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CHAPTER 1

Introduction

A holomorphic function is characterized by the property that, at points where

the derivative f ′ is nonzero, f locally preserves angles or an equivalent property that

it stretches equally in all directions. The following equation can be viewed as the

mathematical formulation of the two facts mentioned above:

|(f ◦ γ)′(t)| = |f ′(γ(t))| · |γ′(t)|

where f is a holomorphic function on a domain U ⊂ C, γ : [0, 1] → U is a smooth

curve in U and f ′(ζ) 6= 0 for all ζ ∈ [γ]. This simple looking equation opens up an

exciting arena in the form of geometry for complex analysis. In the new setting, every

nonconstant holomorphic function between domains in C becomes a local isometry

of Riemann surfaces endowed with suitable (hermitian) metrics.

The central theme of Part I is curvature. Quoting Greene from his paper [2]:

“The underlying idea in Riemannian geometry is that curvature controls topology;

from hypothesis on curvature one hopes and expects to obtain conclusions about the

topological nature of the Riemannian manifold. The natural extension of this idea to

complex manifolds is that curvature should also control the complex structure.” The

idea that curvature controls the complex structure pervades the whole of Part I and

is substantiated in many situations, the most significant one being the proof of the

Great Picard’s theorem.

As will be seen in chapter 5, the Uniformization theorem plays a significant role in

studying holomorphic maps between Riemann surfaces, in particular domains in C.

The theory of covering spaces, in many situations, simplifies the task of studying maps

between arbitrary Riemann surfaces to maps (the corresponding lifts to their covering

spaces) between their universal covering spaces. Using this we give an alternate proof

of the Great Picard’s theorem.

The solution of the Dirichlet’s problem by Perron’s method and the proof of

the Uniformization theorem are discussed in Part II. The Dirichlet’s problem is a

boundary-value problem in harmonic function theory. The solution of the Dirichlet’s

1



2 1. INTRODUCTION

problem by Perron method involves constructing a Perron family, the associated Per-

ron function being the required solution. The idea of the proof of the Uniformization

theorem is: Given a Riemann surface R, we solve a certain Dirichlet’s problem on R

(using the Perron method) and then make use of this solution which is a harmonic

function to construct a conformal map to one of the surfaces D, C or Ĉ, by means of

analytic continuation on R . Though the proof of even the most basic properties of

harmonic functions are dependent on the fact that they are the real/imaginary parts

of holomorphic functions and on results of Complex Analysis, harmonic function the-

ory almost single handedly propels the proof of one of the most significant results of

Complex Analysis/ Riemann Surfaces towards completion.

This thesis is expected to provide an introduction to the interaction of Complex

Analysis with the other areas of Mathematics.



Part 1

The Great Picard’s Theorem





CHAPTER 2

The Geometric versions of Schwarz’s lemma and applications

This chapter can be considered as an introduction to Geometric Function Theory.

We will introduce the concept of Riemann surfaces, hermitian metrics on them and

curvature. We will consider (nonconstant) holomorphic maps between domains in C
in a geometric setting, in which they become local isometries. We will also consider

Ahlfors’s version of Schwarz’s lemma, which can be considered as an interpretation

of the classical Schwarz’s lemma in terms of curvature. This will set the ball rolling!

Curvature is a function of the Riemann surface and the hermitian metric on it. Using

a generalized version of Schwarz’s lemma we will see how curvature speaks of the

conformal properties of the Riemann surface. As an illustration of this, the chapter

culminates with a proof of the Picard’s Little theorem and a few other applications.

The discussion on Riemann surfaces in section 2.1 is based on the book of Bers [1]

and the paper of Greene [2]. The ensuing sections are based on the books of Krantz

[4] and [5].

2.1. Riemann surfaces

In this section we will assume knowledge of manifolds and introduce the basics

of the generalization of (real) manifold theory to complex manifolds, in particular

Riemann surfaces.

Definition 2.1 (Riemann Surface). A Riemann surface is a connected Hausdorff

topological space M together with a collection of charts {(Uα, fα)}α∈A with the follow-

ing properties:

(1) {Uα}α∈A form an open covering of M.

(2) Each fα : Uα → C is homeomorphic onto an open subset of C.

(3) Whenever Uα ∩ Uβ 6= φ, the function fβ ◦ f−1
α : fα(Uα ∩ Uβ) → fβ(Uα ∩ Uβ)

is holomorphic.

Definition 2.2 (Holomorphic function between Riemann surfaces). Let M and

N be Riemann surfaces. Let {(Uα, gα)}α∈A and {(Vβ, hβ)}β∈B be a collection of charts

on M and N respectively, satisfying the three properties in the preceding definition.

5



6 2. THE GEOMETRIC VERSIONS OF SCHWARZ’S LEMMA AND APPLICATIONS

A function f : M → N is said to be holomorphic if for every point p ∈ M and any

(Uα, gα) and (Vβ, hβ) such that p ∈ Uα and f(p) ∈ Vβ, the function:

hβ ◦ f ◦ g−1
α : gα(Uα)→ hβ(Vβ)

is holomorphic as a map between subsets of C.

Analogous to (real) smooth manifolds, we can also define complex manifolds. In

this language, the definition of a Riemann surface becomes: A Riemann surface is

a one dimensional complex manifold. Similarly analogous to the tangent space of a

(real) manifold, we can also define holomorphic tangent space for a complex manifold,

which turns out to a complex manifold.

Definition 2.3 (Conformal structure). Suppose that R is a Riemann surface. A

maximal collection of charts (Uα, fα)α∈A satisfying the three conditions in definition

2.1 is said to define a conformal structure on R.

A conformal structure on a Hausdorff topological spaceM makes it into a Riemann

surface and distinguishes a subset of {f : M → C | f is continuous} as holomorphic

functions.

Lemma 2.4. Let R be a Riemann surface and TR its holomorphic tangent space.

Then there exists a natural map J : TR→ TR which satisfies:

(1) For every p ∈ R, the restriction Jp = J |TpR is a vector space isomorphism

Jp : TpR→ TpR, where TpR is considered as a real vector space.

(2) For every p ∈ R, J2
p = −I, where I is the identity map on TpR.

Proof. Let p ∈ R be an arbitrary point of R. Let (U, f) be a coordinate chart

on a neighborhood of p. Suppose that f = x + iy, where x and y are real valued

functions on R. Then for any q ∈ U , { ∂
∂x
|q, ∂∂y |q} is a basis for TqR over R. We will

denote ∂
∂x
|q and ∂

∂y
|q by ∂

∂x
and ∂

∂y
respectively. Consider the linear isomorphism Jq

defined by:

Jq

(
a
∂

∂x
+ b

∂

∂y

)
= a

∂

∂y
− b ∂

∂x
, ∀ a, b ∈ R

It is clear that J2
q = −I. But we have defined Jq by making use of the coordinate

chart (U, f). We will now show that Jq is actually independent of the coordinate

chart used to define it. Suppose that (V, g) is any other coordinate chart such that

q ∈ V . Suppose that g = x̃+ iỹ, where both x̃ and ỹ are real valued functions on V .

{ ∂
∂x̃
|q, ∂∂ỹ |q} forms a basis for TqR. Then consider the function Gq defined on TqR by:

Gq

(
a
∂

∂x̃
+ b

∂

∂ỹ

)
= a

∂

∂ỹ
− b ∂

∂x̃
, ∀ a, b ∈ R
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We wish to show that Gq = Jq. Expressing one basis in terms of the other, we have:

∂

∂x
=

∂x̃

∂x

∂

∂x̃
+
∂ỹ

∂x

∂

∂ỹ

∂

∂y
=

∂x̃

∂y

∂

∂x̃
+
∂ỹ

∂y

∂

∂ỹ

From the Cauchy Riemann equations it follows that:

∂x̃

∂x
=

∂ỹ

∂y

∂x̃

∂y
= −∂ỹ

∂x

Hence we have the following:

Gq

(
∂

∂x

)
=

∂x̃

∂x

∂

∂ỹ
− ∂ỹ

∂x

∂

∂x̃

=
∂x̃

∂x

(
∂x

∂ỹ

∂

∂x
+
∂y

∂ỹ

∂

∂y

)
− ∂ỹ

∂x

(
∂x

∂x̃

∂

∂x
+
∂y

∂x̃

∂

∂y

)
=

∂

∂x

(
∂x̃

∂x

∂x

∂ỹ
− ∂ỹ

∂x

∂x

∂x̃

)
+

∂

∂y

(
∂x̃

∂x

∂y

∂ỹ
− ∂ỹ

∂x

∂y

∂x̃

)
= A

∂

∂x
+B

∂

∂y

We now have:

0 =
∂x̃

∂ỹ

=
∂x̃

∂x

∂x

∂ỹ
+
∂x̃

∂y

∂y

∂ỹ

(2.1.1) ∴
∂x̃

∂x

∂x

∂ỹ
= −∂x̃

∂y

∂y

∂ỹ
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Let us now use the Cauchy Riemann equations and equation 2.1.1 to simplify A

and B.

A =
∂x̃

∂x

∂x

∂ỹ
− ∂ỹ

∂x

∂x

∂x̃

= −∂x̃
∂y

∂y

∂ỹ
− ∂ỹ

∂x

∂x

∂x̃

=
∂ỹ

∂x

∂x

∂x̃
− ∂ỹ

∂x

∂x

∂x̃
= 0

B =
∂x̃

∂x

∂y

∂ỹ
− ∂ỹ

∂x

∂y

∂x̃

=
∂ỹ

∂y

∂y

∂ỹ
+
∂x̃

∂y

∂y

∂x̃
= 1

We have shown that Gq(
∂
∂x

) = ∂
∂y

. In a similar way it can be shown that Gq(
∂
∂y

) =

− ∂
∂x

. Thus Gq = Jq and hence the endomorphisms Jq are well defined. The above

proof also shows that J : TR→ TR is a smooth function. �

Analogous to the Riemannian metric for (real) manifolds one can define a Her-

mitian metric for complex manifolds, in particular for Riemann surfaces.

Definition 2.5 (Hermitian metric). Let R be a Riemann surface. R can also be

considered as a (real) manifold. A smooth Riemannian metric g on R is said to a

Hermitian metric if the following holds for all p ∈ R and for all u, v ∈ TpR:

gp(u, v) = gp(Jpu, Jpv)

where J is as in the preceding lemma.

It can be easily seen that for any Riemann surface R, there exists a Hermitian

metric : R can also be considered as a (real) manifold. By making use of partition

of unity we can show the existence of a Riemannian metric on any manifold and in

particular R. Consider the new metric h defined by:

h(u, v) =
1

2
(g(u, v) + g(Ju, Jv))

h is a Hermitian metric on the Riemann surface R.
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Definition 2.6 (Conformal classes of Riemannian metrics). Suppose that M is a

(real) manifold. Then any two Riemannian metrics g1 and g2 on M are said to be

conformally equivalent if:

g1 = λg2

where λ is a smooth positive function on M . The relation ∼ on the set of Riemannian

metrics on M given by: g ∼ h iff g and h are conformally equivalent is an equivalence

relation and the corresponding equivalence classes are called Conformal classes of

Riemannian metrics on M .

Theorem 2.7. Let M be an orientable, two dimensional, real manifold. Then the

conformal classes of Riemannian metrics on M are in one-one correspondence with

the conformal structures on M .

2.2. Subsets of C as Riemann surfaces

Suppose that U ⊂ C is a nonempty, open, connected subset of C. Then there is

the natural conformal structure on U given by {(V, φ)|V ⊂ U is open and φ : V →
C is a conformal map}. The holomorphic tangent space of U , TU ∼= U × C under

the identification ∂
∂z
|p = (p, 1). Suppose that h is a hermitian metric on U , then the

function:

f(p) = h((p, 1), (p, 1))

is a smooth positive function on U , since X(p) = (p, 1) is a smooth vector field on R.

Conversely assume that λ is a smooth positive function on U , then h defined in the

following way defines a hermitian metric on U :

hp((p, a), (p, b)) = abλ(p) , ∀ a, b ∈ C

Definition 2.8 (Metric and Length). Let U ⊆ C be a domain. Then a nonnega-

tive function on U , µ is called a metric if it satisfies the following conditions:

(1) µ is twice differentiable on the set {z ∈ U | µ(z) > 0}.
(2) The set {z ∈ U | µ(z) = 0} is discrete in U .

For z ∈ U and v ∈ C, the length of v at z denoted by ‖v‖µ,z is defined to be

‖v‖µ,z = µ(z) · ‖v‖

where ‖ · ‖ is the Euclidean norm.

Suppose that µ is a metric on a domain U ⊂ C. We can define a hermitian inner

product on each TpU , where p is such that µ(p) 6= 0 as follows:

gp((p, a), (p, b)) = µ(p)ab , ∀a, b ∈ C
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Let X and Y be smooth vector fields on U . Since µ is twice differentiable, the function

H : U \ {q ∈ U | µ(q) = 0} → C given by:

H(p) = gp(Xp, Yp)

is also twice differentiable. Thus the metric defined above can be used to obtain g on

U \ {q ∈ U | µ(q) = 0}, which is a generalization of the hermitian metric.

Similar to the case of Riemannian metrics and hermitian metrics, a metric µ on

U gives rise to a new distance function on the domain U .

Length of a curve γ ⊂ U is defined to be:

lµ(γ) =

∫ 1

0

‖ γ̇(t) ‖µ,γ(t) dt =

∫ 1

0

µ(γ(t)) ‖ γ̇(t) ‖ dt

For x, y ∈ U , define the set Cxy = {γ ⊂ U | γ is a smooth curve connecting x and y}.
We now define the distance between points in U by:

dµ(x, y) = inf{lµ(γ)| γ ∈ Cxy}

It is easy to see that dµ defines a distance function on the domain U .

Definition 2.9 (Pullback metric). Suppose U and V are domains in C and f :

U → V is a continuously differentiable function on U such that ∂f
∂z

has isolated zeros

on U . Assume that ρ is a metric on V . Then the pullback of the metric ρ via the

map f , denoted f ∗ρ is defined to be

f ∗ρ(z) = ρ(f(z)) ·
∣∣∣∣∂f∂z

∣∣∣∣
where ∂

∂z
= 1

2
( ∂
∂x
− i ∂

∂y
)

At this juncture it is useful to make the following two observations regarding the

above definition:

(1) In the above definition, if f happens to be a thrice differentiable function,

then f ∗ρ defines a metric on U . As we will see below, the map f : (U, f ∗ρ)→
(V, ρ) will have interesting properties if f is a holomorphic function.

(2) Suppose f in the above definition is a nonconstant holomorphic function.

Then for every p ∈ U , df |p defines a linear map between TpU and Tf(p)V ,

each of which is a one dimensional complex vector space endowed with metrics

(and equivalently generalized hermitian metrics) f ∗ρ and ρ respectively. TpU

is generated by ∂
∂z
|p and Tf(p)V is generated by ∂

∂z
|f(p) over C. Let p ∈ U

such that f ′(p) 6= 0. The map ∂f |p is given by:
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df |p : TpU → Tf(p)V
∂
∂z
|p → ∂f

∂z
(p) ∂

∂z
|f(p)

As we already noted TU ∼= U × C and TV ∼= V × C. For every q ∈ U
and s ∈ V we identify the tangent spaces TqU and TsV with C by identifying
∂
∂z
|q and ∂

∂z
|s with 1 ∈ C. With this identification, the map df |p actually

becomes a linear map that preserves norms (and consequently the hermitian

inner product) as shown below:

‖ 1 ‖p = f ∗ρ(p)

= ρ(f(p)) · |f ′(p)|
‖ df |p(1) ‖f(p) = |f ′(p)|· ‖ 1 ‖f(p)

= |f ′(p)| · ρ(f(p))

This shows that in case of holomorphic maps, the pullback metric has very

special properties. This observation serves as a motivation for the following

definition.

Definition 2.10 (Isometry). Let f : U → V be a one-one, onto, continuously

differentiable map between domains U and V of C which are equipped with metrics ρ1

and ρ2 respectively. f is called an isometry of the pair (U, ρ1) with (V, ρ2) if:

f ∗ρ2(z) = ρ1(z), ∀ z ∈ U.

Proposition 2.11. Let (U, ρ1), (V, ρ2) and f be as in the above definition. Sup-

pose also that f is a holomorphic map and an isometry of (U, ρ1) with (V, ρ2). Then

the following are true:

(1) Suppose γ : [0, 1]→ U is a smooth curve, then f ◦ γ is a smooth curve in V

and lρ1(γ) = lρ2(f ◦ γ)

(2) dρ1(x, y) = dρ2(f(x), f(y)), ∀ x, y ∈ U .

(3) f−1 is also an isometry.
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Proof. (1) We will calculate the lengths of γ and f ◦ γ below:

lρ1(γ) =

∫ 1

0

‖ γ̇(t) ‖γ(t) dt

=

∫ 1

0

ρ1(γ(t)) ‖ γ̇(t) ‖ dt

=

∫ 1

0

ρ2(f(γ(t))) | ∂f
∂z

(γ(t)) | ‖ γ̇(t) ‖ dt

lρ2(f ◦ γ) =

∫ 1

0

‖ ˙f ◦ γ(t) ‖f(γ(t))dt

Since f is holomorphic it can be easily seen using the Cauchy-Riemann

equations that ∣∣∣∣ ddt(f(γ(t)))

∣∣∣∣ =

∣∣∣∣∂f∂z (γ(t))

∣∣∣∣ · ‖ γ̇(t) ‖

Thus it follows that lρ1(γ) = lρ2(f ◦ γ).

(2) Let x and y ∈ U . Let γ be any smooth curve in U connecting x and y and

let α be any smooth curve in V connecting f(x) and f(y). Then since f−1

is also holomorphic, f−1 ◦ α is a smooth curve in U . It now follows from (1)

that dρ2(f(x), f(y)) ≤ dρ1(x, y) as well as dρ1(x, y) ≤ dρ2(f(x), f(y)). Hence

f preserves distances as claimed.

(3) This directly follows from observing that f−1 is also holomorphic and from

the definition of the pullback metric.

�

We have thus realized a conformal (or biholomorphic) map between two domains

in C as an isometry of the domains when considered with a suitable metric.

2.3. Hyperbolic metric on the unit disc D

In light of the previous section, we will in this section define a special metric on

the unit disc D ⊂ C called the Poincaré metric or the Hyperbolic metric on D. By

the end of this section it will be clear why this metric is special. From now on by D,

we will mean the unit disc in C which is centered at 0.

Definition 2.12 (Poincaré or Hyperbolic metric). The Poincaré or the Hyperbolic

metric on D is given by

ρ(z) =
1

1− |z|2
, ∀ z ∈ D
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We recall that any conformal self map of D is given by

f(z) = eiθ
(
z − a
1− āz

)
where θ ∈ [0, 2π) and a ∈ D. We will in the remainder of this chapter denote the

function g(z) = ( z−a
1−āz ) by φa(z).

Proposition 2.13. Suppose f is a conformal self map of D. Then f : (D, ρ) →
(D, ρ) is an isometry.

Proof. We saw above that f is a composition of a rotation map and φa, for some

a ∈ D. Hence it is enough to prove that rotations and the maps φa are isometries.

That rotations are isometries is easy to see.

φ∗a ρ(z) = ρ(φa(z))|φ′a(z)|

=
1

1− |( z−a
1−āz )|2

∣∣∣∣ 1− |a|2

(1− āz)2

∣∣∣∣
=

1

1− |z|2
= ρ(z)

�

The above proposition is interesting in that when both the domain(D) and codomain(D)

are endowed with the same metric ρ, it holds that any self conformal map turns out

to be an isometry! The following theorem also suggests the origin of ρ.

Proposition 2.14. Suppose µ is a metric on D which is such that any conformal

self map of D defines an isometry of (D, µ) with itself, then µ is a constant multiple

of ρ.

Proof. Let µ be a metric on D such that any self conformal map of D is an

isometry of (D, µ) with itself. Consider φa for some a ∈ D, then by our assumption

µ(z) = φ∗aµ(z)

µ(z) = µ

(
z − a
1− āz

)
·
∣∣∣∣ 1− |a|2

(1− āz)2

∣∣∣∣
∴ µ(a) = µ(0) · 1

(1− |a|2)

This last equality holds for any a ∈ D. Hence Proved.

�
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2.4. Schwarz’s Lemma

We have developed all the prerequisites required to understand some of the theo-

rems of complex analysis in the new geometric setting. Let us begin with the Schwarz’s

lemma which we recall below.

Lemma 2.15 (Schwarz’s Lemma). Suppose f : D→ D is holomorphic and f(0) =

0. Then the following hold:

(1) |f(z)| ≤ |z| on D
(2) |f ′(0)| ≤ 1

(3) If equality holds in either of the above cases, then f(z) = eiθz for some

θ ∈ [0, 2π).

The following lemma is an immediate corollary of the Schwarz’s lemma.

Lemma 2.16 (Schwarz-Pick Lemma). If f : D → D is a holomorphic map then

for any z ∈ D

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2

Proof. Let a ∈ D be an arbitrary point. Consider the composite function g =

φf(a) ◦ f ◦ φ−1
a . Then g : D → D and g fixes the point 0. Applying the Schwarz’s

lemma to g we get |g′(0)| ≤ 1. We also have:

g′(0) = (φ−1
a )′(0) · f ′(a) · (φf(a))

′(f(a))

= (1− |a|2) · f ′(a) · 1

1− |f(a)|2

We initially started with an arbitrary a ∈ D, thus we have the desired result:∣∣∣∣(1− |a|2) · f ′(a) · 1

1− |f(a)|2

∣∣∣∣ ≤ 1

∴ |f ′(a)| ≤ 1− |f(a)|2

1− |a|2
, ∀ a ∈ D

�

Proposition 2.17. Suppose f : (D, ρ) → (D, ρ) is a holomorphic map. Then f

is a distance decreasing map, i.e., dρ(f(x), f(y)) ≤ dρ(x, y), ∀ x, y ∈ D.

Proof. This follows as a direct consequence of the Schwarz-Pick lemma. We

start by noting that if g : U → V is a holomorphic map between domains U and V
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in C and µ is a metric on V , then for any curve γ ⊂ U connecting points x, y ∈ U ,

we have

lµ(f ◦ γ) = lf∗µ(γ)

and hence

(2.4.1) dµ(f(x), f(y)) ≤ df∗µ(x, y).

From Schwarz-Pick Lemma we have,

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2

∴ |f ′(z)| 1

1− |f(z)|2
≤ 1

1− |z|2
∴ f ∗ρ(z) ≤ ρ(z)

Thus df∗ρ(x, y) ≤ dρ(x, y). From this and (2.4.1) the desired result follows:

dρ(f(x), f(y)) ≤ dρ(x, y)

�

Remark 2.18. The preceding proposition is a direct consequence of the Schwarz-

Pick lemma. Conversely Schwarz-Pick lemma can be considered as an infinitesimal

version of the preceding proposition.

2.5. Schwarz’s Lemma in terms of Curvature

Definition 2.19 (Curvature). Let U be a domain in C endowed with a metric ρ.

Then for z ∈ U such that ρ(z) 6= 0, the curvature of ρ at the point z, denoted κ(U,ρ)(z)

is defined to be:

κ(U,ρ)(z) =
−∆logρ(z)

(ρ(z))2

Lemma 2.20. Suppose that U and V are domains in C and f : U → V is a

conformal map. If ρ is a metric on V , then the curvature is invariant under the map

f : (U, f ∗ρ)→ (V, ρ), i.e., κ(U,f∗ρ)(z) = κ(V,ρ)(f(z)).
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Proof. We have

κ(U,f∗ρ)(z) =
−∆logf ∗ρ(z)

(f ∗ρ(z))2

=
−∆logρ(f(z))|f ′(z)|
(ρ(f(z)))2 · |f ′(z)|2

=
−∆logρ(f(z))

(ρ(f(z)))2 · |f ′(z)|2

=
−∆(logρ ◦ f)(z)

(ρ(f(z)))2 · |f ′(z)|2

Now using the formulas for ∂
∂z

(f ◦g) and ∂
∂z̄

(f ◦g), we get the expression for κ(U,f∗ρ)(z)

to be:

κ(U,f∗ρ)(z) =
(∆logρ)(f(z))|f ′(z)|2

(ρ(f(z)))2 · |f ′(z)|2
= κ(V,ρ)(f(z))

�

Remark 2.21. Let U and ρ be as in definition 2.19. Let S = {z ∈ U | ρ(z) =

0}. As seen in section 2.2, the metric ρ endows the Riemann surface U \ S with a

generalized hermitian metric. Now U \S along with the hermitian metric can also be

thought of as a Riemannian manifold. For a Riemmanian manifold we already have

a notion of curvature. This coincides with the above definition of curvature.

Note that the curvature of a metric at a point is a local property and we see

that the above theorem holds if f is some nonconstant (not necessarily injective)

holomorphic function on U at the points where f ′ 6= 0, which is all of U except a

discrete set.

We will consider a few examples before proceeding:

(1) Let U ⊆ C be any domain. Let ρ ≡ 1 be the Euclidean metric on U . Then

κ(U,ρ) ≡ 0.

(2) Consider (D, ρ), where ρ is the Poincaré metric on D. Then κ(U,ρ) ≡ −4.

(3) On C consider the metric µ(z) = 2
1+|z|2 . This is often called the Spherical

metric and κ(C,µ) ≡ 1.

Below we will prove Ahlfors’ version of Schwarz’s lemma and consequently obtain

the classical Schwarz’s lemma as a corollary.
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Theorem 2.22. Let f : D→ V be a holomorphic map, where V is any domain in

C. Suppose ρ is the Poincaré metric on D and µ a metric on V such that κ(V,µ) ≤ −4

on V . Then f ∗µ ≤ ρ.

Proof. Let 0 < r < 1. On D(0, r) consider the metric ρr given by ρr(z) = r
r2−|z|2 .

This is the analogue of the Poincaré metric for D(0, r) in that the curvature of this

metric on D(0, r) is identically −4. Consider the function v on D(0, r) given by

v(z) =
f ∗µ

ρr

This is a positive function which is twice differentiable on D(0, r) and hence defines

a metric on it. The metric f ∗µ is bounded above by a positive constant on D(0, r)

and by the very definition of ρr, v(z) → 0 as |z| → r. Hence v attains maximum at

an interior point of D(0, r). Let that point be P . We will show below that v(P ) ≤ 1.

Since P is the maximum of the function v, ∆logv(P ) ≤ 0.

0 ≥ ∆logv(P )

= ∆logf ∗µ(P )−∆logρr(P )

= −(f ∗µ(P ))2κ(f∗µ)(P ) + (ρr(P ))2κρr(P )

≥ 4((ρr(P ))2 − (f ∗µ(P ))2)

We thus have v(P ) ≤ 1 and hence v ≤ 1 on D(0, r). Since we took an arbitrary

0 < r < 1, we get the desired result by letting r → 1−. �

Corollary 2.23 (Lemma 2.15). Schwarz’s lemma.

Proof. (1) In the above theorem 2.22 if we take (V, µ) = (D, ρ), then we get

f ∗ρ ≤ ρ. A closer look at proposition 2.17 shows that

f ∗ρ ≤ ρ⇒ distance decreasing property of f w.r.t ρ

Hence the above theorem 2.22 implies Schwarz-Pick lemma and the distance

decreasing property.

If we suppose further that f(0) = 0 we have the following:

distance decreasing property of f w.r.t ρ⇒ dρ(f(z), 0) ≤ dρ(z, 0)⇒ |f(z)| ≤ |z|

(2) Thus we have |f(z)| ≤ |z|. In this letting z → 0 yields |f ′(0)| ≤ 1.

(3) Also f ∗ρ = ρ iff f is an isometry. Hence the third statement in Schwarz’s

lemma 2.15 also follows.

�
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We can indeed generalize this theorem in the following way and this generalization

has many interesting applications.

Theorem 2.24. Let α > 0 and A > 0. On D(0, α) define the metric ρAα (z) =
2α√

A(α2−|z|2)
. Suppose f : D(0, α) → U is a holomorphic map and µ is a metric on U

which is such that κ(U,µ) ≤ −B < 0 on U . Then

f ∗µ

ρα
≤
√
A√
B

on D(0, α)

The proof of the above theorem is a verbatim translation of the proof of theorem

2.22 with ρr(z) = 2r√
A(r2−|z|2)

and eventually we let r → α.

2.6. Applications

In this section, we will derive two results as a consequence of the theory developed

in the previous sections. The curvature is a function of the metric. And the metric

depends on the Riemann surface in consideration. The following two results illustrate

how curvature gives information about the conformal nature of the Riemann surface.

Proposition 2.25. Suppose f : C → Ω is a holomorphic function and σ is a

metric on Ω such that κ(Ω,σ) ≤ −B < 0. Then f is a constant function.

Proof. On D(0, α) let ρAα be the metric as in theorem 2.24. Then by theorem

2.24 it follows that

f ∗σ ≤
√
A√
B
ρAα

∴ f ∗σ(z) ≤
√
A√
B

2α√
A(α2 − |z|2)

,∀z ∈ D(0, α)

Letting α → ∞ in the above inequality, we can conclude that ∀z ∈ C, f ∗σ(z) = 0.

Thus f ′ ≡ 0. Hence f is a constant. �

We obtain Liouville’s theorem as a corollary of this proposition.

Theorem 2.26 (Liouville’s Theorem). Suppose f : C → C is a holomorphic

function which is bounded. Then f is a constant.

Proof. Suppose that |f | < M on C. Then for any A > 0, the curvature of the

metric ρAM(z) = 2M√
A(M−|z|2)

on D(0,M) is identically equal to −A. We can consider

the map f : C→ D(0,M) and by proposition 2.25, it follows that f is constant. �

We will use proposition 2.25 to prove the following theorem as well:
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Theorem 2.27 (Picard’s Little theorem, Theorem 3 & Corollary 4, §2, Chapter

2, [5]). Suppose f : C→ C is holomorphic and such that f(C) ⊆ C\{P,Q}, for some

P,Q ∈ C, then f is a constant.

Proof. In light of proposition 2.25, it is enough to construct a metric µ on

C \ {P,Q} such that κ(C\{P,Q},µ) ≤ −B < 0. Consider the metric µ defined below:

µ(z) =
(1 + |z|1/3)1/2

|z|5/6
· (1 + |z − 1|1/3)1/2

|z − 1|5/6

For this metric, we will calculate the curvature κ(z)

κ(z) =
−∆logµ(z)

(µ(z))2

Let us first calculate the numerator of the above expression. A simple calculation for

α 6= 0 gives

∆log(1 + |z|α) =
α2|z|α−2

(1 + |z|α)2

Since for every z 6= 0, we have ∆log|z| = 0, the curvature κ is

κ(z) = − 1

18

[
|z − 1|5/3

(1 + |z|1/3)3(1 + |z − 1|1/3)
+

|z|5/3

(1 + |z − 1|1/3)3(1 + |z|1/3)

]
We observe the following from the above equation:

(1) κ(z) < 0, ∀z ∈ C \ {0, 1}
(2) lim

z→∞
κ(z) =∞

(3) lim
z→0

κ(z) = − 1

36

(4) lim
z→1

κ(z) = − 1

36
Thus we have produced a metric on C \ {0, 1} for which the curvature is bounded

above by a negative constant and hence from proposition 2.25 it follows that any

holomorphic map f : C→ C \ {0, 1} is a constant. �





CHAPTER 3

Normal families and Great Picard’s theorem

Normal families play a very significant role in the proof of Riemann Mapping

theorem. Montel’s theorem gives an important criterion for a family of holomorphic

functions to be normal and equivalently a criterion for compactness in the space of

holomorphic functions. In this chapter we will extend the notion of normal family

and consider it in a geometric setting. As in the previous chapter, curvature is the

main theme of this chapter too. This chapter culminates with the proof of Great

Picard’s theorem. The exposition in this chapter is based on the books of Krantz [4]

and [5].

3.1. Introduction

We will begin by recalling a few definitions and theorems in the classical function

theory.

3.1.1. Definitions and Montel’s theorem.

Definition 3.1 (Normal Convergence). Let U ⊆ C be an open set and let (fn)n∈N
be a sequence of holomorphic functions on U . We say that (fn) converges normally

on U if (fn) converges uniformly on all compact subsets of U (to a necessarily holo-

morphic function).

Definition 3.2 (Normal family). Let U ⊆ C be an open set and let F = {fα}α∈A

be a family of holomorphic functions on U . We say that F is a normal family if every

sequence in F has a subsequence that converges normally on U .

Theorem 3.3 (Arzela-Ascoli theorem). Let K be a compact topological space.

Then C(K,C), the set of all continuous function from K to C, is a metric space with

the metric d(f, g) = sup{|f(x)− g(x)| | x ∈ K}. In this topology a subset of C(K,C)

is compact iff it is closed, bounded and equicontinuous.

Theorem 3.4 (Montel’s Theorem). Suppose that F = {fα} is a family of holo-

morphic functions on an open subset U of C. Suppose that for every compact set

21
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K ⊂ U , there exists MK > 0 such that |f(z)| ≤ MK, ∀z ∈ K and ∀f ∈ F, then F is

a normal family.

Proof. We will first show that the theorem holds if U is replaced by any compact

subset Kn ⊂ U which are such that

(1) K1 ⊂ K2 ⊂ K3 ⊂ · · ·Kn ⊂ Kn+1 ⊂ · · ·
(2) Kn ⊂

◦
Kn+1 , ∀n ≥ 1

(3) ∪Kn = U

We will later show that this is enough to prove the theorem. Fix a compact subset

K = Kn. Now we consider the family F as a family of functions on K. We can also

consider it as a subset of C(K,C). Then in this setting the theorem reads “if F is a

bounded family of holomorphic functions then, its closure is compact in C(K,C)”. We

already have Arzela-Ascoli theorem which gives all the compact subsets of C(K,C).

In view of this, we only have to prove that F is an equicontinuous family. Let r > 0

be such that ∀z ∈ Kn, D(z, r) ⊂ Kn+1 and let R > 0 be such that ∀ζ ∈ Kn+1,

D(ζ, R) ⊂ Kn+2. For any x, y ∈ Kn such that |x − y| < r, let γxy represent the line

connecting x and y. By our choice of r, γxy ⊂ Kn+1. Thus we have for all f ∈ F

f(x)− f(y) =

∮
γxy

f ′(ζ)dζ

|f(x)− f(y)| ≤ supζ∈L|f ′(ζ)| · |x− y|

≤
MKn+2

R
· |x− y|

Thus F is equicontinuous and hence is normal. So assume that (fn) is any sequence

in F. We need to produce a subsequence which converges normally on U . Let S1

denote the subsequence of (fn) which converges normally on K1, and recursively we

get the sequence Sn which is the subsequence of Sn−1 which converges normally on

Kn. Now we construct the subsequence of (fn) which is denoted gk = fnk where gk is

the kth entry in the sequence Sk. Note the following about this subsequence:

(1) By our very construction (gk)
∞
n ⊂ Sn and hence converges normally on Kn.

(2) Since any compact set K ⊂ U is a subset of some Kn, we conclude that (gk)

converges normally on U .

Hence we have proved that F is a normal family. �

3.1.2. Extension of the notion of normal family.

Definition 3.5 (Compact divergence). Let U ⊆ C be an open set and let (fn)n∈N
be a sequence of holomorphic functions on U . We say that (fn) diverges compactly
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on U if for all compact sets K ⊂ U and L ⊂ C, there exists N ∈ N such that

fn(K) ∩ L = φ, whenever n ≥ N .

Note that the above definition is equivalent to saying that the sequence 1/(fn)∞m
(for some m ∈ N ) converges normally on U to the constant function 0. Now we shall

extend our definition of normal families to include sequences that diverge compactly

too.

Definition 3.6 (Normal family∗). Let U ⊆ C be an open set and let F = {fα} be

a family of holomorphic functions on U . We say that F is a normal family∗ if every

sequence in F has a subsequence that converges normally or diverges compactly on U .

In the above definition, let us for the moment, think of the functions fα as taking

values in C∪{∞}. Then endowing C∪{∞} with a suitable metric, we can reformulate

the definition of normal family∗ to read “A family of holomorphic functions taking

values in C∪ {∞} (which is equipped with some metric) is a normal family∗ if every

sequence of functions has a subsequence that converges normally on U”.

In the above consideration, there are a lot of terms to be made precise and the

rest of this subsection will be devoted towards this.

The Riemann sphere C ∪ {∞} is a Riemann surface. This can also be considered

as the sphere in R3. The correspondence is precisely defined by the stereographic

projection p of C on S2 ⊂ R3. We want to define a metric σ on C ∪ {∞} such that

measurement of distances in (C ∪ {∞}, σ) can be thought of as being done on the

sphere S2 ⊂ R3. It is clear that this is the metric suitable for the present situation.

Simple calculations lead to the Spherical Metric on C ∪ {∞} which is σ(z) = 2
1+|z|2 .

The Euclidean distance between the points p(z) and p(w) ∈ S2, where z, w ∈ C is

given by 2|z−w|√
1+|z|2

√
1+|w|2

. Hence we have the following inequality:

dσ(z, w) ≤ 2|z − w|√
1 + |z|2

√
1 + |w|2

, ∀ z, w ∈ C

Since we have now extended our codomain to be C ∪ {∞} and we want to consider

holomorphic maps (considered as that between complex manifolds) from U to C ∪
{∞}, we can include meromorphic functions on U as well. From now on we will

denote (C ∪ {∞}, σ) by Ĉ. Now the definition of a normal family becomes a concise

one:

Definition 3.7 (Normal family). A family F of holomorphic functions from U

to Ĉ is said to be normal if every sequence of functions in F has a subsequence that
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converges normally on U , i.e., for every compact set K ⊂ U and ε > 0 there exists

N ∈ N such that dσ(fn(z), fm(z)) < ε whenever z ∈ K and n,m ≥ N .

After having defined normal convergence in the above fashion, we are naturally

lead to the following questions:

(1) What is the uniform limit of a holomorphic function, in particular, is it also

holomorphic?

(2) Suppose we start with a sequence of holomorphic functions taking values in

C which converge normally on U , then what are the possible limit functions

of this sequence?

We will answer the above questions in the following lemmas.

Lemma 3.8. Suppose that (fn) is a sequence of holomorphic functions on U

taking values in Ĉ which converges normally on U . Then the limit function f is also

holomorphic.

Proof. Let f be the limit function of (fn). Suppose that for some P ∈ U , f(P ) ∈
C. Then there exists a neighborhood of P say D(P, r) such that f(D(P, r)) ⊂ C and

D(P, r) ⊂ U . Since (fn) converges uniformly on D(P, r) ⊂ U , we have :

dσ(fn(z), f(z)) < ε , ∀n ≥ N

where ε > 0 is such that the {ζ ∈ Ĉ| dσ(ζ, f(D(P, r))) < ε} ∩ V = φ, for some

neighbourhood V 3 ∞ . Note that on a compact subset K of Ĉ, since the spherical

metric is bounded above and below, we have the constants mK and MK > 0 such

that for any z, w ∈ K, mK |z − w| ≤ dσ(z, w) ≤MK |z − w|.
We conclude that the sequence (fn)∞N of functions on D(P, r) takes values in C

and also converges uniformly when considered as functions taking values in C. Thus

f is holomorphic on D(P, r).

Suppose for someQ ∈ U that f(Q) =∞. LetD(Q, s) ⊂ U be such that f(z) 6=∞,

∀z ∈ D(Q, s)\{Q}. By a similar argument as above it follows that f is a holomorphic

function on D(Q, s)\{Q} taking values in C. By continuity at Q, it follows that f is a

meromorphic function in the usual sense and hence the limit function is a holomorphic

function taking values on Ĉ. �

Lemma 3.9. Suppose that (fn) is a sequence of holomorphic functions on U , tak-

ing values in C, which converges normally on U according to the extended definition.

Then the limit function f is also a holomorphic function taking values in C or is

identically equal to ∞.
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Proof. Suppose that the limit function takes values in C, then by the proof of

the above lemma, it follows that f is also holomorphic taking values in C. Now

assume that for some P ∈ U that f(P ) =∞, we will show that f ≡ ∞. We can find

a neighborhood of P namely D(P, r) ⊂ U whose closure is also in U and satisfies the

property that f(z) 6=∞ on D(P, r) \P . The sequence ( 1
fn

) is a sequence of functions

that converges normally (in the usual sense) on D(P, s) for some 0 < s < r. This

sequence is nowhere vanishing and hence by Hurwitz’s theorem it follows that 1
f

is

also nowhere vanishing or identically 0. Thus f ≡ ∞. �

3.2. Geometric Version of Montel’s theorem

Before formulating the differential form of the Montel’s theorem, we take a closer

look at the proof of the Montel’s theorem 3.4. We note that the only step in the proof

where the information that F is a family of holomorphic functions is used is to prove

that |f ′| is uniformly bounded on compact subsets of U . This boundedness implies

that the family F is equicontinuous and by Arzela-Ascoli’s theorem, it follows that the

closure of F in C(U,C) is compact and hence the desired result follows. What is the

analogue of |f ′(z)| in case of holomorphic maps between Riemann surfaces endowed

with hermitian metrics?

Suppose that f : U → V is a holomorphic function where U and V are domains

in C considered with the Euclidean metric. Then for any p ∈ U we have the map

df |p : TpU → Tf(p)V
∂
∂z
|p → f ′(p) ∂

∂z
|f(p)

Thus |f ′(p)| is the norm or length of the vector df |p( ∂
∂z
|p) ∈ Tf(p)V . In the present

situation we are concerned with a holomorphic map f : U → Ĉ, where U is a domain

in C. Suppose p ∈ U is such that f(p) ∈ C. Then the map df |p is:

df |p : TpU → Tf(p)Ĉ
∂
∂z
|p → f ′(p) ∂

∂z
|f(p)

We now have

‖ df |p
(
∂

∂z
|p
)
‖= |f ′(p)|· ‖ ∂

∂z
|f(p) ‖=

2|f ′(p)|
1 + |f(p)|2

= f ∗σ(p)

We are now ready to state and prove the geometric version of Montel’s theorem.

As a final remark, in the proof of Montel’s theorem 3.4, after having establised the

uniform boundedness of the derivative, we made use of this to calculate the length

of a particular curve connecting arbitrary points x and y and used this to prove the

equicontinuity of the family F. In the proof of the following theorem also, we will

adopt the same strategy.
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Theorem 3.10. Suppose that F is a family of holomorphic functions on a complex

domain U taking values in Ĉ (i.e., F is a family of meromorphic functions on U).

Then F is a normal family iff the set of pullback metrics {f ∗σ|f ∈ F} is uniformly

bounded on compact subsets of U , i.e., for any compact subset K ⊂ U , there exists

MK > 0 such that 2|f ′(z)|
1+|f(z)|2 ≤MK, ∀f ∈ F and ∀z ∈ K.

Proof. Assume that {f ∗σ|f ∈ F} is uniformly bounded on compact subsets of

U . As in the proof of theorem 3.4, we consider compact sets Kn with the additional

assumption that each
◦
Kn is connected. Now fix K = Kn and for x, y ∈ Kn let γ = γxy

be a path in
◦
Kn+1 connecting x and y. We have the following:

lσ(f ◦ γ) =

∫ 1

0

‖ ˙(f ◦ γ)(t) ‖ dt

=

∫ 1

0

2

1 + |f(γ(t))|2
· |f ′(γ(t))| · |γ̇(t)|dt

≤ MKn+1lγ

∴ dσ(f(x), f(y)) ≤ MKn+1d(x, y)

We thus conclude that F converges uniformly on Kn, ∀n ∈ N. Thus F is a normal

family.

Now assume that F is a normal family. We need to prove that {f ∗σ|f ∈ F} is

uniformly bounded on all compact subsets of U . We prove this by contradiction.

So assume that for some compact set K, {f ∗σ|f ∈ F} is not uniformly bounded. So

∃(zn) ⊂ K and (fn) ⊂ F such that fn
∗σ(zn) ≥ n. K being compact, (zn) can be chosen

such that it is convergent. F being a normal family, (fn) can be chosen such that it

is converges normally on K. In a similar way as was done for holomorphic functions

taking values in C (using Cauchy’s estimates), it can be shown that if (fn) converges

to f normally on K, then (fn
∗σ) also converges normally to f ∗σ. Thus fn

∗σ(zn) →
f ∗σ(z). This implies that fn

∗σ(zn) is bounded which is a contradiction. �

3.3. Applications

Theorem 3.11. If F is a family of holomorphic functions taking values in Ĉ such

that image of each f ∈ F is contained in Ĉ \ {P,Q,R}, then F is a normal family.

Proof. Without loss of generality assume that P = 0, Q = 1 and R = ∞.

Now we need to prove that if F is a family of holomorphic functions taking values in

C \ {0, 1}, it is a normal family. It is equivalent to showing that F restricted to any

disc D(0, r) is normal. We will show that the set of pullback metrics {f ∗σ|f ∈ F} is
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uniformly bounded on compact subsets of C and hence by theorem 3.10, it will follow

that F is a normal family.

Let µ be the metric on C \ {0, 1} constructed in theorem 2.27. Then κµ ≤ −1
36

.

Consider the metric ρAr (as in theorem 2.24) on D(0, r). Then by theorem 2.24 we

have the following inequality:

f ∗µ ≤ 6
√
AρAr

We now compare the metrics µ and σ. Since by the very construction, µ(z)→∞ as

z → 0, 1 or ∞, it follows that σ(z)
µ(z)
→ 0 as z → 0, 1 or ∞. Hence σ

µ
is bounded above

by a constant M . The following inequalities hold for z ∈ D(0, r):

σ ≤ Mµ

∴ f ∗σ ≤ Mf ∗µ ≤ (6
√
AM)ρAr , ∀f ∈ F

This proves that {f ∗σ|f ∈ F} is uniformly bounded on compact subsets of C and

hence F is normal. �

Corollary 3.12. Suppose that F is a family of holomorphic functions on U taking

values in C \ {P,Q}. Then F is a normal family.

Theorem 3.13 (The Great Picard’s Theorem, Theorem 2, §4, Chapter 2, [5]).

Suppose that f : D(0, 1) \ {0} → C is a holomorphic function and 0 is an essential

singularity of f , then in every neighborhood U of 0, f takes all values in C except

possibly one value.

Proof. We prove this by contradiction. Suppose that f(D(0, 1) \ {0}) ⊆ C \
{0, 1}. In this case we will show that 0 is either a removable singularity or a pole

of f . Consider the family of functions {fn} on D(0, 1) \ {0} which are given by

fn(z) = f( z
n
). By corollary (3.12) it follows that F is a normal family. So the

sequence (fn) has a subsequence that converges normally or diverges compactly on

D(0, 1) \ {0}. Say that subsequence is (fnk).

(1) Suppose that (fnk) converges normally on D(0, 1) \ {0}. Then it converges

uniformly on all compact subsets of D(0, 1) \ {0} and in particular on the

circle C = {z : |z| = 1
2
}. Hence fnk ≤ M for some M > 0 on C. Thus f

is bounded by M on the circles {z : |z| ≤ 1
2nk
}. Consider f on the annulus

Ak = {z : 1
2nk+1

≤ |z| ≤ 1
2nk
}, by the Maximum modulus principle f is

bounded by M on every Ak. Since the sequence nk → 0, we conclude that f

is bounded by M in a neighborhood of 0 and hence this would mean that 0

is a removable singularity of f contradicting our assumption.
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(2) Next assume that (fnk) diverges compactly on D(0, 1) \ {0}. Then 1
fnk (z)

=
1

f( z
nk

)
converges uniformly on D(0, 1) \ {0} to the constant function 0. Thus

f has a pole at 0. This is a contradiction to our assumption that 0 is an

essential singularity of f .

�



CHAPTER 4

Covering Spaces

In this chapter we will review some basic facts about covering spaces which will

play a very significant role in the chapters that follow. Many proofs are omitted as

getting down to fill in all the details would take us far from our goal. The discussion

in this chapter is based on §53 of the book of Munkres [6].

4.1. Covering Spaces and liftings

Definition 4.1 (Covering map). A function p : E → B between two topological

spaces is called a covering map if the following hold:

(1) p is surjective

(2) ∀b ∈ B, ∃ a neighborhood of b, Ub ⊂ B such that p−1(Ub) = tα∈AVα and

p|Vα : Vα → Ub is a homeomorphism for every α ∈ A.

Suppose p : E → B is a covering map and p(e) = b, then p induces a group

homomorphism p∗ between the fundamental groups π1(E, e) and π1(B, b). Suppose

that f : Y → B is any continuous map. The ability to “lift” the map f to a map

f̃ : Y → E in certain situations is the significant fact about covering spaces that

is extensively used. In the remaining part of this section, we make this notion of

“lifting” precise and state some results (sans proof) pertaining to the same.

In what follows let p : E → B be a covering map and let f : Y → B be any

continuous map. We will also assume from now on that both B and E are path

connected and locally path connected.

Definition 4.2 (Lift). A continuous map f̃ : Y → E is called a lift of the map f

if it satisfies p ◦ f̃ = f , i.e., the following diagram commutes:

E

p

��
Y

f //

f̃
??~~~~~~~
B

29
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It is easy to see that a necessary condition for a lift f̃ of f (that takes y ∈ Y to

e ∈ E) to exist is that f∗(π1(Y, y)) ⊂ p∗(π1(E, e)). In fact it also turns out to be a

sufficient condition!

Lemma 4.3. A lift f̃ of f such that f̃(y) = e exists iff f∗(π1(Y, y)) ⊂ p∗(π1(E, e)).

Also if such a lift exists it is unique.

Definition 4.4 (Equivalent covering maps and Covering equivalence). Let p :

E → B and p′ : E ′ → B be two covering maps. They are said to be equivalent if there

exists a homeomorphism h : E → E ′ such that p′ ◦ h = p. Such a homeomorphism h

is called a covering equivalence.

In the above definition suppose e, e′ and b are such that p(e) = p′(e′) = b and

h(e) = e′. Then p′∗(π1(E ′, e′)) = p∗(π1(E, e)). Suppose p : E → B and p′ : E ′ → B

are two covering maps. The following proposition, which is a direct consequence of

lemma 4.3, partially answers when the two covering maps are equivalent.

Proposition 4.5. There exists a covering equivalence h between E and E ′ that

takes e to e′ iff p′∗(π1(E ′, e′)) = p∗(π1(E, e)).

Lemma 4.6. Suppose that p : E → B is a covering map and e1, e2 ∈ E are such

that p(e1) = p(e2) = b and let α̃ be a curve in E beginning at e1 and ending at e2.

Let α = p ◦ α̃. Then p∗(π1(E, e2)) = αp∗(π1(E, e1))α−1.

We are now ready to answer the question: When are the two covering spaces

(E, p) and (E ′, p′) equivalent?

Proposition 4.7. Suppose e ∈ E and e′ ∈ E ′ are such that p(e) = p′(e′) =

b. Then the two covering maps (E, p) and (E ′, p′) are equivalent iff the subgroups

p∗(π1(E, e)) and p′∗(π1(E ′, e′)) are conjugate in π1(B, b).

4.2. Regular covering and Universal covering

In this section, we will consider the set of covering equivalences of (E, p) with itself.

It is easy to see that this set forms a group. This is a subgroup of Hom(E). We will

call this group the group of covering transformations of the covering map p : E → B

and denote it by C(E, p,B). We shall call its elements covering transformations.

If h is a covering transformation, then for every b ∈ B it maps the set p−1(b) to

itself.

Theorem 4.8. The group C(E, p,B) ∼= N(H0)/H0, where H0 = p∗(π1(E, e)) and

N(H0) is the normalizer of H0 in π1(B, b). (Here p(e) = b)
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Proof. We will explicitly construct an isomorphism between the two groups. Let

F = p−1(b). Consider the map φ : π1(B, b)/H0 → F . Consider a loop [γ] in π1(B, b),

we know there exists a unique lift [γ̃] of this that begins at e. φ([γ]) is defined to be

the endpoint of [γ̃]. This map is clearly a bijection.

Now consider the map ψ : C(E, p,B) → F defined by ψ(h) = h(e). This map is

injective by lemma 4.3. Consider the map φ−1ψ : C(E, p,B) → π1(B, b)/H0. This is

a injection. We want to show that this is actually a group homomorphism and the

image of C(E, p,B) under φ−1ψ is N(H0)/H0.

(1) We will prove that φ−1ψ is a group homomorphism. Let h1, h2 ∈ G(p, q1, q2)

and let ψ(h1) = e1 and ψ(h2) = e2.

φ−1ψ(h1h2) = φ−1(h1(e2)) = γ

where γ ∈ π1(B, b) is such that its lift in E that starts at e ends at h1(e2).

φ−1ψ(h1)φ−1ψ(h2) = φ−1(e1)φ−1(e2) = γ1γ2

where γ1, γ2 ∈ π1(B, b) are such that their lifts, γ̃1 and γ̃2 in E that begin at

e end at e1 and e2 respectively. We have

p ◦ (γ̃1γ̃2) = γ1γ2

= (p ◦ γ̃1)(p ◦ γ̃2)

= (p ◦ γ̃1)((p ◦ h1) ◦ γ̃2)

= (p ◦ γ̃1)(p ◦ (h1 ◦ γ̃2))

= p ◦ (γ̃1(h1 ◦ γ̃2))

= α

where α ∈ π1(B, b) is such that its lift α̃ = γ̃1(h1 ◦ γ̃2) is a curve in E that

starts at e and ends at h1(e2).

Hence φ−1ψ is a group homomorphism.

(2) Next we will show that the image of C(E, p,B) under φ−1ψ is N(H0)/H0.

This is equivalent to showing that:

∃h ∈ G(p, q1, q2) satisfying h(e) = e0 ⇔ ∃α ∈ N(H0) such that its lift α̃

that starts at e ends at e0.

(⇒) By proposition 4.5, it follows that p∗(π1(E, e)) = p∗(π1(E, e0)). But

again by lemma 4.6, we have p∗(π1(E, e0)) = αp∗(π1(E, e))α−1, where the lift

of α, α̃ is a curve in E beginning at e and ending at e0.

Thus α ∈ N(H0) and α̃ is a curve in E beginning at e and ending at e0.
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(⇐) If ∃α ∈ N(H0) such that its lift α̃ starts at e ends at e0, then

p∗(π1(E, e)) = p∗(π1(E, e0)). Now by proposition 4.5 the desired result fol-

lows.

�

Definition 4.9 (Regular covering). A covering map is said to be regular if ∀b ∈ B
and ∀e1, e2 ∈ p−1(b), there exists a covering transformation h such that h(e1) = e2.

It follows from theorem 4.8 that a covering map is regular iff ∀e ∈ E, p∗(π1(E, e))

is a normal subgroup of π1(B, p(e)).

Definition 4.10 (Properly discontinuous action). Let X be a topological space

and let Hom(X) be the group of homeomorphisms from X to itself. A subgroup

G ≤ Hom(X) is said to act properly discontinuously on X if ∀x ∈ X, there exists a

neighbourhood Ux 3 x such that the following holds:

g1(Ux) ∩ g2(Ux) = φ, ∀g1, g2 ∈ G and g1 6= g2

Note that if p : E → B is a covering map and G = G(p, q1, q2). Then G acts prop-

erly discontinuously on E. The following theorem says that starting with a topological

space X and a subgroup G ≤ Hom(X) which acts properly discontinuously on X,

the quotient map π : X → X/G is a regular covering for which the group of cover-

ing transformations is precisely G, where X/G is the quotient space of X under the

equivalence ∼ given by: x ∼ y iff ∃g ∈ G such that y = g(x). This gives a way of

constructing regular covering maps.

Theorem 4.11. Let X be a topological space and let G ≤ Hom(X). The map

π : X → X/G is a covering map iff G acts properly discontinuously on X. In this

case C(X, π,X/G) = G and π is a regular covering.

It is interesting to note that every regular covering map arises in this way as the

following theorem states:

Theorem 4.12. Suppose that p : E → B is a regular covering map and let G =

C(E, p,B). Then there exists a homeomorphism h : E/G→ B such that h ◦ π = p.

E

π
��

E

p

��
E/G

h // B
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Proof. It is easy to see that the map h defined locally (in evenly covered neigh-

borhoods of E/G) by h = p ◦ π−1 makes sense globally as well and defines a homeo-

morphism h : E/G→ B. �

Definition 4.13 (Universal covering space). E is called a universal covering space

of B if E is simply connected.

The following proposition is an immediate consequence of lemma 4.3:

Proposition 4.14. Any two universal covering spaces of B are equivalent.

An interesting example of a regular covering is the universal covering. We shall

consider the theory about regular coverings developed in this section for universal

coverings in the next chapter.

Definition 4.15 (Semi local simply connectedness). A topological space X is

called semilocally simply connected if every point x ∈ X has a neighbourhood Ux
such that the inclusion map induces a trivial group homomorphism i∗ : π1(Ux, x) →
π1(X, x).

Theorem 4.16. A topological space B has a universal covering iff it is path con-

nected, locally path connected and semilocally simply connected.

Thus every domain in Ĉ has a universal covering space.





CHAPTER 5

Poincare Metric via Covering

In chapter 2 we defined a special metric on D called the Poincaré metric. In

this chapter we will use the theory of covering spaces to define a similar such special

metric - Poincare metric for most domains in C and eventually return to few of the

theorems discussed in chapters 2 and 3. The main idea of the present chapter is this:

Just as the nature of the metric that can be defined on a domain depends on the

nature of the domain, it is also true that knowledge of a metric on a domain gives

information about the nature of the domain. As an illustration of this, the chapter

culminates with an alternate proof of the Great Picard’s theorem. The exposition in

this chapter is based on the book of Milnor [7].

5.1. Uniformization theorem and classification of Riemann surfaces

In this section we will state the Uniformization theorem and use this to classify

Riemann surfaces. The Uniformization theorem and its proof are dealt with in detail

in the chapters that follow.

Theorem 5.1 (Uniformization theorem). Any simply connected Riemann surface

is conformally isomorphic to one of the following:

(1) The complex plane C
(2) The unit disc D ⊂ C, D = {z ∈ C : |z| < 1}
(3) The Riemann sphere Ĉ = C ∪ {∞} which is topologically the one point com-

pactification of the complex plane C with an analytic structure near∞ derived

from the map z → 1
z
.

All domains in C have a universal covering space, which according to the preceding

theorem is either D, C or Ĉ. The discussion in the previous chapter helps us to

categorize domains based on their universal covering space.

We have seen in Chapter 4 that if E is the universal covering space of B, then

B ∼= E/G where G is a subgroup of Hom(E) which acts properly discontinuously on

E. This fact aids us to specify exactly which domains in C have D or C or Ĉ as their

covering space. The following discussion leads up to the classification.

35
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(1) The group of conformal automorphisms of Ĉ is the group of Mȯbious trans-

formations:

Aut(Ĉ) = {f | f(z) =
az + b

cz + d
and (ad− bc) 6= 0}

Any nontrivial element f ∈ Aut(Ĉ) has atleast one fixed point. Hence there

is no nontrivial subgroup of Aut(Ĉ) which acts properly discontinuously on

Ĉ. Hence the only Riemann surface with Ĉ as the universal covering space

is Ĉ itself.

(2) The group of conformal automorphisms of C is

Aut(C) = {f | f(z) = λz + a, λ ∈ C \ {0} and a ∈ C}

Any f(z) = λz + a where λ 6= 1 has a fixed point. Hence a subgroup of

Aut(C) which can act properly discontinuously on C must necessarily be a

subgroup of G = {f | f(z) = z + a, a ∈ C}. Note that G ∼= (C,+). Suppose

that H ≤ G is any subgroup, then H ∼= L = {h(0)| h ∈ H}. Thus H acts

properly discontinuously on C iff L is a discrete subgroup of (C,+). We have

the following 2 cases according to the number of generators of L:

(a) Suppose L is generated by a single element. In this case L ∼= Z. So C is

the universal cover of the Riemann surface C/Z. The following map is a

conformal isomorphism:
φ : C/Z → C \ {0}

z̄ → e2πiz

Thus C\{0} is the only space (upto conformal isomorphism) such that C
is its universal covering space and the group of covering transformations

is generated by a single element.

(b) Suppose L is generated by 2 generators. Then L ∼= Z ⊕ aZ, where

a ∈ C \ R. The Riemann surface is topologically equivalent to a torus

and hence in compact. So it is not conformally isomorphic to any domain

in C.

(3) From the above consideration it follows that any Riemann surface which is

not conformally isomorphic to Ĉ, C, C \ {0} and C/L, where L ∼= Z ⊕ aZ,

should have D as its universal covering space. In particular for any domain

U ⊂ C such that U 6= C and U � C \ {0}, D is the universal covering space

of U .

A Riemann surface S is said to be of the following types depending on its universal

covering space:
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(1) Spherical if its universal covering space is Ĉ.

(2) Euclidean if its universal covering space is C.

(3) Hyperbolic if its universal covering space is D.

5.2. Maps between different types of Riemann surfaces

The following lemma will play a crucial role in determining the possible holomor-

phic maps between different types of Riemann surfaces.

Lemma 5.2. Let U and U ′ be Riemann surfaces with universal covering spaces

E and E ′ respectively. Let p : E → U and p′ : E ′ → U ′ be the covering maps.

Suppose f : U → U ′ is a holomorphic map, then it can be lifted to a holomorphic map

f̃ between E and E ′, i.e., there exists f̃ : E → E ′ such that the following diagram

commutes:

E
f̃ //

p

��

E ′

p′

��
U

f // U ′

Proof. The map (f ◦ p) : E → U ′ is holomorphic and E is simply connected.

Thus it follows from lemma 4.3 that (f ◦ p) lifts to a map f̃ : E → E ′ and satisfies

p′ ◦ f̃ = f ◦ p. Hence proved. �

Proposition 5.3. Suppose that f : S → S ′ is a holomorphic map where S and S ′

satisfy one of the following:

(1) S is Euclidean and S ′ is Hyperbolic

(2) S is Spherical and S ′ is Hyperbolic

(3) S is Spherical and S ′ is Euclidean

Then f is necessarily a constant map.

Proof. According to the previous lemma, in all the three cases f lifts to a map

f̃ between the universal covering spaces:

(1) f̃ : C→ D. By Lioville’s theorem, this is a constant map and hence f is also

a constant.

(2) f̃ : Ĉ→ D restricts to a holomorphic function from C to D, thus in this case

also f̃ and hence f is also a constant.

(3) f̃ : Ĉ → C restricts to a holomorphic map on C and since Ĉ is compact,

image of f̃ is bounded in C. Thus in this case too f̃ and hence f is also

constant.
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�

We saw in the previous section that C \ {0, 1} is a hyperbolic Riemann manifold

and hence we obtain Picard’s Little theorem as a corollary of the above proposition.

Corollary 5.4. Suppose that f : C → C is a holomorphic map that misses at

least two points in C. Then f is a constant function.

5.3. Poincare metric on a Hyperbolic surface

In section 2.3 we defined a metric ρ on the disc D which was the unique (upto a

multiplicative constant) metric on D such that every conformal isomorphism of D is

an isometry of (D, ρ). (D, ρ) also has a constant negative curvature. In this section

we endow an arbitrary hyperbolic domain U ⊂ C with a hyperbolic metric using the

covering map p : D→ U . At the end of this section, we shall see the speciality of the

hyperbolic metric.

We first construct the hyperbolic metric on U . We do this in the following theorem

and its proof.

Theorem 5.5. Let U ⊂ C be a hyperbolic domain and let p : D → U be the

universal covering map. Then there exists a metric µ on U so that the map p :

(D, ρ)→ (U, µ) is a local isometry.

Proof. p being a covering map, it is a local conformal isomorphism. So given any

x ∈ U and y ∈ D such that p(y) = x, there exists neighborhoods V 3 x and W 3 y
such that p|W : W → V is a conformal isomorphism. Since W is already endowed

with the metric ρ|W , there exists a metric µy on V such that p|W : (W, ρ|W )→ (V, µy)

is an isometry. µy is the “push down” of the metric ρ|W via p and for any z ∈ W is

given by:

µy(p(z)) =
ρ(z)

|p′(z)|
Note that the above expression is well defined since p being a local isometry, p′(z) 6= 0.

So we get the metric µy in V . The natural course to take here would be to “patch”

up the metric function so obtained for every point of U . We have to first check that

if a ∈ D is such that p(a) = x, then µa(x) = µy(x). If we succeed in proving this,

then we can define the metric µ on U by µ(ζ) = µb(ζ), where b ∈ D satisfies p(b) = ζ.

This metric µ clearly satisfies the condition of the theorem.

Now let x be an arbitrary point in U and let a, y ∈ D be such that p(a) = p(y) = x.

Then we have µa(x) = ρ(a)
|p′(a)| and µy(x) = ρ(y)

|p′(y)| . D being a universal cover, it is
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also a regular cover. Hence it follows from chapter 4 that there exists a covering

transformation φ : D→ D that takes a to y, φ(a) = y. We have

p ◦ φ = p

∴ p′(y) · φ′(a) = p′(a)

Since φ is a conformal self map of D, the composition φy ◦ φ ◦ φ−a is a conformal self

map of D that fixes the origin and hence is a rotation, say R. (For any c ∈ D, the

map φc(z) = z−c
1−c̄z )

We thus have the following:

φy ◦ φ ◦ φ−a = R

∴ φ = φ−y ◦R ◦ φa
∴ φ′(a) = φ′−y(0) ·R′(0) · φ′a(a)

∴ |φ′(a)| = |φ′−y(0)| · |φ′a(a)|

= (1− |y|2) · (1− |a|2)

(1− |a|2)2

=
1− |y|2

1− |a|2
=
ρ(a)

ρ(y)

Hence we have

|p′(y) · φ′(a)| = |p′(a)|

∴ |p′(y)| · ρ(a)

ρ(y)
= |p′(a)|

∴
ρ(a)

|p′(a)|
=

ρ(y)

|p′(y)|
∴ µa(x) = µy(x)

�

Definition 5.6 (Poincaré metric). For any hyperbolic domain U ⊂ C, the metric

µ in the above theorem is called the Poincare metric of U .

The metric µ defined in the previous proof makes the map p : (D, ρ) → (U, µ) a

local isometry, hence the curvature of (U, µ) is a constant (≡ −4). With this fact,

we can actually circumvent the tedious task of constructing the metric for which

the curvature is strictly negative and bounded away from 0 in the proof of Picard’s

theorem 2.27.
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We saw in chapter 2 that any holomorphic map f : (D, ρ) → (D, ρ) is distance

decreasing. Now that we have constructed the Poincare metric for any hyperbolic

domain of C, we prove a similar theorem for any holomorphic map between hyperbolic

domains of C.

Theorem 5.7. Suppose f : (S1, µ1) → (S2, µ2) be a holomorphic map between

hyperbolic domains S1 and S2 of C, where µ1 and µ2 are Poincare metrics of S1 and

S2 respectively. Then f is distance decreasing.

Proof. From lemma 5.2 it follows that the map f can be lifted to f̃ : D → D
such that the following diagram commutes:

y ∈ (D, ρ)
f̃ //

p1

��

(D, ρ) 3 f̃(y)

p2

��
z ∈ (S1, µ1)

f // (S2, µ2) 3 f(z)

In order to prove that f is distance decreasing, we need to prove that µ1(z) ≥
µ2(f(z)) for any z ∈ S1. We note that as seen in theorem 5.5, p1 and p2 are local

isometries. Let z be an arbitrary element in S1 and let y ∈ D be such that p1(y) = z.

Since p2 ◦ f̃ = f ◦ p1, we have (p2 ◦ f̃)(y) = (f ◦ p1)(y) = f(z). We thus have

(p2 ◦ f̃)(y) = f(z)

∴ µ2(p2 ◦ f̃)(y) = µ2(f(z))

(5.3.1) ∴ ρ(f̃(y)) = µ2(f(z))

But we know that f̃ is distance decreasing and hence ρ(y) ≥ ρ(f̃(y)). Now p1

being a local isometry, we have ρ(y) = µ1(p1(y)) = µ1(z). Hence we have

(5.3.2) µ1(z) ≥ ρ(f̃(y))

Thus from (5.3.1) and (5.3.2) above we get µ1(z) ≥ µ2(f(z)) as required. �

5.4. Great Picard’s Theorem

We have already given a proof of Great Picard’s theorem in chapter 3 using normal

families. In this section we will give an alternate proof using the theory developed so

far in the present chapter.

Lemma 5.8. Suppose that µ is the Poincare metric of D \ {0}. The length of the

curve γ(t) = re2πit, 0 ≤ t < 1 in (D \ {0}, µ) is | 2π
logr
|.
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Proof. Let H denote the upper half plane and ρ̃ denote the poincare metric on it.

This is given by ρ̃(x+ iy) = 1
y

. The universal covering map p : (H, ρ̃)→ (D \ {0}, µ)

given by p(z) = eiz is a local isometry. We use this to actually determine the metric

µ. Suppose z = (x+ iy) ∈ H is such that |p(z)| = |eiz| = r. Then e−y = r and hence

y = −logr. According to theorem 5.5, the metric µ is given by:

µ(eiz) =
ρ̃(z)

|eiz|

∴ µ(eiz) =
1

−rlogr

Thus the length of curve γ is lµ(γ) = 2πr
−rlogr = 2π

|logr| . �

Lemma 5.9. Suppose f : D \ {0} → Ĉ \ {a, b, c} is a holomorphic function, then

f can be extended to a holomorphic function on the whole of D.

Proof. We consider the following three cases:

(1) Suppose limz→0 f(z) exists and is one of {a, b, c}. Then 0 is either a removable

singularity or a pole of f and hence in this case f extends to a holomorphic

function on the whole of D.

(2) For 0 < r < 1, let Ar = D(0, r) \ {0}. Assume that for any sequence in

D \ {0} such that (zn)→ 0, it holds that limit points of {f(zn)} is contained

in {a, b, c}. Then ∀ε > 0, ∃δ > 0 such that f(Aδ) ⊂ D(a, ε)∪D(b, ε)∪D(c, ε).

Hence f thought of as a complex valued function (after coordinate change if

necessary) is bounded. Thus 0 is again a pole or a removable singularity and

hence f can be holomorphically extended to the whole of D.

(3) Suppose the situations discussed in the above 2 cases donot arise. Then

Ĉ being compact, ∃(zn) → 0 and f(zn) → m ∈ Ĉ \ {a, b, c}. The space

Ĉ\{a, b, c} is hyperbolic and let p : D→ Ĉ\{a, b, c} be its universal covering

map. Let µ be the Poincare metric on Ĉ \ {a, b, c}. Let Dµ(m, r) be an open

disc which is also an evenly covered neighborhood of m.

Let z ∈ (zn) be such that | 2π
log|z| | <

r
2

and dµ(f(z),m) < r
2
. Let δ = |z|.

We will show that the image of the curve γ(t) = |z|e2πit, 0 ≤ t ≤ 1 under f is

contained in Dµ(m, r). Let q ∈ f([γ]). By the distance decreasing property of

holomorphic maps between hyperbolic domains (theorem 5.7) the following

inequality holds:

dµ(f(z), q) ≤ lµ(f ◦ γ) <
r

2
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By our very choice of z we have the inequality dµ(m, f(z)) < r
2
.

∴ d(m, q) < d(m, f(z)) + dµ(f(z), q)

= r

We have shown that for any q ∈ f([γ]), q ∈ Dµ(m, r). Hence f([γ]) ⊂
Dµ(m, r). Hence we have:

D
p

��

[γ]
f//

f̃

99ssssssssssss
Ĉ \ {a, b, c}

There exists a lift f̃ of f |[γ]. The lift is given by f̃ = f ◦ p−1|Dµ(m,r). D
being simply connected, by lemma 4.3, this is possible iff f∗(π1([γ], z)) is the

identity element in π1(γ, z). But since any loop in D \ {0} itself is equivalent

to either the trivial loop or γ, it follows that f∗(π1(D \ {0})) is the identity

element in π1(γ, z). Thus by lemma 4.3, f lifts to a map f̃ : D \ {0} → D.

Thus f̃ and hence f can be extended to a holomorphic function on the whole

of D.

�

Theorem 5.10 (Great Picard’s Theorem). Suppose f : D \ {0} → C is a holo-

morphic function and 0 is an essential singularity of f , then for every 0 < r < 1,

f(D(0, r) \ {0}) misses atmost one point in C.

Proof. Let f be as in the statement of the theorem. Assume that Img(f) ⊂
C \ {a, b}, then f can be considered as a holomorphic map taking values in Ĉ. Then

f : D \ {0} → Ĉ \ {a, b,∞}. By the above lemma 5.9, it follows that f can be

extended to a holomorphic function on the whole of D. This implies that 0 is either a

removable singularity or a pole. This is a contradiction. Hence our assumption that

Img(f) ⊂ C \ {a, b} is false.

Thus f can miss atmost one point in C. �
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CHAPTER 6

Solution of the Dirichlet problem

In this chapter we will introduce and later discuss properties of harmonic and

subharmonic functions. We will elucidate Perron’s method for the solution of the

Dirichlet’s problem. The discussion in this chapter is mainly based on the article

of Kumaresan [9]. We also refer the reader to the books of Narasimhan [10] and

Gamelin [8] for a wonderful exposition on the material covered in this chapter.

6.1. Harmonic Functions

6.1.1. Basic properties of Harmonic functions. Let U be a non empty open

subset of C or R2.

Definition 6.1 (Harmonic function). A C2 function f : U → R is said to be

harmonic if ∆f ≡ 0 on U , where the operator ∆ = ∂2

∂2x
+ ∂2

∂2y
.

Lemma 6.2. Let U and W be non empty subsets of C. Let F : W → U be a

holomorphic function and let f : U → R be a harmonic function. Then the composite

function f ◦ F : W → R is also harmonic.

Proof. If F is constant, then so is f ◦ F . So we will assume that F is noncon-

stant. Let w ∈ W and let r, R > 0 be such that D(w, r) ⊂ W , D(F (w), R) ⊂ U and

f(D(w, r)) ⊂ D(F (w), R). f being harmonic on D(F (w), R), there exists a holomor-

phic function G on D(F (w), R) such that Re(G) = f . Then f ◦ F = Re(G ◦ F ) on

D(w, r). G ◦ F is holomorphic and hence f ◦ F is harmonic in a neighbourhood of w

and hence on the whole of W . �

Remark 6.3. In the above theorem, instead of F = f1 + if2 being a holomor-

phic function, we assume simply that f1 and f2 are harmonic functions. Then the

conclusion of the theorem does not hold. That is, there exists a harmonic function

h such that h ◦ F is not harmonic. Consider F : C → C defined by F (x + iy) =

(2x+3y)+ i(5x+4y) and h(x+ iy) = x2−y2, then (h◦F )(x+ iy) = 21x2 +7y2 +28xy

which is not harmonic.

45
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It follows from the Cauchy-Riemann equations that the real and imaginary parts

of holomorphic functions are harmonic. This fact helps us to derive some properties

of harmonic functions which are analogous to those of holomorphic functions.

Proposition 6.4 (Maximum-Minimum principle for harmonic functions). Let

U ⊂ C be open and let f : U → R be a nonconstant harmonic function. Then f does

not have both maximum and minimum in U .

In particular if U is such that U is compact then the maximum and minimum of

f are not attained anywhere in U and hence they are attained on ∂U .

Proof. This is the analogue of the Maximum and Minimum modulus principle

of holomorphic functions. Let b ∈ U . Let the disc D(b, r) ⊂ U . Then there exists

a holomorphic function F on D(b, r) such that Re(F ) = f . Since f is nonconstant,

so is F . Hence F is an open map. In particular, there exists a disc D(F (b), R) ⊂
F (D(b, r)). Hence the open interval (f(b)−R, f(b) +R) ⊂ f(D(b, r)) ⊂ f(U).

Thus f(b) is neither the supremum nor the infimum of f in U as required. �

Proposition 6.5 (Mean value property). Let f : U → R be a harmonic function.

Suppose that for some b ∈ U , D(b, r) ⊂ U . Then

(6.1.1) f(b) =
1

2π

∫ 2π

0

f(b+ reiθ)dθ

Proof. This is the analogue of the Cauchy integral formula and is often called

the Mean value property of harmonic functions. Since D(b, r) ⊂ U , we can find s > r

such that D(b, s) ⊂ U . We can find a holomorphic function F such that Re(F ) = f

on D(b, s). Let γ(θ) = b+ reiθ. By Cauchy integral formula we have:

F (b) =
1

2πi

∮
γ

F (ζ)

ζ − b
dζ

=
1

2π

∫ 2π

0

F (b+ reiθ)dθ

∴ ReF (b) =
1

2π

∫ 2π

0

Re(F (b+ reiθ))dθ

∴ f(b) =
1

2π

∫ 2π

0

f(b+ reiθ)dθ

�

Remark 6.6. (§1.6, Chapter 1, [11]) Harmonic functions also satisfy a volume

mean value property. If f is harmonic in some neighborhood of D(a,R) then the
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following holds:

f(a) =
1

πr2

∫ R

0

∫ 2π

0

f(r, θ)rdrdθ

It follows from equation 6.1.1 that it is possible to know the value of f(b) by

knowing the values of f on the circle ∂D(b, r). The following discussion ensures that

we can get a similar such formula for f(z), ∀z ∈ D(b, r), in terms of values of f on the

circle ∂D(b, r). For the time being let us assume b = 0 and r = 1. Let a ∈ D(0, 1).

Let φa denote the conformal self map of D(0, 1) which is given by φa(z) = z+a
1+az

. By

composing f with φa, we still get a harmonic function, and using the mean value

property for f ◦ φa gives the desired result which is summarized in the following

proposition.

Proposition 6.7. Let f be a harmonic function defined on U , where D(0, 1) ⊂ U .

For any a ∈ D(0, 1) we have

f(a) =
1

2π

∫ 2π

0

f(eiθ)
1− |a|2

|eiθ − a|2
dθ

Proof. By lemma 6.2 the function f ◦ φa : D(0, 1) → R is harmonic. By the

mean value property we have

(f ◦ φa)(0) =
1

2π

∫ 2π

0

(f ◦ φa)(eiθ)dθ

f(a) =
1

2π

∫ 2π

0

f

(
eiθ + a

1 + aeiθ

)
dθ

In the above equation, substituting
(
eiθ+a
1+aeiθ

)
= eiα, we get:

f(a) =
1

2π

∫ 2π

0

f(eiα)
1− |a|2

|eiα − a|2
dα

�

Corollary 6.8. For any z ∈ D, the value of the following integral is 1.

1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2
dθ = 1

Proof. Apply proposition 6.7 to the harmonic function f ≡ 1. �

For a general b and r, it can be easily worked out (by composing the harmonic

function f : D(b, r) → R with the function g(z) = rz + b, f ◦ g and applying the
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result of the above proposition) that:

(6.1.2) f(z) =
1

2π

∫ 2π

0

f(b+ reiθ)
r2 − |z − b|2

|reiθ − (z − b)|2
dθ

6.1.2. Dirichlet problem for the disc. Throughout this section we shall de-

note D(0, 1) by D.

In this section we shall answer the question: Given a continuous function f :

∂D → R, is it possible to extend f to the whole of D such that it is harmonic on D
and continuous on D? This is the Dirichlet problem for a disc.

Let us assume for the moment that such a function exists, call it f̃ . Then by

proposition 6.7 and by the maximum and minimum principle for harmonic functions

(proposition 6.4), it follows that:

f̃(z) =
1

2π

∫ 2π

0

f(eiθ)
1− |z|2

|eiθ − z|2
dθ ,∀z ∈ D

This motivates our proof for the solution of the Dirichlet problem for D.

Theorem 6.9. Let f : ∂D → R be a continuous function. Then the function f̃

defined below is harmonic on D and continuous on D

f̃(z) =

{
1

2π

∫ 2π

0
f(eiθ) 1−|z|2

|eiθ−z|2dθ for z ∈ D
f(z) for z ∈ ∂D

Proof. We will first prove that f̃ is harmonic on D. Let γ(θ) = eiθ, 0 ≤ θ ≤ 2π.

Consider the function g on D defined by:

g(z) =
1

2πi

∮
γ

f(ζ)
ζ + z

ζ(ζ − z)
dζ

=
1

2πi

∮
γ

f(ζ)

ζ − z
dζ + z

1

2πi

∮
γ

f(ζ)/ζ

ζ − z
dζ

f being continuous on D, the two factors in the above equation define a holomorphic

function and hence g is also holomorphic on D. Expanding the integral on the RHS

of the above equation:

g(z) =
1

2π

∫ 2π

0

f(eiθ)

(
eiθ + z

eiθ − z

)
dθ

Since Re
(
eiθ+z
eiθ−z

)
= 1−|z|2
|eiθ−z|2 , it follows that on D, f̃ = Re(g). Since g is holomorphic,

f̃ is a harmonic function on D.
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We will now prove that f̃ is continuous on D. For this it is sufficient to prove that

for every b ∈ ∂D, limz→b f̃(z) = f̃(b) = f(b).

Given ε > 0, we wish to find δ > 0 such that ∀z ∈ D(b, δ) ∩ D, |f̃(z)− f(b)| < ε.

For z ∈ D we have:

(6.1.3) f̃(z)− f(b) =
1

2π

∫ 2π

0

[f(eiθ)− f(b)]

(
1− |z|2

|eiθ − z|2

)
dθ

First choose R > 0 such that whenever ζ ∈ D(b, 2R) ∩ ∂D

|f(ζ)− f(b)| < ε

2

Let D(b, 2R) ∩ ∂D = {eiθ1 , eiθ2} where θ1 < θ2. The integral in equation 6.1.3 can be

split into sum of two integrals as:

f̃(z)− f(b) =
1

2π

∫ θ2

θ1

[f(eiθ)− f(b)]

(
1− |z|2

|eiθ − z|2

)
dθ +

1

2π

∫ 2π+θ1

θ2

[f(eiθ)− f(b)]

(
1− |z|2

|eiθ − z|2

)
dθ

We will call the first of these integrals I1 and the second I2. By our very choice of R,

we have the following inequality for any z ∈ D:

|I1| ≤
ε

2

1

2π

∫ θ2

θ1

(
1− |z|2

|eiθ − z|2

)
dθ

≤ ε

2

1

2π

∫ 2π

0

(
1− |z|2

|eiθ − z|2

)
dθ

=
ε

2

Let M > 0 be such that |f | ≤ M on ∂D. Now we choose δ > 0 such that δ < R and

1 − |z|2 ≤ εR2

4M
, whenever z ∈ D(b, δ). Let γ̃(θ) = eiθ for θ2 ≤ θ ≤ 2π + θ1. Then for

any ζ ∈ γ̃ and for any z ∈ D(b, δ) we have the following inequalities:

|z − ζ| ≥ |ζ − b| − |z − b|
≥ 2R− δ
≥ 2R−R = R

Thus we can now conclude that, for z, R and δ as above:

I2 ≤
2M

R2
(1− |z|2)

≤ ε

2
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Thus this is the required δ and hence f̃ is continuous on D. �

6.1.3. Mean value property. We saw in proposition 6.5 that harmonic func-

tions satisfy the mean value property. We will prove in this section that the mean

value property by itself characterizes harmonic functions, i.e., a function satisfying

the mean value property is necessarily harmonic.

Proposition 6.10. Let U ⊂ C be a domain and f : U → R be a continuous

function satisfying: ∀p ∈ U , ∃ r > 0 such that D(p, r) ⊂ U and ∀ 0 < s ≤ r the

following holds

f(p) =
1

2π

∫ 2π

0

f(p+ seiθ)dθ

Then f is harmonic on U .

Proof. We will first prove that f satisfies the maximum/minimum principle, i.e.,

f does not attain maximum and minimum in U unless f is a constant. We prove this

by contradiction. Assume that f is nonconstant and that there exists q ∈ U such

that f(q) = max{f(z)|z ∈ U}. Let r > 0 be such that D(q, r) ⊂ U and ∀ 0 < s ≤ r

the following holds:

1

2π

∫ 2π

0

f(q + seiθ)dθ = f(q)

∴
1

2π

∫ 2π

0

[f(q)− f(q + seiθ)]dθ = 0

But in the above equation [f(q)− f(q + seiθ)] ≥ 0, hence for the integral to be zero,

f(q) = f(q + seiθ), ∀ 0 ≤ θ ≤ 2π. Hence on D(q, r), f(z) ≡ f(q). Hence the set

V = {z ∈ U | f(z) = f(q)} is a nonempty set that is both open and closed. Hence

V = U contradicting our assumption that f is nonconstant.

A similar proof works for the case when we assume f attains minimum at a point

in U as well. Now we are all set to prove that f is harmonic. Let p ∈ U and r > 0 be

such that ∀ 0 < s ≤ r, the mean value property holds. Now consider f |∂D(p,r), this is

a continuous function. Let f̃ be the continuous, harmonic extension of f to the disc

D(p, r). Now consider f̃−f on D(p, r). f̃ and f both satisfy the mean value property

and hence so does f̃ − f . Hence f̃ − f satisfies the maximum/minimum principle as

well. Hence both the maximum and minimum of f̃ − f occurs on ∂D(p, r). But

f̃ − f ≡ 0 on ∂D(p, r). Hence f̃ ≡ f on D(p, r) too. Thus f is a harmonic function

on the whole of U . �
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Lemma 6.11. Suppose {fn} is a sequence of harmonic functions on an open set

U which converges uniformly on compact subsets of U to the function f . Then f is

also a harmonic function on U .

Proof. Let b ∈ U and let D(b, r) ⊂ U . Since each fn is harmonic, by the mean

value property we have:

fn(b) =
1

2π

∫ 2π

0

fn(b+ reiθ)dθ

Since fn → f normally on U we have:

lim
n→∞

fn(b) = lim
n→∞

1

2π

∫ 2π

0

fn(b+ reiθ)dθ

=
1

2π

∫ 2π

0

lim
n→∞

(fn(b+ reiθ))dθ

∴ f(b) =
1

2π

∫ 2π

0

f(b+ reiθ)dθ

Thus f satisfies the mean value property on U and hence by proposition 6.10, f is

harmonic. �

6.1.4. Harnack’s Principle. We shall derive an interesting property of har-

monic functions called the Harnack’s Principle by making use of equation 6.1.2.

Proposition 6.12 (Harnack’s Inequality). Let f : U → R be a nonnegative

harmonic function. Let D(b, r) ⊂ U . For 0 < ε < 1 let Dε denote the disc Dε =

{z| |z − b| < rε}. Then ∀z ∈ Dε we have:

f(b)

(
1− ε
1 + ε

)
≤ f(z) ≤ f(b)

(
1 + ε

1− ε

)
Proof. From equation 6.1.2 it follows that:

f(z) =
1

2π

∫ 2π

0

f(b+ reiθ)
r2 − |z − b|2

|reiθ − (z − b)|2
dθ
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In the above equation let w(θ) = reiθ and ζ = (z − b), then r2−|z−b|2
|reiθ−(z−b)|2 = |w(θ)|2−|ζ|2

|w(θ)−ζ|2 .

By triangle inequality we have:

|w(θ)| − |ζ| ≤ |w(θ)− ζ| ≤ |w(θ)|+ |ζ|

∴

(
|w(θ)| − |ζ|
|w(θ)|+ |ζ|

)
≤
(

r2−|z−b|2
|reiθ−(z−b)|2

)
≤

(
|w(θ)|+ |ζ|
|w(θ)| − |ζ|

)
∴

(
r − |ζ|
r + |ζ|

)
≤
(

r2−|z−b|2
|reiθ−(z−b)|2

)
≤

(
r + |ζ|
r − |ζ|

)
From the above inequalities and the fact that f is nonnegative, we have ∀z ∈ D(b, r):

(
r − |z − b|
r + |z − b|

)
1

2π

∫ 2π

0

f(b+ reiθ)dθ ≤ f(z) ≤
(
r + |z − b|
r − |z − b|

)
1

2π

∫ 2π

0

f(b+ reiθ)dθ

∴

(
r − |z − b|
r + |z − b|

)
f(b) ≤ f(z) ≤

(
r + |z − b|
r − |z − b|

)
f(b)

Thus for all z ∈ Dε we have the desired result:

f(b)

(
1− ε
1 + ε

)
≤ f(z) ≤ f(b)

(
1 + ε

1− ε

)
�

Theorem 6.13 (Harnack’s Principle). Suppose that f1 ≤ f2 ≤ f3 ≤ · · · is an

increasing sequence of harmonic functions on a domain U ⊂ C. Then one of the

following occurs:

(1) fn converges uniformly on compact subsets of U to a harmonic function

(2) fn →∞ uniformly on compact subsets of U .

Proof. It suffices to prove that if there exists some p ∈ U such that the sequence

fn(p) converges, then fn converges uniformly (to a necessarily harmonic function) on

U . So assume that there exists such a p ∈ U . Let D(p, r) ⊂ U . Then for every

ζ ∈ D(p, r
2
) and ∀n ∈ N, it follows from Harnack’s inequality (proposition 6.12) that

1

3
[fn(p)− f1(p)] ≤ fn(ζ)− f1(ζ) ≤ 3[fn(p)− f1(p)]

Hence for every ζ ∈ D(p, r
2
), (fn(ζ)) is an increasing sequence which is also bounded

and so convergent. We shall now prove that fn converges uniformly on D(p, r
2
).

Similarly for any n,m ∈ N with n ≥ m and for every ζ ∈ D(p, r
2
)

fn(ζ)− fm(ζ) ≤ 3[fn(p)− fm(p)]
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Thus for any n,m ∈ N and for every ζ ∈ D(p, r
2
) the following holds:

|fn(ζ)− fm(ζ)| ≤ 3|fn(p)− fm(p)|

Hence fn converges uniformly on D(p, r
2
).

Let V = {z ∈ U | the sequence (fn(z)) converges}. The above discussion shows

that V is open. We will show below that V is closed as well and this along with the

above discussion proves that fn converges normally on U .

Let (pn) be a sequence in V such that pn → p ∈ U . Assume that D(p, r) ⊂ U .

Choose k large enough such that |pk − p| < r/4. Then D(pk, r/2) ⊂ D(p, r) ⊂ U . By

the discussion above since fn(pk) converges, so does fn(ζ), ∀ζ ∈ D(pk, r/4). Hence

we have shown that p ∈ V . Thus V is closed as well.

�

6.1.5. Singularities. Analogous to the Riemann removable singularity theorem

for a holomorphic function, we will prove a theorem for harmonic functions in this

section.

Proposition 6.14. Let f : U → R be a harmonic function and let D(p, r)\{p} ⊂
U . If f is bounded on D(p, r) \ {p}, then f can be extended to a harmonic function

on the whole of D(p, r), i.e., we can assign a value for f at p so that the extended

function is harmonic.

Proof. Let h be the harmonic function on D(p, r) which is continuous on D(p, r)

such that h = f on ∂D(p, r). For ε > 0 consider the harmonic function gε on

D(p, r) \ {p} defined as:

gε(z) = (h(z)− f(z)) + εlog

∣∣∣∣z − pr
∣∣∣∣

Since both h and f are bounded inD(p, r)\{p}, so is h−f . So the limit, limz→p gε(z) =

−∞. So we can choose a small enough δ such that ∀|ζ − p| < δ, gε(ζ) ≤ 0. By

the maximum/minimum principle of harmonic functions it follows that gε ≤ 0 on

D(p, r) \ {p}. Letting ε→ 0, we find that h ≤ f on D(p, r) \ {p}.
By going through the same arguments as above for the harmonic function kε(z) =

(f(z)− h(z)) + εlog
∣∣ z−p
r

∣∣, we can conclude that f ≤ h on D(p, r) \ {p}. Hence h = f

on D(p, r) \ {p}. Thus by defining f(p) = h(p), we get the desired result.

�
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6.2. Subharmonic Functions

Definition 6.15 (Subharmonic function). Let U ⊂ C be a nonempty open set. A

continuous function f : U → R is said to be subharmonic if for every D(p, r) ⊂ U

and a harmonic function h defined in a neighborhood of D(p, r) satisfying h ≥ f on

∂D(p, r), it holds that h ≥ f on whole of D(p, r).

Remark 6.16. It is easy to see that harmonic functions are also subharmonic.

Subharmonic functions are the C-analogue of R-convex functions: The analogue of the

Laplacian operator ∂2

∂x2 + ∂2

∂y2
in one dimension is ∂2

∂x2 and the analogue of harmonic

functions in the class of C2 functions on a domain of R are the linear functions

(∂
2f
∂x2 ≡ 0⇒ f is a linear function). What is a convex function on (a, b)? A continuous

function g : (a, b)→ R is said to be convex if it holds that whenever c, d ∈ (a, b) and

c < d we have:

g(ζ) ≤ hcd(ζ) , ∀ ζ ∈ (c, d)

where hcd is the linear function on [c, d] such that hcd(c) = g(c) and hcd(d) = g(d).

This definition of convex function is equivalent to saying that:

g(ζ) ≤ h(ζ) , ∀ ζ ∈ (c, d)

where h is any linear function on [c, d] such that h(c) ≥ g(c) and h(d) ≥ g(d) (Here

c and d are to thought of as {c, d} = ∂[c, d]).

We know that a C2 function f on R is convex iff ∂2f
∂x2 ≥ 0. Similarly a C2 function

g on a domain in C is subharmonic iff ( ∂2

∂x2 + ∂2

∂y2
)g ≥ 0 (Sec. 2, Chapter XV, [8]).

The following proposition is the analogue of the mean value property of harmonic

functions.

Proposition 6.17. Let U ⊂ C be a nonempty open set and let f : U → R be a

continuous function. Then f is subharmonic on U iff for any p ∈ U and r > 0 such

that D(p, r) ⊂ U the following holds:

f(p) ≤ 1

2π

∫ 2π

0

f(p+ reiθ)dθ

Proof. (⇒) We first assume that f is subharmonic. Let D(p, r) ⊂ U . Let f̃

be the harmonic function on D(p, r) which is continuous on D(p, r) and such that

f = f̃ on ∂D(p, r). Then f(z) ≤ f̃(z) on D(p, r) and in particular f(p) ≤ f̃(p). By

applying the mean value property of harmonic functions to f̃ , we have

f̃(p) =
1

2π

∫ 2π

0

f̃(p+ reiθ)dθ =
1

2π

∫ 2π

0

f(p+ reiθ)dθ
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It thus follows that f(p) ≤ 1
2π

∫ 2π

0
f(p+ reiθ)dθ.

(⇐) We now prove the converse. For this let us assume that f is a continuous

function with the property mentioned in the theorem. We will now prove that f

satisfies a maximum principle, in particular if f is nonconstant then f does not attain

its maximum at any interior point of U . For any point p ∈ U with D(p, r) ⊂ U , we

have the inequality:

f(p) ≤ 1

2π

∫ 2π

0

f(p+ reiθ)dθ

∴ 0 ≤ 1

2π

∫ 2π

0

[f(p+ reiθ)− f(p)]dθ

Thus the above inequality shows that p cannot be a maximum for f . We initially

started with an arbitrary p ∈ U , hence f cannot attain maximum in U .

Now let D(q, s) ⊂ U and let h be a function which is harmonic on D(q, s) and

continuous on D(q, s) satisfying h ≥ f on ∂D(q, s). The function f − h on D(q, s)

is a continuous function satisfying the inequality mentioned in the statement of the

theorem. Hence from the above discussion it follows that f − h also satisfies the

maximum principle. Hence the maximum of f −h on D(q, s) is attained on ∂D(q, s).

But on ∂D(q, s), f − h ≤ 0, hence on D(q, s) too f − h ≤ 0. We have thus proved

that f is subharmonic. �

In the proof of the preceding proposition we have also proved the following lemma:

Lemma 6.18 (Maximum Principle). Let U ⊂ C be a domain and let f : U → R
be a subharmonic function. Then f does not attain its maximum anywhere on U . In

particular if V ⊂ U is an open set with compact closure, then the maximum of f on

V is attained on ∂V and nowhere in V .

Subharmonic functions satisfy only the maximum principle. They do not satisfy

any analogous minimum principle.

From the characterization of subharmonic functions proved in proposition 6.17 it

easily follows that:

Corollary 6.19. If u and v are two subharmonic functions on U , then the func-

tion f defined by

f(z) = max{u(z), v(z)}, ∀z ∈ U

is also subharmonic on U .
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Definition 6.20 (Poisson modification). Let f : U → R be a subharmonic func-

tion on a domain U and let D(p, r) ⊂ U . The Poisson modification of f for D(p, r)

is the function f̃ defined as:

f̃(z) =

{
f(z) if z ∈ U \D(p, r)
1

2π

∫ 2π

0
f(p+ reiθ) r2−|z−p|2

|reiθ−(z−p)|2dθ if z ∈ D(p, r)

Lemma 6.21. Let f : U → R be a subharmonic function and let D(p, r) ⊂ U .

Then the Poisson modification of f for D(p, r), f̃ , is subharmonic on U .

Proof. Note that the Poisson modification of f for D(p, r) is harmonic in the disc

D(p, r) and it is subharmonic on U \D(p, r). Also note that f̃ = f on ∂D(p, r). Hence

it suffices to prove that for every ζ ∈ ∂D(p, r) and R > 0 such that D(ζ, R) ⊂ U it

holds that f̃(ζ) ≤ 1
2π

∫ 2π

0
f̃(ζ +Reiθ)dθ.

If R ≥ 2r then ∀ 0 ≤ θ ≤ 2π, f̃(ζ +Reiθ) = f(ζ +Reiθ). Then in this case

f̃(ζ) = f(ζ) ≤ 1

2π

∫ 2π

0

f(ζ +Reiθ)dθ =
1

2π

∫ 2π

0

f̃(ζ +Reiθ)dθ

Now assume that R < 2r. Let θ1 < θ2 be such that D(ζ, R)∩D(p, r) = {ζ+Reiθ1 , ζ+

Reiθ2}. Then we have the following:

1

2π

∫ 2π

0

f̃(ζ +Reiθ)dθ =
1

2π

∫ θ2

θ1

f̃(ζ +Reiθ)dθ +
1

2π

∫ 2π+θ2

θ2

f̃(ζ +Reiθ)dθ

=
1

2π

∫ θ2

θ1

f̃(ζ +Reiθ)dθ +
1

2π

∫ 2π+θ2

θ2

f(ζ +Reiθ)dθ

≥ 1

2π

∫ θ2

θ1

f(ζ +Reiθ)dθ +
1

2π

∫ 2π+θ2

θ2

f(ζ +Reiθ)dθ

=
1

2π

∫ 2π

0

f(ζ +Reiθ)dθ ≥ f(ζ) = f̃(ζ)

It thus follows that f̃ is subharmonic on U . �

Definition 6.22 (Perron family). A family F of subharmonic functions on U is

said to be a Perron family if it satisfies the following conditions:

(1) max{u, v} ∈ F whenever u, v ∈ F.

(2) ũ ∈ F whenever u ∈ F, where ũ is a Poisson modification of u.

(3) u ≡ 0 outside a compact subset of U .
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Theorem 6.23. Let F be a Perron family on a domain U ⊂ C. Then the function

f defined by

f(z) = sup{u(z)| u ∈ F}
is either harmonic on U or f ≡ ∞.

Proof. It suffices to prove that if there exists p ∈ U such that f(p) ∈ R, then

the function f is harmonic on U . So assume that such a p exists. Let D(p, r) ⊂ U .

Let u1, u2, u3, . . . be a sequence of functions in F such that limn→∞ un(p) = f(p). Let

ũn denote the Poisson modification of un for D(p, r). Then ũn ≥ un and ũn ∈ F. It

thus follows that limn→∞ ũn(p) = f(p). Now consider the sequence v1, v2, v3, . . . of F

defined by

v1 = u1

v2 = max(u1, u2)

...
...

vn = max(u1, u2, . . . , un)

...
...

F being a Perron family, each vn ∈ F and v1 ≤ v2 ≤ v3 ≤ · · ·
Let ṽn denote the Poisson modification of vn for D(p, r), then each ṽn ∈ F and

also ṽ1 ≤ ṽ2 ≤ ṽ3 ≤ · · · is an increasing sequence of harmonic functions on D(p, r).

We also have limn→∞ ṽn(p) = f(p). Thus by Harnack’s principle the function h(z) =

limn→∞ ṽn(z) is harmonic on D(p, r).

We will show that h = f on D(p, r). Suppose that there exists q ∈ D(p, r)

such that h(q) 6= f(q). Let w1, w2, . . . be a sequence of functions in F such that

limn→∞wn(q) = f(q). Now consider the function xn defined by xn = max{wn, ṽn}.
Then each xn ∈ F. Now consider yn = max(x1, x2, . . . , xn). The sequence of functions

ỹ1, ỹ2, ỹ3, . . . is an increasing sequence of harmonic functions in D(p, r) and hence by

Harnack’s principle it follows that g(z) = limn→∞ ỹn(z) is a harmonic function which

also satisfies g(p) = f(p) and g(q) = f(q).

By our very construction, g and h satisfy g ≥ h on D(p, r). But since g(p) = h(p),

it follows that g = h on D(p, r) and in particular g(q) = h(q). Hence f(q) = h(q),

thus contradicting our assumption. Thus h = f on D(p, r) and hence f is harmonic

on D(p, r).

The above discussion shows that the set V = {z ∈ U |f(z) ∈ R} is open in U . It

also says something more: Whenever D(ζ, R) ⊂ U and f(ζ) ∈ R, it also holds that

f(z) ∈ R, ∀z ∈ D(ζ, R).
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This is used to show that V is also closed in U so that V = U as required. Let

(ζn) ⊂ V be such that ζn → ζ ∈ U . Suppose that D(ζ, 2r) ⊂ U . Choose k large

enough so that |ζk − ζ| < r. Then clearly D(ζk, r) ⊂ U . Hence by the remark above

it follows that f(z) ∈ R, ∀z ∈ D(ζk, r) and in particular f(ζ) ∈ R. �

6.3. Dirichlet Problem and its solution by Perron method

In this section we will be concerned about the question: Given a domain U ⊂ C
and a continuous function f : ∂U → R, can we extend it to a continuous function

f̃ on U such that it is harmonic on U? We shall devise a necessary and sufficient

condition on the boundary ∂U so that this is always possible.

We shall first consider an example when this is not possible.

Example 6.24. Consider the domain U = D \ {0}. Then ∂U = ∂D ∪ {0}.
Consider f on ∂U which is

f(z) =

{
1 if z ∈ ∂D
0 if z = 0

Let us assume that there exists a continuous extension of f , call it f̃ , to the whole

of D which is harmonic on D \ {0}. Then by the maximum/minimum principle of

harmonic functions, it follows that 0 ≤ f̃ ≤ 1 on D. Now since f̃ is a bounded

harmonic function in a neighborhood of 0, it follows from proposition 6.1.4 that f̃ is

harmonic on D. But again by maximum/minimum principle, since f̃ |∂D ≡ 1, f̃ ≡ 1

on D. This is a contradiction since f̃(0) = 0. Hence such an extension is not possible

in the present case.

In the preceding example, the boundary point 0 posed the problem. In order

for the solution to exist we require the boundary to satisfy certain conditions. The

following notions will be required to frame the afore mentioned conditions.

Definition 6.25 (Peak point). Let U ⊂ C be an open set and let p ∈ ∂U . Then

p is called a peak point if there exists a continuous function fp on N ∩U , where N is

a neighborhood of p such that N is compact and satisfies the following properties:

(1) fp is subharmonic on N ∩ U
(2) fp ≤ 0 on N ∩ U
(3) {z ∈ N ∩ U |fp(z) = 0} = {p}

The function fp is called a peaking function or a barrier at p
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Before we proceed towards formulating conditions on the boundary when the

Dirichlet problem has a solution, we look at a few examples when a point on the

boundary is a peak point.

Example 6.26. Consider U = D. And consider the point p = 1. The function

fp(z) = 1 − Re(z) is a barrier for U at p. Since composition of a subharmonic

function by a conformal map remains a subharmonic function, it follows that every

point q ∈ ∂D is a peak point.

Example 6.27. Suppose p ∈ U is such that there exists r > 0 such that D(q, r)∩
U = {p}. Then p is a peak point. Consider the function f(z) = r/(z − q). Then

f(U) ⊂ D. Suppose that r/p− q = eiθ and consider the function g(z) = e−iθz. Then

the function g ◦ f is a barrier for U at p.

It follows from the very definition that for a domain U , p ∈ ∂U being a peak point

is a local property. In the following proposition we shall see how this local property

can be used to get a desired global subharmonic function on U .

Proposition 6.28. Let U ⊂ C be a domain and let p ∈ ∂U be a peak point.

Let m < M be given. Then there exists a continuous function f on U which is

subharmonic on U and satisfies the following properties:

(1) f ≤M on D(p, r) ∩ U , for some r > 0

(2) f ≡ m on U \D(p, r)

(3) f(p) = M

Proof. Let fp : D(p, 2r) ∩ U → R be a barrier for U at p. Consider fp on

D(p, r) ∩ U . Let K be the maximum of fp on ∂D(p, r) ∩ U . Since fp ≤ 0, we can

choose N ∈ N large enough so that M +NK < m. Now the function h defined below

is subharmonic and satisfies the three properties mentioned above:

h(z) =

{
m for z ∈ U \D(p, r)

max{m,M +Nfp(z)} for z ∈ D(p, r) ∩ U

�

Theorem 6.29 (Dirichlet Problem, Theorem 34 & 37, §7, [9]). Suppose that

U ⊂ C is a bounded domain. Then for any continuous function f : ∂U → R, there

exists a continuous extension of f , call it f̃ , on U such that it is harmonic on U iff

every point p ∈ ∂U is a peak point.
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Proof. (⇒) Consider a continuous function g : ∂U → R such that g < 0 on

∂U \ {p} and g(p) = 0. Let g̃ be a continuous extension of g to U such that it is

harmonic on U . This g̃ will serve as the barrier for U at p.

(⇐) To prove the other way equivalence, we will construct a Perron family on U

and show that the associated Perron function is the solution of the Dirichlet problem.

We start with a continuous function f : ∂U → R. Since ∂U is compact, f is bounded.

Let |f | ≤M on ∂U . Consider the family of functions F on U satisfying the following

properties:

(1) u is subharmonic on U and continuous on U .

(2) |u| ≤M on U .

(3) For every p ∈ ∂U , u(p) ≤ f(p).

The family F is a Perron family. Since F is uniformly bounded, it follows from theorem

6.23 that the associated Perron function, call it h, is harmonic on U . We will show

below that whenever p ∈ ∂U is a peak point, limU3z→p h(z) = f(p). This will show

that h is the Dirichlet solution for the present case.

Given ε > 0, we wish to find δ > 0 such that whenever z ∈ D(p, δ) ∩ U the

following inequality holds:

|h(z)− f(p)| ≤ ε

f(p)− ε ≤ h(z) ≤ f(p) + ε

We will first find a δ1 satisfying the inequality f(p)−ε ≤ h(z). Since h is the associated

Perron function of the family F, it suffices to prove that there exists u ∈ F such that

on D(p, δ) ∩ U , u(z) ≥ f(p)− ε.
It follows from proposition 6.28 that it is possible to find a continuous function u

on U which is subharmonic on U and satisfies the following conditions:

(1) u(p) = f(p)

(2) u(z) ≤ f(p) on D(p,R) ∩ U for some R > 0

(3) u(z) ≡ −M on U \D(p,R)

So choose δ1 > 0 such that u(z) ≥ f(p) − ε on D(p, δ1) and |f(z) − f(p)| ≤ ε/2 on

∂U ∩D(p, δ1).

Now we will find δ < δ1 such that it satisfies the inequality h(z) ≤ f(p) + ε. It

is clear that is the required δ. It follows from proposition 6.28 that there exists a

subharmonic function w on U which is continuous on U and satisfies the following

properties:

(1) w(p) = −f(p)

(2) w(z) ≤ −f(p) on D(p, s) ∩ U for some δ1 > s > 0.
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(3) w(z) ≡ −M on U \D(p, s)

Now for any u ∈ F we have ∀z ∈ D(p, s) ∩ ∂U :

u(z) ≤ f(z) ≤ f(p) + ε/2

u(z) + w(z) ≤ −f(p) + f(p) = ε/2

Now for any ζ ∈ ∂D(p, s) ∩ U we have

w(ζ) + u(ζ) ≤ −M +M = 0

Now by the maximum property of subharmonic functions, it follows that onD(p, s)∩U

w(z) + u(z) ≤ ε/2

It thus follows that w(z) + h(z) ≤ ε/2 on D(p, s) ∩ U . By continuity of w at p, we

can choose δ < s such that on D(p, δ) ∩ U , it holds that |w(z)− f(z)| ≤ ε/2. Hence

on D(p, δ) ∩ U , h(z) ≤ f(p) + ε.

�

The following theorem gives a weaker criterion, than that of existence of a peaking

function, for a boundary point to be a peak point.

Theorem 6.30 (Bouligand, Theorem 5.6, Chapter 11, [10]). Let U ⊂ C be an

open set and let p ∈ ∂U . Suppose that there exists a continuous function fp on

N ∩ U , where N is a neighborhood of p such that N is compact and satisfies the

following properties:

(1) fp is subharmonic on N ∩ U
(2) fp ≤ 0 on N ∩ U

Then the point p is a peak point.

The function fp in the above theorem is not a peaking function, but a weaker

version of the peaking function. Let us call the function fp in the above theorem

as weak peaking function. In general it is much easier to construct a weak peaking

function than a peaking function for a boundary point.

Lemma 6.31. Suppose U ⊂ C is a open. Let a, b ∈ ∂U be such that both of them

are contained in the same connected component of ∂U . Consider the holomorphic

function φ(z) = z−a
z−b defined on U . Then there exists a holomorphic function g on U

which satisfies:

eg(z) = φ(z), ∀z ∈ U
That is there exists a holomorphic branch of log

(
z−a
z−b

)
defined on U .
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Proof. Consider the holomorphic function h defined on U by:

h(z) =
φ′(z)

φ(z)

=
1

z − a
− 1

z − b
It suffices to prove that h has a holomorphic antiderivative g on U . Then g (modulo

an additive constant) would be the required function. Let γ ⊂ U be any simple closed

curve. Then it follows from the Jordan curve theorem that both a and b lie in the

same component of [γ]c. Hence we have the following:∮
γ

φ′(ζ)

φ(ζ)
dζ =

∮
γ

1

ζ − a
dζ −

∮
γ

1

ζ − b
dζ

= 0

It thus follows from Cauchy-Goursat theorem that h has a holomorphic antiderivative.

This completes the proof. �

Proposition 6.32. Let U ⊂ C be a domain. Suppose p ∈ ∂U is such that the

connected component of ∂U containing p is not {p}, then p is a peak point point.

Proof. Let q 6= p be a point of the connected component of ∂U containing p. It

follows from the preceding lemma that there exists a holomorphic function g on U

such that:

eg(z) =
z − p
z − q

, ∀ z ∈ U

The function g can be thought of as g(z) = log
(
z−p
z−q

)
. For 0 < r < |p−q|

2
, consider

the function H(z) = 1
g(z)

which is holomorphic on D(p, r) ∩ U . Then we have the

following:

h(z) = Re(H(z)) = Re

(
1

g(z)

)
=

log(| z−p
z−q |)

|log( z−p
z−q )|2

On D(p, r) ∩ U , we have the following inequality:

|h(z)| =
log(| z−p

z−q |)
|log( z−p

z−q )|2
≤

log| z−p
z−q |

log| z−p
z−q |2

=
1

log| z−p
z−q |

Thus on D(p, r) ∩ U , h is harmonic, negative and satisfies limU3ζ→p h(z) = 0.

Thus p is a peak point∗ and hence is a peak point. This proves our claim. �

The above proposition gives a lot more examples of situations when a boundary

point is a peak point than those considered at the beginning of this section.
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6.4. Generalization to Riemann surfaces

In this section we will define the notions of harmonic functions, subharmonic

functions on a Riemann surface. Throughout this section, R will denote a Riemann

surface, (Uα, φα)α∈A the corresponding conformal structure on R.

Definition 6.33 (Harmonic function). A real valued function f : R → R is said

to be harmonic if for every p ∈ R, there exists some Uα 3 p such that the function fα
given by:

fα(z) = f ◦ φ−1
α (z) , ∀z ∈ φα(Uα)

is harmonic on φα(Uα).

Definition 6.34 (Subharmonic function). A real valued function f : R → R is

said to be subharmonic if for every p ∈ R, there exists some Uα 3 p such that the

function fα given by:

fα(z) = f ◦ φ−1
α (z) , ∀z ∈ φα(Uα)

is subharmonic on φα(Uα).

Remark 6.35. Let U and W be domains in C. Suppose that f : U → R is a

harmonic (resp. subharmonic) function and g : W → U is a conformal map. Then

the composite function f ◦ g : W → R is also harmonic (resp. subharmonic). Thus if

f : R→ R is a harmonic (resp. subharmonic) function, then the function defined by:

fα(z) = f ◦ φ−1
α (z) , ∀z ∈ φα(Uα)

is harmonic (resp. subharmonic) on φα(Uα), for every α ∈ A.

Having made this remark, everything we have considered so far about harmonic

and subharmonic functions on domains in C carries over to harmonic and subharmonic

functions on a Riemann surface.





CHAPTER 7

Uniformization theorem

The Uniformization theorem that was introduced in chapter 5 is a special case

(dimension one) of the 22nd problem in the Hilbert’s list of problems and one of the

ten he presented at the International Congress of Mathematicians, Paris in 1900. H.

Poincaré and P.Koebe solved this special case in 1907. In this chapter we will give a

proof of the Uniformization theorem following the proof in the book of Gamelin [8].

The idea of the proof is based on analytic continuation on the Riemann surface.

7.1. Preliminaries

Lemma 7.1. If f is a non zero holomorphic function on any open subset U ⊂ C,

then log|f | is a harmonic function on the whole of U .

Proof. Let p ∈ U and D(p, r) ⊂ U for some r > 0. f is a non zero holomorphic

function on D(p, r) which is simply connected. Hence there exists a holomorphic

function F on D(p, r) such that f = eF . Hence log|f | = Re(F ) which is harmonic.

Harmonicity is a local property and we have proved above that f is harmonic in

some neighborhood of every point in U . Hence f is harmonic on whole of U . �

Definition 7.2 (Logarithmic pole). Suppose that h : D(p, r) \ {p} → R is a

harmonic function. h is said to have a logarithmic pole at p if the function f(z) =

h(z) + log|z − p| is harmonic on D(p, r).

The following discussion justifies the term logarithmic pole in the above definition.

(1) Suppose that g : D \ {0} → C is a holomorphic function with a simple pole

at 0. Then we can write g(z) = f(z)
z

, where f is a holomorphic function on D
which is non zero in a neighborhood of 0 (For simplicity we will assume that

f is non zero on D). It follows from the above lemma that log|g| is harmonic

on D \ {0}.

log|g(z)| = log|f(z)| − log|z|
log|g(z)|+ log|z| = log|f(z)|

65
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Again by the preceding lemma it follows that log|f | is harmonic on D. Thus

log|g| is a harmonic function on D \ {0} with a logarithmic pole at 0.

(2) Now suppose that h : D \ {0} → R is a harmonic function with a logarithmic

pole at 0. So the function f defined by

f(z) = h(z) + log|z|

is harmonic on D. Now f is a harmonic function on D. Hence there exists

a holomorphic function F such that f = Re(F ). Now consider the holo-

morphic function g(z) = eF (z) on D. Thus f = log|g|, where g is a nonzero

holomorphic function on D. Hence we have:

f(z) = log|g| = h(z) + log|z|

∴ h(z) = log

∣∣∣∣g(z)

z

∣∣∣∣
Hence we conclude that a harmonic function h on D \ {0} has a logarithmic pole

at 0 iff h = log|H|, where H is a holomorphic function on D \ {0} with a simple pole

at 0.

7.2. Green’s function

7.2.1. Definition. Throughout this section we will assume R to be a Riemann

surface and q ∈ R to be an arbitrary point in R.

Consider the family of subharmonic functions on R \ {q}, Fq defined by:

Fq = {u : R \ {q} → R| u satisfies the following conditions}

(1) u is subharmonic on R \ {q}
(2) u is zero outside a compact subset of R

(3) u(p)+ log|z(p)| is subharmonic on Dq, where Dq is a coordinate disc centered

at q and z : Dq → D is a coordinate map such that z(q) = 0.

The family Fq of subharmonic functions on R\{q} is a Perron family. The associated

Perron function is either harmonic or is identically infinity on R \ {q}.

Definition 7.3 (Green’s function). If the associated Perron function for the fam-

ily Fq exists, then we say that the Green’s function for R with a logarithmic pole at q

exists and the function is denoted by g(p, q) and if it does not exists we say that the

Green’s function does not exist.
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Remark 7.4. We shall now show that the definition of Fq above is independent

of the local coordinate chart (Dq, z) at q. Let (D′q, φ) be another coordinate chart for

R at q, where D′q is a coordinate disc such that φ(q) = 0.

Assume that u is a subharmonic function on R \ {q} which satisfies the first

two conditions and the third condition in the definition of Fq with respect to the

coordinate chart (Dq, z). We will show that u satisfies the third condition with respect

to (D′q, φ) as well. For any ζ ∈ D′q wherever the following makes sense, we have:

log|φ(ζ)| = log|φ ◦ z−1(z(ζ))|
= log|f(z(ζ))|

where f is a conformal map on a neighborhood of 0 and such that f(0) = 0. Hence

f(x) = xg(x) in a neighborhood of 0, where g 6= 0. We therefore have:

log|φ(ζ)| = log|f(z(ζ))|
= log|z(ζ)|+ log|g(z(ζ))|

∴ u(ζ) + log|φ(ζ)| = [u(ζ) + log|z(ζ)|] + log|g(z(ζ))|

The first of the two terms in the above equation is subharmonic by assumption and

since g ◦ z is conformal and nonzero, the second term is harmonic by lemma 7.1.

Hence the sum and therefore u(ζ) + log|φ(ζ)| is subharmonic as claimed.

7.2.2. Properties of Green’s function. Assuming that the green’s function

for R with a logarithmic pole at q exits, we shall derive some properties of the green’s

function g(p, q).

Since u ≡ 0 is a member of Fq and since g(p, q) = sup{u(p) | u ∈ Fq}, it follows

that:

Lemma 7.5. The green’s function for R with a logarithmic pole at q satisfies

g(p, q) ≥ 0, for every p ∈ R.

Lemma 7.6. The function h(p) = g(p, q) + log|z(p)| is harmonic on the the

coordinate disc Dq, where (Dq, z) is a coordinate chart at q.

Proof. It is clear that h is harmonic on Dq \ {q}. It suffices to prove that the

function h is bounded in a neighborhood of q, in which case q will be a removable

singularity of h. Let Dq = {ζ ∈ R||z(ζ)| ≤ r} and let D = {ζ ∈ R||z(ζ)| ≤ r
2
}.

Consider the set S = ∂D. g is bounded on S. Let M > 0 be such that g ≤ M on S.

We then have the following inequality:

g(p, q) + log|z(p)| ≤M + log
∣∣∣r
2

∣∣∣ , ∀ p ∈ S
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For any u ∈ Fq, we have the following inequality:

u(p) + log|z(p)| ≤M + log
∣∣∣r
2

∣∣∣ , ∀ p ∈ S
By maximum principle of subharmonic functions, it follows that:

u(p) + log|z(p)| ≤M + log
∣∣∣r
2

∣∣∣ , ∀ p ∈ D
In the above inequality, taking the supremum over all u ∈ Fq we get:

g(p, q) + log|z(p)| ≤M + log
∣∣∣r
2

∣∣∣ , ∀ p ∈ D
Hence the function h is harmonic in a neighborhood of q and hence on all of Dq. It

thus follows by the analogue of proposition 6.14 for harmonic functions on Riemann

surfaces that h is harmonic on Dq. �

Definition 7.7 (Logarithmic pole). A harmonic function f : R \ {q} → R is said

to have a logarithmic pole at q if the function h defined by:

h(p) = f(p) + log|z(p)|

is harmonic on Dq, where (Dq, z) is a coordinate chart, Dq is a coordinate disc and

z(q) = 0.

As was shown in Remark 7.4, it can be shown that the above definition is inde-

pendent of the coordinate chart (Dq, z).

Lemma 7.8. Suppose that h is a positive harmonic function on R \ {q} which

has a logarithmic pole at q, then h ≥ g on R \ {q}.

Proof. In order to prove the lemma, it suffices to show that u(p) ≤ h(p), ∀p ∈
R\{q} and ∀u ∈ Fq. So consider an arbitrary u ∈ Fq. There exists a coordinate discD
(corresponding coordinate chart (D, z)) on which u(p) + log|z(p)| is subharmonic and

h(p)+ log|z(p)| is harmonic. Hence u−h is subharmonic on D. It is also subharmonic

on R \ {q} and hence it is subharmonic on the whole of R. Since u ≡ 0 outside a

compact subset of R and h is positive, it follows from the maximum principle for

subharmonic functions that u ≤ h on the whole of R. �

Lemma 7.9. Suppose that the green’s function for R with a logarithmic pole at q

exists. Then inf {g(p, q)|p ∈ R \ {q}} = 0.

Proof. Suppose that inf {g(p, q)|p ∈ R \ {q}} = δ > 0. Then the function

f(p) = g(p, q)− δ is a positive harmonic function on R \ {q} with a logarithmic pole

at q. By the preceding lemma, f(p) ≥ g(p, q) which is a contradiction. Hence the

infimum of g is 0 on R \ {q}. �
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Remark 7.10. Green’s functions were extensively studied in Physics. They play

an important role in solving boundary value problems in electrostatics. In a domain

R that is free of charge the electrostatic potential φ is a harmonic function, i.e., φ

satisfies ∆φ ≡ 0, where ∆ is the Laplacian operator. In general (in the presence

of charges in R) the electric potential φ satisfies ∆φ = ρ, where ρ is the charge

density in R. Suppose that R is a domain with charge density ρ and the boundary of

R, ∂R satisfies certain smoothness conditions. A common boundary value problem

encountered in electrostatics is the following:

Calculate the potential φ in R under the condition: φ|∂R = f , for some potential on

the boundary.

The solution φ of the above problem with ρ(p0) = ∞ and ρ ≡ 0 on R \ {p0} and

φ|∂R ≡ 0 is by our definition Green’s function on R with a logarithmic pole at p0.

Physically the green’s function on R with a logarithmic pole at p0 is the electric

potential in R when a unit charge is placed at p0 and the boundary is grounded.

7.2.3. Harmonic Measure and Green’s function. In this section we shall

do the following:

(1) Define another harmonic function (on R\D, where D is some open coordinate

disc) called the harmonic measure.

(2) Establish the connection between existence/non existence of green’s function

and the existence/non existence of harmonic measure.

(3) Show that the existence or non existence of green’s function for a surface R

with a logarithmic pole at q is not really dependent on the point of q. That

is if g(ζ, q) exists for some q ∈ R, then g(ζ, p) exists for every p ∈ R.

(4) Show that the existence of harmonic measure on R \ D is a property of

the “boundary” of R so that the existence/non existence of green’s function

depends on the “boundary” of R.

Hence the existence/non existence of green’s function serves as a tool for identi-

fying different surfaces on the basis of their “boundary”. This can be thought of as

the first essential step towards proving the Uniformization theorem, in that it singles

out surfaces whose “boundary” is an arc. We shall then use the green’s function to

construct a conformal map between the (simply connected) surface and the unit disc.

Let D be an open coordinate disc in R. Consider the familyMD of subharmonic

functions defined on R \ D by:

MD = {u : R \ D → R | u satisfies the following properties}
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(1) u is subharmonic on R \ D
(2) u ≤ 1 on R \ D
(3) u ≡ 0 outside a compact subset of R \ D

The family MD is a Perron family on R \ D. Since the constant function f ≡ 0

is a member of MD, the associated Perron function w is a harmonic function which

satisfies 0 ≤ w ≤ 1.

∂D is a compact subset of R. Let {Dn}Nn=1 be a collection of open coordinate

discs each centered at a point of ∂D such that it covers ∂D and also satisfies Dn ⊂ R

for every 1 ≤ n ≤ N . Now let S = (R \ D) ∩ (∪Dn). S ⊂ R is a connected open

subset and hence is a Riemann surface. S is an open region of R that is bounded

by two disjoint arcs, one of which is ∂D and the other can be thought of as being

made up of pieces of ∂Dn joined together. Every point of ∂S is a peak point and the

Dirichlet problem has a solution for every continuous function on ∂S, in particular

for the function f ≡ 1 on ∂D and f ≡ 0 on ∂S \ ∂D.

Consider the subfamily of MD which consists of functions u ∈ MD which are

identically zero outside S. This is a Perron family and the associated Perron function,

f̃ , is the Dirichlet solution for the domain S and the corresponding boundary function

f . Clearly f̃ < w|S. Since f̃(ζ)→ 1 as ζ → ζ0 ∈ ∂D, it follows that w(ζ)→ 1. Hence

there are two possibilities for the harmonic function w: 0 < w < 1 or w ≡ 1.

Definition 7.11 (Harmonic measure). If 0 < w < 1 we say that the harmonic

measure for R\D exists and the function w is called its harmonic measure. If w ≡ 1,

then we say that the harmonic measure for R \ D does not exist.

Theorem 7.12. Let D ⊂ R, where D is an open coordinate disc. Then for any

q ∈ D, the green’s function for R with a pole at q exists iff the harmonic measure for

R \ D exists.

Proof. Let us first assume that the green’s function with a logarithmic pole at

q exists for some q ∈ D. We shall now prove the existence of harmonic measure for

R \ D. Let M be the maximum of g on ∂D. Then g
M
≥ 1 on ∂D. We thus have

g
M
≥ u on ∂D for any u ∈ MD. Since g is positive and u ≡ 0 outside a compact

subset of R, it follows by the maximum principle of subharmonic functions that the

subharmonic function u− g
M
≤ 0 on the whole of R \D. Hence w(p) ≤ g(p,q)

M
, for any

p ∈ R \ D. It follows by lemma 7.9 that infp∈R\Dw(p) = 0 and hence the case w ≡ 1

is not possible. Thus 0 < w < 1 and hence the harmonic measure for R \ D exists.
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We will now prove the converse: assume existence of harmonic measure for R \D
and prove the existence of green’s function with a logarithmic pole at q for every

q ∈ D. Let q ∈ D. In order to prove that green’s function g(·, q) exists it suffices to

prove that every u ∈ Fq and every p ∈ R \ {q} satisfies u(p) < Mp, for some Mp ∈ R.

Suppose that D = z−1(D(0, r)) and let z(q0) = 0. Choose s > r such that the

closed coordinate disc Ds = z−1(D(0, s)) is defined. Let q ∈ D and let u ∈ Fq. The

function h(p) = u(p) + log|z(p) − z(q)| is subharmonic on D. Let M , κ, C1 and C2

be as below:

M = sup{u(p) : p ∈ ∂Ds}
C1 = sup{|log|z(p)− z(q)|| : p ∈ ∂D}
C2 = sup{|log|z(p)− z(q)|| : p ∈ ∂Ds}
C = C1 + C2

κ = sup{w(p) : p ∈ ∂Ds}

Then the function h ≤M +C2 on ∂Ds. Hence by the maximum principle of subhar-

monic functions, it follows that h ≤M +C2 on whole of Ds and in particular on ∂D.

Also note that w ≡ 1 on ∂D and u ≡ 0 outside a compact subset. Hence again by

the maximum principle we have:

u(p) ≤ (M + C)w(p),∀ p ∈ R \ D

In the above equation, taking supremum of u and w over the set ∂Ds we have:

M ≤ (M + C)κ

∴M ≤ Cκ

1− κ
Note that M in the above estimate is independent of u! Hence we have g(p, q) ≤M ,

∀p ∈ ∂Ds. Hence the associated Perron function of the family Fq is a finite harmonic

function. Hence the green’s function g(·, q) exists.

�

Corollary 7.13. If the green’s function exists for some q0 ∈ R, then it exists for

all q ∈ R.

Proof. It follows from the preceding theorem that the subset S ⊂ R on which

green’s function exists is both open and closed. And in the present case S is non

empty, hence it is the whole of R as claimed. �
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Having proved the above corollary, we can simply talk about the existence/non

existence of green’s function for a surface.

Before proceeding further, we shall consider three basic examples D, C and Ĉ.

We shall find out in which of the three cases green’s function exists and calculate

it explicitly in the case when it does. The equivalence of the existence of green’s

function and the existence of harmonic measure (theorem 7.12) comes in very handy

in many situations when we want to determine if green’s function exists for a surface.

The unit disc, D: The harmonic measure for D \ D(p, r), where D(p, r) ⊂ D
exists because the function w is the solution of the Dirichlet problem for the

domain D \ D(p, r) and the function f ≡ 1 on ∂D(p, r) and f ≡ 0 on ∂D.

Hence green’s function exists for D.

Consider the function h(z) = log
(

1
|z|

)
. This is a positive harmonic

function on D with a logarithmic pole at 0. It follows by lemma 7.8 that

h(z) ≥ g(z, 0), ∀ z ∈ D. For every 0 < r < 1 consider the subharmonic

function on D \ {0} given by:

ur(z) = log

(
r

|z|

)
,∀z ∈ D(0, r) \ {0}

= 0, otherwise

Clearly each ur ∈ F0 and ur(z) → log
(

1
|z|

)
as r → 1. Thus h(z) ≤ g(z, 0).

Hence g(z, 0) = log
(

1
|z|

)
.

The complex plane, C: For n ∈ N, consider the subharmonic function on

C \ {0}, un defined by:

un(z) = log

(
n

|z|

)
, ∀ z ∈ D(0, n) \ {0}

= 0, ∀ z ∈ C \D(0, n)

Then each un ∈ F0 and for any z ∈ C \ {0}, un(z) → ∞. Hence the green’s

function for C does not exist.

The Riemann Sphere, Ĉ: In a similar way as we did for the C case, it can

be shown that green’s function for Ĉ does not exist.

Lemma 7.14. Suppose that f : R → S is a conformal map and assume that the

green’s function for one of R or S exists. Then green’s function for other surface also

exists and gS(f(p), f(q)) = gR(p, q).
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Proof. Without loss of generality, assume that green’s function for S exists. Let

u ∈ Ff(q). Since f is a conformal map, u◦f ∈ Fq. Also for any v ∈ Fq, v◦f−1 ∈ Ff(q).

Thus every member of Fq is of the form u ◦ f for some u ∈ Ff(q). Let p ∈ R \ {q}.
Then for any u ∈ Ff(q) we have the following:

(u ◦ f)(p) = u(f(p)) ≤ gS(f(p), f(q))

∴ gR(p, q) ≤ gS(f(p), f(q))

Similarly gS(f(p), f(q)) ≤ gR(p, q) and hence gS(f(p), f(q)) = gR(p, q) as claimed.

�

7.3. Uniformization Theorem - Part 1

The Uniformization theorem states that the only simply connected Riemann sur-

faces are D, C and Ĉ. In this section we will see how the existence of green’s function

acts an indicator for the surface to be conformal to the disc.

7.3.1. Proof of Uniformization Theorem - Part 1.

Theorem 7.15 (The Uniformization Theorem). Let R be a simply connected

Riemann surface. Then R is conformally equivalent to either the unit disc D, the

complex plane C or the Riemann sphere Ĉ.

We divide the proof into two parts: in the first part we shall consider simply

connected Riemann surfaces for which Green’s function exists and in the second part

we shall consider simply connected Riemann surfaces for which Green’s function does

not exist.

Proof. [Part 1] We shall show that if R is a simply connected Riemann surface

for which Green’s function exists, then R is conformally equivalent to D. Let q0 ∈ R
and let g(·, q0) be the corresponding green’s function for R with a logarithmic pole

at q0. As seen in section 7.1, there exists a holomorphic function f̃ in a deleted

neighborhood of q0 with a simple pole at q0 or equivalently there exists a holomorphic

function f in a neighborhood of q0 with a simple zero at q0 satisfying:

log|f̃(p)| = g(p, q0)

log|f(p)| = −g(p, q0)

Equivalently, |f(p)| = e−g(p,q0)

in a neighborhood of q0. Let D be any coordinate disc in R \ {q}. Since g(·, q0) is

a harmonic function on D, there exists a holomorphic function G on D such that

Re(G) = −g. The holomorphic function eG satisfies |eG| = e−g. Suppose that D′ is
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another coordinate disc in R \ {q} and G′ is the corresponding holomorphic function

on D′ satisfying Re(G′) = −g on D′. If D ∩ D′ 6= φ, then on the intersection the

holomorphic function eG and eG
′

satisfy | eG
eG′
| = 1 and hence eG = eiαeG

′
for some

α ∈ R. The function eiαeG
′

on D′ satisfies |eiαeG′| = e−g and also agrees with eG on

D ∩ D′. Thus the function f can be continued analytically along any curve in R. R

being simply connected, this implies that there exists an analytic function ϕ on the

whole of R which equals f in a neighborhood of q0 and also satisfies:

|ϕ(p)| = e−g(p,q0), ∀ p ∈ R

φ is a non constant holomorphic function on R. Since g ≥ 0, |ϕ| ≤ 1 on R. Thus

ϕ : R → D is a non constant holomorphic function. If we can establish ϕ to be an

injective map, then since image of ϕ is a simply connected subset of D it will follow

by Riemann mapping theorem that R is conformally equivalent to D. So we will now

prove that ϕ is an injection.

Let q1 ∈ R \ {q}. For any a ∈ D, let φa denote the conformal self map of D given

by φa(z) = z−a
1−az . Now consider the composition ψ = φϕ(q1) ◦ ϕ:

ψ(p) =
ϕ(p)− ϕ(q1)

1− ϕ(q1)ϕ(p)

ψ is a coordinate map on a neighborhood of q1 and ψ(q1) = 0. Thus for any u ∈ Fq1 ,
the Perron family which defines the green’s function at q1, the following function

u(p) + log|ψ(p)|

is subharmonic on the whole of R and since u(p) + log|ψ(p)| ≤ 0 outside a compact

subset of R the following holds:

u(p) + log|ψ(p)| ≤ 0 , ∀p ∈ R \ {q1}

(7.3.1) ∴ g(p, q1) + log|ψ(p)| ≤ 0 , ∀p ∈ R \ {q1}

The above inequality for p = q0 yields:

g(q0, q1) ≤ g(q1, q0)

Since q0 and q1 are arbitrary, we also have:

g(q0, q1) ≥ g(q1, q0)

∴ g(q0, q1) = g(q1, q0)
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Thus equality is attained in (7.3.1) for q0 which is an interior point. Hence by the

maximum principle we have:

g(p, q1) + log|ψ(p)| = 0 , ∀p ∈ R \ {q1}

∴ |ψ(p)| = e−g(p,q1)

The above equation implies that ψ attains the value 0 only for p = q1. This implies

that ϕ takes the value ϕ(q1) only at q1. Since we started with an arbitrary q1, it

follows that ϕ is an injection.

�

7.4. Uniformization Theorem - Part 2

In the previous section we considered Riemann surfaces R for which Green’s func-

tion exists and making use of the green’s function we constructed a conformal map

from R to D. Analogous to the green’s function, in this section we will construct a

bipolar green’s function and then later use it construct an analytic map from R to

the Riemann sphere C∗.

7.4.1. Bipolar Green’s Function.

Definition 7.16. Let R be a Riemann surface and let q1, q2 ∈ R be distinct points.

Let ∆1 and ∆2 be disjoint coordinate discs centered at q1 and q2 with corresponsing

coordinate maps z1 and z2 respectively such that z1(q1) = 0 and z2(q2) = 0 . A

harmonic function G(·, q1, q2) on R \ {q1, q2} is called a bipolar green’s function on R

with poles at q1 and q2 if it satisfies the following conditions:

(1) G(p, q1, q2) + log|z1(p)| is harmonic on ∆1.

(2) G(p, q1, q2)− log|z2(p)| is harmonic on ∆2

(3) G(p, q1, q2) is bounded on R \ (∆1 ∪∆2).

We make the following observations about G(p, q1, q2):

(1) G(p, q1, q2) has a logarithmic pole at q1 and −G(p, q1, q2) has a logarithmic

pole at q2. From the discussion in section 7.1, it follows that there exists a

holomorphic function f1 on ∆1 with a simple zero at q1 and a holomorphic

function f2 on ∆2 \ {q2} with a simple pole at q2 which satisfy:

|f1(p)| = e−G(p,q1,q2) on ∆1

|f2(p)| = e−G(p,q1,q2) on ∆2
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(2) If G(p, q1, q2) is a bipolar green’s function on R with poles at q1 and q2 and

if h is any bounded harmonic function on R, then G(p, q1, q2) + h(p) is also

a bipolar green’s function on R with poles at q1 and q2. Conversely, if G1

and G2 are both bipolar green’s function on R with poles at q1 and q2 then

G1 −G2 is a bounded harmonic function on R.

Let us explicitly calculate a bipolar green’s function for a few cases:

(1) Suppose R is a Riemann surface for which green’s function exists. Then a

bipolar green’s function with a pole at q1 and q2 is G(p, q1, q2) = g(p, q1) −
g(p, q2).

(2) Consider the Riemann sphere C∗ and points q1 = 0 and q2 = ∞. Then

G(p, 0,∞) = −log|z|. Since any bounded harmonic function on C∗ is a

constant, any bipolar green’s function for C∗ with a pole at 0 and ∞ is of

the form G(p, 0,∞) + c, for some constant c.

(3) Consider the complex plane C. For any distinct points q1, q2 ∈ C, a bipolar

green’s function with poles at q1 and q2 is G(p, q1, q2) = log
(
z−q2
z−q1

)
.

We will now prove that for any Riemann surface R and points q1, q2 ∈ R, there

exists a bipolar green’s function for R with poles at q1 and q2.

Lemma 7.17. Let S be a finite bordered Riemann surface. Let q1, q2 ∈ R be

distinct points. Then there exists C > 0 such that for every Riemann surface R for

which green’s function exists and which is such that R ⊃ S ∪ ∂S, the following holds:

|gR(p, q1)− gR(p, q2)| < C , ∀p ∈ R \ {∆1 ∪∆2}

where ∆1 = {p : |z1(p)| < σ} and ∆2 = {p : |z2(p)| < σ} are disjoint coordinate discs

centered at q1 and q2 respectively and z1 and z2 are coordinate maps on a neighborhood

of q1 and q2 respectively with z1(q1) = 0 and z2(q2) = 0.

Proof. Let R be any Riemann surface for which green’s function exists and which

is such that R ⊃ S∪∂S. Let 0 < ρ < σ. For i = 1, 2 let Ai denote the coordinate disc

Ai = {p : |zi(p)| < ρ}. Let Mi and Ni be the maximum of gR(p, qi) on ∂Ai and ∂∆i

respectively. The function gR(p, qi) + log|zi(p)| is harmonic on ∆i and for p ∈ ∂∆i

(and hence for every p ∈ ∆i), the following inequality holds:

gR(p, qi) + log|zi(p)| < Ni + log(σ)

∴Mi + log(ρ) < Ni + log(σ)

Thus there exists pi ∈ ∂∆i such that:

Mi + log(ρ) ≤ gR(pi, qi) + log(σ)



7.4. UNIFORMIZATION THEOREM - PART 2 77

∴Mi − gR(pi, qi) ≤ log

(
σ

ρ

)
The function Mi − gR(p, qi) is a positive harmonic function on S \ {A1 ∪ A2}. Thus

by the Harnack’s estimate for function Mi − gR(p, qi) on the compact set ∂∆1 ∪ ∂∆2

we have:
1

K
≤ Mi − gR(p, qi)

Mi − gR(q, qi)
≤ K , ∀p, q ∈ ∂∆1 ∪ ∂∆2

The above inequality with q = pi becomes:

Mi − gR(p, qi) ≤ K1 , for some K1 > 0 and ∀p ∈ ∂∆1 ∪ ∂∆2

Note that the constant K1 in the above inequality is independent of R. We thus have

for every p ∈ ∂∆1 ∪ ∂∆2 (and hence on R \ {∆1 ∪∆2}):

(7.4.1) Mi −K1 ≤ gR(p, qi) ≤Mi

The function gR(p, q1) is harmonic on ∆2 and hence by the maximum principle, the

above inequality holds on ∆2 as well, i.e.,

M1 −K1 ≤ gR(p, q1) ≤M1 , ∀p ∈ ∆2

∴M1 −K1 ≤ gR(q2, q1) ≤M1

Similarly we also have the following inequality:

M2 −K1 ≤ gR(q1, q2) ≤M2

But since gR(q1, q2) = gR(q2, q1) as seen in the preceding section we obtain:

|M1 −M2| ≤ K1

Thus it follows from equation (7.4.1) that:

∴ |gR(p, q1)− gR(p, q2)| ≤ 2K1 , ∀p ∈ R \ {∆1 ∪∆2}

�

Theorem 7.18. Let R be any Riemann surface and let q1, q2 ∈ R be any two

distinct points. Then there exists a bipolar green’s function for R with poles at q1 and

q2.

Proof. Let p0 ∈ R\{q1, q2} be an arbitrary point. Consider the Riemann surface

Rn = R \ ∆n, where ∆n is a coordinate disc (for a particular coordinate map z) of

radius 1/n each of which is centered at p0 and is contained in R \ {q1, q2}. Green’s

function exists for each Rn. So consider the function fn = gn(p, q1)− gn(p, q2), where

gn is the green’s function for the surface Rn. Each of the fn is a bipolar green’s
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function for Rn with poles at q1 and q2. The preceding lemma shows that the family

{fn} is uniformly bounded and hence by an analogous result of Montel’s theorem

for harmonic functions, it follows that there exists a convergent subsequence in {fn}.
The limit function will be a bipolar green’s function for R with poles at q1 and q2. �

7.4.2. Proof of Uniformization Theorem - Part 2.

Lemma 7.19. Let R be a Riemann surface and let f : R→ C be a nonconstant,

bounded analytic function. Then the green’s function for R exists.

Proof. Since f is a nonconstant function, there exists q ∈ R such that the order

of zero of the function h(p) = f(p) − f(q) at q is one. Let M > 0 be such that

|h| ≤ M . So h defines a coordinate map on a neighborhood of q. We will now show

that green’s function for R with a logarithmic pole at q exists. For any u ∈ Fq, the

function

u(p) + log|h(p)|
is subharmonic on R. Since u vanishes outside a compact subset of R, it follows by

the maximum principle for subharmonic functions that:

u(p) + log|h(p)| ≤ logM , ∀p ∈ R

∴ u(p) ≤ logM − log|h(p)|, ∀p ∈ R
The above equation proves that the green’s function for R with a logarithmic pole at

q exists.

�

Theorem 7.20 (The Uniformization Theorem).

Proof. [Part-2] We adopt a proof very similar to that of Part-1. Assume that

for the Riemann surface R, green’s function does not exist. Let q1, q2 ∈ R be distinct

points. Let G(p, q1, q2) be a bipolar green’s function on R with poles at q1 and q2.

Let f be a holomorphic function on ∆2 \ {q2} with a simple pole at q2 and which

satisfies:

(7.4.2) |f(p)| = e−G(p,q1,q2) on ∆2

Along any curve γ ∈ R, there exists an analytic continuation of the function

element (f,∆2) which satisfies a similar equation as (7.4.2) on the corresponding

coordinate disc. Since R is simply connected there exists an analytic function on the

whole of R, call it ϕ, satisfying:

|ϕ(p)| = e−G(p,q1,q2), ∀p ∈ R
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The function ϕ satisfies the following properties:

(1) ϕ : R→ C∗ is an analytic function.

(2) ϕ(p) = 0 iff p = q1.

(3) ϕ(p) =∞ iff p = q2.

(4) There exists m,M > 0 such that m ≤ |ϕ| ≤M on R \ {∆1 ∪∆2}.
We will now show that ϕ is an injection. Let q0 ∈ R \ {q1, q2} and let ϕ0 denote the

corresponding analytic function on R which satisfies |ϕ0(p)| = e−G(p,q0,q2). Consider

the function ψ defined by:

ψ(p) =
ϕ(p)− ϕ(q0)

ϕ0(p)

The function ψ is analytic on R and is bounded in a neighborhood of q0 and q2. Since

ϕ is also bounded in a neighborhood of q1, it follows that ψ itself is bounded on the

whole of R. Hence by lemma 7.19, it follows that ψ is non zero constant, K.

∴ ϕ(p) = Kϕ0(p) + ϕ(q0)

Since ϕ0(p) = 0 iff p = q0, it follows that ϕ(p) = ϕ(q0) iff p = q0. This holds for all

q0 ∈ R \ {q1, q2}. Hence the function ϕ is an injection.

ϕ(R) ⊂ C∗ is a simply connected subset. If C∗\ϕ(R) contains more than one point,

then by Riemann mapping theorem ϕ(R) is conformally equivalent to D. This implies

that green’s function for R exists, which is a contradiction. Hence C∗ \ϕ(R) contains

at the most one element. If it is an empty set, then R is conformally equivalent to

C∗. Otherwise if C∗ \ϕ(R) is a singleton then R is conformally equivalent to C. Thus

we have proved the Uniformization theorem. �
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