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Abstract

We investigate the differences in prey-predator dynamics arising in a stochastic lat-
tice model as a result of determinism(in the form of strategies for prey and predator
with an aim to optimize the respective fitness) and stochasticity (in which the move-
ment of the two entities is governed by highest random hopping weights assigned
to neighboring cells). By means of Monte Carlo procedure, we simulate the model
defined on a regular square lattice and discern the phase transition from an active
state (where both species coexist) to an absorbing state(where one or both of the
species are extinct). We find out that in a system with dominant predation, intro-
ducing intelligence in prey confers an additional advantage in terms of fitness which
leads to their greater presence across sites on the lattice as compared to the preda-
tors who occupy fewer sites.Also, as we keep on increasing the probability of a prey
to adopt the strategy of hopping to the neighboring site with the minimum number
of predators, we find that predators vanish quicker than the situations where preys
adopt a more random approach in hopping to the sites.
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Chapter 1

Introduction

Lotka [1] and Volterra |2] developed one of the first theoretical approaches for study-
ing predator prey dynamic system independently . The model consists of one preda-
tor whose only diet is one prey. A constant growth rate and mortality rate is assumed
for the prey and predator respectively.

The Lotka-Volterra system of ordinary differential equations:

J}'/t :axt—bxtyt
Y+ =cry;—dy,

with positive xg,y9 and positive a,b,c,d describes a behavior of a predator-prey system
in terms of prey and predator "densities" x; and y,. Here, a is the rate of increase of
prey in the absence of predator, d is the rate of decrease of predator in the absence
of prey while the rate of decrease in prey is proportional to number of predators bx;
and rate of increase in predator is proportional to number of prey cx;y;. Since the
population numbers are integral, the above model has an underlying assumption
that the numbers of both populations are large and densities are obtained upon
normalization of population numbers by a large parameter, say P. Setting the time
derivatives to zero yields three stationary states (as, bs):

1. the absorbing state with total population extinction which is linearly unstable
for o > 0.

2. predator extinction and prey explosion (0, 00) which for ¢ > 0 is also linearly
unstable (an absorbing state for the predators).

3. species coexistence (a; = %,b, = 9)

The fixed point is marginally stable as the eigen values of the Jacobian stability
matrix are purely imaginary ¢ \/ad.

The model is inadequate as it fails to answer questions of extinction of popu-
lations, as the extinction never happens in the deterministic mean field model for
any x;,y; in the phase plane. The solutions of the model are closed orbits in phase
space which means that the nonlinear population oscillations are regular and peri-
odic with amplitudes and frequencies contingent on the initial values z(0) and y(0).
The model is also mathematically imprecise against spatial variations, stochasticity
which casts a serious question on its biological relevance [3].
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1.1 So, what was done to remove these inadequa-
cies?

There have been modifications in the original Lotka Volterra model that have incor-
porated factors like intra-species competition, harvesting etc. that have a bearing on
the dynamics. However, Lotka-Volterra model and its modifications fail to consider
the reality that an individual is in general affected more by its local species density,
and less by global density of species [4]. The models neglect spatial heterogeneties
such as the uneven distribution of populations and resources, predation rates etc.
in a given landscape. Experiments by Huffaker (1958) using mite poulations have
demonstrated that the population dynamics are significantly affected by spatial dis-
tribution of species and resources, and the prey and predator mobility. The lattice
model was used by Satuvolvsky and Tome(|4]) to investigate prey predator dynam-
ics(one prey and one predator with no harvesting). The study exhibited oscillatory
behavior of population densities of the prey and predator at both local and global
levels.

1.1.1 Motivation behind our study

We adopt the stochastic approach to take into account the localization of an indi-
vidual of a species and its local interactions by invoking the 2D lattice Model. The
dynamics is governed by stochastic rules representing processes like death and pro-
liferation and the rules are formulated at an individual level. Models of ecosystems
which use this approach are amenable to numerical computations. [5] introduced
quenched randomness into the lattice to take into account the varying rates of pre-
dation, birth of prey and death of predator in the real habitat and found that this
variability enhances fitness and led to formation of patches of habitation. Also in
the real biological systems, the entities(prey and predator) are intelligent beings i.e.
their movements within a habitat is dictated by measures that would maximize the
chance of their survival. For predator, this would mean that they would seek por-
tions of the landscape that abound in prey and preys would like to avoid the patches
of habitat that are relatively abundant in predators. In our model, we incorporated
a combination of these intelligent moves and completely random moves (for the
prey)in the prey-predator model and tried to deduce the biological implications of
the ensuing dynamics. As supported by the results of our simulation, we found that
intelligence alone cannot result in coexistence as it did lead to extinction of species.
Some stochasticity is necessary to bring about coexistence.



Chapter 2
Our Model

We consider a two-species system of diffusing particles or population numbers sub-
ject to following dynamics:

A—¢ rate
A+B— A+ A rate
B— B + B ratec
(2.1)

The predators die spontaneously at rate p > 0,whereas the prey 'B’ proliferate
with rate o > 0. a, and b, respectively denote the predator/prey population densities.

2.1 Model Description

The lattice model has four components:

e A Lattice, which is a finite set of discrete points called sites, which are filled
by both preys and predators and represents their location.

e A finite set of states: For simulating the diffusing and interacting points on a
lattice, in the report, a site can acquire one of these states:

1. (0): the site is empty. This site is regarded as containing a resource that
is the nutrient for the prey species B.

2. (1): the representative particle is a prey (B)

3. (2): the representative particle is a predator (A)

e The neighborhood definition: a rule that defines the location of sites that
influence the state of a particular site.

e Transition Rules: Rules that determine how the state of a given site would
evolve. In our model, these rules are either stochastic or driven by game-
theoretic strategies.



In this report, the lattice is two-dimensional. The predator/prey densities evolve
in discrete time steps governed by a set of rules that are local, stochastic or deter-
ministic(in case a strategy is adopted).

2.1.1 Neighborhood definition

The neighborhood of a particular site is defined as the four squares at distance of
one unit from site (except the diagonal squares). This means, a chosen particle can
hop to one of the four sites located : up, down, left or right.

2.1.2 Model Assumptions

All variables are defined in the domain of the non negative real numbers.

All three reactions as well as the nearest-neighboring hopping are to be inter-
preted as stochastic processes.

Species interactions are local.

Prey birth takes place only when the local carrying capacity (in our model, it
is equal to 100).

In the absence of predation, growth rate of prey is logistic.



Chapter 3

Monte Carlo Simulations

3.1 Data Structure

In the model, we have unrestricted site occupation. Basically, to simulate diffusion
and interacting particles on the lattice , one requires four operations which get
repeated in different combinations :

1. Particle Selection: A lattice occupant is selected with a probability which is
proportional to the density of a species in a given site. This implies that if a
site has more preys than predators, a prey is more likely to be chosen.

2. Number Determination: This operation determines the number of particles
of any given species on a given site at a given instant. This demands fast
execution and hence one has to take care while ordering particles in the data
structure.

3. Add: a new particle is inserted into a lattice.
4. Remove: This operation ’destroys’ a particle from the lattice.

Thus a particle movement is nothing but a sequential Remove and Add.

In the code, we maintain matrices for both species A (predator) and B (prey).
According to the dynamics, after each Monte Carlo time step, the entries of the
matrices are updated. Any entry (say Ap/y )of the matrix can be used to locate the
site and the value gives the number of the entities occupying the site. We interact
with the head of each site-local list or an occupant that is directly chosen through
random selection.

3.1.1 Monte Carlo Procedure

For each iteration of the simulation, a lattice occupant is chosen (according to the
probability as described in the above subsection)and it hops to a nearest-neighboring
site. Subsequently, it might undergo an on-site reaction. After each such iteration,
we increase the time step by 1/(N(t)), where N(¢) is the total number of particles
at that instant.



Here, we outline the steps for the unconstrained, stochastic Monte Carlo simu-
lation of the Lotka-Volterra Model on the lattice

1. Select a lattice occupant from a random site. If the random site is empty, keep
selecting a random site until you hit a non-empty site from where one lattice
occupant can be chosen to hop to a neighboring cell with probability 1.

2. This step is where you can incorporate strategies for hopping for the entities.
In a naive world (where no one adopts strategies), a particle can hop to one
of the four neighboring cells. For simulating a scenario where one can have
intelligent particles, one has to determine the odds of migration to each of the
neighboring cell and let the particle hop to the one that enhances the fitness
of the hopping species the most.

3. If the occupant is a B particle (Prey), generate a random number p; that lies
between [0,1); if p(;) < o, add another new B particle to the current site.
This step is the prey proliferation, B — B + B. Also, if the number of preys
in the cell is already > 100, the hopped prey can not reproduce in that cell.

4. If the occupant is an A particle(predator)

e If there are any B particles(prey) on this site: for each B generate a
random number py between 0 and 1. If py < A, remove that prey and
add one predator in its place. This is the predation interaction, A+ B —
A+ A. To make the model biologically more plausible, we have also
introduced quenched randomness in A in the sites. This simply means
that we have a matrix for A\ assignment to the sites. The values come
from a gaussian distribution having a mean and variance (which can be
changed in the code).

e generate a random number ps in [0,1) and if p3 < p, A is removed i.e.
we have predator death, A— .

In our simulations, none of the possible events are mutually exclusive. This
means that we can have simultaneous diffusion and on-site reactions. We initialize
the matrices of A and B (We have mostly populated with an integer between 0 and
5 or between 0 and 10).

3.2 Boundary Conditions

We invoke periodic boundary conditions for random hopping as well as the hopping
according to a strategy.



Chapter 4
Results

First, we set to verify the results that were obtained in [6]. Then, we go on to
investigate the effect of introducing a mix of intelligent moves and random moves
by preys and only random moves by predators and try to study the competition
between stochasticity and determinism.

4.1 Verification of known results and their interpre-
tation

We took a 256 x 256 square lattice and run it with rate parameters (u = .5,0 = .2)
and plotted a(t), b(t) as functions of time ¢.

We found (as in [6])that early time regimes are marked by significant oscillations,
as shown in figure 4.1(a). As time progresses, amplitude of these initial oscillations
decreases considerably although they sustain for a long time. When the predation
rate was increased to 1 as compared to 0.5, amplitudes of the oscillations were
suppressed as evident in figure 4.1(c). This means that that as we increase the
reaction rates, interactions are rendered more local. As predation rates have seen a
considerable increase (two-fold), we expect that the prey density would see a rapid
decline, followed by the predators. We investigated the model with suites of values
of the parameters but was unable to detect a coexistence regime that is governed
by a stable fixed point (which is approached without any population oscillations).
For high reaction rates, however, these oscillations become remarkably damped. As
seen from figure 4.1(b), the long time regime is governed by stochastic fluctuations
about the attractive fixed point at the center of the graph.

4.1.1 Introducing intelligence in preys

As seen from the above dynamics from the figure 4.1 (a) and (c), the system under
study is predator-dominant as across time, predator density ( number of predators
per site) is more than prey density. This prompted us to introduce intelligence in
the prey species to check if this would confer them with distinct advantage over the
predators who were to hop randomly without any strategy in place. We expected
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Figure 4.1: (a) Predator a(t) and prey b(t) densities versus time in a simulation run
over 256 x 256 lattice, with random initial distribution, and rates y = .5, 0 = .2,
A = .5(b)Trajectory in the a — b phase plane from the simulation data in (a),(c)
Predator a(t) and prey b(t) densities versus time with all parameters same except A
which is 1.

this advantage to reflect in a dramatic increase in the prey density as compared to
previous situations in 4.1. We present here, the results of our findings in the figure
4.2. The parameter,(p),is the probability of adopting a strategy by prey. 1—p would
thus represent the probability of a prey performing a random hopping from a site
to the neighboring ones.

We observe that as p increases, preys outcompete their counterparts faster. This
can be attibuted to the fact that since preys employ strategy (which is to hop to
a site having the minimum number of predators) with a greater probability, they
outnumber the predators (who hop randomly) at most of the sites. For random
hopping of the predator, we generate four numbers between 0 and 1 and treat them
as the probability of hopping to the four neighboring cell. The random number that
takes the maximum value corresponds to the site where the predator is most likely
to hop and undergo an on-site interaction subsequently. Since our code involves
choosing a non-empty site for choosing a particle for hopping Sec. 3.1.1.

,we have witnessed a situation where the simulation stops after we hit an empty site
more than N X256 x 256 times ( where N can be varied in the code). This happens as
locally predators go extinct on many of the given sites. One can continue the reaction
further by careful selection of non-empty site after this scenario. However, the
dynamics up to this point clearly reflects the advantage that adopting a productive
strategy renders on the preys. We also generated the matrix corresponding to the
number of species per site (to be seen once the reactions had stopped as per our
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Figure 4.2: Predator a(t) and prey b(t) densities versus time in a simulation run
over 256 x 256 lattice, with random initial distribution, and rates y = .5, 0 = .2,
A = .5 and parameter p=0.7,0.5 and 0.3 respectively

code)for these values of parameters: ©=0.2,0 =0.2,A = 0.5, p = 0.5.

Predator Population Dynamics

Prey Population Dynami

Figure 4.3: (a)predator occupation on the lattice (b) prey occupation on the lattice

Dark spots pertain to empty sites and as the color gets lighter, site occupancy
rises. As can be seen from figure 4.3, one can see that most of the sites are marginally
filled with predators as compared with those populated with preys.

4.1.2 Remarks about the code

The codes used to run Monte-Carlo simulations need to be very efficient because:

e As we increase the initial site occupancy of the sites, the number of Monte-
Carlo steps that the simulation takes to run decreases. This is because number
of such times steps scales as 1/N(?).



e One can toy with total number of iterations to increase the time span. How-
ever, this affects the time-efficiency of the code.

e The dynamics that we have obtained is for the first few Monte Carlo Steps.
Essentially after this, predators are so rare that they are seldom picked up (by
chance) to hop to neighboring sites and interact with other particles. Because
it remains to be seen what happens after this stage in the dynamics, we posit
that predators might get wiped out purely due to their death rate (They might
not too as the equations are stochatic!). One can also observe coexistence with
pronounced presence of preys and predators confined to certain sites (much
like the present scenario).

10



Chapter 5

Discussion

Biological ecosystems present interesting diversities. Notably, competing species co-
exist and keep employing effective strategies to further their own fitness. This means
that a species has tactics of movement, food location etc. that tend to maximize
their payoffs from their endeavors. Keeping this in mind, we modelled prey-predator
Lotka-Volterra system stochastically , also incorporating game-theoretic movement
techniques adopted by prey (as our system was dominated by predators essentially,
we wanted to see if equipping preys with intelligence rendered them with some ad-
vantage over the predators). We found that most of the sites saw the extinction of
predators except some of the sites that were occupied by them. On the other hand,
preys occupied more number of sites in general as compared to the predators. We
also wanted to investigate the competition between stochasticity and determinism.
We did this by varying the probability of a prey adopting a strategy rather than
hopping randomly to a neighboring cell. We found that when determinism was high
in the system (in the form of intelligent moves by prey most of the time), predators
got extinct locally quicker as compared to when stochasticity was higher. How-
ever, with intelligence present in the system, predators were eventually confined to
few sites in the whole lattice and preys were relatively more abundant than them.
As opposed to the original purely stochastic model with uniform predation rates,
where predators are dominant (although preys coexist) , we did manage to avert
this upper-handedness by introducing intelligence in the preys.

5.0.3 Future Course

We are to test the effect of intelligence in a landscape with spatially varying predation
rates. We expect that this model will be biologically more realistic and would shed
light on important aspects of the system. One other interesting thing that one can
look at is the effect of adaptive intelligence on the dynamics. Adaptive intelligence
means that an entity can look around (i.e. analyze its neighboring cells) and its
probability of adopting a strategy would be contingent on its need to do so. For
e.g if a prey finds itself at a site surrounded by few predators, it may perhaps not
employ intelligence as opposed to a situation where it has relatively more predators
in its vicinity and it becomes prudent to exercise intelligence to survive.
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