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Abstract

A lot of research has been done on Covering Arrays in the past two decades and is still

an active area of research. The work in constructions, applications and generalizations

have given new insights into this field. It has led to wider knowledge of the covering

array in particular and the usage of concepts from various mathematical fields like

Algebra, Set theory etc. in this field, in general.

Among the various ways to help humanity, the main contribution of this field has

been to be able to efficiently test systems and networks using the concepts from this

field. In return, this gave us newer ways to understand the deeper concepts of this

field itself. The construction of new covering array either from the existing ones or

completely new ones has led to widening of scope of this field. We can, now, construct

covering arrays much near to our needs.

Two vectors x and y in Zn
k are said to be qualitatively independent if for all ordered

pairs (u, v) ∈ Zk × Zk, there is a position j in the vectors such that (xj, yj) = (u, v).

Any pair of rows in a covering array are qualitatively independent. If this array has

been defined on a graph then only those pairs of rows are qualitatively independent

which correspond to adjacent vertices. A covering array is said to be optimal if it has

the minimum number of possible columns for a given number of rows.

The main focus of this thesis is to study the generalization of simple covering

arrays to the one defined on graphs. The addition of graph structure enables to

study the covering arrays by making good use of the principles of graph theory.

The qualitative independence graphs are defined in this thesis as they are closely

vi



vii

related to covering arrays. Good bounds can be obtained on the size of an optimal

covering array by using several results in set theory like Sperner’s theorem, Erdös-

Ko-Rado theorem etc. The core of a binary qualitative independence graphs can

be generalized to uniform qualitative independence graphs. Cliques in a uniform

qualitative independence graphs are closely related to balanced covering arrays. Using

these graphs, bounds on the size of a balanced covering array can be obtained. Also,

some aspects of the basic graph theory given in the thesis will aid our study.
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Chapter 1

Covering Arrays: An Introduction

1.1 Introduction

Covering arrays, which are also known as qualitatively independent families and

surjective arrays, are a generalization of the well-known and well-studied orthogonal

arrays. They are mathematically rich design with many applications.

Definition 1.1.1. Let n, r, k, t be positive integers with t ≤ r. A covering array,

t−CA(n, r, k), with strength t and alphabet size k is an r×n array with entries from

{0, 1, ..., k − 1} and the property that any t× n subarray has all kt possible t-tuples

occurring at least once.

Example: An example of a covering array is a 2− CA(11, 5, 3) is

C =



0 0 2 1 1 1 0 1 2 2 2

0 1 0 2 1 1 2 0 1 2 2

0 1 1 0 2 1 2 2 0 1 2

0 1 1 1 0 2 2 2 2 0 1

0 2 1 1 1 0 1 2 2 2 0
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Definition 1.1.2. The number of columns, n, in a t − CA(n, r, k) is the size of

the covering array. The smallest possible size of a covering array is denoted by

t− CAN(r, k), i.e.,

t− CAN(r, k) = min{n ∈ N : ∃ t− CA(n, r, k)}.

Definition 1.1.3. A covering array t − CA(n, r, k) with n = t − CAN(r, k) is said

to be optimal.

Definition 1.1.4. The maximum number of rows possible in a covering array with

n columns on a given alphabet is denoted by t−N(n, k), that is

t−N(n, k) = max{r ∈ N : ∃ t− CA(n, r, k)}.

Throughout this study, we consider only strength-2 covering arrays. So, the t will

be dropped from the notation, so that CA(n, r, k), CAN(r, k) and N(n, k) will be

used to denote 2− CA(n, r, k), 2− CAN(r, k) and 2−N(n, k) respectively.

Definition 1.1.5. A covering array CA(n, r, k) with the property that each letter

occurs exactly n/k times in every row is a balanced covering array.

Definition 1.1.6. Let k, n be positive integers. Two vectors u, v ∈ Zn
k are qualitatively

independent if for each one of the possible k2 ordered pairs (a, b) ∈ Zk × Zk, there

is an index i so that (ui, vi) = (a, b). A set of vectors is qualitatively independent if

any two distinct vectors in the set are qualitatively independent.

The set of rows in a covering array CA(n, r, k) is a set of r pairwise qualitatively

independent vectors from Zn
k .
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Amongst the many applications of covering arrays, testing systems like software,

networks etc. is an important one. If we assume that the system has r parameters to

be tested and that each parameter is capable of taking k different values, then each

row of the associated covering array can be thought of as representing a parameter

(which means that the covering array needs to have r rows). The entries of the

covering array which come from Zk represent the different values that the parameter

can take. If each column of the covering array represents the various values of the

parameters in a test run for the system then all possible combinations of the values

of any two parameters can be checked (as the test suite covered by all the columns in

covering array will, for every pair of parameters, test all k2 possible values of those

two parameters). This implies that any two parameters can be tested completely

against one another.

1.2 Construction of Covering Arrays

It is a subject of constant research to find newer construction of covering arrays e.g.

construction of covering arrays with the fewest possible columns. Finding CAN(r, k),

for a given r and k, is difficult in general. A construction for covering arrays gives an

upper bound on CAN(r, k). We, now, see some of these constructions.
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1.2.1 Finite Field Construction

Lemma 1.2.1. [6] Let k be a prime power, then CAN(k + 1, k) = k2.

Proof. Let C be an array with (k + 1) rows and k2 columns. We index the rows and

columns of C starting from 0. Let GF [k] be a finite field of order k with an ordering

on its elements as {f0, f1, f2, ...., fk−1} where f0 = 0 and f1 = 1.

Let the first row of C be each element in the field repeated k times in the fixed

order so that the entry in column x of the first row is fl where l = ⌊x/k⌋. Now, for

i = {0, 1, 2, ..., k−1}, we set the entry in row i+1 and column x of the covering array

to be fifl + fj where l = ⌊x/k⌋ and j ≡ x mod k.

Suppose the 1st and the nth rows are not qualitatively independent. Then for

some distinct columns x and y, a 2-tuple/pair is repeated between them (since there

are only k2 columns, a repetition of any pair would hinder the covering of all possible

pairs (a, b) such that a, b ∈ {f0, f1, ..., fk−1}). In particular,

(C(1,x), C(n,x)) = (C(1,y), C(n,y)).

Thus,

f⌊x/k⌋ = f⌊y/k⌋ (1.2.1)

and

fn−1f⌊x/k⌋ + fj1 = fn−1f⌊y/k⌋ + fj2 (1.2.2)

where j1 = x mod k and j2 = y mod k. As GF [k] is a field, from Equation 1.2.1, we

have

⌊x/k⌋ = ⌊y/k⌋ (1.2.3)
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and from Equation 1.2.2, we have

fj1 = fj2

or,

j1 = j2

which means that

x = y mod k (1.2.4)

But, Equations 1.2.3 and 1.2.4 can’t be true simultaneously if x ̸= y. Hence, we

arrive at a contradiction and the hypothesis that row 1 and row n are not qualita-

tively independent is proved incorrect. This means that the first row is qualitatively

independent to all other rows.

Next, assume that any two distinct rows, say, row r and s (where r, s ∈ {1, 2, ..., k})

are not qualitatively independent. Then for some distinct columns x and y, a pair is

repeated between them. In particular,

(C(r,x), C(s,x)) = (C(r,y), C(s,y)). (1.2.5)

Thus,

fr−1f⌊x/k⌋ + fj3 = fr−1f⌊y/k⌋ + fj4 (1.2.6)

and

fs−1f⌊x/k⌋ + fj3 = fs−1f⌊y/k⌋ + fj4 (1.2.7)

where j3 ≡ x mod k and j4 ≡ y mod k. By subtracting Equation 1.2.7 from 1.2.6, we

get

f⌊x/k⌋(fr−1 − fs−1) = f⌊y/k⌋(fr−1 − fs−1)
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or,

f⌊x/k⌋ = f⌊y/k⌋

or,

⌊x/k⌋ = ⌊y/k⌋. (1.2.8)

From Equations 1.2.7 and 1.2.8, we get

fj3 = fj4

or,

j3 = j4

or,

x = y mod k (1.2.9)

But, Equations 1.2.8 and 1.2.9 can’t be true simultaneously if x ̸= y. Hence, we

arrive at a contradiction and the hypothesis that row r and row s are not qualita-

tively independent is proved incorrect. This means that the any row is qualitatively

independent to all other rows. In this way, we have constructed a CA(k2, k + 1, k)

which proves that CAN(k + 1, k) = k2 for k a prime power.

Example: The following array is an example of CA(16, 5, 4) from the the finite

field construction on the finite field with four elements, namely {f0 = 0, f1 = 1, f2 =

2, f3 = 3}.
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0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2

0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1


.

Definition 1.2.1. In a covering array, two columns are disjoint if they have different

entries for each row.

A column of all 0’s is disjoint to a column of all 1’s. A covering array with m

disjoint columns has a set of at least m columns that are pairwise disjoint.

Corollary 1.2.2. [6] For any prime power k, there exists a covering array CA(k2, k, k)

with k disjoint columns.

Proof. Let C be the covering array CA(k2, k+1, k) built by the finite field construc-

tion. We construct a new covering array C1 by removing the first row of C. From the

finite field construction, we know that, for columns j = {0, 1, 2, ..., k − 1}, the entry

on row i of C1 is fi0 + fj = fj. Thus the first k columns of C1 are disjoint.

Example: Based on the above result, the following array CA(16, 4, 4) can be

constructed with its first four columns disjoint.
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2

0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1

 .
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1.2.2 Block-size Recursive Construction

Block-size Recursive Construction uses two covering arrays with the same alphabet.

Theorem 1.2.3. ([8],[10]) If there exists a CA(m, s, k) and a CA(n, r, k), then there

exists a CA(m+ n, sr, k).

Proof. Let A = CA(n, r, k) and B = CA(m, s, k) be two covering arrays with the

same alphabet. Let the rows of A and B be denoted by ai and bj respectively for

i = {0, 1, 2, ..., r− 1} and j = {0, 1, 2, ..., s− 1}. We can construct a CA(n+m, rs, k)

by the following method.

The first s rows of the CA(n + m, rs, k) are formed by concatenating row a0 of

A with row bj of B for j = {0, 1, ..., s− 1}. The next s rows of CA(n+m, rs, k) are

formed by concatenating row a1 with row bj of B for j = {0, 1, ..., s − 1} and so on.

Hence, in general, row l of CA(n+m, rs, k) is formed by concatenating row ai of A,

where i = ⌊l/s⌋ with row bj of B, where j ≡ l mod s.

Clearly, any two distinct rows of this array CA(m+ n, rs, k) are of the form axbu

and aybv. If x = y, then by construction we have u ̸= v and hence all the possible

pairs in the k-alphabet occur in the last m columns between bu and bv. But, if x ̸= y

then all possible pairs in the k-alphabet occur in the first n columns itself between

ax and ay. Thus, CA(n+m, rs, k) constructed in this way is indeed a covering array.
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A =

n columns︷ ︸︸ ︷

a0

a1
...

ar−1


, B =

m columns︷ ︸︸ ︷

b0

b1
...

bs−1


and CA(n+m, rs, k) =

n+m columns︷ ︸︸ ︷

a0 b0

a0 b1
...

...

a0 bs−1

a1 b0

a1 b1
...

...

a1 bs−1

...
...

ar−1 b0

ar−1 b1
...

...

ar−1 bs−1



.

Let C be a CA(n+m, sr, k) built by the block-size recursive construction. All the

distinct k pairs (a, a) ∈ Zk×Zk are covered between any two rows of C. It is because

each pair of rows has either the first n columns the same or the first n columns are a

pair of distinct rows from a covering array. As a result, any pair (a, a) ∈ Zk × Zk is

covered either way. Similarly, all the distinct k pairs (a, a) ∈ Zk × Zk also occur in

the last m columns for any two rows of C.
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From the above discussion, we conclude that every pair (a, a) ∈ Zk×Zk is covered

at least twice in the covering array CA(n+m, sr, k). However, when constructing a

covering array, it is unnecessary to cover these pairs twice. So, if we could remove

some of these pairs then we would improve the block-size recursive construction.

Lemma 1.2.4. ([8],[10]) For a prime power k, there exists a CA(2k2−k, k(k+1), k).

Equivalently, for any prime power k and any integer r ≤ k(k + 1),

CAN(r, k) ≤ 2k2 − k.

Proof. For a prime power k, if the block-size recursive construction is used with the

covering array CA(k2, k+1, k) from the finite field construction and the CA(k2, k, k)

with k disjoint columns, all the distinct k pairs (a, a) ∈ Zk × Zk are covered in the

first k2 columns of the thus formed final covering array CA(2k2, k(k + 1), k). So, the

first k columns of CA(k2, k, k) need not to be included in the final covering array.

Hence, after removing the columns (k2 +1) through (k2 + k) from the covering array

CA(2k2, k(k + 1), k), we get CA(2k2 − k, k(k + 1), k).

Lemma 1.2.5. For k a prime power and any positive integer i, there exists a covering

array CA(k2 + i(k2 − k), ki(k + 1), k). Thus,

CAN(ki(k + 1), k) ≤ k2 + i(k2 − k).

Proof. We use the principle of mathematical induction to prove this result.

For i = 1, CA(k2 + i(k2 − k), ki(k + 1), k) = CA(2k2 − k, k(k + 1), k).

From Lemma 1.2.4, we conclude that the result holds for i = 1.
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Now, we assume that the result holds for i = n, i.e., there exists a CA(k2+n(k2−

k), kn(k+1), k). If the block-size recursive construction is used with the covering array

CA(k2 +n(k2 − k), kn(k+1), k) and the CA(k2, k, k) with k disjoint columns, all the

distinct k pairs (a, a) ∈ Zk × Zk are covered in the first k2 + n(k2 − k) columns, so

the first k columns of CA(k2, k, k) need not to be included in the final covering array.

Hence, after removing the columns (k2+n(k2−k)+1) through (k2+n(k2−k)+k), we

get a CA(k2+(n+1)(k2−k), kn+1(k+1), k). So, we conclude that the result holds for

i = n+1 whenever it holds for i = n. From the principle of mathematical induction,

we conclude that there exists a covering array CA(k2+ i(k2− k), ki(k+1), k) for any

positive integer i when k is a prime power.

The block-size recursive construction method applied to the covering array CA(2k2−

k, k(k + 1), k) and the covering array CA(k2, k, k) with k disjoint columns produces

a covering array CA(3k2 − 2k, k2(k + 1), k). If we apply the block-size recursive

construction to the new covering array with the array CA(k2, k, k) with k disjoint

columns for i times, we get a CA(k2 + i(k2 − k), ki(k + 1), k). In this covering array,

each letter occurs exactly k + i(k − 1) times in each row and is hence a balanced

covering array.

1.3 Conclusion

In this chapter, we learned that any two rows of a covering array are qualitatively

independent vectors and the number of columns of a covering array can’t be reduced
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arbitrarily, rather it can attain a minimum value denoted by CAN(r, k) for a covering

array with parameters n, r and k.

We also learned that covering arrays have industrial applications to software and

circuit testing, drying screening and data compression.

We studied two methods for constructing covering arrays such as finite field

construction and block-size recursive construction. Although covering designs con-

structed here are usually very small yet they are not always optimal. Therefore,

establishing a more efficient approach still deserves further research.



Chapter 2

Extremal Set Theory

One of the central problems in extremal set theory is the problem of finding a system

of sets with the largest cardinality given some restriction on the sets of the system.

Here, we discuss two such problems. One of them is to find the maximum cardinality

of a set system, over a finite ground set, satisfying the constraint that any two distinct

sets in the system are incomparable and the other is to find the set system with the

largest cardinality satisfying the constraint that any two distinct sets in the system

are intersecting.

2.1 Set Systems

Let X = {1, 2, ..., n} be an n-set for some positive integer n. The power set of X

is the collection of all subsets of X and is denoted by P(X). A set system on an

n-set is a collection of sets from P(X). For a positive integer k ≤ n, a k-set is a set

A ∈ P(X) with |A| = k. The collection of all k-sets of an n-set is denoted by
(
[n]
k

)
.

A k-uniform set system on an n-set is a collection of sets from
(
[n]
k

)
. It is possible

to arrange P(X) in a poset ordered by inclusion. In this poset, the sets
(
[n]
k

)
are the

level sets for every positive integer k ≤ n.

13
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2.2 Set Partitions

A set partition of an n-set is a set of disjoint non-empty subsets (called classes) of

the n-set whose union is the n-set. A partition P is called a k-partition if it contains

k classes i.e. P = {P1, P2, ..., Pk}. For positive integers k and n, let Pn
k denote the

set of all k-partitions of an n-set. The values S(n, k) = |Pn
k | are called the Stirling

number of the second type.

A partition P ∈ Pn
k is uniform if every class Pi ∈ P has the same cardinality i.e.

|Pi| = n
k
∀ Pi ∈ P . If n = ck, we denote the set of all uniform k-partition in Pn

k by

Un
k .

U(n, k) = |Un
k | =

1

k!

(
n

c

)(
n− c

c

)
· · ·

(
n− (k − 1)c

c

)
. (2.2.1)

If k does not divide n, it is not possible for a partition in Pn
k to be uniform. If

n = ck + r where 0 ≤ r < k, a partition P ∈ Pn
k is almost-uniform if every class

of P has cardinality c or c + 1. In an almost-uniform partition, there are r classes

of cardinality (c + 1) and (k − r) classes of cardinality c. We denote the set of all

almost-uniform partition in Pn
k by AUn

k .

AU(n, k) =
1

r!(k − r)!

(
n

c

)(
n− c

c

)
· · ·

(
n− (k − r − 1)c

c

)
(
n− (k − r)c

c+ 1

)(
n− (k − r)c− (c+ 1)

c+ 1

)
· · ·

(
c+ 1

c+ 1

)
. (2.2.2)

If k divides n, then AUn
k = Un

k and U(n, k) = AU(n, k).

2.3 Sperner Theory

An important class of problems in extremal set theory deals with the maximum

cardinality of a set system with some restriction on the sets in the system. The
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restriction that we consider here is that any two distinct sets from the system must

be incomparable. Two subsets A and B of an n-set are comparable if A ⊆ B or

B ⊆ A. If A and B are not comparable then they are incomparable.

Definition 2.3.1. Sperner Set System: Let n be a positive integer. A Sperner

set system A on an n-set is a set system on an n-set with the property that any two

distinct sets in A are incomparable.

Definition 2.3.2. Matching: A matching in a graph is a set of edges such that no

two of them share a vertex in common.

The size of a matching is the number of edges in it. A vertex contained in an edge

of M is said to be covered by M .

Definition 2.3.3. Perfect matching or 1-factor: A matching that covers every

vertex of X is called a perfect matching or a 1-factor.

Definition 2.3.4. Maximum matching: A maximum matching is a matching with

the maximum possible number of edges.

Definition 2.3.5. Partial Order: A relation ” ≤ ” is a partial order on a set S if

it has:

1. Reflexivity: a ≤ a ∀ a ∈ S.

2. Antisymmetry: a ≤ b and b ≤ a implies a = b.

3. Transitivity: a ≤ b and b ≤ c implies a ≤ c.

Definition 2.3.6. Partially Ordered Set: A partially ordered set (or poset) is a

set taken together with a partial order on it. Formally, a partially ordered set is
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defined as an ordered pair P = (X,≤), where X is called the ground set of P and ≤

is the partial order of P .

Definition 2.3.7. A set A is a subset of a set B if A is contained inside B. The

relationship of one set being a subset of another is called inclusion.

For any set S, the inclusion relation ⊆ is a partial order on the set P(S) of all

subsets of S. (P(S) refers to the power set of S)

Definition 2.3.8. Totally Ordered Set: For a, b distinct elements of a partially

ordered set P , if a ≤ b or b ≤ a, then a and b are comparable. Otherwise they are

incomparable. If every two elements of a poset are comparable, the poset is called

a totally ordered set or chain (e.g. the natural numbers under order). A poset in

which every two distinct elements are incomparable is called an antichain.

Definition 2.3.9. Chain: Let P be a finite partially ordered set. A chain in P is a

set of pairwise comparable elements w.r.t the partial order (i.e. a chain is a totally

ordered subset). In other words, a chain in a poset is a collection of sets in the poset

with the property that any two distinct sets in the chain are ordered in the poset.

Definition 2.3.10. A graph X is called bipartite if its vertex set can be partitioned

into two parts V1 and V2 such that every edge has one end in V1 and one in V2.

Let the neighborhood of a set of vertices S, denoted by N(S), is the union of the

neighborhoods of the vertices of S.

Theorem 2.3.1. [3] Hall’s Theorem: Let G be a bipartite graph with partite sets

X and Y , not necessarily equally sized. X can be matched into Y if and only if

| N(S) |≥| S | for all subsets S of X.
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In other words, a bipartite graph with parts X and Y admits a matching that

covers every vertex of X if and only if for every set S ⊆ X, the number of vertices of

Y with a neighbor in S is at least |S|.

Theorem 2.3.2. [9] Sperner’s Theorem: Let n be a positive integer. If A is a

Sperner set system on an n-set, then |A| ≤
(

n
⌊n
2
⌋

)
.

Proof. We construct a bipartite graph as follows. Let r be a positive integer with

r < ⌊n
2
⌋. For every r-set of the n-set, there is a corresponding vertex in the first part

of the graph and for each (r + 1)-set in the n-set, there is a corresponding vertex in

the second part of the graph. Two vertices are adjacent in this bipartite graph if and

only if one of the corresponding sets is contained in the other set. To construct an

(r + 1)-set adjacent to an r-set, one element (other than the r elements of the r-set)

should be added to the r-set. Since this can be done in (n − r) ways, we conclude

that (n − r) number of (r + 1)-sets exist which are adjacent to the initial r-set and

hence all the vertices in the first part of the graph have degree (n− r). To construct

an r-set adjacent to an (r+1)-set, one of the (r+1) elements of the (r+1)-set should

be removed. Since this can be done by removing any one of the (r + 1) elements, we

conclude that (r+1) number of r-sets exist which are adjacent to the initial (r+1)-set

and hence all the vertices in the second part have degree (r + 1). Let S be a set of

vertices from the first part of the graph and let N(S) be the set of vertices in the

second part of the graph adjacent to any vertex in S. An edge through a vertex in S

always ends up on a vertex in N(S). So, the number of edges through all the vertices

in S is always smaller than or equal to the number of edges through the vertices of

N(S). Hence,

|S|(n− r) ≤ |N(S)|(r + 1). (2.3.1)
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Since r < ⌊n
2
⌋, we have

(
n
r

)
≤

(
n

r+1

)
which implies that

(r + 1) ≤ (n− r). (2.3.2)

From the above two equations, we infer that

| S | ≤ | N(S) | . (2.3.3)

Thus, by Hall’s Theorem, there is a one-to-one matching from
(
[n]
r

)
to

(
[n]
r+1

)
for r <

⌊n
2
⌋. Similarly, for any positive integer r with r > ⌊n

2
⌋, there is a one-to-one matching

from
(
[n]
r

)
to

(
[n]
r−1

)
. Two sets are in the same chain if they are matched in one of

these matchings. Then these matching define
(

n
⌊n
2
⌋

)
disjoint chains which partition

the poset, since each chain has exactly one set in the set
(

n
⌊n
2
⌋

)
. Thus, the poset

formed by P({1, 2, ..., n}) ordered by inclusion can be decomposed into
(

n
⌊n
2
⌋

)
disjoint

chains. Any Sperner system can intersect such a chain in at most one set, and thus,

has cardinality no more than
(

n
⌊n
2
⌋

)
.

Moreover, | A |=
(

n
⌊n
2
⌋

)
if and only if A =

(
[n]
k

)
where k = ⌊n

2
⌋ or k = ⌈n

2
⌉. Based

on the above theorem, we have the following matchings for the two different cases.

For n even:

1. Case 1: r < ⌊n/2⌋. Let r = 2m which implies that r ≤ m− 1. From the above

result, we have the following matching (not a one-to-one matching).(
[n]

1

)
−→

(
[n]

2

)
−→ ......... −→

(
[n]

m− 1

)
−→

(
[n]

m

)
.

2. Case 2: r > ⌊n/2⌋. Let r = 2m which implies that r ≥ m+ 1. From the above

result, we have the following matching (not a one-to-one matching).(
[n]

n

)
−→

(
[n]

n− 1

)
−→ ......... −→

(
[n]

m+ 1

)
−→

(
[n]

m

)
.



19

For n odd:

1. Case 1: r < ⌊n/2⌋. Let r = 2m + 1 which implies that r ≤ m − 1. From the

above result, we have the following matching (not a one-to-one matching).(
[n]

1

)
−→

(
[n]

2

)
−→ ......... −→

(
[n]

m− 1

)
−→

(
[n]

m

)
.

2. Case 2: r > ⌊n/2⌋. Let r = 2m + 1 which implies that r ≥ m + 1. From the

above result, we have the following matching (not a one-to-one matching).(
[n]

n

)
−→

(
[n]

n− 1

)
−→ ......... −→

(
[n]

m+ 1

)
−→

(
[n]

m

)
.

Illustrative example for the above result: Based on the above theorem, be-

low are 10 disjoint chains for n = 5.

1. {3} → {3, 5} → {3, 4, 5} → {2, 3, 4, 5} → {1, 2, 3, 4, 5}

2. {1} → {1, 2} → {1, 2, 4} → {1, 2, 4, 5}

3. {4} → {3, 4} → {1, 3, 4} → {1, 3, 4, 5}

4. {5} → {1, 5} → {1, 2, 5} → {1, 2, 3, 5}

5. {2} → {2, 4} → {2, 3, 4} → {1, 2, 3, 4}

6. {1, 3} → {1, 3, 5}

7. {2, 5} → {2, 3, 5}

8. {1, 4} → {1, 4, 5}

9. {2, 3} → {1, 2, 3}

10. {4, 5} → {2, 4, 5}.

Hence, two of the Sperner set systems are A={{3, 4, 5}, {1, 2, 4}, {1, 3, 4}, {1, 2, 5},

{2, 3, 4}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {1, 2, 3}, {2, 4, 5}} and B={{3, 5}, {1, 2}, {3, 4},

{1, 5}, {2, 4}, {1, 3}, {2, 5}, {1, 4}, {2, 3}, {4, 5}}.
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2.4 Intersecting Set Systems

For positive integers t, k, n, let I(t, k, n) denote the collection of all set systems A

on an n-set with the following properties: ∀ A ∈ A, |A| ≤ k; ∀ A,B ∈ A, A *

B and |A ∩B| ≥ t.

The set systems in I(t, k, n) are known as t-intersecting set systems and if

t = 1, these are also called intersecting set systems. Since A * B for any distinct

sets A,B ∈ I(t, k, n), all the set systems in I(t, k, n) are Sperner set systems. If

2k − t ≥ n, then any two k-sets from the n-set have at least t elements in common.

Definition 2.4.1. For positive integers n, k, t, a k-Uniform t-Intersecting Set

System is a k-uniform set system, A, on an n-set with the property that ∀ A,B ∈ A,

we have A * B and ∀ A,B ∈ A, we have |A ∩B| ≥ t.

Lemma 2.4.1. [1] If 2k ≤ n, then for any A ∈ I(t, k, n) there exists a k-uniform

t-intersecting set system A′ ∈ I(t, k, n) with |A| ≤ |A′|.

Proof. Let A ∈ I(t, k, n). We construct a set system A′
as follows: Let A ∈ A be such

that |A| < k ≤ ⌊n
2
⌋. Now, since A is a subset of an n-set, it can be matched to the

⌊n/2⌋-set of the chain of the poset formed by P({1, 2, ..., n}) (ordered by inclusion)

which it belongs to. Let this unique ⌊n/2⌋-set be A1.

Since any B ∈ A distinct from A is such that A * B and B * A, so A and B

never belong to the same chain of the poset formed by P({1, 2, ..., n}) (ordered by

inclusion) and thus,

A1 * B and B * A1.
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Further,

|A1 ∩B| ≥ |A ∩B| ≥ t.

In this way, we can replace all the A ∈ A (for which |A| < k = ⌊n/2⌋) with A1 (for

which |A1| = k = ⌊n/2⌋) to get A′ ∈ I(t, k, n) which is a k-uniform t-intersecting set

system. From the construction itself, it is clear that |A| ≤ |A′|.

In other words, for n sufficiently large, if there exists a t-intersecting set system

on an n-set, then there exists a k-uniform t-intersecting set system that has at least

the same cardinality. In particular, it is possible to replace each set of size less than

k in a t-intersecting set system on an n-set by a set of size k, which is t-intersecting

with all the sets in the system.

Definition 2.4.2. For positive integers n, k, t with t ≤ k ≤ n, a set system on an

n-set is a k-uniform trivially t-intersecting set system if it is equal, up to a

permutation on {1, 2, ..., t}, to

A = {A ∈
(
[n]

k

)
: {1, 2, ..., t} ⊆ A}.

The cardinality of a k-uniform trivially t-intersecting set system is
(
n−t
k−t

)
. If t = 1

then a k-uniform trivially t-intersecting set system is simply called a k-uniform

trivially intersecting set system.

2.5 Qualitatively Independent Subsets

Definition 2.5.1. Two subsets A and B of an n-set are qualitatively independent

subsets if

A ∩B ̸= ϕ, A ∩B ̸= ϕ, A ∩B ̸= ϕ, A ∩B ̸= ϕ
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A collection of subsets of an n-set are said to be qualitatively independent if each

pair of members of it are qualitatively independent of each other.

The definition of qualitatively independent sets is equivalent to the definition of

qualitatively independent binary vectors. To see this, let A and B be qualitatively in-

dependent subsets of an n-set. We define the vector corresponding to A to be a ∈ Zn
2 ,

with a = (a1, a2, ..., an), ak = 1 if k ∈ A and ak = 0 otherwise. Similarly, let b ∈ Zn
2 be

the vector corresponding to the set B. Since A and B are qualitatively independent,

A ∩ B ̸= ϕ. So there exists some i ∈ A ∩ B for which (ai, bi) = (1, 1). Further, since

A ∩ B ̸= ϕ, there exists some j ∈ A ∩ B for which (aj, bj) = (1, 0). Similarly, for

k ∈ A ∩ B we get (ak, bk) = (0, 1) and for l ∈ A ∩ B we get (al, bl) = (0, 0). Thus,

vectors a and b are qualitatively independent.

Conversely, if a, b ∈ Zn
2 are qualitatively independent, then the sets A and B,

defined by i ∈ A if and only if ai = 1 and j ∈ B if and only if bj = 1, are also

qualitatively independent.

2.6 The Erdős-Ko-Rado Theorem

The Erdős-Ko-Rado Theorem proves that the set system in I(t, k, n) with the largest

cardinality is a k-uniform trivially t-intersecting set system provided that n is suffi-

ciently large.

Theorem 2.6.1. [1] Erdős-Ko-Rado Theorem: Let k and t be positive integers,

with 0 < t < k. There exists a function f(t, k) such that if n is a positive integer with

n > f(t, k), then for any A ∈ I(t, k, n)

|A| ≤
(
n− t

k − t

)
.
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Moreover, equality holds if and only if A is a k-uniform trivially t-intersecting set

system.

2.6.1 Application of the Erdős-Ko-Rado Theorem

Theorem 2.6.2. ([4],[5]) If A = {A1, A2, ..., Ak} is a qualitatively independent set

system of an n-set, then

|A| ≤
(

n− 1

⌊n/2⌋ − 1

)
.

Further, this bound is attained by a ⌊n/2⌋-uniform trivially 1-intersecting set system.

Proof. The proof can be divided into following two cases:

1. Let n be even: We define a set system A∗ to be consisting of all the sets from

A along with their complements, i.e.,

A∗ = {Ai, Ai : Ai ∈ A}.

Clearly, the set system A∗ is a Sperner set system which implies that |A∗| ≤(
n

n/2

)
. Hence,

|A| ≤ 1

2

(
n

n/2

)
=

(
n− 1
n
2
− 1

)
.

Clearly, this bound is attained by the set system

A = {A ∈
(
[n]

n/2

)
: 1 ∈ A}.

2. Let n be odd: If Ai ∈ A and |Ai| ≥ n/2 then replace Ai with Ai. This does

not affect the pairwise qualitative independence of A. For this reason, we can

assume that each Ai ∈ A has |Ai| ≤ ⌊n/2⌋.
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By the definition of qualitative independence, A is a 1-intersecting set system

and by the Erdős-Ko-Rado Theorem,

|A| ≤
(
n− 1

⌊n
2
⌋ − 1

)
.

Clearly, this bound is attained by the set system

A = {A ∈
(
[n]
n−1
2

)
: 1 ∈ A}.

Theorem 2.6.3. [5] Let r be a positive integer, then

CAN(r, 2) = min{n :

(
n− 1

⌊n
2
⌋ − 1

)
≥ r}. (2.6.1)

The set B of n-size binary vectors corresponding to a qualitatively independent

set system on an n-set is itself a qualitatively independent set, i.e. any two vectors

in set B are qualitatively independent and such sets have cardinality at most
(

n−1
⌊n
2
⌋−1

)
,

or,

|B| ≤
(
n− 1

⌊n
2
⌋ − 1

)
(from Theorem 2.6.2).

Hence, a qualitatively independent set of n-size binary vectors can have cardinality at

most
(

n−1
⌊n
2
⌋−1

)
. Since the rows of a CA(n, r, 2) form a set of r qualitatively independent

n-size binary vectors, we conclude that if there exists a CA(n, r, 2), then

r ≤
(
n− 1

⌊n
2
⌋ − 1

)
.

This also verifies that

CAN(r, 2) = min{n :

(
n− 1

⌊n
2
⌋ − 1

)
≥ r}.
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2.7 Conclusion

In this chapter, we studied the properties of system of sets especially set partitions,

intersecting-set systems etc.

Sperner set system is a set system in which no two sets are comparable. We saw

the proof for the fact that there is an upper bound to the cardinality of such sets

if the sets have been formed from the elements of a finite set. This upper bound is

calculated with the help of Hall’s theorem.

Intersecting-set system is an important part of set theory. We learnt that for n

sufficiently large, if there exists a t-intersecting set system on an n-set, then there ex-

ists a k-uniform t-intersecting set system that has at least the same cardinality (which

is possible by replacing each set of size less than k in a t-intersecting set system by a

set of size k without affecting the property of the set system being t-intersecting).

The concept of qualitatively independent binary vectors to qualitatively indepen-

dent subsets has been generalized here. We studied the Erdös-Ko-Rado theorem

which provides an upper bound to the cardinality of the members of the set system

I(t, k, n). This theorem is applied to a qualitatively independent set system on an

n-set to get an upper bound on this set system.



Chapter 3

Graph Theory

To study the generalization of covering arrays to add a graph structure to it, the

concepts of graph theory is required.

3.1 Basic Graph Theory

Definition 3.1.1. A graph G is defined as an ordered pair (V (G), E(G)), consisting

of a set of vertices, V (G), and a set of edges, E(G), joining pairs of vertices.

In this text, a finite, simple graph is denoted by G unless otherwise stated. The

vertex set of G is denoted by V (G) and the edge set is denoted by E(G) which is a

subset of the set of all unordered pairs of distinct elements of V (G).

Definition 3.1.2. If x and y are vertices of G and {x, y} ∈ E(G), then x and y are

said to be adjacent. Adjacency is a symmetric and anti-reflexive relation in case of

simple graphs.

26
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3.2 Graph Homomorphism

Definition 3.2.1. Let G andH be any two graphs. A mapping ϕ from V (G) to V (H)

is a graph homomorphism if vertices ϕ(x) and ϕ(y) are adjacent in H whenever x

and y are adjacent in G.

Definition 3.2.2. Let G and H be any two graphs. A map ϕ from V (G) to V (H) is

a graph isomorphism if ϕ is a bijection such that x, y ∈ V (G) are adjacent in G if

and only if ϕ(x) and ϕ(y) are adjacent in H. If there exists an isomorphism between

two graphs, then we say the graphs are isomorphic.

A homomorphism from a graph G to itself is a graph endomorphism. An iso-

morphism from a graph G to itself is a graph automorphism. The automorphism

group for a graph G is the group of all automorphisms of G denoted by Aut(G).

Definition 3.2.3. A bipartite graph G = G(X, Y ) is a graph in which the vertex

set V (G) can be decomposed into two disjoint sets X and Y such that no two graph

vertices within the same set are adjacent. Any edge e ∈ E(G) can only connect a

vertex x ∈ X with a vertex y ∈ Y .

Definition 3.2.4. A retraction is a homomorphism f from a graph X to a subgraph

Y of itself such that the restriction f |Y of f to V (Y ) is the identity map. If there is

a retraction from X to a subgraph Y , then we say that Y is a retract of X.

Definition 3.2.5. A fibre of a homomorphism ϕ : G −→ H is a preimage ϕ−1(y) of

some vertex y ∈ V (H), that is, ϕ−1(y) = {x ∈ V (G) : ϕ(x) = y}.
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3.3 Coloring, Cliques and Independent Sets

The complete graph on n vertices, Kn, is the graph with n vertices and with an

edge between any two distinct vertices.

Definition 3.3.1. A proper coloring of G with n colors is a map from V (G) to a

set of n colors such that no two adjacent vertices are assigned the same color.

Definition 3.3.2. The least value of k for which X can be properly k-colored is the

chromatic number of X and is denoted by χ(X).

Lemma 3.3.1. A proper coloring of a graph G with n colors is equivalent to a ho-

momorphism from G to Kn.

Proof. Firstly, let ϕ : G −→ Kn be a proper coloring of G with n colors and let x1,

x2 ∈ V (G) be any two adjacent vertices of G. Thus, ϕ(x1) ̸= ϕ(x2). Being distinct

vertices of Kn, ϕ(x1) and ϕ(x2) are adjacent. Thus, ϕ maps adjacent vertices to ad-

jacent vertices and hence is a homomorphism.

Conversely, let ψ : G −→ Kn be a homomorphism and let y1, y2 ∈ V (G) be any

two adjacent vertices of G. Thus, ψ(y1) ̸= ψ(y2). This means that ψ doesn’t map any

adjacent vertices of G to the same vertex of Kn. Hence, ψ is a proper coloring.

Thus, the chromatic number of a graph G is the smallest n such that there exists

a homomorphism G −→ Kn.

Definition 3.3.3. A clique in a graph G is a set of vertices from V (G) in which

any two distinct vertices are adjacent in G. A maximum clique in a graph G is a

maximum set of pairwise adjacent vertices. The maximum clique number of a graph
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G is defined to be the size of a maximum clique and denoted by ω(G). The maximum

clique number is also called the clique number.

Lemma 3.3.2. If G has a clique of size n, then there exists a homomorphism

Kn −→ G.

Proof. Let X be a clique of the graph G of size n and let there be a map f from Kn

to G which maps the n vertices of Kn to the n vertices of X. Suppose x and y are two

distinct vertices of the graph Kn. Since f(x) and f(y) are the vertices of clique X,

they are adjacent. Hence, every pair of adjacent vertices of the graph Kn are mapped

to a pair of adjacent vertices of the graph G making the map f a homomorphism.

Thus, the size of a maximum clique in G is the largest n for which there exists a

homomorphism from Kn to G. An n-clique is a clique of size n.

Lemma 3.3.3. For graphs G and H, if there is a homomorphism G −→ H, then

ω(G) ≤ ω(H).

Proof. If possible, let ω(H) < ω(G). We know that the size of a maximum clique in

G is the largest n for which there exists a homomorphism from Kn to G. So, there

exist homomorphisms

Kω(G) −→ G −→ H

and hence, there exists a homomorphism

Kω(G) −→ H.

But, ω(H) < ω(G) and still there exists a homomorphism from Kω(G) to H which

leads us to a contradiction. So, the hypothesis that ω(H) < ω(G) is false. Thus,

ω(G) ≤ ω(H) if there is a homomorphism G −→ H.
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Lemma 3.3.4. For graphs G and H, if there is a homomorphism G −→ H, then

χ(G) ≤ χ(H).

Proof. If possible, let χ(H) < χ(G). We know that the chromatic number of a graph

G is the smallest n such that G −→ Kn. So, there exist homomorphisms

G −→ H −→ Kχ(H)

and hence, there exists a homomorphism

G −→ Kχ(H).

But, χ(H) < χ(G) and still there exists a homomorphism from G to Kχ(H) which

leads us to a contradiction. So, the hypothesis that χ(H) < χ(G) is false. Thus,

χ(G) ≤ χ(H) if there is a homomorphism G −→ H.

Lemma 3.3.5. For any graph G, ω(G) ≤ χ(G).

Proof. We know that there exist homomorphisms

Kω(G) −→ G −→ Kχ(G)

and hence, there exists a homomorphism

Kω(G) −→ Kχ(G).

If possible, let χ(G) < ω(G). So, a map f from Kω(G) to Kχ(G) can’t be an injective

map. As a result, at least one pair of distinct vertices in Kω(G) will be mapped to a

single vertex in Kχ(G). Since any two distinct vertices of Kω(G) are adjacent, at least

there exists a pair of adjacent vertices in Kω(G) which are mapped to the same vertex



31

in Kχ(G). This renders the map f from being a homomorphism. So, there can’t be

any homomorphism from Kω(G) to Kχ(G) which is a contradiction to the fact that

there exists at least one. So, the hypothesis that χ(G) < ω(G) is proved false and we

conclude that ω(G) ≤ χ(G).

Hence, a proper coloring must always contain at least as many colors as the size

of a maximum clique.

Definition 3.3.4. An independent set in a graph G is a set of vertices from V (G)

in which no two vertices are adjacent in G. The size of a largest independent set in

a graph G is denoted by α(G).

The vertices which are assigned the same color in a proper coloring form an in-

dependent set. In fact, a proper coloring on a graph G partitions the vertices of

G into independent sets called color classes. A proper coloring corresponds to a

binary function on the independent sets of a graph: Each independent set that is a

color class in the proper coloring is assigned a value of 1 and all other independent

sets are assigned a value of 0 by the function. Further, each vertex is in exactly one

independent set which has an assigned value of 1.

Definition 3.3.5. The distance dG(x, y) between two vertices x and y in a graph

G is the length of the shortest path from x to y. The diameter of a graph G is the

maximum distance over all pairs of vertices in G.

Definition 3.3.6. An edge cover of a graph is a set of edges so that each vertex is

the terminus for some edge in the set.

We denote the number of edges incident to a vertex v by d(v) and the minimum

value of this over all vertices as δ(G).
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Definition 3.3.7. The degree of a vertex v ∈ V (G) is the number of vertices in

G which are adjacent to v. If every vertex in G has the same degree, then we say

that G is regular. In particular, if every vertex in G has degree k, we say that G is

k-regular.

3.4 Vertex-Transitive Graphs

Definition 3.4.1. A graph is vertex transitive if its automorphism group acts

transitively on the set of it’s vertices. This means that for any two distinct vertices,

there is an automorphism on the graph that maps one vertex to the other.

A vertex-transitive graph is necessarily regular.

3.5 Core of a Graph

Definition 3.5.1. Core: A graph G is a core if any endomorphism on G is an

automorphism.

If a graphG is a core, then there is no homomorphism fromG to a proper subgraph

of G. For any positive integer n, the complete graph Kn is a core.

Definition 3.5.2. Core of a Graph: A core of a graph G is a subgraph G• of G

such that G• is a core and there is a homomorphism G −→ G•.

Definition 3.5.3. Core of a Graph: Alternately, a core of a graphG is the minimal

induced subgraph G• such that there exist homomorphisms

G• −→ G −→ G•.
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Corollary 3.5.1. The above two definitions of the core of a graph are equivalent.

Proof. Let there be a minimal induced subgraph G• of a graph G such that there

exist homomorphisms

G• −→ G −→ G•. (3.5.1)

Let f be an endomorphism on G•. Suppose that f is a not surjective map. Then the

range of f , R(f) = G1 is a proper subset of G• (i.e. G1 ⊂ G•). Let f1 be a map from

G• to G1 such that f1(x) = f(x) ∀ x ∈ G•. Clearly, f1 is also a homomorphism. So,

f1 : G
• −→ G1 (3.5.2)

is a homomorphism. Since G1 ⊂ G•, an identity map

I : G1 −→ G• (3.5.3)

is also a homomorphism. Now, from equations 3.5.1, 3.5.2 and 3.5.3, we conclude

that there exist homomorphisms

G1 −→ G• −→ G −→ G• −→ G1

and thus, there exist homomorphisms

G1 −→ G −→ G1. (3.5.4)

But this contradicts the assumption that G• is the minimal induced subgraph of the

graph G to satisfy the above homomorphisms. So, the hypothesis that any endo-

morphism on G• can be a non-surjective map is proved false, hence proving that any

endomorphism on G• is always a surjection. But a surjective endomorphism has to

be an injective map (as a many-to-one function can’t map n vertices to n vertices).
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So, any endomorphism on G• is a bijection and hence an isomorphism. Hence, G• is

a core in itself and thus a core of the graph G by definition 3.5.2. So, the minimal

induced subgraph G• such that there exist homomorphisms G• −→ G −→ G•, is a

core of the graph G by definition 3.5.2 as well.

Conversely, let a subgraph G• of a graph G be such that G• is a core and there

exists a homomorphism

G −→ G•. (3.5.5)

Since G• ⊆ G, an identity map

I : G• −→ G (3.5.6)

is a homomorphism. From equations 3.5.5 and 3.5.6, we conclude that there exist

homomorphisms

G• −→ G −→ G•. (3.5.7)

Now, if possible, let G1 ⊂ G• be the minimal induced subgraph of G such that there

exist homomorphisms

G1 −→ G −→ G1. (3.5.8)

From equations 3.5.7 and 3.5.8, we conclude that there exist homomorphisms

G• −→ G −→ G1 (3.5.9)

and thus, there exists a homomorphism

G• −→ G1. (3.5.10)

But, G• is a core in itself and hence there can’t be any homomorphism from G• to a

proper subgraph of G• (here G1 ⊂ G•). Hence, we conclude that no such G1 exists

and G• is a core of the graph G by definition 3.5.3 as well.
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Lemma 3.5.2. For any graph G, χ(G) = χ(G•) and ω(G) = ω(G•).

Proof. We know that there exist homomorphisms

G• −→ G −→ G•

and thus, we have

ω(G•) ≤ ω(G) ≤ ω(G•) and χ(G•) ≤ χ(G) ≤ χ(G•)

or, ω(G) = ω(G•) and χ(G) = χ(G•).

Lemma 3.5.3. [2] Let G•
1 and G•

2 be cores. Then G•
1 and G•

2 are homomorphically

equivalent if and only if they are isomorphic.

Proof. Suppose G•
1 and G•

2 are homomorphically equivalent and that f : G•
1 −→ G•

2

and g : G•
2 −→ G•

1 are the homomorphisms between them. Then the maps f ◦ g

and g ◦ f are endomorphisms on G•
2 and G•

1 respectively i.e. f ◦ g : G•
2 −→ G•

2

and g ◦ f : G•
1 −→ G•

1 are both homomorphisms since they are composition of two

homomorphisms. Since G•
1 and G•

2 are cores, any endomorphism on them is an iso-

morphism. Hence, both f◦g and g◦f are isomorphisms which makes them a surjective

map. Since f ◦ g is a surjective map, we conclude that f is a surjective map too (as it

is the function f which gives the final values of the entire function). Similarly, since

g ◦ f is a surjective map, we conclude that g is a surjective map too.

Now, let |G•
1| = n and |G•

2| = m. We know that f : G•
1 −→ G•

2 is a surjective

map which means that n ≥ m. We also know that g : G•
2 −→ G•

1 is a surjective map
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which means that m ≥ n. Combining the two, we get n = m and hence |G•
1| = |G•

2|.

Thus, the surjective maps f and g are injective as well and hence bijective overall.

Hence, we conclude that f and g are isomorphisms.

Lemma 3.5.4. [2] If G•
1 and G•

2 are both cores of a graph G, then G•
1 and G•

2 are

isomorphic.

Proof. Suppose thatG•
1 andG

•
2 are core of a graphG. Then there are homomorphisms

f1 : G −→ G•
1 and f2 : G −→ G•

2

Then, the function f1 restricted to G•
2, f1|G•

2
is a homomorphism from G•

2 to G•
1 and

the function f2 restricted to G•
1, f2|G•

1
is a homomorphism from G•

1 to G
•
2. Therefore,

by Lemma 3.5.3, we conclude that G•
1 and G•

2 are isomorphic.

Corollary 3.5.5. A core of any graph X is a retract of the graph X.

Proof. Let X• be a core of X and f be a homomorphism from X to X•. Then f

restricted to X•, i.e., f |X• is an automorphism of X•. Let this automorphism be

denoted by f1. So,

f |X• = f1.

Let a, b ∈ X• and let

f : a 7−→ b (3.5.11)

=⇒ f1 : a 7−→ b (3.5.12)

From Equations 3.5.11 and 3.5.12, we conclude that

f−1
1 ◦ f : a 7−→ a (3.5.13)

and hence f−1
1 ◦ f is an identity map on X•. Thus, X• is a retract.



37

Theorem 3.5.6. [2] If X is a vertex-transitive graph, then its core X• is also vertex-

transitive.

Proof. Let X be a vertex-transitive graph and let x and y be two distinct vertices of

X•. Then there is an automorphism of X that maps x to y. The composition of this

automorphism with a retraction from X to X• is a homomorphism f from X to X•.

The restriction f |X• is an automorphism of X• mapping x to y.

Theorem 3.5.7. [2] If X is a vertex-transitive graph, then |V (X•)| divides |V (X)|.

Proof. We show that the fibres of any homomorphism from X to X• have the same

size. Let f be a homomorphism from X to X whose image Y is a core of X. For any

element g ∈ Aut(X), the translate Y g is mapped onto Y by f , and therefore Y g has

one vertex in each fibre of f .

Now, suppose v ∈ V (X) and let F be the fibre of f that contains v. Since

X is vertex transitive, the number of automorphisms g such that Y g contains v is

independent of our choice of v. If we denote this number by N , then since every

image Y g of Y meets F ,

|Aut(X)| = |F | ×N.

Since N does not depend on F , this implies that all fibres of f have the same size.

3.6 Kneser Graphs

We, now, study a family of vertex-transitive graphs, the Kneser Graphs.

Definition 3.6.1. For positive integers r, n with r ≤ n, the Kneser graph Kn:r is
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the graph whose vertex set is
(
[n]
r

)
and r-subsets are adjacent if and only if they are

disjoint.

A proper coloring is considered to be a binary function on the independent sets

of a graph. A generalization of proper coloring is fractional coloring which is also

a function on the independent sets of a graph but the function only needs to be

non-negative instead of being binary.

For a graph G with v ∈ V (G), let I(G) be the set of all independent sets in G

and let I(G, v) be the set of all independent sets in G that contain the vertex v.

Definition 3.6.2. A fractional coloring of a graph G is a non-negative function f

on the independent sets of G with the property that for any vertex v ∈ V (G),

∑
S∈I(G,v)

f(S) ≥ 1.

Definition 3.6.3. Let G be a graph and f a fractional coloring on G. The weight

of f is the sum of the values of f over all independent sets in G, i.e.,

∑
S∈I(G)

f(S).

Definition 3.6.4. The fractional chromatic number of a graph G is the minimum

possible weight of a fractional coloring. It is denoted by χ∗(G).

In other words, the fractional chromatic number of a graph G is the minimum

weight over all fractional coloring of G.

Kneser graphs are very closely related to fractional coloring. Like the chromatic

number being determined by homomorphisms to complete graphs, the fractional chro-

matic number is determined by homomorphisms to Kneser graphs.
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Theorem 3.6.1. [2] For any graph G,

χ∗(G) = min{n
r
: ∃ a homomorphism G −→ Kn:r} (3.6.1)

Corollary 3.6.2. [2] For any graph G,

ω(G) ≤ ω∗(G) ≤ χ∗(G) ≤ χ(G). (3.6.2)

3.7 Remarks

This chapter is devoted to learning some concepts in graph theory which are used in

the later chapter. The chapter concerns graph theory concepts like homomorphism,

coloring, clique number, chromatic number, independent set, color classes, edge cover,

vertex-transitive graph, core, Kneser graph, fractional coloring etc.



Chapter 4

Covering Array on Graphs

Covering arrays have been widely studied for quite some time now. Various aspects of

covering arrays like bounds and constructions have made use of concepts pertaining

to fields like design theory, intersecting codes, sperner systems, set systems, algebra

etc. Covering arrays find usage in various fields in industry and academia. Some

of the industrial applications include data compression, drug screening, switching

networks, circuit testing, software testing etc whereas academic applications relate to

construction of difference matrices, truth functions, search theory etc. In this text,

we extend the definition of covering array to include a graph structure. So, covering

arrays on graphs are extensions of the standard covering arrays.

4.1 Definition

Definition 4.1.1. t-Qualitative independence: A set of vectors with entries

from Zg are t − qualitatively independent if for any t-subset, {vi}, of vectors and

any ordered t-tuple of elements (g1, g2, ..., gt) ∈ Zt
g there exists a j such that for each

vector vi the jth coordinate vij = gi.

Definition 4.1.2. Covering Array: A t-covering array with alphabet size g, k

40
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rows and size n is a k × n array on Zg with the property that any set of t rows is

t-qualitatively independent. It is denoted by t− CA(n, k, g).

Here, we only study 2-covering array and hence shall simply call them covering

arrays and denote them by CA(n, k, g). Similarly, any pair of 2-qualitatively inde-

pendent vectors will simply be called qualitatively independent vectors.

Definition 4.1.3. Two vectors v, w in Zn
g are qualitatively independent if for all

pairs (a, b) ∈ Zg × Zg there is a position i in the vectors where (a, b) = (vi, wi).

The smallest possible size of a covering array is denoted by CAN(k, g). So,

CAN(k, g) = min{l ∈ N : ∃ CA(l, k, g)}.

Example: An example of a covering array CA(5, 4, 2) is

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

.

For testing any application, every row of the covering array represents a particular

parameter of the system and every column represents a test on the system taking

different values of the parameters to check for every possible combinations of the

parameters. The goal is to check for any deviation from the expected behavior of

the system when burdened with all kinds of input. The covering arrays provide a

way to produce an array with the fewest number of columns/tests by removing the

unnecessary combinations of the parameters (if it was known that certain pairs don’t

interact) and hence improving on the total number of tests required to check the

system thoroughly. We will study strength-2 covering arrays which test all pairwise

interactions.
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Definition 4.1.4. Covering arrays on graphs: A covering array on a graph

G, with alphabet size g, is a |V (G)|×n array on Zg. Each row in the array corresponds

to a vertex in the graph G and the pairs of rows which correspond to adjacent vertices

in the graph are qualitatively independent. A covering array on a graph G is denoted

by CA(n,G, g).

The size of the smallest possible covering array on a graph G is denoted by

CAN(G, g), that is,

CAN(G, g) = min{l ∈ N : ∃ CA(l, G, g)}.

Thus, for the complete graph Kl, we have

CAN(Kl, g) = CAN(l, g).

Definition 4.1.5. A CA(n,G, g) with n = CAN(G, g) is referred to as an optimal

covering array on G.

4.2 Bounds from Homomorphisms

Complete graphs can be used to get bounds on CAN(G, g).

Lemma 4.2.1. [6] Let G and H be graphs. If f : G −→ H is a graph homomorphism

then

CAN(G, g) ≤ CAN(H, g).

Proof. Let CAN(H, g) = n and suppose B is a matrix with |V (G)| rows and n

columns. Set row l of the matrix B to be identical to the row corresponding to f(al)

in CA(n,H, g) ∀ al ∈ G where l ∈ {1, 2, ..., |V (G)|}. Let ai and aj be any two adjacent
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vertices in graph G. Since f is a graph homomorphism, vertices f(ai) and f(aj) are

adjacent in graph H and hence the rows in CA(n,H, g) corresponding to f(ai) and

f(aj) are qualitatively independent. Thus, if we associate rows i and j of matrix B

with the pair of adjacent vertices ai and aj in G, then matrix B is a CA(n,G, g)

(since a pair of qualitatively independent vectors represent a pair of adjacent vertices

in the matrix B), implying that

CAN(G, g) ≤ n

or,

CAN(G, g) ≤ CAN(H, g).

Hence, the covering array number is monotonically increasing on graphs ordered

by homomorphism.

Corollary 4.2.2. For any graph G,

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g).

Proof. We know that there exist homomorphisms

f : Kω(G) −→ G and g : G −→ Kχ(G).

Using Lemma 4.2.1, we get

CAN(Kω(G), g) ≤ CAN(G, g)

and

CAN(G, g) ≤ CAN(Kχ(G), g)
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which combine to give

CAN(Kω(G), g) ≤ CAN(G, g) ≤ CAN(Kχ(G), g).

4.3 Qualitatively Independent Graphs

Definition 4.3.1. A g-partition of an n-set is a set of g disjoint non-empty classes

whose union is the n-set. The set of all g-partitons of an n-set is denoted by Pn
g .

Definition 4.3.2. Qualitatively Independent Partitions: Let n and g be positive

integers with n ≥ g2. Let A, B ∈ Pn
g be two g-partitions of an n-set. Assume A =

{A1, A2, ..., Ag} and B = {B1, B2, ..., Bg}. The partitions A and B are qualitatively

independent if

Ai ∩Bj ̸= ϕ for all i and j.

If g-partitions A = {A1, A2, ..., Ag} and B = {B1, B2, ..., Bg} are qualitatively

independent, then for each i ∈ {1, 2, ..., g}, |Ai| ≥ g and |Bi| ≥ g.

Definition 4.3.3. Let n and g be positive integers with n ≥ g2. The qualitative

independence graph QI(n, g) is defined to be the graph whose vertex set is the set

of all g-partitions of an n-set with the property that every class of the partition has

size at least g. Vertices are adjacent if and only if the corresponding partitions are

qualitatively independent.

Illustrative Examples:

1. QI(4, 2)={{12|34}, {13|24}, {14|23}}.
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2. QI(5, 2)={{123|45}, {124|35}, {134|25}, {125|34}, {135|24}, {145|23}, {12|345},

{13|245}, {14|235}, {15|234}}.

There is a natural correspondence between length n g-ary vectors and partitions

of an n-set into g classes: The indices of the vector with a common letter are in the

same class of the corresponding partition.

Then, we can alternatively define the qualitative independence graphs as follows.

Definition 4.3.4. For two positive integers g and n, where n ≥ g2, we define the

qualitative independence graph QI(n, g). The vertices are all length n vectors

over Zg, in which each letter occurs at least g times. Additionally, the vectors have 0 in

their first position and the first appearances of each letter are in lexicographic order.

Two vertices are adjacent if the two vectors that they represent are qualitatively

independent.

Illustrative Examples:

1. QI(4, 2)={(0011), (0101), (0110)}.

2. QI(5, 2)={(00011), (00101), (01001), (00110), (01010), (01100), (00111), (01011),

(01101), (01110)}.

Note: In graph QI(4, 2), all the vertices are pairwise qualitatively independent

to each other and hence is isomorphic to K3. Any covering array with alphabet size

2 and having four columns can only be written in terms of these three vectors, thus

any graph G with a covering array CA(4, G, 2) must have a homomorphism to this

graph K3.

Definition 4.3.5. The weight of an n-bit binary vector is the number of 1’s in the

vector. It is denoted by w(v) for a vector v.
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In QI(n, g), we can assume that the first letter of every vector is 0 and further,

when the vector is not binary, that the first appearances of each letter are in lexico-

graphic order (i.e. the first instance of each letter in a row appears in the same order

as the natural ordering of the letter). If a vector is not of this form, we can permute

the letters so that it becomes one. This action does not change the partition. For

n-bit binary vectors we can alternatively assume that the most frequent letter is 0

which means the weight of the vector is no more than ⌊n/2⌋. If a vector has a larger

weight, we can exchange the 0’s and 1’s which is equivalent to using the complement

of the corresponding set and thus does not change the 2-partition.

If two binary vectors correspond to sets which have the property that one contains

the other, then the vectors are not qualitatively independent. Similarly, if the sets are

disjoint, the vectors are again not qualitatively independent. Vectors are qualitatively

independent if and only if the corresponding sets intersect each other but neither

is completely contained in the other. Finally, if we consider only the vectors of

weight not greater than ⌊n/2⌋, then two distinct vectors with the same weight will

be qualitatively independent if and only if their corresponding sets intersect.

Definition 4.3.6. A vector u dominates a vector v iff vector v has zero in at least

all the entries where u has a zero. It is denoted by writing v ⊆ u.

In the binary case, the poset with the dominance relation on the vectors coincides

with the poset of subsets of n ordered by inclusion. Since we can assume that w(s) ≤

⌊n/2⌋, the binary vectors correspond to the lower half of the poset of subsets of n.

Vectors that are related in the poset are not qualitatively independent.

Theorem 4.3.1. [7] For a graph G and non-negative integers g and n there exists a

CA(n,G, g) if and only if there exists a graph homomorphism from G −→ QI(n, g).
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Proof. Assume that there exists a CA(n,G, g), call this C. Consider a mapping

f : V (G) −→ V (QI(n, g)) that takes a vertex v ∈ V (G) to the vertex in QI(n, g)

which corresponds to the vector in C for v. Call this vector Cv. With this mapping,

consider two adjacent vertices v and w in G so that {v, w} ∈ E(G). The vectors

Cv and Cw, being the rows of CA(n,G, g) corresponding to adjacent vertices, are

qualitatively independent implying that {Cv, Cw} ∈ E(QI(n, g)). Hence, the map f

is a homomorphism.

Conversely, let there be a homomorphism f from G to QI(n, g) that takes a vertex

al ∈ V (G) to the vertex f(al) ∈ V (QI(n, g)) where l ∈ {1, 2, ..., |V (G)|}. And let B

be a matrix with | G | rows and n columns, having its row l identical to f(al). Now,

for any two adjacent vertices ai and aj in G, if we associate rows i and j of matrix

B to them respectively, then the matrix B is a CA(n,G, g) (since rows i and j are

essentially f(ai) and f(aj) respectively which are qualitatively independent). Hence,

there exists a CA(n,G, g).

This gives a bound on χ(G) for all graphs with CAN(G, g) ≤ n.

Corollary 4.3.2. [7] Let G be any graph and g and n integers such that there exists

a CA(n,G, g). Then χ(G) ≤ χ(QI(n, g)).

Proof. From the above theorem, there exists a CA(n,G, g) if and only if there exists

a graph homomorphism from G −→ QI(n, g). So, χ(G) ≤ χ(QI(n, g)).

As QI(4, 2) = K3, a graph G has a CA(4, G, 2) if and only if there is a homo-

morphism of G to K3. This means that deciding if a graph has a covering array of

size 4 and alphabet size 2 is exactly the same as deciding if it is 3 colorable.
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The size of the vertex set for QI(n, 2) is 2n−1−n−1, this is the number of subsets

of n of size at least 2 and no more than ⌊n/2⌋. It is also equal to (x− y − z), where

x = 2n−1 = total number of length n vectors which have 0 as their first entry, y = n

= total number of length n vectors which have 0 as their first entry and with at most

one 1 in the rest of the (n−1) entries, z = 1 = total number of length n vectors which

have 0 in their first entry but no 0 in the rest of the (n− 1) entries. This is because

y and z account for the counting of all the length n vectors which have weight either

less than 2 or greater than (n− 2).

Definition 4.3.7. An edge cover of a graph is a set of edges so that each vertex is

the terminus for some edge in the set.

We denote the number of edges incident to a vertex v by d(v) and the minimum

value of this over all vertices as δ(G).

Definition 4.3.8. The cover index κ(G) of G is the largest number k such that

E(G) can be partitioned into k edge covers.

Theorem 4.3.3. [5] For any bipartite graph G,

κ(G) = δ(G).

Lemma 4.3.4. [7] The graphs QI(n, g) are connected and have diameter 2.

Proof. Construct a bipartite graph C with g vertices in both the parts using elements

from Zg. Let u and v be any two vertices of QI(n, g) which are not qualitatively

independent. Denote the entry i of the vector u and v by ui and vi respectively. For

each of the 1 ≤ i ≤ n, we add the edge (ui, vi) to E(C). Since every letter occurs

at least g times in both the vectors, we have δ(C) ≥ g. By Thm 4.3.3, C can be

decomposed into δ(C) ≥ g edge disjoint edge-covers. Let us call these Cl. To the first
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g edge-covers we assign a unique letter from the g-ary alphabets (i.e. 0 to g − 1), to

the rest we assign 0. Now, let w ∈ QI(n, g) be such that for each i, wi is the letter

assigned to the Cl that contains the edge (ui, vi). With this construction of w, we take

any pair (gi, gj) ∈ Z2
g. Consider the edge-cover Cgi . In this edge-cover, there is an

edge which has gj as the terminus on the left side (the side representing the entries of

vector u). This edge corresponds to a position in the vectors, say position nij. Since

this edge comes from the edge-cover Cgi , which has been assigned the letter gi by

definition, we get wnij
= gi. Also, this edge has gj as the terminus at the position nij

of the vector u, so unij
= gj. So, this pair is covered between w and u. Since, this is

an arbitrary pair, we conclude that w and u are qualitatively independent. Similarly,

w and v are qualitatively independent. Hence, given any two vertices u and v, it is

possible to construct a vertex w which is qualitatively independent to both u and v

and hence adjacent to both in QI(n, g), thus proving that the graphs QI(n, g) are

connected and have diameter 2.

Illustrative example for the above result :

Let u = (0, 2, 1, 2, 1, 0, 0, 2, 1, 0, 2, 1) and v = (0, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 2) with g = 3

and n = 12. So, there are 12 edges which enables the construction of 4 edge disjoint

edge-covers shown as follows:

1. C0: {0 7−→ 0 by {u1, v1}, 1 7−→ 1 by {u3, v3}, 2 7−→ 2 by {u8, v8}}

2. C1: {0 7−→ 0 by {u6, v6}, 1 7−→ 2 by {u5, v5}, 2 7−→ 1 by {u4, v4}}

3. C2: {0 7−→ 2 by {u7, v7}, 2 7−→ 0 by {u2, v2}, 1 7−→ 1 by {u9, v9}}

4. C0: {0 7−→ 0 by {u10, v10}, 1 7−→ 2 by {u12, v12}, 2 7−→ 1 by {u11, v11}}.

Based on the above construction, w = (0, 2, 0, 1, 1, 1, 2, 0, 2, 0, 0, 0). Clearly, w and u
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are qualitatively independent and so are w and v.

Elements of QI(n, 2) are the 2-partitions of the n-set such that every class of any

partition has size at least 2 and at most (n − 2). So, every partition in QI(n, 2) is

of the form P = {P1, P2} such that |Pi| ≥ 2 and P1 = P2 (or, P2 = P1). Thus, we

can uniquely represent every partition P ∈ QI(n, 2) by the class P1 or P2 whichever

is smaller in size (i.e. which has size less than or equal to ⌊n
2
⌋).

Corollary 4.3.5. [5] For all positive integers n,

ω(QI(n, 2)) =

(
n− 1

⌊n
2
⌋ − 1

)
. (4.3.1)

Proof. Let S be an n-element set.

1. Let n be even. Then the n/2-element subsets of the n-set containing one par-

ticular element of S form an
(

n−1
⌊n
2
⌋−1

)
member collection which is qualitatively

independent, which can be seen as follows.

Let F = {A ∈ S : |A| = n
2
and 1 ∈ A} and let A,B ∈ F .

Clearly, 1 ∈ A ∩B. So,

A ∩B ̸= ϕ. (4.3.2)

Since A ̸= B and |A| = n
2
= |B|, there exists some x ∈ A such that x doesn’t

belong to B. So, x ∈ A ∩B and hence

A ∩B ̸= ϕ.

Similarly, A ∩ B ̸= ϕ. Now, if possible assume that A ∩ B = ϕ which implies

that

B ⊆ A. (4.3.3)
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But we know that |A| = n
2
= |B| and hence from Equation 4.3.3, we conclude

that

B = A (4.3.4)

which is not true as A ∩ B ̸= ϕ (from Equation 4.3.2). Thus, our assumption

that A ∩B = ϕ is proven false and we conclude that,

A ∩B ̸= ϕ. (4.3.5)

From above discussion, we conclude that the set F is qualitatively independent.

Now, to show that no qualitatively independent set F can be larger, we note

that if A and B are in F , then neither A nor A can be contained in B or B.

Thus the members of F and their complements form a family F ∗ of subsets

of S wherein no member is contained in any other. So, F ∗ is a Sperner set

system and from Theorem 2.3.2, we conclude that F ∗ can have no more than(
n
n
2

)
members, so that F can have no more than 1

2

(
n

n/2

)
or

(
n−1
n
2
−1

)
members.

2. Suppose now that n is odd. We can construct (as above) an
(

n−1
⌊n
2
⌋−1

)
member

qualitatively independent collection of subsets of S by choosing all ⌊n
2
⌋ element

subsets containing some particular element.

To show that
(

n−1
⌊n
2
⌋−1

)
is an upper bound as well, we consider the members

of F ∗ (defined as above) which have ⌊n
2
⌋ or fewer elements. Clearly, there

are |F | of them. Every one of these must intersect every other and hence by

Theorem 2.6.1, there are therefore at most
(

n−1
⌊n
2
−1

)
of them.
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The set of all vectors with weight n/2 starting with 0 is a maximum clique when

n is even. The set of all vectors with weight (n− 1)/2 starting with 0 is a maximum

clique when n is odd.

Theorem 4.3.6. [2] Let X be a connected vertex-transitive graph. Then X has a

matching that misses at most one vertex, and each edge is contained in a maximum

matching.

It implies that a connected vertex-transitive graph on an even number of vertices

has a perfect matching, and that each vertex in a connected vertex-transitive graph

on an odd number of vertices is missed by a matching that covers all the remaining

vertices.

Theorem 4.3.7. [7] For all positive integers n, χ(QI(n, 2)) = ⌈1
2

(
n

⌊n/2⌋

)
⌉.

Proof. Consider all the vertices in QI(n, 2) as subsets of n of size no more than ⌊n/2⌋

as described above. We know that the poset of subsets of an n-set ordered by inclu-

sion can be decomposed into
(

n
⌊n/2⌋

)
disjoint chains and each chain contains exactly

one set of size ⌊n/2⌋. Lets call these chains Ci, where i ∈ {1, 2, ...,
(

n
⌊n/2⌋

)
}. For any

i, if the sets A,B ∈ Ci, then A and B are not qualitatively independent (and hence

non-adjacent) i.e. each chain corresponds to an independent set in QI(n, 2).

It is possible to pair the
(

n
⌊n/2⌋

)
chains so that any subset of size no more than n/2

in one chain is disjoint from any subset of size no more than n/2 in the other chain.

This is possible if the two chains being paired are such that their ⌊n/2⌋ sized sets are

disjoint. To see this, lets consider them case wise as following.

1. Assume that n is even. For each chain Ci, let Ai be the set of size n/2. Match

two chains Ci and Cj if Ai = Aj.
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2. Assume that n is odd. For each chain Ci, let Ai be the set of size (n − 1)/2.

The sets Ai to be matched should be disjoint and hence form the vertices of the

Kneser graph Kn:n−1
2
. The Kneser graph Kn:n−1

2
is vertex transitive, so there

exists a matching that is perfect or is missing just one vertex. So, each set Ai

(except possibly one set) is matched to another set of size (n− 1)/2, lets call it

A
′
i. The set A

′
i ⊂ Ai. Match the chain Ci which contains Ai with the chain Ci

′

that contains the set A
′
i.

Any two sets in a matched pair of chains have the property that either one set contains

the other or one set contains the complement of the other (since we are restricted to

vertices of QI(n, 2) which have size at most ⌊n/2⌋ only). In either case, the vertices

are not qualitatively independent, hence all the vertices in the paired chains can be

assigned the same color in a proper coloring of QI(n, 2). This produces a proper

⌈1
2

(
n

⌊n/2⌋

)
⌉-coloring on the graph QI(n, 2).

To see that this is the smallest possible coloring of QI(n, 2), consider the vertices

of QI(n, 2) that correspond to ⌊n/2⌋-sets. Two such vertices may be assigned the

same color if and only if the subsets are disjoint. It is clear that there can’t be three

mutually disjoint subsets of an n-set with size ⌊n/2⌋ (since 3⌊n/2⌋ > n). So it is not

possible to properly color these vertices with fewer than ⌈1
2

(
n

⌊n/2⌋

)
⌉ colors.

Corollary 4.3.8. For n even, ⌈1
2

(
n

⌊n
2
⌋

)
⌉ = 1

2

(
n

n/2

)
=

(
n−1

⌊n
2
⌋−1

)
.

Proof. Since n is even, let n = 2m. Hence, ⌈1
2

(
n

⌊n
2
⌋

)
⌉ = ⌈1

2

(
2m
m

)
⌉ = ⌈1

2
(2m)
m

(
2m−1
m−1

)
⌉ =

⌈
(
2m−1
m−1

)
⌉ =

(
2m−1
m−1

)
= 1

2

(
n

n/2

)
. Also,

(
2m−1
m−1

)
=
(

n−1
⌊n
2
⌋−1

)
and hence proved.

Theorem 4.3.9. [7] For n even, the core of QI(n, 2) is K 1
2(

n
n/2)

.
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Proof. We know that ω(QI(n, 2)) =
(
n−1
n
2
−1

)
= 1

2

(
n

n/2

)
for n even and χ(QI(n, 2)) =

⌈1
2

(
n

⌊n
2
⌋

)
⌉ = 1

2

(
n

n/2

)
for n even. Hence, there exist homomorphisms

K 1
2(

n
n/2)

−→ QI(n, 2) −→ K 1
2(

n
n/2)

.

Suppose there exists a G1 ⊂ K 1
2(

n
n/2)

such that there exist homomorphisms

G1 −→ QI(n, 2) −→ G1.

Then we have,

ω(G1) = ω(QI(n, 2)). (4.3.6)

Since G1 ⊂ K 1
2(

n
n/2)

, we have

ω(G1) < ω(K 1
2(

n
n/2)

) =
1

2

(
n

n/2

)
. (4.3.7)

Combining equations 4.3.6 and 4.3.7, we get ω(QI(n, 2)) < 1
2

(
n

n/2

)
which is a contra-

diction to the fact that ω(QI(n, 2)) = 1
2

(
n

n/2

)
. Hence, no such G1 exists and K 1

2(
n

n/2)

is the minimal subgraph of G such that there exist homomorphisms

K 1
2(

n
n/2)

−→ QI(n, 2) −→ K 1
2(

n
n/2)

making it the core of the graph QI(n, 2).

Alternatively, the complete graph K 1
2(

n
n/2)

is itself a core and there exists a ho-

momorphism from QI(n, 2) to K 1
2(

n
n/2)

(as discussed above) making it the core of the

graph QI(n, 2).

We denote by F(n,2) the induced subgraph of QI(n, 2) containing the vertices

with weight ⌊n/2⌋.
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Corollary 4.3.10. For n odd, there exists a graph homomorphism from QI(n, 2) to

F (n, 2).

Proof. Consider all the vectors in QI(n, 2) as subsets of an n-set of size no more than

⌊n/2⌋. The posets of subsets of the n-set ordered by inclusion can be decomposed

into
(

n
⌊n/2⌋

)
disjoint chains and each chain contains exactly one set of size ⌊n/2⌋. A

function f from QI(n, 2) to F (n, 2), mapping any vector a of a chain to the unique

vector of size ⌊n/2⌋, a′
, contained in that chain, is a homomorphism. This can be

proved as follows. Let a and b be any two adjacent vectors mapped to a
′
and b

′

respectively. Since a and b are adjacent, there exists at least one j ∈ {1, 2, ..., n} such

that (aj, bj) = (1, 1) and hence (a
′
j, b

′
j) = (1, 1) (this is because ∀ j ∈ {1, 2, ..., n} for

which aj = 1, we have a
′
j = 1). Now, since the vectors a

′
and b

′
are not the same, there

should be at least one l ∈ {1, 2, ..., n} such that (a
′

l, b
′

l)=(1, 0) or (0, 1). Let it be (0, 1)

that is covered between a
′
and b

′
at least once. Then the pair (1, 0) is also covered

otherwise the size of vector b
′
will exceed that of a

′
(because the absence of (1, 0)

gives more 1’s entries to b
′
than a

′
). Now, suppose that there is no k ∈ {1, 2, ..., n}

such that (a
′

k, b
′

k) = (0, 0). Since the weight of a
′
is ⌊n/2⌋ = (n − 1)/2, there must

be (n − (n−1)
2

) = (n+1
2
) zero entries in a

′
. For every i for which a

′
i = 0, we have

b
′
i = 1 (since (0, 0) is not covered between a

′
and b

′
by assumption). But this means

that the weight of b
′
is greater than ⌊n/2⌋ which is a contradiction and hence the

assumption that (0, 0) is not covered between a
′
and b

′
is not true. From the above

discussion, we conclude that all the possible pairs (a, b) ∈ Z2
2 are covered between

a
′
and b

′
and hence they are adjacent. So, the function f maps adjacent vertices a

and b to adjacent vertices a
′
and b

′
and hence is a homomorphism from QI(n, 2) to

F (n, 2).
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Corollary 4.3.11. For n odd, we have

χ(F (n, 2)) = χ(QI(n, 2)) and ω(F (n, 2)) = ω(QI(n, 2))

Proof. From Corollary 4.3.10, for n odd, there exists a homomorphism

QI(n, 2) −→ F (n, 2) (4.3.8)

and since F (n, 2) ⊆ QI(n, 2), there exists another homomorphism namely the identity

map

I : F (n, 2) −→ QI(n, 2). (4.3.9)

Combining Equations 4.3.8 and 4.3.9, we conclude that there exists homomorphisms

QI(n, 2) −→ F (n, 2) −→ QI(n, 2). (4.3.10)

From Equation 4.3.10, we have

χ(F (n, 2)) = χ(QI(n, 2)) and ω(F (n, 2)) = ω(QI(n, 2))

Theorem 4.3.12. [7] For n odd, the core of QI(n, 2) is F (n, 2).

Proof. Let F •(n, 2) be the core of F (n, 2). Since F (n, 2) is vertex transitive, F •(n, 2)

is also vertex transitive (from Theorem 3.5.6) and

|V (F •(n, 2))| divides |V (F (n, 2))| =
(

n

(n− 1)/2

)
(from Thm 3.5.7). (4.3.11)

Also, as F •(n, 2) is the core of the graph F (n, 2),

χ(F •(n, 2)) = χ(F (n, 2)) = ⌈1
2

(
n

n−1
2

)
⌉. (4.3.12)
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Since the number of vertices in a graph is always greater than or equal to the chromatic

number of the graph, we have

|V (F •(n, 2))| ≥ ⌈1
2

(
n

n−1
2

)
⌉. (4.3.13)

From Equations 4.3.11 and 4.3.13, there are only two possibilities for |V (F •(n, 2))|,

either it is 1
2

(
n

(n−1)/2

)
or

(
n

(n−1)/2

)
. If |V (F •(n, 2))| = 1

2

(
n

(n−1)/2

)
then F •(n, 2) would

have to be a complete graph which is not the case since

ω(F •(n, 2)) = ω(F (n, 2)) = ω(QI(n, 2)) =

(
n− 1
n−3
2

)
<

1

2

(
n

(n− 1)/2

)
.

Thus,

|V (F •(n, 2))| =
(

n

(n− 1)/2

)
(4.3.14)

and as F •(n, 2) is an induced subgraph of F (n, 2), we have F •(n, 2) = F (n, 2). This

means that F (n, 2) is a core. Also, since there exists a homomorphism from QI(n, 2)

to F (n, 2) (from Corollary 4.3.10), we conclude that F (n, 2) is a core of QI(n, 2) for

n odd.

Corollary 4.3.13. For n odd, F (n, 2) is isomorphic to the set of vectors of QI(n, 2)

with weight (n+ 1)/2.

Proof. Let n be odd so that ⌊n/2⌋ = (n− 1)/2. And let a and b be any two vectors

from F (n, 2). Define a map f from F (n, 2) to the set of vectors of QI(n, 2) with

weight (n+1)/2, such that any vector a goes to it’s complement a making f a one-to-

one map. So, the function f maps a vector of weight (n− 1)/2 to a vector of weight

(n+1)/2. Clearly, if a and b are adjacent then so are a and b and vice versa. Hence, f

maps adjacent vertices to adjacent vertices and hence is a homomorphic map. Since

the number of vectors of weight (n− 1)/2 is equal to the number of vectors of weight
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(n + 1)/2, the one-to-one function f is also a bijection. So, an inverse map f−1 can

be defined which maps a to a which again is a homomorphism, thus proving that the

map f is an isomorphic map.

Corollary 4.3.14. For n even, K 1
2(

n
n/2)

is isomorphic to the set of vectors of QI(n, 2)

with their first entry equal to zero and weight n/2.

Proof. Let a and b be any two vectors from QI(n, 2) with their first entry equal to

zero and weight n/2. Let entry i of the vectors a and b be denoted by ai and bi

respectively. Thus, (a1, b1) = (0, 0). Now, suppose that there exists no i such that

(ai, bi) = (1, 1). So, the only values which (ai, bi) can attain are (0, 0), (1, 0) and

(0, 1). Since the weight of the vector a is n/2, there should be exactly n/2 j’s such

that (aj, bj) = (1, 0). Because (a1, b1) = (0, 0), the weight of vector b can be at most

n−1−(n/2) = (n/2)−1, which is a contradiction to the fact that the weight of vector

b is n/2. Hence, there exists a j such that (aj, bj) = (1, 1). Again, let us suppose

that there exists no i for which (ai, bi) = (0, 1). So, the only values which (ai, bi) can

attain, in principle, are (0, 0), (1, 0) and (1, 1). There has to be at least one i for

which (ai, bi) = (1, 0) otherwise the two vectors a and b will be the same. But, this

means that vector a has more 1’s than b which creates a difference in the weight of

the two vectors leading to a contradiction. Hence, there always exists an i for which

(ai, bi) = (0, 1). Using the same argument, it can be proved that there always exists

an i for which (ai, bi) = (1, 0). From the above discussion, we can conclude that

vectors a and b are qualitatively independent. Since they are two arbitrary vectors

from QI(n, 2) with their first entry equal to zero and weight n/2, this proves that

all the vectors in this set are qualitatively independent to each other and they are

1
2

(
n

n/2

)
in number. Hence, there exists an isomorphism between K 1

2(
n

n/2)
and the set
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of vectors of QI(n, 2) with their first entry equal to zero and weight n/2.

We denote the core of the graph QI(n, g) by QI•(n, g).

Theorem 4.3.15. [7] If there exists a CA(n,G, 2) it is always possible to find a

covering array CA(n,G, 2) in which the rows are vectors with weight ⌊n/2⌋. Moreover,

if n is even, it is possible to find such a covering array with the rows all beginning

with 0.

Proof. The core of QI(n, 2) for n even is K 1
2(

n
n/2)

and F (n, 2) when n odd. For any

graph G, if there exists a CA(n,G, 2) then there exists a graph homomorphism

G −→ QI(n, 2) (from Theorem 4.3.1) (4.3.15)

and there exists another homomorphism

QI(n, 2) −→ QI•(n, 2) (4.3.16)

from the definition of the core of a graph. Hence, from Theorem 4.3.9, Corollary

4.3.14 and Equations 4.3.15 and 4.3.16, for n even, we have homomorphisms

G −→ QI(n, 2) −→ K 1
2(

n
n/2)

−→ A. (4.3.17)

(where A is the set of vectors of QI(n, 2) with their first entry equal to zero and

weight n/2). From Theorem 4.3.12 and Equations 4.3.15 and 4.3.16, for n odd, we

have homomorphisms

G −→ QI(n, 2) −→ F (n, 2). (4.3.18)

The desired covering array on G can be pulled back through these homomorphisms.
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Lemma 4.3.16. For all n ≥ 4,

χ(QI•(n− 1, 2)) < ω(QI•(n, 2)) ≤ χ(QI•(n, 2)) < ω(QI•(n+ 1, 2)).

Proof. We already know that ω(G) ≤ χ(G) for any graph G, so we only need to prove

that χ(QI•(n− 1, 2)) < ω(QI•(n, 2)) and χ(QI•(n, 2)) < ω(QI•(n+ 1, 2)).

1. Proving χ(QI•(n− 1, 2)) < ω(QI•(n, 2)):

We know that χ(G) = χ(G•) and ω(G) = ω(G•). Also that,

χ(QI(n, 2)) = ⌈1
2

(
n

⌊n/2⌋

)
⌉ and ω(QI(n, 2)) =

(
n− 1

⌊n
2
⌋ − 1

)
.

Case 1: When n is even:

χ(QI•(n− 1, 2)) < ω(QI•(n, 2))

⇔ ⌈1
2

(
n− 1

⌊(n− 1)/2⌋

)
⌉ <

(
n− 1

⌊n/2⌋ − 1

)
⇔ ⌈1

2

(
n− 1

(n− 2)/2

)
⌉ <

(
n− 1
n
2
− 1

)
⇔ ⌈1

2

(
n− 1
n
2
− 1

)
⌉ <

(
n− 1
n
2
− 1

)
, which is true for n ≥ 4.

Case 2: When n is odd:

χ(QI•(n− 1, 2)) < ω(QI•(n, 2))

⇔ ⌈1
2

(
n− 1

⌊(n− 1)/2⌋

)
⌉ <

(
n− 1

⌊n/2⌋ − 1

)
⇔ ⌈1

2

(
n− 1

(n− 1)/2

)
⌉ <

(
n− 1

n−1
2

− 1

)
⇔ ⌈

(
n− 2

(n− 3)/2

)
⌉ <

(
n− 1

(n− 3)/2

)
⇔

(
n− 2

(n− 3)/2

)
<

(
n− 1

(n− 3)/2

)
, which is true for n ≥ 4.



61

2. Proving χ(QI•(n, 2)) < ω(QI•(n+ 1, 2)):

Case 1: When n is even:

χ(QI•(n, 2)) < ω(QI•(n+ 1, 2))

⇔ ⌈1
2

(
n

⌊n/2⌋

)
⌉ <

(
n

⌊n+1
2
⌋ − 1

)
⇔ ⌈1

2

(
n

n/2

)
⌉ <

(
n

n
2
− 1

)
⇔ ⌈

(
n− 1
n
2
− 1

)
⌉ <

(
n

n
2
− 1

)
⇔

(
n− 1
n
2
− 1

)
<

(
n

n
2
− 1

)
, which is true for n ≥ 4.

Case 2: When n is odd:

χ(QI•(n, 2)) < ω(QI•(n+ 1, 2))

⇔ ⌈1
2

(
n

⌊n/2⌋

)
⌉ <

(
n

⌊n+1
2
⌋ − 1

)
⇔ ⌈1

2

(
n

n−1
2

)
⌉ <

(
n

n+1
2

− 1

)
⇔ ⌈1

2

(
n

n−1
2

)
⌉ <

(
n

n−1
2

)
, which is true for n ≥ 4.

Lemma 4.3.17. [7] For all n ≥ 4, CAN(QI•(n, 2), 2) = n.

Proof. From the definition of the core of a graph, there exists a homomorphism

QI•(n, 2) −→ QI(n, 2). But we know that there exists a graph homomorphism

QI•(n, 2) −→ QI(n, 2) if and only if there exists a CA(n,QI•(n, 2), 2) and hence
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CAN(QI•(n, 2), 2) ≤ n. Let us assume that CAN(QI•(n, 2), 2) < n which means

CAN(QI•(n, 2), 2) ≤ n− 1, so that there is a homomorphism

QI•(n, 2) −→ QI(n− 1, 2).

But there exists another homomorphism

QI(n− 1, 2) −→ QI•(n− 1, 2)

by the definition of the core of a graph. Thus, there exists a homomorphism

QI•(n, 2) −→ QI•(n− 1, 2).

But this contradicts the fact that

χ(QI•(n− 1, 2)) < χ(QI•(n, 2)). (4.3.19)

Hence, CAN(QI•(n, 2), 2) = n.

Now, we know that there exists a CA(n,G, g) if and only if there exists a graph

homomorphism from G −→ QI(n, g). Putting g = 2 and G = QI(m, 2), there exists a

homomorphismQI(m, 2) −→ QI(n, 2) if and only if there exists a CA(n,QI(m, 2), 2).

Hence, the minimum of n for which CA(n,QI(m, 2), 2) exists is the same as the

minimum of n for which there exists a homomorphism

QI(m, 2) −→ QI(n, 2), and hence,

CAN(QI(m, 2), 2) = min{n ∈ Z : ∃ a homomorphism QI(m, 2) −→ QI(n, 2)}

or, CAN(QI(m, 2), 2) = m. (4.3.20)

Corollary 4.3.18. [5] CAN(Kχ(G), 2) = min{n :
(

n−1
⌊n
2
⌋−1

)
≥ χ(G)}.
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We know that there exists a CA(n,Kχ(G), 2) if and only if there exists a graph

homomorphism Kχ(G) −→ QI(n, 2). And if there is a graph homomorphism

Kχ(G) −→ QI(n, 2)

then,

ω(Kχ(G)) ≤ ω(QI(n, 2)) =

(
n− 1

⌊n
2
⌋ − 1

)
or, ω(Kχ(G)) ≤

(
n− 1

⌊n
2
⌋ − 1

)
or, χ(G) ≤

(
n− 1

⌊n
2
⌋ − 1

)
which verifies Corollary 4.3.18.

Now, we know that

CAN(Kχ(G), 2) = min{l :

(
l − 1

⌊ l
2
⌋ − 1

)
≥ χ(G)}. (4.3.21)

Putting G = QI(n, 2) in Equation 4.3.21, we get

CAN(Kχ(QI(n,2)), 2) = min{l :

(
l − 1

⌊ l
2
⌋ − 1

)
≥ χ(QI(n, 2))}.

Because χ(QI(n, 2)) = ⌈1
2

(
n

⌊n/2⌋

)
⌉, we conclude that for n odd,

CAN(Kχ(QI(n,2)), 2) = min{l :

(
l − 1

⌊ l
2
⌋ − 1

)
≥ ⌈1

2

(
n

n−1
2

)
⌉}.

Since l = n+ 1 satisfies the equation(
n

⌊n+1
2
⌋ − 1

)
=

(
n

n−1
2

)
> ⌈1

2

(
n

n−1
2

)
⌉

and l = n does not, we conclude that

CAN(Kχ(QI(n, 2)), 2) = n+ 1. (4.3.22)

From Equations 4.3.20 and 4.3.22, we conclude that for n odd,

CAN(QI(n, 2), 2) < CAN(Kχ(QI(n, 2)), 2). (4.3.23)
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Corollary 4.3.19. [7] For any graph G,

CAN(Kχ(G), 2)− 1 ≤ CAN(G, 2) ≤ CAN(Kχ(G), 2).

Moreover, if CAN(Kχ(G), 2) is odd then

CAN(G, 2) = CAN(Kχ(G), 2).

Proof. Since there exists a homomorphism G −→ Kχ(G), we have

CAN(G, 2) ≤ CAN(Kχ(G), 2).

Let CAN(Kχ(G), 2) be odd and equal to (m + 1). So, m is even. Assume that

CAN(G, 2) ≤ m and hence a CA(m,G, 2) exists which means that there exists a

homomorphism G −→ QI(m, 2). For m even, we know that

χ(QI(m, 2)) = ⌈1
2

(
m

⌊m
2
⌋

)
⌉ =

(
m− 1

⌊m
2
⌋ − 1

)
=

(
m− 1
m
2
− 1

)
=

(
m− 1

m/2

)
and thus χ(G) ≤ χ(QI(m, 2)) =

(
m−1

⌊m
2
⌋−1

)
. We also know that

CAN(Kχ(G), 2) = min{n :

(
n− 1

⌊n
2
⌋ − 1

)
≥ χ(G)}.

Since χ(G) ≤
(

m−1
⌊m

2
⌋−1

)
, the minimum occurs when n ≤ m. This means that

CAN(Kχ(G), 2) ≤ m < m+ 1 = CAN(Kχ(G), 2)

which is a contradiction and hence CAN(G, 2) = CAN(Kχ(G), 2).

Next, we assume that m = CAN(Kχ(G), 2) is even and that CAN(G, 2) ≤ m− 2.

Then there exists a CA(m−2, G, 2) and hence a homomorphism G −→ QI(m−2, 2).

Thus,

χ(G) ≤ χ(QI(m− 2, 2)) =

(
m− 3
m−2
2

)
.
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Since

CAN(Kχ(G), 2) = min{n :

(
n− 1

⌊n
2
⌋ − 1

)
≥ χ(G)},

we have CAN(Kχ(G), 2) ≤ m− 1. This is because of the following.

(
m− 1− 1

⌊m−1
2

⌋ − 1

)
≥

(
m− 3
m−2
2

)
⇔

(
m− 2

m−2
2

− 1

)
≥

(
m− 3
m−2
2

)
⇔

(
m− 2
m
2
− 2

)
≥

(
m− 3
m
2
− 1

)
⇔ m ≥ 4

which is always true as m is even and 0 < CA(G, 2) ≤ m − 2. Having proved this,

we get CAN(Kχ(G), 2) ≤ m− 1 < m = CAN(Kχ(G), 2) which is a contradiction and

hence CAN(Kχ(G), 2)− 1 ≤ CAN(G, 2) ≤ CAN(Kχ(G), 2).

4.4 Larger alphabet size

When g > 2, the problem of finding standard covering array and covering array

on graphs becomes much difficult. We see a simple bound on both the chromatic

number and clique number of the graphs QI(n, g) and calculate an upper bound for

the chromatic number of the graphs QI(g2, g).

Corollary 4.4.1. For any g and n1 ≤ n2,

ω(QI(n1, g)) ≤ ω(QI(n2, g)) and χ(QI(n1, g)) ≤ χ(QI(n2, g)).

Proof. Let n1 < n2 which means that (n2 − n1) > 0. Now, let there be a function

f : QI(n1, 2) −→ QI(n2, 2) such that any vector u ∈ QI(n1, 2) is mapped to a vector
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v ∈ QI(n2, 2) having its first n1 entries identical to that of u and its rest (n2 − n1)

entries equal to zero. Let this function maps two adjacent vertices u1 and u2 in

QI(n1, 2) to vertices v1 and v2 in QI(n2, 2) respectively. The first n1 entries of vectors

v1 and v2 together cover all the 2-tuples (a, b) ∈ Z2
2 between them as they are a pair of

adjacent vertices themselves. Thus, all the adjacent vertices are mapped to adjacent

vertices. Hence, f is a homomorphism from QI(n1, 2) to QI(n2, 2) wherefrom we

conclude that ω(QI(n1, g)) ≤ ω(QI(n2, g)) and χ(QI(n1, g)) ≤ χ(QI(n2, g)).

Theorem 4.4.2. [7] For any integer g, χ(QI(g2, g)) ≤
(
g+1
2

)
.

Proof. Lets pick any (g+1) positions in the vectors, say the last (g+1). Since there

are g letters in our alphabet, for each vector at least one letter will occur twice in

these chosen (g + 1) places. As there are only g2 letters/entries in each vector, any

pair of vectors that have letters repeated in the same positions have one pair from Z2
g

repeated and hence will not be qualitatively independent i.e. for any two vectors u and

v, if there exist at least two i’s such that (ui, vi) = (a, b), where a, b ∈ {0, 1, ...., g−1},

then u and v are not qualitatively independent. Now, let i and j be any two positions

out of the chosen (g + 1) positions. Let all the vectors be assigned the same color

which have the same letter/entry in these two positions i and j. As seen earlier,

the vectors in any such color class are not qualitatively independent and hence no

adjacent vectors have been assigned the same color. This gives a proper coloring to

QI(g2, g) and because the number of color classes in this case is
(
g+1
2

)
, we conclude

that χ(QI(g2, g)) ≤
(
g+1
2

)
.
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4.5 Conclusion

In this chapter, we extend the definition of a covering array to include a graph struc-

ture. This action associates a graph structure to the usual covering arrays. If there

is a homomorphism from G to H, then we can obtain bounds on CAN(G, k) i.e.

(CAN(G, k) ≤ CAN(H, k)).

We studied qualitatively independence graph and observed that

∃ CA(n,G, g) ⇔ ∃ a homomorphism f : G −→ QI(n, g)

which proves that the problem of finding covering arrays on graphs is equivalent

to determining homomorphisms to the family of graphs QI(n, g). The chromatic

number and core of the graph QI(n, 2) are established here. We observed that from

a covering array CA(n,G, 2), it is always possible to construct a new covering array

CA(n,G, 2) in which the rows are vectors with weight ⌊n/2⌋. Moreover, if n is even, it

is possible to find such a covering array with the rows all beginning with 0. Finally, we

presented that the chromatic number and clique number of graphs QI(n, g) and their

cores increase monotonically with increase in n. An upper bound of the chromatic

number of QI(n, g) for n = g2 is also established.
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[8] S. Poljak, A. Pultr, and V. Rödl, On qualitatively independent partitions and

related problems, Discrete Appl. Math 6(2) (1983), 193–205.

[9] E. Sperner, Ein satz über untermengen einer endlichen menge, Math. Z. 27

(1928), 544–548.

[10] B. Stevens and E. Mendelsohn, New recursive methods for transversal covers, J.

Combin. Des. 7(3) (1999), 185–203.


