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Abstract

This study is aimed at quantum measurements with Heisenberg limited sensitivi-
ties. The high-precision measurements of length and angle variables have led to the
development of many novel techniques, both on theoretical and experimental fronts.
Squeezed states which have smaller uncertainties in some variables have long been
employed for this use. In many cases, parametric variations translate into the phase
variations, which are measured by interferometric means.
It has been demonstrated by Zurek that interference effects in the phase space can
profitably be used for the measurements of variables, which were otherwise limited
by Heisenberg uncertainty principle. For this purpose certain superposed states,viz.
Cat and kitten states have been employed. This way of achieving better sensitivity in
parameter estimation have experimentally been verified as well, using Cat-like laser
beams and has been termed as sub-Fourier sensitivity.In this work, these branches of
quantum metrology have been greatly emphasized. The role of entangled states in
quantum metrology has also been explored starting from characterization of entan-
glement to improving sensitivities in more dimensions through an entangled state
comprising superposed cat-like states.
Lastly, the concept of maximum achievable resolution, is explored through a sta-
tistical Cramer-Rao bound. This bound has been calculated for several states and
it has been found that pair coherent states have a robust nature with regards to
interferometry than many of the commonly used states in an interferometer.
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Chapter 1

Some Quantum optics

Theme

This chapter introduces the basic quantum optical framework needed for the work
that has been done in the subsequent chapters. It starts with the definition of
coherent and squeezed states highlighting the uncertainties of observables. Then,
it proceeds to a brief characterization of entanglement and finally it ends with a
description of phase. It also forms the basis of some calculations that has been done
in chapter two and three.

1.1 Coherent states

The coherent states of the radiation field are the states generated by a classically
oscillating current distribution. Hence, they are represented as

|α〉 = e(αa
†−α∗a)|0〉 (1.1)

. They can also be defined as the eigenstates of the annihilation operator a|α〉 =
α|α〉. In terms of the number states, this can be written as

|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
|n〉 (1.2)

As seen above, a coherent state is obtained by applying the displacement opertaorD(α) =
e(αa

†−α∗a) on the vaccum state. Hence, it will be a displaced form of the harmonic
oscillator ground state.
The annihilation and creation operaors for a field are

a =
1√
2~ν

(

νq + ~
∂

∂q

)

, a† =
1√
2~ν

(

νq − ~
∂

∂q

)

(1.3)

Since a|0〉 = 0, this equation reduces to
(

νq + ~
∂

∂q

)

φ0(q) = 0 (1.4)
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A normalized solution to this equation is given by

φ0(q) =
( ν

π~

) 1
4
e−

νq2

2~ (1.5)

Higher order eigenfunctions are represented by

φn(q) =
1

(2nn!)1/2
Hn

(
√

ν

~
q

)

φ0(q) (1.6)

where Hn are the Hermite polynomials. The uncertainties in generalized coordinate
and momentum variables are given by

∆p2 = ~ν

(

n+
1

2

)

∆q2 =
~

ν

(

n+
1

2

)

(1.7)

The product in their uncertainties are given by

∆p∆q =

(

n+
1

2

)

~ (1.8)

From here, it can be seen that for the ground state wave function, this has the
minimum possible value of ~

2
. Now, a wave packet which maintains the same variance

∆q while undergoing a simple harmonic motion would correspond most closely to a
classical field. Hence, writing a displaced ground state of a harmonic oscillator,

ψ(q, 0) =
( ν

π~

)1/4

e[−
ν
2~

(q−q0)2] (1.9)

The time evolution of this wave packet would mean that the probability density at
a later time is

|ψ(q, t)|2 =
( ν

π~

)1/2

e[−
ν
~
(q−q0cosνt)2] (1.10)

It can be seen from here that the wave packet does not change its shape while oscil-
lating. Due to this coherence in its shape it is called a coherent wave packet. This
state has the minimum product of uncertianties, which can be separately checked
as well. For a coherent state, ∆p∆q = ~

2
. Coherent states are the closest analogue

to a free classical, single-mode field.

1.2 Squeezed states

Now that we have understood coherent states as the minimum uncertainty states,
it is certainly easy to introduce squeezed states through the uncertainty relation.
Consider two Hermitian operator A and B satisfying the commutation relation

[A,B] = iC (1.11)
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Heisenberg uncertainty principle states that the product of uncertainties in these
two observables

∆A∆B ≥ 1

2
|〈C〉| (1.12)

A state of the system will be called squeezed state, if the uncertainties in one of the
observables satisfy the relation

(∆A)2 <
1

2
|〈C〉| (1.13)

In addition to this condition, if the two variances satisfy the minimum uncertainty
relation,

∆A∆B =
1

2
|〈C〉| (1.14)

then the state would be called an ideal squeezed state. It means that in a squeezed
state, the uncertainty in one variable is reduced at the expense of an incrrease in
the uncertainty in another.
The squeezed states of the radiation field have a deep connection with the degenerate
parametric processes. A two photon hamiltonian can be written as

H = i~(ga†2 − g∗a2) (1.15)

where g is a coupling constant. The state of the field generated will be

|ψ(t)〉 = e(ga
†2−g∗a2)t|0〉 (1.16)

It leads us to the definition of a unitary squeeze operator

S(ξ) = e(
1
2
ξ∗a2− 1

2
ξa†2) (1.17)

where ξ = reiθ is an arbitrary complex number. We find that

S†(ξ) = S−1(ξ) = S(−ξ) (1.18)

It is important to note the unitary transformation properties of the squeeze operator

S†(ξ)aS(ξ) = a cosh r − a†eiθ sinh r

S†(ξ)a†S(ξ) = a† cosh r − ae−iθ sinh r

(1.19)

A squeezed coherent state is a canonical example of a coherent state. It is
obtained by first operating the displacement operator on the vacuum state and later
acting it with a squeezing operator.

|α, ξ〉 = S(ξ)D(α)|0〉 (1.20)

The difference between this state and the standard coherent state should be noted
here, as a coherent state is generated by linear terms a and a† where as this state
has quadratic terms involving a and a†. By making use of transformation properties
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of displacement and squeezing operators, the operator expectation values of the
squeezed coherrent state can be found out. It turns out that the variances of rotated
amplitudes Y1 and Y2 where Y1 + iY2 = ae−i θ

2 can be found out as

∆(Y1)
2 = 〈Y 2

1 〉 − 〈Y1〉2 =
1

4
e−2r (1.21)

and

∆(Y2)
2 =

1

4
e2r (1.22)

such that ∆Y1∆Y2 = 1
4

stressing that a squeezed coherent state is indeed an ideal
squeezed state. The degree of squeezing is determined by r = |ξ| which is called the
squeezing parameter.

1.3 Entanglement characteristics

Quantum entanglement plays a fundamental role in almost all branches of quan-
tum information. Entanglement in several quantum states is used as a resource in
many of the protocols for quantum communication and computaion. Hence, the
understanding of entanglement characteristics assumes a central role in quantum
information theory. This issue was addressed for the first time by Peres[3], in terms
of the negative eigenvalues of the partial transpose of the composite density operator
as a measure of entanglement. Later, Horodecki showed that Peres’s inseparability
criterion was a necessary and sufficient condition for inseperability of 2 × 2 and
2 × 3 dimensional states but it ceased to be a necessary condition for higher di-
mensional states. Duan et.al had proposed an inseparability condition based on
the variances of EPR operators. They found a lower bound for separable states
based on Heisenberg’s uncertainty condition. This bound was said to be exceeded
by entangled states, which meant that this provided a sufficient condition for testing
entanglement for a continuous variable state. Later in the paper, they also show
that for Gaussian states, this reduces to be the necessary and sufficient condition.
Considering the EPR-like operators

û = |a|x̂1 +
1

a
x̂2

v̂ = |a|p̂1 −
1

a
p̂2 (1.23)

To prove the sufficient condition for inseparability, it is needed to be shown that for
any separable quantum state characterized by a composite density operator ρ, the
sum of the variances of the operators defined above satisfies

〈(∆û)2〉ρ + 〈(∆v̂)2〉ρ ≥ a2 +
1

a2
(1.24)

The proof for this inequality follows from the calculation of the variance of these
operators and then using Cauchy-Schwarz inequality. Then, by means of two lemma
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they prove that this is indeed the necessary and sufficient condition for inseparabil-
ity of a Gaussian state.
However, in the context of quantum information, non-Gaussian states hold the same
importance as Gaussian states. Hence, characterization of entanglement for such
states is an equally important problem. Agarwal[5] demonstrated the limitations of
existing inseparability criteria based on second order correlations. Based on Peres-
Horodecki condition, he derived a new set of inseperability inequalities, involving
higher order correlations of quadrature variables. Considering the following contin-
uous variable Bell state

ψ(xa, xb) =

√

2

π
(αxa + βxb)e

−x2a+x2
b

2 (1.25)

Here |α2|+ |β|2 = 1. It can be seen that this is a non-Gaussian state in coordinate
space. The Peres-Horodecki condition states that for this state to be inseperable,the
partial transpose of its density matrix must have at least one negative eigenvalue.
It is shown that the partial transpose of the density matrix

ρPT = |α|2|1, 0〉〈1, 0|+ |β|2|0, 1〉〈0, 1|+ α∗β|0, 0〉〈1, 1|+H.c... (1.26)

has the eigenvalues |α|2, |β|2, ±|α||β|. The negative eigenvalue shows that the given
state is inseperable or entangled. However, the sum of variances

〈(∆û)2〉ρ + 〈(∆v̂)2〉ρ = |a|2 + 1

a2
+ 2

(

|α|2|m|2 + 1

m2
|β|2
)

(1.27)

is clearly greater than |a|2+ 1
a2

. Hence it should have been a separable state. There-
fore, the inequalities based on second order variances are not able to detect entangle-
ment in this case. Then inequalities based on higher order correlations are derived
starting from the Peres- Horodecki condition for inseperability, which finally char-
acterize entanglement in this non-Gaussian state. In second chapter of this report
as well, we report our state to violate this inequalty on the same grounds.

1.4 The quantum phase

The concept of phase in quantum mechanics is an intriguing topic and needs a
detailed formalism to be understood as an observable. The uncertainties in phase
measurement forms the crux of this work and hence having a sound understanding,
in this regard is needed. Here, the formalism is briefly illustrated at an introductory
level. The electric field, in a single-mode plane wave is represented by[2]

Ê(r, t) = i

(

~ω

2ǫV

)

ex

[

âei(k.r−ωt) − â†e−i(k.r−ωt)
]

(1.28)

Considering a light wave as being described in classical electromagnetic theory,

Ê(r, t) = exE0cos(k.r− ωt+ Φ)

= ex

E0

2

[

ei(k.r−ωt+Φ) + e−i(k.r−ωt+Φ)
]

(1.29)

5



From these two relations, one may think to write â in the polar form. Dirac[6] was
the first to write the annihilation and creation operators as

â = eiφ̂
√
n̂

â† =
√
n̂e−iφ̂ (1.30)

Here, φ̂ is thought to be a hermitian operator for phase. The commutaion relation

[â, â†] = 1 (1.31)

gives

eiφ̂n̂e−iφ̂ − n̂ = 1 (1.32)

or
eiφ̂n̂− n̂eiφ̂ = eiφ̂ (1.33)

Expanding the exponentials in above equation, it can be seen that it means

[n̂, φ̂] = i (1.34)

The commutation relation means that Heisenberg uncertainty principle would lead
us to ∆φ̂∆n̂ ≥ 1

2
. However, this decomposition and the following conclusion are

not correct . The Dirac approach fails because of the assumption that φ̂ can be
interpreted as a hermitian operator. If that were so, then eiφ would have been a
unitary operator. It can be checked through a straightforward calculation,

eiφ̂e−iφ̂ = ân̂
−1
2 n̂

−1
2 â† =

ââ†

n̂
6= 1 (1.35)

that eiφ̂ is not a unitary operator and thereby φ̂ is not hermitian. The main cause
of this problem is the restriction on n̂, the number operator to have only positive
integers as its eigenstates. Hence a suitable extension of number operators, so as to
include negative integers as well can help us get rid of this anomaly.
Another problem with this formalism is the belief that φ̂ is an angle operator. This
is also circumvented in an elegant manner[7] by introducing a periodic coordinate
Φ(φ) behaving in a dicontinuous manner. There have been numerous attempts to
create a formalism which can overcome these shortcomings.

The Susskind-Glogower[8] approach is fundamental in this regard and has un-
dergone many improvements over the years. The Susskind-Glogower(SG) operators
are defined as

Ê = (n̂+ 1)−
1
2 â = (ââ†)−

1
2 â

Ê† = â†(n+ 1)−
1
2 = â†(ââ†)−

1
2

These are called exponential operators due to their analogy with phase factors e±iφ.
Applied on a Fock state

Ê|n〉 = |n− 1〉 n 6= 0

= 0 (1.36)
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for n = 0.

Ê†|n〉 = |n+ 1〉 (1.37)

. These two operators can also be expresssed as

Ê =
n=∞
∑

n=0

|n〉〈n+ 1| Ê† =
n=∞
∑

n=0

|n+ 1〉〈n| (1.38)

. It can be shown that

ÊÊ† =
∞
∑

n=0

∞
∑

n
′
=0

|n〉〈n+ 1|n′

+ 1〉|n′〉 =
∞
∑

n=0

|n〉〈n| = 1 (1.39)

However,

Ê†Ê =
∞
∑

n=0

∞
∑

n′=0

|n+ 1〉〈n|n′〉|n′

+ 1〉 =
∞
∑

n=0

|n+ 1〉〈n+ 1| = 1− |0〉〈0| (1.40)

means that Ê is not an unitary operator. Also, it should be noted that E and E†

are not observables, but operators. Hence, from these two operaors two Hermitian
operators are constructed.

Ĉ =
1

2
(E + E†) Ŝ =

1

2i
(E − E†) (1.41)

Their commutation relations

[C, S] =
1

2
i|0〉〈0|

[

Ĉ, n̂
]

= iŜ
[

Ŝ, n̂
]

= −iĈ (1.42)

leads to uncertainty relations

(∆n)(∆C) ≥ 1

2
|〈Ŝ〉| (1.43)

(∆n)(∆S) ≥ 1

2
|〈Ĉ〉| (1.44)

It should be observed from here that in the case of number states, ∆n would be zero.
Therefore, |〈Ŝ〉| = |〈Ĉ〉| = 0. For n ≥ 1, the uncertianties in Ĉ and Ŝ is calculated
to be

∆Ĉ = ∆Ŝ =
1√
2
. (1.45)

The eigenstates |φ〉 satisfying

Ê|φ〉 = eiφ|φ〉 (1.46)

7



are given by

|φ〉 =
∞
∑

n=0

einφ|n〉 (1.47)

The scalar product 〈φ1|φ2〉 does not result in a delta function which suffices that
these states are not orthogonal. However,

1

2π

∫ 2π

0

dφ|φ〉〈φ| = 1 (1.48)

as
∫ 2π

0

ei(n−m)φdφ = 2πδnm (1.49)

The phase distribution P (φ) of an arbitrary phase state can accordingly be defined
as

P (φ) =
1

2π
|〈φ|ψ〉|2 (1.50)

Writing |ψ〉 =∑∞
n=0Cn|n〉, where

∑∞
n=0 |Cn|2 it reduces to be

P (φ) =
1

2π
|

∞
∑

n=0

e−inφCn|2 (1.51)

The uncertainty in phase measurements holds a significant value for this work, due
to which the concept of phase as an eigenstate is illustrated in detail. Here, the
uncertainty can be evaluated simply by calculating the expectaion value of the phase
using the given distribution function as

∆φ =

√

〈φ̂2〉 − 〈φ̂〉2 (1.52)

where

〈f(φ)〉 =
∫ 2π

0

f(φ)P (φ)dφ (1.53)
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Chapter 2

Heisenberg Limited Metrology with

Pair Coherent states

Theme

The efficacy of Cat state in Heisenberg limited measurements is explored,in close
contact with available experimental setups. Subsequently, it is shown that a specific
entangled Cat state can substantially improve the accuracy of the desired quantum
metrology.The nature of the entanglement is quantified after which we demonstrate
the possibility of physically realizing this state in dissipative systems.

2.1 Introduction

Historically, the partition function, in classical statistical mechanics was first to
showcase a constant which had the dimensions of angular momentum. This was
expressed to be

Z =

∫

dp dq

h
e
− E

kBT , (2.1)

It was identified to be dimensionally equivalent to dp dq. Hence, it was related to
the area in the phase space. However, Heisenberg uncertainty principle, in terms
of uncertainties associated with non-commuting observables introduced a question
whether or not, structures in phase space having area less h̄

2
are actually possible

Coherent states, characterizing lasers are well known to be classical [9, 10]. However,
the superposition of multiple coherent states can show counter-intuitive behavior
[11, 12]. It has been recently shown by Zurek that Cat and kitten states given
respectively by,

| ψ〉 = | α〉+ | −α〉√
2

and | φ〉 = | α〉+ | −α〉+ | iα〉+ | −iα〉
2

, (2.2)

reveal sub-planck structures, having immense potential for problems in high-precision
measurements. Here, it has been shown that subtle changes in the carrier frequen-
cies and other parameters, for example phase, which has recently been a hot topic
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in quantum metrology due to its applications in gravitational wave detection can
be measured, with Heisenberg limited accuracies. The experimental realization of
the above proposal was carried in a recent experiment[15] involving superposed laser
beams given by

ψ(t) =

(

e−
(t−t0)

2

4σ2 + e−
(t+t0)

2

4σ2

)

e−iωct and ψδ(t) =

(

e−
(t−t0)

2

4σ2 + e−
(t+t0)

2

4σ2

)

e−iωcx eiδt

(2.3)
Now, their overlap function being

〈ψ|ψδ〉 =
∫ +∞

−∞
ψ∗(t)ψδ(t)dt = 2σ

√
2πe

−
(

σ2δ2

2

)(

cos(δt0) + e−
t20
2σ2

)

(2.4)

suggests that we can have an orthogonal state corresponding to the original super-
position, for appropriate displacements in carrier frequencies,

This experiment had originally been done in the time-frequency domain with
laser beams being used as Gaussian profiles. The separation of two such pulses i.e.,
2t0 had been taken as 305 fs and 309 fs in two different experiments The measured
uncertainty in time i.e., ∆t, was found to be 20.1 ± 0.5 fs and hence the minimum
value for ∆ν would be restricted to 4.0 ± 0.1 THz. Now in accordance with the
above equation, for sufficiently large values of the separation between two pulses,
one can have arbitarily small δ, the shift in carrier frequency or the parameter to
be estimated here. However,experimental conditions have a restricting role on the
minimum value of δ that can be inferred from the orthogonality of | ψ〉 and | ψδ〉.
Nevertheless, the value of δ for this experiment comes out to be 3.3 THz, which
notably is less than the uncertainty calculated.

This sub-fourier resolution opens up the possibility of tremendous precisions in
quantum parameter estimations

It needs to be mentioned that the Cat state provides sensitivity along only one
direction in phase space where as the kitten state achieves the both in time and
frequency domain. This is apparent from the representation of kitten state

ψ(x) =

(

e−
(x−α)2

4σ2 + e−
(x+α)2

4σ2 + e−
(x+iα)2

4σ2 + e−
(x−iα)2

4σ2

)

, (2.5)

as we compare this with the cat state.
The possibility of experimentally realizing the kitten state and their decoherence

properties have been thoroughly investigsted[16]. The fact that some of these states
naturally manifest in dissipative systems may aid in their preparation and use[11, 16]
It was found that an entangled Cat state involving two particles can carry out param-
eter estimation, with better accuracy[19].The use of entangled states for precision
lithography and other applications have generated considerable interest in them[? ].

In the following , we start with the odd Cat state | α〉− | −α〉 which comprises all
the odd oscillator states and compare it with | α〉+ | −α〉, involving the even states.
We study it’s sensitivity in parameter estimation and contrast it with the even state
| α〉+ | −α〉. We then characterize the entanglement properties of entangled Cat
state of the type | ±α−〉1 | ±iα+〉2+ | ±iα+〉1 | ±α−〉2 and show it’s efficacy in
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improving the sensitivity in the above parameter estimation. Here, | ±α±〉 is griven
by

| ±α±〉 = | α〉± | −α〉√
2

(2.6)

2.2 The odd Cat state

The odd cat state, is obtained after accumulating odd terms in the expansion of the
coherent state unlike the popular Cat state which is obtained with even terms.The
importance of this state, in this work will become evident when we examine the en-
tanglement characteristics of the compass state. It is represented by a wavefunction

Φα(x) = Ψα(x)−Ψ−α(x) =

√

1

σ
√
2π(1− e

−α2

2σ2 )
(e−

(x −α)2

4σ2 − e−
(x + α)2

4σ2 ) (2.7)

The quantum chararacter of this state is characterized by the Wigner function
being defined as

W (x, p) =
1

h

∫

Ψ∗(x − a) Ψ(x + a) e
2iπpa

h da, (2.8)

. The Wigner function describes quantum mechanics in a manner, resembling the
classical statistical description in the phase space. Since it is not a probability
distribution,it can be negative as well. The negativity of the Wigner function implies
the quantum character of the given state. On calculating for the given state, this
comes out to be

W =
σ
√
2π

h
{e−

(

σ2k2

2

)

(

e−
(x2 +α)2

2σ2 + e−
(α−x

2 )
2

2σ2

)

− e−
σ4k2+x2

4
2σ2

(

2cos

(

α2k2

σ2

) )

} (2.9)

This form of the Wigner function which essentially is oscillatory in nature asserts
that it would be negative in certain regions, establishing the quantum character of
the above state. It is worth mentioning here that the Wigner function for a Gaussian
state, being the fourier transform of a Gaussian, is positive everywhere, supporting
our earlier assertion that Gaussian states are ’classical’. The oscillaotry strucure has
significant implications for quantum metrology as they correspond to the presence
of sub-Planck structures.

The uncertainty in position and momentum operators for this state can be ob-
tained as

∆x =
√

〈x2〉− < x >2 =

√

√

√

√

(

σ2 +
α2

1− e−
α2

2σ2

)

and ∆p =
√

< p2 > − < p >2 =
~

2σ2

√

√

√

√

√





σ2
(

1− e−
α2

2σ2

)

+ α2e
−α2

2σ2

(

1− e−
α2

2σ2

)



(2.10)
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The negative exponential term in the denominator is the only variation from the
general Cat state. Also from here, we can infer that the superposed cat state is
not the minimum uncertainty state unlike the coherent states as the product of the
squares of the uncertainties comes to be

〈∆x2〉〈∆p2〉 = ~
2

4σ2
(σ2 +

α2

1− e
−α2

2σ2

)(1 +
e

−α2

2σ2 α2

σ2

1− e
−α2

2σ2

) (2.11)

It is evident from here that the values of uncertainties will be slightly different
for this case as compared with the cat state. However,the quantum parameter
estimation done by using the odd superposition in the same way as done in [15] will
fetch us

〈ψ|ψδ〉 =
∫ +∞

−∞
ψ∗
α(x)ψ

δ
α(x)dx = 2σ

√
2πe

−
(

σ2δ2

2

)(

cos(αδ)− e−
α2

2σ2

)

(2.12)

It is quite obvious to see that for the same α, i.e, the separation between two gaussian
wavepackets we would obtain the same δ which is the interval between two zeros in
the intensity plot, the parameter we wish to estimate here for both the states.

2.3 The entangled Compass state

An entangled, bipartite system where the two constituents are themselves charac-
terized by Cat states, can be represented as

| ψ〉c =
1√
2
(A | ±α+〉1 | ±iα+〉2 + B | ±iα+〉1 | ±α+〉2) (2.13)

where A = A1 + iA2andB = B1 + iB2 are complex parameters which control the
entanglement. Here, the two constituents or the two modes of the field are described
by the Cat states and the combined state is an entangled system.

The system as described by | ψ〉c, is known as Compass state in literature. The
rationale behind the use of odd cat state is now evident with the relation

〈±α− | ±iα+〉 = 0 (2.14)

highlighting the orthogonality of the even and odd cat states and hence we modify
our state in Eq. (2.13) to be

| ψ〉c =
1√
2
(A | ±α−〉1 | ±iα+〉2 + B | ±iα+〉1 | ±α−〉2) (2.15)

such that it resembles more closely to the EPR state |01〉+|10〉√
2

. As can be noted, these

states are the eigenstates of a2b2 which imparts them a cubic algebra represented by

K− = a2b2;K+ = a†
2

b†
2

(2.16)

such that
[K0, K±] = ±K±, [K+, K−] = 2cK0 + 4hK3

0 (2.17)
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This is also known as Higg’s algebra. Taking K+ and K− as the general creation
and annihilation operators we find these states to be the steady state solutions of
the master equation governing the evolution of a general Hamiltonian [20, 21].

∂ρ

∂t
= −ig(K−ρ− ρK− +K+ρ− ρK+) +

κ

2
(2K−ρK+ −K+K−ρ− ρK+K−) (2.18)

The state in Eq.) does not satisfy the criterion for separability based on the
variances of two EPR operators as given in [23, 24]

Sensitivity

These entangled compass states can be represented by

Ψc(x1, x2) = N(Aψ(x1)φ(x2) + Bψ(x2)φ(x1)) (2.19)

where ψ(x) and φ(x) themselves are the wavefunctions representing the super-
posed states in Eq(13) such that

〈x | ±α−〉 = ψ(x) =
e−

(x−x0)
2

2σ2 − e−
(x+x0)

2

2σ2

√
2π

1
4σ

1
2 [1− e−

x20
σ2 ]

1
2

(2.20)

represents the odd cat state and

〈x | ±iα+〉 = φ(x) =
e−

x2

2σ2+ip0
x
~ + e−

x2

2σ2−ip0
x
~

√
2π

1
4σ

1
2 [1 + e

−p20σ
2

~2 ]
1
2

(2.21)

represents the even momentum state.
Now as pointed out by Toscano et al. [14], we consider two displacement op-

erators D1(α) and D2(β) such that they displace particles 1 and 2 by amounts α
and β. This leads our system to be in a new state |ψ〉per = D1(α)D2(β) | ψ〉c. For
equal amount of displacements of both the particles i.e, α = β = x0

|x0| , the overlap
function, is found to be proportional to

|〈ψc|ψ〉per|2 ∝ 1 + cos(4x0(s+ θ)) (2.22)

The phase difference of θ underlies the difference due to the odd Cat state.
Clearly, one can see that for displacements x ∼ π

4x0
− θ, the overlap function attains

a minimum. This should be contrasted with the result for one particle Cat state
discussed in detail above. Henceforth, the role of this state in carrying out the
Heisenberg limited measurements gets emphasized.

To study the sub-planck structure in the phase space, we set out to compute the
Wigner function for the state in Eq(2.13) as has been done in [19] .

The correlation function is first obtained as

c(x1, a1, x2, a2) = Ψ†(x1 +
a

2
, x2 +

b

2
)Ψ(x1 −

a

2
, x2 − b/2) (2.23)
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The Wigner function, can then be computed as

W (x1, p1; x2, p2) =
1

(2π~)2

∫ ∞

−∞

∫ ∞

−∞
c(x1, a1, x2, a2)e

i
(p1a+p2b)

~ dadb, (2.24)

which yields,

W (x1, p1; x2, p2) =
2σ2|N |2
π~2

e
x21+x22

σ2 e
(p21+p22)σ

2

~2 ((WD1+WD2)+e
− x20

2σ2−
p20σ

2

2~2 (WOD1+WOD2)).

(2.25)
Here, WD1, WD2 are the diagonal terms and WOD1 and WOD2, the off-diagonal

terms in the evaluation of Wigner Integral. They have been computed as

WD1 = 2|A|2(e−
x20
σ2−

p20σ
2

~2 cosh

(

2p0p2σ
2

~2

)

cosh

(

2x0x1
σ2

)

+ e−
x20
σ2 cosh

(

2x0x1
σ2

)

cos

(

2p0x2
~

)

+e−
p20σ

2

~2 cos

(

2x0p1
~

)

cosh

(

2p0p2σ
2

~2

)

+ 2 cos

(

2p0x2
~

)

cos

(

2x0p1
~

)

) (2.26)

It can be seen that the first three terms are multiplied with Gaussian factors which
for large values of the arguments will render them negligible The only term that
would contribute significantly is the last oscillatory term. The zeros of this term
are spaced between intervals of length π~

2p0
in each x2 and p1 directions. This clearly

indicates the presence of sub-Planck structures in x2, p1. A similar inference can be
drawn from the following expression.

WD2 = 2|B|2(e−
x20
σ2−

p20σ
2

~2 cosh

(

2p0p1σ
2

~2

)

cosh

(

2x0x2
σ2

)

+ e−
x20
σ2 cosh

(

2x0x2
σ2

)

cos

(

2p0x1
~

)

+ e−
p20σ

2

~2 cos

(

2x0p2
~

)

cosh

(

2p0p1σ
2

~2

)

+ 2 cos

(

2p0x1
~

)

cos

(

2x0p2
~

)

) (2.27)

The off-diagonal terms can be obtained as

WOD1 = ((A1B1 + A2B2)− (A1B2 − A2B1))(e
ip0x0

~ (cosh

(

(
x0
σ2

− ip0
~
)(x1 + x2) + (

ix0
~

− p0σ
2

~2
)(p1 − p

+ cosh

(

(
x0
σ2

− ip0
~
)(x1 − x2) + (

ix0
~

− p0σ
2

~2
)(p1 + p2)

)

)

+ e
−ip0x0

~ (cosh

(

(
x0
σ2

+
ip0
~
)(x1 + x2) + (

ix0
~

+
p0σ

2

~2
)(p1 − p2)

)

+ cosh

(

(
x0
σ2

+
ip0
~
)(x1 − x2) + (

ix0
~

+
p0σ

2

~2
)(p1 + p2)

)

)

+ 2(cos

(

p0(
(x1 − x2)

~
− i

(p1 + p2)σ
2

~2
)

)

cosh

(

x0(
(x1 + x2)

σ2
+ i

(p1 − p2)

~
)

)

+ cos

(

p0(
(x1 + x2)

~
− i

(p1 − p2)σ
2

~2
)

)

cosh

(

x0(
(x1 − x2)

σ2
+ i

(p1 + p2)

~
)

)

))

(2.28)

(2.29)
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The off-diagonal terms can be computed as

WOD2 = ((A1B1 + A2B2) + (A1B2 − A2B1))(e
ip0x0

~ (cosh

(

(
x0
σ2

− ip0
~
)(x1 + x2)− (

ix0
~

− p0σ
2

~2
)(p1 − p

+ cosh

(

(
x0
σ2

− ip0
~
)(x1 − x2)− (

ix0
~

− p0σ
2

~2
)(p1 + p2)

)

)

+ e
−ip0x0

~ (cosh

(

(
x0
σ2

+
ip0
~
)(x1 + x2)− (

ix0
~

+
p0σ

2

~2
)(p1 − p2)

)

+ cosh

(

(
x0
σ2

+
ip0
~
)(x1 − x2)− (

ix0
~

+
p0σ

2

~2
)(p1 + p2)

)

)

+ 2(cos

(

p0(
(x1 − x2)

~
+ i

(p1 + p2)σ
2

~2
)

)

cosh

(

x0(
(x1 + x2)

σ2
− i

(p1 − p2)

~
)

)

+ cos

(

p0(
(x1 + x2)

~
+ i

(p1 − p2)σ
2

~2
)

)

cosh

(

x0(
(x1 − x2)

σ2
− i

(p1 + p2)

~
)

)

))

(2.30)

It can be seen from here that unlike the diagonal elements, the ocillatory terms
in off-diagonal elements are severely damped for large values of x0 and p0. Hence
collecting the significant terms in the mesoscopic limit, we can approximate the
Wigner function to be:

W (x, p) = 4|A|2 cos
(

2p0x2
~

)

cos

(

2x0p1
~

)

+ 4|B|2 cos
(

2p0x1
~

)

cos

(

2x0p2
~

)

(2.31)
As has been analyzed earlier, from this expression, one can find the zeros in (x1, p1)
as well as (x2, p2) planes. This again corresponds to the presence of sub-Planck
structures in these planes.

2.4 Conclusion

The Cat state | α〉− | −α〉 has been found to be well suited for quantum metrology
and can be generated in dissipative systems.The bipartite entangled state | ±α−〉1 |
±iα+〉2+ | ±iα+〉1 | ±α−〉2 provides a uniformity in the directions in phase space in
the context of sub-planck structures which highlights it’s significance in the metro-
logical processes.
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Chapter 3

Heisenberg Limited Metrology with

Pair Coherent states

Theme

We explore the maximum resolution for phase measurement in a Mach-Zehnder in-
terferometer. The input state that has been employed is the pair coherent state and
we evaluate the Quantum Cramer-Rao Bound (QCRB) to investigate the maximum
resolution possible in the Mach-Zehnder interferometer. It is found that the uncer-
tianty in phase measurements using certain special class of states are less than the
Heisenberg limit.

3.1 Introduction

Precise phase estimation has always been a significant problem for many applica-
tions, the most notable of them being gravitational wave detection. In conventional
processes of phase measurement, a Mach-Zehnder Interferometer is used. As is de-
tailed in the following sections, the determination of phase is dependent on the input
light state. For an input state having one mode as coherent state with average num-
ber of photons, N̄ and other as vacuum, the uncertainty in phase measurements is
limited by shot noise, 1√

N̄
. This limitation was overcome by using quantum proper-

ties like entanglement and in some cases, superposing more number of states. The
uncertainty for these states is restricted by Heisenberg limit, which scales as 1

N̄
. In

this chapter, we investigate the minimum possible phase measurements obtained
from statistical Cramer-Rao bound. We witness that for a special class of state,
called pair coherent state, the Cramer-Rao bound comes out to be in sub-Heisenberg
regime.

3.2 The Schwinger representation

J. Schwinger’s notes on Quantum Theory of Angular Momentum establishes an in-
teresting connection between the algebra of angular momentum operators and the
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algebra of uncoupled oscillators, or in the present context that of electromagnetic
field. Here, in this section, this formalism is briefly described. Writing the annihi-
lation operators of a two-mode field as a and b, we construct the operators

Jx =
a†b+ ab†

2

Jy =
a†b− ab†

2i

Jz =
a†a− b†b

2
(3.1)

These equations satisfy

[Ji, Jj ] = iǫijkJk (3.2)

Writing

J± = Jx ± iJy (3.3)

we observe that they have an underlying SU[2] algebra with

[J+, J−] = 2Jz

[Jz, J±] = ±J±
(3.4)

An important point to be noted here is that during the entire process

J2 =
N

2
(
N

2
+ 1) (3.5)

remains invariant, where N = a†a+b†b
2

Jz denotes the difference in the number of photons between the two modes.Jx
and Jy are the quadrature interference terms of the two fields and hence they signify
the phase difference between the two fields. In this manner, the standard Heisenberg
uncertainty relation

∆Jz∆Jx ≥ 1

2
|〈Jy〉| (3.6)

reduces to

∆(Na −Nb)∆(φa − φb) ≥ 1 (3.7)

3.3 The Mach-Zehnder Interferometer

A four-port optical lossless device such as a Mach-Zehnder Interferometer, can be
described by a unitary operator for rotation matrices, in terms of Euler angles.

U =

(

cos β
2
ei(α+γ)/2 sin β

2
ei(α−γ)/2

− sin β
2
e−i(α−γ)/2 cos β

2
e−i(α+γ)/2

)

(3.8)
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Figure 3.1: Mach-Zehnder Inferometer.

This can be seen from the construction of the MZI, as is shown in the following
schematic diagram. It consists of two beam splitters, two reflecting mirrors and a
phase shifter, which lets it to function as an interferometer. The light field enters
the apparatus through the input ports A and B and exits through the output ports
C and D. The objective is to measure the phase difference between the two arms of
the interferometer, by measuring the intensity difference at the output ports.

3.3.1 Beam Splitter Matrix

A beam splitter can be identified as a two state quantum system with two input
and output ports. It does a transformation given by the matrix

R =

(

r t
′

t r
′

)

(3.9)

where r,t and r
′
, t

′
are the reflection and tranmission coefficients for the input port

1 and 2 respectively. The assumption that this beam splitter is idealized and lossless
imposes unitarity on this matrix, thus giving us a relation between the coefficients
for the two input ports.

r
′

= r∗ t
′

= −t∗, (3.10)

Writing the coefficients in terms of their modulus and phase, for ex- r = |r|eiδr and
so on, one obtains

(δr′ − δt′ ) + (δr − δt) = π (3.11)

Considering a symmetric beam splitter,i.e one which does not discriminate between
the two input ports, we find that

(δr′ − δt′ ) = (δr − δt) =
π

2
(3.12)

This phase difference of π
2

introduces a factor of i with the transmission coefficients.
Hence, our beam splitter matrix becomes

R =

(

r ±it
±it r

)

(3.13)
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This operaion is equivalent to α = −γ = π
2
,β = ±φ in Eq.1, which gives us

U =

(

cos φ
2

i sin φ
2

i sin β
2

cos φ
2

)

(3.14)

Its action on a bidimensional vector with its components as two field amplitudes
is represented as

(

aout

bout

)

=

(

cos φ
2

i sin φ
2

i sin β
2

cos φ
2

)(

ain

bin

)

(3.15)

In terms of the Schwinger representation, the corresponding SO(3) rotation will be





Jout
x

Jout
y

Jout
z



 =





1 0 0
0 cosφ ± sinφ
0 ± sinφ cosφ









J in
x

J in
y

J in
z



 (3.16)

This expression is achieved by examining the role of Schwinger operators in the
light of rotation of the field amplitudes. Now, it can be seen that this operation is
equivlent to a rotation of the light state by ±φ around x axis. For the symmetric
beam splitter described above with r = t = 1√

2
, so that it becomes a 50− 50 beam

splitter, we witness a rotation of π
2

about x axis. Hence,

Jout
y = e±iπ

2
JxJ in

y e
±iπ

2
Jx = ±J in

z (3.17)

and similarly,

Jout
z = e±iπ

2
JxJ in

z e
±iπ

2
Jx = ∓J in

y (3.18)

The action of this beam splitter on the eigen state of J2 and Jz operator is given by

|jµ〉outz = e±iπ
2
Jx |jµ〉inz = |j ± µ〉y. (3.19)

To illustrate this further, let us see the action of this beam spliiter in the Schwinger
representation in case of a twin photon input|11〉=|10〉z Now,

ei
π
2
Jx |10〉z =

1
∑

µ=−1

iµd10µ

(π

2

)

|1µ〉z

=
i√
2
(|11〉z + |1− 1〉z)

=
i√
2
(|20〉z + |02〉z) (3.20)

This is a popular result in case of a 50 − 50 beam splitter that the twin pho-
ton state emerges together at the same output port as (|11〉z) is supressed by the
destructive quantum interference.
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3.3.2 The phase shift

In an MZI, the phase difference between the two arms of the interferometer is mea-
sured by measuring the intensity difference at the output ends. Now this difference
may be introduced by a sample which is placed along one arm of the interferometer
or motion of one of the mirrors or due to any other source. Without this difference
in phase the beams along both the arms of the interferometer will interfere construc-
tively on one of the output ports and destructively, on another. This action can be
represented by

(

aout

bout

)

=

(

eiφ/2 0
0 ei−φ/2

)

(3.21)

which is nothing but a rotation of φ around z. Hence, a phase difference of φ will
amount to

|ψ〉out = e−iφJz |ψ〉in (3.22)

This makes sense with our earlier understanding of Schwinger’s representation that
a phase difference between the fields a and b should affect Jx and Jy while leaving
the intensity difference Jz unchanged.

3.3.3 The MZI in this framework

Based on this construction, we can club the rotation operators for an input beam
splitter, a phase shifter and an output beam splitter to give us the resultant product
operator for an MZI. Mathematically, this combined rotation is represented by

|ψ〉out = e−iπ
2
JxeiφJzei

π
2
Jx |ψ〉in = e−iφJy |ψ〉in (3.23)

which comes out to be a rotation of φ about the y axis. Hence, the rotation operators
will be transformed as





Jout
x

Jout
y

Jout
z



 =





cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ









J in
x

J in
y

J in
z



 (3.24)

3.4 Quantum Cramer-Rao Bound

It has been seen that the variance of an unknown parameter or the uncertainty in
its measurement is obtained by the standard linear error propagation formula

δφ2 =
∆Â2

|∂φ〈A〉|
(3.25)

This expression is more suited for peaked distributions like Gaussians. In a more
general theory of estimation, the minimum estimate of an unknown parameter is
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limited by the Cramer-Rao inequality, which relates the variance to the Fisher in-
formation.

F (X) =

∫

dζp(ζ/X)

(

∂ ln p(ζ/X)

∂x

)2

=

∫

dζ
1

p(ζ/X)

(

∂p(ζ/X)

∂x

)2

(3.26)

Here, p(ζ/X), the probability density for result ζ given the parameter X, is given
by

p(ζ/X) = tr
(

Ê(ζ)ρ̂(X)
)

(3.27)

It should be noted from here that the Fisher information is the expected value of
(

∂ ln p(ζ/X)
∂x

)2

operator. The Cramer-Rao inequality, states

δφ2 ≥ 1

F (X)
(3.28)

For a pure state under evolution of phase, the notion of Fisher Information is
demonstrated by Durking and Dowling[31]. It states that for an input state |ψ〉in
undergoing a phase evolution in the follwing manner,

|ψ〉out = eiθĜ|ψ〉in (3.29)

the quantum Fisher information is given by

FQ = 4∆Ĝ2 (3.30)

Again it should be noted from here that this is the Quantum Fisher information
unlike that in Eq which is classical. It has also been shown by Braunstein and
Caves [32] that the classical Fisher Information is an upper bound to the quantum
version. Hence, the variance or uncertainty

δφ2 ≥ 1

FQ

(3.31)

is the lowest possible estimate in phase estimation. Also, it is worth observing that
it depends entirely on the input state.

3.4.1 Calculation of QCRB

The calculation of Quantum Cramer Rao Bound is now straightforward since we
have already derived the operator framework for an MZI in the previous section. As
we have seen here, the FQ for an input state |ψ〉in in an MZI will be

FQ = 4∆J2
y (3.32)

where

Jy =
a†b− ab†

2i
(3.33)
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so to calulate the minimum of phase uncertainty all we need to do is to evaluate the
variance of this operator for different input states. For a simple input state |α〉a|0〉b,
the minimum of phase, that can be measured as given by the above bound will be

FQ = 4∆J2
y

= 4〈α|a〈0|bJ2
y |α〉a|0〉b

= |α|2 (3.34)

Now, we know that the number of photons for this input state is proportional to
|α|2. Hence, the minimum attainable limit in case of coherent state is given by

φmin =
1√
n̄

(3.35)

often called shot noise limit in literature. We do the same calculation on the Twin
Mode Squeezed Vaccum (TMSV) represented by

|ψn̄〉 =
∞
∑

n=0

√

pn(n̄)|n, n〉 (3.36)

This is a superposition of twin Fock states with Pn̄(n) representing the probabilities
to be present in a particular twin photon state. It depends on the average number
of photons in that state. The bound in this case comes out to be

φmin ∝ 1

n̄
(3.37)

This is known as Heisenberg’s limit due to it’s resemblance with the standard Heisen-
berg uncertainty principle. However, in actual terms this limit is slightly less than
Heisenberg’s limit thus allowing the sub- Heisenberg regime. In actual terms, the
limit obtained for a twin photon state is

φmin =

√

2

(n)(n+ 2)
(3.38)

For, the cat state discussed in the previous chapter as well, we find the limit to be

φmin ∝ 1

n̄
(3.39)

We can infer from here, as well as from the results on the entangled twin photon
states that the improvement of

√
n is attained due to the presence of entanglement.

The increase in the number of modes also helps to improve the lowest bound on
phase measurement.
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3.5 The Pair coherent state

Now, we would investigate the Cramer-Rao bound for a pair coherent state, a state
of a two-mode radiation field satisfying

ab|ζ, q〉 = ζ|ζ, q〉
a†a− b†b|ζ, q〉 = q|ζ, q〉 (3.40)

Here ζ is a complex number and q is the degeneracy parameter. It can be noticed
that a simple product state |α〉a|β〉b of a two-mode radiation field may satisfy the
first of these equation as they are the eigenstates of the product of the lowering
operators but they also have to satisfy the second equation which says the difference
in the number of photons should be q. These states were introduced in the quantum
optics literature by Agarwal[35] and are generated by nondegenerate parametric
oscillators. These are non-Gaussian states unlike most of the states discussed in
this report.These states have been studied in detail because of their non-classical
properties which stems from their Glauber-Sudarshan P-function and entanglement.
Also, they are quite popular because of their violation of Bell’s inequalities. Let us
first consider the state with q = 0 i.e, having the same number of photons in both
modes. Clearly, it will be a superposition of twin Fock states.

|ζ, 0〉 = N0

∞
∑

n=0

ζn

n!
|n, n〉 (3.41)

Here N0 =
√

1
I0(2|ζ|) and I0(2|ζ|) is the modified Bessel function given by

I0(2|ζ|) = J0(i2|ζ|) =
∞
∑

n=0

( |ζ|n
n!

)2

. (3.42)

In applications involving the creation and annihilation of photons pairs, the differ-
ence in the number of photons will remain constant. Hence, in case of processes
starting from vacuum, we can see the existence of such states. Evaluating the un-
certainty in Jy, we obtain,

〈ζ, 0|J2
y |ζ, 0〉2 =

N2
0

2

∞
∑

n=0

(

ζn

n!

)2

n(n+ 1) (3.43)

one finds,

FQ = 2N2
0

∞
∑

n=0

(

ζn

n!

)2

n(n+ 1)

= 2

(

|ζ|2 + |ζ|I1(2ζ)
I0(2|ζ|)

)

. (3.44)

where, I1(2|ζ|) and I0(2|ζ|) are the modified Bessel function of the order 1 and
0 respectively. The Cramer-Rao bound on the uncertainty in phase, is inversely
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proportional to FQ.

∆φmin =
1

√

FQ

and (3.45)

hence, the minimum possible bound on uncertainty in phase will be

∆φmin =
1

√

2|ζ|
(

|ζ|+ I1(2|ζ|)
I0(2|ζ|)

)

. (3.46)

This should be compared with the average number of photons present in this state

N̄ = |ζ|I1(2|ζ|)
I0(2|ζ|)

. (3.47)

By comparing these two expressions, we see that the QCRB for the pair coherent
state shows a remarkable improvement over the shot-noise limit and is very close
to the Heisenberg’s limit. For a relatively smaller average number of photons, the
quantum Cramer-Rao bound for pair coherent state is below the Heisenberg limit.
This means that even in the sub-Heisenberg regime smaller phase measurements
can be done with pair coherent states as compared to other input states in a Mach-
Zehnder Interferometer.

Again, the general solution for the above eigenvalue problem, assuming q to be
positive, is given by

|ζ, q〉 = Nq

∞
∑

n=0

ζn

[n!(n+ q)!]
1
2

|n+ q, n〉 (3.48)

where Nq, the normalization constant is given by

Nq =

[ ∞
∑

n=0

|ζ|n
(n!)(n+ q)!

]− 1
2

= [(i|ζ|)−qJq(2i|ζ|)]−
1
2 (3.49)

This is the general pair coherent state with a constant difference betweeen the num-
ber of photons in both modes. These states can be generated from vacuum in the
following manner

|ζ, q〉 =Mq(a
†b†ζ)a†q|0, 0〉 (3.50)

where Mq = q!(−z)−q
2 [Jq(2i(z)

1
2 ]

While writing this general form of pair coherent state, it is worth mentioning
again, that these states are different from coherent states, which is evident, in terms
of their probabilities of being in a state having a particular composition of photons.
The probability of finding n photons in mode b and n+q photons in mode a will be
given by

p(n+ q, n) = |〈n+ q, n|ζ, q〉|2 = N2
q

|ζ|2n
n!(n+ q)!

(3.51)
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Clearly, unlike coherent states, this is not a Poissonian distribution. In fact Agarwal[36]
had shown this to be sub- Poissonian. Evaluating QCRB for this general state, we
see

∆J2
y =

|Nq|2
2

∞
∑

n=0

|ζ|2n
n!(n+ q)!

[(n+ q)(n+ 1) + (n+ q + 1)n] (3.52)

The average number of photons for this state could similarly be found out as

N̄ = |Nq|2(n+
q

2
)(

|ζ|2n
n!(n+ q)!

) (3.53)

Again from these two expressions, we see that the Quantum Cramer-Rao Bound for
pair coherent state is smaller than the Heisenberg limit as well as that of other Gaus-
sian states, thus offering an immense potential for the application of pair coherent
states in sub- Heisenberg Quantum Metrology.
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