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Abstract

The main objective of my Masters thesis is to study the Dynamic structure that
return prices or exchange rates exhibits. Intensive studies have been conducted for
inferring the parameters and missing information. [1] paper studies this for ASEAN
(Association of South East Asian Nations) markets. To study this I have chosen SV
model as it mimics most of the stylized facts that exchange rates show. Also I have
applied a Bayesian computation approach to infer the parameters associated with
the SV model. I have chosen MCMC technique as the main approach since it solves
some rigorous calculation issues which other techniques cannot overcome. Our data
series includes exchange rates of Indian Rupees (INR) with United States Dollars
(USD), and the period covers the crises of the ASEAN markets in 1997. Most
of the part of thesis includes understanding of the basic and advanced concepts
involved while applying MCMC technique to SV model. I have also studied MCMC
application to some other models, which I have not mentioned in this thesis, like
Geometric Brownian model etc, but I have concentrated my studies on SV model
for the application of MCMC. Finally I have estimated the parameters involved in
SV model by producing results from my own written MATLAB codes. The results
produced are quite expected because of high level of persistence involved in the data.
Also, the properties of MCMC can be quite easily visible from the graphs shown
in the results section. It would be interesting for further research to come up with
more time-effective codes.
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Chapter 1

INTRODUCTION

Finding out the information about the state variables and the parameters from the
observed asset prices is done through the empirical analysis of dynamic asset pricing
models. Through this we can find the distribution of the parameters, θ, and state
variables, X, conditional on observed prices, Y, which we denote by p(θ,X|Y). This
distribution can be completely summarized by the marginal distributions p(θ|Y) and
p(X|Y), i.e we can completely summarize parameter estimation and state variable
estimation and also provides specification diagnostics.
Stochastic volatility model has been observed to be the most important model among
other several financial time series models since it uses commonly observed change
in the variance of the observed exchange rates as time evolves. The most important
parameter in financial forecasting is Volatility as it measures the amount of fluctua-
tion and randomness associated with price changes in asset pricing. Volatility gains
over other parameters in a way as its magnitude can be captured via the movement
in prices which can be best used for forecasting exchange rate or price in trading
market. The other advantage is it is considered as a risk parameter in many asset
return models, options and other derivative security pricing models.
Our aim in the thesis is to introduce a discrete SV model for obtaining a better es-
timate of the changing variance for the financial price returns. It is advantageous to
use SV model over other models for forecasting the return prices. To achieve such a
goal, modeling and inference must be carried out efficiently with the available price
returns. For this Markov Chain Monte Carlo technique has been used.
Let us consider an example, in which a model of an equity price, St,whose variance,
Vt, follows a square root process

dSt

St

= (rt + ηvVt)dt +
√

VtdW s
t

dVt = κ(θv − Vt)dt + σv

√
VtdW v

t

where W s
t and W v

t are two scalar Brownian motions and rt is the instantanious
spot interest rate. The goal in this model is to learn about volatility assets, using
empirical asset pricing, V = {Vt}T

t=1, the parameters that drive the evolution of the
volatility processes, κv, θv, σv, and the risk premium, ηv, and assess model specifi-
cation from observed prices, Y = {St}T

t=1. The distributions p(κv, θv, σv, ηv|Y ) and
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p(V |Y ), which are marginals of p(κv, θv, σv, ηv, V |Y ), determine parameter inference
and estimate volatility respectively.
Generally, In continuous time models Characterizing p(θ, X|Y ) is difficult for many
reasons. First, the observed data are discretely picked while according to the mod-
els specification, asset prices and state variables should evolve continuously through
time. Second, in most interesting models, there are state variables which are la-
tent from the perspective of an econometrician. Third, practically the dimension of
p(θ,X|Y ) is very high dimension due to the state vector dimension. Fourth, mostly
the distributions generated by most of the models for prices and state variables are
non-normal and non-standard(e.g., models with stochastic volatility or jumps). Fi-
nally, in term structure and option pricing models, parameters forms are nonlinear
or even in a non-analytic as the implicit solution to ordinary or partial differential
equation.
The next chapter provides a description of MCMC methods and describes how they
overcome these difficulties to generate samples from p(θ, X|Y ). We provide a gen-
eral description of the Bayesian approach to estimation, a detailed discussion of the
components of MCMC algorithms and their convergence properties, then in further
next chapter we provide the general details of stochastic volatility model , finally,
we show how to estimate a number of parameter in stochastic volatility model with
MCMC methods. Then in results section we will show the convergence of SV pa-
rameters µ, φ, σ2 using the Indian FX data series.

1.1 Literature survey

The research, practice and implication of Markov Chain Monte Carlo(MCMC) has
been increased a lot in recent years. From the huge volume of literature, some of
them are [2] , [3] , [4] and [5] . All these papers and books provides a general review
of the characteristics of the MCMC sampling.
Many researchers has suggested MCMC for carrying out Bayesian inference for SV
models. for e.g. [6] and [7] were the first to apply MCMC efficiently for the SV
model. Later much more contribution towards Bayesian computation of the MCMC
for SV model has been given in research papers and further books like [8] , [9] and
[10] . A good introduction and explanation of the MCMC approach is given in [3] ,
and is outlined in the next chapter.
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Chapter 2

BAYESIAN COMPUTATION

Nowadays there are immense material to read about the basic and advanced con-
cepts of Bayesian computation. I have chosen SV model for the application of
Bayesian computation basically MCMC. [2] and [3] has explained these concepts
in a very detailed manner. Most of the concepts of MCMC has been explained in
an algorithmic way which I am going to explain in a detail manner in this chapter.
[11] in his paper explained that it is not easy to obtain an explicit expression for
the likelihood, so implicit specification of returns distribution is easy rather than
explicit specification.
We can easily implement Bayesian approach. It involves a parameter θ which is
treated like a random variable having its distribution over a parameter space. First
we take the prior distribution of this θ without seeing any data. This prior distribu-
tion basically will tell us about our degree of belief for θ. Now in next step we will
take point-wise data from the data series and apply Bayesian calculus to our prior
distribution, this we’ll continue till the last data point of data series and at each
step update prior distribution which will finally become the posterior distribution.
So, after taking into account the last data point, the prior becomes the posterior
distribution. Below is the bayesian split of posterior distribution in terms of prior
and likelihood :

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

When we have posterior distribution in our hand we can do all inferences calculation
like moment calculation, decision making, estimation etc. But to do this we have
to evaluate the integral in the denominator which is tough to evaluate. To do this
we apply a higher approach named Monte Carlo Markov Chain (MCMC), which is
explained from next section onwards.

2.1 MCMC Method

In MCMCmethod, first we construct a Markov chain of sequence of random variables
of k-dimension, {θt, t = 1, 2, ..., k}. Depending upon the model, each variable θt+1

is sampled from one step ahead conditional distribution p(θt+1|θt). This one step
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ahead distribution is dependent only on the current state of the chain, θt. Due to
regularity condition the Markov Chain has the property to attain an equilibrium or
stationary distribution, which plays a central role in MCMC. By this method we can
sample from any posterior distribution which can define the stationary distribution
of the Markov Chain. So the key aspect in this method includes forming the one step
ahead conditional distribution such that the stationary distribution of this chain will
define the required Bayesian posterior distribution.
Now following the book [3] . Let D denote the observed data, and θ denote model
parameters and missing data. Setting up a joint probability distribution p(D, θ) is
required for formal inferencing over all random quantities. This joint distribution
includes two parts: a prior distribution p(θ) and a likelihood p(D|θ). Specifying
p(θ) and p(D|θ) provides a full probability model, in which
p(D, θ) = p(D|θ)p(θ)
By observing D and applying Bayes theorem, we can determine the distribution of
θ conditional on D.

p(θ|D) =
p(θ)p(D|θ)∫
p(θ)p(D|θ)dθ

Above is the posterior distribution of θ, and is used for all Bayesian inference.
All the features of the posterior distribution are justifiable for Bayesian inference
like calculating moments, quantiles, highest posterior density regions, etc. Since
these quantities are expressed in terms of posterior expectations of functions of θ,
the posterior expectation of a function f(θ) is

E[f(θ)|D] =
f(θ)p(θ)p(D|θ)dθ∫

p(θ)p(D|θ)dθ

But in high dimension the integral in the denominator has been source of most
difficult in Bayesian Inferencing. An alternative approach like numerical evaluation
is used to evaluate, but for dimensions greater than 20 it is difficult to handle and
mostly gives an inaccurate results. So, we use Monte Carlo approach, MCMC to
evaluate this kind of integral which does not depends upon the dimension.

2.1.1 Calculating Expectations

To avoid involving an unnecessary Bayesian touch in the above problem let us restate
above problem in more general terms. Let X be a vector of k random variables, with
distribution π(.). In Bayesian inference X will comprise of model parameters and
missing data and π(.) is the posterior distribution. Now modified problem involves
evaluating the expectation

E[f(X)] =
f(x)π(x)dx∫

π(x)dx

Let us allow that the distribution of X is known only upto a constant of normaliza-
tion. That is,

∫
π(x)dx is unknown which is a common situation in practice, for eg.

in Bayesian inference, we know p(θ|D)αp(θ)p(D|θ), but we cannot easily evaluate
the normalization constant

∫
p(θ)p(D|θ)dθ
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2.1.2 Monte Carlo integration

The main problem that Monte Carlo integration solves is that it evaluates E[f(X)]
by drawing samples Xt, t = 1, 2, ..., n from π(.) and then approximating

[f(X)] ≈ 1

n
Σn

t=1f(Xt)

when samples Xt are independent, law of large numbers ensure that the approxima-
tion can be made as accurate as desired by increasing the sample size n. Note that
here n is under the control of the us: it is not the size of a fixed data sample.
In general , drawing samples Xt independently from π(.) is not feasible, since π(.)
can be quite non standard. However, the Xt need not necessarily be independent.
The Xt can be generated by any process which, draws samples throughout the sup-
port of π(.) in correct proportions. One way of doing this is through a Markov Chain
having π(.) as its stationary dist. This is then Markov Chain Monte Carlo.

2.1.3 Markov Chains

Suppose we generate a sequence of random variables, X0, X1, ..., such that at each
time t ≥ 0, the next state Xt+1 is sampled from the distribution p(Xt+1|Xt) which
depends only on the current state of the chain, Xt. That is, given Xt, the next state
Xt+1 does not depend further on the history of the chain X0, X1, ..., Xt−1. This
sequence is called a Markov chain.
How does the starting state X0 affect Xt ? This question concerns the distribution of
Xt given X0, p(t)(Xt|X0) will eventually converge to a unique stationary (or invariant
or equilibrium) distribution, which does not depend on t or X0. Let the stationary
distribution is denoted by φ(.). Thus as t increases, the sampled points Xt will
look increasingly like dependent samples from φ(.). Thus after a sufficiently long
burn-in of say m iterations, points Xt; t = m + 1, ..., n will be dependent samples
approximately from φ(.). We can now use the output from the Markov Chain to
estimate the expectation E[f(X)], where X has distribution φ(.).
So,

f =
1

n−m
Σn

t=m+1f(Xt)

2.2 The Metropolis-Hastings algorithm

The above equation shows how a Markov Chain can be used to estimate E[f(X)],
where the expectation is taken over its stationary distribution φ(.). This actually
provides the solution to our problem but first we need to understand how to construct
a Markov chain such that its stationary distribution φ(.) is precisely our distribution
of interest π(.). This can be done using Metropolis-Hastings algorithm. For the
Metropolis -Hastings algorithm, at each time t, the next state Xt+1 is chosen by
first sampling a candidate point Y from a proposal distribution q(.|Xt). Note that
the proposal distribution may depend on the current point Xt. For eg., q(.|Xt) might
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be a multivariate normal distribution with mean X and a fixed covariance matrix.
The candidate point Y is then accepted with probability α(Xt, Y ) where

α(X,Y ) = min(1,
π(Y )q(X|Y )

π(X)q(Y |X)
)

If the candidate point is accepted, the next state becomes Xt+1 = Y . If the candidate
is rejected, the chain does not move, i.e Xt+1 = Xt. Thus Metropolis-Hastings
algorithm is easy to operate.
Initiate X0; set t = 0
Repeate{
Sample a point Y from q(.|Xt)
Sample a Uniform (0,1) random variable U
If

U ≤ α(Xt, Y )setXt+1 = Y

otherwise set
Xt+1 = Xt

Increment t
}
Remarkably, the proposal distribution q(.|.) can have any form and the stationary
distribution of the chain will be π(.). This can be seen from the following argument.
The transition Kernel for the M-H algorithm is

p(Xt+1|Xt) = q(Xt+1|Xt)α(Xt, Xt+1) + I(Xt+1 = Xt)[1−
∫

q(Y |Xt)α(Xt, Y )dY ],

The first term arises from acceptance of a candidate Y = Xt+1, and the second term
arises from rejection, for all possible candidates Y. Using the fact that

π(Xt)q(Xt+1|Xt)α(Xt, Xt+1) = π(Xt+1))q(Xt|Xt+1)α(Xt+1, Xt)

So, we obtain a detailed balance equation:

π(Xt)p(Xt+1|Xt) = π(Xt+1)p(Xt|Xt+1)

Integrating both side w.r.t Xt gives:
∫

π(Xtp(Xt+1|Xt)dXt = π(Xt+1)

The L.H.S of the above equation gives the marginal distribution of Xt+1 under the
assumption that Xt is from the distribution π(.). Therefore, if Xt is from π(.), then
Xt+1 will also be. Thus once the sample from the stationary distribution has been
obtained, all subsequent samples will be from that distribution. This only proves
that the stationary distribution is π(.). But for the complete justification of M-H
algorithm we need to prove that p(t)(Xt|X0) will converge to the stationary distri-
bution. This can be proved by series of definitions and theorems which is there in
appendix.
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Chapter 3

STOCHASTIC VOLATILITY
MODEL

An introduction of the discrete Stochastic Volatility model is needed in my work so
as to achieve a better estimate of the changing variance that are found for the Asian
financial price returns, so as to enable the automatic forecast at any given point of
time. SV model of late have come into common use as they are easier to figure out
and can also shed light on the matter of the stylized facts of volatility.
In financial time series, a certain stylized facts about volatility which is evident in
price returns. These features noted in [12] and [13], play a crucial role in model
construction and selection. I try to model a specification in which the following
stylized features can be mimicked.
(1) Leptokurtic being the most common feature of volatility has long been recog-
nized as the distribution of any financial returns. It has been reported by [14] that
heavy tails of the distribution of observed returns indicates heavier tails than normal
of the return distribution.
(2)The next stylized or realistic feature being recognized for financial price return
is leverage or asymmetric effect which was coined by [15]. The term leverage cor-
responds to the negative correlation between stock price movements and volatility.
We know that there is unexpected increase and decrease in the price, this thing was
verified by [16] report for an asymmetric influence of positive and negative returns
on the subsequent volatility. In his report he finds that bad news increases volatility
more than good news.
(3)Next fact which the financial return prices reflects is persistence or volatility clus-
tering, which implies that large movements in price. This is simple correlation of
volatility.
(4)The final stylized fact is the correlation which is reflected by the interactive
movement between markets, or sectors, or stocks in a sector, or indices, or currency
exchange rates. We can easily see the volatilities of different financial markets move
together, as a result of formal linkage or common factors amongst them.
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3.1 Model Description

The SV model has been extensively used in quantitative finance since the early
1970’s. This model does not only focus on volatility modeling with the help of
observations that are made easier for the time varying variance in ARCH models,
but also let the variance to have a latent stochastic structure. [17] in his early work
on the microstructure of financial markets has taken stochastic volatility model
to represent the random and uneven information vested in the financial market
structure. Clake was the one, who not only did the work described in above lines
but he also suggested that for the continuous time model of a log asset price, the
SV model precisely represented an Euler motion. Also, option pricing tool was
developed by [18] using this idea of Clake. [18] also suggested a positive diffusion
process for asset prices with volatility. Since SV model has been able to explain the
random and uneven flow of information , which is used in option pricing, this option
pricing has become the most popular research areas in finance.

3.1.1 AR(1) Stochastic Volatility Model

Following [8], the simplest discrete time SV model can be defined by

Yt = εtσt, (3.1)

where Yt is the average corrected return on the asset price at time t, (t=1,...,n for
all n≥1). σ2

t follows the first order autoregressive (AR(1)) process. εt is assumed
to be a series of independent, identically distributed random disturbances where
εt ∼ N(0, 1). Consider the parameters ht where

Yt = εtexp(ht/2), (3.2)

ht = µ + φ(ht−1 − µ) + ηt, (3.3)

εt and ηt ∼ N(0, σ2) assumed to be independent normal white noise random pro-
cesses. The parameters ht are the log-volatility parameters, where
ht = logσ2

t

is the conditional variance at time t, and
ht|ht−1 ∼ N(µ + φ(ht−1 − µ), σ2).
Parameters µ is a constant scaling factor, and parameter φ is the persistence param-
eter in this model. Parameter σ2 is the conditional variance in the autoregressive
log-volatility sequence. Equation 3.2 gives the so-called Log-Normal SV model. It
can be shown that, by stationary (constancy and finiteness of the first two mo-
ments, and the autocovariance), the implied model for the initial state(and the
implied marginal model for general t) is

h1 ∼ N(µ,
σ2

1− φ2
) (3.4)

Squaring and logging equation 3.4 gives logY 2
t which then has a linear, non-Gaussian

state space representation
logY 2

t = ht + logε2
t . (3.5)
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The one-step-ahead forecast density of the SV model can be defined as

Yt|ht ∼ N(0, exp(ht)), (3.6)

where t = 1, ..., n. Following [8], the one step ahead predictive can also be approx-
imated in the Monte Carlo sense as

f(yt|yt−1) ≈ 1

N

N∑
i=1

f(yt|h(i)
t , yt−1), (3.7)

where the state parameter h
(i)
t i = 1, ..., N is being sampled from the appropriate

(posterior) probability distribution.

3.2 Properties of SV Model

[11] and [12] give a good review of the properties and also commonly and also
commonly used estimation procedures for the SV models. The usual assumption of
SV model is to assume |φ| < 1 as this implies second-order stationarity. This gives
the marginal form implied by 3.4 where

µht = E[ht] =
µ

1− φ
, (3.8)

σ2
ht

= V ar[ht] =
σ2

1− φ2
(3.9)

where h1 is drawn from the stationary distribution, ht is a stationary process, and
Yt is stationary since εt is always stationary. From [11], considering the properties
of the log-normal distribution, if ht is stationary and r is even, there exist all the
moments of Yt. That is

E[Y r
t ] = E[εr

t ]E[exp(
rht

2
)] =

r!exp(
rµht

2
+

r2σ2
ht

8
)

2
r
2 ( r

2
)!

(3.10)

when r is odd , all moments are zero, the kurtosis for the discrete SV model can be
defined using the formula from 3.10 as

κ =
E[Y 4

t ]

(E[Y 2
T ])2

=
3exp(2µht + 2σ2

ht
)

{exp(µht + (
σ2

ht

2
))}2

= 3exp(σ2
ht

), (3.11)

where κ ≥ 3. The kurtosis calculation shows that the marginal SV model has heavier
tails than an equivalent correlated Gaussian process. This is effectively because we
are considering a scale-mixture of Gaussian densities.
This model captures the correlation between successive variances. The ACF between
squared observations is defined as

ρy2
t
(s) =

Cov[Y 2
t Y 2

t−s]

V ar[Y 2
t ]

=
exp(σ2

ht
φs

1)− 1

3exp(σh2
t
)− 1

≈ exp(σ2
ht

)− 1

3exp(σh2
t
)− 1

φs =
(κ/3)− 1

κ− 1
φs (3.12)
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for s ≥ 1. In particular when φ is close to 1, there is a high degree of persistence in
the volatility. The dynamic properties of the SV model can be presented using logs
as shown in 3.5. [11] noted that log y2

t follows an ARMA(1,1) model. If εt ∼ N(0, 1),
then

E[log ε2
t ] = −1.2704, V ar[log ε2

t ] = 4.93.

This is also used in [8], where the ACF of log y2
t at lag s is approximately

φs

(1 + 4.93
σ2

h
)

3.3 Likelihood function for SV Model

The full likelihood function under our discrete AR(1) SV model from section 3.1.1
is given by
f(y, h|µ, φ, σ2) = f(y|h, µ, φ, σ2)f(h|µ, φ, σ2).

f(y|h, µ, φ, σ2) =
n∏

t=1

(
1

2Π
)

1
2 exp(

−ht

2
)exp(− y2

t

2exp(ht)
). (3.13)

f(h|µ, φ, σ2) = (
(1− φ2)

2πσ2
)

1
2 exp{−(1− φ2)

2σ2
(h1−µ)2}×

n∏
t=2

(
1

2πσ2
)

1
2 exp(− 1

2σ2
(ht−µ−φ(ht−1−µ))2)

(3.14)
[8] notes that the ML for the SV model can only be obtained using the most
intensive computational methods. [19] introduces an alternative approach of Quasi
Maximum Likelihood(QML) using Kalman Filter.
An alternative approach generally used by econometricians is Generalized methods
of moments(GMM). [7] used GMM estimation but finds that it is not an efficient
method because it does not support the high volatility persistence.

3.4 Bayesian Inference for SV Model

For the AR(1) SV model introduced above, the full posterior distribution can be
written as

p(µ, φ, σ2, h|y) =
p(y|µ, φ, σ2, h)p(µ, φ, σ2, h)∫ ∫ ∫ ∫

p(y|µ, φ, σ2, h)p(µ, φ, σ2, h)dµdφdσ2dh

where h = (h1, ..., hn) and y = (y1, ..., yn).
A joint prior distribution can be specified as

p(µ, φ, σ2) = p(µ)p(φ)p(σ2)

where(following from [? ],
µ ∼ N(0, σ2

µ)

p(µ) = ( 1
2πσ2

µ
)

1
2 exp{− µ2

2σ2
µ
},
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σ2 ∼ IGamma(ωσ2 , ζσ2),

p(σ2) = (
ζσ2

Γ(ωσ2 )
)( 1

σ2 )
ωσ2+1exp(− ζσ2

σ2 ),
φ+1

2
∼ Beta(ωφ, ζφ),

p(φ) =
2Γ(ωφ+ζφ)

Γ(ωφ)Γ(ζφ)
(1 + φ)ωφ−1(1− φ)ζφ−1.

Again, following [? ], we choose ωσ2 = 5, ζσ2 = .001 × 5 = .05 for σ2, and ωφ =
20, ζφ = 1.5 for φ. From their experience dealing with high frequency data for this
model, they notice that the estimated values of φ often lie between 0.995 to 0.999.

3.5 Markov Chain Monte Carlo For the AR(1) SV
Model

There are four parameters in the SV model. As given by [8], the required full
conditionals are defined in this section. The full conditional of µ and the states ht

are identical under each parameterization. Let us denote

mt = ht − µ, dt = ht − φht−1, d =
1

n− 1

n∑
t=2

dt, (3.15)

and

M1 =
n∑

t=2

m2
t−1,M2 =

∑n
t=2 mt−1mt∑n

t=2 m2
t−1

. (3.16)

The full conditional posterior distributions needed for implementation of the MCMC
approach for this model can be written as follows: If
h(t) = (h1, ..., ht−1, ht+1, ..., hn),
then
(i) For µ :
p(µ|φ, σ2, h, y) ∼ N(mµ, νµ),
where
mµ = (1+φ)h1+(n−1)d

(1+φ)+(1−φ)(n−1)
, νµ = ( (n−1)(1−φ)2+(1−φ)2

σ2 + 1
σ2

µ
)−1

(ii) For h1 :
p(h1|h(1), µ, φ, σ2, y)αexp{−1

2
[h1 + y2

1exp(−h1) + h1−µ−φ(h2−µ)2

σ2 ]}
(iii) For ht :
p(ht|h(t), µ, φ, σ2, y)αexp{−1

2
[ht + y2

t exp(−ht) + (1+φ2)(ht−at)2

σ2 ]}
where
at = (1−φ2)µ+φ(ht−1+ht+1)

1+φ2

(iv) For hn :
p(hn|h(n), µ, φ, σ2, y)αexp{−1

2
[hn + y2

nexp(−hn) + hn−µ−φ(hn−1−µ)2

σ2 ]}
and finally in (v) and (vi) where (φ, σ2) are either sampled directly, or formed as
functions of the sampled parameters.
(v) For σ2 :
p(σ2|µ, φ, h, y)αIGamma(n

2
+ hσ,

(1−φ2)
2

m2
1 + 1

2

∑n
t=2(mt − φmt−1)

2 + ζσ)
(vi) For φ :

11



p(φ|µ, σ2, h, y)α(1 + φ)
ωφ+1

2
−1(1− φ)

ζφ+1

2
−1exp{−S(φ)

2σ2 },
where
S(φ) = m2

1(1− φ2) + M1(φ−M2)
2

Note that the conditional density for φ and {ht} are not available in closed form,
and so will be sampled using MH algorithm.
I have written the code in MATLAB which is there in appendix section.
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Chapter 4

RESULTS:GRAPHS AND TABLES

In this chapter, I put all the results that I get. There are some tables which includes
the results already obtained for ASEAN data series, I have updated them with my
results of INR data series, so that comparison will be easy. Table 4.1 and Figure
4.1 has been used for prior analysis while all the rest of tables and figures have been
used for posterior analysis. All the discussion and conclusion part I have done in
next chapter.

4.1 Tables and Plots

FX Currency Code Time Period Dec/96 - Mar/03 n Kurtosis
︷︸︸︷
KRt Zero Returns

Indian Rupees INR 12/12/96 - 30/03/03 2300 36.61 672
Thai Baht THB 12/12/96 - 30/03/03 2300 94.33 320
Singaporian Dollar SGD 12/12/96 - 30/03/03 2300 17.82 248
Japanese Yen JPY 12/12/96 - 30/03/03 2300 11.90 88
Hong Kong Dollar HKD 12/12/96 - 30/03/03 2300 314.20 516

Table 4.1: Details for the 5 FX Data series giving details about the period,
Kurtosis, and number of zero returns for each currency. The details of
other four data series is taken from [1]
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Figure 4.1: Plot of daily INR return. X-axis:Day number, Y-axis: Value
of return price

SV Model Parameters µ Mean,Median,Std φ Mean,Median,Std σ2 Mean,Median,Std
INR -1.2237, -1.2028, 0.4398 0.9273, 0.7908, 1.0638 2.0337, 2.0492, 1.0237
THB -2.4985, -2.5023, 0.1825 0.8696, 0.8711, 0.0302 1.0735, 1.0374, 0.3079
SGD -3.5635, -3.5633, 0.0909 0.5414, 0.5417, 0.0402 2.6956, 2.6813, 0.3168
JPY -1.7500, -1.7502, 0.0602 0.3312, 0.3316, 0.0538 1.5748, 1.5719, 0.1695
HKD -9.8943, -9.8965, 0.1481 0.7947, 0.7951, 0.0237 1.8675, 1.8644,0.1920

Table 4.2: Posterior Statistics for SV model for INR data series. Statistics
for ASEAN nations has been taken from [1]

SV Model Parameters µ Mean,Median,Std φ Mean,Median,Std σ2 Mean,Median,Std
INR Ist series -1.2237, -1.2028, 0.4398 0.9273, 0.7908, 1.0638 2.0337, 2.0492, 1.0237
INR Ist series -1.2101, -1.2199, 0.4428 0.8980, 0.7780, 1.0440 1.9820, 1.9960, 1.0190

Table 4.3: Posterior Statistics for two parallel INR Data series

SV Model κ Mean, Std rhoy2
t
Mean, Std rholog y2

t
Mean, Std

INR 42.6139, 540.9215 0.2757, 0.3196 0.2891, 0.3616
THB 276.9011, 169.9642 0.2871, 0.0096 0.4068, 0.0248
SGD 143.3969, 48.0058 0.1776, 0.0129 0.2358, 0.0176
JPY 17.9572, 3.2092 0.0969, 0.0158 0.0874, 0.0152
HKD 522.4745, 211.7979 0.2637, 0.0080 0.4033, 0.0218

Table 4.4: Posterior Statistics for kurtosis, ACF and logACF
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Figure 4.2: Plot of SV Model for φ using INR Data series. X-axis: Value
of φ, Y-axis: Number of times the corresponding X value attains

Figure 4.3: Plot of SV Model for µ using INR Data series. X-axis: Value
of µ, Y-axis: Number of times the corresponding X value attains
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Figure 4.4: Plot of SV Model for σ2 using INR Data series. X-axis: Value
of σ2, Y-axis: Number of times the corresponding X value attains

Figure 4.5: Plot of φ time series using INR Data series. X-axis: iteration
number, Y-axis: Value of φ
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Figure 4.6: Plot of µ time series using INR Data series. X-axis: iteration
number, Y-axis: Value of µ

Figure 4.7: Plot of σ2 time series using INR Data series. X-axis: iteration
number, Y-axis: Value of σ2
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Figure 4.8: Expansion of φ time series. X-axis: iteration number, Y-axis:
Value of φ

Figure 4.9: Expansion of µ time series. X-axis: iteration number, Y-axis:
Value of µ
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Figure 4.10: Expansion of σ2 time series. X-axis: iteration number, Y-axis:
Value of σ2

Figure 4.11: ACF plot of y2
t for the INR Data series to assess autocorrela-

tion. X-axis: ACF of y2
t , Y-axis: Number of times the corresponding X

value attains
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Figure 4.12: ACF plot of log y2
t for the INR Data series to assess autocorre-

lation. X-axis: ACF of logy2
t , Y-axis: Number of times the corresponding

X value attains
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Chapter 5

Discussion

In this chapter, I have done the exploratory and posterior data analysis of the
results in chapter 4 leading to some discussions. In the end, I have discussed some
suggestions for further research in this topic.

5.1 Exploratory data analysis

The data series of Indian currency (INR) against US Dollar (USD) is obtained from
Oslen and Associates (www.oanda.com). n=2300 data points are collected covering
the period from the 12th Dec 1996 to 30th March 2003. Ihave chosen this period
because some inferences are already in place for the same period for the ASEAN
markets. So, it will be easier to compare my results with them.
Let {yt} denote the data points with t = 1, 2, ..., n. The Return Rt is defined as

Rt = 100× log(
yt

yt−1

)

which is also known as continuous compound or log returns. We know log(1+x) → x

for small values of x, so log( yt

yt−1
) approximates to (yt−yt−1)

yt−1
for small values of this

relative change. The aim is to calculate the volatility or variability involved in {yt}
and how this volatility evolves in time. I have calculated the kurtosis and zero return
of the above approximation which is shown in Table 1. Also Figure 1 represents the
a priori data series.

5.2 Posterior data analysis

I have obtained the estimates of three parameters involved in the SV model i.e
{µ, φ, σ2} through MCMC sampling. The obtained results are shown in figures
2,3,4. But we can obtain the estimate only when the parameters converge, which
I have checked by running multiple parallel chains with different starting values.
Table 3 shows that estimated statistics converge with different starting values. I
have used Metropolis Hastings algorithm to sample states in MCMC sampler. The
chain has been run for 20000 iterations with a burn-in of 5000 points, convergence
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of statistics suggests that this much of iterations are enough.
The histogram and trace plots for the three parameters (µ, φ, σ2) are shown in Fig-
ure 2,3,4 and Figure 5,6,7, and the estimated statistics are summarized in Table
3 for posterior analysis. The trace plots (Figure 5,6,7) clearly demonstrates the
convergence of the parameters.
To see any autocorrelation in the data, I have plotted ACF Plots in Figure 10,11.
To compare the estimates of the posterior statistics like Mean, Median and Stan-
dard deviation of the parameters refer to Table 2. Finally these parameters are
transformed to calculate the kurtosis and ACF of the series y2

t and log y2
t , see Table

4.

5.3 Discussion

The estimate of kurtosis can suggest one of the stylized facts that I have mentioned.
I have obtained 42.61 as the mean value of Kurtosis which is a relatively moderate
value as compared with the mean values of other data series. Table 4 shows the
moderate value of mean and median for kurtosis which implies that Indian currency
returns distribution will have a moderate tail. So, the most persistent series appears
to be moderately tailed with estimated mean value of kurtosis to be 42.61. If we
compare the exploratory data value of kurtosis, i.e 36.61, with the estimated value
of 42.61, there is not much difference, the value slightly increases, thereby signalling
to use a slightly heavier tailed distribution like students t distribution.
Table 2 shows the posterior mean and median of φ. The obtained mean and median
value, i.e 0.9273 and 0.7908, are comparitively larger than the mean and median val-
ues of the available data series from ASEAN nations. The high value of persistence
implies that Indian currency has the most stable structure among all nations from
Table 2. We were expecting this result a-priori since the number of zero returns,
672, was the highest from the data itself, which in turn also reflects the stability.
On the other hand, the value of mean and median of σ2 is on the higher side, which
reflects that the Indian currency exchange cannot be easily predictable in terms of
volatility.
Overall, we can say that the chosen SV model for applying MCMC sampler gives a
good estimation for persistence factor but it is not a decent model for predicting the
value of µ, since high zero returns should correspond to high negative mean value
for µ, but we get low negative mean value.

5.4 Further suggestions

I also implement MCMC sampler on Geometric Brownian model for INR data series
and found that SV model allows for a better estimate of the parameters in terms
of comparing the predicted observed returns, but one needs to study some further
model selection criteria.
Further, It remains to be seen whether MCMC sampler can be extended to other
existing financial time series models to obtain a better estimate of the statistics.
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Also, one can enhance the time-efficiency of the analysis by employing less time-
consuming algorithms and codes, if possible.
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Appendix A

Definitions and Theorems

Here I have written down some series of Definitions and Theorems which can prove
that p(t)(Xt|X0) will converge to the stationary distribution. These Definitions and
Theorems have been taken from chapter 4 of the book [3]

A.1 Def 2.1

A Markov Chain is φ irreducible for a probability distribution φ on E if φ(A) > 0
for a set A ⊂ E implies that

Px{τA < ∞} > 0

for all xεE. A chain is irreducible if it is φ-irreducible, then φ is called an irreducibil-
ity distribution for the chain.

A.2 Def 2.2

An irreducible Markov chain with maximal irreducibility distribution ψ is recurrent
if for any set A ⊂ E with ψ(A) > 0 the conditions

(i) Px{XnεA infinitely often} > 0 for all x

(ii)Px{XnεA infinitely often} = 1 for ψ-almost all x

are both satisfied. An irreducible recurrent chain is positive recurrent if it has
an invariant probability distribution otherwise it is null recurrent.

A.3 Thm 2.1

Suppose a Markov Chain {Xn} is irreducible and has invariant distribution π. Then
the chain is π irreducible, π is a maximal irreducibility distribution, π is the unique
invariant distribution of the chain, and the chain is positive recurrent.
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A.4 Thm 2.2

Suppose {Xn} is an irreducible Markov Chain with transition kernel P and invariant
distribution π. Define the average transition kernel P n by

P n(x,A) =
1

n + 1

n∑
i=0

P i(x,A)

for all xεE and A ⊂ E. Then

||P n(x, .)− π(.)|| → 0

for π-almost all x.

A.5 Thm 2.3

Suppose {Xn} is an irreducible Markov Chain with transition kernel P and invariant
distribution π, and let f be a real valued function on E such that π|f | < ∞. Then

px{fn → πf} = 1

for π-almost all x, where fn is given by

fn =
1

1 + n

n∑
i=1

f(Xi)

A.6 Thm 2.4

Suppose {Xn} is an irreducible, aperiodic Markov chain with transition kernel P
and invariant distribution π. Then

||P n(x, .)− π(.)|| → 0

for π-almost all x.
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Appendix B

MATLAB Code for Bayesian
Computation

I have written down a MATLAB code and used the Metropolis-Hastings algorithm
for the Bayesian computation explained in Chapter-3.

B.1 Main code(mcforex.m)

clc
clear all
n=2299;
loop=15000;
phi=zeros(1,loop);
ss=zeros(1,loop);
h=ones(1,n,loop);
phi(1,1)=.997;
ss(1,1)=1;
mu=zeros(1,loop);
y=data;
sms=1;
m1=0;
m2=0;
vb=0;

for i=1:loop-1
a=h(1,:,i);
mu(i+1)=mu1(phi(i),a,n,ss(i),sms);
[h(1, 1, i + 1), nu] = hone(y, mu(i + 1), phi(i), a, ss(i), h(1, 1, i));
a(1,1)=h(1,1,i+1);
for j=2:n-1
h(1,j,i+1)=ht(y(j),mu(i+1),phi(i),h(1,j-1,i+1),h(1,j+1,i+1),ss(i),h(1,j,i));
a(1,j)=h(1,j,i+1);
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end
h(1,n,i+1)=hn(n,y,mu(i+1),phi(i),a,ss(i),h(1,n,i));
a(1,n)=h(1,n,i+1);
[ss(i + 1), vb] = ss1(n, a, mu(i + 1), phi(i));
[phi(i + 1)] = phi1(n, a, mu(i + 1), ss(i + 1));

end

B.2 function(mu.m)

function [pm]=mu1(phi,h,n,ss,sms)
d=h(1);
for i=2:n
dt=h(i)-phi*h(i-1);
d=d+dt;
end
db=d/(n-1);
mm=((1+phi)*h(1)+(n-1)db)/((1+phi)+(1-phi)*(n-1));
vm=(((n ∗ (1− phi)2)/ss) + (1/sms))−1;
pm=normrnd(mm,vm);

B.3 function(hone.m)

function [h1,h]=hone(y,mu,phi,h,ss,st)
alpha = 2.43;
k=0;
pdf = @(x)exp((−1/2)∗ (x+y(1)2 ∗exp(−x)+((x−mu−phi∗ (h(2)−mu))2)/ss));
proppdf = @(x, y)gampdf(x, floor(alpha), f loor(alpha)/alpha); proprnd = @(x)sum(exprnd(floor(alpha)/alpha, floor(alpha), 1));nsamples
= 1;
h = mhsample(st,nsamples,’pdf’,pdf,’proprnd’, proprnd,’proppdf’,proppdf);
h1=h;

B.4 function(ht.m)

function [ht]=ht(yt,mu,phi,htmo,htpo,ss,st)
at = ((1− phi2) ∗mu + phi ∗ (htmo + htpo))/(1 + phi2);
alpha = 2.43;
k=0;
pdf = @(x)exp((−1/2)∗ (x+yt2 ∗ exp(−x)+((1+phi2)∗ (x−at)2)/ss)); proppdf =
@(x, y)gampdf(x, floor(alpha), f loor(alpha)/alpha); proprnd = @(x)sum(exprnd(floor(alpha)/alpha, floor(alpha), 1));nsamples
= 1;
ht1 = mhsample(st,nsamples,’pdf’,pdf,’proprnd’, proprnd,’proppdf’,proppdf);
ht=ht1;
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B.5 function(hn.m)

function [hn]=hn(n,y,mu,phi,h,ss,st)
alpha = 2.43;
k=0;
st=gamrnd(floor(alpha),floor(alpha)/alpha);
pdf = @(x)exp((−1/2) ∗ (x + y(n)2 ∗ exp(−x) + ((x − mu − phi ∗ (h(n − 1) −
mu))2)/ss)); proppdf = @(x, y)gampdf(x, floor(alpha), f loor(alpha)/alpha); pro-
prnd = @(x)sum(exprnd(floor(alpha)/alpha, floor(alpha), 1));nsamples = 1;
hn1 = mhsample(st,nsamples,’pdf’,pdf,’proprnd’, proprnd,’proppdf’,proppdf);
hn=hn1;

B.6 function(phi.m)

function [phi]=phi1(n,h,mu,ss)
alpha = 2.43;
m=zeros(1,n);
omphi=20;
ziphi=1.5;
for i=1:n
m(i)=h(i)-mu;
end
c=0;
d=0;
for i=2:n
k = m(i− 1)2;
c=c+k;
end
m1=c;
for i=2:n
l=m(i-1)*m(i);
d=d+l;
end
m2=d/m1;
pdf = @(x)((1+x)(((omphi+1)/2)−1))∗((1−x)(((ziphi+1)/2)−1))∗exp(−(((m(1)2)∗
(1− x2)) + (m1 ∗ (x−m2)2))/(2 ∗ ss));
proppdf = @(x, y)gampdf(x, floor(alpha), f loor(alpha)/alpha);
proprnd = @(x)sum(exprnd(floor(alpha)/alpha, floor(alpha), 1));
nsamples = 1;
phi = mhsample(1,nsamples,’pdf’,pdf,’proprnd’, proprnd,’proppdf’,proppdf);
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B.7 function(ss.m)

function [ss]=ss1(n,h,mu,phi)
wss=5;
ziss=.005;
a=(n/2)+wss;
m=zeros(1,n);
for i=1:n
m(i)=h(i)-mu;
end
c=0;
for i=2:n
k = (m(i)− phi ∗m(i− 1))2;
c=c+k;
end
c=c/2;
b=(((1− phi2) ∗m(1)2)/2) + c + ziss;
ss=1./gamrnd(a,b);
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