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Abstract

During this project, I studied the basics of Algorithms and ideas in a

much more concrete way. By attending a course on ”Selected Topics

in Algorithm”, I got a chance to study the subject in depth, which

helped me to get the insight into the subject. I learnt basic algorithms

like max-cut problems, balanced max - cut, max k-cut, 2-SAT, 3-SAT

etc. Then I studied stuffs related to Steiner trees. Finally in the

end I studied an algorithm written by Gaur et al. for the Scheduling

and Conflict Resolution of Television commercials. We tried to solve

this problem in a different and simple way by following and using a

different algorithm that gives us the same performance ratio, in other

words we solved this problem by using a simple algorithm which gave

us the same optimal result as in the work done by Gaur et al.
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Chapter 1

Introduction

Algorithms and Graph Theory are two very versatile and dynamic fields of study.

These techniques are widely used these days and have numerous applications.

Graphs can be used to represent almost any kind of network problem. Graph

theory is used to understand and simplify the real life situation and help us de-

sign a method for solving it. Graph theory is used on Physics, Chemistry and

biology to study the interaction of various different things, their interaction, their

force of attraction or the force of repulsion etc. Apart from all these things it

is also in sociology, a practical application of this is in the construction of social

network analysis software. Algorithm also has lots and lots of applications. It is

used to describe problems of all kinds. Start from a simple task of Making Tea

to the complicated and big tasks of handling Robots and controlling the Satellite

etc. Everywhere, algorithms are used to solve our problems.

In this project, I tried to study various topics starting from Algorithms and

Graph theory. First of all I learnt the basics of algorithms, the different data

structures, studied about the running time of an algorithm and how do we analyze

the running time. Then we studied briefly about some general time bounds for

e.g.- Linear, Quadratic, polynomial etc. In Graph theory, the topics studied were

representations of graphs, and the two very important search tools, the Breadth-

first search and the Depth-first search. These two search algorithms are at the

heart of graph theory. Then we studied two very useful, fundamental and versatile

techniques of solving Algorithms. They are the Greedy algorithms and the Divide

1



and Conquer rule. We studied these two techniques with the help of an example

which illustrated the usefullness of these two techniques.

Then we studied about Maximum Cut and tried to study a recent topic re-

garding the conflict resolution in the scheduling of Television Commercials. We

studied the work done by Daya Ram Gaur, Ramesh Krishnamurti and Rajeev

Kohli. They designed an algorithm to resolve the conflict. We then tried to

find a simpler algorithm which does the job in quadratic time with the same

performance ratio.
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Chapter 2

Basics of Algorithm

An algorithm is a step wise well-defined computational procedure that takes a

set of value(s), as input and produces a set of value(s), as output. An algorithm

is thus a sequence of computational steps that transform the input into the out-

put. An algorithm can be defined as ”A finite set of well-defined instructions for

accomplishing some task which, given an initial state, will terminate in a defined

end-state.” Algorithms are a very effective methods to solve a problem. It re-

quires time and memory space. In this chapter we will discuss and analyze the

important characteristics of an algorithm.

2.1 Efficient Algorithms

Many different algorithms can be designed to solve a particular problem. Let

us take an example of sorting a set of say 10 numbers, we can design different

algorithms for solving this problem. For obvious reasons we would like to use the

one which does the sorting in less time and which uses less memory and space

to do it, in other words the one which uses less resource. Hence, our goal is to

find an efficient algorithm. Let us now try to define the notion of an efficient

algorithm.

A few proposed definitions of an efficient algorithm could be the following

Definition of Efficiency (1): An algorithm is said to be efficient if,

when implemented, it runs quickly on real input instances.[6]

3



2. Basics of Algorithm

Definition of Efficiency (2): An algorithm is efficient if it achieves

qualitatively better worst-case performance, at an analytical level, than

brute-force search.[6]

Definition of Efficiency (3): An algorithm is efficient if it has a poly-

nomial running time.[6]

2.2 Asymptotic bounds

An important characteristic of an efficient algorithm is the time taken to solve

the problem. Let us now study briefly the notation of asymptotic bounds for

calculating and studying the running times of an algorithm.

O - notation

This notation is used to denote asymptotic upper bound . For a function ψ(n),

O(ψ(n)) denotes the set of functions which satisfy the following criteria,

O(ψ(n)) = {φ(n) : there exist positive constants k and n0

such that 0 ≤ φ(n) ≤ kψ(n) for all n ≥ n0}.

The figure 2.1 illustrates the intuition behind this O - notation

Ω - notation

This notation is used for asymptotic lower bound . For a function ψ(n),

O(ψ(n)) denotes the set of functions which satisfy the following criteria,

Ω(ψ(n)) = {φ(n) : there exist positive constants k and n0

such that 0 ≤ kψ(n) ≤ φ(n) for all n ≥ n0}.

The figure 2.2 illustrates this notation, and the intuition behind Ω - notation

4



2. Basics of Algorithm

Figure 2.1: O - notation

Figure 2.2: Ω - notation

5



2. Basics of Algorithm

Θ - notation

Let us define what this notation means. For a given function ψ(n), we denote by

Θ(ψ(n)) the set of functions,

Θ(ψ(n)) = {φ(n) : there exist positive constants k1 , k2 and n0

such that 0 ≤ k1ψ(n) ≤ φ(n) ≤ k2ψ(n) for all n ≥ n0}.

The figure 2.3 illustrates this notation, and the intuition behind this notation

Figure 2.3: Θ - notation

2.3 Properties of Asymptotic bounds

Let us now just have a look at the properties of these asymptotic functions

Transitivity[6]

• If φ = O(ψ) and ψ = O(σ), then φ = O(σ).

• If φ = Ω(ψ) and ψ = Ω(σ), then φ = Ω(σ).

• If φ = Θ(ψ) and ψ = Θ(σ), then φ = Θ(σ).

6



2. Basics of Algorithm

Sums of Functions[6]

• Suppose that φ and ψ are two functions such that for some other function σ,

we have φ = O(σ) and ψ = O(σ). Then φ + ψ = O(σ).

• Let k be a fixed constant, and let φ1, φ2, · · · , φk and σ be functions such that φi =

O(σ) for all i. Then φl + φ2 + · · ·+ φk = O(σ).

• Suppose that φ and ψ are two functions (taking nonnegative values) such that ψ =

O(φ). Then φ+ψ = Θ(φ). In other words, φ is an asymptotically tight bound for

the combined function φ + ψ.

2.4 Some General Functions and their Bounds

2.4.1 Polynomial

A function which can be written in the form g(n) = c0 + c1n + c2n
2 + · · ·+ ckn

k

is known as a polynomial function, for some integer constant k > 0, where the

coefficient of the highest power, ck is nonzero. This value k is called the degree of

the polynomial. For example, the functions of the form an2 + bn+ c (with a 6= 0)

is a polynomial of degree 2.

Proposition 2.1: Let φ be a polynomial of degree k, in which the coefficient ck

is positive. Then φ = O(nk).

Proof. Suppose φ(n) = c0 + c1n + c2n
2 + · · ·+ ckn

k, where ckn
k > 0. For all

coefficients cj, we have cjn
j ≤ |cj|nk for all n ≤ 1. Thus each term in the above

polynomial is O(nd). Since φ is a sum of a constant number of functions, each of

which is O(nk), hence from the above property φ is O(nk) ¥

2.4.2 Logarithmic

If logb a is equal to a number say, c, then from the definition of logarithm bc = a.

Logarithmic functions are nothing but inverse of exponential functions. An ap-

proximate sense of how logb a grows is to note that, if we round it down to the

7



2. Basics of Algorithm

nearest integer, it is one less than the number of digits in the base-b representa-

tion of the number a.

Proposition 2.2: For every b > 1 and every c > 0, we have logb a = O(ac) ¥

2.4.3 Exponential

Functions of the form f(n) = kn for some constant base k are known as expo-

nential functions. Throughout our discussion we will consider the case in which

k > 1. If we take k = 1, then f(n) equals 1 for any value of n. When k > 1, the

function f(n) the growth of the function is very fast.

Proposition 2.3: For every k > 1 and every d > 0, we have nd = 0 (kn) ¥

2.5 Study of Common Running Times

2.5.1 Linear Time

An algorithm that runs in some constant multiple of the size of the input is known

as a Linear time algorithm, it is represented by O(n). An algorithm requires

linear time when it spends a constant time on each of its input item. Consider

an algorithm which processes the input in a single pass, and spends a certain

constant amount of time on each item of the input encountered. Depending

on the way a problem is solved decides the time bound of the algorithm, other

algorithms achieve a linear time bound for other reasons. A simple example of

such an algorithm would be to find the highest element from an array of numbers.

2.5.2 O(nlogn) Time

O(nlogn) is also a very common running time, generally it is the running time

of any algorithm that splits its input into two equal-sized pieces, solves each

piece recursively, and then combines the two sorted parts into one in linear time.

Merge-sort algorithm is an example which O(nlog n) time. In case of Merge-sort

8



2. Basics of Algorithm

algorithm, the input is divided into two equal-sized pieces. These two sets are

sorted independently and then merged into a single sorted output in linear time.

2.5.3 Quadratic Time

Quadratic time arises naturally in case of nested loops, Consider a basic problem:

given n points in the plane, such that each of the vertex is specified by (x, y)

coordinates, the task is to find the pair of points that are closest together. The

natural brute-force algorithm for this problem would enumerate all pairs of points

and compute the distance between each pair. The last step would be to find the

smallest distance, and the corresponding points would give us the desired pair.

This problem can be solved by writing an algorithm with two nested loops for

calculating the distance between each pair of points. This would require quadratic

time.

2.5.4 Cubic Time

From the above idea, we can guess that more elaborate sets of nested loops

often lead to algorithms that run in O(n3) time. Consider, for example, the

following problem. We are given sets V1, V2, · · · , Vn, each of which is a subset of

{1, 2, · · · , n}. We would like to know whether some pair of these sets is disjoint

in other words, has no elements in common. This problem can be solved by an

algorithm which has three nested loops, and each loops runs in O(n) time.

2.5.5 O(nk) Time

In a similar fashion, the running time of O(nk) for any constant k, can be ob-

tained. We obtained a running time of O(n2) by performing brute-force search

over all pairs formed from a set of n items. This would require a running time of

O(nk) for any constant k when we search over all subsets of size k.

2.5.6 Beyond Polynomial Time

In general, not all algorithms have polynomial bounds, two kinds of bounds that

come up very frequently are 2n and n!. Let us now try to understand why this is

9



2. Basics of Algorithm

so. They grow much faster compared to the polynomial type algorithm.

Suppose, we are given a graph and we have to find an independent set of

maximum size, instead of testing the existence of one with a given number of

nodes. This is similar to the brute-force algorithm for k-node independent sets,

except that now we are iterating over all the possible subsets of the graph. We

know that the total number of subsets of an n-element set is 2n, so the outer loop

in this algorithm will have 2n number of iterations as it tries all these subsets.

Inside the loop, we are checking all pairs from a set S that can be as large as n

nodes, so each iteration of the loop takes at most O(n2) time. Multiplying these

two together, we get a running time of O(n22n). This is an example of beyond

polynomial time algorithm.

2.5.7 Sublinear Time

A algorithm whose execution time, f(n), grows asymptotically slower than the

size of the problem, n, for processing the input and giving us approximate correct

answer forms the example of a Sublinear Time algorithm. Consider the cases in

which the running times that are asymptotically smaller than linear time. Since,

reading the input itself takes linear time in the size of the input, these situations

tend to arise in a model of computation where the input can be read indirectly

rather than completely. The goal in such cases is to minimize the amount of

querying (the input) that must be done.

2.6 Data Structures

2.6.1 Arrays

An array is a basic data structure which stores a set of values in the same name.

Arrays are amongst the oldest and most important data structures. It is repre-

sented by <Array name> <[number of values to be stored]> e.g. A[200]. Con-

sider a situation in which we need to store the name of students of a class given

that the number of students is 200. If we use different variable for storing all

these 200 different names, it will be a very cumbersome process, and confusing at

10



2. Basics of Algorithm

the same time. Here, we feel the need of such a data structure which can store all

the names one after the other in the same name and such that it can be processed

easily. The entries of the array can also be located and found relatively each. In

an array the ith boy/girl can be found just by finding the entry A[i].

2.6.2 Linked List

A similar data structure is a LinkedList, the difference between linked list and

array is that, unlike arrays in addition to data storage it has a link which points

to the next element. It comes handy when we have a dynamic list of entries.

Inserting and deleting any element becomes much easy compared to array. Con-

sider a set of numbers sorted in increasing order, if we store these numbers in an

array, inserting and deleting becomes a little clumsy, because after finding the

location of the element to be inserted we need to shift all the later elements by

one place to accommodate the new element. In case of a linked list we don’t have

to do this shifting business, we only need to point the pointer of the one after

which it has to be inserted to the new one and the pointer of the new element

to the one before which it has to be located. Linked list can be of two type, one

which has a single pointer and another which is doubly linked. A doubly linked

list has two pointers with each element, one points to the next element and the

another one points to the previous one.

2.6.3 Priority Queue

A priority queue is a data structure that maintains a set of elements K, such that

each element e ∈ K has an associated value key(v) which indicates the priority

of the element e; the smaller key value represent element with higher priorities.

Priority queues can be used to insert and delete the elements in the set. The

element with the highest priority i.e. the smallest key value is the first one to get

selected.

Consider a general situation, in a public function there is a priority given to

the VVIP’s, VIP’s and other special guests. This can be a perfect example of

a priority Queues in a real life situation. A motivating application for priority

queues, that is useful to keep in mind when considering their general function,

11



2. Basics of Algorithm

is the problem of managing real-time events such as the scheduling of tasks on a

machine. Each process has a priority, or urgency, but processes do not arrive in

order of their priorities. At any time, we have a current set of active processes,

and we want to be able to extract the one with the currently highest priority

and run it. We can be done with the help of a priority Queue, maintain the

set of processes, according to the key of a process representing its priority value.

Scheduling the highest-priority process corresponds to selecting the element with

minimum key from the priority queue; at the same time, new processes will arrive

and we will need to insert the new process according to their priority values.

12



Chapter 3

Graphs

The study of Graphs started with the famous problem of ”The bridges of Königs-

berg”. This problem was solved for the first time by Leonhard Euler, and in

the process of finding the solution began this branch of Mathematics, which is

now known as Graph Theory. A graph is a figure consisting of points (called

vertices) and lines (or curves) connecting these vertices (called edges). The more

one works with graphs, the more often we find it real life situations and its ap-

plication everywhere. It has a lot of applications and has turned out to be a very

important tool for Mathematics.

3.1 Definition and Some Examples

A graph G is simply a way of encoding pairwise relationships among a set of ob-

jects: it consists of a collection V of nodes (vertices) and a collection E of edges,

each of which ”joins” two of the nodes. We thus represent an edge e ∈ E as a

two-element subset of V : e = {u, v} for some u, v ∈ V , where we call u and v the

ends of edge e [6]. These edges could be directed or undirected, depending upon

the situation we consider. For example, if we consider a group of cities connected

by roads, it represents an undirected graph, whereas consider a network of pipes

supplying water in any city, in this case the water flows from the reservoir(s) to

all the parts of the city, which is an example of a directed graph. If e = {u, v} is

a directed edge, then the vertex u is called the tail and v is called the head.

13



3. Graphs

Examples of Graphs Let us have a look at a few examples which will demon-

strate us the usefulness and versatility of graphs. We will see how it can be used

in different situations to study the problem.

Transportation Networks The maps of the airline routes could be an example

of a graph. The airports can be represented by vertices and the routes could form

the edges. Since if their is a route from one airport to another, then aeroplanes

travel both ways, start from city 1 and end at city 2 or start from city 2 and end

at city 1. Hence, this would be an example of a undirected graphs. Similarly,

train routes and railway station are other examples of undirected graph.

Communication Networks A collection of terminals connected to each other

through some communication channel can be modeled as a graph in a few differ-

ent ways. ”First, we could have a node for each computer and an edge joining u

and v if there is a direct physical link connecting them. Alternatively, for study-

ing the large-scale structure of the Internet, people often define a node to be the

set of all machines controlled by a single Internet service provider, with an edge

joining u and v if there is a direct peering relationship between themroughly,

an agreement to exchange data under the standard BGP protocol that governs

global Internet routing. Note that this latter network is more ”virtual” than the

former, since the links indicate a formal agreement in addition to a physical con-

nection.” [6]

Information Networks The World Wide Web can be viewed as a natural ex-

ample of a directed graph. Suppose a Web page represents a node, and it has

many different links to different web page, consider this link as an edge from, say

l to m, where l represents the web page which has a link to the other web page,

say m. This is clearly an example of a directed graph, in case the new page does

not have a link to the previous web page. There are types of web pages which

have links both ways, these kind of pages represent undirected graphs. Most of

the search engines use this kind of structure to link and infer to important pages

on the World Wide Web.

14



3. Graphs

Social Networks In a social group, we can easily find the application of a

graph. In any collection of people, for example, people living in a society, the

employees of a company, the members of a committee, the residents of a city,

etc., we can form a graph in which the people represent the nodes and there

exist an edge between them depending on the condition if they are friends or if

they share some kind of a relationship with each other. Different relationships

will have different representations. An edges could mean many different things

instead of friendship: the undirected edge (u, v) could mean that u and v have

had a romantic relationship or a financial relationship; the directed edge (u, v)

could mean that u is the mentor of v, or that u lists v in his or her e-mail address

book. There can also be examples in which we could imagine bipartite social

networks based on a notion of affiliation: given a set X of companies and a set

Y of products, we could define an edge between u ∈ X and v ∈ Y if a company

u manufactures the product v.

3.2 Representation of Graphs

Let us describe the two standard ways to represent a graph G = (V,E): either as

a collection of adjacency lists or as an adjacency matrix. Both the ways can be

used for both directed and undirected graphs. The adjacency-list representation

is generally preferred over the adjacency-matrix representation. The graphs for

which |E| is much less compared |V |2 uses the list form of representation, because

it requires much less space for storing the network connections. Whereas, in case

when the graph has number of edges comparable to |V |2, the matrix represen-

tation is used, because in such a representation it is very easy and at the same

time very less time consuming to find if any pair of vertices are connected or not.

The Figure 3.1 shows an undirected graph and the Figure 3.2 shows the pictorial

representations of the these two different forms.

The adjacency-list representation of a graph G = (V, E) consists of an

array Adj of |V | lists, one for each vertex in V . For each u ∈ V , the array Adj[u]

contains all the vertices v such that there is an edge (u, v) ∈ E. That is, Adj[u]

consists of all the vertices adjacent to u ∈ G. In other words the adjacency list

15



3. Graphs

Figure 3.1: An Undirected Graph

of each of the vertex contains a pointer to its neighbour. The vertices in each

adjacency list have no particular order, they are stored in any order. Figure

3.2(a) is an adjacency-list representation of the undirected graph in Figure 3.1.

So, the adjacency list of all the vertices will have a pointer to all the vertices it

is connected, hence in a directed graph, the sum of the lengths of all the adjacency

lists, in a graph G is |E|. Note that in a directed graph, an edge of the form (u, v)

is represented by having v appear in Adj[u]. If G is an undirected graph, then an

edge will appear twice in the adjacency list of all the vertices, and hence the sum

of the lengths of all the adjacency lists would be 2|E|. Let us now try to analyze

the amount of memory it requires, since for both directed and undirected graphs,

the adjacency-list representation has to pass through all the edges for each of

the vertex, the space needed to store this information would be of the order of

Θ(V + E). Adjacency lists can also be used to represent weighted graphs,

in such a case we would store the weight of the edge along with the vertex v.

In a weighted graphs, each edge has an associated weight, typically given by a

weight function ρ : E → N . For example, let G = (V,E) be a weighted graph

with weight function ρ. The weight ρ(u, v) of the edge (u, v) ∈ E is stored in u
′
s

adjacency list along with the vertex v. The kind of representation is quite robust,

it can be used in many different situations.
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Figure 3.2: (a) The adjacency list representation (b) The adjacency matrix rep-
resentation of the undirected graph in fig 3.1[11]

But if we want to find whether a particular edge between the vertices say u

and v, is present or not. The only way to find this is to search if v is present in the

Adj[u] list or not. This is one disadvantage of adjacency− list representation as

finding whether the two vertices are connected or not is not so quick. This disad-

vantage can be resolved by using an adjacency −matrix representation of the

graph, but at the price of using more memory than the previous represenattion.

The adjacency-matrix representation of a graph G = (V,E), with ver-

tices numbered 1, 2, ..., |V | in some arbitrary manner, consists of a |V |×|V |matrix

A = (aij) such that

aij =

{
1 if (i, j) ∈ E,

0 otherwise.

Figure 3.2(b) shows the adjacency-matrix of the undirected graph. Clearly, the

adjacency matrix of a graph requires Θ(V 2) memory, since the matrix has (V 2)

number of memory units containing the information, whether there exists an edge

or not.

In case of an undirected graph, there is a symmetry in the matrix represen-

tation along the main diagonal of the adjacency matrix, for example in Figure

3.2(b). The transpose of a matrix A = (aij) is defined to be the matrix AT = (aT
ij)
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given by aT
ij = aji . Since in an undirected graph, (u, v) and (v, u) represent the

same edge, the adjacency matrix A of an undirected graph is its own transpose:

A = AT . Hence, we do not actually need to store all the entries in the matrix, it

is prudent to store only the entries on and above the diagonal of the adjacency

matrix, and hence cutting the memory required to store the graph almost in half.

The adjacency-matrix representation can clearly be used for weighted graphs.

For example, if G = (V, E) is a weighted graph with edge-weight function ρ, the

weight ρ(u, v) of the edge (u, v) ∈ E can be simply stored as the auv entry in

the adjacency matrix. If an edge does not exist, a NIL value can be stored as its

corresponding matrix entry, however for many problems it is better to use either

0 or ∞.

Even though, the adjacency-list representation is asymptotically at least as

efficient as the adjacency-matrix representation, the adjacency matrix representa-

tion is used because of its ability to store the weight of the edges rather easily, and

hence preferable even when graphs are reasonably small. Moreover, if the graph

is unweighted, the additional advantage in using the adjacency-matrix represen-

tation is that, instead of using one word of computer memory for each matrix

entry, the adjacency matrix uses only one bit per entry.

3.3 Search Algorithms

This section presents two basic and important methods for searching a graph.

It means systematically following the edges of the graph so as to visit all the

vertices of the graph. Searching techniques for a graph is at the heart of graph

algorithms.

3.3.1 Breadth First Search

Breadth-first search is one of the simplest algorithms for searching a graph

and it serves as a model or a basis for many important graph algorithms. Prims

minimum-spanning-tree algorithm and Dijkstra
′
s single-source shortest-paths al-

gorithm are based on the ideas similar to those in breadth-first search.

Given a graph G = (V,E) and a source vertex s, breadth-first search system-
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atically explores the edges of G to discover every vertex that can be reached from

s. And in doing so, it computes the distance from s to each reachable vertex,

which turns out to be the smallest number of edges from s to v. For any vertex

v reachable from s, the path in the breadth-first tree from s to v, gives us the

shortest path, in other words a path containing the smallest number of edges.

This algorithm works for both directed and undirected graphs.

Breadth-first search is so named because of the way it discovers the vertices of

the graph. It expands the frontier between discovered and undiscovered vertices

uniformly across the breadth of the frontier. That is, the algorithm discovers all

vertices which are at a the minimum distance from s and then discovers all the

vertices which are at a further distance.

In the process we obtain a tree, which we call a breadth-first tree, initially

containing only its root, which is the source vertex s. Initially all the vertex are

coloured white, when a white vertex v is discovered in the course of scanning

the adjacency list of an already discovered vertex u, this new vertex v and the

corresponding edge (u, v) are added to the tree. We say that u is the predecessor

or parent of v in the breadth-first tree. In this algorithm each vertex is discovered

at most once, and hence it has at most one parent. ”Ancestor and descendant

relationships in the breadth-first tree are defined relative to the root s as usual:

if u is on a path in the tree from the root s to vertex v, then u is an ancestor of

v and v is a descendant of u.” [11]

The breadth-first-search algorithm described below assumes that the input

graph G = (V,E) is represented using adjacency lists. The variable color[u]

stores the color of each vertex u ∈ V , and the variable π[u] stores the predecessor

of u. In case u has no predecessor (for example, if u = s or u has not been discov-

ered), then π[u] = NIL. The distance from the source s to vertex u computed by

the algorithm is stored in d[u]. The algorithm also uses a first-in, first-out queue

to manage the set of gray vertices.

BFS(G, s) [11]

1 for each vertex u ∈ V [G]− s

2 do color[u] ← WHITE

3 d[u] ←∞

19



3. Graphs

4 π[u] ← NIL

5 color[s] ← GRAY

6 d[s] ← 0

7 π[s] ← NIL

8 Q ← φ

9 ENQUEUE (Q, s)

10 while Q 6= φ

11 do u ← DEQUEUE(Q)

12 for each v ∈ Adj[u]

13 do if color[v] = WHITE

14 then color[v] ← GRAY

15 d[v] ← d[u] + 1

16 π[v] ← u

17 ENQUEUE(Q, v)

18 color[u] ← BLACK

Analysis of the running time

Now, let us analyze the running time of the algorithm on the input graph G =

(V,E). The process starts with initializing white color to all the vertex (no vertex

is ever whitened), which means that each vertex is enqueued. The step number 13

ensures that each vertex is enqueued at most once, and hence dequeued at most

once. The process of enqueuing or dequeuing takes O(1) time, hence the total

time taken for queue operations is O(V ). According to the algorithm, it is clear

that each adjacency list is scanned at most once. Since the sum of the adjacency

list is Θ(E), the total time spent in scanning adjacency lists is O(E). Hence, the

total running time of the Breadth first search is O(V + E). Thus, in other

words the BFS runs in linear time in the size of the adjacency-list representation

of G.

Shortest Paths

The breadth-first search finds the distance to each reachable vertex in a graph

G = (V,E) from the given source vertex s ∈ V . The shortest-path distance

δ(s, v) from s to v is defined as the minimum number of edges in any path from
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vertex s to vertex v; in case there is no path from s to v, then δ(s, v = ∞). A

path of length δ(s, v) from s to v is said to be a shortest path from s to v, and a

BFS actually computes these shortest-path distances.

The BFS algorithm builds a breadt-first tree in the process of searching the

graph. The tree is represented by the π field in each vertex. The following al-

gorithm prints out the vertices on a shortest path from s to v, assuming that

Braedth-first search has already been run to compute the shortest-path tree.

PRINT-PATH(G, s, v) [11]

1 if v = s

2 then print s

3 else if π[v] = NIL

4 then print ”no path from” s ”to” v ”exists”

5 else PRINT-PATH(G, s, π[v])

6 print v

This procedure takes linear time in the number of vertices in the path printed.

3.3.2 Depth First Search

This search algorithm follows a different procedure for finding the graph vertices.

This algorithm is so named because of its property to search ”deeper” in the

graph whenever possible. The underlying idea behind depth-first search, is

to explore the edges out of the most recently discovered vertex v that still has

unexplored edges leaving it. When all edges of a vertex is explored, the search

backtracks to explore edges leaving the vertex from which v was discovered. This

process continues until we discover all the vertices that are reachable from the

original source vertex. If any undiscovered vertices remain, then one of them is

selected as a new source and the search procedure is repeated. This entire process

is repeated until all vertices are discovered.

As in breadth-first search, whenever a vertex v is discovered during a scan

of the adjacency list of an already discovered vertex u, depth-first search records
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this event by setting v
′
s predecessor field π[v] to u. The difference between the

two is that in breadth-first search the predecessor subgraph forms a tree, whereas

the predecessor subgraph produced by a depth-first search may be composed of

several trees, because the search may be repeated from multiple sources. The

predecessor subgraph of a depth-first search is therefore defined slightly dif-

ferently from that of a breadth-first search: we let Gπ = (V, Eπ), where

Eπ = {(π[v], v) : v ∈ V and π[v] 6= NIL}.
The predecessor subgraph of a depth-first search forms a depth-first forest

composed of several depth-first trees. The edges in Eπ are called tree edges.

In both the cases, the color of the vertex indicates its state. In the depth

first search, each vertex is initially white, is grayed when it is discovered in the

search, and is blackened when it is finished, i.e. when its adjacency list has been

examined completely. The trees formed in this way are disjoint and each vertex

ends up in exactly one depth-first tree

The procedure DFS below records the time when it discovers vertex u in

the variable d[u] and also when it finishes vertex u in the variable f [u]. These

timestamps are integers between 1 and 2|V |, since there is one discovery event

and one finishing event for each of the |V | vertices. For every vertex u,

d[u] < f [u]. (3.1)

Vertex u is WHITE before time d[u], GRAY between time d[u] and time f [u],

and BLACK thereafter.

The following algorithm below is the basic depth-first search algorithm. This

algorithm also works for both undirected or directed graphs. The variable time

is a global variable that we use for timestamping.

DFS(G) [11]

1 for each vertex u ∈ V [G]

2 do color[u] ← WHITE

3 π[u] ← NIL

4 time ← 0

5 for each vertex u ∈ V [G]
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6 do color[u] = WHITE

7 then DFS-VISIT(u)

DFS-VISIT(u) [11]

1 color[u] ← GRAY B White vertex u has just been discovered.

2 time ← time + 1

3 d[u] ← time

4 for each v ∈ Adj[u] B Explore edge (u, v).

5 do if color[v] = WHITE

6 then π[v] ← u

7 DFS-VISIT(v)

8 color[u] ← BLACK B Blacken u; it is finished.

9 f [u] ← time ← time + 1

Note that the results of depth-first search may depend upon the order in which

the vertices are examined in line 5 of DFS, and upon the order in which the neigh-

bours of a vertex are visited in line 4 of DFS-VISIT. These different visitation

orders tend not to cause problems in practice, as any depth-first search result can

usually be used effectively, with essentially equivalent results.

Analysis

The loops on lines 1-3 and lines 5-7 of DFS takes time Θ(V ), exclusive of the time

to execute the calls to DFS-VISIT. The procedure DFS-VISIT is called exactly

once for each vertex v ∈ V , since DFS-VISIT is invoked only on white vertices

and the first thing it does is paint the vertex gray. During an execuation of

DFS-VISIT(v), the loop on lines 4-7 is executed |Adj[v]| times. Since

∑
v∈V

|Adj[v]| = Θ(E)

the total cost of executing lines 4-7 of DFS-VISIT is Θ(E). the running time of

DFS is therefore Θ(V + E).
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Algorithmic Techniques

In this chapter we will discuss the technique of Greedy algorithms. With the help

of examples we will illustrate this technique and observe its advantage over other

standard techniques. The other very important tool is the method of Divide and

Conquer. These techniques are very easy to understand but at the same time

very powerful. Let us now study the Greedy algorithms.

4.1 Greedy Algorithms

Somebody said and I quote, ”Greed · · · is good. Greed is right. Greed works.”

It is hard, to define precisely what is meant by a greedy algorithm. An easy

way to understand this would be to think of an algorithm which tries to be

better than other algorithms by greedily utilizing its resources and trying to give

the best result. One can design many different greedy algorithms for the same

problem. A greedy algorithm builds up in small steps, by choosing the option

which optimizes some of the underlying criteria desired in the output.

Greedy algorithm helps us to solve some of the nontrivial problems optimally,

which implies something very interesting and useful about the structure of the

problem itself. there is a local decision rule that one can use to construct optimal

solutions. It is relatively easy to invent greedy algorithms for almost any kind of

problem; finding cases in which they work well, and proving that they work well,

is the interesting challenge.
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In this chapter we will discuss a simple approach, for proving that a greedy

algorithm produces an optimal solution to a problem. By this we mean that if

one measures the greedy algorithm’s progress in a step-by-step fashion, one sees

that it does better than any other algorithm at each step; it then follows that it

produces an optimal solution. Another approach to find a greedy algorithm is a

more general one. The second approach is known as an exchange argument: one

considers any possible solution to the problem and gradually transforms it into

the solution found by the greedy algorithm without hurting its quality. Again, it

will follow that the greedy algorithm must have found a solution that is at least as

good as any other solution. Some of the most well-known applications of greedy

algorithms are: shortest paths in a graph, the Minimum Spanning Tree Problem,

and the construction of Huffman codes for performing data compression[6].

In the Figure 4.1, the three instances show that(a), the algorithm fails if we

Figure 4.1: Instances of Scheduling Problem [6]

select the event that starts earliest; in (b), similarly selecting the shortest interval

doesn’t work; and in (c), if we try to select the ones which have the lowest conflict
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it does not work.

4.1.1 Interval Scheduling Problem

Consider the following very simple scheduling problem. You have a resource- it

may be a auditorium, a supercomputer, or an electron microscope and many

people request to use the resource for periods of time. A request takes the form:

Can I reserve the resource starting at time s, until time f? We will assume that

the resource can be used by at most one person at a time. A scheduler wants

to accept a subset of these requests, rejecting all others, so that the accepted

requests do not overlap in time. Let us say, we have a set of requests {1,2,..., n};
the ith request corresponds to an interval of time starting at s(i) and finishing

at f(i). We’ll say that a subset of the requests is compatible if no two of them

overlap in time, and our goal is to accept as large a compatible subset as possible.

Compatible sets of maximum size will be called optimal.

Designing a Greedy Algorithm

The basic idea in a greedy algorithm for interval scheduling is to use a simple

rule: select a first request i1. Once a request i1 is accepted, reject all requests

that overlap with the request i1. Then select the next request i2 to be accepted,

and similarly reject all the requests that are not compatible with i2. Repest this

process until all the requests are processed. It might seem quite obvious but

designing a good greedy algorithm is a challenging task. There are many natural

rules which may not give us the optimum result.

Let us now try to study some of the rules and understand how they work.

• The first thing that comes to the mind is to select a request which starts at

the earliest, that is, the one with minimal start time s(i). In this way our

resource starts being used as quickly as possible.

A look at the situation depicted in the Figure 4.1(a) shows a similar situa-

tion. But this method does not give an optimal result. If the first request to

be accepted is for a very large interval, then this would lead to rejection of

many other request which could have been accepted, if we had not accepted

the first request. Consider the situation shown in figure, by this rule we
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would be able to accept only one single request, while the optimal could

have many requests.

• This might suggest that we should start out by accepting the request that

requires the smallest interval of timenamely, the request for which f(i)s(i)

is as small as possible. It is a somewhat a better rule than the previous

one, but still this rule does not give us the desired result. For example, in

Figure 4.1(b), accepting the short interval, prevents us from accepting two

request which overlaps with the middle one. Hence, this rule also fails to

the optimal result.

• In the third attempt, we could design a greedy algorithm that is based on

this idea: for each request, we count the number of other requests that are

not compatible, and accept the request that has the fewest number of non-

compatible requests. This greedy choice would give us the optimum solution

in the previous example. But consider the situation shown in Figure 4.1(c).

The unique optimal solution is to accept the four requests in the top row.

The greedy method used in this case accepts the middle request in the

second row and thereby gives an output of size no greater than three.

After having analyzed at the three greedy rule, let us now look at the fourth one:

in this case we accept first the request that finishes first, that is, the request i for

which f(i) is as small as possible. This is also quite a natural idea: this would

ensure that our resource becomes free as soon as possible while still satisfying one

request. In this way we can maximize the time left to satisfy other requests. Let

us state the algorithm a bit more formally. We will use R to denote the set of

requests that we have neither accepted nor rejected yet, and use A to denote the

set of accepted requests. For an example of how the algorithm runs, see Figure 4.2.

Interval Scheduling [6]

1 Initialize R = 1, 2, 3, · · · , n and A = φ

2 While R =6= φ

3 Choose a request i ∈ R with the smallest finishing time

4 Add request i to A

5 Delete all the request from R that are not compatible with i
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Figure 4.2: Sample run of the Interval Scheduling Algorithm. At each step the
selected intervals are darker lines, and the intervals deleted at the corresponding
step are indicated with dashed lines.[6]
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6 EndWhile

7 Return the set A as the set of accepted requests.

Analyzing the Algorithm

While this greedy method is quite natural, it is certainly not obvious that it re-

turns an optimal set of intervals. Indeed, it would only be sensible to reserve

judgment on its optimality: the ideas that led to the previous non-optimal ver-

sions of the greedy method also seemed promising at first.

As a start, we can immediately declare that the intervals in the set A returned

by the algorithm are all compatible. Now, we need to show that the solution

obtained is optimal. So, for purposes of comparison, let O be an optimal set of

intervals. Ideally one might want to show that A = O, but this is too much to

ask: there may be many optimal solutions, and at best A is equal to a single one

of them. So instead we will simply show that |A| = |O|, that is, that A contains

the same number of intervals as O and hence is also an optimal solution.

The idea underlying the proof, as we suggested initially, will be to find a sense

in which our greedy algorithm ”stays ahead” of this solution 0. We will compare

the partial solutions that the greedy algorithm constructs to initial segments of

the solution O, and show that the greedy algorithm is doing better in a step-by-

step fashion.

We introduce some notation to help with this proof. Let i1, ..., il be the set

of requests in A in the order they were added to A. Note that |A| = l. Similarly,

let the set of requests in O be denoted by j1,... ,jm. Our goal is to prove that

l = m. Assume that the requests in O are also ordered in the natural left-to-

right order of the corresponding intervals, that is, in the order of the start and

finish points. Note that the requests in O are compatible, which implies that the

start points have the same order as the finish points. Our intuition for the greedy

method came from wanting our resource to become free again as soon as possible

after satisfying the first request. And indeed, our greedy rule guarantees that

f(i1) ≤ f(j1). This is the sense in which we want to show that our greedy rule

”stays ahead”that each of its intervals finishes at least as soon as the correspond-

ing interval in the set 0. Thus we now prove that for each k > 1, the kth accepted

request in the algorithm’s schedule finishes no later than the kth request in the
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Figure 4.3: The inductive step in the proof that the greedy algorithm stays ahead.

optimal schedule.

(4.1) For all vertices k ≤ l we have f(ik) ≤ f(jk)

Proof. We prove this statement by the use of induction. For k = 1 the

statement is clearly true: the algorithm starts by selecting the request i1 with

minimum finish time.

Now let k > 1. From the induction hypothesis assume that the statement is

true for k − 1, and we will try to prove it for k. As shown in Figure 4.3, the

induction hypothesis lets us assume that f(ik−1) ≤ f(jk−1).

We know (since O consists of compatible intervals) that: f(jk−1) ≤ s(jk).

Combining this with the induction hypothesis f(ik−1) ≤ f(jk−1), we get f(jk−1) ≤
s(jk). Thus the interval jk is in the set R of available intervals; at the time when

the greedy algorithm selects ik. The greedy algorithm always selects the avail-

able interval with smallest finish time; since interval jk is one of these available

intervals, we have f(ik) ≤ f(jk). This completes the induction step ¥
In this way we have designed a greedy method which selects the interval which

finishes at least as soon as the kth interval in O. We now see why this implies

the optimality of the greedy algorithms set A.
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(4.2) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal,

then an optimal set O must have more requests, that is, we must have m > l.

Applying (4.1) with k = l, we get that f(il) < f(jl). Since m > l, there is a

request jl+1 in O. This request starts after request jl ends, and hence after il

ends. So after deleting all requests that are not compatible with requests i1, ..., il,

the set of possible requests R still contains jl+1. But the greedy algorithm stops

with request il, and it is only supposed to stop when R is emptya contradiction¥

Implementation and Running Time We can make our algorithm run in

time O(n log n) as follows. We begin by sorting the n requests in order of finish-

ing time and labeling them in this order; that is, we will assume that f(i) ≤ f(j)

when i < j. This takes time 0(n log n). In an additional O(n) time, we construct

an array S[l...n] with the property that S[i] contains the value s(i).

We now select requests by processing the intervals in order of increasing f(i).

We always select the first interval; we then iterate through the intervals in order

until reaching the first interval j for which s(j) ≥ f(l); we then select this one

as well. More generally, if the most recent interval we’ve selected ends at time f ,

we continue iterating through subsequent intervals until we reach the first j for

which s(j) ≥ f .In this way, we implement the greedy algorithm analyzed above

in one pass through the intervals, spending constant time per interval. Thus this

part of the algorithm takes time O(n).
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Maximum Cut

For a graph, a maximum cut is a cut whose size is greater than the size of any

other cut, i.e. to say the maximum number of edges we need to remove to divide

the graph in two complimentary sets. The problem of finding a maximum cut in

a graph is known as the max-cut problem. The problem can be stated simply as

follows.

One wants a subset K of the vertex set such that the number of edges

between K and the complementary subset is as large as possible.

Consider an advanced version of this problem, suppose that each edge of the

graph has some weight, then the problem is called weighted max-cut. In this

version each edge has a real number, its weight, and the objective is to maximize

not the number of edges but the total weight of the edges between K and its

complement. The weighted max-cut problem is often, but not always, restricted

to non-negative weights, because negative weights can change the nature of the

problem.

Computational Complexity

The following decision problem related to maximum cuts has been studied widely

in theoretical computer science: Given a graph G and an integer k, determine

whether there is a cut of size at least k in G. This problem is known to be

NP-complete. It is easy to see that problem is in NP: a yes answer is easy to

prove by presenting a large enough cut. The NP-completeness of the problem
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Figure 5.1: A maximum cut

can be shown, for example, by a transformation from maximum 2-satisfiability

(a restriction of the maximum satisfiability problem)[3].

The canonical optimization variant of the above decision problem is usually

known as the maximum cut problem or max-cut problem and is defined as: Given

a graph G, find a maximum cut.

Polynomial time Algorithm

As the max-cut problem is NP-hard, no polynomial-time algorithms for max-cut

in general graphs are known. However, a polynomial-time algorithm to find max-

imum cuts in planar graphs exists.

Approximation Algorithms

There is a simple randomized 0.5-approximation algorithm: for each vertex flip a

coin to decide to which half of the partition to assign it[7] [8]. In expectation, half

of the edges are cut edges. This algorithm can be derandomized with the method

of conditional probabilities; therefore there is a simple deterministic polynomial-

time 0.5-approximation algorithm as well[7] [9]. One such algorithm is: given a

graph G = (V,E) start with an arbitrary partition of V and move a vertex from

one side to the other if it improves the solution until no such vertex exists. The

number of iterations is bounded by because the algorithm improves the cut value

by at least 1 at each step and the maximum cut is at most . When the algorithm
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terminates, each vertex has at least half its edges in the cut (otherwise moving v

to the other subset improves the solution). Therefore the cut is at least.

The best known max-cut algorithm is the 0.878-approximation algorithm

by Goemans and Williamson using semidefinite programming and randomized

rounding [4] [5]. It has been shown by Khot et al [10] that this is the best possi-

ble approximation ratio for Max-Cut assuming the unique games conjecture.
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Simple Algorithm for Conflict

Resolution in the Scheduling of

Television Commercials

Advertisements of products/services are aired on the television/radio shows dur-

ing the program breaks. The advertisements (also called commercials) are given

different slots according to the advertisers choice/preferrence. These slots are

hence sold to the advertisers, who select according to their preference the per-

centage of slots of their choice, where they want their commercials to be aired.

Earlier, this task was done manually. With the increase in the number of com-

mercials and demand for the best possible conflict free scheduling, that too within

a time constraint, this task turns out to be very complicated, tedious and error

prone. Models have been designed to solve this effectively using programming

techniques. This problem is known to be NP-hard. The model proposed by Gaur

et al. [2] gives us a model to solve this in polynomial time. We extend their

model for scheduling commercial advertisements during breaks in television pro-

gramming. In this chapter we propose an algorithm, which gives us the partition

of m vertices with a performance ratio, which is the same as that of the algorithm

designed by Gaur et al. in quadratic time. We have used the formulation as a

capacitated generalization of the max k-cut problem in which the vertices of a

graph correspond to commercial insertions and the edge weights of the conflicts
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between pairs of insertions. The vertices are partitioned into k capacitated sets

and the objective is to maximize the sum of the conflict weights across partition

and also to design an efficient algorithm.

6.1 Scheduling of Television Commercials

The television broadcasts have breaks between the programs where the commer-

cials are aired. The program breaks are hence sold to the advertisers. Certain

locations are more desirable to the clients than others. Generally the most cov-

eted are the first and the last slots. So, the advertisers choose the slots according

to their need and preference. It is desired by the clients that the commercials of

the competing brands/products are separated as far as possible. They also have

the freedom to decide their competitors and which specific brands, products or

type of products not to be aired along with their products. Bollapragada and

Garbiras[1] studied this problem and designed a method to solve this problem al-

gorithmically. Gaur et al. [2] studied the model and came up with a generalized

model, which allows differential weighting of conflicts between pairs of insertions.

They have discussed the problem and found a polynomial time algorithm with

an improved performance ratio. In this chapter we have proposed a quadratic

time algorithm with the same performance ratio for the generalized model of Bol-

lapragada and Garbiras[1]. The generalization model makes a distinction between

multiple insertions of the same commercials, which are generally prohibited in the

same break. The algorithm proposed by Gaur et al. [2], solves this problem in

polynomial time. In this paper we propose an algorithm which does this conflict

resolution in quadratic time with better optimization. We use the same model as

proposed by Gaur et al. [2], with a slight change in the way we partition the set

of advertisements which changes the optimal value. The advantage of this model

is to be able to accommodate all the possible types and pairs of combinations of

advertisements with the capacity to properly partition and differentiate properly.

Finally, differences in the conflict weights can be used to represent varying de-

grees to which comparing commercials, or classes of commercials, are in conflict.

For example, it is likely to be less desirable that the same program break contain

commercials of directly competing brands (e.g., Dove, Liril, Cinthol and Dettol
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soaps) than the brands that are more distant competitors (e.g., Dove soaps and

Dettol antiseptic liquid). The special case in which all conflict weights are zeroes

or ones corresponds to the assumption of equal conflict weights by Bollapragada

and Garbiras (2004) [1].

6.2 The Problem

This problem is defined separately for each of the television program. We have

a set of advertisements that are to be arranged during the breaks as per the

requirement of their clients. A 1 hour show generally has six to ten breaks. As

used by Gaur et al., we refer to these commercials as insertions, which occupies

a slot in a break. We assume that these commercials are some integer multiple

of some minimum length. Any practical time duration can serve this purpose

- say for that matter 5 seconds, 10 seconds etc. A program break also is an

integer multiple of this specified or chosen minimum duration. The problem we

are studying is to find an efficient way to schedule these advertisements such

that the conflict between them is as small as possible. By conflict, we mean the

commercials of the competing products. They should not be placed in the same

break or one after the other, they should be placed as far as possible. The buyers

may specify the competing brands which should not be aired in the same break.

Some competing brands might be produced by the same firm. For example, Luvs

and Pampers are brands of diapers that are both manufactured by Procter and

Gamble, but that should typically not be advertised in the same break. Other

competing brands might be produced by different firms. For example, Acura,

Lexus, and Sonata are three competing cars manufactured by Honda, Lexus, and

Hyundai, respectively. However, Acura and Lexus compete more closely against

each other than they do against Sonata. So, we assign very high weights to closely

competing commercials in such a way that the chance of those two coming in the

same break is very less.

We associate a nonnegative conflict weight with each pair of insertions. A

small value of the conflict weight signifies that those two commercials have small

conflict between them, and similarly a large value means the two are close com-

petitors. To do this we represent these insertions as vertices and is connected
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to all the remaining of the vertices in the graph. Every edge is assigned a weight

which is a measure of the conflict between the two advertisements. The next

section shows the formal representation of the problem.

Formulation of the problem[2]

Consider a graph G(V,E) and |V | = m vertices and |E| edges. An insertion

is represented by a vertex and the conflict weight between two advertisements

is the edge weight between those two respective vertices. We assign a conflict

weight we to edge e ∈ E. A k-cut of the graph places the vertices into k mutually

exclusive sets, V1, V2, · · ·, Vk, and each Vi correspond to the ith program break.

And without any loss of generality, we consider that all these breaks have m

insertions according to the size of the break and the number of insertions it can

accommodate.

The conflict-resolution problem is to find an assignment of the insertions to

the k program breaks so that the sum of the conflict weights across all pairs

of program breaks is as large as possible. Let wuv denote the conflict weight

associated with insertions u and v for all u, v ∈ V . Let xui denote a 0-1 integer

variable that takes a value of one only if insertion u is in program break i. Let

yuivj denote a 0-1 integer variable that takes a value of one only if insertion u is in

program break i and insertion v is in a different program break j. The conflict-

resolution problem can be formulated as the following 0-1 integer program:

Maximize

∑

(u,v)∈E

∑

i,j∈{1,···,k},i 6=j

wuvyuivj

subject to

yuivj ≤ 1/2(xui + xvj)

for all (u, v) ∈ E, i, j ∈ {1, · · · , k},
k∑

i=1

xui ≤ 1 for all u ∈ V,
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∑
u∈V

luxui ≤ ni for all i ∈ {1, · · · , k},

xui ∈ {0, 1} for all u ∈ V, i ∈ {1, · · · , k},
yuivj ∈ {0, 1} for all (u, v) ∈ E, i, j ∈ {1, · · · , k}.

The first constraint restricts the summing of conflict weights in the objective func-

tion to only those cases where the associated insertions are in different program

breaks. The second constraint requires that each insertion should be assigned to

only one program break. The third constraint specifies the capacity restriction

for each program break: ni denotes the number of units of the minimum unit

length. If we change the third constraint accordingly then we can accommodate

insertions and programme break of different length.

Figure 6.1: Representation of Matching 1

6.3 Algorithm

The idea behind the algorithm is to first partition all the m advertisements in n

sets of size k (since n = m/k), in such a way that the conflict within the set is

maximum. Once we get such a partition we separate each element of these sets

in k different sets. In other words, we place all the elements which where in the

same set, in different sets. Since these n sets had maximum conflict, when we

separate all the elements of these sets, the conflict among them gets minimized.
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Consider a situation, where we want to map k elements to k different sets.

There can be many different ways to do it. Let us consider the following k

mappings

Figure 6.2: Representation of Matching 2

M0 : i −→ i,

M1 : i −→ i + 1,

M2 : i −→ i + 2,
...

Mk−1 : i −→ (i + k − 1) mod k

The Matching 0 maps ith element of the domain to the ith element of the co-

domain. Similarly, Matching 1 maps ith element to the i + 1th element and so

on. If there is a weight attached to all these mappings, say W1, W2, · · ·, Wk, then

there will exist a map amongst these maps, say Mj, such that

weight of Mj ≤
∑

Wi

k

and for the remaining of the matching taken, the sum of the conflict weights will

be ≥ (W −W/k), where W =
∑

Wj. In our problem, we have a total m(= kn)

number of advertisements and k number of breaks. The distribution of these kn

elements are done as follows.
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Step 1

In this step we want to divide these m = nk advertisements in sets of size k. So

the number of such sets would be n. The process of dividing these advertisements

is described below.

Suppose there are n sets and i elements have been already inserted in these

sets. Let us now define a few notations as follows

W being the weight of all the edges

W0 denotes the sum of all the edges formed by the remaining kn− i vertices

to be inserted amongst themselves

v be the i + 1th element to be inserted

w0 be the sum of the edges with respect to the remaining kn− (i + 1)

vertices that are to be inserted

C be the sum of all the edge weights saved, and

Wj denotes the total weight of the edges coming into Sj.

We would now try to figure out where to put in the next i.e.- the i+1th element.

Let these n sets be denoted by S1, S2, · · ·, Sn. After i elements have been

inserted suppose set S1 has k1 empty slots, S2 has k2 empty slots to put in the

advertisements and so on Sj has kj slots available and let the sum of these slots

be denoted by M , i.e.

∑
kj = kn− i = M(say)

The i + 1th vertex, v can be inserted into any one of the sets S1, S2, · · ·, Sn.

And depending on the number of elements present in these corresponding sets,

or rather the number of remaining slots we will get the probability of the vertex

v being inserted in any particular set. So, at any given time the Expectation

value, say A would be equal to

A = W0

n∑
j=1

(
kj

M
)(

kj−1

M − 1
) +

n∑
j=1

(
kj

M
)Wj + C
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The expectation value is the averagre value of the weight that will be added to

the total conflict weight. This value is calculated by using the probability of a

particular advertisement being inserted in a break and the sum of the weight of

the edges in that particular break. When no element was inserted in the sets S1,

S2, · · ·, Sn, then

W0 = W

kj = k, for all j

Wi = 0, for all i, and

C = 0

This, give us the initial expectation value, Ainit equal to

Ainit = W
k − 1

M − 1

Fix v, now suppose v is placed in some Sl for (kl ≥ 1), where 0 ≤ l ≤ n. The

new expectation value assuming v is placed in Sl would be, say Bl equal to

Bl = (W0 − w0)(
n∑

j=1,j 6=l

kj

M − 1

˙kj − 1

M − 2
+

kl − 1

M − 1

˙kl − 2

M − 2
) + wl +

C + w0
kl − 1

M − 1
+

n∑

j=1,j 6=l

(kj)(Wj − wj)

M − 1
+ (Wl − wl

˙kl − 1

M − 1
)

where wl indicates the total weight of the edges from v to Sl. The conflict weight

is contributed by the weights of the edges already inserted, the weights amongst

the edges which are yet to be inserted and the conflict weight contribution from

the individual breaks. Note that, the expectation value of the vertex v being put

anywhere in Sj is A, so the weighted average of the Bj’s i.e.
∑

j Bj
kj

M
= A. Hence

there exists atleast one j say, Bl such that a Bl ≥ A, then we place v in Sl and

we update the values of different parameters as follows

Wj ← Wj − wj

M ← M − 1

42



6.Simple Algorithm for Conflict Resolution

A ← (A−
n∑

j=1

wjkj

M
)

M

M − 1

kj ← kj − 1

W0 ← W0 − w0

where, w0 is the weight of the edges from v to all the vertices which were not in

any of the Sj’s.

Step 2

After the first step we have, n mutually exclusive sets such that the conflict

amongst them is more than the expectation value. Now, we simply need to

separate these k elements in each of the n sets so as to give us the desired output.

The sets are S1, S2, · · ·, Sn. Let Li = total weight of edges from Si to (S1, S2, · · ·,
Si−1). When Si is inserted into V1, V2, · · ·, Vk, the total weight of the conflicting

edges is at most Li

k
. Recall, the matching argument, when we have k matchings

then there is always a matching which is less than or equal to average of all the

matchings. Similarly, when we repeat this argument over Li’s, the total conflict

weight after all Si are inserted is at most

n∑
i=2

Li

k

From the first step we obtain the inequality,i.e.- the sum of the weights (conflicts)

within the sets Si’s would be more than or equal to the expectation value, i.e. -

W ( k−1
kn−1

), and the conflict weight lost across the sets would be at most W (1 −
k−1
kn−1

) 1
k
. Hence the total weight saved both within and across the sets would be

W
k − 1

kn− 1
+ W (1− k − 1

kn− 1
)(1− 1

k
)

So, the performance ratio would be the total weight saved divided by the total

weight of the edges, W , i.e. -

k − 1

kn− 1
+ (1− k − 1

kn− 1
)(1− 1

k
)

According to the theorem proved by Gaur et al. they found that the per-
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formance ratio ′φ′ according to their algorithm is greater than or equal to 1 −
1

k+(k−1)/(n−1)
, i.e.

φ ≥ 1− 1

k + (k − 1)/(n− 1)

=
k − 1

k − 1
n

Comparison of the two performance ratio

The performance ratio according to our algorithm gives us the performance

ratio as

(
k − 1

kn− 1
) + (1− k − 1

kn− 1
)(1− 1

k
)

= (
k − 1

kn− 1
) + 1− 1

k
− (

k − 1

kn− 1
) +

1

k
(

k − 1

kn− 1
)

= 1− 1

k
(1− k − 1

kn− 1
)

= 1− n− 1

kn− 1

The performance ratio according to Gaur et al. had a lower bound equal to

1− 1

k + (k − 1)/(n− 1)

=
k − 1

k − 1
n

=
k − 1

n
+ 1

n
− 1

k − 1
n

= 1− 1− 1
n

k − 1
n

= 1− n− 1

kn− 1

Hence, the ratio calculated by our approach is the same compared to the

algorithm discussed by Gaur et al.
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Running time

Let us now discuss the running time of our algorithm. Our algorithm has two

major steps, step 1 and step 2. So the total time taken in the first step and the

second step, would give us the total running time of our algorithm. We will use

the Adjacency-list representation of the graphs. In the step 1, calculating the

expectation value time requires the sum of all the edges in the graph, which

requires linear time of the order of the number of the edges i.e. O(|E|). Then

the next step is calculation of Bj for each j ≤ n. For Bl, we need the sum of the

edge weights coming to a particular set Sj, which we have initially. For the first

calculation we need some constant time, but for the calculation of other Bj’s for

any v can be done in constant time (once the wj’s have been calculated), as it

will require addition and subtraction of some of the terms to get the value for

the Bj. The calculation of the vj’s will take time proportional to the order of the

vertices, i.e. the degree of v. So, the total time taken for calculating all the wj

will be O(|E|). Hence the time needed to calculate the conditional expectation

value would be a constant. But we need to do this for all j’s so identifying the

set where we need to put in the i+1th element will require O(n). We repeat this

step for all the vertices, hence the order of the step 1 will be O(|V |) time O(n).

Hence the total time taken in the step 1 would be O(|V |n + |E|), i.e. quadratic

in the number of advertisements. In step 2 we need to find k mapping from each

setSi having k elements to sets V1, V2, · · ·, Vk. For this we need to have one pass

aver the adjacency list of all the vertices, hence the time required would be |E|
for all the vertices, i.e. O(|V | + |E|). Hence the total running time would be

quadratic in the size of m.

A Linear Time Algorithm

Suppose if we skip the first step of our algorithm and we arbitrarily form n sets

with k elements. Then the performance ration would be simply -

φ ≥ W (1− 1
k
)

W
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= (1− 1

k
)

and from the above analysis the running time of the second step is O(|V |+ |E|).
Hence, we can use this linear time algorithm to solve this problem with just a

little worse performance ratio. The performance ratio has k in the denominator

instead of k− 1
n
. Hence, we get a much more efficient algorithm with just a little

smaller performance ratio.

6.4 Conclusion

The algorithm described in the paper by Gaur et al. uses a procedure to partition

the set of kn advertisements into k sets of size n which has a running time which is

a polynomial time running algorithm, whereas our algorithm is a quadratic time

in the size of the input and gives us the same optimal performance ratio.Hence

we could say that our algorithm is more efficient compared to the one designed

by Gaur et al. [2] with the same performance ratio.
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