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Abstract

Multiple-timescale phenomena occur frequently in real world systems and they most often
add to the complexity of such systems, some of the examples being neuronal electrical
activity, chemical reactions, turbulent �ows, tropical atmospheric ocean systems etc. In
all these cases, the variability and heterogeneity of the interacting systems are inevitable.
Although there have been isolated studies addressing its various aspects, there are still
many interesting and challenging questions to be addressed. There are many model
systems proposed to understand multiple time scale phenomena in single systems, like
dynamical model for neuronal dynamics. However studies on collective behavior of con-
nected systems that di�er in their intrinsic time scales, are very minimal. In this context
the study reported in the present thesis is highly relevant and has resulted in many
novel phenomena and promising approaches. The thesis is mainly on the study of the
e�ect of heterogeneity in the natural frequencies on the emergent dynamics of connected
systems. The study is exhaustive with at least three standard nonlinear systems, peri-
odic and chaotic states as intrinsic dynamics, and fully connected, random and scale free
topologies for connections or interactions on the networks with two types of coupling of
di�usive and mean �led types. The main contributions from the study are the observa-
tion of onset of emergent phenomena like amplitude death, oscillation death, frequency
synchronization, cluster synchronization and their characterization.

In chapter 1, we present a brief introduction to complex systems and their sources
of complexity such as non linearity and complex pattern of interactions, dynamics of
standard nonlinear systems used in the study as intrinsic dynamics, We also mention
di�erent types of complex networks which act as a framework to study such large complex
systems.

The study presented in the thesis starts from Chapter 2, with the simple and basic
model of dynamics of two interacting nonlinear systems with di�ering time scales. A
parameter τ is introduced as time scale mismatch between the systems. We report the
suppression of dynamics resulting in amplitude death (AD) when the parameters τ and
coupling strength are changed. The transition curves to this state are studied analytically
and con�rmed by direct numerical simulations. We study the dynamics outside of AD
and report frequency synchronization, frequency suppression, two frequency state etc for
di�erent time scale mismatch and coupling strength. As an important special case, we
revisit the well-known model of coupled ocean atmosphere system used in climate studies
for the interactive dynamics of a fast oscillating atmosphere and slowly changing ocean.
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Our study in this context indicates occurrence of multi stable periodic states and steady
states of convection coexisting in the system.

In the next chapter, we consider the case of a fully connected network, where all
the nodes are connected to all other nodes and out of N nodes, m are slow. Here we
identify the occurrence of AD with m/N ratio, τ and ε. In addition to AD we also
observe synchronization in clusters, where slow systems evolve in a synchronized cluster
and fast systems evolve in another, with frequency synchronization, two frequency states
etc. depending upon the time scale mismatch, coupling strength and m. In this context,
we observe an interesting cross over phenomenon, both in frequency and amplitudes of
collective dynamics. In emergent frequency, the synchronized frequency of the coupled
oscillators would go to frequency suppression for a critical m and the amplitudes of
collective oscillations switches its nature as m is increased above a critical value. We
study in detail all possible minimal con�gurations or motifs of networks with sizes N=3
and 4 for various kinds of connection topology. We analytically �nd the eigenvalues of the
Jacobian of these network motifs about AD, and identify the boundary in the parameter
plane for which at least one of the eigenvalue becomes positive. The transition curves are
found to depend on the symmetry of connections.

In Chapter 4, we present the study on a random network of N systems where m
are slow with probability of connection p. We take 100 realizations of this network to
calculate how many of the realizations go to a full amplitude death state for a speci�c
value of time scale mismatch and coupling strength. This fraction of realizations f, gives
the transition curve with p and gives an optimum value of m where the transition to
amplitude death occurs at the lowest possible p, or most sparse network. Using a data
collapse, the scaling property of the universal transition curve is studied. This study
is repeated by taking three types of probability of connections within the network. p1
denoting the connectivity between slow to slow systems, p2, within slow to fast systems
and p3, within fast to fast systems. We observe there can be amplitude death state for
the bipartite network also even when p1 = p3 = 0

In the next chapter, our study on multi scale phenomena on scale free networks is
presented. We generate scale-free network of N dynamical systems by Barabási-Albert
algorithm. We mainly study the minimum number of slow hubs in the network that are
required for the whole network to reach AD along with criteria for τ and ε for the same.
We investigate the role of hubs as control nodes that can spread the e�ects of slowness over
the network. For this, once the systems are synchronized, we make one of the nodes slow
and study how soon the other nodes fall out of synchrony in time. This is characterized
in terms of their degrees and shortest paths from the slow node. We discuss this for
several starting slow nodes present in the network to quantify the importance of that
node in the context of spread of slowness. In this context we also study self organization
of the network where the whole system once perturbed from complete synchronization,
organizes itself into a state of frequency synchronization.

We study the emergent dynamics with a distribution of time scales of the node where
the time scale is inversely proportional to the degree of the node. This gives a more
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realistic situation and brings out the relative importance of the nodes. In this case we
�nd an interesting amplitude distribution of oscillations along with the amplitude death
situation.

In the �nal chapter, we present the summary of work presented in the thesis, by
giving the overview of the main results and their relevance. Our results have potential
signi�cance in biological, physical, and engineering networks consisting of heterogeneous
oscillators and gives a new direction for further research on interacting time scales and
the role of the same in complex systems. We discuss few of such possible future directions
that can extend these studies further.
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Chapter 1

Introduction

1.1 Complex systems

Most of the real world systems are complex, their complexity arising from large num-
ber of subunits or components with diverse and complex dynamics and di�erent types
of interactions. This makes the dynamics of the whole system often di�erent from that
of the interacting components. As examples of such complex systems, we can think of
many biological systems like organisms, genes, brain, heart, living cell [1�13] etc their
functions depending on a large number of neurons or cells with complex nature of con-
nections among them. In a similar context, we can consider Earth's climate system, the
ecosystem, human society, transportation system, stock market [14�25] also as examples
of complex systems. In all these cases the nature of complexity and its role in deciding the
emergent dynamics is a promising branch of study. In most of the complex systems, the
individual dynamics itself can be complicated such as chaos, quasi-periodicity etc. and
the emergent dynamics results in many interesting phenomena like synchronization, clus-
ter formation, self organization etc. The complexity of emergent dynamics also can come
from complicated pattern and nature of the interaction among sub components. Then
most often the framework of complex networks is invoked to understand their complexity.
We note that in the context of coupled systems, study of the emergent phenomena like
synchronization, amplitude death etc are considered with interacting subsystems which
evolve with the same time scale. However, many real world systems such as social net-
works, power transmission networks, transportation systems, global climate systems etc.
have subsystems, which evolve with di�ering time scales. This motivates the present
study on emergent dynamics when nonlinear systems of di�erent time scales are coupled
to form complex systems.

In the present study we focus on another aspect of complexity that can arise due to the
heterogeneity in the dynamical time scales of interacting systems. The study is carried
out in detail, starting from simple cases of two coupled systems, regular networks of
systems to complex networks and we report many interesting phenomena like amplitude
death, oscillation death, frequency synchronization, self organization etc. The transitions
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and scaling behavior near such transitions as well as characterization of various possible
emergent states make this study very extensive and relevant for understanding complex
real world systems and developing possible control strategies in them.

1.2 Standard nonlinear systems

We start by considering the case of systems with intrinsic dynamics that is nonlinear and
therefore has potential to exhibit di�erent types of complicated dynamics. We present
�rst a few such standard nonlinear systems that can have irregular dynamics called chaos.
Historically the most interesting system in this context is the Lorenz system that arises
in atmospheric dynamics. In 1963, in the paper called "deterministic non periodic �ow",
E. Lorenz has derived a set of nonlinear di�erential equations later known as the Lorenz
system [26] as

ẋ = a(y − x)
ẏ = (x(b− z)− y)
ż = (xy − cz)

(1.1)

In the above equations, with three variables, x represents the rate of convection, y
the horizontal temperature variation and z, the vertical temperature variation. The 3-d
phase space representing the dynamical trajectory of the system is studied for various
possible values of the parameters a, b and c. It is found that as typical of such nonlinear
dynamical systems, the phase space dynamics depend on the values of the parameters
and can undergo transitions from regular behaviour to chaotic state as they are varied
[27, 28]. The various scenario through which a nonlinear system can reach chaos has
been extensively studied in the early days itself [29]. For example for Lorenz system, the
parameters a=10, b=28, c=8/3 results in a chaotic trajectory shown in Fig. 1.1. Since the
system asymptotically settles to a stable chaotic trajectory shown, it is called the chaotic
attractor of the system. One of the important characteristics of chaotic trajectory is
its sensitivity to initial conditions. This means that two trajectories starting from very
close initial conditions, diverge apart in time while being con�ned to the same attractor
(Fig. 1.1) [26,29].

In addition to chaotic states, nonlinear dynamical systems exhibit regular periodic
dynamics called limit cycles and stationary or �xed points. The �xed point of the system
is de�ned as the state where the system asymptotically goes to a stable static state. This
state can be calculated by equating ẋ = ẏ = ż = 0. By solving these equations we can
show that a pitchfork bifurcation occurs for �xed points at b=1. For b<1 there is only one
�xed point at origin which corresponds to no convection and when b>1 there exit two �xed

points; one is at (
√
c(b− 1),

√
c(b− 1), b−1) and another at (−

√
c(b− 1),−

√
c(b− 1), b−

1) corresponding to steady convection. This pair of �xed points is stable for b < aa+c+3
a−c−1 ,

2
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Figure 1.1: a)Phase plot of Lorenz system in X-Y plane showing chaotic trajectory for
a = 10, b = 28, c = 8/3. b) time series of the x-variable c) time series starting from two
nearby initial conditions, x1 = 2, y1 = 2, z1 = 2 and x2 = 2.001, y = 2.001, z = 2.001,
indicating sensitivity to initial conditions
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Figure 1.2: Phase plots of Lorenz system in X-Y plane a) Showing �xed point for a =
10, b = 14, c = 8/3 b) period 1 oscillation for a = 10, b = 148.5, c = 8/3 and c) period 2
oscillation for a = 10, b = 147.5, c = 8/3

provided a > c+ 1. [28] In this case we �nd the system goes to one of the �xed point for
a = 10, b = 14, c = 8/3 for initial conditions x = 30, y = 30, z = 15.

For larger values of the parameter b, Lorenz system has periodic orbits with periodicity
depending on the parameters. For example period 1 oscillation is seen for b=148.5 and
period 2 oscillation, for b=147.5. etc. [28] (Fig. 1.2).

1.2.1 Rössler system

Next we consider another standard nonlinear dynamical system in the context of chemical
kinetics called Rössler system. Its dynamics is given by [30,31]

ẋ = (−y − z)
ẏ = (x+ ay)

ż = (b+ z(x− c)) (1.2)

This system exhibits a period doubling route to chaos as shown in Fig. 1.4, as the values
of parameters a, b and c are varied. Keeping b and c �xed, when a is changed, for a ≤ 0
the system converges to �xed point. For a=0.1 it becomes periodic cycle of period 1. By
further increasing of parameter a, the system goes to a chaotic attractor. Similarly for
a=0.1, b=0.1, c=4 the system gives periodic orbits. In this case increasing c by keeping
a and b �xed would also lead to a chaotic attractor (Fig. 1.3 [32]).

By setting ẋ = ẏ = ż = 0 in eqn.1.2, one can �nd out the �xed points of the

system. The two �xed points in this case are ( c−
√
c2−4ab
2

, −c+
√
c2−4ab
2a

, c−
√
c2−4ab
2a

) and

( c+
√
c2−4ab
2

, −c−
√
c2−4ab
2a

, c+
√
c2−4ab
2a

)
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Figure 1.3: Phase plots of Rössler system in X-Y plane a) period 1 oscillation for a =
0.1, b = 0.1, c = 4 b) period 2 oscillation for a = 0.1, b = 0.1, c = 6 c) period 8 oscillation
for a = 0.1, b = 0.1, c = 8.7 and d) chaotic trajectory for a = 0.2, b = 0.2, c = 5.7
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Figure 1.4: Period doubling bifurcation route to chaos for Rössler system with changing
the parameter c for a=b=0.1.

1.2.2 Landau-Stuart oscillator

Landau-Stuart oscillator is a standard description of a nonlinear limit cycle oscillator. Its
dynamics is given by [33]

ẋ = (a− x2 − y2)x− ωy
ẏ = (a− x2 − y2)y + ωx (1.3)

Or in polar coordinates

ṙ = (a− r2)r
θ̇ = ω (1.4)

This equation has two stable solutions for equilibrium states.

• r = 0 or (x, y) = (0, 0)

• r =
√
a

The second solution gives a stable limit cycle attractor for all positive values of a with
an amplitude of

√
a with ω as the frequency of oscillations as shown in Fig. 1.5. The

�rst solution is stable for a < 0 which means the system goes to �xed point (0,0) and
the second solution is stable for a > 0 showing limit cycle behavior. The bifurcation at
a = 0 is known as Hopf bifurcation [34].
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Figure 1.5: a)Phase plot of Landau-Stuart oscillator in X-Y plane showing limit cycle
attractor. Here a = 0.1. b) �xed point in X-Y plane for a=-0.1

1.2.3 Stability of �xed points and basin of attraction

The stability of a �xed point is estimated by having a small perturbation on the variables
around that �xed point state. It can be easily derived that the Jacobian of the system
decides the rate of change of the small perturbation. A �xed point is hence stable in
every direction when all the eigenvalues of the Jacobian have negative real parts [35].

Let us consider a general dynamical system in 3-dimension with dynamical equations

ẋ = fx(x, y, z)

ẏ = fy(x, y, z)

ż = fz(x, y, z) (1.5)

which has a �xed point at x = x0, y = y0 and z = z0 so, fx(x0, y0, z0) = 0, fy(x0, y0, z0) = 0
and fz(x0, y0, z0) = 0. Now if we do Taylor's expansion for small perturbation around the �xed
point x0, y0, z0 in each direction and by discarding the higher order term since δx, δy and δz are
very small we get

f(x0 + δx, y0, z0) = fx(x0, y0, z0) + δx
∂fx(x0, y0, z0)

∂x
+ δy

∂fx(x0, y0, z0)

∂y
+ δz

∂fx(x0, y0, z0)

∂z

f(x0, y0 + δy, z0) = fy(x0, y0, z0) + δx
∂fy(x0, y0, z0)

∂x
+ δy

∂fy(x0, y0, z0)

∂y
+ δz

∂fy(x0, y0, z0)

∂z

f(x0, y0, z0 + δz) = fz(x0, y0, z0) + δx
∂fz(x0, y0, z0)

∂x
+ δy

∂fz(x0, y0, z0)

∂y
+ δz

∂fz(x0, y0, z0)

∂z

(1.6)

Now from equation 1.5, rewriting equation 1.6

d(x0 + δx, y0, z0)

dt
= fx(x0, y0, z0) + δx

∂fx(x0, y0, z0)

∂x
+ δy

∂fx(x0, y0, z0)

∂y
+ δz

∂fx(x0, y0, z0)

∂z

d(x0, y0 + δy, z0)

dt
= fy(x0, y0, z0) + δx

∂fy(x0, y0, z0)

∂x
+ δy

∂fy(x0, y0, z0)

∂y
+ δz

∂fy(x0, y0, z0)

∂z
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d(x0, y0, z0 + δz)

dt
= fz(x0, y0, z0) + δx

∂fz(x0, y0, z0)

∂x
+ δy

∂fz(x0, y0, z0)

∂y
+ δz

∂fz(x0, y0, z0)

∂z

(1.7)

or,

˙(δx) = δx
∂fx(x0, y0, z0)

∂x
+ δy

∂fx(x0, y0, z0)

∂y
+ δz

∂fx(x0, y0, z0)

∂z

˙(δy) = δx
∂fy(x0, y0, z0)

∂x
+ δy

∂fy(x0, y0, z0)

∂y
+ δz

∂fy(x0, y0, z0)

∂z

˙(δz) = δx
∂fz(x0, y0, z0)

∂x
+ δy

∂fz(x0, y0, z0)

∂y
+ δz

∂fz(x0, y0, z0)

∂z
(1.8)

or,

˙(δX) = JδX (1.9)

where δX is column vector for (δx, δy, δz) and J is the Jacobian for the system. The solution of
δX is exponential in nature. So, in this case if all the eigenvalues of matrix J have negative real
part, the solution converges with time giving the �xed point a stable solution. If at least one of
the eigenvalues of J has positive real part, the �xed point becomes unstable.

From J, we can write the characteristic equation which holds the form of a polynomial. For
a typical 4x4 Jacobian one can write

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 (1.10)

Now, Routh-Hurwitz stability criterion [36] states, the solutions for the eigenvalue λ will have
negative real parts if ai > 0, ∀ i and,

Det

(
a1 a0
a3 a2

)
> 0, Det

 a1 a0 0
a3 a2 a1
0 a4 a3

 > 0

Det


a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

 > 0 (1.11)

Basin of attraction of a �xed point or attractor represents the set of all initial conditions in
the phase space which in time evolves towards that attractor or �xed point. When a system
has multiple stable attractor in the phase space, the study of the structure of basins and their
boundaries become important. For example Du�ng oscillator given by equation

ẋ = y

ẏ = −ay + bx− cx3 (1.12)

has two stable �xed points at (-1,0) and (1,0) in the phase space and its basin structure is given
in the Fig. 1.6
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Figure 1.6: Basin structure of Du�ng oscillator. Here black color represents the set of
initial conditions that go to �xed point (-1,0) and white represents same for �xed point
(1,0)

1.2.4 Interacting dynamical systems

Most of the real world systems are not isolated but interacting systems and hence the relevance
in studying systems interacting or coupled with each other [37�40]. There are di�erent types
of coupling that are in general relevant depending upon the context of study, two of the most
common ones among them are given below.

• Feedback coupling : when the variable is directly added as coupling.

Ẋ1 = f(X1) + εGX2,

Ẋ2 = f(X2)− εGX1

• Di�usive coupling : when the di�erence in the variables is added as the coupling term.

Ẋ1 = f(X1) + εG(X2 −X1),

Ẋ2 = f(X2)− εG(X1 −X2)

Where G is a diagonal matrix of the dimension of each system, having all diagonals as zero
except ith rows, which has entry 1, indicating that the ith variable is coupled.

1.3 Complex networks

Complex network is the framework that is being used e�ectively to study complex dynamical
systems in recent times. This formalism has nodes that can be considered as subsystems or

9



Figure 1.7: Typical complex network of 7 nodes and 8 links

units having intrinsic dynamical systems and links that connect those nodes as a graph that
can model the pattern of interactions among them. The frequently used pattern of connections
or links come from di�erent types of networks such as regular, random and scale free networks.
Their topology is characterized using measures that can be computed from the adjacency matrix
of connections in the network [41�43].

• Adjacency matrix : This is a matrix A which has entries 1 or 0 that represents the
connection topology. If in the network ith and jth nodes are connected then Aij = 1
and otherwise Aij = 0. For the undirected network this adjacency matrix is always a
symmetric one. For example for a typical network shown in Fig. 1.7 the adjacency matrix
would be 

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 1 1 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1
0 0 0 0 0 1 0


• Degree distribution : Degree of ith node ki is de�ned as the number of nodes the ith node
is directly connected to. Hence it is clear that the sum of elements of ith row gives the
degree of ith node.

ki =
N∑
j=1

Aij (1.13)

The degree distribution is the frequency of occurrence of degrees in the network. It is
usually plotted with p(k), the probability of �nding a node with degree k i.e. number of
nodes with degree k upon the total number of nodes, vs k.

• Characteristic path length : In the network, one can reach from one node to another along
di�erent paths, the shortest path among them being the one that requires the smallest
number of connecting links between them. This is de�ned as the shortest path length,
whose average over all possible pairs present in the network gives the characteristic path

10



length of the network [41]. If d(i,j) denotes the shortest path length between i and j, then
characteristic path length Lc

Lc =
1

N(N − 1)

∑
i 6=j

d(i, j) (1.14)

• Clustering coe�cient : Clustering coe�cient is a measure of how much the network is
clustered. Clustering coe�cient of a network can be de�ned in two ways. When nodes
are connected by links with each other there are cases when three of the nodes form a
triangle or closed triplets. The local clustering coe�cient de�ned for each node is the ratio
of the number of triangles formed by ith node to the number of all possible triangles that
it can form. If ith node has degree k and Ei is the actual number of present connections
in neighbours of ith node then local clustering coe�cient ci of ith node is de�ned by [41]

ci = Ei/

(
k

2

)
(1.15)

We get the average clustering coe�cient by averaging ci over all nodes.

cavg =
1

N

N∑
i=1

ci (1.16)

If number of closed triplets is Nclosed and number of connected triplets is Nconnected in the
network then global clustering coe�cient of the network is de�ned as [41]

cg =
Nclosed

Nconnected
(1.17)

• Assortativity and dissortativity : Assortativity or assortative mixing is the tendency of
nodes to be connected to the nodes that are similar to them. The network is said to be
assortative based on degree of the node, if nodes with similar degrees are connected to
each other. Dissortativity on the other hand is tendency to attach with dissimilar nodes,
for example high degree nodes are attached to low degree nodes in dissortative mixing.

Based on the characteristic measures of topology, networks can be classi�ed into di�erent
types.

1.3.1 Regular network

Regular network is de�ned as the one where all the nodes have the same degree. For example,
lattice, ring, tree etc. (Fig. 1.8) fall in the category of regular networks. A fully connected
network is also regular network where each node is connected to all the other nodes. In this case
all the elements in adjacency matrix is 1 other than the diagonals. The network is very densely
connected and has clustering coe�cient equal to 1.
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Figure 1.8: a)A ring b) a lattice c) an all to all connected network as examples of regular
networks

 0

 5

 10

 15

 20

 100  120  140  160  180  200

p
(
k
)

k

Figure 1.9: Degree distribution of random network

1.3.2 Random network

A random network is generated, by using a probability p such that the ith and jth node connect
to each other with the probability p. If p is small the network is sparse and becomes more dense
with increasing value of p. In this network the degree distribution shows a Poisson distribution
(Fig. 1.9) where the mean value of degree is around pN , where N is the size of the network
[41�43].

1.3.3 Scale free network

A scale free network has a degree distribution with a power law, i.e p(k) = k−γ . The charac-
teristic of this network is that there exist a large number of low degree nodes with very small
number of high degree nodes known as hubs (Fig. 1.10).
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Figure 1.10: Degree distribution of scale free network

1.3.4 Interacting dynamical systems on network

Dynamical systems interacting with each other based on a network topology, can be modelled
by the adjacency matrix and the nature of coupling. For example in a network of systems, when
the di�erence between the variable of ith node and the mean of the variables of its neighbours
is coupled to the ith node, the coupling is called mean �eld coupling and the equation of the ith

node is given by

ẋi = f(xi) + ε(
1

ki

N∑
j=1

Aijxj − xi), (1.18)

Similarly, when the di�erence between the variable of ith node and the variables of its neighbours
is summed up for all of them, and coupled to the ith node the coupling is called di�usive coupling.
In this case the equation of ith node is given by

ẋi = f(xi) + ε
N∑
j=1

Aij(xj − xi), (1.19)

1.3.5 Emergent phenomena on networks

Now we consider the possible emergent dynamics when dynamical systems are connected to form
a network. The most interesting dynamical phenomena observed in such coupled systems are
given brie�y below.

Synchronization

One of the most well studied emergent phenomena in coupled nonlinear systems is synchroniza-
tion. This is a phenomenon where even though the individual chaotic systems are starting from
di�erent initial conditions and are evolving in di�erent trajectories in time individually, when
coupled, they come together and evolve together with a �xed relation with each other. Such
synchronization phenomena in general, can be of di�erent types [44�46].
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Figure 1.11: a)Time series showing complete synchronization of two coupled systems
b) the functional relation between x1 and x2 as a straight line with slope 1 indicating
complete synchronization.

• Complete(identical) synchronization : When the two or more dynamical systems, coupled
di�usively, evolve on identical trajectories, they are said to be in identical or complete
synchronization [44�50] (Fig. 1.11). In this case, the cross correlation coe�cient r between
the two systems serve as a quanti�er or index to identify the state of synchronization.

r =

N∑
i=1

(xi − x̄)(yi − ȳ)√√√√ N∑
i=1

(xi − x̄)2

√√√√ N∑
i=1

(yi − ȳ)2

(1.20)

For the case of complete synchronization r gives a value equal to 1. Another way of
quantifying it is to take the variance of all systems involved.

r1 =
1

N

N∑
i=1

(xi − x̄)2 (1.21)

In equation 1.21 when r1 = 0, all the systems are completely synchronized.
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Figure 1.12: Time series showing anti synchronization in two coupled systems
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Figure 1.13: Time series showing phase synchronization in two coupled systems

• Anti synchronization : This corresponds to the case where two dynamical systems com-
pensate each other such that the sum of their amplitudes at any given time is zero [51]
(Fig. 1.12).

• Phase synchronization : In this case, the phase angle of two or more systems evolve
simultaneously but their amplitudes might di�er. This means if the zero crossing times for
both the systems are calculated as ti and tj and ti− tj is zero for all the zero crossings, the
two oscillators are in phase synchronization. The phenomenon of phase synchronization
usually occurs in coupled oscillators with small mismatch in their parameters [52�57]
(Fig 1.13).

• Anti phase synchronization : In this state the phase di�erence between the two systems is π
such that they are antiphase with each other. One example for anti phase synchronization
is found in systems that are coupled through an external damped environment [57�60]
(Fig. 1.14).

• Lag synchronization : Where two systems are separated by a constant phase, they are
said to be in lag synchronization. Here x1(t) = x2(t+ τ) where τ is the lag in time. Lag
synchronization is mostly seen when two systems are coupled to each other with a time
delay in the coupling term [54,61�63] (Fig. 1.15).

• Generalized synchronization : Here the two systems are related with each other through
a �xed functional form. i.e., x2 = f(x1). Generalised synchronization occurs when one
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Figure 1.14: Time series showing anti-phase synchronization in two coupled systems
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Figure 1.15: Time series showing lag synchronization in two coupled systems
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Figure 1.16: Time series showing amplitude death

system is unidirectionaly coupled to another system. To detect this state, another auxiliary
system is attached to the master system. If the auxiliary system and the slave system are
completely synchronized with each other, then the main master and slave system are in
generalized synchronization [48,64�69].

Amplitude death

Another important emergent phenomenon found in the context of coupled systems is amplitude
death. In this case the systems go to a state of �xed point because of the coupling and the
amplitudes become zero resulting in amplitude death. As we know the dynamical systems can
have di�erent �xed points which are stable or unstable. When the systems are coupled an
existing unstable �xed point becomes stable, or because of the coupling new �xed point states
can be generated [70, 71]. When the emergent phenomenon is such that all the systems go to
the same �xed point, it will be a synchronized �xed point referred to as amplitude death. When
the di�erent systems go to di�erent �xed points, it is a state of oscillation death [72,73]. Studies
have shown that non linear coupling [74], parameter mismatch, induced time delay conjugate
coupling [75, 76], environmental coupling [77, 78] etc in coupled systems result in amplitude
death state (Fig. 1.16). Oscillation death is found to occur with parameter mismatch, mean
�eld di�usive coupling, with local repulsive link etc [79�83].

Cluster synchronization

One of the emergent phenomena observed in the context of complex networks is cluster syn-
chronization. Each cluster will be synchronized but will be di�erent in dynamics from another
cluster. Studies have shown clusters in coupled Kuramoto phase oscillators [84, 85], where each
cluster is de�ned by the group which has a small range of phase di�erence between each other,
whereas the phase di�erence between two clusters are much larger but bounded [86�90].
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Figure 1.17: Chimera states in a ring of nonlocally coupled limit cycle oscillators, with
the indices of the oscillators in x-axis and the phases φ in y-axis. (from [94])

Chimera states

Chimera state is an emergent state where coherent states and noncoherent states coexist in a
network. This happens when a subset of many systems can be coherent to each other showing
some sort of relation between them, like synchronization or amplitude death, whereas there exist
other subsets of systems which do not show any coherence among themselves. [91�94] (Fig. 1.17)

1.4 Multi time scale phenomena

Other than dynamical complexity and complex patterns in interaction, complexity of many
physical, biophysical, ecological, social systems can also arise from di�erent time scales in the
underlying processes [95�101]. When representing such systems using complex networks, we
can model them by having subsystems evolving at di�erent time scales. For example there are
fast and slow processes that occur in modulated lasers and in chemical reactions [102, 103]. In
biological processes it is known that dynamics with time scales of days coexist and interact
with biochemical processes of sub-second time scales. Also many intercellular processes occur
at di�erent time scales which directly or indirectly a�ects the responses of neurons which act
as subsystems in brain [104, 105]. On a global scale the weather and climate system of earth
subsystems varying over wide time scales exist. In most of the cases these subsystems are also
nonlinear and are strongly coupled with each other [106,107].

In these contexts, some of the relevant questions that can be asked are how the slow dynamics
a�ects the fast dynamics and whether new emergent phenomena are possible. If so what are the
dynamical transitions among them? In engineering designs coupled slow and fast systems have
relevance in the context of regulation and optimal control [108]. The major part of the study
involves the method of adiabatic elimination of fast variables from the slow, which is e�ective
only when the time scales are widely di�erent [109,110]. However when the time scales are not
very di�erent, such approximation schemes are not applicable, the analysis becomes much more
interesting. A detailed study in this direction is the focus of research presented in the thesis.
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In the remaining chapters we discuss the study to understand the emergent dynamics caused
by complexity arising from heterogeneous dynamical time scales in interacting dynamical sys-
tems. We begin by considering two systems coupled di�usively but with di�erent time scales
and discuss the possible emergent dynamics that can occur due to various parameters involved.
We also discuss coupled ocean-atmospheric model as an important application of two slow and
fast coupled systems. This is discussed in the next chapter. In chapter 3 we extend our study to
interacting slow and fast systems when they connected on a fully connected network. We also
discuss possible dynamics on small motifs of networks. In chapter 4 we discuss the interaction of
time scales between systems when connected on a random network and in chapter 5 we discuss
the same in the context of a scale free network. In scale free network we study the spread of
slowness as an e�ect of one node being slow at a stable dynamical situation such as synchronized
state. The summary of the research work done and possible future directions are added in the
�nal chapter.
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Chapter 2

Coupled slow and fast systems

2.1 Introduction

We begin our study on slow and fast dynamics on complex systems by considering the most
basic model of two coupled nonlinear systems that evolve with di�erent time scales. This would
mean that one of the systems has a slower time scale compared to the other. This can be
introduced as a relative time scale or time scale mismatch parameter in the dynamical equations
of one of the systems. We present the results of study in the speci�c cases of nonlinear periodic
systems like coupled Landau-Stuart oscillators, periodic Rössler systems and extend to chaotic
systems like Rössler and Lorenz systems in chaotic regime. We also establish the relevance of
such studies by considering the case of coupled ocean-atmosphere model in climate studies where
the convective dynamics of the ocean occurs at a much smaller time scale compared to that of
the atmosphere. Our results in general indicate that with su�cient mismatch in the time scales
of the system and strong coupling between them, both of them settle to a state of no oscillations
called amplitude death state(AD) [70]. However if the mismatch in the time scale is small, with
strong coupling the two systems go into a frequency synchronized state with a constant phase
shift. In this case the resultant frequency is an intermediate frequency between the slow and fast
intrinsic frequencies, which along with the amplitudes of the systems, decrease as they approach
amplitude death state. We analyze the stability of amplitude death state and the transitions to
this state as the parameters are tuned.

2.2 Coupled slow and fast systems

We construct a simple model of two coupled slow and fast dynamical systems by considering
two identical dynamical systems that evolve with di�erent time scales and interact through a
coupling. The equations governing the model are given below as

Ẋ1 = τ1F(X1) + τ1εGH(X1,X2)

Ẋ2 = τ2F(X2) + τ2εGH(X2,X1) (2.1)
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Figure 2.1: Time series of two coupled slow (red) and fast (green) Landau-Stuart oscilla-
tors in (2.2) showing amplitude death for τ = 0.4 and ε = 0.3 .

Here X1,2∈Rn, F is the intrinsic dynamics of the system, H denotes the coupling function and
ε, the coupling strength. G is an n x n matrix which decides the variables to be coupled. The
parameters τ1 and τ2 decide the di�erence in time scales. Without loss of generality, we can
take τ1 = τ and τ2 = 1 with τ as the time scale parameter to be tuned, to vary the time scale
mismatch between the two systems. In this case, in addition to the coupling strength ε, the time
scale mismatch parameter τ also controls the asymptotic dynamics of the coupled systems.

2.2.1 Coupled slow and fast periodic oscillators

In this section we discuss the speci�c case of two coupled periodic systems with di�ering time
scales. As an example of a periodic oscillator, we �rst consider two Landau-Stuart oscillators
with slow and fast time scales, with di�usive coupling as described in Chapter 1. The coupled
dynamics then evolves as

ẋ1 = τ((a− x12 − y12)x1 − ωy1) + τε(x2 − x1))
ẏ1 = τ((a− x12 − y12)y1 + ωx1)

ẋ2 = (a− x22 − y22)x2 − ωy2 + ε(x1 − x2)
ẏ2 = (a− x22 − y22)y2 + ωx2 (2.2)

The intrinsic Landau-Stuart oscillator has a limit cycle behaviour for a > 0 and a �xed
point state for a < 0, as mentioned in the Chapter 1. Since we are interested in periodic
orbits as intrinsic dynamics, in this case we take a = 0.1 and ω = 2 and analyse the system
numerically using Adams-Moulton-Bashforth algorithm [111] for equation (2.2). We observe
that, for su�ciently large value of ε and small value of τ i.e strong coupling strength and large
time scale mismatch, the two systems go into a state of amplitude death. This is shown in
Fig. 2.1 where the time series of the x- variable of both systems are plotted for τ = 0.4 and
ε = 0.3.
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Amplitude death and stability analysis

The systems in equation (2.2) go into a state of amplitude death when the synchronized �xed
point of the whole system has stabilized. One can obtain the parameters for which this happens
by doing a linear stability analysis [35] of the system about the �xed point. For this we �rst
calculate the synchronized �xed points of the systems in equation (2.2) by taking (x∗, y∗) equal
to (0, 0). As we know the eigenvalues of the Jacobian of the coupled slow and fast systems decide
the stability of the AD state in this case. The Jacobian in this case is given by,

J =


τ(a− ε) −τω τε 0
τω τa 0 0
ε 0 a− ε −ω
0 0 ω a

 (2.3)

The characteristic equation of the Jacobian is a 4th order polynomial of the form

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 (2.4)

where

a0 = 1

a1 = −2τa− 2a+ τε+ ε

a2 = τ2a2 + 4τa2 − 4τaε− τ2εa+ a2 − εa+ ω2 + τ2ω2

a3 = −2τ2a3 + 3τ2a2ε− 2τa3 + 3τa2ε− 2τaω2 + τεω2

−2aτ2ω2 + τ2ω2ε

a4 = τ2a4 − 2τ2a3ε+ 2τ2a2ω2 − 2τ2ω2aε+ τ2ω4

(2.5)

• Routh-Hurwitz criterion

From Routh-Hurwitz stability criterion [36], the solutions for the eigenvalue λ will have
negative real parts if ai > 0, ∀ i and,

Det

(
a1 a0
a3 a2

)
> 0, Det

 a1 a0 0
a3 a2 a1
0 a4 a3

 > 0

Det


a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

 > 0 (2.6)

Hence

a1a2 − a0a3 > 0

a1a2a3 − a12a4 − a0a32 > 0

a1a2a3a4 − a12a42 − a0a32a4 > 0 (2.7)
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The above three conditions give three di�erent transition curves as their solutions corre-
sponding to the inequalities equal to zero. Thus, we identify the common region in the
parameter plane (τ ,ε) as the region enclosed by these curves where all of the above three
conditions are satis�ed. This is marked by the boundary line with red circles in Fig. 2.2.
This thus indicates the region of amplitude death where the steady state of the coupled
system is stable.

• Direct calculation of eigenvalues

We also directly calculate the eigenvalues of J for di�erent values of τ and ε using Mathe-
matica software. By doing this we estimate the parameter values at which at least one of
the eigenvalues changes from negative to positive. These are plotted to get the transition
curves, shown in black in Fig 2.2. We observe that this boundary matches with the one
estimated using Routh-Hurwitz criteria directly.

• Numerical calculations

We also do a detailed direct numerical analysis of the coupled slow and fast systems in
equation (2.2) for di�erent values of these parameters scanning the parameter plane (τ, ε)
using Adams-Moulton-Bashforth algorithm for integration of the equation of motion with
0.01 time step and 100000 iterations. To identify the region of amplitude death in this
plane, we compute the index Adiff as the di�erence between global maximum and global
minimum of the variable x for each system, calculated after neglecting the transients of
90000 iterations. Hence in this case Adiff = 0 for both systems would indicate the region
of AD [77] .

Using this method we isolate the region of amplitude death in the (τ, ε) plane where
both the systems stabilize to the synchronized �xed point. This is shown in green in the
Fig. 2.2. It is clear that this region of AD obtained by direct numerical simulation has
good agreement with the analytical transition curves calculated by both Routh-Hurwitz
criterion and the eigenvalue calculations from the Jacobian.

Frequency synchronization with phase shift under strong coupling

We now study the possible emergent dynamics of these systems outside the region of amplitude
death. As we know from earlier studies, when the systems are coupled with their dynamics
having equal time scales, i.e in this case τ = 1, with strong enough coupling they completely
synchronize with each other. In our studies additionally we introduce a time scale mismatch
parameter τ and decrease it from 1, we �nd the systems cannot remain in identical or complete
synchronization. They settle to a state of constant phase relation (Fig .2.3), which can be
understood as a state of frequency synchronization with a phase shift between them.

To estimate the phase between the oscillators in this state, we calculate the di�erence between
times of successive zero crossing (tk− t′k) of the two oscillators over a su�ciently long interval of
time after neglecting the transients. We average this time di�erence and call it φ. We observe
that this phase shift changes with the time scale mismatch, and we study this variation of φ
with τ for a �xed ε as shown in Fig .2.4. To calculate the frequency of each oscillator from the
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Figure 2.2: Amplitude death region (shown in green) for coupled slow and fast Landau-
Stuart oscillators in the plane (τ, ε) obtained numerically. Black line corresponds to
the transition curve to AD obtained from stability analysis while red circles show the
transition obtained using Routh-Hurwitz criterion.

-0.2

 0

 0.2

 1080  1085  1090  1095  1100

x
1
,
2

t

Figure 2.3: Frequency synchronized state with constant phase shift in coupled slow (red)
and fast (green) Landau-Stuart oscillators. Time series shown is for τ = 0.4 and ε = 10.
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Figure 2.4: Phase shift φ between coupled slow and fast Landau-Stuart oscillators as τ
is varied with ε = 10.

time series we use the relation

ω =
1

K

K∑
k=1

2π

(tk+1 − tk)
(2.8)

where tk is the time of the kth zero crossing point in the time series of the oscillator and
K is the total number of intervals for which the zero crossings are counted. We �nd that
for su�ciently large ε both oscillators settle into the same frequency, indicating the state of
frequency synchronization with a phase shift. Moreover, this emergent frequency varies with
the changes in values of τ and ε. This is shown in the contour plot of (τ, ε) plane with the
emergent frequency of the oscillators(Fig .2.5a). We also study the variation of the intrinsic
frequencies of both oscillators, their average frequency and the emergent frequency with τ . This
is shown in Fig .2.5b. It is clear from the �gure that because of the coupling the system with
the greater frequency slows down, and the slower one speeds up to reach the common frequency.
However this common frequency of the coupled system is always less than the mean of the
frequencies of the uncoupled intrinsic oscillators. This indicates the phenomenon of frequency
suppression [112, 113] (Fig .2.5). We also study how the amplitudes of coupled oscillators
depend on the parameters τ and ε. For this we calculate the average amplitude for each oscillator
over a period of time. This is calculated for di�erent parameter values and Fig. 2.6 shows how
average amplitude decreases to zero as amplitude death is reached along both directions of
decreasing τ and ε.

Multi periodicity under weak coupling

We now discuss the dynamics with very low coupling strength corresponding to regions below
the AD island. In this case we observe that when the coupling strength is very small (ε < 0.2)
and for a very small time scale mismatch such as τ = 0.9 each system settles into a state of
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Figure 2.5: (a)Contour plot of emergent frequency of the two oscillators in equation (2.2)
in (τ, ε) plane. (b) Frequencies of fast oscillator (green), slow oscillator (red), coupled
oscillator (black) and mean frequency of both oscillators (blue dotted), as τ is varied,
keeping ε = 10. The emergent frequency is less than the mean frequency, indicating
frequency suppression.
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Figure 2.6: Average amplitude 〈A〉 of coupled slow and fast Landau-Stuart oscillators (a)
varying τ at ε = 10 and (b) varying ε at τ = 0.25.
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Figure 2.7: Two frequency state for coupled slow (red) and fast (green) Landau-Stuart
oscillators. Time series shown is for τ = 0.9 and ε = 0.11.
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Figure 2.8: Variation of frequency with ε at τ = 0.9.(a) Large frequency of fast (green)
and slow (red) systems and (b) small frequency of both systems observed in coupled slow
and fast Landau-Stuart oscillators.

two frequency oscillations as shown in Fig. 2.7. In this case, we calculate the larger or main
frequency (ω1) of each oscillator from the time series using eqn (2.8) as described earlier, while
the small frequency (ω2) is calculated by using the same equation but taking tk as the time
of kth local maximum of all the maxima, i.e. where the maxima of the envelope of the time
series is located in time. We �nd that the large frequencies (ω1) are di�erent in this state of
weak coupling, but the small frequencies (ω2) are the same for both oscillators. As the coupling
strength increases the small frequency of envelope disappears and the large frequencies merge to
get the two systems locked into the state of equal frequency, which is described in the previous
section. The variation of ω1 and ω2 as ε increases is shown in Fig. 2.8a. We con�rm this result
by calculating the frequencies from Fourier transform of the time series of both oscillators.

We repeat the above analysis with periodic Rössler system as another example of coupled
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Figure 2.9: Parameter plane (τ , ε) showing region of amplitude death for coupled slow
and fast periodic Rössler systems (shown in red). The green line shows boundary obtained
using stability analysis.

periodic systems. The equations for two such coupled slow and fast systems are given by

ẋ1 = τ(−y1 − z1) + τε(x2 − x1)
ẏ1 = τ(x1 + ay1)

ż1 = τ(b+ z1(x1 − c))
ẋ2 = (−y2 − z2) + ε(x1 − x2)
ẏ2 = (x2 + ay2)

ż2 = (b+ z2(x2 − c)) (2.9)

In this case we take the intrinsic dynamics as periodic with parameters chosen as a=0.1, b=0.1
and c=4. Here also we observe qualitatively similar results with occurrence of amplitude death,
phase locked frequency synchronization with phase shift for strong coupling (Fig. 2.10) and two
frequency states for weak coupling (Fig. 2.12). We numerically isolate the amplitude death
region in (τ, ε) plane and also obtain the transition curves from stability analysis around the
�xed point. In Fig. 2.9 we show the island of AD in red and the boundary from the stability
analysis in green. In this case the synchronized �xed point (x∗, y∗, z∗) is equal to

( c−
√
c2−4ab
2 , −c+

√
c2−4ab
2a , c−

√
c2−4ab
2a ).

We characterize the phase shift between oscillators in the frequency synchronized state with
the variation of τ . We observe that the di�erence in amplitudes between slow and fast systems is
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Figure 2.10: Frequency synchronized state in coupled slow and fast periodic Rössler
systems showing a) contour plot of emergent frequency in (τ, ε) plane, b)Frequencies of
fast oscillator (green), slow oscillator (red), coupled oscillator (black) and mean frequency
of both oscillators (blue dotted), as τ is varied, keeping ε = 1. The emergent frequency
is less than the mean frequency, indicating frequency suppression.
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Figure 2.11: (a)Phase shift φ between slow and fast systems vs τ with ε =1 (b) Average
amplitude di�erence 〈A1−A2〉 vs τ for ε=0.5(green), ε=1(red) and ε=1.5(blue) for coupled
slow and fast periodic Rössler systems.

signi�cant in this case and they depend upon the time scale parameter and the coupling strength
in frequency synchronized state. The slow systems has less amplitude than the fast one and we
calculate the amplitude di�erence between them with the variation of τ for di�erent values of ε
which is shown in the Fig. 2.11.

2.2.2 Coupled slow and fast chaotic Rössler systems

We extend the above study to two coupled chaotic Rössler systems with di�ering time scales, as
in equation (2.9), but choosing the system parameters in chaotic regime as a=0.2, b=0.2, c=5.7.

For this case also we �nd that with su�cient time scale mismatch and strong coupling
between the two systems both systems reach the state of synchronized �xed point described as
AD in the previous sections. This region in (τ, ε) plane is isolated by numerical calculations
as the region where the di�erence between global maxima to global minima for both systems
reaches zero. This agrees with the boundary of AD calculated from stability analysis. The
parameter plane for AD is shown in the Fig. 2.13.

We observe that for the case of coupled chaotic Rössler systems studied, the transition to AD
is through a sequence of reverse period doubling bifurcations that results in periodic dynamics
before reaching amplitude death. The bifurcations occur at the same parameter values for both
the systems even when their amplitudes are di�erent. The bifurcation diagram corresponding
to these transitions as τ is varied for ε = 0.9, is shown in Fig. 2.14. Once the systems reach
the periodic state, we �nd qualitatively similar behaviour in the average phase shift and average
amplitude as in the case of periodic oscillators described in the previous section. We take the
time averaged Euclidian distance between the slow auxiliary systems X and X′ as Dx and fast
auxiliary systems Y and Y′ as Dy. For the range of τ considered, as shown in the Fig. 2.16, we
observe that Dx and Dy go to zero which is the indication of complete synchronization between
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Figure 2.12: Two frequency states for weak coupling in periodic Rössler systems. a) large
frequency of both systems which becomes equal with ε b) small frequency which becomes
zero with increasing ε at τ = 0.9

 0

 0.5

 1

 1.5

 2

 2.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ε

τ

(a)

Figure 2.13: Parameter plane (τ , ε) showing region of amplitude death (shown in red) for
coupled slow and fast chaotic Rössler systems. The green line shows boundary obtained
using stability analysis.
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Figure 2.14: Bifurcation diagram obtained by plotting the maximum vales of the x vari-
ables of two coupled slow (red) and fast (green) chaotic Rössler systems for ε = 2 as τ is
varied.

Figure 2.15: Auxiliary systems for coupled slow (X) and fast (Y) systems. X is connected
to Y′ (fast) and Y is connected to X′ (slow) unidirectionally.
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Figure 2.16: Euclidean distance between auxiliary systems for ε = 2 as τ is varied. Dx,
the distance between X and X′ which are auxiliary systems to the system Y and Dy,
that between Y and Y′ which are auxiliary systems to the system X are shown in green.
Dxy, the Euclidean distance between main slow and fast systems X and Y is also plotted
(in red). Dx and Dy remain zero throughout the region, which indicates generalised
synchronization between X and Y.

the auxiliary systems and therefore generalised synchronization in the slow and fast systems X
and Y (Fig. 2.16).

2.2.3 Generalized synchronization

However when the dynamics of the oscillators are chaotic, for large τ , there is a region where
we �nd the systems settle to a state of generalized synchronization with a functional relation
between them. To study this, we attach one slow auxiliary system (X′) to the fast system (Y)
and one fast auxiliary system (Y′) to the slow system (X) unidirectionally, as per the scheme
described in [66, 69] for bidirectionally coupled systems (Fig. 2.15). So conceptually X and X′

become auxiliary systems to Y and Y and Y′ become auxiliary systems to X in this procedure.

2.2.4 Coupled Lorenz systems with di�ering time scales

We also consider two coupled slow and fast Lorenz systems as another example of coupled chaotic
systems,

ẋ1 = τa(y1 − x1) + τε(x2 − x1)
ẏ1 = τ(x1(b− z1)− y1)
ż1 = τ(x1y1 − cz1)
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ẋ2 = a(y2 − x2) + ε(x1 − x2)
ẏ2 = x2(b− z2)− y2
ż2 = x2y2 − cz2 (2.10)

where a=10,b=28,c=8/3.

In this case also we �nd that amplitude death happens for su�cient strength of coupling
and time scale mismatch. The region for which the coupled dynamics of both of the systems
show AD in the plane (τ, ε) is obtained numerically and shows good agreement with the stability
analysis from Jacobian of the coupled system. This is shown in Fig. 2.17.
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Figure 2.17: Parameter plane (τ , ε) showing region of amplitude death (shown in red) for
coupled slow and fast chaotic Lorenz systems. The green line shows boundary obtained
using stability analysis.

However for the coupled Lorenz systems the transition to AD is through an intermittency
state. In this transition, the duration of the small amplitude oscillations present in Lorenz
systems gets longer as τ is decreased. The time series of the coupled Lorenz systems are plotted
for increasing values of τ with ε = 4.0 in Fig. 2.18 which clearly indicate the intermittency route
to AD for coupled chaotic Lorenz systems.

2.3 Coupled Ocean-Atmosphere model

As an important application of the phenomena introduced in the previous sections, we study
the coupled ocean-atmosphere model used in climate studies [114, 115]. In this context, it is
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Figure 2.18: Transition to amplitude death in two coupled slow (red) and fast (green)
chaotic Lorenz systems in (1.1). Time series plotted for ε = 4 and (a)τ = 0.949 , (b)
τ = 0.948 and (c)τ = 0.947 indicating intermittency in the transition.

usual to consider low dimensional Lorenz system as the model for basic dynamics and couple
two versions of the same, one with fast and other with slow time scale. This then models the
interactive dynamics of a fast oscillating atmosphere and slow-�uctuating ocean. The equations
representing coupled convective dynamics studied earlier are given below [115].

ẋ1 = τa(y1 − x1)− εx2
ẏ1 = τ(x1(b− z1)− y1) + εy2

ż1 = τ(x1y1 − cz1)− εz2
ẋ2 = a(y2 − x2)− εx1
ẏ2 = x2(b− z2)− y2 + εy1

ż2 = x2y2 − cz2 + εz1 (2.11)

where a=10,b=28,c=8/3 and τ is the slow time-scale parameter.
We revisit this model to analyze it from the point of view of coupled systems and report the
interesting dynamics that results in periodic and steady state convection due to the interaction
with di�ering time scales. In this case unlike the previous cases, we observe two di�erent �xed
point attractors for the slow and the fast systems, indicating oscillation death. Moreover as an
important result, we report multi stable periodic states for the coupled systems.

2.3.1 Oscillation death

We �nd that for a certain region in the parameter plane (τ, ε) i.e. for strong coupling strength
and high time scale mismatch, the coupled dynamics of this model shows oscillation death (OD).
In this state the two systems go to two di�erent �xed points(Fig. 2.19). This region of OD is
shown in the parameter plane (τ, ε) in red in Fig. 2.20. The region above the upper boundary
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Figure 2.19: Time series of coupled ocean-atmosphere model at oscillation death for
τ = 0.15 and ε = 3 where red corresponds to slow-�uctuating ocean and green corresponds
to fast oscillating atmosphere.
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Figure 2.20: Region of oscillation death (shown in red) in coupled ocean-atmosphere
system in (τ, ε) plane.

corresponds to unstable behaviour, while that below shows periodic dynamics and multi stable
states.

2.3.2 Periodic oscillations and Multi stable states

We study the nature of dynamics in the region outside of OD state in the (τ, ε) parameter plane.
We see that for large values of time scale mismatch as we increase the coupling between the
oscillators, they show periodic behaviour in this model. This is shown in Fig. 2.21 where the
phase plots of the oscillators in X-Y plane are shown, for di�erent values of ε and τ below the
OD region. The multi stable states occur due to the existence of di�erent basins of attraction
in the initial value space of the coupled system. We study this basin structure by scanning the
(x1, x2) plane between (−60, 60) keeping (y1, z1, y2, z2) �xed as shown in Fig. 2.22. Here we
identify the regions in this plane, that lead to the di�erent states possible from the four multi
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Figure 2.21: Attractors of coupled ocean-atmosphere model before reaching OD, (where
red corresponds to slow oscillation of ocean and green corresponds to fast oscillation of
atmosphere) for τ = 0.1 (a)ε = 0.8, (b)ε = 1.5, (c)ε = 1.92 and (d)ε = 2.02 in X-Y plane.

stable states as shown in Fig. 2.22. This basin structure thus obtained is shown in Fig. 2.23.
We also �nd multi stable states in this model, in the narrow region below the that of OD.
Here for the same set of parameter values, di�erent initial conditions show di�erent behaviour
such as oscillation death states and periodic states. We study these multi stable states, by
keeping (y1, z1, y2, z2) constant as (0.3, 0.4, 0.5, 0.6) and varying (x1, x2). Thus for (x1, x2)=
(0.8, 0.34), (0.1, 0.5), (0.4, 0.5), (40,−40) we get di�erent possible states for the same values of
(τ, ε) = (0.312, 5.4). These states are shown in Fig. 2.22 a,b,c and d respectively. It is clear from
the �gures that the systems settle to two types of oscillatory states and two types of OD states
indicating multi stability in both states.
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Figure 2.22: (a) and (b)Multistable periodic states and (c) and (d) oscillation death states
of coupled ocean-atmosphere model (where red corresponds to slow oscillation of ocean
and green corresponds to fast oscillation of atmosphere) at τ = 0.312 and ε = 5.4 for
di�erent initial conditions.
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Figure 2.23: Basin structure for the multistable states in coupled ocean-atmosphere sys-
tem for parameter values τ = 0.312 and ε = 5.4. The regions in blue and black form the
basin for the oscillation death states shown in Fig 2.22(c) and (d)), while pink and white
regions correspond to periodic oscillations shown in Fig 2.22 (a) and (b) respectively.
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2.4 Summary

Our study shows that when two systems with di�erent time scales are coupled together, the time
scale mismatch causes their dynamics to go to a synchronized �xed point known as amplitude
death. We characterize the parameter range in which such emergence can occur for di�erent
types of intrinsic dynamics like periodic Landau-Stuart, periodic and chaotic Rössler and Lorenz
systems. We also observed that in periodic case, for strong coupling when the mismatch in time
scale is not large, systems settle into an emergent state of synchronized frequency. The frequency
observed in this case is in between the intrinsic fast and slow frequency leading to frequency
suppression. For weak coupling the systems show a two frequency state. As an application
we revisit and discuss the coupled ocean-atmospheric model as two coupled Lorenz systems of
di�erent time scales and report oscillation death, multistable states and corresponding basin
structure. In this context the occurrence of periodic emergent states for coupled chaotic Lorenz
systems is an interesting phenomena resulting periodically changing convection of di�erent am-
plitudes for ocean and atmosphere. Similarly oscillation death results in steady state convection
with varying rolls.
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Chapter 3

Emergent dynamics of slow and fast

dynamical systems on fully connected

regular network

3.1 Introduction

In this chapter we present the study on the emergent collective behavior of interactive slow
and fast systems that are connected to form a network. This can form the framework for
understanding the dynamics of complex systems that have many interacting units or sub systems.
In our study we consider the subsystems as nonlinear dynamical systems located at the nodes of
the network, and we address the speci�c context of heterogeneity that arises from the di�erence
in the dynamical time scales of nodal dynamics. To make this concept a speci�c feature and
understand the e�ects arising only from time scale mismatch of interactive systems, we consider
a regular or homogeneous topology for the network. One way to do this is to consider a fully
connected network in which each node is connected to all the others. Thus in a network of N
systems, each node is connected to (N-1) nodes making it a regular network of equal degree for
all nodes. To introduce the e�ect of slow time scales or time scale mismatch, we take m of the
N systems to be evolving at a slower time scale compared to others and study how this a�ects
the dynamics of the whole network. In this system, we observe emergent dynamical states like
synchronized clusters, multi frequency states, phase synchronized states and phenomenon like
amplitude death. More importantly, we �nd an interesting novel cross over behavior in the
collective dynamics as the number of slow systems is varied for chosen values of mismatch in
time scales and coupling strength. We also present a detailed study on small motifs of minimal
systems that can build up the full network and hence contribute to understanding the dynamics
of the full complex network.

3.2 Network of slow and fast systems

We construct a network of N identical n dimensional systems. Among these N systems, m evolve
on a slower time scale. This subset of slow oscillators is named as S. The equation governing
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the dynamics of the ith node of the network is given by

Ẋi = τiF (Xi) +Gετi

N∑
j=1

Aij(Xj −Xi) (3.1)

where τi = τ if i ∈ S, τi = 1 otherwise. G is an n x n matrix which decides which variables are
to be coupled. Here we take G = diag(1, 0, 0 ..) which means x variable of the ith oscillator
is coupled di�usively with the x variable of jth oscillator. Aij is the adjacency matrix of the
network de�ning its topology or connectivity. Since we consider a fully connected network,
Aij = 1 for all i and j except i=j.

3.2.1 Dynamics of slow and fast periodic systems on fully con-

nected network

In this section we study the dynamics of slow and fast periodic oscillators on a fully connected
network. We take �rst the dynamics at each node as a periodic Rössler system and study the
case of a network of N systems with N=100 and analyze how the slowness of m of the systems
can a�ect the dynamics of the whole network.

ẋi = τi(−yi − zi) + τiε
N∑
j=1

Aij(xj − xi)

ẏi = τi(xi + ayi)

żi = τi(b+ zi(xi − c)) (3.2)

The parameters are chosen as a=0.1, b=0.1 and c=4 so that dynamics corresponds to the
periodic regime. With slow time scale introduced in the dynamical equations, the frequency of
the intrinsic oscillation depends linearly upon the value of the time scale parameter τ . However
when m such slow systems are coupled with (N-m) fast ones to form the network, the emergent
frequency of the whole network might depend additionally on other parameters like number of
slow systems and the coupling parameter.

Our study shows the suppression of dynamics of the whole network is the main result with
amplitude death in all systems. This happens for su�cient time scale mismatch, coupling
strength and for a range of values of m. To calculate this range m, for a chosen value of τ and
ε, we calculate the di�erence between global maximum and global minimum of the x-variable of
each system after neglecting the transients and average this quantity over all the oscillators to
get Adiff . We plot this quantity with varying number of slow systems m to detect the region for
which Adiff = 0 corresponding to the amplitude death region. This region is shown in Fig. 3.1
for N=100, marked as region 2, which is for a moderate range of m. As shown in the same
Fig. 3.1, there are regions 1 and 3 for lower and higher range of m respectively in which AD is
not seen, where we observe other dynamical states like synchronized clusters. We discuss the
dynamical states for these regions in detail in the subsequent sections.
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Figure 3.1: Average di�erence in amplitudes, < Adiff >, of N coupled Rössler systems
plotted with the fraction,m/N of slow systems. Here N = 100, ε = 0.03 and τ = 0.1(red),
0.35(green), 0.5(blue). Region 2, where < Adiff >= 0 corresponds to AD.

3.2.2 Synchronized clusters, multi-frequency states and frequency

synchronization for small m

In the region 1 of Fig. 3.1, where the number of slow systems m is small (m≈10) all the systems
are found to show oscillatory behavior and have a nonzero value for amplitude as shown in the
Fig. 3.1. In this range under the in�uence of strong coupling, the whole network splits into two
separate clusters, one of slow and the other of fast systems. The dynamics of the oscillators
within each cluster is synchronized among themselves, however, that of the two clusters is only
frequency synchronized with each other with a phase shift between them. We show the time
series of x-variable of the systems to demonstrate this cluster formation in Fig. 3.2 for τ = 0.5,
ε = 0.03. We note that in this region 1 with lowm, the amplitude of the cluster of fast systems is
larger than that of the slow one throughout the parameter plane (τ, ε). As time scale mismatch
increases, the di�erence in amplitudes between clusters also increases.

To check the synchronization within each cluster we calculate the variance of all oscillators
within that cluster, vars and varf being this value for slow and fast clusters respectively. They
are shown in Fig. 3.3. As time evolves, we see that the variance goes to zero for each cluster
indicating identical synchronization for all systems within each cluster. For very weak coupling
(ε ≈ 0.001) and large τ ≈ 0.8, the dynamics within each cluster is completely synchronized.
However, the dynamics within the cluster of slow systems show two frequency state with smaller
amplitude and that in the fast cluster is single frequency oscillations with larger amplitudes.
Fig. 3.4 demonstrates this interesting phenomenon.
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Figure 3.2: Synchronized clusters of slow and fast dynamics in the network for τ = 0.5,
ε = 0.03, m = 10 and N = 100. Here the time series of the x variables are plotted for 3
typical slow(red) and 3 fast(green) systems.
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Figure 3.3: Variance of slow oscillators vars and that of fast oscillators varf are plotted
with time for τ = 0.5, ε = 0.03. After transients, vars = 0 and varf = 0, indicating that
the dynamics within each cluster sets them completely synchronized.
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Figure 3.4: Time series of x variables are plotted for 3 slow and 3 fast systems. This
plot shows two frequency state for slow(red) systems while fast(green) systems show large
amplitude oscillations of single frequency. Here τ = 0.8, ε = 0.001,m = 10 and N = 100.
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Figure 3.5: Amplitude death state for fully connected network of slow and fast systems
for τ = 0.35, ε = 0.03,m = 50, N = 100. Here the time series of x variables of 3 fast and
3 slow systems are plotted.

3.2.3 Suppression of dynamics and frequency synchronization for

moderate m

As the number of slow systems m is increased to moderate values corresponding to region 2 in
the Fig. 3.1, we observe that the interaction between slow and fast systems causes suppression
of dynamics in the whole network resulting in AD. This is observed for a speci�c range of (τ, ε)
where time scale mismatch and coupling strength between slow and fast systems are high. This
state of AD is shown in Fig. 3.5. We can identify the region of AD in (τ, ε) parameter plane
for any value of m chosen from the region 2 of Fig. 3.1. For this we numerically calculate the
di�erence between global maximum and global minimum (Adiff ) of each system in the network
and mark the region where Adiff is zero for all the systems. This region of AD thus isolated is
shown in red in Fig. 3.6.

Now we study the nature of dynamics outside the region of amplitude death. In this case
for weak coupling and large τ , the systems go into two frequency states as shown in Fig. 3.7.
While there exists slow and fast clusters, the oscillators within each cluster are synchronized with
each other. The small frequencies, which de�ne the frequency of envelope is same for both the
clusters. For all the cases of synchronized clusters mentioned above, synchronization is veri�ed
by calculating the variances that behave qualitatively similar to Fig. 3.3.

As the coupling strength increases in this range of m, we observe for a large range in parame-
ter plane, outside region of AD, the whole network settles to a state of frequency synchronization.
However the network still has two clusters of slow and fast systems, such that the states of the
two clusters are separated by a phase shift. This is qualitatively similar to the dynamics shown
in Fig. 3.2. We calculate the frequency of this emergent state from the time series, as reported
in the earlier work [116]. The dependence of this frequency on the parameters ε and τ is shown
in the colour coded plot in Fig. 3.8a. In Fig. 3.8b the emergent frequencies of the oscillators
are plotted along with the intrinsic fast and slow frequencies as τ is varied. For this range of τ
and ε, the emergent frequencies are less than the average of intrinsic fast and slow frequencies
indicating frequency suppression.

3.2.4 Crossover behavior in dynamics for large m

In the range of large m which is marked as region 3 in the Fig. 3.1, we observe that the network
regains the dynamics from the amplitude death state but in general follows a slower time scale.
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Figure 3.6: Region of amplitude death in (τ, ε) plane for m = 50 and N=100.
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Figure 3.7: Time series of x variables are plotted for 3 slow and 3 fast systems out of
100 systems in the network. This shows two frequency states of slow(red) and fast(green)
systems synchronized within the clusters for m = 50, τ = 0.9 and ε = 0.001.
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Figure 3.8: a) Variation of the emergent frequency in (τ, ε) plane for m = 50 in the
frequency synchronized state. The color code is as per the value of the frequency of the
emergent state. b) Variation of intrinsic frequency of fast systems (green) and that of
slow systems(red) compared with the emergent frequency (blue) as τ is varied for ε = 0.03
and m = 50.

When the time scale mismatch is not large or for large τ , the systems show synchronized clusters
being frequency synchronized as described before. But in this case the cluster of slow systems
has larger amplitude than that of fast systems. This is thus a clear indication of a crossover
behavior in the collective dynamics of the network as m varies. This phenomenon is studied in
two ways, by considering the emergent frequency of the frequency synchronized states and the
average amplitude of the synchronized clusters.

We observe that the emergent frequency in the frequency synchronized state decreases with
the increase of m, which makes all the systems evolve in a slower time scale. This is shown in
Fig. 3.9a for a particular value of τ and ε. Moreover the frequency becomes less than the average
of intrinsic fast and slow frequencies at a particular value of m, say m1. This value of m1, which
gives the critical value where frequency suppression sets in, depends on the parameters τ and ε.

We also observe another crossover behavior in the amplitudes of oscillations of slow and fast
systems when m is increased. To study this we plot the average amplitudes of the fast cluster
and slow cluster separately in Fig 3.9 for each m for a particular value of τ and ε. The crossover
from a state where the amplitudes of systems in the fast cluster are larger, to one where that of
slow cluster are larger, happens at a value of m say m2, which again is a crossover in dynamics.
We �nd both these crossover points vary with the parameters τ and ε, as is clear from the plot
of m1 and m2 values for ε = 0.03, with di�erent τ values (Fig. 3.10).
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Figure 3.9: a)Variation of emergent frequency with m for ε = 0.03 and τ = 0.7 (shown in
red). Green line shows the average of intrinsic fast and slow frequencies. Here frequency
suppression happens for m greater than m1 = 38 at which red and green lines intersect.
b) Average amplitude of slow (red) and fast (green) oscillators with m, showing crossover
behavior at m2 = 70 for ε = 0.03 and τ = 0.7.
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Figure 3.10: Variation of crossover thresholds with τ for ε = 0.03. Red line denotes the
critical number of slow systems (m1) at which frequency suppression starts and green line
denotes the same (m2) for crossover in amplitudes.
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Figure 3.11: Frequency vs m (in red) is plotted with mean frequency (in black) to
show crossover for Landau-Stuart oscillators with m for τ = 0.6, ε = 0.15 and N=100.
Crossover happens at m1 = 43 where the red line crosses the black line

3.2.5 Network of Landau-Stuart oscillators

We continue the study on the interaction of slow and fast systems on the fully connected network
for another periodic limit cycle oscillator, viz. Landau-Stuart oscillator. We consider the intrinsic
dynamics of each node of the network with N systems as given in the eqn(3.3) where m of them
are slow.

ẋi = τi((a− xi2 − yi2)x− ωyi) + τiε
N∑
j=1

Aij(xj − xi)

ẏi = τi((a− xi2 − yi2)y + ωxi) (3.3)

We observe qualitatively similar results as in the case of periodic Rössler systems. Thus there
exists a range of intermediate values of m which leads to suppression of dynamics of the whole
network. For lower and higher ranges of m, we �nd clusters of slow and fast systems showing
frequency synchronization between them. We also observe crossover for large m in terms of
amplitudes and frequencies similar to Rössler systems. Here in Fig.3.11 crossover for frequency
suppression is shown with m, for τ = 0.6 and ε = 0.15. The crossover happens at m1 = 43. For
the moderate range of m, we isolate the region of AD in (τ, ε) plane which is shown in Fig. 3.12
for m = 50 and N=100. Outside this region of amplitude death, we �nd clusters of slow and
fast oscillators as discussed before.
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Figure 3.12: Region of amplitude death for Landau-Stuart oscillators in (τ, ε) plane for
m = 50 and N=100.

3.3 Fully connected network of chaotic systems with

di�ering time scales

In this section we report the results of our study on emergent dynamics of chaotic systems on
fully connected network with each node having chaotic nonlinear dynamical system with di�ering
time scales. We present the results for standard chaotic Rössler systems and Lorenz systems.

3.3.1 Network of chaotic Rössler systems

Each node of the network follows the dynamics of Rössler system using eqn(3.2) with parameters
a=0.2, b=0.2 and c=5.7 which gives the intrinsic dynamics as chaotic. Here out of N nodes, m
are slow and evolve with a time scale mismatch of τ . In our calculations we take N as 100 and
�nd AD region for moderate m in (τ, ε) plane. This island of AD is shown in Fig. 3.13 for 50
slow systems out of 100 nodes. The transitions to amplitude death is through reverse period
doubling bifurcations as τ is decreased from 1 for a �xed ε. (Fig. 3.14)

Throughout the bifurcation region, the systems show clusters of slow and fast systems for
periodic as well as chaotic oscillations. For low and high ranges of m, the systems settle into
frequency synchronized periodic clusters of slow and fast systems for large time scale mismatch
and strong coupling. (Fig. 3.15)
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Figure 3.13: Region of amplitude death for chaotic Rössler system in (τ, ε) plane for
m = 50 and N=100.

3.3.2 Network of chaotic Lorenz systems

We analyze the behavior of slow and fast Lorenz systems when they are interacting with each
other on a fully connected network. For this the AD region in (τ, ε) plane for m value in the
range ≈ (10 − 90) is shown in the Fig. 3.16. The transition to AD is very sharp where the
systems go to AD with a very small change in τ .

The dynamics outside the region of AD indicates separate clusters of slow and fast systems
with chaotic oscillations.

For low and high ranges of m, we see that even with increasing mismatch in time scale,
systems do not go to AD state. They remain clustered in the chaotic state, with increasing
phase shift and amplitude di�erence between them as τ is decreased. (Fig. 3.17, 3.18)

3.4 Suppression of dynamics in minimal networks with

di�ering time scales

In this section, we discuss in detail the onset of amplitude death and transitions due to di�erence
in time scales on minimal con�gurations of network. For this we consider 3 and 4 systems
connected to make all the possible con�gurations. These con�gurations are important as they
represent the basic interaction patterns that can recur and thus make up the full networks
of larger sizes [117�119]. Hence, they serve as possible motifs in such large networks and are
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Figure 3.14: Reverse period doubling bifurcation for chaotic Rössler system with τ for
ε = 0.02, m = 50 and N=100. Red(slow cluster), green(fast cluster)
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Figure 3.15: Time series showing periodic frequency synchronized states for high time
scale mismatch and strong coupling for both low and high m for fully connected network
of chaotic Rössler system a)m = 5, τ = 0.055, ε = 0.03 b)m = 95, τ = 0.055, ε = 0.012.
N=100. red (slow cluster), green (fast cluster)
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Figure 3.16: Region of amplitude death for chaotic Lorenz system in (τ, ε) plane for
m = 50 and N=100.
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Figure 3.17: Time series showing slow(red) and fast(green) clusters of Lorenz systems for
low m = 5, for a)τ = 0.9 b)τ = 0.3 for ε = 0.3. Here x-variable of three typical systems
are plotted for each cluster.
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Figure 3.18: Time series showing slow(red) and fast(green) clusters of Lorenz systems for
high m = 95, for a)τ = 0.9 b)τ = 0.3 for ε = 0.3. Here x-variable of three typical systems
are plotted for each cluster.

important as repeating sub-graphs of any network. Moreover, in the present study, they are
relevant as it is feasible to understand their dynamical states and transitions in them using
analytical study. We consider in Fig. 3.19, all possible con�gurations of the minimal networks
for N=3 and N=4 two di�erent time scales, marked as S (slow) and F (fast). In addition to
fully connected motifs, we also include in our study all other con�gurations like open, bipartite
etc. which will be instructive when we consider complex networks later. Thus for N = 3, we
get a total of six unique possible con�gurations with m as 1 and 2. In the case of 4 systems,
we consider 9 con�gurations in total, by choosing speci�c topologies of ring, bipartite and fully
connected structures and with m as 1, 2 and 3 for each of them.

3.4.1 Analytical calculations

The state of AD corresponds to the occurrence of a stable common �xed point for the whole
system. Thus this state can be analytically studied and the corresponding parameters derived
from the stability analysis of the �xed point of the system (x∗, y∗, z∗). For this we calculate
the eigenvalues of the Jacobian of each con�guration shown in Fig. 3.19, around the �xed point
(x∗, y∗, z∗). The values of τ and ε for which all eigenvalues have negative real parts correspond
to the stable �xed point or region of AD.

The generic form of Jacobian of any of the motifs of slow and fast systems can be written as

J = (τ.I)xF + (τ.A)xH (3.4)

where τ is an NxN matrix in which τij corresponds to τi of eqn(3.1) for all j. I is NxN identity
matrix. Dot product (.) is de�ned here by the element wise product of two matrices, and cross
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Figure 3.19: Con�gurations of minimal networks with 3 systems and 4 systems having
di�erent possible m.

product (x) is de�ned as each element of the former matrix being multiplied by the later matrix
as a block. A is the adjacency matrix. F is system speci�c and is an nxn matrix, where n is
the dimension of a single system on each node. In the case of Rössler systems with coupling
function as given in eqn(3.2), we have

F =

 −kε −1 −1
1 a 0
z∗ 0 (x ∗ −c)

 ,H =

 ε 0 0
0 0 0
0 0 0

 , (3.5)

0 =

 0 0 0
0 0 0
0 0 0

 (3.6)

Here, (x∗, y∗, z∗) = ( c−
√
c2−4ab
2 , −c+

√
c2−4ab
2a , c−

√
c2−4ab
2a ).

k is the number of non zero elements in the ith row of A. For example in the case of N=4,
the Jacobian of the con�guration 9 in Fig. 3.19 can be written as

J =


τF 0 τH τH
0 τF τH τH
H H F 0
H H 0 F

 (3.7)

Here k = 2 in the matrix F as A has 2 entries of 1 in each row.
We now calculate the eigenvalues of the Jacobian for each con�guration for a range of values

of τ and ε in the parameter plane and identify the transition to AD as the point where the real
part of at least one eigenvalue of J goes from negative to positive. This analysis is repeated for
all the con�gurations of N = 3 and N = 4 as shown in Fig. 3.19. The transition curves thus
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Figure 3.20: Transition curves for AD with 3 systems for con�gurations a) 1(red) and
5(green) b) 2(red) and 6(green) showing fully connected and bipartite cases with identical
transitions, c) 3(red) and 4(green) with di�erent transition curves.

obtained in the (τ, ε) plane are shown in the Fig. 3.20 and Fig. 3.21 for periodic Rössler systems.
In all these �gures top left part of the transition curve gives the transition to instability, while
the other two curves represent the transitions from amplitude death to oscillations.

When we compare these transition curves among di�erent con�gurations for a �xed N, we
observe that in general the curves depend mainly on the number of slow systems m. Thus for
the same m, the con�gurations of all-to-all and bipartite structures have identical transition
curves.

For N=3 and m = 1, con�gurations 1 and 5 have identical transitions (Fig. 3.20a). In this
case, out of the nine eigenvalues of the Jacobian, six are common. Among these six common
eigenvalues the real part of one of the common complex conjugate pair crosses zero at the
transition, for the same set of parameter values indicating a Hopf bifurcation. Similar results
are obtained for con�gurations 2 and 6 with m = 2(Fig. 3.20b). However for the con�gurations
3 and 4, with di�erent m which are neither all-to-all nor bipartite, transition curves are di�erent
(Fig. 3.20c). Similarly for the case of motifs with four systems we get such pairs of all-to-all and
bipartite structures with each value of m chosen. Thus, con�gurations 1 and 7 (m = 1), 2 and
9 (m = 2) and 3 and 8 (m = 3) have the same transition curves as shown in Fig. 3.21a, b and c
respectively. In this context, each pair has a common pair of eigenvalues that cross zero at the
transition just like the case of 3 systems. However, we �nd con�gurations 4, 5 and 6, which are
ring topologies with di�erent m, show di�erent transition curves (Fig. 3.21d).

In the region outside of amplitude death, we see clusters of slow and fast systems for fully
connected and bipartite con�gurations in both cases of N=3 and 4. The clusters are always
frequency synchronized with each other but evolve with a phase shift in each con�guration. As
we see that the transition curves and dynamics outside AD is similar for the pairs discussed.
However we note that the dynamics of the all-to-all con�guration is phase shifted from that of
the bipartite one, even when they start from the same initial conditions. In the network of three
systems the con�gurations 3 and 4 exhibit frequency synchronized states with no clusters. In
the network of four systems with ring topology, in con�guration 4, the two fast systems directly
connected to the slow one, form a cluster while the other fast system evolves separately with a
phase shift being frequency synchronized. We see similar behavior for con�guration 6 where the
two slow systems directly connected to the fast form a cluster. Also in con�guration 5, we see
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Figure 3.21: Transition curves for AD with 4 systems for con�gurations a) 1(red) and
7(green) b) 2(red) and 9(green) c) 3(red) and 8(green) showing fully connected and bi-
partite cases with identical transitions, d) 4(red), 5(green) and 6(blue) with di�erent
transition curves.
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clustering states of slow and fast systems.

3.5 Summary

In this chapter we present the results of our study on possible emergent dynamics when nonlinear
dynamical systems with di�erent time scales are interacting with each other through a fully
connected network. Our study covers the periodic and chaotic intrinsic dynamics taking three
standard dynamical systems. In all cases, we observe amplitude death as the most common
emergent phenomena. We characterize the parameter regime for such emergence in the whole
network in terms of number of slow systems, time scale mismatch and coupling strength between
systems. As another important emergent dynamics we observe is formation of synchronized
clusters of slow and fast systems in such networks. Our results also show interesting crossover
behavior in dynamics observed in the context of amplitude and frequency, as the number of
slow systems m is increased. The critical values of m at crossover and their dependence on
other parameters are studied. Towards the end we present analytical study on the behaviors of
connected slow and fast systems on minimal networks of three and four systems, which form
motifs or sub groups of the large networks. In these systems, the transition curves of AD
computed from the eigenvalues of the Jacobian indicate the role of symmetry in connections in
deciding the transitions. In the next chapter, we will consider dynamics of complex networks
with di�ering time scales so that the interplay of time scales and topology on the emergent
dynamics can be understood.
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Chapter 4

Dynamics of slow and fast systems on

complex networks

In this chapter we present the study on how complexity in connections or interactions among
systems with multiple time scales a�ect their collective behavior. We include in our study
two standard network topologies, which are very prevalent in real world systems, viz random
and scale free. We report the variations in collective behaviour and dynamical transitions as
parameters of network topology are changed. The study of dynamics on random network with
systems of di�ering time scales are reported in this chapter and that on scale free networks in
the next chapter.

4.1 Random network of slow and fast periodic systems

We construct a random network of N nodes where each node represents a dynamical system.
In that network out of N identical systems m evolve on a slower time scale. The topological
connectivity of the network is de�ned by a parameter p, where p is the probability with which
any two nodes of the network are connected such that Aij = 1. First we discuss the case where
each node of the network has a dynamics of periodic system on a random network of N=100
and analyse how the slowness of m of the systems can a�ect the dynamics of the whole network.
We consider two standard nonlinear systems, periodic Rössler and Landau Stuart oscillator. For
periodic Rössler, the dynamical equations of the systems at each node are given by eqn.( 4.1)
with the parameters chosen as a=0.1, b=0.1 and c=4. The subset of oscillators of smaller
timescale is de�ned as S. The equations that govern the dynamics are then

ẋi = τi(−yi − zi) + τiε
N∑
j=1

Aij(xj − xi)

ẏi = τi(xi + ayi)

żi = τi(b+ zi(xi − c)) (4.1)

Where i=1, 2, ..... N.
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Figure 4.1: Time series of x variables in a random network of slow and fast systems
showing a)amplitude death state for m = 50, b) oscillatory frequency synchronized state
form = 5 and c) oscillatory frequency synchronized state form = 95 for τ=0.35, ε = 0.05.
For (b) and (c) red curves represent slow and green curves represent fast systems.

4.1.1 Region of amplitude death, onset and recovery

In this section we study in detail the onset of amplitude death in the random network of slow and
fast systems. This onset of AD will also depend on the probability of connection of the network
(p), in addition to the time scale mismatch (τ), number of slow systems (m), and coupling
strength of connection (ε). The di�erent dynamical states possible for a range of su�cient time
scale mismatch, strong coupling and moderate probability of connection, but for three di�erent
values ofm (50,5 and 95 respectively) are clear from Fig. 4.1. Thus while amplitude death occurs
for a moderate number of slow systems, oscillatory states of collective behaviour are possible for
very small and very large number of slow systems. As we can see in the oscillatory states the
time period of oscillations vary according to the number of slow systems.

To identify the region for occurrence of amplitude death in terms of number of slow systems
present in the network, we �x appropriate values for the probability of connection, time scale
mismatch and coupling strength and calculate the average di�erence between global maxima to
global minima (Adiff ) over time for each oscillator. This is averaged over all the systems and
plotted for di�erent values of m, the number of slow systems. This brings out the intermediate
region where time scale mismatch can induce AD in the whole network. We plot this region for
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Figure 4.2: Variation of average Adiff with m/N ratio. Here τ=0.35 and ε=0.01 for red
curve and τ=0.35 and ε=0.05 for green curve. N=100, p=0.5. b)critical values for onset
of AD at (m/N)1 and recovering from AD at (m/N)2 with ε for τ=0.3 (red), 0.35 (green)
and 0.4 (blue). Here p=0.5.

two sets of τ and ε. (Fig. 4.2a) Thus there exists a minimum number of slow systems required
for onset of AD, as (m/N)1, and maximum number required for recovery from AD as (m/N)2,
both depend on τ , p and ε. The dependence of these two critical m values on ε, for di�erent τ
values is shown in Fig. 4.2b

For the region of m/N in Fig. 4.2 where AD occurs, we isolate the region of amplitude death
in τ, ε plane by calculating the di�erence between global maxima to the global minima of x
variable of the time series. This is done for a chosen probability of connections p. (Fig. 4.3a)

In this parameter plane for moderate m, we study the possible dynamical behaviour outside
the region of AD. We observe a region of strong coupling strength and low time scale mismatch
where all the systems show a frequency synchronized state, with the synchronized or common
frequency in between the slow and fast intrinsic frequency. The common frequency changes
with the time scale, indicating frequency suppression. The random network does not show
clearly separated synchronized clusters as in the case of fully connected network. In this case
the oscillations of slow systems are relatively close in phase and so do fast oscillators but the
phase di�erence between slow and fast sets are relatively large. For weak coupling strength and
small time scale mismatch the oscillators show two frequency states and as time scale mismatch
increases they become periodic with separate time scales. For very high coupling strength all
the systems go to a state of instability (Fig. 4.3b).

4.1.2 Crossover in emergent dynamics at large m

For both the regions of low m/N ratio and high m/N ratio there is no amplitude death region
in the parameter plane. However in this region we observe frequency synchronized oscillations
for all the oscillators for strong coupling strength. These oscillations are separated by clusters
of slow and fast systems. However within one cluster complete synchronization is not observed,
instead the members of one cluster are separated by very small phase shifts between them.
These oscillations are shown in Fig. 4.1 for very small number of slow systems and very large
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Figure 4.3: a)Region of AD in (τ, ε) plane b) Boundaries of di�erent dynamical states in
this parameter plane. 1 corresponds to AD, 2 corresponds to frequency synchronization,
3 is unstable state and 4 is a state where systems start diverging from �xed point state
before reaching unstable state. Here m = 50,p=0.5,N=100

number of slow systems. It is also observed that the synchronized frequency is high for low m
and very low for high m. This phenomena can be observed as frequency crossover. We take a
suitable point from the (τ, ε) plane where irrespective of m frequency synchronization happens.
We calculate the synchronized frequency for all the oscillators and plot it with m. For each
particular τ there exist a mean of intrinsic slow and fast frequencies (shown by black lines in
Fig. 4.4). When the synchronized frequency for that τ crosses the mean and decreases with the
increase of m, frequency suppression happens. The value of m for which this happens is noted
as crossover point for frequency.

While we have frequency synchronization in the oscillatory state, the amplitudes of slow and
fast systems vary from each other. We observe that for the lower m amplitudes of slow systems
are lower than those of fast systems, while for higher m this behavior gets reversed indicating
crossover behavior in amplitude. We calculate the average amplitude of all the slow systems
and that of all the fast systems for di�erent number of slow systems. We do this for a suitable
value of τ and ε where frequency synchronization happens. We note that at a critical value of
m the amplitude of slow and fast systems get reversed as m increases. This point is called the
crossover point in terms of amplitude. This crossover behavior is shown in Fig. 4.5.

4.1.3 Transition to amplitude death and connectivity of network

In order to understand the transition to amplitude death based on connectivity of the network,
we study the collective behavior of all the systems by varying p, for a chosen number of slow
systems that lie in the AD region of Fig. 4.2 and values of τ and ε that lie in the AD region in
the parameter plane (Fig.4.3). As p goes from 0 to 1, the network topology goes from sparsly
randomly connected to fully connected. In this scenario for each p we take 100 realizations of the
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Figure 4.6: a)Fraction of realizations for transition to AD, f, with the probability p of
network, b) normalized transition curve form=30(red), 40(green), 50(blue), 60(magenta),
70(cyan), 80(black) and c) Variation of critical p with m. Here τ = 0.35, ε = 0.01

network and check what fraction of them go to an amplitude death state for the whole network.
The corresponding transition curves of fraction of realizations are plotted against p, di�erent
values of number of slow systems. We observe that as m increases, the transition to AD occurs
at a lower value of p, till an optimum value of m where this is lowest. As m is increased further
this transition moves to the higher side of p. The threshold value for the transition, where half
of the realizations follow global amplitude death, is taken as at p = pt, For random network of
periodic Rössler systems this pt is observed to be minimum when the number of slow systems
is 40 . The width of the transition is calculated as δ. We normalize the transition curves by
replacing p with (p− pt)/δ so that all the curves fall on top of each other revealing a universal
behavior. This is shown in the Fig. 4.6.

Random networks of di�ering system sizes

We also calculate the transition curves for di�erent network sizes, with N=100, 150, 200, 300,
500, 600, keeping m/N ratio �xed at 0.5. We notice the larger the network size the earlier
transition takes place in terms of probability of connections. This helps us to calculate the scaling
properties of the transitions by �tting the transition curve with the function form f = (p−pc)α.
The value of pc is chosen as the one where the function gives best �t. This then gives the value
of the scaling index α for each transition curve. We observe that the index α varies with the
network size N and as 1/N approaches 0 or N approaches in�nity, the scaling factor reaches a
value of 0.68 or within numerical errors, 2/3. (Fig. 4.7)

Here also we calculate the threshold p for which the transition occurs. We plot the variation
of pt with the system size N which suggests that it decreases with increase of N. We also notice
that the width of the transition decreases with the increase of system size which suggests sharper
transitions for higher N. These variations are shown in Fig. 4.8.
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Figure 4.9: Fraction of realizations for transition to AD for random network of hetero-
geneous probabilities for a)p1=0,p2=0, b)p1=0.3,p2=0.3 c)p1=0.8,p2=0.8, varying p3.
τ = 0.35, ε = 0.01. m=30(red), 40(green), 50(blue), 60(magenta), 70(cyan), 80(black)

4.1.4 Random network with non uniform probabilities of connec-

tions

In the discussion above, the probability of connections for generating the random network is
taken as p for slow and fast nodes. We now consider a much more heterogeneous random network
generated with three types of probabilities and study the e�ect of slow and fast dynamics on
it. The probability at which a slow system connects to another slow system is taken as p1, a
fast system connects with another fast system is p2 and a slow systems connects with a fast
systems is p3. We compute the fraction of realizations for obtaining amplitude death in this
random network of slow and fast systems by varying p3 for di�erent sets of values of p1 and p2.
We observe that the connection between slow systems and fast systems as a bipartite structure,
i.e. keeping p1 = 0 and p2 = 0 but non zero p3 alone can result in an amplitude death state.
However, having a non zero value of p1 and p2 helps the network to reach amplitude death state
at lower values of probability p3 and the minimum p3 for this transition becomes smaller with
increasing p1 and p2 (Fig. 4.9). We also calculate the fraction of realizations for AD when there
is no connection between slow systems and the probability of slow to fast connection is varied
keeping fast to fast probability �xed. We repeat the same with no connection between fast to
fast systems and slow to fast probability is varied keeping slow to slow connection as �xed. This
is done for p1 = 0.8 and p2 = 0.8 in the respective cases, where p3 is varied (Fig. 4.10).

4.1.5 Random network of Landau Stuart systems

We do a similar study for slow and fast Landau Stuart oscillators on random networks. The
results are qualitatively similar for amplitude death and oscillatory behaviors. The region of
AD is numerically calculated and shown for p=0.5, m = 50, N=100 in τ, ε. Choosing the τ and
ε from the region of AD one can show the variation for fraction of realizations of AD while p
varies. In this case also the optimum number of slow systems is seen for which the transition
curve occurs at minimum probability value.
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Figure 4.11: (colour online)a)Region showing AD in τ, ε plane for Landau-Stuart systems
on a random network, p = 0.5, m = 50, N = 100, b) variation of fraction of realizations
with p for τ = 0.35, ε = 0.01. m=30(red), 40(green), 50(blue), 60(magenta), 70(cyan)
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Figure 4.12: a)Region showing AD in (τ, ε) plane for chaotic Rössler systems on a random
network, p=0.5, m = 50, N=100 and b) Fraction of realisations for transition to AD with
p in chaotic Rössler systems for m=30(red), 40(green), 50(blue), 60(magenta), 70(cyan),
80(black), τ = 0.35, ε = 0.012

4.2 Random network of slow and fast chaotic systems

In this section we consider nodal dynamics that is chaotic for which chaotic systems such as
Rössler and Lorenz systems are considered. For Rössler systems the intrinsic equation is used as
eqn.( 4.1) with the parameter values a=0.2,b=0.2 and c=5.7, where out of N nodes m are slow
with the parameter τ . In this case the qualitative results such as AD, frequency synchronization
and reverse period doubling bifurcation are re-established. For moderate number of slow systems
we �nd the region of amplitude death in parameter plane (τ, ε). To see the transition in terms
of probability of connections we take a suitable τ, ε from parameter plane of AD and for those
parameters, calculate the fraction of realizations for amplitude death as described in the previous
sections (Fig. 4.12).

We do similar analysis where each node of random network has the dynamics of Lorenz
system with an intrinsic dynamics as eqn(4.2)

ẋi = τia(yi − xi) + τiε
N∑
j=1

Aij(xj − xi)

ẏi = τi(xi(b− zi)− yi)
żi = τi(xiyi − czi) (4.2)

with parameter values a=10,b=28 and c=8/3, where out of N nodes m are slow. In this case
also AD is obtained for moderate m and p and for a range of (τ, ε). The region for AD in (τ, ε)
plane is isolated for p=0.5 and m = 50 and is shown in Fig. 4.13a. Keeping a (τ, ε) values for
AD to occur, we can similarly show the probability of transitions to AD with p for di�erent m
values as shown in Fig. 4.13b.
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Figure 4.13: (colour online)Region of AD for random network of Lorenz systems in (τ, ε)
plane for m = 50, p=0.5. b) Transition to AD, variation of fraction of realizations with
p for m=20(red), 30(green), 40(blue), 50(magenta), 60(cyan), 70(black) , τ = 0.5 and
ε = 0.1

4.3 Summary

In this chapter we have shown that when slow and fast nonlinear dynamical systems interact
with each other on a randomly connected network, amplitude death occurs on the whole network
for a range of values the parameters involved. The parameters of relevance here are the number
of slow systems, probability of connections, time scale of slow systems and the coupling strength
between systems. The occurrence of AD is established both for periodic and chaotic systems as
nodal dynamics taking standard systems like Landau Stuart, Rössler and Lorenz. In addition
we observe frequency synchronization, clustering and crossover in amplitudes and frequencies for
large m. The transition curves and probability of transitions are identi�ed and characterized.
In summary, the study throws light on the role of time scales and complexity of interactions on
the collective dynamics of the whole system.
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Chapter 5

Multi scale dynamics on Scale free

networks

5.1 Introduction

In this chapter we will discuss the results of interactions among slow and fast dynamical systems
on a scale free network. We generate a scale free network using Barabási-Albert algorithm [43].
Typically the degree distribution of a scale free network follows a power law, which means there
are large number of nodes with comparatively small values for degree and small number of nodes
with comparatively high degrees. The nodes with high degrees are called hubs and can be found
in the tail of the degree distribution. For Barabási-Albert algorithm the scaling index of the
power law distribution is γ = −3. The degree distribution for 100 nodes is shown in the Fig. 5.1.

5.2 Scale free network of periodic systems

For our calculations, we generate several realizations of such a scale free network. We assume
on each node of the network, the dynamics of periodic Rössler systems following eqn( 5.1).

ẋi = τi(−yi − zi) + τiε
N∑
j=1

Aij(xj − xi)

ẏi = τi(xi + ayi)

żi = τi(b+ zi(xi − c)) (5.1)

Where Aij is taken as per scale free network topology using Barabási-Albert algorithm. Out of
100 nodes of the network, m nodes are taken to evolve at a slower time scale. Since in a scale
free network, hubs play the role of control nodes, we mostly concentrate on cases where hubs
follow slower dynamics.
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Figure 5.1: a) Degree distribution of scale free network for 100 nodes for di�erent real-
izations (shown in di�erent colors) b) Degree distribution in log scale for 100 nodes for
di�erent realizations (shown in di�erent colors).
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Figure 5.2: Time series of x-variable showing amplitude death in a scale free network of
periodic Rössler systems for τ = 0.3, ε = 0.2 and m=8

5.2.1 Amplitude death on scale free network due to slow hubs

In this section, we display the occurrence of amplitude death, on a scale free network of 100
systems in which eight of the higher degree nodes are made to follow a dynamics with time scale
mismatch of τ . For su�cient number of slow hubs in the network, we observe that for a part
of (τ, ε) plane all the systems show amplitude death behavior. We isolate the region of AD by
identifying the di�erence between the global maxima and global minima of all the oscillators to
be zero in (τ, ε) plane. This is shown in Fig. 5.3 coloured as red.

Starting with the highest degree as slow and increasing the number one by one, we calculate
the threshold or minimum number of number of slow hubs required for AD to happen. For
each case, the average amplitude of all the oscillators is calculated. The plot of this averaged
amplitude (< Adiff >) with the number of slow hubs m gives this threshold as the value of m
at which (< Adiff >) becomes zero. This is repeated for di�erent realizations and shown in
Fig.5.4. Here the values of τ and ε are chosen from the amplitude death region.
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realization of scale free network for m=8. Slow nodes are taken from the high degree end.

5.2.2 Frequency synchronization outside the region of AD

In the region outside AD, oscillators show frequency synchronization with a common frequency,
which is less than the fast intrinsic and greater than slow intrinsic frequencies. However, in this
case, unlike fully connected network, no cluster formation is observed.

When the number of slow hubs are small we see oscillatory behavior, with frequency syn-
chronization throughout the (τ, ε) plane. This common frequency depends on τ similar to the
cases of two coupled, fully connected network and random networks reported earlier. However
we do not �nd synchronized clusters but the slow hubs show coherence among themselves.

5.2.3 Spread of slowness on scale free networks due to one slow

node

In a scale free network of oscillators, with no time scale mismatch, all the systems on its nodes
can be completely synchronized with a su�ciently strong coupling strength. Taking such a
system, after giving su�cient time so that all the oscillators are synchronized, we make one of
the nodes slow, called a source node. Then the slowness of that node will spread over the whole
network and disrupt the dynamics of all other nodes so that they move away from the state of
complete synchronization.

Due to the heterogeneity of connections in a scale free network, the time taken by each
oscillator to move away from synchronization is not same. We analyze this scenario in terms of
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Figure 5.5: Frequency synchronization for large number of slow hubs, for τ = 0.6, ε = 0.2
m = 8 (8 top hubs) for periodic Rössler systems on scale free network. Here slow hubs
are colored in red and fast oscillators are coloured in black.
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Figure 5.6: Frequency synchronization for small number of slow hubs for τ = 0.6, ε = 0.2
m = 4 (4 top hubs) for periodic Rössler systems on scale free network. Here slow hubs
are colored in red and fast oscillators are coloured in black.

-1

-0.5

 0

 0.5

 1

 480  490  500  510  520  530  540  550

v
a
r

t

Figure 5.7: Variance of periodic Rössler oscillators with time to show that each oscillator
takes di�erent time to fall apart from the synchronized state. τ = 0.3, ε = 0.03
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Figure 5.8: The time taken for each oscillator to fall apart is plotted with their degree
for 1 source node being slow. This is shown for a particular realisation of the network of
100 systems where in a) the highest hub is made slow with degree 47 and in b) the lowest
degree node is made slow with 2 degree. Di�erent colors here represent di�erent shortest
path length from the source node with shortest path 1(red), 2(green), 3(blue). Here τ is
0.3 for the source node and ε is 0.03.

degree of the nodes and shortest path from the source node, in following ways. We study the
change in the variance of all oscillators in time. When they are completely synchronized, the
variance would be zero as shown in Fig. 5.7. When one node is made the slow, we calculate the
variation of each oscillator from the mean of anticipated synchronized oscillations(the synchro-
nized oscillation they would have followed if this node was not made slow), which is nonzero
indicating desynchronization. From the Fig. 5.7 it is evident that for each oscillator the time
taken for the variance to go to a non zero value is di�erent. For example the oscillator which
is made slow takes the least time. We get the time taken for each oscillator to go to a speci�c
cut o� value (typically -0.01 or 0.01) for its variation and plot as a function of the degree of
the nodes. It is easy to see that this time increases as the shortest path of that node from the
source node increases. We repeat this for several nodes as source, including hubs and low degree
nodes. Fig. 5.8 shows this plot of time taken vs degree of nodes for the case of hub being the
source node and a low degree node being the source node for a typical realization. In the case
where a hub is source of slowness, we see most of the nodes fall apart quickly since the shortest
path from the source node is small. However in the case where a low degree node is made slow,
they take more time.

We repeat the study for di�erent realizations of the network and calculate the number of
systems that fall apart in a given time range starting from the time one node is made slow,
averaged over the realizations of network taken. Fig. 5.9 shows the distribution of the number
of systems that fall apart in a given time range with time, typically when a hub was the source
and when a low degree node was source of slowness. It is interesting to see the maximum time
taken for all the systems to fall apart from each other for each source node and its variation
with the degree of source node. Fig. 5.10 shows a typical realization of network showing this
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Figure 5.9: The number of systems that move away from synchrony(Ns) in a range of
time is plotted with time averaging over several realisations. Here a) corresponds to the
highest hub being slow as source node for each realisation and b) corresponds to one
lowest degree node being slow as a source node. Here τ is 0.3 for the source node and ε
0.03.

behavior where it is evident that as the degree of source node increases the total time taken for
all the systems to fall apart decreases in a curve that follows a power law. We �t the curve with
function f(x) = (a/x) + b and get a=180, b=18.

Self organization of the network to frequency synchronized state

In this process of de-synchronization due to slowness of one node, given su�cient time, all the
oscillators are found to settle to a frequency synchronized state(Fig. 5.11). This is an interesting
and novel phenomenon of self-organization, where the network goes from a collective behavior
of complete synchronization to another less orderly but coherent emergent state of frequency
synchronization re-adjusting the dynamics of all the nodes after the network was perturbed
by making one node slow. We calculate the frequency of each oscillator and plot them with
the index of each zero crossing time which shows the synchronized frequencies before one node
was made slow, the de-synchronized frequencies just after the node was made slow and �nally
the re-adjusted frequency (lower than before) after self organization (Fig. 5.12). Also in this
case the time taken for self organization is also an interesting characteristic feature, called self
organization time. This time averaged over several realizations (tso) for di�erent τ ranging over
0.2 − 0.8 for a particular ε=0.1 is shown in (Fig.5.12). We observe that the self organization
time increases with the decrease in the time scale of the slow node.
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Figure 5.10: Time taken for all nodes to fall apart with the degree of source node for
periodic Rössler systems on scale free network. The source node has time scale as τ = 0.3
and here, ε = 0.03
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frequency synchronized state after one node was made slow from the state of complete
synchronization. Here τ = 0.3 for the slow node and ε = 0.1
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Figure 5.12: a) Self organization of frequencies for a typical realization of scale free
network after one hub was made slow for periodic Rössler systems. O On the x axis
the time and on y axis the corresponding frequency. b) the time taken to self organize
averaged over realizations is plotted with τ for ε = 0.1.

5.2.4 Scale free network with a distribution of time scales for

nodal dynamics

In this section we study the collective dynamics of nonlinear systems on scale free network where
time scale of each node varies with its degree following the relation

τi = 2/ki (5.2)

This is chosen such that the node with highest degree will have the slowest time scale and
vice versa. (Since in our network the lowest degree of a node is 2, for convenience the factor
2 in the numerator is taken to make the time scale of lowest degree node to be 1). In such a
network we observe the phenomena of AD and �nd that after a threshold coupling strength all
the systems reach AD. To observe the onset of AD, the averaged di�erence of global maxima to
global minima over all oscillators, < Adiff >, is plotted for di�erent values of ε. This is shown
in Fig. 5.13. for di�erent system size such as N=100,500,1000.

In this case for lower values of ε, we see oscillations with di�erent amplitudes such that high
degree nodes with lower time scales have much smaller amplitude than the low degree nodes
with faster time scale. We estimate the distribution of amplitudes present in the network by
calculating the number of oscillators(Na) that show a certain amplitude. We also estimate the
distribution of time scales by taking the number of oscillators(Nτ ) in a a particular time scale
(Fig.5.14). This distribution is taken for several realizations of the network with size N=1000.
Clearly oscillators with large τ = 1 and large amplitudes are much larger in number which
corresponds to the larger number of low degree nodes and oscillators with the lowest τ and
smallest amplitudes are much lower in number.

77



-2

 0

 2

 4

 6

 8

 10

 12

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

<
A
d
i
f
f
>

ε

Figure 5.13: < Adiff > vs ε in a scale free network for periodic Rössler systems with
τi = 2/ki for N=100(red), 500(green), 1000(blue) of Rössler systems, to show onset of
AD with distribution of time scales.

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12

N
a

<A
diff

>
(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
τ

τ (b)
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systems on a scale free network for ε = 0.03 when time scales distributed as eqn. 5.2
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Figure 5.15: a) Region of AD for Landau-Stuart oscillators on scale free network in (τ, ε)
plane for threshold degree 8.

5.2.5 Scale free network of Landau-Stuart oscillators

We repeat the above study using another periodic system, Landau-Stuart oscillator as nodal
dynamics. We follow the eqn(. 5.3) for ith node as

ẋi = τi((a− xi2 − yi2)x− ωyi) + τiε
N∑
j=1

Aij(xj − xi)

ẏi = τi((a− xi2 − yi2)y + ωxi) (5.3)

using intrinsic parameter a=0.1, where Aij is the adjacency matrix of the generated scale free
network. We �nd qualitatively similar results for this case also with amplitude death state and
frequency synchronization. For a typical realization of the network when 8 systems are slow
which is achieved by taking nodes having degree greater than 8 as slow, we show the region of
amplitude death in τ, ε plane in Fig. 5.15
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Figure 5.16: a) Time series for 18 slow nodes as nodes that have degree greater than 3
is made slow for τ = 0.1 ε = 1 in a scale free network of chaotic Rössler systems. Here 3
slow nodes (red) and 3 fast nodes (black) are plotted

5.3 Scale free network of chaotic oscillators with dif-

fering time scales

In this section we present the results of our study on the collective behaviour of slow and fast
chaotic oscillators on a scale free network. In this case chaotic Rössler system and Lorenz system
are taken as the dynamics on the nodes.

5.3.1 Slow and fast chaotic Rössler systems on scale free network

With chaotic Rössler systems on each node of the scale free network following eqn(5.4) with
parameters a=0.2,b=0.2,c=5.7. The coupling function for each node is taken as di�usive with
the nearest neighbours and normalized by degree of each node such that we get a mean �eld
approximation. The equation for each node as per this coupling is given by

Ẋi = τiF (Xi) +
Gετi
ki

N∑
j=1

Aij(Xj −Xi) (5.4)

where F (Xi) denotes the intrinsic dynamics of ith node. τi = τ if ith node is taken as slow,
τi = 1 otherwise. G is an n x n matrix as G = diag(1, 0, 0 ..). ki denotes the degree of ith node
which divides the coupling function for each node.

In such a set up, chaotic Rössler systems are completely synchronized for strong coupling
strength with no time scale mismatch. The network settles to a state of AD when su�cient
the number of slow nodes taken from high degree end, with large time scale mismatch and high
ε. Typically in one realization of scale free network, where 18 nodes are slow from the high
degree end, which includes nodes with degree greater than 4, AD occurs as shown in Fig. 5.17
for τ = 0.3 and ε = 1.5. This is plotted by taking the region where Adiff = 0 for all oscillators
is in (τ, ε) plane. When the time scale mismatch is lower but with a high value of τ , all the
systems go to a frequency synchronized periodic state with a common frequency lower than the
intrinsic fast frequency and higher than the intrinsic slow frequency for that τ . Unlike the case
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Figure 5.17: Region of AD for chaotic Rössler systems on scale free network in τ, ε plane
for threshold degree 3.
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Figure 5.18: a) Time series for 18 slow nodes as nodes that have degree greater than 4 is
made slow. a) τ = 0.6 ε = 1.5 b)τ = 0.8 ε = 1.5 showing periodic and chaotic trajectories
of 3 typical slow (red) and 3 typical fast nodes (black) for chaotic Rössler systems on
scale free network.

of fully connected network (Chapter 3) clustering is not observed here. On increasing τ , we see
period doubling bifurcations until it reaches synchronized chaos for τ = 1. In the chaotic state
of the period doubling bifurcation we observed oscillators are phase shifted with a small phase
while the wave pattern remains same for all the oscillators with di�erent amplitudes. Fig. 5.18
shows frequency synchronized periodic states with phase shifts between oscillators for τ = 0.6
and ε = 1.5 and chaotic states for τ = 0.8 and ε = 1.5, for 18 slow nodes taken from high degree
end. When number of slow systems are not su�cient, systems do not show AD but go to a
periodic frequency synchronized state for large time scale mismatch.

In this case also, crossover phenomena in amplitude and frequencies happen with increasing
m. Thus for small m, slow systems have smaller amplitude than fast systems. For large m this
gets reversed. Similarly, synchronized frequency in frequency synchronized region, decreases
with increase of m.

5.3.2 Slow and fast Lorenz systems on scale free network

We consider Lorenz systems with chaotic trajectories on each node of the scale free network.
Here the intrinsic dynamics of each node follows equation(1.1) with parameter a=10, b=50,
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Figure 5.19: Time series of x-variable for Lorenz systems on a scale free network showing
AD a) τ = 0.6 ε = 20 b)τ = 0.2 ε = 20 for m = 29 slow systems whose degree is greater
than 3. Here 3 slow systems(red) and 3 fast systems(black) are plotted.

c=8/3 with τi as their time scale. The coupling function for each node is set as di�usive with
the nearest neighbours and normalized by degree of each node to get a mean �eld approximation
as for chaotic Rössler systems in the previous section. Typically for one realization on a scale free
network we observe that with no time scale mismatch for a higher coupling strength, the systems
show generalized synchronization (τ = 1, ε = 20) [68]. In this scenario if time scale mismatch is
introduced in the network by making m number of nodes slow from the higher degree end, we
see the oscillators go to AD with time scale mismatch τ = 0.8. However, increasing the time
scale mismatch further would lead the systems to oscillation death (OD) at τ = 0.2. Fig. 5.19
shows AD and OD states for m = 18 with slow nodes taken as those with degree > 4 and for
τ = 0.6 and τ = 0.2 successively and ε = 20.

The regions of AD and OD are isolated in τ, ε plane by calculating the di�erence between
global maxima and global minima. The parameter values that give this di�erence for each
oscillator as zero ensures that either AD or OD occurs for those parameter values. Among
these, AD corresponds to the case where the variance of x variable of all oscillators would
become zero as they are going to a common �xed point. But for OD states since systems go to
di�erent �xed points the variance would show non zero values. Thus the AD and OD region is
identi�ed and marked in the (τ, ε) plane shown in Fig. 5.20
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Figure 5.20: Regions of AD (red) and OD (green) for Lorenz systems on scale free
network plotted in (τ, ε) plane where nodes with degrees above 3 are made slow.
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5.4 Summary

We study the roles heterogeneous time scales play on the collective dynamics of non linear
systems evolving on a scale free network. Since scale free networks have a hierarchical structure,
we speci�cally address the e�ect of hubs or high degree nodes being slow in dynamics. As a
main result we present and characterize the transitions of suppression of dynamics due to the
presence of a threshold number of slow nodes taken from high degree end. We characterize and
discuss the other types of oscillation that can happen for di�erent parameter values of τ , ε and
m. We study the spread of slowness due to one particular node being slow in the network after
the network had achieved complete synchronization in periodic systems. In this case we show
the results for one hub and one low degree node as the source of the slowness and compare
their results. We also study the behavior when systems have a time scale distribution inversely
proportional to their degree for periodic systems. We �nd AD for strong coupling strength and
state of clustered amplitude distribution in the lower coupling strength range. We characterize
suppression of dynamics and other oscillations for chaotic slow and fast systems on scale free
network with mean �eld coupling.
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Chapter 6

Conclusion

Multiple-timescale phenomena occur frequently in real world systems and their in-depth under-
standing brings in several novel challenges. Although there have been isolated studies address-
ing its various aspects, there are still many interesting questions that demand multidisciplinary
approaches. Modeling frameworks have proposed methods to understand multiple time scale
phenomena in single systems, like dynamical model for neuronal dynamics. However studies
on collective behavior of connected systems that di�er in their intrinsic time scales, are very
minimal with many open questions. In this context the study reported in this thesis is highly
relevant and has resulted in many novel phenomena and promising approaches.

We study the e�ect of heterogeneity in the natural frequencies on the emergent dynamics
by considering systems with di�erent dynamical time scales. The study is exhaustive with at
least three standard nonlinear systems, periodic and chaotic states as intrinsic dynamics and
all to fully connected, random and scale free topologies for connections or interactions on the
networks with di�usive and mean �eld coupling. By considering two types of complex networks,
we study the e�ect of heterogeneity in link structure on the dynamical properties and their
critical behavior. Our study uses standard periodic oscillators of Rössler and Landau-Stuart
type and chaotic Rössler and Lorenz dynamics so that it brings out the amplitude variations
and their crossover behaviors as slowness factor increases.

The main contributions from the study are the observation of onset of emergent phenomena
like amplitude death, oscillation death, frequency synchronization, cluster synchronization and
their characterizations.

Several types of synchronization phenomena like complete, phase and generalized, have been
studied in various contexts. However, frequency synchronization is of recent interest and has
relevance in many realistic situations ranging from neuronal systems to power grids, where the
individual oscillators can have non-identical natural frequencies. Similarly suppression of oscilla-
tions or amplitude death is another emergent phenomenon that we observe that has interesting
implications.

We �nd the di�erence in time scales and the heterogeneity in connectivity together can drive
the whole network to frequency synchronized clusters. Increasing the heterogeneity in time scales
by increasing the number of slow systems or the mismatch in time scales, the whole network
settles to a state of no oscillations. The transitions to that state as well as recovery to slower
oscillations with cross over in amplitudes are some of the interesting results of the study.

We also address the question of what happens if part or even one node of a network of
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systems suddenly slows down and how does it a�ect the performance of the whole network. In
this case, the robustness of the network to such changes is studied in terms of the time taken for
each node to escape from the synchronized state leading the whole network to desynchronized
dynamics. We �nd this phenomenon of loss of synchrony settles in a time that decreases with he
degree of the node that becomes slow �rst. Consequent to this, the whole network reorganizes to
a frequency synchronized state and this self-organization time is characteristic of the di�erence
in time scales.

The major contributions from the study presented in the thesis are

• Suppression of dynamics, frequency synchronization and two frequency states are ob-
served in two coupled slow and fast nonlinear systems. This is applied to coupled ocean-
atmospheric model where oscillation death and multistable periodic states are studied.

• Amplitude death, frequency synchronization cluster synchronization and frequency and
amplitude crossover is studied for fully connected regular network, when each node is
evolving with slow or fast dynamics. Motifs or minimal networks of slow and fast systems
are studied to carry out analytical understanding for such dynamical behaviour.

• On a random network we study the interaction between slow and fast systems. Along
with the study of amplitude death and frequency synchronized state, we �nd optimum
number of slow system for sparse most network con�guration for reaching AD. We carry
out these studies for uniform as well as non uniform probabilities of connection.

• Spread of slowness on a scale free network is studied for one node being slow in a complete
synchronized network condition. In this case the phenomena of self organization is stud-
ied in detailed. Amplitude death and distribution of clustered amplitudes are studied for
a distribution of dynamical time scales on this hierarchical structure of scale free networks.

Future trends

• The study presented here gives an overview about the e�ect of di�ering time scales on
interacting non linear systems on di�erent level of connecting structures. This can serve as
a basic model for understanding complex multicomponent and multi scale systems. This
basic study opens up future research possibilities in various directions.

• One can apply the methods and analysis in the thesis to understand real networks like
social networks, where slowness can be related to the performance of the component
systems.

• The e�ect of noise and its robustness in the presence of noise and external perturbations
can be studied as a direct extension of the present study.

• Introducing delay in connections, which is natural, will ad one more time scale to the
problem and therefore will be interesting to pursue for possible emergent behavior.

• The present study can be helpful to understand time series coming form system shaving
dynamics on di�erent time scales.
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• The study can be further extended to understand possible control mechanisms where emer-
gent dynamics can be controlled by changing the time scales of suitably chosen component
systems.

In conclusion, we present our work as a basic and fundamental approach for understanding the
interplay of time scales and the results serve also as control mechanism for chaotic dynamics.
While this work gives a new direction to study the role of time scales involved in complex
systems, the stability and predictability of chaos also gets a new direction through it. We are
hopeful that this research will bene�t and inspire the future research in similar dircetions.
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