u) u\right) d x \leq \frac{\lambda a_{3}}{p}|u|_{l}^{l} \leq \frac{\lambda a_{3}}{p}|\Omega|^{1-\frac{l}{p_{s_{1}}^{*}}}|u|_{p_{s_{1}}^{*}}^{l}=\lambda c_{0}|u|_{p_{s_{1}}^{*}}^{l}, \tag{6.4.18}
\end{equation*}
$$

where $c_{0}=\frac{a_{3}}{p}|\Omega|^{1-\frac{l}{p_{s_{1}}}}$. Applying Lemma 6.2.4 and Young's inequality, for any $\delta>0$ we obtain

$$
\begin{equation*}
\eta\left(\frac{1}{r}-\frac{1}{p}\right)\|u\|_{0, s_{2}, r}^{r} \leq \eta\left(\frac{1}{r}-\frac{1}{p}\right) C^{r}\|u\|_{0, s_{2}, q}^{r} \leq \delta\|u\|_{0, s_{2}, q}^{q}+C_{\delta} . \tag{6.4.19}
\end{equation*}
$$

Substituting (6.4.18) and (6.4.19) into (6.4.17) we have
$c \geq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+\frac{s_{1}}{N}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}-\theta \delta\|u\|_{0, s_{2}, q}^{q}-\theta C_{\delta}-\lambda c_{0}|u|_{p_{s_{1}}^{*}}^{l}+\left(\frac{1}{q}-\frac{1}{p}\right)\|u\|_{0, s_{2}, q}^{q}$.
Now choose $\delta=\frac{1}{\theta}\left(\frac{1}{q}-\frac{1}{p}\right)$. This implies $C_{\delta}=c_{1} \theta^{\frac{r}{q-r}}$, for some $c_{1}=$ $c_{1}\left(p, q, r, N, s_{1}, s_{2},|\Omega|\right)>0$. Substituting this in (6.4.20) yields

$$
c \geq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+\frac{s_{1}}{N}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}-c_{1} \theta^{\frac{q}{q-r}}-\lambda c_{0}|u|_{p_{s_{1}}^{*}}^{l} .
$$

Note that the constants c_{1} and c_{0} are independent of θ, λ. Let us consider the function $g:(0, \infty) \rightarrow \mathbb{R}$ by

$$
g(x)=\frac{s_{1}}{N} x^{p_{s_{1}}^{*}}-\lambda c_{0} x^{l} .
$$

We note that g attains its minimum at $x_{0}=\left(\frac{c_{0} l N \lambda}{p_{s_{1}}^{*}}\right)^{\frac{1}{p_{s_{1}}-l}}$. Therefore,

$$
g(x) \geq g\left(x_{0}\right)=-c_{2} \lambda^{\frac{p_{s_{s}}^{*}}{p_{s_{1}}-l}},
$$

where $c_{2}=c_{0} \frac{p_{p_{1}}^{*}-l}{p_{s_{1}}^{*}}\left(\frac{c_{0} l N}{p_{s_{1}}^{*}}\right)^{\frac{l}{p_{s_{1}}-l}}>0$. Consequently,

$$
c \geq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}-c_{1} \theta^{\frac{q}{q-r}}-c_{2} \lambda^{\frac{p_{s_{1}}^{*}}{p_{1}}-l},
$$

which is a contradiction to the assumption on c. Hence, $a=0$ and this completes the proof of the lemma.

Using (A1) and Lemma 6.2.4, for $1<r<p$

$$
\begin{equation*}
\int_{\Omega} V(x)|u|^{r} d x \leq \eta\|u\|_{0, s_{2}, r}^{r} \leq C \eta\|u\|_{0, s_{1}, p}^{r} . \tag{6.4.21}
\end{equation*}
$$

Moreover, by Sobolev embedding we have $S_{s_{1}, p}|u|_{p_{s_{1}}^{*}}^{p} \leq\|u\|_{0, s_{1}, p}^{p}$ and using (A2), we obtain

$$
\begin{aligned}
\int_{\Omega} F(x, u) d x & \leq \frac{a_{1}}{\alpha}|u|_{\alpha}^{\alpha}+\frac{a_{2}}{\beta}|u|_{\beta}^{\beta} \\
& \leq \frac{a_{1}}{\alpha}|\Omega|^{1-\frac{\alpha}{p_{s_{1}}}}|u|_{p_{s_{1}}^{*}}^{\alpha}+\frac{a_{2}}{\beta}|\Omega|^{1-\frac{\beta}{p_{s_{1}}^{*}}}|u|_{p_{s_{1}}^{*}}^{\beta} \\
& \leq \frac{a_{1}}{\alpha}|\Omega|^{1-\frac{\alpha}{p_{s_{1}}^{*}}}\left(S_{s_{1}, p}\right)^{-\alpha / p}\|u\|_{0, s_{1}, p}^{\alpha}+\frac{a_{2}}{\beta}|\Omega|^{1-\frac{\beta}{p_{s_{1}}^{*}}}\left(S_{s_{1}, p}\right)^{-\beta / p}\|u\|_{0, s_{1}, p}^{\beta} .
\end{aligned}
$$

This together with (6.4.21) and Sobolev embedding gives:

$$
\begin{align*}
I(u) \geq & \frac{1}{p}\|u\|_{0, s_{1}, p}^{p}-\frac{\left(S_{s_{1}, p}\right)^{-p_{s_{1}}^{*} / p}}{p_{s_{1}}^{*}}\|u\|_{0, s_{1}, p}^{p_{s_{1}}^{*}}-\frac{\eta C \theta}{r}\|u\|_{0, s_{1}, p}^{r} \\
& -\lambda \frac{a_{1}}{\alpha}|\Omega|^{\frac{p_{s_{1}}^{*}-\alpha}{p_{s_{1}}^{*}}}\left(S_{s_{1}, p}\right)^{-\alpha / p}\|u\|_{0, s_{1}, p}^{\alpha}-\lambda \frac{a_{2}}{\beta}|\Omega|^{\frac{p_{1}^{*}}{p_{s_{1}}-\beta}}\left(S_{s_{1}, p}\right)^{-\beta / p}\|u\|_{0, s_{1}, p}^{\beta} \\
= & c_{3}\|u\|_{0, s_{1}, p}^{p}-c_{4}\|u\|_{0, s_{1}, p}^{p_{s_{1}}^{*}}-c_{5} \theta\|u\|_{0, s_{1}, p}^{r}-c_{6} \lambda\|u\|_{0, s_{1}, p}^{\alpha}-c_{7} \lambda\|u\|_{0, s_{1}, p}^{\beta} \tag{6.4.22}
\end{align*}
$$

where $c_{3}=\frac{1}{p}, c_{4}=\frac{\left(S_{s_{1}, p} p^{-p_{s_{1}}^{*} / p}\right.}{p_{s_{1}}^{*}}, c_{5}=\frac{\eta}{r} C, c_{6}=\frac{a_{1}}{\alpha}|\Omega|^{\frac{p_{s_{1}}^{*}-\alpha}{p_{s_{1}}^{*}}}\left(S_{s_{1}, p}\right)^{-\alpha / p}, c_{7}=$ $\frac{a_{2}}{\beta}|\Omega|^{\frac{p_{s_{1}}^{*}-\beta}{p_{s_{1}}}}\left(S_{s_{1}, p}\right)^{-\beta / p}$ are all positive constants. Let us define a function h : $(0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
h(x)=c_{3} x^{p}-c_{4} x^{p_{s_{1}^{*}}^{*}}-c_{5} \theta x^{r}-c_{6} \lambda x^{\alpha}-c_{7} \lambda x^{\beta} . \tag{6.4.23}
\end{equation*}
$$

As $1<r<p$ and $1<\alpha, \beta<p_{s_{1}}^{*}$, we see that there exists $\lambda_{0} \geq \lambda^{*}>0$ such that for any $\lambda \in\left(0, \lambda^{*}\right)$, there exists $x>0$ such that $h(x)>0$. Therefore, we conclude that for any $\lambda \in\left(0, \lambda^{*}\right)$, there exists

$$
\begin{equation*}
\theta^{*}=\theta^{*}(\lambda)>0 \tag{6.4.24}
\end{equation*}
$$

such that for any $\theta \in\left(0, \theta^{*}\right)$,
(a) $h(x)$ attains its maximum and $\max _{x \in(0, \infty)} h(x)>0$,
(b) $\frac{s_{1}}{N} S^{\frac{N}{s_{1 p}}}-c_{1} \theta^{\frac{q}{q-r}}-c_{2} \lambda^{\frac{p_{s}^{*}}{p_{s_{1}}^{*}}-l}>0$,
where c_{1}, c_{2} are given in Lemma 6.4.1. From the definition of h, it is not difficult to see that h has finitely many positive roots, say $0<r_{1}<r_{2}<$ $\cdots<r_{m}<\infty$, where $h\left(r_{i}\right)=0$.

As a result, we note that,

$$
h(x)\left\{\begin{array}{l}
<0 \quad \forall x \in\left(0, r_{1}\right) \cup\left(r_{2}, r_{3}\right) \cup \cdots \cup\left(r_{m}, \infty\right), \tag{6.4.25}\\
>0 \quad \forall x \in\left(r_{1}, r_{2}\right) \cup\left(r_{3}, r_{4}\right) \cup \cdots \cup\left(r_{m-1}, r_{m}\right) .
\end{array}\right.
$$

Denote,

$$
A:=\left(0, r_{1}\right) \cup\left(r_{2}, r_{3}\right) \cup \cdots \cup\left(r_{m}, \infty\right), \quad B:=A \backslash\left(r_{m}, \infty\right) .
$$

We choose $\tau \in C^{\infty}\left(\mathbb{R}^{+} ;[0,1]\right)$ such that

$$
\tau(x)= \begin{cases}1, & x \in B \tag{6.4.26}\\ 0, & x \in\left(r_{m}, \infty\right)\end{cases}
$$

Set $\phi(u):=\tau\left(\|u\|_{0, s_{1}, p}\right)$ and the truncated functional

$$
\begin{align*}
I_{\infty}(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q} & -\frac{\theta}{r} \int_{\Omega} V(x)|u|^{r} d x \\
& -\frac{1}{p_{s_{1}}^{*}} \int_{\Omega}|u|^{p_{s_{1}}^{*}} \phi(u) d x-\lambda \int_{\Omega} F(x, u) \phi(u) d x . \tag{6.4.27}
\end{align*}
$$

Similarly, as (6.4.23) we can consider the function $\bar{h}:(0, \infty) \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\bar{h}(x)=c_{3} x^{p}-c_{4} x^{p_{s_{1}^{*}}} \tau(x)-c_{5} \theta x^{r}-c_{6} \lambda x^{\alpha} \tau(x)-c_{7} \lambda x^{\beta} \tau(x), \quad \forall x>0 \tag{6.4.28}
\end{equation*}
$$

and have

$$
\begin{equation*}
I_{\infty}(u) \geq \bar{h}\left(\|u\|_{0, s_{1}, p}\right) . \tag{6.4.29}
\end{equation*}
$$

It is not difficult to check that from the definition of τ, A, B that

$$
\begin{equation*}
\bar{h}(x) \geq h(x) \forall x>0, \quad \bar{h}(x)=h(x) \forall x \in B, \quad \bar{h}(x) \geq 0 \forall x>r_{m} . \tag{6.4.30}
\end{equation*}
$$

Therefore, we conclude

$$
\begin{equation*}
I(u)=I_{\infty}(u) \quad \text { for } \quad\|u\|_{0, s_{1}, p} \in B \tag{6.4.31}
\end{equation*}
$$

Also we note that $\tau \in C^{\infty}\left(\mathbb{R}^{+},[0,1]\right)$ implies $I_{\infty}(u) \in C^{1}\left(X_{0, s_{1}, p}, \mathbb{R}\right)$.
Lemma 6.4.2. (i) Let $I_{\infty}(u)<0$. Then $\|u\|_{0, s_{1}, p} \in B$ and there exists a neighborhood \mathcal{N}_{u} of u such that $I(v)=I_{\infty}(v) \quad \forall v \in \mathcal{N}_{u}$.
(ii) For any $\lambda \in\left(0, \lambda^{*}\right)$, there exists $\theta^{*}>0$ such that for any $\theta \in\left(0, \theta^{*}\right)$, $I_{\infty}(u)$ satisfies $(P S)_{c}$ condition for $c<0$.

Proof. We prove (i) by method of contradiction. Suppose $\|u\|_{0, s_{1}, p} \notin B$, that is, $\|u\|_{0, s_{1}, p} \in \mathbb{R}^{+} \backslash B$ for u with $I_{\infty}(u)<\infty$. Now, two cases may happen. Case 1: If $\|u\|_{0, s_{1}, p} \in \mathbb{R}^{+} \backslash A$, then using (6.4.29), (6.4.30) and (6.4.25), we have

$$
I_{\infty}(u) \geq \bar{h}\left(\|u\|_{0, s_{1}, p}\right) \geq h\left(\|u\|_{0, s_{1}, p}\right)>0 .
$$

This contradicts $I_{\infty}(u)<0$.
Case 2: If $\|u\|_{0, s_{1}, p} \in\left(r_{m}, \infty\right)=A \backslash B$. Then by (6.4.29) and (6.4.30), we have $I_{\infty}(u) \geq \bar{h}\left(\|u\|_{0, s_{1}, p}\right) \geq 0$, which again contradicts $I_{\infty}(u)<0$. Hence, $\|u\|_{0, s_{1}, p} \in B$. Moreover as B is an open set, applying (6.4.31), we obtain there exists a neighborhood \mathcal{N}_{u} of u such that $I(v)=I_{\infty}(v) \quad \forall v \in \mathcal{N}_{u}$.

To prove (ii), let $\theta^{*}>0$ be as in (6.4.24). Suppose $c<0$ and $\left\{u_{n}\right\} \subseteq$ $X_{0, s_{1}, p}(\Omega)$ is a $(\mathrm{PS})_{c}$ sequence of I_{∞}. Therefore, for n large we may take

$$
I_{\infty}\left(u_{n}\right)<0 \quad \text { and } \quad I_{\infty}^{\prime}\left(u_{n}\right)=o(1)
$$

Using (i) it follows that $\left\|u_{n}\right\|_{0, s_{1}, p} \in B$. Therefore, $I\left(u_{n}\right)=I_{\infty}\left(u_{n}\right)$ and $I^{\prime}\left(u_{n}\right)=I_{\infty}^{\prime}\left(u_{n}\right)=o(1)$. Since (b) holds for $\theta \in\left(0, \theta^{*}\right)$, applying Lemma 6.4.1, we obtain $I(u)$ satisfies $(\mathrm{PS})_{c}$ condition for $c<0$. Therefore, $I_{\infty}(u)$ satisfies (PS) ${ }_{c}$ condition for $c<0$.

Define,

$$
\begin{equation*}
\Sigma:=\left\{A \subset X_{0, s_{1}, p} \backslash\{0\}: A \quad \text { is closed, } \quad A=-A\right\} . \tag{6.4.32}
\end{equation*}
$$

Definition 6.4.3. Let $A \in \Sigma$. We denote by $\gamma(A)$ the genus of A which is the smallest positive integer n such that there exists an odd continuous map from A into $\mathbb{R}^{n} \backslash\{0\}$. We set $\gamma(\emptyset)=0$ and if no such n exists for A, then we set $\gamma(A)=\infty$.

Proof of Theorem 6.1.1

Proof. Define

$$
c_{k}:=\inf _{A \in \Sigma_{k}} \sup _{A} I_{\infty}(u)
$$

where

$$
\Sigma_{k}:=\{A \in \Sigma: \gamma(A) \geq k\}
$$

and Σ is as in (6.4.32). Let,

$$
K_{c}:=\left\{u \in X_{0, s_{1}, p}(\Omega): I_{\infty}(u)=c, I_{\infty}^{\prime}(u)=0\right\}
$$

and θ^{*} be as in (6.4.24) and $\theta \in\left(0, \theta^{*}\right)$.

Claim: If $k, l \in \mathbb{N}$ such that $c_{k}=c_{k+1}=\cdots=c_{k+l}=c$, then $c<0$ and $\gamma\left(K_{c}\right) \geq l+1$.

Let us consider the set

$$
I_{\infty}^{-\varepsilon}:=\left\{u \in X_{0, s_{1}, p}(\Omega): I_{\infty}(u) \leq-\varepsilon\right\} .
$$

We will show that for any $k \in \mathbb{N}$, there exists $\varepsilon=\varepsilon(k)>0$ such that $\gamma\left(I_{\infty}^{-\varepsilon}(u)\right) \geq k$. Fix $k \in \mathbb{N}$. Let X_{k} be a k-dimensional subspace of $X_{0, s_{1}, p}$. Take $u \in X_{k}$ with $\|u\|_{0, s_{1}, p}=1$. Thus for $0<\rho<r_{1}$, using (6.4.31) we have

$$
\begin{align*}
I(\rho u)=I_{\infty}(\rho u) & =\frac{1}{p} \rho^{p}+\frac{\rho^{q}}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{\theta \rho^{r}}{r} \int_{\Omega} V(x)|u|^{r} d x \\
& -\frac{\rho^{p^{*}}}{p^{*}}|u|_{p_{s_{1}}^{*}}^{p_{s_{1}^{*}}^{*}}-\lambda \int_{\Omega} F(x, \rho u) d x . \tag{6.4.33}
\end{align*}
$$

As X_{k} is a finite dimensional subspace of $X_{0, s_{1}, p}(\Omega)$, all norms in X_{k} are equivalent and therefore

$$
\begin{gather*}
\alpha_{k}:=\sup \left\{\|u\|_{0, s_{2}, q}^{q}: u \in X_{k},\|u\|_{0, s_{1}, p}=1\right\}<\infty, \tag{6.4.34}\\
\beta_{k}:=\inf \left\{|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}: u \in X_{k},\|u\|_{0, s_{1}, p}=1\right\}>0, \tag{6.4.35}\\
\gamma_{k}:=\inf \left\{|u|_{r}^{r}: u \in X_{k},\|u\|_{0, s_{1}, p}=1\right\}>0 . \tag{6.4.36}
\end{gather*}
$$

Since using (A4), it follows that $F(x, \rho u)>0$, applying (6.4.33)-(6.4.36), we obtain

$$
I_{\infty}(\rho u) \leq \frac{1}{p} \rho^{p}+\alpha_{k} \frac{\rho^{q}}{q}-\sigma \gamma_{k} \frac{\theta \rho^{r}}{r}-\beta_{k} \frac{\rho^{p_{s_{1}}^{*}}}{p_{s_{1}}^{*}} .
$$

For any $\varepsilon>0$, there exists $\rho \in\left(0, r_{1}\right)$ such that $I_{\infty}(\rho u) \leq-\varepsilon$ for $u \in X_{k}$ with $\|u\|_{0, s_{1}, p}=1$. Define, $S_{\rho}=\left\{u \in X_{0, s_{1}, p}:\|u\|_{0, s_{1}, p}=\rho\right\}$. Then $S_{\rho} \cap X_{k} \subseteq I_{\infty}^{-\varepsilon}$. By Lemma 6.7.3, it follows that

$$
k=\gamma\left(S_{\rho} \cap X_{k}\right) \leq \gamma\left(I_{\infty}^{-\varepsilon}\right)
$$

Therefore, we conclude $I_{\infty}^{-\varepsilon} \in \Sigma_{k}$, since I_{∞} is continuous and even. Consequently,

$$
\begin{equation*}
c=c_{k} \leq \sup _{I_{\infty}^{-\varepsilon}} I_{\infty}(u) \leq-\varepsilon<0 . \tag{6.4.37}
\end{equation*}
$$

Note that by (6.4.29) and (6.4.30), we have $I_{\infty}(u) \geq h\left(\|u\|_{0, s_{1}, p}\right)$, for all $u \in X_{0, s_{1}, p}$. Consequently, using (6.4.25) and (6.4.26) in the definition of I_{∞}, it follows that I_{∞} is bounded from below. Thus $c=c_{k}>-\infty$. By Lemma 6.4.2, I_{∞} satisfies $(\mathrm{PS})_{c}$ condition. We note that K_{c} is a compact set. To see this, let $\left\{u_{n}\right\}$ be a sequence in K_{c}. Then $I_{\infty}\left(u_{n}\right)=c$ and $I_{\infty}^{\prime}\left(u_{n}\right)=0$. Thus,

$$
\lim _{n \rightarrow \infty} I_{\infty}\left(u_{n}\right)=c, \lim _{n \rightarrow \infty} I_{\infty}^{\prime}\left(u_{n}\right)=0
$$

Therefore, $\left\{u_{n}\right\}$ is a $(\mathrm{PS})_{c}$ sequence in K_{c}. As $c<0$, by Lemma 6.4.2, there exists a subsequence and $u \in X_{0, s_{1}, p}(\Omega)$ such that $u_{n_{k}} \rightarrow u$ in $X_{0, s_{1}, p}(\Omega)$ and $I_{\infty}(u)=c, I_{\infty}^{\prime}(u)=0$. As a result, $u \in K_{c}$, that is, $\left\{u_{n}\right\}$ has a convergent subsequence in K_{c}.

Now let us complete the proof of our claim. Suppose the claim is not true, that is, $\gamma\left(K_{c}\right) \leq l$. Then, by Lemma 6.7.3, there exists a neighbourhood of K_{c}, say $N_{r}\left(K_{c}\right)$ such that $\gamma\left(N_{r}\left(K_{c}\right)\right) \leq l$. Since $c<0$, we may consider $N_{r}\left(K_{c}\right) \in I_{\infty}^{0}$. By Lemma 6.7.1, there exists an odd homeomorphism $\bar{\eta}$: $X_{0, s_{1}, p}(\Omega) \rightarrow X_{0, s_{1}, p}(\Omega)$ such that

$$
\bar{\eta}\left(I_{\infty}^{c+\delta} \backslash N_{r}\left(K_{c}\right)\right) \subset I_{\infty}^{c-\delta} \quad \text { for some } \quad 0<\delta<-c .
$$

From the definition of $c=c_{k+l}$, we know there exists an $A \in \Sigma_{k+l}$ such that

$$
\sup _{u \in A} I_{\infty}(u)<c+\delta,
$$

that is, $A \subset I_{\infty}^{c+\delta}$ and

$$
\bar{\eta}\left(A \backslash N_{r}\left(K_{c}\right)\right) \subset \bar{\eta}\left(I_{\infty}^{c+\delta} \backslash N_{r}\left(K_{c}\right)\right) \subset I_{\infty}^{c-\delta} .
$$

This yields us:

$$
\begin{equation*}
\sup _{u \in \bar{\eta}\left(A \backslash N_{r}\left(K_{c}\right)\right)} I_{\infty}(u) \leq c-\delta . \tag{6.4.38}
\end{equation*}
$$

Again, by Lemma 6.7.3, we have,

$$
\gamma\left(\bar{\eta}\left(\overline{A \backslash N_{r}\left(K_{c}\right)}\right)\right)=\gamma\left(\overline{A \backslash N_{r}\left(K_{c}\right)}\right) \geq \gamma(A)-\gamma\left(N_{r}\left(K_{c}\right)\right) \geq k+l-l=k .
$$

Therefore, we have $\bar{\eta}\left(\overline{A \backslash N_{r}\left(K_{c}\right)}\right) \in \Sigma_{k}$ and $\sup _{u \in \eta\left(\overline{A \backslash N_{r}\left(K_{c}\right)}\right)} I_{\infty}(u) \geq c_{k}=c$. This is a contradiction to (6.4.38). Hence, we have the claim.

Now let us complete the proof of Theorem 6.1.1. Since $\Sigma_{k+1} \subseteq \Sigma_{k}$, we have $c_{k} \leq c_{k+1} \forall k$. If all c_{k} 's are distinct then $\gamma\left(K_{c_{k}}\right) \geq 1$, since $K_{c_{k}}$ is a compact set and by Lemma 6.7.3 (7), genus of a compact set is finite. Therefore, in that case I_{∞} has infinitely many distinct critical points. If for some k, there exists l such that $c_{k}=c_{k+1}=\cdots=c_{k+l}=c$, then by the above claim, $\gamma\left(K_{c}\right) \geq l+1$ and therefore K_{c} has infinitely many distinct elements, i.e, I_{∞} has infinitely many distinct critical points. Hence combining (6.4.37) along with Lemma 6.4.2, we conclude that I has infinitely many distinct critical points.

6.5 Proof of Theorem 6.1.2

6.5.1 Existence of nontrivial nonnegative solutions

First, we consider the problem

$$
(\tilde{P})\left\{\begin{array}{c}
(-\Delta)_{p}^{s_{1}} u+(-\Delta)_{q}^{s_{2}} u=\theta\left(u^{+}\right)^{r-1}+\left(u^{+}\right)^{p_{s_{1}}^{*}-1} \quad \text { in } \quad \Omega, \tag{6.5.1}\\
u=0 \quad \text { in } \quad \mathbb{R}^{N} \backslash \Omega .
\end{array}\right.
$$

Definition 6.5.1. We say that $u \in X_{0, s_{1}, p}(\Omega)$ is a weak solution of (\tilde{P}) if for all $\phi \in X_{0, s_{1}, p}$ we have,

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+p s_{1}}} d x d y \\
& +\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{q-2}(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{N+q s_{2}}} d x d y \\
= & \theta \int_{\Omega}\left(u(x)^{+}\right)^{r-1} \phi(x) d x+\int_{\Omega}\left(u(x)^{+}\right)^{p_{s_{1}}^{*}-1} \phi(x) d x .
\end{aligned}
$$

The Euler-Lagrange energy functional associated to (\tilde{P}) is

$$
\begin{equation*}
I_{\theta}(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{\theta}{r} \int_{\Omega}\left(u^{+}\right)^{r} d x-\frac{1}{p_{s_{1}}^{*}} \int_{\Omega}\left(u^{+}\right)^{p_{s_{1}}^{*}} d x . \tag{6.5.2}
\end{equation*}
$$

It can be checked that $I_{\theta} \in C^{2}\left(X_{0, s_{1}, p}, \mathbb{R}\right)$ and any critical points of I_{θ} is a weak solution of (\tilde{P}) and conversely.

We define,

$$
c_{\theta}=\inf _{u \in N_{\theta}} I_{\theta}(u),
$$

where

$$
\begin{equation*}
N_{\theta}:=\left\{u \in X_{0, s_{1}, p}(\Omega) \backslash\{0\}:\left\langle I_{\theta}^{\prime}(u), u\right\rangle=0\right\} . \tag{6.5.3}
\end{equation*}
$$

We will show that I_{θ} has the Mountain Pass (MP) Geometry.
Lemma 6.5.2. Let $1<q<p<r<p_{s_{1}}^{*}$. Then for any $\theta>0$,
(a) there exist constants $\rho, \beta>0$ such that $I_{\theta}(u)>\beta$ for all $u \in X_{0, s_{1}, p}(\Omega)$ with $\|u\|_{0, s_{1}, p}=\rho$,
(b) there exist $u_{0} \in X_{0, s_{1}, p}(\Omega)$ such that $I_{\theta}\left(u_{0}\right)<0$ and $\left\|u_{0}\right\|_{0, s_{1}, p}>\rho$.

Proof. Using Sobolev inequality and Hölder inequality in the definition of I_{θ}, we obtain

$$
\begin{aligned}
I_{\theta}(u) & \geq \frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{\theta}{r}|\Omega|^{\frac{s_{s_{1}}^{*}-r}{p_{s_{1}}^{*}}}\left|u^{+}\right|_{p_{s_{1}}^{*}}^{r}-\frac{1}{p_{s_{1}}^{*}}\left|u^{+}\right|_{p_{s_{1}}^{*}}^{p_{1}^{*}} \\
& \geq \frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{\theta}{r}|\Omega|^{\frac{p_{s_{1}}^{*}-r}{p_{s_{1}}^{*}}} S_{s_{1}, p}^{\frac{-r}{p}}\|u\|_{0, s_{1}, p}^{r}-\frac{1}{p_{s_{1}}^{*}} S_{s_{1}, p}^{\frac{-p_{s_{1}}^{*}}{p}}\|u\|_{0, s_{1}, p}^{p_{s_{1}}^{*}} .
\end{aligned}
$$

As $1<q<p<r<p_{s_{1}}^{*}$, there exist two constants $\rho, \beta>0$ such that $I_{\theta}(u)>\beta$ for all $u \in X_{0, s_{1}, p}$ with $\|u\|_{0, s_{1}, p}=\rho$ and that proves (a).

To prove (b), we fix $u \in X_{0, s_{1}, p}(\Omega)$ with $u^{+} \not \equiv 0$. Then it is easy to see that $\lim _{t \rightarrow+\infty} I_{\theta}(t u)=-\infty$. Thus we can choose $t_{0}>0$ such that $\left\|t_{0} u\right\|_{0, s_{1}, p}>\rho$ and $I_{\theta}\left(t_{0} u\right)<0$. Hence (b) holds.

Define,

$$
\begin{equation*}
C_{\theta}:=\inf _{u \in X_{0, s_{1}, p \backslash\{0\}}} \sup _{t \geq 0} I_{\theta}(t u) . \tag{6.5.4}
\end{equation*}
$$

Lemma 6.5.3. Let $1<q<p<r<p_{s_{1}}^{*}$. Then for any $\theta>0$, I_{θ} satisfies the $(P S)_{c}$ conditions for all $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}\right)$. Furthermore, there exists $\theta^{*}>0$ such that

$$
C_{\theta} \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right) \quad \text { for } \quad \theta>\theta^{*}
$$

Proof. Let $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}\right)$ and $\left\{u_{n}\right\}_{n \geq 1} \subset X_{0, s_{1}, p}(\Omega)$ be a $(P S)_{c}$ sequence of $I_{\theta}(\cdot)$. From Claim 1 in the proof of Lemma 6.4.1, it follows that $\left\{u_{n}\right\}$ is uniformly bounded in $X_{0, s_{1}, p}(\Omega)$. Therefore, there exists $u \in X_{0, s_{1}, p}(\Omega)$ such that up to a subsequence, $u_{n} \rightharpoonup u$ in $X_{0, s_{1}, p}(\Omega)$ and $u_{n} \rightarrow u$ in $L^{\gamma}(\Omega)$ for $1 \leq \gamma<p_{s_{1}}^{*}$ and $u_{n} \rightarrow u$ a.e. in \mathbb{R}^{N}. Also, following the same arguments as in the proof of Lemma 6.4.1, we see that u is a critical point of I_{θ}, that is $\left\langle I_{\theta}^{\prime}(u), \phi\right\rangle=0$. Next, to prove $u_{n} \rightarrow u$ strongly in $X_{0, s_{1}, p}(\Omega)$, we follow the arguments along the same line as in the proof of claim 2 of Lemma 6.4.1 and
obtain either $\left\|u_{n}-u\right\|_{0, s_{1}, p}=o(1)$ or (6.4.17) holds with $\lambda=0$. Thus in the second case,

$$
\begin{aligned}
c & \geq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+\frac{s_{1}}{N}\left|u^{+}\right|_{p_{s_{1}}^{*}}^{p_{1}^{*}}+\theta \eta\left(\frac{1}{p}-\frac{1}{r}\right)\left\|u^{+}\right\|_{0, s_{2}, r}^{r}+\left(\frac{1}{q}-\frac{1}{p}\right)\|u\|_{0, s_{2}, q}^{q} \\
& \geq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}} .
\end{aligned}
$$

This contradicts the fact that $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}\right)$. Hence $\left\|u_{n}-u\right\|_{0, s_{1}, p}=$ $o(1)$. Therefore, I_{θ} satisfies $(P S)_{c}$ condition for $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}\right)$.

Next, to prove $C_{\theta} \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right)$ we choose $u_{0} \in X_{0, s_{1}, p}(\Omega)$ with $u_{0}^{-} \equiv$ 0 and
$\left|u_{0}\right|_{p_{s_{1}^{*}}}=1$. As $\lim _{t \rightarrow \infty} I_{\theta}\left(t u_{0}\right)=-\infty$ and $\lim _{t \rightarrow 0} I_{\theta}\left(t u_{0}\right)=0$, there exists $t_{\theta}>0$ such that $\sup _{t \geq 0} I_{\theta}\left(t u_{0}\right)=I_{\theta}\left(t_{\theta} u_{0}\right)$. Therefore,

$$
t_{\theta}^{p-1}\left\|u_{0}\right\|_{0, s_{1}, p}^{p}+t_{\theta}^{q-1}\left\|u_{0}\right\|_{0, s_{2}, q}^{q}-\theta t_{\theta}^{r-1}\left|u_{0}\right|_{r}^{r}-t_{\theta}^{p_{s_{1}}^{*}-1}=0 .
$$

So, we get, $t_{\theta}^{p-r}\left\|u_{0}\right\|_{0, s_{1}, p}^{p}+t_{\theta}^{q-r}\left\|u_{0}\right\|_{0, s_{2}, q}^{q}-t_{\theta}^{p_{s_{1}}^{*}-r}=\theta\left|u_{0}\right|_{r}^{r}$. As $1<q<p<$ $r<p_{s_{1}}^{*}$, we get $t_{\theta} \rightarrow 0$ as $\theta \rightarrow \infty$. Thus, there exists $\theta^{*}>0$ such that for any $\theta>\theta^{*}$ we have,

$$
\sup _{t \geq 0} I_{\theta}\left(t u_{0}\right)<\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}} .
$$

Hence, $C_{\theta} \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}\right)$ for $\theta>\theta^{*}$.
Proof of theorem 6.1.2: Using Lemma 6.5.2, Lemma 6.5.3 and Lemma 6.7.2, we conclude that I_{θ} has a critical point $u \in X_{0, s_{1}, p}$ for $\theta>\theta^{*}$ where θ^{*} is given in (6.4.24).

Claim: $u \geq 0$ almost everywhere.
Indeed,

$$
\begin{align*}
0=\left\langle I_{\theta}^{\prime}(u), u^{-}\right\rangle & =\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\left(u^{-}(x)-u^{-}(y)\right)}{|x-y|^{N+s_{1} p}} d x d y \\
& +\int_{\mathbb{R}^{2 N}} \frac{|u(x)-u(y)|^{q-2}(u(x)-u(y))\left(u^{-}(x)-u^{-}(y)\right)}{|x-y|^{N+s_{2} q}} d x d y \\
& :=K_{1}+K_{2}, \tag{6.5.5}
\end{align*}
$$

Note that,

$$
\begin{align*}
(u(x)-u(y))\left(u^{-}(x)-u^{-}(y)\right) & =-u^{+}(y) u^{-}(x)-u^{+}(x) u^{-}(y)-\left(u^{-}(x)-u^{-}(y)\right)^{2} \\
& \leq-\left(u^{-}(x)-u^{-}(y)\right)^{2} \leq 0 \tag{6.5.6}
\end{align*}
$$

and

$$
\begin{equation*}
|u(x)-u(y)|=\left(|u(x)-u(y)|^{2}\right)^{\frac{1}{2}} \geq\left(\left|u^{-}(x)-u^{-}(y)\right|^{2}\right)^{\frac{1}{2}}=\left|u^{-}(x)-u^{-}(y)\right| . \tag{6.5.7}
\end{equation*}
$$

Since $2 \leq q<p$, using (6.5.6) and (6.5.7), we obtain

$$
K_{2} \leq-\int_{\mathbb{R}^{2 N}} \frac{\left|u^{-}(x)-u^{-}(y)\right|^{q}}{|x-y|^{N+s_{2} q}} d x d y=-\left\|u^{-}\right\|_{0, s_{2}, q^{-}}^{q}
$$

Similarly, $K_{1} \leq-\left\|u^{-}\right\|_{0, s_{1}, p}^{p}$. Therefore, (6.5.5) implies, $\left\|u^{-}\right\|_{0, s_{1}, p}^{p}+\left\|u^{-}\right\|_{0, s_{2}, q}^{q} \leq$ 0 that is, $u^{-}=0$ a.e and this proves the claim.

Further, we observe that $C_{\theta}>0$, since I_{θ} satisfies the mountain pass geometry. Therefore, as u is the critical point corresponding to C_{θ}, u must be nontrivial. Thus, u is nontrivial nonnegative solution of (\tilde{P}). Consequently, u is nontrivial nonnegative solution of (P).

6.6 Proof of Theorem 6.1.4

6.6.1 Existence of $\operatorname{cat}_{\Omega}(\Omega)$ nontrivial nonnegative solutions

We break the proof of Theorem 6.1.4 into several lemmas. For the rest of the section, we assume

$$
\begin{equation*}
N>p^{2} s_{1} \quad \text { and } \quad 2 \leq q<\frac{N(p-1)}{N-s}<p \leq \max \left\{p, p_{s_{1}}^{*}-\frac{q}{q-1}\right\}<r<p_{s_{1}}^{*} \tag{6.6.1}
\end{equation*}
$$

Let U be a radially symmetric and decreasing minimizer for the Sobolev constant defined in (6.3.1) for $s=s_{1}$ and it is known from [20] that there
exists constants $c_{1}, c_{2}>0$ and $\theta>1$ such that

$$
\begin{gather*}
\frac{c_{1}}{|x|^{\frac{N-s_{1} p}{p-1}}} \leq U(|x|) \leq \frac{c_{2}}{|x|^{\frac{N-s_{1} p}{p-1}}} \quad \forall|x| \geq 1, \tag{6.6.2}\\
\frac{U(\theta r)}{U(r)} \leq \frac{1}{2} \quad \forall r \geq 1 \tag{6.6.3}
\end{gather*}
$$

Multiplying U by a positive constant if necessary, we may assume that U satisfies the following:

$$
\begin{equation*}
\text { (i) }(-\Delta)_{p}^{s_{1}} U=U^{p_{s_{1}}^{*}-1} \quad \text { (ii) }\|U\|_{0, s_{1}, p}^{p}=|U|_{p_{s_{1}}}^{p_{s_{1}}^{*}}=\left(S_{s_{1}, p}\right)^{N / s_{1} p} \text {. } \tag{6.6.4}
\end{equation*}
$$

For any $\delta>0$, the function

$$
U_{\delta}(x)=\frac{1}{\delta^{\frac{N-s_{p} p}{p}}} U\left(\frac{|x|}{\delta}\right)
$$

is also a minimizer for $S_{s_{1}, p}$ satisfying (i) and (ii). Let θ be the universal constant defined as in (6.6.3). We may assume without loss of generality that $0 \in \Omega$. For $\delta, R>0$, we define some auxiliary functions as in [64].

$$
\begin{align*}
& m_{\delta, R}:=\frac{U_{\delta}(R)}{U_{\delta}(R)-U_{\delta}(\theta R)}, \text { and } g_{\delta, R}:[0,+\infty) \rightarrow \mathbb{R} \text { by } \\
& g_{\delta, R}(t)= \begin{cases}0, & 0 \leq t \leq U_{\delta}(\theta R) \\
m_{\delta, R}^{p}\left(t-U_{\delta}(\theta R)\right), & U_{\delta}(\theta R) \leq t \leq U_{\delta}(R) \\
t+U_{\delta}(R)\left(m_{\delta, R}^{p-1}-1\right), & t \geq U_{\delta}(R)\end{cases} \tag{6.6.5}
\end{align*}
$$

and $G_{\delta, R}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
G_{\delta, R}(t)=\int_{0}^{t}\left(g_{\delta, R}^{\prime}(\tau)\right)^{1 / p} d \tau=\left\{\begin{array}{lc}
0, & 0 \leq t \leq U_{\delta}(\theta R) \tag{6.6.6}\\
m_{\delta, R}\left(t-U_{\delta}(\theta R)\right), & U_{\delta}(\theta R) \leq t \leq U_{\delta}(R) \\
t, & t \geq U_{\delta}(R)
\end{array}\right.
$$

We note that $g_{\varepsilon, \delta}$ and $G_{\delta, R}$ are non-decreasing and absolutely continuous.

Note that by definition,

$$
G_{\delta, R}^{\prime}(t)=\left(g_{\delta, R}^{\prime}(t)\right)^{\frac{1}{p}}= \begin{cases}0, & 0 \leq t<U_{\delta}(\theta R) \\ m_{\delta, R}, & U_{\delta}(\theta R)<t<U_{\delta}(R) \\ 1, & t>U_{\delta}(R)\end{cases}
$$

Therefore,

$$
\begin{equation*}
G_{\delta, R}^{\prime}(t) \leq \max \left\{m_{\delta, R}, 1\right\} \leq m_{\delta, R}+1 \tag{6.6.7}
\end{equation*}
$$

Next, we estimate $m_{\delta, R}$ as follows

$$
\begin{equation*}
m_{\delta, R}=\frac{U_{\delta}(R)}{U_{\delta}(R)-U_{\delta}(\theta R)}=\frac{U\left(\frac{R}{\delta}\right)}{U\left(\frac{R}{\delta}\right)-U\left(\frac{R \theta}{\delta}\right)} . \tag{6.6.8}
\end{equation*}
$$

Choose $\delta>0$, small enough so that $\frac{R \theta}{\delta}>1$ and thus $\frac{U\left(\frac{R \theta}{\delta}\right)}{U\left(\frac{R}{\delta}\right)} \leq \frac{1}{2}$. Therefore, using (6.6.2) we have

$$
\begin{equation*}
m_{\delta, R}=\frac{U\left(\frac{R}{\delta}\right)}{U\left(\frac{R}{\delta}\right)-U\left(\frac{R \theta}{\delta}\right)} \leq \frac{U\left(\frac{R}{\delta}\right)}{U\left(\frac{R \theta}{\delta}\right)} \leq \frac{c_{2}}{\left(\frac{R}{\delta}\right)^{\frac{N-s_{1} p}{p-1}}} \times \frac{\left(\frac{R \theta}{\delta}\right)^{\frac{N-s_{1} p}{p-1}}}{c_{1}}=\frac{c_{2}}{c_{1}} \theta^{\frac{\left(N-s_{1 p} p\right.}{p-1}} \tag{6.6.9}
\end{equation*}
$$

Consider the radially symmetric non-increasing function $\bar{u}_{\delta, R}:[0,+\infty) \rightarrow$ \mathbb{R} by

$$
\bar{u}_{\delta, R}(r)=G_{\delta, R}\left(U_{\delta}(r)\right) .
$$

Then we observe that, $\bar{u}_{\delta, R}$ satisfies:

$$
\bar{u}_{\delta, R}(r)=\left\{\begin{array}{l}
U_{\delta}(r), \quad r \leq R \tag{6.6.10}\\
0, \quad r \geq \theta R
\end{array}\right.
$$

Therefore, we have the following estimates from [64].
Lemma 6.6.1. [64, Lemma 2.7] For any $R>0$, there exists $C=$ $C\left(N, p, s_{1}\right)>0$ such that for any $\delta \leq \frac{R}{2}$,

$$
\begin{equation*}
\left\|\bar{u}_{\delta, R}\right\|_{0, s_{1}, p}^{p} \leq\left(S_{s_{1}, p}\right)^{N / s_{1} p}+C\left(\frac{\delta}{R}\right)^{\frac{N-s_{1 p} p}{p-1}}, \tag{6.6.11}
\end{equation*}
$$

CHAPTER 6. MULTIPLICITY RESULTS FOR (P, Q) FRACTIONAL LAPLACIAN TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES

$$
\left|\bar{u}_{\delta, R}\right|_{p}^{p} \geq\left\{\begin{array}{l}
\frac{1}{C} \delta^{s_{1} p} \log (R / \delta), \quad N=s_{1} p^{2} \tag{6.6.12}\\
\frac{1}{C} \delta^{s_{1} p}, \quad N>s_{1} p^{2}
\end{array}\right.
$$

and

$$
\begin{equation*}
\left|\bar{u}_{\delta, R}\right|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}} \geq\left(S_{s_{1}, p}\right)^{N / s_{1} p}-C\left(\frac{\delta}{R}\right)^{N /(p-1)} . \tag{6.6.13}
\end{equation*}
$$

Let $\varepsilon>0$. Take $R>0$ be fixed such that $B_{\theta R} \subset \subset \Omega$. Let us define the function $u_{\varepsilon, R}:[0,+\infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
u_{\varepsilon, R}(r)=\varepsilon^{-\frac{\left(N-s_{1} p\right)}{p^{2}}} \bar{u}_{\delta, R}(r) \quad \text { with } \quad \delta=\varepsilon^{\frac{(p-1)}{p}}, \quad \forall r \geq 0 . \tag{6.6.14}
\end{equation*}
$$

Clearly, $u_{\varepsilon, R} \subset X_{0, s_{1}, p}(\Omega)$, that is, $u_{\varepsilon, R} \equiv 0$ in $\mathbb{R}^{N} \backslash \Omega$. Therefore, applying (6.6.11) to (6.6.14) yields

$$
\begin{equation*}
\left\|u_{\varepsilon, R}\right\|_{0, s_{1}, p}^{p} \leq\left(S_{s_{1}, p}\right)^{N / s_{1} p} \varepsilon^{-\frac{\left(N-s_{1} p\right)}{p}}+O(1) . \tag{6.6.15}
\end{equation*}
$$

Lemma 6.6.2. $\left|u_{\varepsilon, R}\right|_{p_{s_{1}}^{*}}^{p}=\left(S_{s_{1}, p}\right)^{\frac{N-s_{1} p}{s_{1} p}} \varepsilon^{-\frac{\left(N-s_{1 p}\right)}{p}}+O(1)$.
Proof. Applying (6.6.13), it is easy to see that

$$
\left|u_{\varepsilon, R}\right|_{p_{s_{1}}^{*}}^{p} \geq\left(S_{s_{1}, p}\right)^{\frac{N-s_{1} p}{s_{1 p} p}} \varepsilon^{-\frac{\left(N-s_{1} p\right)}{p}}+O(1) .
$$

To see the upper estimate, we observe that

$$
\begin{aligned}
\left|u_{\varepsilon, R}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}}=\int_{\Omega} \varepsilon^{-\frac{\left(N-s_{1} p p p_{s_{1}}^{*}\right.}{p^{2}}}\left|\bar{u}_{\delta, R}\right|^{p_{s_{1}}^{*}} d x & =\varepsilon^{-N / p} \int_{\Omega}\left|G_{\delta, R}\left(U_{\delta}(x)\right)\right|^{p_{s_{1}}^{*}} d x \\
& \leq\left.\varepsilon^{-N / p}\left|G_{\delta, R}^{\prime}\right|\right|_{L_{1}} ^{p_{s_{1}}^{*}} \int_{\Omega}\left|U_{\delta}(x)\right|^{p_{s_{1}}^{*}} d x \\
& \leq \varepsilon^{-N / p} \max \left\{m_{\delta, R}^{p_{s_{1}}^{*}}, 1\right\} \int_{\Omega}\left|U_{\delta}(x)\right|^{p_{s_{1}}^{*}} d x,
\end{aligned}
$$

where in the last line we have used (6.6.7). Next, applying (6.6.9) to the last line, we have

$$
\begin{aligned}
\left|u_{\varepsilon, R}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} \leq C \varepsilon^{-N / p} \int_{\mathbb{R}^{N}}\left|U_{\delta}(x)\right|^{p_{s_{1}}^{*}} d x & \leq C \varepsilon^{-N / p} \frac{1}{\delta^{\frac{\left(N-s_{1} p\right) p p_{s_{1}}^{*}}{p}}} \int_{\mathbb{R}^{N}}\left|U\left(\frac{x}{\delta}\right)\right|^{p_{s_{1}}^{*}} d x \\
& =C \varepsilon^{-N / p} \int_{\mathbb{R}^{N}}|U(y)|^{p_{s_{1}}^{*}} d y \\
& =C \varepsilon^{-N / p}|U|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}} \\
& =C \varepsilon^{-N / p}\left(S_{s_{1}, p}\right)^{N / s_{1} p},
\end{aligned}
$$

where, in the last line we have used (6.6.4)(ii). Hence, we have,

$$
\left|u_{\varepsilon, R}\right|_{p_{s_{1}}}^{p} \leq\left(C\left(S_{s_{1}, p}\right)^{N / s_{1} p} \varepsilon^{-N / p}\right)^{\frac{p}{p_{s_{1}}}}=C\left(S_{s_{1}, p}\right)^{\frac{N-s_{1} p}{s_{1} p}} \varepsilon^{-\frac{N-s_{1} p}{p}} .
$$

This completes the proof of the lemma.
Lemma 6.6.3. Let $u_{\varepsilon, R}$ be defined as above. Then the following estimates hold, that is, for $t \geq 1$,

$$
\left|u_{\varepsilon, R}\right|_{t}^{t} \geq \begin{cases}k \varepsilon^{\frac{N(p-1)-t\left(N-s_{1} p\right)}{p}}+O(1), & t>\frac{N(p-1)}{N-s_{1} p} \tag{6.6.16}\\ k|\ln \varepsilon|+O(1), & t=\frac{N(p-1)}{N-s_{1} p} \\ O(1), & t<\frac{N(p-1)}{N-s_{1} p}\end{cases}
$$

and

$$
\begin{equation*}
\left\|u_{\varepsilon, R}\right\|_{0, s_{2}, t}^{t} \leq O(1), \quad 1 \leq t<\frac{N(p-1)}{N-s_{1}} \tag{6.6.17}
\end{equation*}
$$

In particular, we have

$$
\left|u_{\varepsilon, R}\right|_{p}^{p} \geq \begin{cases}k \varepsilon^{\frac{p^{2} s_{1}-N}{p}}+O(1), & N>p^{2} s_{1} \tag{6.6.18}\\ k|\ln \varepsilon|+O(1), & N=p^{2} s_{1} \\ O(1), & N<p^{2} s_{1}\end{cases}
$$

where k is a positive constant independent of ε.

CHAPTER 6. MULTIPLICITY RESULTS FOR (P, Q) FRACTIONAL LAPLACIAN TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES

Proof. We have,

$$
\begin{aligned}
\left|u_{\varepsilon, R}\right|_{t}^{t}=\int_{\Omega}\left|u_{\varepsilon, R}(x)\right|^{t} d x & =\int_{\mathbb{R}^{N}}\left|u_{\varepsilon, R}(x)\right|^{t} d x \geq \int_{B_{R}(0)}\left|u_{\varepsilon, R}(x)\right|^{t} d x \\
& =\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \int_{B_{R}(0)}\left(\bar{u}_{\delta, R}(x)\right)^{t} d x \\
& =\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \int_{B_{R}(0)} U_{\delta}^{t}(x) d x \\
& =\frac{\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}}}{\delta^{\frac{\left(N-s_{1} p\right) t}{p}}} \int_{B_{R}(0)} U^{t}\left(\frac{x}{\delta}\right) d x \\
& =\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \delta^{N-\frac{\left(N-s_{1} p\right) t}{p}} \int_{B_{\frac{R}{\delta}}(0)} U^{t}(x) d x \\
& \geq \varepsilon^{\frac{N(p-1)}{p}-t \frac{\left(N-s_{1} p\right)}{p}} \int_{1}^{\frac{R}{\delta}} U^{t}(r) r^{N-1} d r \\
& \geq c_{1}^{t} \varepsilon^{\frac{N(p-1)}{p}-t \frac{\left(N-s_{1} p\right)}{p}} \int_{1}^{\frac{R}{\delta}} \frac{r^{N-1}}{r^{\frac{N-s_{1} p}{p-1} t} d r .}
\end{aligned}
$$

If $t>\frac{N(p-1)}{N-s_{1} p}$, then we have

$$
\left|u_{\varepsilon, R}\right|_{t}^{t} \geq \frac{c_{1}^{t} \varepsilon^{\frac{N(p-1)}{p}}-t \frac{\left(N-s_{1} p\right)}{p}}{\frac{\left(N-s_{1} p\right) t}{p-1}-N}\left[1-\left(\frac{R}{\delta}\right)^{N-\frac{\left(N-s_{1} p\right) t}{p-1}}\right] .
$$

Since $\delta=\varepsilon^{\frac{p-1}{p}}$, choosing $\varepsilon>0$ small enough we can make δ suitably small so that $1-\left(\frac{R}{\delta}\right)^{N-\frac{\left(N-s_{1} p\right) t}{p-1}} \geq \frac{1}{2}$. Therefore,

$$
\left|u_{\varepsilon, R}\right|_{t}^{t} \geq k \varepsilon^{\frac{N(p-1)}{p}-t \frac{\left(N-s_{1} p\right)}{p}},
$$

where $k=\frac{c_{1}^{p}}{2\left(\frac{t\left(N-s_{1} p\right)}{p-1}-N\right)}$.
If $\frac{t\left(N-s_{1} p\right)}{p-1}=N$, then

$$
\left|u_{\varepsilon, R}\right|_{t}^{t} \geq c_{1}^{t} \int_{1}^{\frac{R}{\delta}} \frac{1}{r} d r=c_{1}^{t}\left(\ln R-\ln \varepsilon^{\frac{p-1}{p}}\right) \geq k|\ln \varepsilon|+O(1) .
$$

On the other hand for $\frac{t\left(N-s_{1} p\right)}{(p-1)}<N$, we have

$$
\begin{aligned}
\left|u_{\varepsilon, R}\right|_{t}^{t} & \geq c_{1}^{t} \varepsilon^{\frac{N(p-1)}{p}-\frac{t\left(N-s_{1} p\right)}{p}} \frac{(R / \delta)^{N-\frac{t\left(N-s_{1} p\right)}{p-1}}-1}{N-\frac{t\left(N-s_{1} p\right)}{p-1}} \\
& =c_{1}^{t}\left[\frac{R^{N-\frac{t\left(N-s_{1} p\right)}{p-1}}-\varepsilon^{\frac{N(p-1)-t\left(N-s_{1} p\right)}{p}}}{N-\frac{t\left(N-s_{1} p\right)}{p-1}}\right] \\
& \geq O(1) .
\end{aligned}
$$

To see the proof of (6.6.17), first we note that from Lemma 6.2.4 we have

$$
u_{\varepsilon, R} \in X_{0, s_{1}, p}(\Omega) \subset X_{0, s_{2}, t}(\Omega), \quad 1 \leq t \leq p, \quad 0<s_{2}<s_{1}<1
$$

and

$$
\left\|u_{\varepsilon, R}\right\|_{0, s_{2}, t} \leq\left\|u_{\varepsilon, R}\right\|_{0, s_{1}, t} .
$$

Therefore,

$$
\begin{align*}
& \left\|u_{\varepsilon, R}\right\|_{0, s_{2}, t}^{t} \leq\left\|u_{\varepsilon, R}\right\|_{0, s_{1}, t}^{t} \\
& =\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}}\left\|\bar{u}_{\delta, R}(\cdot)\right\|_{0, s_{1}, t}^{t} \\
& =\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}}\left\|G_{\delta, R}\left(U_{\delta}(\cdot)\right)\right\|_{0, s_{1}, t}^{t} \\
& =\varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \int_{\mathbb{R}^{2 N}} \frac{\left|G_{\delta, R}\left(U_{\delta}(x)\right)-G_{\delta, R}\left(U_{\delta}(y)\right)\right|^{t}}{|x-y|^{N+s_{1} t}} d x d y \\
& \leq \varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \int_{\mathbb{R}^{2 N}} \frac{\mid G_{\delta, R}^{\prime}\left(U_{\delta}(x)+\tau\left(U_{\delta}(y)-U_{\delta}(x)\right)| |^{t}\left|U_{\delta}(x)-U_{\delta}(y)\right|^{t}\right.}{|x-y|^{N+s_{1} t}} d x d y, \tag{6.6.19}
\end{align*}
$$

for some $\tau \in(0,1)$. In the last line, we have used mean value theorem. Thus from (6.6.7), we obtain

$$
\begin{equation*}
G_{\delta, R}^{\prime}\left(U_{\delta}(x)+\tau\left(U_{\delta}(x)-U_{\delta}(y)\right) \leq 1+\frac{c_{2}}{c_{1}} \theta^{\frac{N+s_{1} p}{p-1}}=c_{3} .\right. \tag{6.6.20}
\end{equation*}
$$

Substituting (6.6.20) into (6.6.19) yields

$$
\begin{aligned}
\left\|u_{\varepsilon, R}\right\|_{0, s_{2}, t}^{t} & \leq \varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} c_{3}^{t} \int_{\mathbb{R}^{2 N}} \frac{\left|U_{\delta}(x)-U_{\delta}(y)\right|^{t}}{|x-y|^{N+s_{1} t}} d x d y \\
& =C \varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \frac{\delta^{N-s_{1} t}}{\delta^{\frac{\left(N-s_{1} p\right) t}{p}}} \int_{\mathbb{R}^{2 N}} \frac{|U(z)-U(w)|^{t}}{|z-w|^{N+s_{1} t}} d z d w \\
& =C \varepsilon^{-\frac{\left(N-s_{1} p\right) t}{p^{2}}} \varepsilon^{\frac{N(p-t)(p-1)}{p^{2}}}\|U\|_{0, s_{1}, t}^{t} \\
& =C \varepsilon^{\frac{1}{p^{2}}\left(N(p-1)(p-t)-\left(N-s_{1} p\right) t\right)}\|U\|_{0, s_{1}, t}^{t},
\end{aligned}
$$

where we have used that $\delta=\varepsilon^{\frac{p-1}{p}}$. Note that $t<\frac{N(p-1)}{N-s_{1}}$ which implies,

$$
N(p-1)(p-t)-\left(N-s_{1} p\right) t>0 .
$$

Therefore, we obtain

$$
\begin{equation*}
\left\|u_{\varepsilon, R}\right\|_{0, s_{2}, t}^{t} \leq O(1) \quad \text { for } \quad 1 \leq t<\frac{N(p-1)}{N-s_{1}} . \tag{6.6.21}
\end{equation*}
$$

This completes the proof of Lemma 6.6.3.

Lemma 6.6.4. Assume (6.6.1) holds. Then, for any $\theta>0, C_{\theta} \in$ $\left(0, \frac{s}{N}\left(S_{s_{1}, p}\right)^{N / s_{1} p}\right)$, where C_{θ} is defined as in (6.5.4).

Proof. As we have fixed R, we take $u_{\varepsilon}:=u_{\varepsilon, R}$. Define

$$
\begin{equation*}
v_{\varepsilon}(x)=\frac{u_{\varepsilon}(x)}{\left|u_{\varepsilon}\right|_{p_{s_{1}}^{*}}} \tag{6.6.22}
\end{equation*}
$$

Thus $\left|v_{\varepsilon}\right|_{p_{s_{1}}^{*}}=1$. Define

$$
\begin{aligned}
g(t): & =I_{\theta}\left(t v_{\varepsilon}\right) \\
& =\frac{t^{p}}{p}\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}+\frac{t^{q}}{q}\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q}-\theta \frac{t^{r}}{r}\left|v_{\varepsilon}\right|_{r}^{r}-\frac{t^{p_{s_{1}}^{*}}}{p_{s_{1}}^{*}} .
\end{aligned}
$$

Since g is a continuous function and $g(0)=0, \lim _{t \rightarrow+\infty} g(t)=-\infty$, there exists $t_{\varepsilon}>0$ such that

$$
\sup _{t \geq 0} I_{\theta}\left(t v_{\varepsilon}\right)=I_{\theta}\left(t_{\varepsilon} v_{\varepsilon}\right) .
$$

Then, t_{ε} satisfies $g^{\prime}\left(t_{\varepsilon}\right)=0$ i.e.,

$$
\begin{equation*}
t_{\varepsilon}^{p-1}\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}+t_{\varepsilon}^{q-1}\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q}-\theta t_{\varepsilon}^{r-1}\left|v_{\varepsilon}\right|_{r}^{r}-t_{\varepsilon}^{p_{s_{1}^{*}}^{*}-1}=0 . \tag{6.6.23}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}+t_{\varepsilon}^{q-p}\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q}>t_{\varepsilon}^{p_{s_{1}}^{*}-p} . \tag{6.6.24}
\end{equation*}
$$

As $q<\frac{N(p-1)}{N-s_{1}}$, combining (6.6.15), Lemma 6.6.2 and (6.6.17) we have

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p} \leq S_{s_{1}, p}+O\left(\varepsilon^{\frac{N-s_{1} p}{p}}\right), \quad\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q} \leq \frac{\left\|u_{\varepsilon}\right\|_{0, s_{2}, q}^{q}}{\left|u_{\varepsilon}\right|_{p_{s_{1}}}^{q}}=O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right) . \tag{6.6.25}
\end{equation*}
$$

Therefore, from (6.6.24) and (6.6.25), we see that for any $\tilde{\varepsilon}>0$ small enough, there exists $t_{\tilde{\varepsilon}}^{0}>0$ such that for all $\varepsilon \leq \tilde{\varepsilon}$ we have, $t_{\varepsilon} \leq t_{\tilde{\varepsilon}}^{0}$. Using (6.6.23) we have,

$$
\begin{equation*}
\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}<\theta t_{\varepsilon}^{r-p}\left|v_{\varepsilon}\right|_{r}^{r}+t_{\varepsilon}^{p_{s_{1}^{*}}^{*}-p} . \tag{6.6.26}
\end{equation*}
$$

Using (6.6.25)-(6.6.26) we say there exists $T>0$ such that for any $\varepsilon>0$, $t_{\varepsilon} \geq T$.
Let $h(t)=\frac{t^{p}}{p}\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}-\frac{t^{p_{s_{1}}^{*}}}{p_{s_{1}}^{*}}$. Then $h(t)$ attains its maximum at $t_{0}=$ $\left(\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}\right)^{\frac{1}{p_{s_{1}}-p}}$. We note that, $N>p^{2} s_{1}>p s_{1}$ implies $N(p-1)<p\left(N-p s_{1}\right)$, Therefore, $\frac{N(p-1)}{N-p s_{1}}<p<r$. Hence, for $\varepsilon \leq \tilde{\varepsilon}$, applying Lemma 6.6.3 and Lemma 6.6.2 we obtain,

$$
\begin{aligned}
g\left(t_{\varepsilon}\right) & =h\left(t_{\varepsilon}\right)+\frac{t_{\varepsilon}^{q}}{q}\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q}-\theta \frac{t_{\varepsilon}^{r}}{r}\left|v_{\varepsilon}\right|_{r}^{r} \\
& \leq h\left(t_{0}\right)+\frac{\left(t_{\tilde{\varepsilon}}^{0}\right)^{q}}{q}\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q}-\theta \frac{T^{r}}{r}\left|v_{\varepsilon}\right|_{r}^{r} \\
& \leq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}^{p}}}+c_{1} \varepsilon^{\frac{\left(N-s_{1} p\right)}{p}}+c_{2} \varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}-c_{3} \varepsilon^{\frac{(p-1)}{p}\left(N-\frac{r\left(N-s_{1} p\right)}{p}\right)},
\end{aligned}
$$

with $c_{1}, c_{2}, c_{3}>0$ (independent of ε.) As

$$
\frac{N-s_{1} p}{p}>\frac{q\left(N-s_{1} p\right)}{p^{2}}>\frac{(p-1)}{p}\left(N-\frac{r\left(N-s_{1} p\right)}{p}\right)>0,
$$

choose $\varepsilon>0$ small so that $g\left(t_{\varepsilon}\right)=\sup _{t \geq 0} I_{\theta}\left(t v_{\varepsilon}\right)<\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}$.
Hence, $C_{\theta} \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right)$ for any $\theta>0$.
Lemma 6.6.5. Assume (6.6.1) holds. Then for any $\theta>0, c_{\theta}=C_{\theta}$, where c_{θ} and C_{θ} are defined as in (6.5.1) and (6.5.4) respectively.

Proof. Using lemmas 6.5.2 and 6.5.3 we conclude that, for any $\theta>0$ there exists $u_{\theta} \in X_{0, s_{1}, p}(\Omega)$ such that $I_{\theta}\left(u_{\theta}\right)=C_{\theta}$ and $I_{\theta}^{\prime}\left(u_{\theta}\right)=0$. Also for any $u \in N_{\theta}$, we have

$$
\begin{equation*}
0=\left\langle I_{\theta}^{\prime}(u), u\right\rangle=\|u\|_{0, s_{1}, p}^{p}+\|u\|_{0, s_{2}, q}^{q}-\theta\left|u^{+}\right|_{r}^{r}-\left|u^{+}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} . \tag{6.6.27}
\end{equation*}
$$

Therefore, if we define $f(t):=I_{\theta}(t u)$, where $u \in N_{\theta}$, then a straight forward computation yields that $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)<0$, i.e,

$$
\begin{equation*}
\max _{t \geq 0} I_{\theta}(t u)=I_{\theta}(u) \tag{6.6.28}
\end{equation*}
$$

Observe that, from the definition of C_{θ} it follows $C_{\theta} \leq \max _{t \geq 0} I_{\theta}(t u)$. Consequently, we obtain $I_{\theta}(u) \geq C_{\theta}$ for all $u \in N_{\theta}$. Hence,

$$
\begin{equation*}
c_{\theta}=\inf _{u \in N_{\theta}} I_{\theta}(u) \geq C_{\theta} . \tag{6.6.29}
\end{equation*}
$$

On the other hand, $u_{\theta} \in N_{\theta}$ and $I_{\theta}\left(u_{\theta}\right)=C_{\theta}$ implies $C_{\theta} \geq c_{\theta}$. Hence $c_{\theta}=C_{\theta}$.

From the definition of C_{θ}, it is easy to see that

$$
C_{\theta_{1}} \leq C_{\theta_{2}} \quad \text { if } \quad \theta_{2} \leq \theta_{1}
$$

Therefore, using Lemma 6.6.5, we also have

$$
c_{\theta_{1}} \leq c_{\theta_{2}} \quad \text { if } \quad \theta_{2} \leq \theta_{1}
$$

which implies c_{θ} is non-increasing in θ. Therefore, for any $\lambda>0$, there exists $\rho=\rho(\lambda)$ (depending on the Mountain Pass Geometry) such that $0<\rho \leq$ $c_{\theta} \leq c_{0}$ for all $\theta \in[0, \lambda]$, where c_{0} is the MP level associated to the functional

$$
I_{0}(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}\left|u^{+}\right|_{p_{s_{1}}}^{p_{1}^{*}} .
$$

Lemma 6.6.6. $c_{0}=\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{N / s_{1} p}$.
Proof. Recall $v_{\varepsilon}(x)=\frac{u_{\varepsilon}(x)}{\left|u_{\varepsilon}\right|_{p_{s_{1}^{*}}^{*}}}$ where $u_{\varepsilon}=u_{\varepsilon, R}$ is defined as in (6.6.14). Arguing as in Lemma 6.6.4, there exists $t_{\varepsilon}>0$ such that $\left.\frac{d}{d t} I_{0}\left(t v_{\varepsilon}\right)\right|_{t=t_{\varepsilon}}=0$, that is,

$$
\begin{equation*}
t_{\varepsilon}^{p-1}\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}+t_{\varepsilon}^{q-1}\left\|v_{\varepsilon}\right\|_{0, s_{2}, q}^{q}=t_{\varepsilon}^{p_{s_{1}}^{*}-1} \tag{6.6.30}
\end{equation*}
$$

Hence, $t_{\varepsilon}^{p_{s_{1}}^{*}-p} \geq\left\|v_{\varepsilon}\right\|_{0, s_{1}, p}^{p}$. Also, t_{ε} is bounded. Using $1<q<p<p_{s_{1}}^{*}$, (6.6.30) and (6.6.25) we have,

$$
t_{\varepsilon}=\left(S_{s_{1}, p}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right)^{\frac{1}{p_{s_{1}}-p}} .
$$

Therefore,

$$
\begin{align*}
c_{0} \leq I_{0}\left(t_{\varepsilon} v_{\varepsilon}\right)= & \frac{1}{p}\left(S_{s_{1}, p}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right)^{\frac{p}{p_{s_{1}}^{*-p}}}\left(S_{s_{1}, p}+O\left(\varepsilon^{\frac{(N-s p)}{p}}\right)\right) \\
& +\frac{1}{q}\left(S_{s_{1}, p}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right)^{\frac{q}{p_{s_{1}}-p}} O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right) \\
& -\frac{1}{p_{s_{1}}^{*}}\left(S_{s_{1}, p}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right)^{\frac{p_{s_{1}}^{*}}{p_{s_{1}}-p}} \\
= & \frac{1}{p}\left(\left(S_{s_{1}, p}\right)^{\frac{N-s_{1} p}{s_{1} p}}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right)\left(S_{s_{1}, p}+O\left(\varepsilon^{\frac{\left(N-s_{1} p\right)}{p}}\right)\right) \\
& +\frac{1}{q}\left(\left(S_{s_{1}, p}\right)^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right) O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right) \\
& -\frac{1}{p_{s_{1}}^{*}}\left(\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+O\left(\varepsilon^{\frac{q\left(N-s_{1} p\right)}{p^{2}}}\right)\right) \\
= & \left(\frac{1}{p}-\frac{1}{p_{s_{1}}^{*}}\right)\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+O\left(\varepsilon^{\frac{q\left(N-s_{\left.s_{1} p\right)}^{p^{2}}\right.}{p^{2}}}\right)+O\left(\varepsilon^{\frac{N-s_{s_{1} p}}{p}}\right) \\
\rightarrow & \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{N / s_{1} p}, \quad \text { as } \varepsilon \rightarrow 0 . \tag{6.6.31}
\end{align*}
$$

Let $\left\{u_{n}\right\}_{n \geq 1} \subset X_{0, s_{1}, p}(\Omega)$ such that $I_{0}\left(u_{n}\right) \rightarrow c_{0}$ and $I_{0}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $\left(X_{0, s_{1}, p}\right)^{\prime}$ as $n \rightarrow \infty$. Arguing as in Claim 1 of Lemma 6.4.1, it follows $\left\{\left\|u_{n}\right\|_{0, s_{1}, p}\right\}_{n \geq 1}$ is bounded. Moreover, as in (6.4.12) w.l.g up to a subsequence we can assume

$$
\left\|u_{n}\right\|_{0, s_{1}, p}^{p}=a+o(1), \quad\left\|u_{n}\right\|_{0, s_{2}, q}^{q}=b+o(1), \quad \mid u_{n}^{+} p_{p_{s_{1}}}^{p_{s_{1}}^{*}}=a+b+o(1) .
$$

Since $2 \leq q<p$, estimating $\left\langle I_{0}^{\prime}\left(u_{n}\right), u_{n}^{-}\right\rangle$as in the proof of Theorem 6.1.2, we obtain $\left\|u_{n}^{-}\right\|_{0, s_{1}, p}^{p} \rightarrow 0$ and $\left\|u_{n}^{-}\right\|_{0, s_{2}, q}^{q} \rightarrow 0$ as $n \rightarrow \infty$.

Therefore, we may assume $u_{n} \geq 0$. Hence, $\left|u_{n}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}}=a+b+o(1)$. Set $v_{n}(x)=\frac{u_{n}(x)}{\left|u_{n}\right|_{p_{s_{1}}^{*}}}$. Then $\left|v_{n}\right|_{p_{s_{1}}^{*}}=1$ and

$$
S_{s_{1}, p} \leq\left\|v_{n}\right\|_{0, s_{1}, p}^{p}=\frac{a+o(1)}{(a+b+o(1))^{p / p_{s_{1}}^{*}}} \leq(a+o(1))^{s_{1} p / N}
$$

Hence, we have,

$$
\begin{align*}
\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{N / s_{1} p} & \leq \frac{s_{1}(a+o(1))}{N} \\
& \leq \frac{s_{1}(a+o(1))}{N}+\left(\frac{1}{q}-\frac{1}{p_{s_{1}}^{*}}\right)(b+o(1)) \\
& \rightarrow c_{0}, \quad \text { as } \quad n \rightarrow \infty \tag{6.6.32}
\end{align*}
$$

Combining (6.6.31) and (6.6.32), we have $c_{0}=\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{N / s_{1} p}$. Hence, proved.

Remark:

(i) For any bounded domain $\Omega \subset \mathbb{R}^{N}$, the MP level of the functionals

$$
I_{0, \Omega}(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}\left|u^{+}\right|_{p_{s_{1}}}^{p_{1}^{*}}
$$

and

$$
\tilde{I}_{0, \Omega}(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}|u|_{p_{s_{1}}}^{p_{s_{1}}^{*}}
$$

is $\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}$, so the MP level is independent of Ω.
(ii) Using the proof of Lemma 6.6.6, we may assume that all the PS sequence of I_{θ} are non-negative.

Lemma 6.6.7. Let $\theta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then $c_{\theta_{n}} \rightarrow c_{0}$ as $n \rightarrow \infty$.

Proof. From the definition of c_{θ}, c_{0} we note that

$$
\begin{equation*}
c_{\theta_{n}} \leq c_{0} \quad \forall \quad n \in \mathbb{N} . \tag{6.6.33}
\end{equation*}
$$

Let $\left\{u_{n}\right\}_{n \geq 1} \subset X_{0, s_{1}, p}(\Omega)$ such that $u_{n} \geq 0$ and satisfies $I_{\theta_{n}}\left(u_{n}\right)=$ $c_{\theta_{n}}, I_{\theta_{n}}^{\prime}\left(u_{n}\right)=0$ and let $\left\{t_{n}\right\}_{n \geq 1} \subset \mathbb{R}$ such that $t_{n} u_{n} \in N_{0}$. Hence, $c_{0} \leq I_{0}\left(t_{n} u_{n}\right)=I_{\theta_{n}}\left(t_{n} u_{n}\right)+\frac{\theta_{n} t_{n}^{r}}{r}\left|u_{n}\right|_{r}^{r}$. Consequently,

$$
\begin{equation*}
c_{0} \leq c_{\theta_{n}}+\frac{\theta_{n} t_{n}^{r}}{r}\left|u_{n}\right|_{r}^{r} . \tag{6.6.34}
\end{equation*}
$$

As $c_{\theta_{n}} \leq c_{0}$, we can show as before $\left\{\left\|u_{n}\right\|_{0, s_{1}, p}\right\}_{n \geq 1}$ is bounded. We also claim that $\left\{t_{n}\right\}_{n \geq 1}$ is bounded. Suppose not. Then up to a subsequence, $t_{n} \rightarrow \infty$. Note that, $t_{n} u_{n} \in N_{0}$ implies

$$
\begin{equation*}
\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+t_{n}^{q-p}\left\|u_{n}\right\|_{0, s_{2}, q}^{q}=t_{n}^{p_{s_{1}}^{*}-p}\left|u_{n}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} . \tag{6.6.35}
\end{equation*}
$$

Since $q<p<p_{s_{1}}^{*}$ and $\max \left\{\left\|u_{n}\right\|_{0, s_{2}, q},\left|u_{n}\right|_{p_{s_{1}}}\right\} \leq C\left\|u_{n}\right\|_{0, s, p}$, we obtain RHS of (6.6.35) $\rightarrow \infty$ but LHS remains bounded. Hence the claim follows.

By the above claim and (6.6.34), we have

$$
c_{0} \leq \liminf _{n \rightarrow \infty} c_{\theta_{n}} \leq \limsup _{n \rightarrow \infty} c_{\theta_{n}} \leq c_{0} .
$$

Hence, $c_{0}=\lim _{n \rightarrow \infty} c_{\theta_{n}}$. This completes the proof.
Since $\Omega \subset \mathbb{R}^{N}$ is a smooth domain, there exists $\delta>0$ such that

$$
\Omega_{\delta}^{+}:=\left\{x \in \mathbb{R}^{N} \mid \operatorname{dist}(x, \Omega)<\delta\right\}
$$

and

$$
\Omega_{\delta}^{-}:=\left\{x \in \mathbb{R}^{N} \mid \operatorname{dist}(x, \Omega)>\delta\right\}
$$

are homotopically equivalent to Ω. Without loss of generality, we may assume that
$B_{\delta}=B(0, \delta) \subset \Omega$. Define,

$$
X_{0, s_{1}, p}^{\mathrm{rad}}\left(B_{\delta}\right):=\left\{u \in X_{0, s_{1}, p}\left(B_{\delta}\right) \mid u \text { is radial }\right\} .
$$

Let $N_{\theta, B_{\delta}}:=\inf \left\{u \in X_{0, s_{1}, p}^{\mathrm{rad}}\left(B_{\delta}\right) \backslash\{0\} \mid\left\langle I_{\theta, B_{\delta}}^{\prime}(u), u\right\rangle=0\right\}$ where

$$
I_{\theta, B_{\delta}}(u)=\frac{1}{p}\|u\|_{0, s_{1}, p}^{p}+\frac{1}{q}\|u\|_{0, s_{2}, q}^{q}-\frac{\theta}{r} \int_{B_{\delta}}\left|u^{+}\right|^{r} d x-\frac{1}{p_{s_{1}}^{*}} \int_{B_{\delta}}\left|u^{+}\right|^{p_{s_{1}}^{*}} d x .
$$

Denote $n_{\theta}=\inf _{u \in N_{\theta, B_{\delta}}} I_{\theta, B_{\delta}}(u)$. We note that n_{θ} is non-increasing in θ. Let us denote the MP level for $I_{\theta, B_{\delta}}$ on $X_{0, s, p}(\Omega)^{\text {rad }}\left(B_{\delta}\right)$ by $\tilde{n_{\theta}}$. We also observe that $\tilde{n_{\theta}}>0$ for all $\theta \geq 0$.

Lemma 6.6.8. Assume (6.6.1) holds. Then, for any $\theta>0$, the following holds:
(a) $I_{\theta, B_{\delta}}$ satisfies the $(P S)_{c}$ condition for all $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right)$. Moreover,

$$
\tilde{n_{\theta}} \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right)
$$

(b) $n_{\theta}=\tilde{n_{\theta}}$.
(c) $n_{\theta} \rightarrow \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}$ as $\theta \rightarrow 0$.

Proof. Applying Brezis-Lieb lemma, it is not difficult to check that $I_{\theta, B_{\delta}}$ in $X_{0, s_{1}, p}^{r a d}\left(B_{\delta}\right)$ satisfies the $(\mathrm{PS})_{c}$ condition for all $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right)$. By a similar argument as in Lemma 6.5.3, we also obtain $\tilde{n_{\theta}} \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}\right)$. Further, following the same argument as in Lemma 6.6.6 and Lemma 6.6.7, it yields $n_{\theta} \rightarrow \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}$ and $\theta \rightarrow 0$ respectively.

Let us define a map $\tau: N_{\theta} \rightarrow \mathbb{R}^{N}$ by

$$
\tau(u):=\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1} p}} \int_{\Omega}\left|u^{+}(x)\right|^{p_{s_{1}}^{*}} x d x .
$$

Let us denote $I_{\theta}^{n_{\theta}}=\left\{u \in X_{0, s_{1}, p}(\Omega): I_{\theta} \leq n_{\theta}\right\}$.
Lemma 6.6.9. There exists $\theta^{*}>0$ such that for any $\theta \in\left(0, \theta^{*}\right)$ and $u \in$ $N_{\theta} \cap I_{\theta}^{n_{\theta}}$, it holds $\tau(u) \in \Omega_{\delta}^{+}$.

Proof. We will prove this by contradiction. Let us suppose $\theta_{n} \rightarrow 0$ and $u_{n} \in N_{\theta_{n}} \cap I_{\theta_{n}}^{n_{\theta_{n}}}$ but $\tau\left(u_{n}\right) \notin \Omega_{\delta}^{+}$. We observe that

$$
c_{\theta_{n}} \leq I_{\theta_{n}}\left(u_{n}\right)=\frac{1}{p}\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+\frac{1}{q}\left\|u_{n}\right\|_{0, s_{2}, q}^{q}-\frac{\theta_{n}}{r}\left|u_{n}^{+}\right|_{r}^{r}-\frac{1}{p_{s_{1}}^{*}}\left|u_{n}^{+}\right|_{p_{s_{1}}}^{p_{1}^{*}} \leq n_{\theta_{n}}
$$

and

$$
\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+\left\|u_{n}\right\|_{0, s_{2}, q}^{q}-\theta_{n}\left|u_{n}^{+}\right|_{r}^{r}-\left|u_{n}^{+}\right|_{p_{s_{1}}}^{p_{1}^{*}}=\left\langle I_{\theta}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0 .
$$

It can be shown as before that $\left\|u_{n}\right\|_{0, s_{1}, p}$ is bounded. Therefore, we have,

$$
\begin{equation*}
c_{\theta_{n}} \leq I_{\theta_{n}}\left(u_{n}\right)=\frac{1}{p}\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+\frac{1}{q}\left\|u_{n}\right\|_{0, s_{2}, q}^{q}-\frac{1}{p_{s_{1}}^{*}}\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p_{1}^{*}}+o(1) \leq n_{\theta_{n}}+o(1) \tag{6.6.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+\left\|u_{n}\right\|_{0, s_{2}, q}^{q}-\mid u_{n}^{+} p_{p_{s_{1}}}^{p_{s_{1}}^{*}}=o(1) . \tag{6.6.37}
\end{equation*}
$$

Using (6.6.36) and (6.6.37) we have,

$$
\frac{s_{1}}{N}\left\|u_{n}\right\|_{0, s_{1}, p}^{p} \leq\left(\frac{1}{p}-\frac{1}{p_{s_{1}}^{*}}\right)\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+\left(\frac{1}{q}-\frac{1}{p_{s_{1}}^{*}}\right)\left\|u_{n}\right\|_{0, s_{2}, q}^{q} \leq n_{\theta_{n}}+o(1) .
$$

Consequently, applying Lemma 6.6.8(c) it yields

$$
\begin{equation*}
\left\|u_{n}\right\|_{0, s_{1}, p}^{p} \leq\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+o(1) \tag{6.6.38}
\end{equation*}
$$

From (6.6.37), it follows

$$
\begin{equation*}
\left\|u_{n}\right\|_{0, s_{1}, p}^{p} \leq\left|u_{n}^{+}\right|_{p_{p_{1}}}^{p_{1}^{*}}+o(1) . \tag{6.6.39}
\end{equation*}
$$

Define $w_{n}=\frac{u_{n}}{\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}}$, which implies $\left|w_{n}^{+}\right|_{p_{s_{1}}^{*}}=1$. Using (6.6.38) and (6.6.39), we obtain

$$
\begin{equation*}
S_{s_{1}, p} \leq\left\|w_{n}\right\|_{0, s_{1}, p}^{p} \leq \frac{\left\|u_{n}\right\|_{0, s_{1}, p}^{p}}{\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p}} \leq\left\|u_{n}\right\|_{0, s_{1}, p}^{p-\frac{p^{2}}{p_{1}^{*}}}+o(1) \leq S_{s_{1}, p}+o(1) \tag{6.6.40}
\end{equation*}
$$

Hence, the function $\tilde{w}_{n}(x):=w_{n}^{+}(x)$ satisfies

$$
\left|\tilde{w}_{n}\right|_{p_{s_{1}}^{*}}=1 \quad \text { and } \quad\left\|\tilde{w}_{n}\right\|_{0, s_{1}, p}^{p} \rightarrow S_{s_{1}, p} \quad \text { as } \quad n \rightarrow \infty .
$$

Using Theorem 6.3.1, there exists a sequence $\left(y_{n}, \lambda_{n}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{+}$such that the sequence v_{n} defined by

$$
v_{n}(x)=\lambda_{n}^{\frac{\left(N-p s_{1}\right)}{p}} \tilde{w}_{n}\left(\lambda_{n} x+y_{n}\right),
$$

converges strongly to some $v \in W^{s_{1}, p}\left(\mathbb{R}^{N}\right)$. Combining (6.6.40) and (6.6.39), we get

$$
S_{s_{1}, p}\left|u_{n}^{+}\right|_{p_{s_{1}}}^{p}+o(1)=\left\|u_{n}\right\|_{0, s_{1}, p}^{p} \leq\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p_{s_{1}}^{*}}+o(1) .
$$

Hence,

$$
\begin{equation*}
\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p_{s_{1}^{*}}^{*}} \geq\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+o(1), \quad n \rightarrow \infty . \tag{6.6.41}
\end{equation*}
$$

Further, from (6.6.40) and (6.6.38) it follows

$$
S_{s_{1}, p}\left|u_{n}^{+}\right|_{p^{*}}^{p}+o(1)=\left\|u_{n}\right\|_{0, s, p}^{p} \leq\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}+o(1) .
$$

Hence,

$$
\begin{equation*}
\left|u_{n}^{+}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} \leq\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}+o(1) . \tag{6.6.42}
\end{equation*}
$$

Using (6.6.41) and (6.6.42) we conclude that,

$$
\begin{equation*}
\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p_{1}^{*}} \rightarrow\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}} \quad \text { as } \quad n \rightarrow \infty . \tag{6.6.43}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\tau\left(u_{n}\right) & =\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1 p}}} \int_{\Omega}\left|u_{n}^{+}(x)\right|^{p_{s_{1}}^{*}} x d x \\
& =\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1 p} p}}\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p_{1}^{*}} \int_{\Omega} \tilde{w}_{n}^{p_{s_{1}}^{*}}(x) x d x \\
& =\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1 p}^{p}}}\left|u_{n}^{+}\right|_{p_{s_{1}}^{s_{1}}}^{s_{1}^{*}} \int_{\Omega} x \lambda_{n}^{-N} v_{n}^{p_{s_{1}}^{*}}\left(\frac{x-y_{n}}{\lambda_{n}}\right) d x \\
& =\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1 p}^{p}}}\left|u_{n}^{+}\right|_{p_{s_{1}}^{*}}^{p_{1}^{*}} \int_{\frac{\Omega-y_{n}}{\lambda_{n}}}\left(\lambda_{n} z+y_{n}\right) v_{n}^{p_{s_{1}}^{*}}(z) d z .
\end{aligned}
$$

Applying dominated convergence theorem via (6.6.43) and Theorem 6.3.1 to the last line of the above expression we obtain

$$
\tau\left(u_{n}\right) \rightarrow y \int_{\mathbb{R}^{N}}|v|^{p_{s_{1}}^{*}} d z=y \in \bar{\Omega}
$$

which is a contradiction to the assumption. Hence the lemma follows.

Using Lemma 6.6.8, we can find a non-negative radial function $v_{\theta} \in N_{\theta, B_{\delta}}$ such that $I_{\theta}\left(v_{\theta}\right)=I_{\theta, B_{\delta}}\left(v_{\theta}\right)=n_{\theta}$. Let us define a map $\gamma: \Omega_{\delta}^{-} \rightarrow I_{\theta}^{n_{\theta}}$ by $\gamma(y)=\psi_{y}$, where ψ_{y} is defined as follows

$$
\psi_{y}(x)=\left\{\begin{array}{l}
v_{\theta}(x-y), \quad \text { if } \quad x \in B_{\delta}(y) \tag{6.6.44}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

Now, for each $y \in \Omega_{\delta}^{-}$we have,

$$
\begin{align*}
(\tau \circ \gamma)(y)=\tau \circ \psi_{y} & =\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1} p}} \int_{B_{\delta}(y)} v_{\theta}(x-y)^{p_{s_{1}}^{*}} x d x \\
& =\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1} p}} \int_{B_{\delta}(0)} v_{\theta}(z)^{p_{s_{1}}^{*}}(z+y) d z \\
& =y\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1} p}} \int_{B_{\delta}(0)} v_{\theta}(z)^{p_{s_{1}}^{*}} d z+\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1} p}} \int_{B_{\delta}(0)} v_{\theta}(z)^{p_{s_{1}}^{*}} z d z \tag{6.6.45}
\end{align*}
$$

Further, using the fact that v_{θ} is radial, it is easy to check that

$$
\begin{equation*}
\int_{B_{\delta}(0)} v_{\theta}(z)^{p_{s_{1}^{*}}^{*}} z d z=0 . \tag{6.6.46}
\end{equation*}
$$

Substitution of (6.6.46) into (6.6.45) yields

$$
\begin{equation*}
(\tau \circ \gamma)(y)=\alpha_{\theta} y \tag{6.6.47}
\end{equation*}
$$

where, $\alpha_{\theta}=\left(S_{s_{1}, p}\right)^{-\frac{N}{s_{1} p}} \int_{B_{\delta}(0)} v_{\theta}(z)^{p_{s_{1}}^{*}} d z$.
Lemma 6.6.10. $\alpha_{\theta} \rightarrow 1$ if $\theta \rightarrow 0$.

Proof. From Lemma 6.6.8, we observe that
$n_{\theta}=I_{\theta, B_{\delta}}\left(v_{\theta}\right)=\frac{1}{p}\left\|v_{\theta}\right\|_{0, s_{1}, p}^{p}+\frac{1}{q}\left\|v_{\theta}\right\|_{0, s_{2}, q}^{q}-\frac{\theta}{r} \int_{B_{\delta}}\left|v_{\theta}\right|^{r}-\frac{1}{p_{s_{1}}^{*}} \int_{B_{\delta}}\left|v_{\theta}\right|^{p_{s_{1}}^{*}} \leq \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}$
and

$$
\left\|v_{\theta}\right\|_{0, s_{1}, p}^{p}+\left\|v_{\theta}\right\|_{0, s_{2}, q}^{q}-\theta\left|v_{\theta}\right|_{r}^{r}-\left|v_{\theta}\right|_{p_{s_{1}}}^{p_{p_{1}}^{*}}=0 .
$$

By similar argument as in Lemma 6.6.9 we have, $\left|v_{\theta}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} \rightarrow\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}$ as $\theta \rightarrow 0$. Hence the lemma follows.

Let us define a map $H_{\theta}:[0,1] \times\left(N_{\theta} \cap I_{\theta}^{n_{\theta}}\right) \rightarrow \mathbb{R}^{N}$ by

$$
\begin{equation*}
H_{\theta}(t, u)=\left(t+\frac{1-t}{\alpha_{\theta}}\right) \tau(u) . \tag{6.6.48}
\end{equation*}
$$

Lemma 6.6.11. There exists $\theta_{*}>0$ such that for any $\theta \in\left(0, \theta_{*}\right)$, it holds

$$
H_{\theta}\left([0,1] \times\left(N_{\theta} \cap I_{\theta}^{n_{\theta}}\right)\right) \subset \Omega_{\delta}^{+} .
$$

Proof. We will prove it by method of contradiction. Suppose there exists sequence $\theta_{n} \rightarrow 0$ and $\left(t_{n}, u_{n}\right) \in[0,1] \times\left(N_{\theta} \cap I_{\theta}^{n_{\theta}}\right)$ such that

$$
\begin{equation*}
H_{\theta_{n}}\left(t_{n}, u_{n}\right) \notin \Omega_{\delta}^{+} \quad \forall n \in \mathbb{N} . \tag{6.6.49}
\end{equation*}
$$

As $t_{n} \in[0,1]$, up to a subsequence, we assume $t_{n} \rightarrow t_{0} \in[0,1]$. Moreover, by Lemma 6.6.10 and from the proof of the Lemma 6.6.9, we have $\alpha_{\theta_{n}} \rightarrow 1$ and $\tau\left(u_{n}\right) \rightarrow y \in \bar{\Omega}$. Hence, $H_{\theta_{n}}\left(t_{n}, u_{n}\right)=\left(t_{n}+\frac{1-t_{n}}{\alpha_{\theta_{n}}}\right) \tau\left(u_{n}\right) \rightarrow y \in \bar{\Omega}$. This is a contradiction to (6.6.49). Hence the lemma follows.

Lemma 6.6.12. Let u_{θ} be a critical point of I_{θ} on N_{θ}. Then, u_{θ} is a critical point of I_{θ} on $X_{0, s_{1}, p}(\Omega)$.

Proof. Suppose, u_{θ} is a critical point of I_{θ} on N_{θ}. Therefore,

$$
\begin{equation*}
\left\langle I_{\theta}^{\prime}\left(u_{\theta}\right), u_{\theta}\right\rangle=0 . \tag{6.6.50}
\end{equation*}
$$

Using Lagrange multiplier method, there exists $\mu \in \mathbb{R}$ such that

$$
\begin{equation*}
I_{\theta}^{\prime}\left(u_{\theta}\right)=\mu J_{\theta}^{\prime}\left(u_{\theta}\right), \tag{6.6.51}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\theta}(u):=\|u\|_{0, s_{1}, p}^{p}+\|u\|_{0, s_{2}, q}^{q}-\theta\left|u^{+}\right|_{r}^{r}-\left|u^{+}\right|_{p_{s_{1}}}^{p_{s_{1}}^{*}} . \tag{6.6.52}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mu\left\langle J_{\theta}^{\prime}\left(u_{\theta}\right), u_{\theta}\right\rangle=0 \tag{6.6.53}
\end{equation*}
$$

Observe that,

$$
\begin{align*}
\left\langle J_{\theta}^{\prime}\left(u_{\theta}\right), u_{\theta}\right\rangle & =p\left\|u_{\theta}\right\|_{0, s_{1}, p}^{p}+q\left\|u_{\theta}\right\|_{0, s_{2}, q}^{q}-r \theta\left|u_{\theta}^{+}\right|_{r}^{r}-p_{s_{1}}^{*}\left|u_{\theta}^{+}\right|_{p_{s_{1}}}^{p_{1}^{*}} \\
& =(p-r)\left\|u_{\theta}\right\|_{0, s_{1}, p}^{p}+(q-r)\left\|u_{\theta}\right\|_{0, s_{2}, q}^{q}-\left(p_{s_{1}}^{*}-r\right)\left|u_{\theta}^{+}\right|_{p_{s_{1}}}^{p_{1}^{*}}<0 . \tag{6.6.54}
\end{align*}
$$

Consequently, from (6.6.53) we conclude that $\mu=0$ and therefore by (6.6.51) we have $I_{\theta}^{\prime}\left(u_{\theta}\right)=0$ and this completes the proof.

In the next two lemmas, we denote $I_{N_{\theta}}:=\left.I_{\theta}\right|_{N_{\theta}}$ (restriction of I_{θ} on N_{θ}.)

Lemma 6.6.13. Assume (6.6.1) holds and $\theta>0$ is fixed. Then for any sequence $\left\{u_{n}\right\} \subset N_{\theta}$ such that

$$
I_{\theta}\left(u_{n}\right) \rightarrow c<\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1} p}}, \quad I_{N_{\theta}}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

there exists $u \in N_{\theta}$ such that up to a subsequence, $u_{n} \rightarrow u$ as $n \rightarrow \infty$.

Proof. From the given assumption, we get there exists a sequence $\left\{\mu_{n}\right\} \subset \mathbb{R}$ such that

$$
\left\|I_{\theta}^{\prime}\left(u_{n}\right)-\mu_{n} J_{\theta}^{\prime}\left(u_{n}\right)\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Hence,

$$
\begin{equation*}
I_{\theta}^{\prime}\left(u_{n}\right)=\mu_{n} J_{\theta}^{\prime}\left(u_{n}\right)+o(1) . \tag{6.6.55}
\end{equation*}
$$

By (6.6.54), we have $\left\langle J_{\theta}^{\prime}\left(u_{n}\right), u_{n}\right\rangle<0$ for every $n \geq 1$. Note that, up to a subsequence, $\left\langle J_{\theta}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow l<0$ as $n \rightarrow \infty$. Otherwise, if $\left\langle J_{\theta}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\left\|u_{n}\right\|_{0, s_{1}, p} \rightarrow 0,\left\|u_{n}\right\|_{0, s_{2}, q} \rightarrow 0,\left|u_{n}^{+}\right|_{p_{s_{1}^{*}}^{*}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

On the other hand, as $u_{n} \in N_{\theta}$ using Sobolev embedding theorem, there exists $C>0$ such that

$$
\left\|u_{n}\right\|_{0, s_{1}, p}^{p} \leq\left\|u_{n}\right\|_{0, s_{1}, p}^{p}+\left\|u_{n}\right\|_{0, s_{2}, q}^{q}=\theta\left|u_{n}^{+}\right|_{r}^{r}+\left|u_{n}\right|_{p_{s_{1}}}^{p_{1}^{*}} \leq C\left(\theta\left\|u_{n}\right\|_{0, s_{1}, p}^{r}+\left\|u_{n}\right\|_{0, s_{1}, p}^{p_{s_{1}}^{*}}\right) .
$$

This in turn implies

$$
1 \leq C\left(\theta\left\|u_{n}\right\|_{0, s_{1}, p}^{r-p}+\left\|u_{n}\right\|_{0, s_{1}, p}^{p_{s_{1}}^{*}-p}\right)
$$

which is a contradiction. Hence, up to a subsequence, we have,

$$
\left\langle J_{\theta}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow l<0 \quad \text { as } \quad n \rightarrow \infty .
$$

Moreover, $u_{n} \in N_{\theta}$ for all $n \geq 1$, implies $\left\langle I_{\theta}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$ for all $n \geq 1$. As a consequence, from (6.6.55) we have, $\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore,
$I_{\theta}^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. As $I_{\theta}\left(u_{n}\right) \rightarrow c<\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}$, using Lemma 6.5.3 we conclude the result.

Define,

$$
\begin{equation*}
\theta_{* *}=\min \left\{\theta^{*}, \theta_{*}\right\}, \tag{6.6.56}
\end{equation*}
$$

where θ^{*} is same as in Lemma 6.6.9 and θ_{*} is as found in Lemma 6.6.11.

Lemma 6.6.14. Assume (6.6.1) holds and $\theta \in\left(0, \theta_{* *}\right)$, where $\theta_{* *}$ is as defined in (6.6.56). Then

$$
\operatorname{cat}_{I_{N_{\theta}}}^{n_{\theta}}\left(I_{N_{\theta}}^{n_{\theta}}\right) \geq \operatorname{cat}_{\Omega}(\Omega)
$$

This follows exactly by the same argument as in [89, Lemma 4.4]. For the convenience of the reader, we briefly sketch the proof below.

Proof. Let, cat $t_{I_{N_{\theta}}^{n_{\theta}}}\left(I_{N_{\theta}}^{n_{\theta}}\right)=n$. By the definition of $c a t I_{I_{N_{\theta}}}^{n_{\theta}}\left(I_{N_{\theta}}^{n \theta}\right)$, we can write $I_{N_{\theta}}^{n_{\theta}}=A_{1} \cup A_{2} \cup \cdots \cup A_{n}$ where $\left\{A_{j}\right\}_{j=1}^{n}$ are closed and contractible in $I_{N_{\theta}}^{n_{\theta}}$, that is, there exists $h_{j} \in C\left([0,1] \times A_{j} ; I_{N_{\theta}}^{n_{\theta}}\right)$ such that

$$
h_{j}(0, u)=u, \quad h_{j}(1, u)=u_{0} \quad \forall \quad u \in A_{j},
$$

where $u_{0} \in A_{j}$ is fixed. Let γ be as defined in (6.6.44). Define, $B_{j}:=$ $\gamma^{-1}\left(A_{j}\right), 1 \leq j \leq n$. Then, B_{j} is closed for $1 \leq j \leq n$ and $\cup_{j=1}^{n} B_{j}=\Omega_{\delta}^{-}$. Set, $g_{j}:[0,1] \times B_{j} \rightarrow \Omega_{\delta}^{+}$by

$$
g_{j}(t, y)=H_{\theta}\left(t, h_{j}(t, \gamma(y))\right), \quad \text { for } \quad \theta \in\left(0, \theta_{* *}\right),
$$

where H_{θ} is as defined in (6.6.48). Therefore,

$$
g_{j}(0, y)=H_{\theta}\left(0, h_{j}(0, \gamma(y))\right)=\frac{\tau\left(h_{j}(0, \gamma(y))\right)}{\alpha_{\theta}}=\frac{(\tau \circ \gamma)(y)}{\alpha_{\theta}}=\frac{\alpha_{\theta} y}{\alpha_{\theta}}=y \forall y \in B_{j},
$$

here we have have used (6.6.47). Further,

$$
g_{j}(1, y)=H_{\theta}\left(1, h_{j}(1, \gamma(y))\right)=\tau\left(h_{j}(1, \gamma(y))\right)=\tau\left(u_{0}\right) \in \Omega_{\delta}^{+},
$$

which follows from Lemma 6.6.9. Therefore, the sets $\left\{B_{j}\right\}_{j=1}^{n}$ are contractible in Ω_{δ}^{+}. Hence,

$$
\operatorname{cat}_{\Omega}(\Omega)=\operatorname{cat}_{\Omega_{\delta}^{+}}\left(\Omega_{\delta}^{-}\right) \leq n .
$$

This proves the lemma.

Proof of Theorem 6.1.4: Using Lemma 6.5.3 and Lemma 6.6.8, we have for all $\theta>0$,

$$
c_{\theta}, n_{\theta}<\frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}} .
$$

By Lemma 6.6.13, $I_{N_{\theta}}$ satisfies the $(\mathrm{PS})_{c}$ condition for all $c \in\left(0, \frac{s_{1}}{N}\left(S_{s_{1}, p}\right)^{\frac{N}{s_{1 p}}}\right)$. Hence, by Lemma 6.6.14, a standard deformation argument implies that, for $\theta \in\left(0, \theta_{*}\right), I_{N_{\theta}}^{n_{\theta}}$ contains at least $\operatorname{cat}_{\Omega}(\Omega)$ critical points of the restriction of I_{θ} on N_{θ}. Now, Lemma 6.6.12 implies that I_{θ} has at least $\operatorname{cat}_{\Omega}(\Omega)$ critical points on $X_{0, s_{1}, p}(\Omega)$. Now, following the same argument as in Theorem 6.1.2, it follows (P) has at least $\operatorname{cat}_{\Omega}(\Omega)$ nontrivial nonnegative solutions.

6.7 Appendix

Here we first recall the classical deformation lemma from [4, Lemma 1.3].
Lemma 6.7.1. Let $J \in C^{1}(X, \mathbb{R})$ satisfy (PS)-condition. If $c \in \mathbb{R}$ and N is any neighborhood of $K_{c}=\left\{u \in X: J(u)=c, J^{\prime}(u)=0\right\}$, then there exists $\eta(t, x) \equiv \eta_{t}(x) \in C([0,1] \times X, X)$ and constants $0<\varepsilon<\bar{\varepsilon}$ such that
(1) $\eta_{0}(x)=x$ for all $x \in X$.
(2) $\eta_{t}(x)=x$ for all $x \in J^{-1}[c-\bar{\varepsilon}, c+\bar{\varepsilon}]$.
(3) $\eta_{t}(x)$ is a homeomorphism of X onto X for all $t \in[0,1]$.
(4) $J\left(\eta_{t}(x)\right) \leq J(x)$ for all $x \in X, t \in[0,1]$.
(5) $\eta_{t}\left(A_{c+\varepsilon}-N\right) \subset A_{c-\varepsilon}$ where $A_{c}=\{x \in X: J(x) \leq c\}$ for any $c \in \mathbb{R}$.
(6) If $K_{c}=\emptyset, \eta_{t}\left(A_{c+\varepsilon}\right) \subset A_{c-\varepsilon}$.
(7) If J is even, η_{t} is odd in x.

Note that the above lemma is also true if J satisfies $(\mathrm{PS})_{c}$ condition for $c<c_{0}$ for some $c_{0} \in \mathbb{R}$. Next, recall the general version of Mountain Pass Lemma (see [7]).

Lemma 6.7.2. Let X be a Banach space. Let $I \in C^{1}(X, \mathbb{R})$. Let us assume for some $\beta, \rho>0$, we have,
(i) $I(u)>\beta$ for all $u \in X$ with $\|u\|_{X}=\rho$.
(ii) $I(0)=0$ and $I\left(v_{0}\right)<\beta$ for some $v_{0} \in X$ with $\|v\|_{X}>\rho$.

Then there exists a sequence $\left\{u_{n}\right\} \subset X$ such that $I\left(u_{n}\right) \rightarrow \alpha$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{\prime} as $n \rightarrow \infty$, where α is given by:

$$
\alpha:=\inf _{u \in X \backslash\{0\}} \max _{t \geq 0} I(t u) .
$$

The next lemma is regarding the elementary properties of Krasnoselskii genus.

Lemma 6.7.3. Let $A, B \in \Sigma$. Then,
(1) if there exists $f \in C(A, B)$, odd, then $\gamma(A) \leq \gamma(B)$.
(2) if $A \subset B$, then $\gamma(A) \leq \gamma(B)$.
(3) if there exists an odd homeomorphism between A and B, then $\gamma(A)=$ $\gamma(B)$.
(4) if S^{N-1} denotes the unit sphere in \mathbb{R}^{N}, then $\gamma\left(S^{N-1}\right)=N$.
(5) $\gamma(A \cup B) \leq \gamma(A)+\gamma(B)$,
(6) If $\gamma(A)<\infty$, then $\gamma(\overline{A \cup B}) \geq \gamma(A)-\gamma(B)$.
(7) If A is compact, then $\gamma(A)<\infty$ and there exists $\delta>0$ such that $\gamma(A)=\gamma\left(N_{\delta}(A)\right)$ where $N_{\delta}(A)=\{x \in X: d(x, A) \leq \delta\}$.
(8) If X_{0} is a subspace of X with codimension k and $\gamma(A)>k$, then $A \cap$ $X_{0} \neq \emptyset$.

Proof. See [4, Lemma 1.2].

Remark 6.7.4. It's easy to observe that if A contains finitely many antipodal points $u_{i},-u_{i} u_{i} \neq 0$, then $\gamma(A)=1$.

Conclusion: In this chapter, we have studied the existence of multiple nontrivial solutions of (p, q) fractional Laplacian equations involving concavecritical type nonlinearities and existence of nonnegative solutions when nonlinearities is of convex-critical type.

There are two major difficulties which we had faced in obtaining the results, first to get the right function space to look for the solution, where we used Besov-Sobolev embedding to obtain Lemma 6.2.4 and secondly, one variant of Concentration Compactness result which is Lemma 6.3.2. (mentioned in Remark 6.3.3). Nobility of our work lies here.

CHAPTER 6. MULTIPLICITY RESULTS FOR (P, Q) FRACTIONAL LAPLACIAN TYPE EQUATIONS INVOLVING CRITICAL NONLINEARITIES

Chapter 7

Equations involving fractional Laplacian with critical and
 supercritical exponents

The aim of this chapter is to study the following problem

$$
\left\{\begin{align*}
&(-\Delta)^{s} u=u^{p}-u^{q} \quad \text { in } \quad \mathbb{R}^{N}, \tag{7.0.1}\\
& u \in H^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right), \\
& u>0 \quad \text { in } \quad \mathbb{R}^{N}
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
(-\Delta)^{s} u & =u^{p}-u^{q} \quad \text { in } \quad \Omega \tag{7.0.2}\\
u=0 & \text { in } \quad \mathbb{R}^{N} \backslash \Omega, \\
u>0 & \text { in } \quad \Omega \\
u & \in H^{s}(\Omega) \cap L^{q+1}(\Omega),
\end{align*}\right.
$$

where $s \in(0,1)$ is fixed, $(-\Delta)^{s}$ denotes the fractional Laplace operator defined, up to a normalization factors,

$$
\begin{equation*}
-(-\Delta)^{s} u(x)=\frac{1}{2} \int_{\mathbb{R}^{N}} \frac{u(x+y)-2 u(x)+u(x-y)}{|y|^{N+2 s}} d y, \quad x \in \mathbb{R}^{N} \tag{7.0.3}
\end{equation*}
$$

In (7.0.1) and (7.0.2), $q>p \geq 2^{*}-1=\frac{N+2 s}{N-2 s}$ and $N>2 s$. In (7.0.2), Ω is a bounded subset of \mathbb{R}^{N} with smooth boundary.

7.1 Preliminaries: Schauder type estimates

Recalling Section 2.5, we note that for $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$ to be a solution of (7.0.1), we define $w:=E_{s}(u)$ be its $s-$ harmonic extension to the upper half space \mathbb{R}_{+}^{N+1}, that is, there is a solution to the following problem:

$$
\begin{cases}\operatorname{div}\left(y^{1-2 s} \nabla w\right)=0 & \text { in } \quad \mathbb{R}_{+}^{N+1} \tag{7.1.1}\\ w=u & \text { on } \quad \mathbb{R}^{N} \times\{y=0\}\end{cases}
$$

Hence, (7.1.1) can be rewritten as:

$$
\left\{\begin{align*}
\operatorname{div}\left(y^{1-2 s} \nabla w\right) & =0 \quad \text { in } \quad \mathbb{R}^{N+1} \tag{7.1.2}\\
\frac{\partial w}{\partial \nu^{2 s}} & =w^{p}(., 0)-w^{q}(., 0) \quad \text { on } \quad \mathbb{R}^{N}
\end{align*}\right.
$$

A function $w \in X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$ is said to be a weak solution to (7.1.2) if for all $\varphi \in X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$, we have
$k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \nabla w \nabla \varphi d x d y=\int_{\mathbb{R}^{N}} w^{p}(x, 0) \varphi(x, 0) d x-\int_{\mathbb{R}^{N}} w^{q}(x, 0) \varphi(x, 0) d x$.

Note that for any weak solution $w \in X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$ to (7.1.2), the function $u:=\operatorname{Tr}(w)=w(., 0) \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$ is a weak solution to (7.0.1).

Next, we recall Schauder estimate for the nonlocal equation by Ros-Oton and Serra [73].

Theorem 7.1.1. [Ros-Oton and Serra, [73]] Let $s \in(0,1)$ and u be any bounded weak solution to

$$
(-\Delta)^{s} u=f \quad \text { in } \quad B_{1}(0)
$$

Then,
(a) If $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and $f \in L^{\infty}\left(B_{1}(0)\right)$,

$$
\|u\|_{C^{2 s}\left(B_{\frac{1}{2}}(0)\right)} \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f|_{L^{\infty}\left(B_{1}(0)\right)}\right) \quad \text { if } \quad s \neq \frac{1}{2}
$$

and

$$
\|u\|_{C^{2 s-\varepsilon}\left(B_{\frac{1}{2}}(0)\right)} \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f|_{L^{\infty}\left(B_{1}(0)\right)}\right) \quad \text { if } \quad s=\frac{1}{2},
$$

for all $\varepsilon>0$.
(b) If $f \in C^{\alpha}\left(B_{1}(0)\right)$ and $u \in C^{\alpha}\left(\mathbb{R}^{N}\right)$ for some $\alpha>0$, then

$$
\|u\|_{C^{\alpha+2 s}\left(B_{\frac{1}{2}}(0)\right)} \leq C\left(\|u\|_{C^{\alpha}\left(\mathbb{R}^{N}\right)}+\|f\|_{C^{\alpha}\left(B_{1}(0)\right)}\right)
$$

whenever $\alpha+2 s$ is not an integer. The constant C depends only on $N, s, \alpha, \varepsilon$.
We conclude this section by recalling some weighted embedding results from Tan and Xiong [80]. For this, we introduce the following notations

$$
Q_{R}=B_{R} \times[0, R) \subset \mathbb{R}^{N+1}
$$

where B_{R} is a ball in \mathbb{R}^{N} with radius R and centered at origin. Note that, $B_{R} \times\{0\} \subset Q_{R}$. We define,

$$
H\left(Q_{R}, y^{1-2 s}\right):=\left\{U \in H^{1}\left(Q_{R}\right): \int_{Q_{R}} y^{1-2 s}\left(U^{2}+|\nabla U|^{2}\right) d x d y<\infty\right\}
$$

and $X_{0}^{2 s}\left(Q_{R}\right)$ is the closure of $C_{0}^{\infty}\left(Q_{R}\right)$ with respect to the norm

$$
\|w\|_{X_{0}^{2 s}\left(Q_{R}\right)}=\left(\int_{Q_{R}} y^{1-2 s}|\nabla w|^{2} d x d y\right)^{\frac{1}{2}}
$$

We note that, $s \in(0,1)$ implies the weight $y^{1-2 s}$ belongs to the Muckenhoupt class A_{2} (see [66]) which consists of all non-negative functions w on \mathbb{R}^{N+1} satisfying for some constant C, the estimate

$$
\sup _{B}\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B} w^{-1} d x\right) \leq C
$$

where the supremum is taken over all balls B in \mathbb{R}^{N+1}.

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH

 CRITICAL AND SUPERCRITICAL EXPONENTSLemma 7.1.2. Let $f \in X_{0}^{2 s}\left(Q_{R}\right)$. Then there exists constant C and $\delta>0$ depending only on N and s such that for any $1 \leq k \leq \frac{n+1}{n}+\delta$,

$$
\left(\int_{Q_{R}} y^{1-2 s}|f|^{2 k} d x d y\right)^{\frac{1}{2 k}} \leq C(R)\left(\int_{Q_{R}} y^{1-2 s}|\nabla f|^{2} d x d y\right)^{\frac{1}{2}}
$$

Proof. It is known from [80, Lemma 2.1] that the lemma holds for $f \in$ $C_{c}^{1}\left(Q_{R}\right)$ (also see [42]). For general f, the lemma can be easily proved applying density argument and Fatou's lemma.

Lemma 7.1.3. Let $f \in X_{0}^{2 s}\left(Q_{R}\right)$. Then there exists a positive constant δ depending only on N and s such that

$$
\int_{B_{R} \times\{y=0\}}|f|^{2} d x \leq \varepsilon \int_{Q_{R}} y^{1-2 s}|\nabla f|^{2} d x d y+\frac{C(R)}{\varepsilon^{\delta}} \int_{Q_{R}} y^{1-2 s}|f|^{2} d x d y
$$

for any $\varepsilon>0$.
Proof. If $f \in C_{c}^{1}\left(Q_{R}\right)$, then the lemma holds (see [80, Lemma 2.3]). For $f \in X_{0}^{2 s}\left(Q_{R}\right)$, there exists $f_{n} \in C_{0}^{\infty}\left(Q_{R}\right)$ such that $f_{n} \rightarrow f$ in $\|\cdot\|_{X_{0}^{2 s}\left(Q_{R}\right)}$ and for f_{n}, we have

$$
\begin{equation*}
\int_{B_{R} \times\{y=0\}}\left|f_{n}\right|^{2} d x \leq \varepsilon \int_{Q_{R}} y^{1-2 s}\left|\nabla f_{n}\right|^{2} d x d y+\frac{C(R)}{\varepsilon^{\delta}} \int_{Q_{R}} y^{1-2 s}\left|f_{n}\right|^{2} d x d y \tag{7.1.4}
\end{equation*}
$$

for any $\varepsilon>0$. Clearly the 1 st integral on RHS converges to $\int_{Q_{R}} y^{1-2 s}|\nabla f|^{2} d x d y$. Thanks to Lemma 7.1.2, it follows that the embedding $X_{0}^{2 s}\left(Q_{R}\right) \hookrightarrow$ $L^{2}\left(Q_{R}, y^{1-2 s}\right)$ is continuous. Therefore, we can also pass to the limit in the 2nd integral of the RHS. On the other hand, using the trace embedding result, we can also pass to the limit on LHS. Hence, the lemma follows.

In the next section, we will recall some basic definitions.

7.2 Definitions

Definition 7.2.1. (Weak solution) We say that $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right)$ is a weak solution of $E q$. (7.0.1), if $u>0$ in \mathbb{R}^{N} and for every $\varphi \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$,

$$
\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(u(x)-u(y))(\varphi(x)-\varphi(y))}{|x-y|^{N+2 s}} d x d y=\int_{\mathbb{R}^{N}} u^{p} \varphi d x-\int_{\mathbb{R}^{N}} u^{q} \varphi d x
$$

or equivalently,

$$
\int_{\mathbb{R}^{N}}(-\Delta)^{\frac{s}{2}} u(-\Delta)^{\frac{s}{2}} \varphi d x=\int_{\mathbb{R}^{N}} u^{p} \varphi d x-\int_{\mathbb{R}^{N}} u^{q} \varphi d x .
$$

Similarly, when Ω is a bounded domain, we say $u \in X_{0} \cap L^{q+1}(\Omega)$ is a weak solution of Eq. (7.0.2) if $u>0$ in Ω and for every $\varphi \in X_{0}$, the above integral expression holds.

Definition 7.2.2. (Classical solution) A positive function $u \in C^{2 s+\alpha}\left(\mathbb{R}^{N}\right) \cap$ $L^{1}\left(\mathbb{R}^{N}, \frac{d x}{(1+|x|)^{N+2 s}}\right)$ is said to be a classical solution of

$$
\begin{equation*}
(-\Delta)^{s} u=f(u) \quad \text { in } \quad \mathbb{R}^{N} \tag{7.2.1}
\end{equation*}
$$

if $(-\Delta)^{s} u$ can be written as (7.0.3) and (7.2.1) is satisfied pointwise in all \mathbb{R}^{N}.

7.3 Main results

We turn now to a brief description of the main theorems presented below.
Theorem 7.3.1. Let $s \in(0,1), p \geq 2^{*}-1$ and $q>(p-1) \frac{N}{2 s}-1$. If u is any weak solution of $E q .(7.0 .1)$ or $E q .(7.0 .2)$, then $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$. Moreover, if $\Omega=\mathbb{R}^{N}$, then there exist two positive constants C_{1}, C_{2} such that

$$
\begin{equation*}
C_{1}|x|^{-(N-2 s)} \leq u(x) \leq C_{2}|x|^{-(N-2 s)}, \quad|x|>R_{0}, \tag{7.3.1}
\end{equation*}
$$

for some $R_{0}>0$.

Theorem 7.3.2. Let s, p, q are as in Theorem 7.3.1.
(i) If u is a weak solution of Eq. (7.0.1), then $u \in C^{\infty}\left(\mathbb{R}^{N}\right)$ if both p and q are integer and $u \in C^{2 k s+2 s}\left(\mathbb{R}^{N}\right)$, where k is the largest integer satisfying $\lfloor 2 k s\rfloor<p$ if $p \notin \mathbb{N}$ and $\lfloor 2 k s\rfloor<q$ if $p \in \mathbb{N}$ but $q \notin \mathbb{N}$, where $\lfloor 2 k s\rfloor$ denotes the greatest integer less than equal to $2 k s$.
(ii) If u is a weak solution of Eq.(7.0.2), then $u \in C^{s}\left(\mathbb{R}^{N}\right) \cap C_{\text {loc }}^{2 s+\alpha}(\Omega)$, for some $\alpha \in(0,1)$.

Theorem 7.3.3. Let s, p, q are as in Theorem 7.3.1. If u is a solution of Eq.(7.0.1), then

$$
\begin{equation*}
|\nabla u(x)| \leq C|x|^{-(N-2 s+1)}, \quad|x|>R^{\prime} \tag{7.3.2}
\end{equation*}
$$

for some positive constants C and R^{\prime}.

Theorem 7.3.4. Let $s \in(0,1)$ and $p=2^{*}-1$ and $q>p$. Then (7.0.1) does not have any solution.

We define the functional

$$
\begin{equation*}
F(v, \Omega)=\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\Omega}|v|^{q+1} d x . \tag{7.3.3}
\end{equation*}
$$

Define,

$$
\begin{equation*}
\mathcal{K}:=\inf \left\{F\left(v, \mathbb{R}^{N}\right): v \in \dot{H}^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|v|^{p+1} d x=1\right\} \tag{7.3.4}
\end{equation*}
$$

Theorem 7.3.5. Let $s \in(0,1)$ and $q>p>2^{*}-1$. Then \mathcal{K} in (7.3.4) is achieved by a radially decreasing function $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right)$ and Eq.(7.0.1) admits a nonnegative solution. Furthermore, if $q>(p-1) \frac{N}{2 s}-1$, then Eq. (7.0.1) admits a positive solution.

When Ω is a smooth bounded domain, we define

$$
\begin{equation*}
S_{\Omega}:=\inf \left\{F(v, \Omega): v \in X_{0}(\Omega) \cap L^{q+1}(\Omega), \int_{\Omega}|v|^{p+1} d x=1\right\} \tag{7.3.5}
\end{equation*}
$$

Theorem 7.3.6. Let $s \in(0,1)$ and $q>p \geq 2^{*}-1$. Then \mathcal{S}_{Ω} in (7.3.5) is achieved by a function $u \in X_{0}(\Omega) \cap L^{q+1}(\Omega)$. Furthermore, there exists a constant $\lambda>0$, such that u satisfies

$$
\left\{\begin{align*}
(-\Delta)^{s} u & =\lambda|u|^{p-1} u-|u|^{q-1} u \quad \text { in } \quad \Omega, \tag{7.3.6}\\
u & =0 \quad \text { in } \quad \mathbb{R}^{N} \backslash \Omega .
\end{align*}\right.
$$

Furthermore, if $p \geq 2^{*}-1$ and $q>(p-1) \frac{N}{2 s}-1$, then Eq.(7.3.6) admits a positive solution.

Note that the scaled function $U=\lambda^{\frac{1}{p-1}} u$ satisfies the equation

$$
\begin{equation*}
(-\Delta)^{s} U=U^{p}-c^{*} U^{q}, \quad c^{*}=\lambda^{-\frac{q-1}{p-1}} \tag{7.3.7}
\end{equation*}
$$

Few notations:
We use the notation $C^{\beta}\left(\mathbb{R}^{N}\right)$, with $\beta>0$ to refer the space $C^{k, \beta^{\prime}}\left(\mathbb{R}^{N}\right)$, where k is the greatest integer such that $k<\beta$ and $\beta^{\prime}=\beta-k$. According to this, $[\cdot]_{C^{\beta}\left(\mathbb{R}^{N}\right)}$ denotes the following seminorm

$$
[u]_{C^{\beta}\left(\mathbb{R}^{N}\right)}=[u]_{C^{k, \beta^{\prime}}\left(\mathbb{R}^{N}\right)}=\sup _{x, y \in \mathbb{R}^{N}, x \neq y} \frac{\left|D^{k} u(x)-D^{k} u(y)\right|}{|x-y|^{\beta^{\prime}}} .
$$

Throughout this paper, C denotes the generic constant, which may vary from line to line and \mathbf{n} denotes the unit outward normal.

7.4 Decay estimates and Regularity results

In this section we prove Theorem 7.3.1, Theorem 7.3.2 and Theorem 7.3.3.

Proof of Theorem 7.3.1

Proof. Case 1: Suppose $\Omega=\mathbb{R}^{N}$.
Let u be an arbitrary weak solution of Eq.(7.0.1). We first prove that $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ by Moser iterative technique (see, for example [52, 80]). From

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH CRITICAL AND SUPERCRITICAL EXPONENTS

Section-2, we know that $w(x, y)$, the s-harmonic extension of u, is a solution of (7.1.2).

Let B_{r} denote the ball in \mathbb{R}^{N} of radius r and centered at origin. We define

$$
Q_{r}=B_{r} \times[0, r) .
$$

Set $\bar{w}=w^{+}+1$ and for $L>1$, define

$$
w_{L}= \begin{cases}\bar{w} & \text { if } \quad w<L \\ 1+L & \text { if } \quad w \geq L\end{cases}
$$

For $t>1$, we choose the test function φ in (7.1.3) as follows:

$$
\begin{equation*}
\varphi(x, y)=\eta^{2}(x, y)\left(\bar{w}(x, y) w_{L}^{2(t-1)}(x, y)-1\right) \tag{7.4.1}
\end{equation*}
$$

where $\eta \in C_{0}^{\infty}\left(Q_{R}\right)$ with $0 \leq \eta \leq 1, \eta=1$ in $Q_{r}, 0<r<R \leq 1$ and $|\nabla \eta| \leq \frac{2}{R-r}$. Note that $\varphi \in X^{2 s}\left(\mathbb{R}_{+}^{N+1}\right)$. Using this test function φ, we obtain from (7.1.3)

$$
\begin{align*}
& k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \nabla w(x, y) \nabla\left(\eta^{2}(x, y)\left(\bar{w}(x, y) w_{L}^{2(t-1)}(x, y)-1\right)\right) d x d y \\
& \quad=\int_{\mathbb{R}^{N}}\left(w^{p}(x, 0)-w^{q}(x, 0)\right) \eta^{2}(x, 0)\left(\bar{w}(x, 0) w_{L}^{2(t-1)}(x, 0)-1\right) d x \tag{7.4.2}
\end{align*}
$$

Direct calculation yields

$$
\begin{align*}
\nabla\left(\eta^{2}\left(\bar{w} w_{L}^{2(t-1)}-1\right)\right) & =2 \eta\left(\bar{w} w_{L}^{2(t-1)}-1\right) \nabla \eta \\
& +\eta^{2} w_{L}^{2(t-1)} \nabla \bar{w}+2(t-1) \eta^{2} \bar{w} w_{L}^{2(t-1)-1} \nabla w_{L} \tag{7.4.3}
\end{align*}
$$

Here we observe that on the set $\{w<0\}$, we have $\varphi=0$ and $\nabla \varphi=0$. Thus (7.4.2) remains same if we change the domain of integration to $\{w \geq$ $0\}$. Therefore, in the support of the integrand $\nabla w=\nabla \bar{w}$. As a result,
substituting (7.4.3) into (7.4.2), it follows

$$
\begin{aligned}
& k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left(2 \eta\left(\bar{w} w_{L}^{2(t-1)}-1\right) \nabla \eta \nabla \bar{w}\right. \\
& \left.\quad+\eta^{2} w_{L}^{2(t-1))} \nabla \bar{w} \nabla w+2(t-1) \eta^{2} w_{L}^{2(t-1)-1} \bar{w} \nabla w_{L} \nabla w\right)(x, y) d x d y \\
& \quad \leq \int_{\mathbb{R}^{N}} \eta^{2}(x, 0) w^{p}(x, 0) \bar{w}(x, 0) w_{L}^{2(t-1)}(x, 0) d x
\end{aligned}
$$

Notice that in the support of the integrand of second integral on the LHS $\nabla \bar{w}=\nabla w$ and in the third integral $w_{L}=\bar{w}, \nabla w_{L}=\nabla w$. Hence the above expression reduces to

$$
\begin{align*}
& k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left(2 \eta\left(\bar{w} w_{L}^{2(t-1)}-1\right) \nabla \eta \nabla \bar{w}\right. \\
& \left.\quad+\eta^{2} w_{L}^{2(t-1))}|\nabla \bar{w}|^{2}+2(t-1) \eta^{2} w_{L}^{2(t-1)}\left|\nabla w_{L}\right|^{2}\right)(x, y) d x d y \\
& \quad \leq \int_{\mathbb{R}^{N}} \eta^{2}(x, 0) \bar{w}^{p+1}(x, 0) w_{L}^{2(t-1)}(x, 0) d x \tag{7.4.4}
\end{align*}
$$

where for the RHS, we have used the fact that $w \leq \bar{w}$.
Using Young's inequality we have,

$$
\begin{equation*}
\left|2 \eta\left(\bar{w} w_{L}^{2(t-1)}-1\right) \nabla \eta \nabla \bar{w}\right| \leq \frac{1}{2} \eta^{2} w_{L}^{2(t-1)}|\nabla \bar{w}|^{2}+2 \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2} . \tag{7.4.5}
\end{equation*}
$$

Using (7.4.5), from (7.4.4) we obtain,

$$
\begin{array}{r}
\frac{k_{2 s}}{2} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left(|\nabla \bar{w}|^{2}+(t-1)\left|\nabla w_{L}\right|^{2}\right) \eta^{2} w_{L}^{2(t-1)}(x, y) d x d y \\
\leq 2 k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2}(x, y) d x d y \\
+\int_{\mathbb{R}^{N}} \bar{w}^{p+1} w_{L}^{2(t-1)} \eta^{2}(x, 0) d x . \tag{7.4.6}
\end{array}
$$

As $t>1$ and $\nabla w_{L}=0$ for $w \geq L$, it is not difficult to observe that,

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{t-1}\right)\right|^{2} d x d y \\
& \leq 3 \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left(\bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2}+\eta^{2} w_{L}^{2(t-1)}|\nabla \bar{w}|^{2}\right. \\
& \left.+(t-1)^{2} \eta^{2} w_{L}^{2(t-1)}\left|\nabla w_{L}\right|^{2}\right) d x d y \\
& \leq 3 t \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2} d x d y \\
& +3 t \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left(|\nabla \bar{w}|^{2}+(t-1)\left|\nabla w_{L}\right|^{2}\right) \eta^{2} w_{L}^{2(t-1)} d x d y . \tag{7.4.7}
\end{align*}
$$

Combining (7.4.7) and (7.4.6), we have

$$
\begin{align*}
& k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{t-1}\right)\right|^{2} d x d y \\
& \leq 3 t k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2} d x d y \\
& +3 t\left\{4 k_{2 s} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2}(x, y) d x d y\right. \\
& \left.\quad+2 \int_{\mathbb{R}^{N}} \bar{w}^{p+1} w_{L}^{2(t-1)} \eta^{2}(x, 0) d x\right\} . \tag{7.4.8}
\end{align*}
$$

For $p \geq 2^{*}-1$, choose $\alpha>1$ as follows:

$$
\begin{equation*}
\frac{N}{2 s}<\alpha<\frac{q+1}{p-1} . \tag{7.4.9}
\end{equation*}
$$

Note that for $p=2^{*}-1$ the interval $\left(\frac{N}{2 s}, \frac{q+1}{p-1}\right)$ is always a nonempty set. On the other hand, as $q>(p-1) \frac{N}{2}-1$, it follows $\left(\frac{N}{2 s}, \frac{q+1}{p-1}\right) \neq \emptyset$, when $p>2^{*}-1$. From (7.4.9) we have,

$$
(p-1) \alpha<q+1 \quad \text { and } \quad 2<\frac{2 \alpha}{\alpha-1}<2^{*} .
$$

As $\operatorname{supp}(\eta(\cdot, 0)) \subset B_{R}$ and $w(x, 0)=u \in L^{q+1}\left(\mathbb{R}^{N}\right)$, it follows $\bar{w}(\cdot, 0)=$ $w^{+}(x, 0)+1=u+1 \in L^{q+1}\left(B_{1}\right)$. This along with the fact that $\operatorname{supp} \eta \subset Q_{R}$, where $R<1$, we obtain

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} \bar{w}^{p+1} w_{L}^{2(t-1)} \eta^{2}(x, 0) d x \\
& =\int_{B_{1}} \bar{w}^{p+1} w_{L}^{2(t-1)} \eta^{2}(x, 0) d x \\
& =\int_{B_{1}}\left|\eta \bar{w} w_{L}^{(t-1)}(x, 0)\right|^{2} \bar{w}^{p-1}(x, 0) d x \\
& \leq\left(\int_{B_{1}} \bar{w}^{\alpha(p-1)}(x, 0) d x\right)^{\frac{1}{\alpha}}\left(\int_{B_{R}}\left|\eta \bar{w} w_{L}^{(t-1)}\right|^{\frac{2 \alpha}{\alpha-1}}(x, 0) d x\right)^{\frac{\alpha-1}{\alpha}} \\
& \leq C\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{\frac{2 \alpha}{\alpha-1}\left(B_{R}\right)}}^{2} \tag{7.4.10}
\end{align*}
$$

By interpolation inequality,

$$
\begin{equation*}
\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{\frac{2 \alpha}{\alpha-1}}\left(B_{R}\right)}^{2} \leq\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{2}\left(B_{R}\right)}^{2 \theta}\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{2^{*}}\left(B_{R}\right)}^{2(1-\theta)}, \tag{7.4.11}
\end{equation*}
$$

where θ is determined by

$$
\begin{equation*}
\frac{\alpha-1}{2 \alpha}=\frac{\theta}{2}+\frac{1-\theta}{2^{*}} . \tag{7.4.12}
\end{equation*}
$$

Applying Young's inequality, (7.4.11) yields

$$
\begin{align*}
\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{\frac{2 \alpha}{\alpha-1}\left(B_{R}\right)}} & \leq C(s, \alpha, N) \varepsilon^{2}\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{2^{*}}\left(\mathbb{R}^{N}\right)}^{2} \\
& +C(\alpha, s, N) \varepsilon^{-\frac{2(1-\theta)}{\theta}}\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{2}\left(B_{R}\right)}^{2} \tag{7.4.13}
\end{align*}
$$

Therefore, using Sobolev Trace inequality (2.5.3) and the value of θ from (7.4.12), we have

$$
\begin{align*}
\left|\eta \bar{w} w_{L}^{(t-1)}\right|_{L^{\frac{2 \alpha}{\alpha-1}}\left(B_{R}\right)}^{2} \leq & C(s, \alpha, N) \varepsilon^{2} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{(t-1)}\right)\right|^{2} d x d y \\
& +C(\alpha, s, N) \varepsilon^{-\frac{2 N}{2 \alpha s-N}} \int_{B_{R}}\left|\eta \bar{w} w_{L}^{(t-1)}(x, 0)\right|^{2} d x \tag{7.4.14}
\end{align*}
$$

Thanks to Lemma 7.1.3, for $\delta>0$ we have

$$
\begin{align*}
\int_{B_{R}}\left|\eta \bar{w} w_{L}^{(t-1)}(x, 0)\right|^{2} d x & =\int_{B_{1}}\left|\eta w w_{L}^{(t-1)}(x, 0)\right|^{2} d x \\
& \leq \delta \int_{Q_{1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{(t-1)}\right)\right|^{2} d x d y \\
& +\frac{C}{\delta^{\beta}} \int_{Q_{1}} y^{1-2 s}\left|\eta \bar{w} w_{L}^{(t-1)}\right|^{2} d x d y \tag{7.4.15}
\end{align*}
$$

where $\beta=\frac{s^{\prime}+1}{s^{\prime}-1}$, with some $1<s^{\prime}<\frac{1}{1-s}$. Substituting (7.4.15) in (7.4.14) and then (7.4.14) in (7.4.10) yields

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} \bar{w}^{p+1} w_{L}^{2(t-1)} \eta^{2}(x, 0) d x \\
& \leq C(s, \alpha, N) \varepsilon^{2} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{(t-1)}\right)\right|^{2} d x d y \\
& +C(\alpha, s, N) \varepsilon^{-\frac{2 N}{2 \alpha s-N}} \delta \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{(t-1)}\right)\right|^{2} d x d y \\
& +C(\alpha, s, N) \varepsilon^{-\frac{2 N}{2 r s-N}} \frac{1}{\delta^{\beta}} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\eta \bar{w} w_{L}^{(t-1)}\right|^{2} d x d y . \tag{7.4.16}
\end{align*}
$$

Consequently, substituting (7.4.16) in (7.4.8), we obtain

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{t-1}\right)\right|^{2} d x d y \\
& \leq C t \int_{\mathbb{R}^{N+1}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2} d x d y \\
& +C t\left(\varepsilon^{2}+\varepsilon^{-\frac{2 N}{2 \alpha s-N}} \delta\right) \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{(t-1)}\right)\right|^{2} d x d y \\
& +C t \varepsilon^{-\frac{2 N}{2 \alpha s-N}} \delta^{-\beta} \int_{\mathbb{R}^{N+1}} y^{1-2 s}\left|\eta \bar{w} w_{L}^{(t-1)}\right|^{2} d x d y . \tag{7.4.17}
\end{align*}
$$

Choose

$$
\varepsilon=\frac{1}{2 \sqrt{C t}} \quad \text { and } \quad \delta=\frac{\varepsilon^{\frac{2 N}{2 \alpha s-N}}}{4 C t} .
$$

Hence, from (7.4.17), a direct calculation yields

$$
\begin{align*}
& \frac{1}{2} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{t-1}\right)\right|^{2} d x d y \\
& \leq C t \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)}|\nabla \eta|^{2} d x d y \\
& +C t^{\frac{2 \alpha s(\beta+1)}{2 \alpha s-N}} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left|\eta \bar{w} w_{L}^{(t-1)}\right|^{2} d x d y \\
& \leq C t^{\gamma} \int_{\mathbb{R}_{+}^{N+1}} y^{1-2 s}\left(\eta^{2}+|\nabla \eta|^{2}\right) \bar{w}^{2} w_{L}^{2(t-1)} d x d y . \tag{7.4.18}
\end{align*}
$$

where $\gamma=\frac{2 \alpha s(\beta+1)}{2 \alpha s-N}$. Applying Sobolev inequality (see Lemma 7.1.2), we ob-
tain from (7.4.18)

$$
\begin{aligned}
& \left(\int_{Q_{1}} y^{1-2 s}\left|\eta \bar{w} w_{L}^{t-1}\right|^{2 \chi} d x d y\right)^{\frac{1}{\chi}} \\
& \leq C \int_{Q_{1}} y^{1-2 s}\left|\nabla\left(\eta \bar{w} w_{L}^{t-1}\right)\right|^{2} d x d y \\
& \leq C t^{\gamma} \int_{Q_{1}} y^{1-2 s}\left(\eta^{2}+|\nabla \eta|^{2}\right) \bar{w}^{2} w_{L}^{2(t-1)} d x d y
\end{aligned}
$$

where $\chi=\frac{N+1}{N}>1$. Now using the fact that $0<r<R<1, \eta=1$ in Q_{r}, $|\nabla \eta| \leq \frac{2}{R-r}$ and supp $\eta=Q_{R}$, we get

$$
\left(\int_{Q_{r}} y^{1-2 s} \bar{w}^{2 \chi} w_{L}^{2(t-1) \chi} d x d y\right)^{\frac{1}{\chi}} \leq \frac{C t^{\gamma}}{(R-r)^{2}} \int_{Q_{R}} y^{1-2 s} \bar{w}^{2} w_{L}^{2(t-1)} d x d y
$$

As $w_{L} \leq \bar{w}$, the above expression yields,

$$
\left(\int_{Q_{r}} y^{1-2 s} w_{L}^{2 t \chi} d x d y\right)^{\frac{1}{\chi}} \leq \frac{C t^{\gamma}}{(R-r)^{2}} \int_{Q_{R}} y^{1-2 s} \bar{w}^{2 t} d x d y
$$

provided the right-hand side is bounded. Passing to the limit $L \rightarrow \infty$ via Fatou's lemma we obtain

$$
\left(\int_{Q_{r}} y^{1-2 s} \bar{w}^{2 t \chi} d x d y\right)^{\frac{1}{\chi}} \leq \frac{C t^{\gamma}}{(R-r)^{2}} \int_{Q_{R}} y^{1-2 s} \bar{w}^{2 t} d x d y
$$

that is,

$$
\begin{equation*}
\left(\int_{Q_{r}} y^{1-2 s} \bar{w}^{2 t \chi} d x d y\right)^{\frac{1}{2 \chi t}} \leq\left(\frac{C t^{\gamma}}{(R-r)^{2}}\right)^{\frac{1}{2 t}}\left(\int_{Q_{R}} y^{1-2 s} \bar{w}^{2 t} d x d y\right)^{\frac{1}{2 t}} \tag{7.4.19}
\end{equation*}
$$

Now we iterate the above relation. We take $t_{i}=\chi^{i}$ and $r_{i}=\frac{1}{2}+\frac{1}{2^{i+1}}$ for $i=0,1,2, \ldots$ Note that $t_{i}=\chi t_{i-1}, r_{i-1}-r_{i}=\frac{1}{2^{2+1}}$. Hence from (7.4.19), with $t=t_{i}, r=r_{i}, R=r_{i-1}$, we have

$$
\left(\int_{Q_{r_{i}}} y^{1-2 s} \bar{w}^{2 t_{i+1}} d x d y\right)^{\frac{1}{2 t_{i+1}}} \leq C^{\frac{i}{\chi^{2}}}\left(\int_{Q_{r_{i-1}}} y^{1-2 s} \bar{w}^{2 t_{i}} d x d y\right)^{\frac{1}{2 t_{i}}}, \quad i=0,1,2, \cdots,
$$

where C depend only on N, s, p, q. Hence, by iteration we have

$$
\left(\int_{Q_{r_{i}}} y^{1-2 s} \bar{w}^{2 t_{i+1}} d x d y\right)^{\frac{1}{2 t_{i+1}}} \leq C^{\sum \frac{i}{\chi^{i}}}\left(\int_{Q_{r_{0}}} y^{1-2 s} \bar{w}^{2 t_{0}} d x d y\right)^{\frac{1}{2 t_{0}}}, \quad i=0,1,2, \cdots
$$

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH

 CRITICAL AND SUPERCRITICAL EXPONENTSLetting $i \rightarrow \infty$ we have

$$
\sup _{Q_{\frac{1}{2}}} \bar{w} \leq C|\bar{w}|_{L^{2}\left(Q_{1}, y^{1-2 s}\right)}
$$

which in turn implies

$$
\sup _{B_{\frac{1}{2}}} u=\sup _{B_{\frac{1}{2}}} w^{+} \leq \sup _{Q_{\frac{1}{2}}} w^{+} \leq C|w|_{L^{2}\left(Q_{1}, y^{1-2 s}\right)} .
$$

Hence, $u \in L^{\infty}\left(B_{\frac{1}{2}}(0)\right)$. Translating the equation, similarly it follows that $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$.

To show the L^{∞} bound at infinity, we define the Kelvin transform of u by the function \tilde{u} as follows:

$$
\tilde{u}(x)=\frac{1}{|x|^{N-2 s}} u\left(\frac{x}{|x|^{2}}\right), \quad x \in \mathbb{R}^{N} \backslash\{0\} .
$$

It follows from [70, Proposition A.1],

$$
\begin{equation*}
(-\Delta)^{s} \tilde{u}(x)=\frac{1}{|x|^{N+2 s}}(-\Delta)^{s} u\left(\frac{x}{|x|^{2}}\right) . \tag{7.4.20}
\end{equation*}
$$

Thus

$$
\begin{aligned}
(-\Delta)^{s} \tilde{u}(x) & =\frac{1}{|x|^{N+2 s}}\left(u^{p}\left(\frac{x}{|x|^{2}}\right)-u^{q}\left(\frac{x}{|x|^{2}}\right)\right) \\
& =\frac{1}{|x|^{N+2 s}}\left(|x|^{p(N-2 s)} \tilde{u}^{p}(x)-|x|^{q(N-2 s)} \tilde{u}^{q}(x)\right) .
\end{aligned}
$$

This implies \tilde{u} satisfies the following equation

$$
\left\{\begin{align*}
(-\Delta)^{s} \tilde{u} & =|x|^{p(N-2 s)-(N+2 s)} \tilde{u}^{p}-|x|^{q(N-2 s)-(N+2 s)} \tilde{u}^{q} \quad \text { in } \quad \mathbb{R}^{N}, \tag{7.4.21}\\
\tilde{u} & \in \dot{H}^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N},|x|^{(N-2 s)(q+1)-2 N}\right), \\
\tilde{u} & >0 \quad \mathbb{R}^{N} .
\end{align*}\right.
$$

That is,

$$
\begin{equation*}
(-\Delta)^{s} \tilde{u}=f(x, \tilde{u}) \quad \text { in } \quad \mathbb{R}^{N}, \tag{7.4.22}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x, \tilde{u}):=|x|^{p(N-2 s)-(N+2 s)} \tilde{u}^{p}-|x|^{q(N-2 s)-(N+2 s)} \tilde{u}^{q} . \tag{7.4.23}
\end{equation*}
$$

Since $q>p \geq \frac{N+2 s}{N-2 s}$, we get $(-\Delta)^{s} \tilde{u} \leq \tilde{u}^{p}$ in $\left(B_{1}(0)\right)$. Applying the Moser iteration technique along the same line of arguments as above with a suitable modification, we get $\sup _{B_{\rho}(0)} \tilde{u} \leq C$, for some $\rho>0$ and C is a positive constant. This in turn implies,

$$
\begin{equation*}
u(x) \leq \frac{C}{|x|^{N-2 s}}, \quad|x|>R_{0} \tag{7.4.24}
\end{equation*}
$$

for some large R_{0}. Hence, $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$. As a consequence $\tilde{u} \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and therefore $(-\Delta)^{s} \tilde{u} \in L^{\infty}\left(B_{1}(0)\right)$. Applying Theorem 7.1.1, it follows that $\tilde{u} \in C\left(B_{\frac{1}{2}}(0)\right)$. Thus there exists $C_{1}>0$ such that $\tilde{u}>C_{1}$ in $\left(B_{\frac{1}{2}}(0)\right)$, which in turn implies $u(x)>\frac{C_{1}}{|x|^{N-2 s}}$, for $|x|>2$. This along with (7.4.24), yields (7.3.1) .

Case 2: Ω is a bounded domain.
Arguing along the same line with minor modifications, it can be shown that $u \in L^{\infty}(\Omega)$. Therefore the conclusion follows as $u=0$ in $\mathbb{R}^{N} \backslash \Omega$.

Proof of Theorem 7.3.2:

Proof. (i) From Theorem 7.3.1, we know any solution u of Eq.(7.0.1) is in $L^{\infty}\left(\mathbb{R}^{N}\right)$. Therefore, we have

$$
\begin{equation*}
(-\Delta)^{s} u=f(u), \quad f(u):=u^{p}-u^{q} \in L^{\infty}\left(\mathbb{R}^{N}\right) \tag{7.4.25}
\end{equation*}
$$

As a result, applying Theorem 7.1.1(a), we obtain

$$
\begin{align*}
\|u\|_{C^{2 s}\left(B_{\frac{1}{2}}(0)\right)} & \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f(u)|_{L^{\infty}\left(B_{1}(0)\right)}\right) \\
& \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f(u)|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right) \quad \text { if } \quad s \neq \frac{1}{2}, \tag{7.4.26}\\
\|u\|_{C^{2 s-\varepsilon}\left(B_{\frac{1}{2}}(0)\right)} & \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f(u)|_{L^{\infty}\left(B_{1}(0)\right)}\right) \\
& \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f(u)|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right) \quad \text { if } \quad s=\frac{1}{2}, \tag{7.4.27}
\end{align*}
$$

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH CRITICAL AND SUPERCRITICAL EXPONENTS

for all $\varepsilon>0$. Here the constants C are independent of u, but may depend on radius $\frac{1}{2}$ and centre 0 . Since the equation is invariant under translation, translating the equation, we obtain

$$
\begin{align*}
\|u\|_{C^{2 s}\left(B_{\frac{1}{2}}(y)\right)} & \leq C\left(|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+|f(u)|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right. \\
& \leq C\left(1+|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)^{q} \quad \text { when } \quad s \neq \frac{1}{2}, \tag{7.4.28}\\
\|u\|_{C^{2 s-\varepsilon}\left(B_{\frac{1}{2}}(y)\right)} \leq & C\left(1+|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)^{q} \quad \text { when } \quad s=\frac{1}{2}, \tag{7.4.29}
\end{align*}
$$

Note that in (7.4.28) and (7.4.29) constants C are same as in (7.4.26) and (7.4.27) respectively. Thus, in (7.4.28) and (7.4.29) constants do not depend on y. This implies $u \in C^{2 s}\left(\mathbb{R}^{N}\right)$ when $s \neq \frac{1}{2}$ and in $C^{2 s-\varepsilon}\left(\mathbb{R}^{N}\right)$, when $s=\frac{1}{2}$. Hence, $f(u) \in C^{2 s}\left(\mathbb{R}^{N}\right)$ when $s \neq \frac{1}{2}$ and in $C^{2 s-\varepsilon}\left(\mathbb{R}^{N}\right)$, when $s=\frac{1}{2}$. Therefore, applying Theorem 7.1.1(b), we have

$$
\begin{align*}
\|u\|_{C^{4 s}\left(B_{\frac{1}{2}}(0)\right)} & \leq C\left(\|u\|_{C^{2 s}\left(\mathbb{R}^{N}\right)}+\|f(u)\|_{C^{2 s}\left(B_{1}(0)\right)}\right) \\
& \leq C\left(\|u\|_{C^{2 s}\left(\mathbb{R}^{N}\right)}+\|f(u)\|_{C^{2 s}\left(\mathbb{R}^{N}\right)}\right) \\
& \leq C\left(1+|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)^{2 q} \quad \text { if } \quad s \neq \frac{1}{4}, \frac{1}{2}, \frac{3}{4} . \tag{7.4.30}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\|u\|_{C^{4 s-\varepsilon}\left(B_{\frac{1}{2}}(0)\right)} & \leq C\left(\|u\|_{C^{2 s-\varepsilon}\left(\mathbb{R}^{N}\right)}+\|f(u)\|_{C^{2 s-\varepsilon}\left(B_{1}(0)\right)}\right) \\
& \leq C\left(1+|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)}\right)^{2 q} \quad \text { if } \quad s=\frac{1}{2} \text { and } 4 s-\varepsilon \notin \mathbb{N} . \tag{7.4.31}
\end{align*}
$$

Arguing as before, we can show that $u \in C^{4 s}\left(\mathbb{R}^{N}\right)$ when $s \neq \frac{1}{2}$ and in $C^{4 s-\varepsilon}\left(\mathbb{R}^{N}\right)$, when $s=\frac{1}{2}$. We can repeat this argument to improve the regularity $C^{\infty}\left(\mathbb{R}^{N}\right)$ if both p and q are integer and $C^{2 k s+2 s}\left(\mathbb{R}^{N}\right)$, where k is the largest integer satisfying $\lfloor 2 k s\rfloor<p$ if $p \notin \mathbb{N}$ and $\lfloor 2 k s\rfloor<q$ if $p \in \mathbb{N}$ but $q \notin \mathbb{N}$, where $\lfloor 2 k s\rfloor$ denotes the greatest integer less than equal to $2 k s$.
(ii) Suppose, u is an arbitrary solution of (7.0.2), then by Theorem 7.3.1, $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and thus $f(u)=u^{p}-u^{q} \in L^{\infty}\left(\mathbb{R}^{N}\right)$. Consequently, by [70,

Proposition 1.1], it follows $u \in C^{s}\left(\mathbb{R}^{N}\right)$. Since $q, p>1$, we have $f(u) \in$ $C_{\text {loc }}^{s}\left(\mathbb{R}^{N}\right)$. Therefore by Theorem 7.1.1(ii), $u \in C_{l o c}^{2 s+\alpha}(\Omega)$ for some $\alpha \in(0,1)$.

Proposition 7.4.1. Let p, q, s are as in Theorem 7.3.1. If u is any nonnegative weak solution of Eq.(7.0.1) or (7.0.2), then u is a classical solution.

Proof. Case 1: Let u be a weak solution of (7.0.1).
First, we show that $(-\Delta)^{s} u(x)$ can be defined as in (7.0.3). Using $u \in$ $L^{\infty}\left(\mathbb{R}^{N}\right)$, we see that

$$
\left|\int_{\mathbb{R}^{N} \backslash B_{\frac{1}{2}}(0)} \frac{u(x+y)-2 u(x)+u(x-y)}{|y|^{N+2 s}} d y\right| \leq C \int_{\mathbb{R}^{N} \backslash B_{\frac{1}{2}}(0)} \frac{d y}{|y|^{N+2 s}}<\infty .
$$

On the other hand, since by Theorem 7.3.2, $u \in C_{l o c}^{2 s+\alpha}\left(\mathbb{R}^{N}\right)$ for some $\alpha \in$ $(0,1)$, it follows that $\left|\int_{B_{\frac{1}{2}}(0)} \frac{u(x+y)-2 u(x)+u(x-y)}{|y|^{N+2 s}} d y\right|<\infty$. Hence $(-\Delta)^{s} u(x)$ is defined pointwise.

Next, we show that the Eq. (7.0.1) is satisfied in pointwise sense. u is a weak solution implies

$$
\int_{\mathbb{R}^{N}}(-\Delta)^{\frac{s}{2}} u(-\Delta)^{\frac{s}{2}} \varphi d x=\int_{\mathbb{R}^{N}} u^{p} \varphi d x-\int_{\mathbb{R}^{N}} u^{q} \varphi d x \quad \forall \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right) .
$$

This in turn implies

$$
\int_{\mathbb{R}^{N}} \varphi(-\Delta)^{s} u d x=\int_{\mathbb{R}^{N}} u^{p} \varphi d x-\int_{\mathbb{R}^{N}} u^{q} \varphi d x \quad \forall \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

Therefore, $(-\Delta)^{s} u=u^{p}-u^{q}$ in \mathbb{R}^{N} almost everywhere and $u \in C^{2 s+\alpha}$ implies

$$
(-\Delta)^{s} u(x)=u^{p}(x)-u^{q}(x) \quad \forall x \in \mathbb{R}^{N} .
$$

Hence, u is a classical solution of (7.0.1).
Case 2: Suppose u is a weak solution of (7.0.2). Then applying Theorem 7.3.1 and Theorem 7.3.2, we can show as in Case 1 that $(-\Delta)^{s} u(x)$ can be defined in pointwise sense.

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH CRITICAL AND SUPERCRITICAL EXPONENTS

Now we are left to show that (7.0.2) is satisfied in pointwise sense. Towards this goal, we define

$$
f(u)=u^{p}-u^{q}, \quad u_{\varepsilon}:=u * \rho_{\varepsilon} \quad \text { and } \quad f_{\varepsilon}:=f(u) * \rho_{\varepsilon},
$$

where ρ_{ε} is the standard molifier. Namely, we take $\rho_{\varepsilon}=\varepsilon^{-N} \rho\left(\frac{x}{\varepsilon}\right)$ where $\rho \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with $0 \leq \rho \leq 1$, supp $\rho \subseteq\{|x| \leq 1\}$ and $\int_{\mathbb{R}^{N}} \rho d x=1$.

Then $u_{\varepsilon}, f_{\varepsilon} \in C^{\infty}$. Proceeding along the same line as in the proof of [77, Proposition 5], we can show that, for $\varepsilon>0$ small enough it holds

$$
\begin{equation*}
(-\Delta)^{s} u_{\varepsilon}=f_{\varepsilon} \quad \text { in } \quad U, \tag{7.4.32}
\end{equation*}
$$

in the classical sense, where U is any arbitrary subset of Ω with $U \subset \subset \Omega$. Moreover, it is easy to note that $u_{\varepsilon} \rightarrow u$ and $f_{\varepsilon} \rightarrow f(u)$ locally uniformly and

$$
\left|u_{\varepsilon}\right|_{L^{\infty}\left(B_{1}(0)\right)} \leq|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \quad \text { and } \quad\left|f_{\varepsilon}\right|_{L^{\infty}\left(B_{1}(0)\right)} \leq C|u|_{L^{\infty}\left(\mathbb{R}^{N}\right)} .
$$

Taking the limit $\varepsilon \rightarrow 0$ on both the sides of (7.4.32) and using the regularity estimate of u_{ε} from Theorem 7.3.2, we obtain,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{N}} \frac{u_{\varepsilon}(x+y)-2 u_{\varepsilon}(x)+u_{\varepsilon}(x-y)}{|y|^{N+2 s}} d y=f(u) .
$$

Using the arguments used before, it is not difficult to check that LHS of above relation converges to $(-\Delta)^{s} u$ as $\varepsilon \rightarrow 0$ and hence the result follows.

Proof of Theorem 7.3.3. First, we observe that from Theorem 7.3.2, it follows u is differentiable as $p>1$. Let R_{0} be as in Theorem 7.3.1. For $R>R_{0}$, define $v(x)=R^{N-2 s} u(R x)$. Then

$$
\begin{align*}
(-\Delta)^{s} v(x) & =R^{N}\left((-\Delta)^{s} u\right)(R x) \\
& =R^{N}\left(u^{p}(R x)-u^{q}(R x)\right) \\
& =R^{N-p(N-2 s)} v^{p}-R^{N-q(N-2 s)} v^{q} . \tag{7.4.33}
\end{align*}
$$

From Theorem 7.3.1, we have $|u(x)| \leq \frac{C}{|x|^{N-2 s}}$ for $|x|>R_{0}$. Consequently, we get

$$
\begin{equation*}
|v(x)| \leq \frac{C}{|x|^{N-2 s}} \quad \text { for } \quad|x|>\frac{R_{0}}{R} \tag{7.4.34}
\end{equation*}
$$

where C is independent of R. Let $A_{1}:=\{1<|x|<2\}$ and $x_{0} \in A_{1}$. Suppose $r>0$ is such that $B_{2 r}\left(x_{0}\right) \subset A_{1}$. We choose $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $\eta=1$ in $B_{r}\left(x_{0}\right)$ and $\operatorname{supp} \eta \subset B_{2 r}\left(x_{0}\right)$. Clearly $v \eta \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and $\|\eta v\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq C_{1}$, where C_{1} is independent of R. Moreover,

$$
\begin{equation*}
(-\Delta)^{s}(v \eta)=(-\Delta)^{s} v+(-\Delta)^{s}((\eta-1) v) \tag{7.4.35}
\end{equation*}
$$

Note that, for $z \in B_{r}\left(x_{0}\right)$ we have

$$
(-\Delta)^{s}((\eta-1) v)(z)=c_{N, s} \int_{\mathbb{R}^{N} \backslash B_{r}\left(x_{0}\right)} \frac{-((\eta-1) v)(y)}{|z-y|^{N+2 s}} d y
$$

From this expression we obtain

$$
\begin{align*}
& \left\|(-\Delta)^{s}((\eta-1) v)\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \leq C \int_{\mathbb{R}^{N}} \frac{v(y)}{(1+|y|)^{N+2 s}} d y \\
= & C \int_{B_{\frac{R_{0}}{R}}(0)} \frac{v(y)}{(1+|y|)^{N+2 s}} d y+C \int_{|y|>\frac{R_{0}}{R}} \frac{v(y)}{(1+|y|)^{N+2 s}} d y . \tag{7.4.36}
\end{align*}
$$

Now, using the definition of v and the fact that $u \in L^{\infty}\left(\mathbb{R}^{N}\right)$, we get

$$
\begin{align*}
\int_{B_{\frac{R_{0}}{R}}^{R}} \frac{v(y)}{(1+|y|)^{N+2 s}} d y & =R^{N-2 s} \int_{B_{\frac{R_{0}}{R}}(0)} \frac{u(R y)}{(1+|y|)^{N+2 s}} d y \\
& =C R^{N} \int_{B_{R_{0}}(0)} \frac{u(x) d x}{(R+|x|)^{N+2 s}} \\
& \leq C \frac{R^{N}}{R^{N+2 s}}\left|B_{R_{0}}(0)\right|<C^{\prime}, \tag{7.4.37}
\end{align*}
$$

where C^{\prime} is independent of R (since, $R^{-2 s}<1$). On the other hand, using
(7.4.34) we have

$$
\begin{align*}
\int_{|y|>\frac{R_{0}}{R}} \frac{v(y)}{(1+|y|)^{N+2 s}} d y & =C \int_{|y|>\frac{R_{0}}{R}} \frac{d y}{|y|^{N-2 s}(1+|y|)^{N+2 s}} \\
& \leq C \int_{\mathbb{R}^{N}} \frac{d y}{|y|^{N-2 s}(1+|y|)^{N+2 s}} \\
& \leq C \int_{B_{1}(0)} \frac{d y}{|y|^{N-2 s}}+\int_{|y|>1} \frac{d y}{|y|^{2 N}} \\
& \leq C, \tag{7.4.38}
\end{align*}
$$

for some constant $C>0$, which does not depend on R. Plugging (7.4.37) and (7.4.38) into (7.4.36) we have

$$
\begin{equation*}
\left\|(-\Delta)^{s}((\eta-1) v)\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}<C \tag{7.4.39}
\end{equation*}
$$

where C depends only on N, s, p, q, R_{0}. Furthermore, we observe that if $z \in$ $B_{r}\left(x_{0}\right) \subset A_{1}$ then $|R z|>R>R_{0}$ and thus $|u(R z)|<\frac{C}{|R z|^{N-2 s}}$. Consequently, from (7.4.33), it follows that

$$
\left|(-\Delta)^{s} v(z)\right| \leq R^{N}\left(u^{p}(R z)+u^{q}(R z)\right) \leq R^{N-p(N-2 s)}+R^{N-q(N-2 s)}<C .
$$

In the last inequality we have use the fact that $N-p(N-2 s)<0$ and $N-q(N-2 s)<0$, as $q, p \geq 2^{*}-1$. Hence,

$$
\begin{equation*}
\left\|(-\Delta)^{s} v\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \leq C \tag{7.4.40}
\end{equation*}
$$

where C is independent of R. Combining (7.4.39) and (7.4.40) along with (7.4.35) yields $\left\|(-\Delta)^{s}(\eta v)\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}<C$, where C depends only on N, s, p, q, R_{0}. Consequently, using [70, Proposition 2.3] (see also [73]), we obtain

$$
\|(\eta v)\|_{C^{\beta}\left(\overline{\left.B_{\frac{r}{2}}\left(x_{0}\right)\right)}\right.} \leq C \quad \forall \beta \in(0,2 s)
$$

where C depends only on N, s, p, q, R_{0}. As a consequence,

$$
\|v\|_{C^{\beta}\left(\overline{B_{\frac{r}{2}}\left(x_{0}\right)}\right)} \leq C .
$$

Thus, thanks to [70, Corollary 2.4] we have

$$
\|v\|_{C^{\beta+2 s}\left(\overline{B_{\bar{\gamma}}\left(x_{0}\right)}\right)} \leq C .
$$

We continue to apply this bootstrap argument and after a finitely many steps we have $\|v\|_{C^{\beta+k s}\left(\overline{\left.B_{r_{0}}\left(x_{0}\right)\right)}\right.} \leq C$. for some $r_{0}>0$ and $\beta+k s>1$. This in turn implies $\|\nabla v\|_{L^{\infty}\left(\overline{\left.B_{r_{0}}\left(x_{0}\right)\right)}\right.} \leq C$. This further yields to

$$
\|\nabla v\|_{L^{\infty}\left(A_{1}\right)} \leq C
$$

where C depends only on N, s, p, q, R_{0}. Therefore, using the definition of v, we obtain

$$
|\nabla u(R x)| \leq \frac{C}{R^{N-2 s+1}} \quad \text { for } 1<|x|<2
$$

From the above expression, it is easy to deduce that

$$
|\nabla u(y)| \leq \frac{C}{|y|^{N-2 s+1}} \quad \text { for } R<|y|<2 R .
$$

As $R>R_{0}$ was arbitrary we get

$$
|\nabla u(y)| \leq \frac{C}{|y|^{N-2 s+1}} \quad \text { for }|y|>R
$$

for some R large.

7.5 Existence and nonexistence results

Proof of Theorem 7.3.4. We prove this theorem by establishing Pohozaev identity in the spirit of Ros-Oton and Serra [71]. For $\lambda>0$, define $u_{\lambda}(x)=u(\lambda x)$. Multiplying the equation (7.0.1) by u_{λ} yields,

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left(u^{p}-u^{q}\right) u_{\lambda} d x & =\int_{\mathbb{R}^{N}}(-\Delta)^{\frac{s}{2}} u(-\Delta)^{\frac{s}{2}} u_{\lambda} d x \\
& =\lambda^{s} \int_{\mathbb{R}^{N}}(-\Delta)^{\frac{s}{2}} u(x)\left((-\Delta)^{\frac{s}{2}} u\right)(\lambda x) d x \\
& =\lambda^{s} \int_{\mathbb{R}^{N}} w w_{\lambda} d x \tag{7.5.1}
\end{align*}
$$

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH CRITICAL AND SUPERCRITICAL EXPONENTS

where, $w(x):=(-\Delta)^{\frac{s}{2}} u(x)$ and $w_{\lambda}(x)=w(\lambda x)$. With the change of variable $x=\sqrt{\lambda} y$, we have

$$
\begin{equation*}
\lambda^{s} \int_{\mathbb{R}^{N}} w w_{\lambda} d x=\lambda^{s} \int_{\mathbb{R}^{N}} w(x) w(\lambda x) d x=\lambda^{-\frac{N-2 s}{2}} \int_{\mathbb{R}^{N}} w_{\sqrt{\lambda}} w_{\frac{1}{\sqrt{\lambda}}} d y \tag{7.5.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(u^{p}-u^{q}\right) u_{\lambda} d x=\lambda^{-\frac{N-2 s}{2}} \int_{\mathbb{R}^{N}} w_{\sqrt{\lambda}} w_{\frac{1}{\sqrt{\lambda}}} d y . \tag{7.5.3}
\end{equation*}
$$

Observe that using the decay estimate at infinity of u and ∇u from Theorem 7.3.1 and Theorem 7.3.3, we get $\int_{\mathbb{R}^{N}}\left(u^{p}-u^{q}\right)(x \cdot \nabla u) d x$ is well defined and that integral can be written as $\int_{\mathbb{R}^{N}} x \cdot \nabla\left(\frac{u^{p+1}}{p+1}-\frac{u^{q+1}}{q+1}\right) d x$. Again using the decay estimate of u from Theorem 7.3.1, we justify the following integration by parts

$$
\begin{equation*}
-\frac{N}{p+1} \int_{\mathbb{R}^{N}} u^{p+1} d x+\frac{N}{q+1} \int_{\mathbb{R}^{N}} u^{q+1} d x=\int_{\mathbb{R}^{N}} x \cdot \nabla\left(\frac{u^{p+1}}{p+1}-\frac{u^{q+1}}{q+1}\right) d x \tag{7.5.4}
\end{equation*}
$$

Thus, using (7.5.3) we simplify the LHS of above expression as follows:

$$
\begin{aligned}
\text { LHS of }(7.5 .4) & =\int_{\mathbb{R}^{N}}\left(u^{p}-u^{q}\right)(x \cdot \nabla u) d x \\
& =\left.\frac{d}{d \lambda}\right|_{\lambda=1} \int_{\mathbb{R}^{N}}\left(u^{p}-u^{q}\right) u_{\lambda} d x \\
& =\left.\frac{d}{d \lambda}\right|_{\lambda=1}\left(\lambda^{-\frac{N-2 s}{2}} \int_{\mathbb{R}^{N}} w_{\sqrt{\lambda}} w_{\frac{1}{\sqrt{\lambda}}}\right) d x . \\
& =-\left(\frac{N-2 s}{2}\right) \int_{\mathbb{R}^{N}} w^{2} d x+\left.\frac{d}{d \lambda}\right|_{\lambda=1} \int_{\mathbb{R}^{N}} w_{\sqrt{\lambda}} w_{\frac{1}{\sqrt{\lambda}}} d y \\
& =-\left(\frac{N-2 s}{2}\right)\|u\|_{\dot{H}^{s}\left(\mathbb{R}^{N}\right)}^{2} .
\end{aligned}
$$

On the other hand, multiplying (7.0.1) by u we have,

$$
\|u\|_{\dot{H}^{s}\left(\mathbb{R}^{N}\right)}^{2}=\int_{\mathbb{R}^{N}}\left(u^{p+1}-u^{q+1}\right) d x .
$$

Combining the above two expressions, we obtain the Pohozaev identity

$$
\left(\frac{N-2 s}{2}-\frac{N}{p+1}\right) \int_{\mathbb{R}^{N}} u^{p+1} d x=\left(\frac{N-2 s}{2}-\frac{N}{q+1}\right) \int_{\mathbb{R}^{N}} u^{q+1} d x
$$

Clearly, from the above identity, it follows that (7.0.1) does not admit any solution when $p=2^{*}-1$ and $q>p$. This completes the theorem.

7.5.1 Symmetry and monotonically decreasing property

Theorem 7.5.1. Let p, q, s are as in Theorem 7.3.1 and u be any solution of Eq.(7.0.1). Then u is radially symmetric and strictly decreasing about some point in \mathbb{R}^{N}.

Proof. By Proposition 7.4.1, u is a classical solution of (7.0.1). Define $f(u)=$ $u^{p}-u^{q}$. Then clearly f is locally Lipschitz.

Claim: There exists $s_{0}, \gamma, C>0$ such that

$$
\frac{f(v)-f(u)}{v-u} \leq C(u+v)^{\gamma} \quad \text { for all } \quad 0<u<v<s_{0}
$$

To see the claim,

$$
\begin{aligned}
f(v)-f(u) & =\left(v^{p}-u^{p}\right)-\left(v^{q}-u^{q}\right) \\
& =p\left(\theta_{1} v+\left(1-\theta_{1}\right) u\right)^{p-1}(v-u)-q\left(\theta_{2} v+\left(1-\theta_{2}\right) u\right)^{q-1}(v-u),
\end{aligned}
$$

for some $\theta_{1}, \theta_{2} \in(0,1)$. Thus, for $0<u<v$

$$
\begin{aligned}
\frac{f(v)-f(u)}{v-u} & =p\left(\theta_{1} v+\left(1-\theta_{1}\right) u\right)^{p-1}-q\left(\theta_{2} v+\left(1-\theta_{2}\right) u\right)^{q-1} \\
& \leq p\left(\theta_{1} v+\left(1-\theta_{1}\right) u\right)^{p-1} \\
& \leq p(u+v)^{p-1} .
\end{aligned}
$$

Therefore, the claim holds with $C=p$ and $\gamma=p-1$ and for any positive s_{0}.
Moreover, from Theorem 7.3.2, we have

$$
u(x)=O\left(\frac{1}{|x|^{N-2 s}}\right) \quad \text { as } \quad|x| \rightarrow \infty
$$

Since $p \geq \frac{N+2 s}{N-2 s}$, it is easy to check that

$$
N-2 s>\max \left(\frac{2 s}{\gamma}, \frac{N}{\gamma+2}\right)
$$

where $\gamma=p-1$, as found in the above claim. Hence, the theorem follows from [44, Theorem 1.2].

Theorem 7.5.2. Suppose Ω is a smooth bounded convex domain, p, q, s are as in Theorem 7.3.1. Assume further that Ω is convex in x_{1} direction and symmetric w.r.t. to the hyperplane $x_{1}=0$. Let $s \in(0,1)$ and u be any solution of Eq.(7.0.2). Then u is symmetric w.r.t. x_{1} and strictly decreasing in x_{1} direction for $x=\left(x_{1}, x^{\prime}\right) \in \Omega, x_{1}>0$.

Proof. Follows from [43, Theorem 3.1] (also see [51, Cor. 1.2]).

Existence results

Lemma 7.5.3. Let $s \in(0,1)$. If u is any radially symmetric decreasing function in $\dot{H}^{s}\left(\mathbb{R}^{N}\right)$, then

$$
u(|x|) \leq \frac{C}{|x|^{\frac{N-2 s}{2}}}
$$

Proof. It is enough to show that if $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$ with $u(x)=u(|x|)$ and $u\left(r_{1}\right) \leq u\left(r_{2}\right)$, when $r_{1} \geq r_{2}$, then it holds $u(R) \leq \frac{C}{R^{\frac{N-2 s}{2}}}$ for any $R>0$. To see this, we note that by Sobolev inequality we can write,

$$
\begin{align*}
\frac{1}{S_{s}}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} & \geq\left(\int_{\mathbb{R}^{N}}|u(x)|^{2^{*}} d x\right)^{\frac{1}{2^{*}}} \\
& \geq\left(\int_{0}^{R} \int_{\partial B_{r}}|u(r)|^{2^{*}} d S d r\right)^{\frac{1}{2^{*}}} \\
& \geq u(R)\left(\int_{0}^{R} \omega_{n} r^{N-1} d r\right)^{\frac{1}{2^{*}}} \\
& =\left(\frac{\omega_{N}}{N}\right)^{\frac{1}{2^{*}}} u(R) R^{\frac{N}{2^{*}}} \tag{7.5.5}
\end{align*}
$$

As $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$ implies LHS is bounded above, the above inequality yields

$$
u(R) \leq\left(\frac{N}{\omega_{N}}\right)^{\frac{1}{2^{*}}} \frac{1}{S_{s}}\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} R^{-\frac{N-2 s}{2}} \leq C R^{-\frac{N-2 s}{2}} .
$$

Proof of Theorem 7.3.5. We are going to work on the manifold

$$
\mathcal{N}=\left\{u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right) \cap L^{q+1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}}|u|^{p+1} d x=1\right\}
$$

and $F(\cdot)$ on \mathcal{N} reduces as

$$
F(u)=\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\mathbb{R}^{N}}|u|^{q+1} d x .
$$

Let u_{n} be a minimizing sequence in \mathcal{N} such that

$$
F\left(u_{n}\right) \rightarrow \mathcal{K} \text { with } \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p+1} d x=1
$$

Thus, $\left\{u_{n}\right\}$ is a bounded sequence in $\dot{H}^{s}\left(\mathbb{R}^{N}\right)$ and $L^{q+1}\left(\mathbb{R}^{N}\right)$. Therefore, there exists $u \in \dot{H}^{s}\left(\mathbb{R}^{N}\right)$ and $L^{q+1}\left(\mathbb{R}^{N}\right)$ such that $u_{n} \rightharpoonup u$ in $\dot{H}^{s}\left(\mathbb{R}^{N}\right)$ and $L^{q+1}\left(\mathbb{R}^{N}\right)$. Consequently $u_{n} \rightarrow u$ pointwise almost everywhere.

Using symmetric rearrangement technique, without loss of generality, we can assume that u_{n} is radially symmetric and decreasing (see [69]). We claim that $u_{n} \rightarrow u$ in $L^{p+1}\left(\mathbb{R}^{N}\right)$.

To see the claim, we note that $u_{n}^{p+1} \rightarrow u^{p+1}$ pointwise almost everywhere. Since $\left\{u_{n}\right\}$ is uniformly bounded in $L^{q+1}\left(\mathbb{R}^{N}\right)$, using Vitali's convergence theorem, it is easy to check that $\int_{K}\left|u_{n}\right|^{p+1} d x \rightarrow \int_{K}|u|^{p+1} d x$ for any compact set K in \mathbb{R}^{N} containing the origin. Furthermore, applying Lemma 7.5.3 it follows, $\int_{\mathbb{R}^{N} \backslash K}\left|u_{n}\right|^{p+1} d x$ is very small and hence we have strong convergence. Moreover, $\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p+1} d x=1$ implies $\int_{\mathbb{R}^{N}}|u|^{p+1} d x=1$.

Now we show that $\mathcal{K}=F(u)$.
We note that $u \mapsto\|u\|^{2}$ is weakly lower semicontinuous. Using this fact along with Fatou's lemma, we have

$$
\begin{aligned}
\mathcal{K} & =\lim _{n \rightarrow \infty}\left[\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\mathbb{R}^{N}}\left|u_{n}\right|^{q+1} d x\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left\|\left.\left|u_{n} \|^{2}+\frac{1}{q+1} \int_{\mathbb{R}^{N}}\right| u_{n}\right|^{q+1} d x\right]\right. \\
& \left.\geq \frac{1}{2}| | u| |^{2}+\frac{1}{q+1} \int_{\mathbb{R}^{N}}|u|^{q+1} d x\right] \\
& \geq F(u) .
\end{aligned}
$$

This proves $F(u)=\mathcal{K}$. Moreover, using the symmetric rearrangement technique via. Polya-Szego inequality (see [69]), it is easy to check that u is

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH CRITICAL AND SUPERCRITICAL EXPONENTS

nonnegative, radially symmetric and radially decreasing Applying the Lagrange multiplier rule, we obtain u satisfies

$$
-\Delta u+u^{q}=\lambda u^{p},
$$

for some $\lambda>0$. This in turn implies

$$
(-\Delta)^{s} u=\lambda u^{p}-u^{q} \quad \text { in } \quad \mathbb{R}^{N} .
$$

Finally, if $q>(p-1) \frac{N}{2 s}-1$, then we know that u is a classical solution. Therefore, if there exists $x_{0} \in \mathbb{R}^{N}$ such that $u\left(x_{0}\right)=0$, that that would imply $(-\Delta)^{s} u\left(x_{0}\right)<0$ (since, u is a nontrivial solution). On the other hand, $\left(\lambda u^{p}-u^{q}\right)\left(x_{0}\right)=0$ and that yields a contradiction. Hence $u>0$ in \mathbb{R}^{N}.

Furthermore, we observe that by setting $v(x)=\lambda^{-\frac{1}{q-p}} u\left(\lambda^{-\frac{q-1}{2 s(q-p)}} x\right)$, it holds

$$
(-\Delta)^{s} v=v^{p}-v^{q} \quad \text { in } \quad \mathbb{R}^{N} .
$$

Hence the theorem follows.
Proof of Theorem 7.3.6. We are going to work on the manifold

$$
\tilde{\mathcal{N}}=\left\{u \in X_{0}(\Omega) \cap L^{q+1}(\Omega): \int_{\Omega}|u|^{p+1}=1\right\} .
$$

Then F_{Ω} reduces to

$$
F_{\Omega}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\Omega}|u|^{q+1} d x
$$

Let u_{n} be a minimizing sequence in $\tilde{\mathcal{N}}$ such that $F_{\Omega}\left(u_{n}\right) \rightarrow S_{\Omega}$, then

$$
F\left(u_{n}\right) \rightarrow S_{\Omega} \text { with } \int_{\Omega}\left|u_{n}\right|^{p+1} d x=1
$$

Then u_{n} is bounded in $X_{0}(\Omega) \cap L^{q+1}(\Omega)$. Consequently, $u_{n} \rightharpoonup u$ on $H^{s}(\Omega)$ and $u_{n} \rightarrow u$ on $L^{2}(\Omega)$. As a result, $u_{n} \rightarrow u$ pointwise almost everywhere. By the interpolation inequality, we must have $u_{n} \rightarrow u$ on $L^{p+1}(\Omega)$. Hence, $\int_{\Omega}|u|^{p+1} d x=1$.

Now we show that $S_{\Omega}=F_{\Omega}(u)$. Using Fatou's Lemma and the fact that $u \mapsto\|u\|^{2}$ is weakly lower semicontinuous ,

$$
\begin{aligned}
S_{\Omega} & =\lim _{n \rightarrow \infty}\left[\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\Omega}\left|u_{n}\right|^{q+1} d x\right] \\
& \geq\left[\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\Omega}|u|^{q+1} d x\right] \\
& \geq F_{\Omega}(u) .
\end{aligned}
$$

By the Lagrange multiplier rule, we obtain u satisfies

$$
(-\Delta)^{s} u+|u|^{q-1} u=\lambda|u|^{p-1} u .
$$

Now we replace $\tilde{\mathcal{N}}$ by $\tilde{\mathcal{N}}_{+}:=\left\{u \in X_{0}(\Omega) \cap L^{q+1}(\Omega): \int_{\Omega}\left(u^{+}\right)^{p+1}=1\right\}$, the functional $F_{\Omega}(\cdot)$ by $\tilde{F}_{\Omega}(\cdot)$ defined as follows

$$
\tilde{F}_{\Omega}(u):=\frac{1}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} d x d y+\frac{1}{q+1} \int_{\Omega}\left(u^{+}\right)^{q+1} d x,
$$

and S_{Ω} by $\tilde{S}_{\Omega}:=\inf \left\{F(v, \Omega): v \in \tilde{\mathcal{N}}_{+}\right\}$. Repeating the same argument as before (with a little modification), it can be easily shown that there exists $u \in X_{0}(\Omega) \cap L^{q+1}(\Omega)$ which satisfies

$$
\begin{equation*}
(-\Delta)^{s} u+\left(u^{+}\right)^{q}=\lambda\left(u^{+}\right)^{p} \quad \text { in } \quad \Omega . \tag{7.5.6}
\end{equation*}
$$

Taking u^{-}as the test function for (7.5.6) we obtain from Definition 7.2.1 that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(u(x)-u(y))\left(u^{-}(x)-u^{-}(y)\right)}{|x-y|^{N+2 s}} d x d y=0 . \tag{7.5.7}
\end{equation*}
$$

Furthermore,
LHS of (7.5.7)

$$
\begin{align*}
& =\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(u(x)-u(y))\left(u^{-}(x)-u^{-}(y)\right)}{|x-y|^{N+2 s}} d x d y \\
& =\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left(\left(u^{+}(x)-u^{+}(y)\right)-\left(u^{-}(x)-u^{-}(y)\right)\right)\left(u^{-}(x)-u^{-}(y)\right)}{|x-y|^{N+2 s}} d x d y \\
& =-u^{-}(x) u^{+}(y)-u^{+}(x) u^{-}(y)-\left\|u^{-}\right\|_{X_{0}(\Omega)}^{2} \\
& \leq-\left\|u^{-}\right\|_{X_{0}(\Omega)}^{2} \tag{7.5.8}
\end{align*}
$$

CHAPTER 7. EQUATIONS INVOLVING FRACTIONAL LAPLACIAN WITH CRITICAL AND SUPERCRITICAL EXPONENTS

Hence, from (7.5.7) we obtain $u^{-}=0$, i.e, $u \geq 0$. Moreover, since for $p \geq 2^{*}-1$ and $q>(p-1) \frac{N}{2 s}-1$, Proposition 7.4.1 implies u is a classical solution, applying maximum principle as in Theorem 7.3.5, we conclude $u>0$ in Ω. This completes the proof.

Conclusion: In this chapter, we have discussed qualitative properties of solutions and obtained decay of u and ∇u at infinity but the computations are not effortless as we are in the non-local case. Probity of our result lies in overcoming pitfall of the computations.

Some open-problems and

Remarks

- To characterize the properties of Sobolev minimizer like symmetry, asymptotic property etc. under some additional conditions on K will be a good topic for future research.
- With the weight V used in Chapter 6, one can try to find sign-changing solutions and deduce the results obtained in Chapter 4 and 5.
- With the following K, (see [74])

$$
K(y)=\frac{a\left(\frac{y}{|y|}\right)}{|y|^{N+2 s}}, \text { where } a \in L^{1}\left(S^{N-1}\right) \text { is nonnegative and even, }
$$

and $K(x, y) \sim \frac{a(x, y)}{|y|^{N+2 s}}$, where $a(x, y)$ is homogeneous in y of order zero and $a(x, y)$ and derivatives of $a(x, y)$ w.r.t y are uniformly continuous in x, (see [40]), one could try to establish the results obtained in the thesis.

Bibliography

[1] Adimurthi, F. Pacella, and S. L. Yadava, On the number of positive solutions of some semilinear Dirichlet problems in a ball, Differential Integral Equations 10 (1997), no. 6, 1157-1170.
[2] A. Ambrosetti, H. m. Brezis, and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), no. 2, 519-543.
[3] A. Ambrosetti, J. Garcia Azorero, and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), no. 1, 219-242.
[4] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973) 349-381.
[5] V. Ambrosio, Fractional $p \& q$ Laplacian problems in \mathbb{R}^{N} with critical growth, arXiv: 1801.10449.
[6] D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), no. 11, 1336-1347.
[7] J.-P. Aubin and I. Ekeland, Applied nonlinear analysis, Pure and Applied Mathematics (New York), John Wiley \& Sons, Inc., New York (1984), ISBN 0-471-05998-6. A Wiley-Interscience Publication.
[8] B. Barrios, E. Colorado, A. de Pablo, and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162.
[9] B. Barrios, E. Colorado, R. Servadei, and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 4, 875-900.
[10] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. 20 (1993), no. 10, 1205-1216.
[11] T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc. 123 (1995), no. 11, 35553561.
[12] V. Benci, A. M. Micheletti, and D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation, J. Differential Equations 184 (2002), no. 2, 299-320.
[13] J. Bertoin, Lévy processes, Vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (1996), ISBN 0-521-562430 .
[14] M. Bhakta and D. Mukherjee, Multiplicity results for (p, q) fractional Laplace equations involving critical nonlinearities, To appear in Adv. Differential Equations.
[15] ——, Sign changing solutions of p-fractional equations with concaveconvex nonlinearities, To appear in Topol. Methods. Nonlin. Anal..
[16] —, Multiplicity results and sign changing solutions of non-local equations with concave-convex nonlinearities, Differential Integral Equations 30 (2017), no. 5-6, 387-422.
[17] , Semilinear nonlocal elliptic equations with critical and supercritical exponents, Commun. Pure Appl. Anal. 16 (2017), no. 5, 1741-1766.
[18] M. Bhakta, D. Mukherjee, and S. Santra, Profile of solutions for nonlocal equations with critical and supercritical nonlinearities, To appear in Commun. Contemp. Math..
[19] M. Bhakta and S. Santra, On singular equations with critical and supercritical exponents, J. Differential Equations 263 (2017), no. 5, 28862953.
[20] Z. Binlin, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264.
[21] Y. Bozhkov and E. Mitidieri, Existence of multiple solutions for quasilinear equations via fibering method, in Contributions to nonlinear analysis, Vol. 66 of Progr. Nonlinear Differential Equations Appl., 115-134, Birkhäuser, Basel (2006).
[22] C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez, A concaveconvex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39-71.
[23] L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J. 37 (2014), no. 3, 769-799.
[24] L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), no. 3, 419-458.
[25] X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 233-269.
[26] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), no. 5, 20522093.
[27] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260.
[28] P. Candito, S. A. Marano, and K. Perera, On a class of critical (p, q)Laplacian problems, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 6, 1959-1972.
[29] F. Charro, E. Colorado, and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex right-hand side, J. Differential Equations 246 (2009), no. 11, 4221-4248.
[30] C. Chen and J. Bao, Existence, nonexistence, and multiplicity of solutions for the fractional $p \& q$-Laplacian equation in \mathbb{R}^{N}, Bound. Value Probl. (2016) Paper No. 153, 16.
[31] J. Chen, Some further results on a semilinear equation with concaveconvex nonlinearity, Nonlinear Anal. 62 (2005), no. 1, 71-87.
[32] W. Chen and S. Deng, The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities, Z. Angew. Math. Phys. 66 (2015), no. 4, 1387-1400.
[33] W. Chen, C. Li, and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343.
[34] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman \& Hall/CRC Financial Mathematics Series, Chapman \& Hall/CRC, Boca Raton, FL (2004), ISBN 1-5848-8413-4.
[35] A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225-236.
[36] L. Damascelli, M. Grossi, and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), no. 5, 631-652.
[37] J. Dávila, L. Dupaigne, and J. Wei, On the fractional Lane-Emden equation, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6087-6104.
[38] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573.
[39] S. Dipierro, M. a. Medina, and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of \mathbb{R}^{n}, Vol. 15 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa (2017), ISBN 978-88-7642-600-1; 978-88-7642-601-8.
[40] H. Dong and D. Kim, On L_{p}-estimates for a class of non-local elliptic equations, J. Funct. Anal. 262 (2012), no. 3, 1166-1199.
[41] P. Drábek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 4, 703-726.
[42] E. B. Fabes, C. E. Kenig, and R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116.
[43] M. M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 (2012), no. 8, 2205-2227.
[44] P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math. 16 (2014), no. 1, 1350023, 24.
[45] Y. Fu, H. Li, and P. Pucci, Existence of nonnegative solutions for a class of systems involving fractional (p, q)-Laplacian operators, Chin. Ann. Math. Ser. B.
[46] J. Garcí a Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), no. 3, 941-957.
[47] N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud. 15 (2015), no. 3, 527-555.
[48] S. Goyal and K. Sreenadh, Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal. 4 (2015), no. 1, 37-58.
[49] I. W. Herbst, Spectral theory of the operator $\left(p^{2}+m^{2}\right)^{1 / 2}-Z e^{2} / r$, Comm. Math. Phys. 53 (1977), no. 3, 285-294.
[50] A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var. 9 (2016), no. 2, 101-125.
[51] S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst. 34 (2014), no. 6, 2581-2615.
[52] T. Jin, Y. Li, and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1111-1171.
[53] M. K. Kwong, J. B. McLeod, L. A. Peletier, and W. C. Troy, On ground state solutions of $-\Delta u=u^{p}-u^{q}$, J. Differential Equations 95 (1992), no. 2, 218-239.
[54] G. Leoni, A first course in Sobolev spaces, Vol. 105 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2009), ISBN 978-0-8218-4768-8.
[55] G. Li and G. Zhang, Multiple solutions for the $p \& q$-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 4, 903-918.
[56] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 795-826.
[57] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201.
[58] E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index, Nonlinear Anal. 71 (2009), no. 9, 3654-3660.
[59] F. Merle and L. A. Peletier, Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. I. The radial case, Arch. Rational Mech. Anal. 112 (1990), no. 1, 1-19.
[60] , Asymptotic behaviour of positive solutions of elliptic equations with critical and supercritical growth. II. The nonradial case, J. Funct. Anal. 105 (1992), no. 1, 1-41.
[61] P. Mironescu and W. Sickel, A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 3, 291-298.
[62] G. Molica Bisci, V. D. Radulescu, and R. Servadei, Variational methods for nonlocal fractional problems, Vol. 162 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (2016), ISBN 978-1-107-11194-3. With a foreword by Jean Mawhin.
[63] G. Molica Bisci, D. s. Repovs s, and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math. 28 (2016), no. 6, 1095-1110.
[64] S. Mosconi, K. Perera, M. Squassina, and Y. Yang, The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 105, 25.
[65] S. Mosconi and M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal. 136 (2016) 84-101.
[66] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972) 207-226.
[67] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations 158 (1999), no. 1, 94-151.
[68] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014), no. 3-4, 799829.
[69] Y. J. Park, Fractional Polya-Szego inequality, J. Chungcheong Math. Soc. 24 (2011) 267-271.
[70] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), no. 3, 275-302.
[71] , The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 587-628.
[72] -, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations 40 (2015), no. 1, 115-133.
[73] —, Regularity theory for general stable operators, J. Differential Equations 260 (2016), no. 12, 8675-8715.
[74] X. Ros-Oton, J. Serra, and E. Valdinoci, Pohozaev identities for anisotropic integrodifferential operators, Comm. Partial Differential Equations 42 (2017), no. 8, 1290-1321.
[75] R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898.
[76] -, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105-2137.
[77] , Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), no. 1, 133-154.
[78] , The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), no. 1, 67-102.
[79] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.
[80] J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst. 31 (2011), no. 3, 975-983.
[81] M. Tang, Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 705-717.
[82] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), no. 3, 281-304.
[83] H. Triebel, Theory of function spaces, Vol. 78 of Monographs in Mathematics, Birkhäuser Verlag, Basel (1983), ISBN 3-7643-1381-1.
[84] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA (2009), no. 49, 33-44.
[85] L. Vlahos, H. Isliker, K. Kominis, and K. Hizonidis, Normal and anomalous diffusion : a tutorial, in T, Order and Chaos, 10thVolume, Patras University Press (2008).
[86] M. Willem, Minimax theorems, Vol. 24 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1996), ISBN 0-8176-3913-6.
[87] T.-f. Wu, On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal. 7 (2008), no. 2, 383-405.
[88] H. Yin and Z. Yang, A class of $p-q$-Laplacian type equation with concaveconvex nonlinearities in bounded domain, J. Math. Anal. Appl. 382 (2011), no. 2, 843-855.
[89] ——, Multiplicity of positive solutions to a $p-q$-Laplacian equation involving critical nonlinearity, Nonlinear Anal. 75 (2012), no. 6, 30213035.

Index

Besov space, 120
Besov-Sobolev Embedding, 120
Borsuk-Ulam theorem, 36

Category, 119
Concentration-compactness
principle, 122

Decay estimate, 175
Deformation Lemma, 165
Dual Fountain Theorem, 36
Fountain Theorem, 36
Fourier transform, 16
Fractional critical exponent, 19
Functional space
$X_{0, K}(\Omega), 26$
$X_{0, s, p}(\Omega), 27$
$X_{0}(\Omega), 27$

Harmonic extension, 29

Inverse Fourier transform, 17

Krasnsnoselskii genus, 139

Lusternik-Schnirelmann category, 119

Moser iteration, 175
Mountain Pass Geometry, 142

Nehari manifold, 50

Operator

$$
\begin{aligned}
& (-\Delta)_{p}^{s}, 24 \\
& -(\Delta)^{s}, 22 \\
& \mathscr{L}_{K}, 25
\end{aligned}
$$

Palais-Smale condition $(\mathrm{PS})_{c}, 36$
Pohozaev identity, 190

Regularity theory, 174

Sobolev-minimizer

$$
S_{K}, 28
$$

$S_{s}, 29$
$S_{s, p}, 29$

