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Abstract

In recent years, there have been a lot of investigations, both experimental and
theoretical of the possibility of simultaneous occurrence of crystalline order and
superfluidity in solid helium. While there is still a lot of controversy about the
microscopic mechanism of superfluidity in solid helium, there is increasing evidence
that suggests that the superfluid component in this system resides primarily on
structural defects such as dislocations and grain boundaries. In a three dimensional
system, dislocations form a network of lines (one-dimensional objects) and grain
boundaries form a network of two-dimensional planar objects. To study superfluidity
on such networks, one first needs to construct realistic versions of the network.

In the coupled spin models that we study in this context, one of the spin sys-
tems is used to generate the network of defects. We then study the equilibrium
and dynamic properties of the coupled spin systems using numerical and analytical
techniques.
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Chapter 1

Introduction and Motivation

1.1 Superfluidity in Helium

Superfluidity is a state in which matter behaves like a fluid without viscosity
and with infinite conductivity. Thus a superfluid can flow by itself and can pass
through extremely thin capillaries (known as superleaks). Due to its infinite thermal
conductivity it is impossible to create temperature gradient in a superfluid.

Superfluidity was discovered by Allen, Misener and Kapitza in 1938 [1]. They
observed that below a certain temperature (∼ 2.17), the resistance of liquid helium
to flow in narrow channels drops drastically. Superfluidity has been described both
through phenomenological [2], [3] and microscopic theories [4], [5]. Superfluidity is
observed both in Helium 4 as well as Helium 3. However the underlying physics in
the two cases is completely different. Superfluidity in Helium 4 can be regarded as
Bose- Einstein condensation in an interacting system. Helium 3 atoms on the other
hand are fermions. Superfluidity in this case is explained by a generalization of BCS
theory of superconductivity wherein the Helium 3 atoms form Cooper pairs.

Superfluidity opens exciting avenues of intellectual and industrial interests. The
properties of superfluid state have been extensively studied and have been under-
stood to a great deal in terms of microscopic physics. The reader may refer [1], [6]
for a detailed description of this intriguing field.

1.2 The enigma of supersolidity

A solid with superfluid properties is called ‘supersolid’. A supersolid phase
combines both crystalline properties such as shear modulus and broken translational
symmetry, with frictionless mass transport of its own atoms through the solid bulk.

Helium at ordinary pressure does not go into solid form. However it can be
solidified by applying high pressures. Chester conjectured in 1970 that Helium 4
might undergo a transition to a supersolid phase [7]. The experiments performed
by Kim and Chan in 2004, is believed to show signatures of supersolidity in Helium
[8], [9]. Figure 1.1 depicts the phase diagram of Helium indicated by them in [9].
Kim and Chan’s conclusion was based on the observed anomaly in the rotational
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Figure 1.1: The phase diagram of Helium below 6 K as reported in [9].

properties of solid Helium. Their conclusion has been contended as to if the so
called supersolid state exists at all [10]. But since then a number of experiments
have been performed which report anomalies not only in the rotational properties
of solid Helium but also in its elastic properties [11], [12] and in its specific heat
[13]. Following these reports there has been a general consensus within the scientific
community that supersolid state does exist. However, the mechanism behind the
formation of supersolidity is extensively debated.

As pointed out in [14] a model for supersolidity was proposed by Thouless and by
Andreev and Lifshitz in [15] and [16] respectively, where they consider a quantum
crystal with vacancies. The vacancies could exchange their positions with neigh-
bouring atom through quantum tunneling. If atoms are bosons, the mobile vacan-
cies obey Bose- Einstein statistics and undergo Bose-Einstein condensation, below
a particular temperature. Since, flow of vacancies is inverse the flow of mass, we
could observe a fraction of the mass flowing without friction through the lattice,
which characterizes a supersolid. The flaw in this argument being that the ansatz
of existence of vacancies in zero temperature limit is not well justified.

1.2.1 The role of disorder

As described above, the emergence of supersolidity entails existence of vacancies
in the ground state of Helium. Monte Carlo studies indicate [17], [18] that creation
of vacancies in ground state would require large energy casting a doubt over vacancy
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based model of supersolidity.
Rittner and Reppy [19] established that in annealed crystal samples with very

low defect density the supersolidity signal decreases sharply and falls within the
noise levels in measurements. They were also able to reproduce the Kim and Chan’s
results [8], [9] with the normal crystals. Further, most Helium 4 samples invariably
contain small amount of Helium 3. The supersolid transition depends sensitively
on the concentration of Helium 3 impurities. It has been shown that the transition
temperature decreases monotonically with the reduction of Helium 3 concentration
[20]. Thus supersolid transition is highly influenced by disorder. However, the actual
role of disorder remains a moot point. While some believe that supersolidity is solely
driven by defects and impossible in a perfect crystal [17], Anderson [21] maintains
that supersolidity is the intrinsic property of ideal crystal which is only enhanced by
disorder. Moreover, the nature of disorder which leads to the observed supersolid
properties and the mechanism by which it does so, remains unclear [22]. Presently,
experimental and theoretical work continues with the hope to unveil the mystery of
supersolidity.

1.3 The Project Outline

We began with the study of coupled Ising Models. One of the Ising spins form the
domains and the coupling between the second Ising variables is decided by whether
they lie across the domains of former or not. The mean field and Monte Carlo study
of this model is presented in Chapter 2. We observe that Ising spins do not order
along the one dimensional Ising domain boundaries and this motivates us to consider
a 3 state Potts Model whose domain boundaries form a network in two dimensions.

Chapter 3 is devoted to the study of Potts Model and the ordering of Ising spins
along the domain boundaries of Potts spins. We also report an estimate of critical
temperature for ordering of Ising spin along such a network.

In chapter 4 we present our numerical and analytical endeavours to understand
the effect of dynamics of the underlying network on the ordering of spins. We
conclude with a discussion of the results obtained and deliberate over the scope of
further developments.
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Chapter 2

Coupled Ising Models

2.1 The Model

We embark on our study of coupled spin systems in the context mentioned in
1.2.1 by considering the case of two coupled Ising variables, S and σ. The σ spins
form the domains and the coupling between the S spins is decided by their position.
If the S spins lie along the domain boundaries of σ spins they are assigned a coupling
constant of say J2, different from the case, when they lie within the σ domains, say
J3. The Hamiltonian of such system would be,

H = −J1

∑

<i,j>

σiσj −
∑

<i,j>

J̃(σi, σj)SiSj (2.1)

where,

J̃(σi, σj) = J2δσiσj ,−1 + J3δσiσj ,+1

= J2
2
(1− σiσj) +

J3
2
(1 + σiσj)

= J2+J3
2

− J2−J3
2

σiσj

So, equation (2.1) becomes,

H = −J1

∑

<i,j>

σiσj −
∑

<i,j>

J2 + J3

2
SiSj +

∑

<i,j>

J2 − J3

2
σiσjSiSj

Considering J3 = 0, the Hamiltonian reads as,

H = −J1σiσj −
J2

2
SiSj +

J2

2
σiσjSiSj (2.2)

The equation(2.2) is similar to the Hamiltonian for Ashkin Teller Model studied in
[23], [24] and [25]. Taking clues from these, we employ mean field and numerical
techniques to understand the phase diagram of system governed by Hamiltonian
(2.2)
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Figure 2.1: The mean field magnetization versus temperature graphs for various
values of J2

2.2 Mean Field treatment

To include the possibility of antiferromagnetism, we consider two sublattices, A
and B and calculate the magnetization of σ and S in these two sublattices. Please
refer Appendix A.1 for a brief note on set up of mean field equations.

The four self consistent mean field equations are,

〈σ〉A = tanh(
4J1〈σ〉B − 2J2〈S〉A〈S〉B〈σ〉B

kBT
) (2.3a)

〈σ〉B = tanh(
4J1〈σ〉A − 2J2〈S〉A〈S〉B〈σ〉A

kBT
) (2.3b)

〈S〉A = tanh(
2J2〈S〉B − 2J2〈σ〉A〈σ〉B〈S〉B

kBT
) (2.3c)

〈S〉B = tanh(
2J2〈S〉A − 2J2〈σ〉A〈σ〉B〈S〉A

kBT
) (2.3d)

Without loss of generality we can put J1 = 1 We use the subroutine discussed in
[26] to solve the above equations. The main observations which can be made from
Figure 2.1 are as follows,

• For J2 < 2J1, the σ spins are ordered ferromagnetically till a temperature of
4 (temperature is measured in units of J1)

• For J2 > 2J1, at low temperatures, the σ spins are ordered antiferromagneti-
cally and S spins are ordered ferromagnetically. The anti-ferromagnetic order
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Figure 2.2: The mean field phase diagram of the coupled Ising model. Both J2 and
T are expressed in units of J1.

breaks at a T = 2J2 − 4 and the ferromagnetic order breaks at T = 2J2.
1

We also observe that at high J2 values, the antiferromagnetic order of σ spins break
at a temperature lower than 2J2 − 4.

These considerations, lead us to a phase diagram as shown in Figure 2.2

2.3 Numerical Results

In this section, we present the numerical results of the Monte Carlo simulations
of our coupled Ising system.

In the first set of simulations, we fix temperature and look at behaviour of the
order parameters - 〈σ〉AF , 〈σ〉F and 〈S〉F as the coupling constant J2 is varied. A
few such graphs are shown in Figure 2.3.

In the second set of simulations, we fix J2 and study the magnetization order
parameter as a function of temperature. Figure 2.4 gives a few such plots. The
observations of simulations lead us to construct a phase diagram as show in Figure
2.5.

2.3.1 Ordering along domain boundaries

We are interested in dynamics of S spins along the domain boundaries of σ spins.
In Figure 2.5, we set the parameters such that we are in the phase, where 〈σ〉 is
ferromagnetically ordered. Once, we have some domain formation of σ spins, we
freeze them and update only S spins.

A result of such exercise is shown in Figures 2.6 and 2.7. It is seen that S spins
lying along the domain boundary do not show any tendency to develop magnetic

1In case of two sublattices, the ferromagnetic and antiferromagnetic order parameters are defined

as 〈σ〉F = (〈σ〉A + 〈σ〉B)/2 and 〈σ〉AF = (〈σ〉A − 〈σ〉B)/2
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order. This is expected as it is known that Ising variables do not order at any finite
temperature in one dimension. The domain walls of a two dimensional Ising Model
is one dimensional and hence no order is seen along the domain boundary.

Starting with patched initial condition

Instead of starting with a random initial configuration for σ spins, we start with
an initial configuration wherein we have blocks of spins pointing in one direction
and the adjacent blocks of spins, point in the opposite direction.

This patched initial configuration, is evolved over a few Monte Carlo steps. The
domain boundaries, rather than being simply one dimensional as in earlier case,
have a few connections and form network-like patterns. We now see if the spins
order along these domain boundaries.

Figure 2.8 shows a domain diagram on starting from such patched initial con-
figuration. From Figure 2.9, we see that even in this case, the S spins along the
domain boundaries do not order. The Monte Carlo evolution destroys the network
structure of domain boundaries and makes them essentially one dimensional.

The above studies, make it clear that in two dimensions we cannot get order along
the domain boundaries formed by coupled Ising Models. These results motivate us
to consider the ordering of spins along a network. These studies are described in
next chapter wherein we use a three states Potts Model to form the underlying
network and the ordering of Ising spins along such a network is studied.
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Figure 2.6: The top figure: shows the arrangement of σ spins after the system
(Equation (2.2)) is evolved over 200 Monte Carlo steps starting with random initial
configuration. The σ = 1 spins are indicated by black dots. The absence of black
dot implied the presence of σ = −1 spin. J2 = 1.2, T = 0.4, MC steps = 200.
The bottom figure: show a snapshot of S spins along the domain boundaries of σ
spins after 10000 MC steps over S spins (keeping the σ spins fixed) The up and
down spins are indicated by • and x respectively.
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Chapter 3

Coupled Potts Ising Model

3.1 The Potts Model

The Hamiltonian of the standard Potts Model [28] is given

H = −J
∑

〈i,j〉

δ(Si, Sj) (3.1)

In a q state Potts Model, the spin on the lattice can take q different values, con-
tributing non-zero energy only when the neighbouring spins are in the same state.
It is easy to see that a two state Potts Model (q = 2) is an Ising Model with shifted
energy scale.

The Potts Model has been extensively studied and many of its properties are
known [29]. The critical temperature of Potts Model in two dimensions on a square
lattice is given by [30]

Tc =
2J

kBln(1 +
√
q)

(3.2)

Note that q = 2, reproduces Tc ∼ 2.269, the critical temperature of two dimensional
Ising Model [31] (with J = kB = 1).

Figure 3.1 shows a domain formation in a 3 state and a 4 state Potts Model. It
also shows the spins lying along the domain boundaries. These spins form a network,
in contrast to simple one dimensional lines as in coupled Ising Model case. It would
be interesting to study if any ordering occurs along such a network. This is our
agenda in the rest of this chapter. We study the ordering of an Ising variable in
network geometry formed by the domain boundaries of Potts spins.

3.2 Ising Spins along the network

In this section, we study the ordering of Ising spins along the network shown
in Figure 3.1 C). We consider the Ising spins, S over a square lattice. Only those
spins which lie along the network are coupled whereas the rest are not coupled. The
uncoupled spins on an average would add up to zero and will not contribute to net
magnetization. So, it suffices to study the behaviour of coupled spins.
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Figure 3.2 shows that the S spins 1 order along the network at low temperatures.
This ferromagnetic order breaks down as the temperature is increased. The temper-
ature, at which the S spins cease to remain ordered, defines the critical temperature,
Tc of this system.

3.2.1 Calculation of Tc

The accurate estimation of Tc for such a geometry is a formidable task. Nonethe-
less, with the limited time and computational resources we have we try to get a good
estimate of the critical temperature. It is difficult to get a good estimate of Tc by just
looking at the magnetization with respect to temperature as in Figure 3.2 because,

• The spins get stuck in meta-stable domains.

• The system being finite sized, flips over long runs from positive magnetization
to negative magnetization. Averaging over all such values of magnetizations
gives us a wrong estimation of the thermodynamic average.

Therefore, we choose to look at the susceptibility χ,2 which is a measure of fluc-
tuations in the magnetization. The susceptibility is expected to be sharply peaked
at the critical temperature.

Figure 3.3 leads us to conclude that the critical temperature of Ising spins on
the network geometry is close to 0.72.

1Here onwards, for brevity we shall refer to Ising spins as S spins
2χ = 〈m2〉−〈m〉2

T
, where m is the magnetization of the system
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at a lower value represents χmod =
〈m2〉−〈|m|〉2

T

The thermodynamic value of magnetization (or any other physical property of
interest) at a given temperature is calculated by averaging over the individual magne-
tizations of all possible equilibrium configurations. The histogram of magnetization
values, above Tc is a gaussian with a mean at zero. Below Tc, for a finite size system,
we have a bi-modal distribution peaked at −m and m, if m is the thermodynam-
ics magnetization. Thus the histograms at various temperatures could offer us yet
another estimate for the critical temperature of the system.

Figure 3.4 shows that at T = 0.68, the spins are ordered. Please note that if we
allow sufficient time, so that the system undergoes multiple flips, then we would get
a bi-modal distribution as discussed in above paragraph. Similarly, it is also clear
from Figure 3.4 that T = 0.78 is a disordered state. Thus, we conjecture that the
critical temperature, Tc ∼ 0.72.

3.2.2 Behavior of specific heat

The specific heat at constant volume, Cv is an important response function which
is vital in study of any system. In this subsection, we study the behaviour of specific
heat of the Ising spins in our geometry.

Figure 3.5 shows that in this case the Cv vs T graph shows a rounded peak,
rather than a sharp peak.

In Figure 3.5, we have calculated the specific heat using the formula, Cv =
〈E2〉−〈E〉2

T 2 , where E is the energy. But we also have Cv = ∂E
∂T

. We calculate the
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Figure 3.6: The specific heat as a function of temperature, calculated in two different
ways. The blue line indicates the energy of the system at given temperature.

numerical derivative of energy with respect to temperature and compare it with our
earlier result for Cv. From Figure 3.6, we see that the two methods give very close
answers. This validates our calculation of Cv.

The specific heat behaviour seen in Figure 3.5 is quite similar to the specific heat
of an one dimensional Ising chain as a function of temperature [32]. At high tem-
peratures, the correlation length decreases and a given spin, does not see other spins
beyond a few neighbours. Thus the system essentially behaves as one dimensional
at high temperatures.

The specific heat for a linear Ising chain is given by,

Cv = NkB(β
z

2
J)2sech2(βJ

z

2
) (3.3)

so, Cv ∼ (
z

2T
)2sech2(

z

2T
) where, J = kB = 1 (3.4)

In equation (3.4), N is the total number of spins in the chain and z is the
number of nearest neighbours which is two in 1D. According to the argument given
above, the specific heat for our system should also follow a similar equation at high
temperature. The only difference being that z in this case, will be different from
2 and will represent the average number of neighbours a spin has in the network
geometry being considered.

We used the gnuplot fitting tool to fit the tail of Cv to Equation (3.4). For
T <= 2.2, the best fit is obtained when the parameter z in the Equation (3.4) is
equal to 2.8. This value is obtained within an error bar of ±0.03.
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The energy of the configuration, in which all spins are ordered along the same
direction is −1.39. (This can also be seen from Figure 3.6). Thus the average
number of nearest neighbours according to this is 2.78, which agrees well with the
fit obtained in Figure 3.7.
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Chapter 4

Ordering along a dynamic network

In the preceding chapter we have identified a network along which the Ising spins
order ferromagnetically. We also have obtained some knowledge about the critical
temperature and the behaviour of various thermodynamics quantities of the Ising
spins along this network. We now embark upon the study of ordering in the spirit
mentioned in Chapter 1.

In the first section of the chapter we present the results of our simulations. In
the next section, we build up models which resemble our system and study them
analytically.

4.1 Numerical approach

The temperature of the system is kept below Tc, estimated in the Chapter 3. We
wish to compare the ordering along the network in two different scenarios.

1. The underlying Potts network is fixed and the Ising spins are updated using
the Monte Carlo scheme for a certain number of Monte Carlo steps (which is
a measure of time). Please note that only the Ising spins across the domain
boundaries are coupled and contribute to the magnetization.

2. The same number of Monte Carlo updates as in 1. are done, but the Potts
network is regularly updated. For example, say we choose to do N Monte
Carlo updates over Ising spins in above case. In this case, if we choose to
update the Potts network a times, then each update of Potts variables will
be followed by N/a Monte Carlo updates of Ising spins. This way the total
number of Monte Carlo steps for Ising spins remains the same in two cases.

We wish to know, in which of the two cases do spins have more tendency to order.
Please note that in the second case, the Potts spins domain boundaries change after
we update the Potts spins. Therefore, the Ising spins which are coupled to each
other also need to be changed with every Potts update.
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Figure 4.1: The number of Ising spins across the domain boundary of Potts spin
decreases as the number of Monte Carlo updates over Potts spins is increased. The
X axis gives the number of Monte Carlo updates over 100.

4.1.1 The Potts spin update

The network geometry which we had studied in the previous chapter was obtained
by freezing (stopping further evolution) the dynamics of Potts spins after a few
Monte Carlo steps (Figure 3.1C)). If further Monte Carlo updates of the Potts spins
are done, the domains grow bigger in size until we are ultimately left with only
one domain. This consideration makes us aware of a difficulty in implementing the
second scheme discussed above. If the intermediary Potts updates are done following
the usual Monte Carlo rule, the length of domain boundary decreases at every step
and thus we have less number of coupled Ising spins at subsequent steps. (Figure
4.1) This would naturally lead to a lower magnetization in the dynamical network
case. However, this is not the effect we are interested in studying.

To circumvent this problem, instead of following the usual Metropolis algorithm
for acceptance, we choose to accept only those updates of the Potts spins which
leave the energy unchanged. This ensures that the domain length remains the same
and we can hope to see if any genuine differences exist in ordering between the fixed
network and dynamical network case. Figure 4.2 shows a change in network as a
result of such updates.
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Figure 4.2: The change in network when the Potts spins are updated subject to the
constraint that the energy remains fixed at each step.

4.1.2 Numerical results

We start with a network shown in Figure 3.1C. The parameters of Ising spins
are set as T = 0.58 and J = 1. In the first case we evolve the Ising spins for 1
crore Monte Carlo steps. In the second case, the Potts spins are updated 40 times
according to the method explained above and each update of Potts spins is followed
by 250000 Monte Carlo updates over Ising spins. To get a good statistical description
the complete process is repeated many number of times. The different successive
runs correspond to a different realization of random number realization and give
different values of the magnetization. The mean of these magnetization values is
calculated for the moving network case and the fixed network case and compared.
While comparing the means in two scenarios, we also need to know the error in the
mean, so that we are able to make definite conclusions.

For N independent and identically distributed random variables, X1, . . .XN each
with an expectation value µ and variance σ2, the standard deviation of sample mean,
X̄ (X̄ =

∑N
i=1Xi/N) is given by

std(X̄) =
σ√
N

(4.1)

A brief derivation of (4.1) is presented in Appendix B.1.
The mean value of magnetization (M̄) and the error in the mean (given by

standard deviation, std(M̄)) for the two cases is reported in Table 4.1.
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Table 4.1: Simulation results (T = 0.58, J = 1)

Number of Fixed network Dynamic network

configurations, N MCS=10000000 MCS=40×250000

20 M̄ = 0.9108 M̄ = 0.9166
std(M̄) = 0.0138 std(M̄) = 0.0088

40 M̄ = 0.9128 M̄ = 0.9104
std(M̄) = 0.0089 std(M̄) = 0.0085

80 M̄ = 0.91318 M̄ = 0.91719
std(M̄) = 0.00597 std(M̄) = 0.00527

The analysis of these results is presented in the next chapter. However, note
that the small difference in magnetization renders us incompetent to make a defi-
nite statement about the comparative tendency of ordering between the fixed and
dynamic network case.

At this point, it would be helpful to analytically study a model which bears
resemblance to our system. We hope that it could help us get better understanding
of our system.

4.2 Analytical work

4.2.1 Linear double Ising chain

As remarked in 3.2.2, the network (Figure 3.1 C)) is essentially one dimensional
if the spins do not see each other beyond a few sites. In that case, a spin picked at
random will not see the network joints. So, we may model the system as a linear
double Ising chain as in Figure 4.3. This double chain model can be solved using
transfer matrix method. Spins on one of the chain are denoted by σ and on the
other chain by S.We apply periodic boundary condition. The Hamiltonian of the
system is given by,

HN(σi, Si) = −J
∑

n.n

σiσj − J
∑

n.n

SiSj − J
∑

n

σiSi − µB

N
∑

i=1

σi − µB

N
∑

i=1

Si (4.2)

Putting it in a symmetrical form,

HN(σi, Si) = −J

N
∑

i=1

σiσi+1 − J

N
∑

i=1

SiSi+1 −
J

2

N
∑

i=1

(σiSi + σi+1Si+1)

−µB

2

N
∑

i=1

(σi + σi+1)−
µB

2

N
∑

i=1

(Si + Si+1) (4.3)
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Figure 4.3: A linear double Ising chain. Spins in one the chain are denoted by σ
and other by S. We use periodic boundary conditions. Any given spin is coupled to
three nearest neighbours as shown.

We use periodic boundary conditions, so σN+1 ≡ σ1 and SN+1 ≡ S1. The partition
function of the system is given by

ZN(B, T ) =
∑

σ1,S1=±1

. . .
∑

σN ,SN=±1

exp[β
N
∑

i=1

{Jσiσi+1 + JSiSi+1 +
J

2
(σiSi + σi+1Si+1)

+
1

2
µB(σi + σi+1) +

1

2
µB(Si + Si+1)}]

ZN(B, T ) =
∑

σ1,S1=±1

. . .
∑

σN ,SN=±1

〈σ1, S1 | T | σ2, S2〉〈σ2, S2 | T | σ3, S3〉 . . .

〈σN−1, SN−1 | T | σN , SN〉〈σN , SN | T | σ1, S1〉 (4.4)

where, T is called the transfer matrix. Explicitly,

T =









eβ(3J+2µB) eβµB eβµB eβJ

eβµB e−βJ e−3βJ e−βµB

eβµB e−3βJ e−βJ e−βµB

eβJ e−βµB e−βµB eβ(3J−2µB)









(4.5)

The summation over various σi and Si in equation (4.11) lead to,

ZN(B, T ) =
∑

σ1,S1=±1

〈σ1, S1 | TN | σ1, S1〉 = Tr(TN) = λN
1 + λN

2 + λN
3 + λN

4 (4.6)

where, λ1, λ2, λ3, λ4 are eigenvalues of T . Thus all thermodynamic quantities of the
linear double chain can be calculated for a specified set of parameters. Since the
linear double chain is one dimensional, we do not expect magnetization at a finite
temperature.

It would be of particular interest to look at the correlation length of the dou-
ble chain. For a translationally invariant Hamiltonian, the relation between the
correlation length ξ (in the units of lattice spacings) and eigenvalues is given by [33]

ξ−1 = ln(λ1/λ2) (4.7)
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Figure 4.4: The correlation length (in units of lattice spacings) of linear double chain
as a function of temperature.

where λ1 is the largest eigenvalue of the transfer matrix T of the problem and λ2 is
the next largest.

Figure 4.4 gives the correlation length of the double Ising chain as a function of
temperature. The comparative study of ordering in subsection 4.1.2 has been done
at T = 0.58. The correlation length of the double chain at this temperature is about
15.7 lattice units.

4.2.2 Double chain with a kink

We now study a double chain with a kink. The presence of kink destroys the
translational invariance of the problem. Without loss of generality we can assume
that the kink is present at sites 2 and 3. Refer Figure 4.5. Periodic boundary
conditions are employed as earlier. The transfer matrix elements at various sites
can be written as below

〈σ1, S1 | T1 | σ2, S2〉 = exp[β{J
2
(σ1S1+σ2S2)+Jσ1S2+

µB

2
(σ1+σ2)+

µB

2
(S1+S2)}]

(4.8)

〈σ2, S2 | T2 | σ3, S3〉 = exp[β{J(σ2σ3+S2S3)+
J

2
(σ2S2+σ3S3)+

µB

2
(σ2+σ3)+

µB

2
(S2+S3)}]
(4.9)

〈σ3, S3 | T3 | σ4, S4〉 = exp[β{J
2
(σ2S3+σ4S4)+JS3σ4+

µB

2
(σ3+σ4)+

µB

2
(S3+S4)}]

(4.10)
Comparing equation (4.9) with equation (4.3) it can be seen that the transfer

matrix T2 is same as the transfer matrix T . Hence, the partition function for the
kinked chain can be written as,

ZN(B, T ) =
∑

σ1,S1=±1

. . .
∑

σN ,SN=±1

〈σ1, S1 | T1 | σ2, S2〉〈σ2, S2 | T | σ3, S3〉

〈σ3, S3 | T3 | σ4, S4〉〈σ4, S4 | T | σ5, S5〉 . . . 〈σN , SN | T | σ1, S1〉 (4.11)
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Figure 4.5: A chain with kink at sites 1 and 2.

Thus,
ZN(B, T ) = Tr(T1TT3T

N−3) (4.12)

Equation (4.12) is not as straight-forward to solve as equation (4.6). Neverthe-
less, it can be handled as follows.

Let A = T1TT3. Using cyclic property of trace, Tr(ATN−3) = Tr(v−1
A ATN−3vA).

vA is the matrix of eigenvectors of A and the transformation v−1
A AvA diagonalizes

A. So,

Tr(ATN−3) = Tr(v−1
A AvAv

−1
A vT v

−1
T TvTv

−1
T T . . . v−1

T TvTv
−1
T vA)

= Tr(DAv
−1
A vTD

N−3
T v−1

T vA) (4.13)

DA and DT are diagonal matrices with eigenvalues of A and T respectively as
their diagonal elements. Equation (4.13) greatly reduces the computational cost
associated with calculating the partition function for the kinked chain.

4.2.3 Quenched and Annealed averaging

The network along which have been studying ordering, Figure 3.1 C) can be
thought as comprised of the linear double chain (Figure 4.3) and a kinked double
chain (Figure 4.5). Let us assume that each one of them occurs with a probability p1
and p2 respectively. (Here onwards we shall denote the quantities, associated with
double chain with subscript 1 and those associated with kinked chain with subscript
2).

The averaging over these two types of chains can be done in two ways.

Quenched averaging

The free energy is just the weighted sum of the individual free energies.

Fquenched = F1p1 + F2p2 (4.14)

= −kBT (p1lnZ1 + p2lnZ2) (4.15)

The quenched averaging corresponds to a fixed network case introduced in section
4.1
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Figure 4.6: The top two graphs show the energy versus temperature graphs for the
quenched and annealed averaging at magnetic field, B = 0.01.
The bottom two graphs show magnetization as a function of magnetic field at T =
0.6.

Annealed averaging

The annealed averaging corresponds to the dynamic network case in section
4.1. The partition function itself needs to be modified as, Zannealed = Z1p1 + Z2p2.
Therefore, the free energy is

Fannealed = −kBT ln(Z1p1 + Z2p2) (4.16)

We hope that by observing the properties such as internal energy, magnetization
in a non-zero magnetic field in the above two cases could help us gain insight into the
relative ordering between the fixed and dynamic network case in our actual system.

p1 and p2 can be related to the energy cost associated with creating kinks in the
double chain. However, here we treat them as independent parameters and let them
vary freely. 1

1subject to the constraint that p1 + p2 = 1
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Figure 4.6 shows that at a fixed temperature for a given magnetic field, the
annealed averaging gives a slightly lesser value of magnetization compared to the
quenched averaging. Thus, we might expect that in our system of interest, the
dynamic network orders less than a fixed one does. We also observe that the change
in probabilities, p1 and p2 does not affect the magnetization and energy behaviours
qualitatively. We would expect that the system with less ordering has lower energy.
However Figure 4.6 shows that annealed averaging has a lower energy. This needs
to be understood.
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Chapter 5

Discussions

It is evident from the results of simulations presented in Table 4.1 that we are
unable to make a definite statement about the comparative ordering between the
fixed and dynamic network case. Please note that this is in spite of having done
long Monte Carlo runs over a large number of configurations. The analytical work
in subsection 4.2.3 seems to suggest that a dynamical network would have a lower
ordering. However, it is far from being foolproof. In this chapter we try to get some
insights into the nature of our difficulty and propose methods to overcome them.

5.1 Numerical work

We start with the analysis of results presented in Table 4.1. To understand the
relatively large value of standard deviation, we look at the trajectory the magneti-
zation of a fixed network follows with time. Figure 5.1 shows that even for a static
network, different realization of random numbers gives a widely different magnetiza-
tion trajectory. This basically corresponds to long equilibriation time. It indicates
that within the given time the system has not sampled its entire phase space.

The reason for the long equilibriation time can be attributed to the network
geometry. The different segments of network get stuck in domains. Figure 5.2
shows snapshots of network during a run at two different time points. The domains
are often connected by just one spin. Thus the energy cost associated with formation
of such domains is less. Most of the times, the spins on the domain boundary are
satisfied, in the sense that majority of its neighbours point in the same direction as
itself and is reluctant to flip. This leads to long life-time of the domains.

Nevertheless, if run for sufficiently long time all points in the phase space would
be sampled and we could get a accurate estimate. A long run is equivalent to many
short runs. From equation (4.1) we know that the error decreases as 1/

√
n. Thus,

from Table 4.1 to get an error of 0.001 we need to make about 2800 runs. With
the computational resources at our disposal, it takes around 15 days for 80 runs.
So, it will take 525 days for 2800 runs. Clearly the task is beyond the scope of this
project. Nonetheless, in principle it can always be done, perhaps with a help of
faster computer.
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Figure 5.1: The runs are performed with same initial condition at T = 0.58. The
different realizations of random number generator give different magnetization tra-
jectories.

5.2 Analytical Work

The approach of quenched and annealed averaging introduced in subsection ??

can be extended further. For instance, we can take into account that our system
also consists of chains with two kinks, three kinks and so on. Hence, there is scope
to build up the level of complexity and gain better understanding of the underlying
physics.
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Figure 5.2: The network configurations at two time points. The up and down spins
are indicated by • and △ respectively
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Appendix A

Long proofs

A.1 Derivation of Mean Field equations

The mean field Hamiltonian is defined in terms of self consistent field as,

HMF = −hσA

∑

A

σ − hSA

∑

A

S − hσB

∑

B

σ − hSB

∑

B

S (A.1)

hσA
,hSA

,hσB
,hSB

are the self consistent field to be determined from the minimization
of the variational free energy.

The variational free energy as explained in [27] is given by,

Fvar = 〈H〉 − 〈HMF 〉 − kBT lnZMF (A.2)

〈H〉 = −J1

∑

〈i,j〉

〈σ〉A〈σ〉B − J2

2

∑

〈i,j〉

〈S〉A〈S〉B +
J2

2

∑

〈i,j〉

〈σ〉A〈S〉A〈σ〉B〈S〉B

〈HMF 〉 = −hσA
〈σ〉A

N

2
− hSA

〈S〉A
N

2
− hσB

〈σ〉B
N

2
− hSB

〈S〉B
N

2

Putting this in equation (A.2) and using the condition, dFvar

dhσA

= 0, we get,

hσA
= 4J1〈σ〉B − 2J2〈S〉A〈S〉B〈σ〉B (A.3)

We have used here 〈σ〉A = 1
N/2

kBT
dlnZMF

dhσA

1

Following similar lines, the other three self consistent fields turn out to be,

hσB
= 4J1〈σ〉A − 2J2〈S〉A〈S〉B〈σ〉A (A.4a)

hSA
= 2J2〈S〉B − 2J2〈σ〉A〈σ〉B〈S〉B (A.4b)

hSB
= 2J2〈S〉A − 2J2〈σ〉A〈σ〉B〈S〉A (A.4c)

(A.4d)

1We consider that total system has size N , so each sublattice will have N/2 spins.
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Now,

〈σ〉A =
∑

σiA
e−βHMF

∑
e−βHMF

=
∑

σiA
e
βhσA

∑
σiA

∑
e
βhσA

∑
σiA

= tanh(βhσA
)

Similarly, we have, 〈σ〉B = tanh(βhσB
) and 〈S〉A,B = tanh(βhSA,B

). Inserting the
expression for mean fields (equation (A.4)), we recover the equations (2.3) studied
in section 2.2
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Appendix B

Short proofs

B.1 Proof of the theorem (4.1) invoked in subsec. 4.1.2

To prove equation (4.1), we use the fact that the average or expectation value is a
linear function. So,

E(aX + b) = aE(X) + b (B.1)

The proof of equation (B.1) is quite straight forward and for instance can be
found in [34].

Now,

Var[aX + b] = E[(aX + b)2]− [E(aX + b)]2 (B.2)

= E(a2X2 + 2aXb+ b2)− [aE(X) + b]2

= a2(E(X2)− E(X)2) = a2Var(X) (B.3)

For N independent and identically distributed random variables, X1, X2, . . . , XN

Var(X̄) = Var(
N
∑

i=1

Xi

N
)

=
1

N2

∑

Var(Xi) =
1

N2
Nσ2 =

σ2

N
(B.4)

Thus,

std(X̄) =
σ√
N

(B.5)

Hence, proved.
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