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Abstract

There has been a lot of research on covering arrays in the last two decades and most
of it includes construction, application and generalization of covering arrays. The
main focus of this thesis is the group construction of covering arrays. The project
was aimed at improving bounds on covering array number and thus to improve ap-
plications of covering arrays to testing systems and networks. For this purpose, we
use group construction of covering arrays which has been proven to be one of the
best possible method for the construction of covering arrays.

A covering array CA(n, k, g), is an k×n array with entries from Zg and the property
that in any pair of rows, each of the g2 ordered pairs from Zg × Zg appear in at
least one column. This property is called qualitative independence. Here, the size of
the covering array is represented by parameter n and Zg represents its alphabet. A
covering array is optimal if it has the minimum number of columns among covering
arrays with the same number of rows.

We use group construction of covering arrays with some modifications which yields
new upper bounds on the size of the optimal covering arrays.
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Chapter 1

Introduction

In the last few decades, covering arrays has been the focus of most of the research.
They are actually termed as the natural generalization of orthogonal arrays. Cov-
ering arrays are computationally difficult to find and are of multiple applications,
particularly software testing purposes [1].

Testing is very important but generally very expensive part of the development
process of hardware and software. Out of the many possible configurations of soft-
ware, each could be faulty. As mentioned above testing a large software or hardware
system is a labor-intensive process and it also requires a huge amount of time and
resources. The main purpose of software testing is to make sure that no actual error
occurs in any such configuration. In order to achieve this goal, one can simulate all
possible configurations and check that no error occurs but since there are too many
possible configurations to check, this method is practically impossible. It can be
realized that testing all configurations of a software or a hardware can be redundant
and that it is possible to achieve a fair simulation of all of the program’s behavior
with a smaller number of chosen configurations [2].

Often inadequate testing results in major disasters, some examples for that are the
software failure in the Therac-5 radiation therapy machine that resulted in deaths
and severe injuries to cancer patients due to overdoses of radiation [3]. Also, due to
inadequate testing another extreme catastrophic disaster occurred when the Ariane
5 satellite launcher exploded in 40 seconds into its maiden flight, due to this overflow
failure both processors had to shut down resulting in aborting the satellite mission
[4]. Intel corporation had to suffer millions of dollars due to the Pentium floating
point division bug that caused error in accuracy of only small number of division
computations [5].

Most of the work on covering arrays focuses on developing constructions for them
and finding bounds on their minimum size. A covering array CA(n, k, g), is an k×n
array with entries from Zg and the property that in any pair of rows, each of the g2

ordered pairs from Zg × Zg appear in at least one column. This property is called
qualitative independence. The parameter n represents the size of the covering array
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and Zg is its alphabet.

It is often desirable to have covering array with smallest possible size i.e. cover-
ing array with minimum number of columns possible. The main focus of the thesis
is group construction of covering array is presented in Chapter 3 with slight mod-
ifications and the tables in chapter 4 lists the bounds that are found with this
modified group construction techniques. The group construction produces some of
the smallest known covering arrays for specific parameters.

1.1 The History

Covering array are also known as Qualitatively independent families. They are
generalization of well-studied orthogonal arrays [6]. Orthogonal Array which are
first developed by Rao in 1940s [7] although provide good test designs, but for some
parameters it is not possible to build an orthogonal array so relaxation of orthogonal
arrays, called covering arrays are developed [8]. Most research is about developing
new and better methods to find the bounds on the minimum sizes of the covering
array. For binary covering array (k = 2) the exact size of minimum covering array
is known, but as k increases the task becomes much more difficult [9].

1.2 Applications of Covering Arrays

There are often variety of applications of covering arrays including correct function-
ing of radiation therapy machines, satellite launching and many more. So, to lower
the cost of software testing is crucial. One approach to lower the cost of software
testing was suggested by Cohen, Dalal, Fredman and Patton [10], which is explained
below with the help of the following example [11].

Suppose an internet site has to be tested to function correctly, the system has four
parameters : operating systems, browsers, printers and communication protocols.
The first parameter, operating system has three values i.e Windows, Linux and So-
laris. The second parameter, browser, has two values i.e. Explorer and Netscape.
The third parameter has three values and the fourth parameter has two values i.e.
Epson, HP, IBM and Token Ring and Ethernet respectively.

In total we have, 3×2 × 3 × 2 = 36 possible test configurations, but if following
nine tests are done, they cover all pairwise interactions between different parame-
ters of the system.
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Operating system Browser Printer Protocol
Windows Explorer Epson Token Ring
Windows Netscape HP Ethernet
Windows Explorer IBM Ethernet
Linux Netscape Epson Token Ring
Linux Explorer HP Ethernet
Linux Netscape IBM Token Ring
Solaris Explorer Epson Ethernet
Solaris Netscape HP Token Ring
Solaris Explorer IBM Ethernet

In this table, the interaction between operating system and printers are covered
only once, but interactions between operating systems and browsers are covered
more than once (twice).
As we can see clearly from the table that Linux and Netscape, Solaris and Explorer
and Windows and Explorer are tested together twice in the test suite.
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Chapter 2

Covering Arrays and Related Designs

Covering Arrays are mathematically very relevant designs in terms of their multiple
applications. They are the generalization of well studied and well known orthogonal
arrays.
In this chapter, we will give the overview of all the mathematical designs that are
relevant in our study of covering arrays including orthogonal arrays, latin squares
and transversal designs.

2.1 Mutually Orthogonal Latin Squares (MOLS)

Latin Squares are first developed and studied by Euler in 1782. They are very old
but relevant designs in terms of their applications. They are quite closely related to
orthogonal arrays.

Definition of Latin Squares : An n × n array (n being a positive inte-
ger) on n symbols with the property that each symbol occurs exactly once in each
row and each column is said to be a latin square of order n. For a latin square to be
in its standard form the symbols in the first row should come in their natural order.

Example : Given below is the latin square of order 5 in its standard form. This is
also the addition table for Z5.

L =




0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3




Remark : A latin square of order n exists for every n, i.e. an addition table for
Zn is always a latin square of order n. If we permute the rows or the columns of a
latin square, we will still get a latin square.
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Definition of Orthogonal Latin Squares : Let n be a positive integer and
let A = [aij] and B = [bij] be latin squares of order n. Now, if in the n × n array
with entries [(aij,bij)], each of the n2 ordered pairs of symbols occurs exactly once,
then A and B are orthogonal latin squares.

Example : Given below are two orthogonal latin squares of order 3 (both in their
standard form).

L1 =




0 1 2
2 0 1
1 2 0


 L2 =




0 1 2
1 2 0
2 0 1




Now, consider the n× n array with entries [(l1i,j
,l2i,j

)]

[L1, L2] =




(0, 0) (1, 1) (2, 2)
(2, 1) (0, 2) (1, 0)
(1, 2) (2, 0) (0, 1)




Since, in this array each of the 9 ordered pairs occurs exactly once, therefore L1 and
L2 are orthogonal latin Squares.

Remark : A set of latin squares with the property that any two distinct squares from
the set are orthogonal is called a set of mutually orthogonal latin squares(MOLS).
Let the cardinality of the largest set of MOLS of order n be N(n). For all n,

1 ≤ N(n) ≤ n− 1

A complete set of MOLS is a set of n− 1 MOLS of order n [8]. The main point here
is that if n is prime or prime power then N(n) = n− 1.

2.2 Transversal Designs

Transversal Designs are also very relevant designs in the study of orthogonal arrays
as there is a close relation between these two. They are the generalization of mutu-
ally orthogonal latin squares(MOLS).

Definition : A transversal design T(k, λ, g) (where k,λ,g be positive integers) is a
triple (X,G,B) with the below properties:

1. A set of kg symbols, called varieties is X.

2. A partition set of the set X, G = G1,G2,...,Gk, here each Gi is a g− subset of
the set X. These sets Gi are called groups.

3. A collection of k − sets of X, B, called blocks, with the property that each
group is intersected by each block Gi, for i = 1, ...k in exactly one variety.
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4. Any pair of varieties from different groups occur in the same number of blocks.
The number is called the index and is denoted by λ.

Example : Below given is a transversal design T[3, 1, 2] :

X = {0, a, 1, b, 2, c}

G =




G1 = (0, 1)
G2 = (a, b)
G3 = (2, c)




B =




B1 = {0, a, 2}
B2 = {0, b, c}
B3 = {1, a, c}
B4 = {1, b, 2}




2.3 Orthogonal Arrays

Definition : An orthogonal array, OA(n, k, g, t) (where n, k, g, t are positive inte-
gers and t ≤ k) of index λ, with strength t and size g, is an k× n array with entries
from {0, 1, ..., g − 1} and the property that any t × n subarray has all gt possible
t− tuples occurring as columns exactly λ times.

Remark : In any OA(n, k, g, t), λ = n/gt.
If t = 2 i.e λ = 1, then the definition of orthogonal array goes like:
An orthogonal array is a k×g2 array with entries from Zg such that within any pair
of rows any ordered pairs from Zg occurs in exactly one column.
A strength-2 OA(n, k, g, 2) is equivalent to a transversal design T[k,λ,g] [6]. This
equivalence is illustrated in the following example.

The following orthogonal array OA(4, 3, 2, 2) is equivalent to the transversal de-
sign T[3,1,2] shown above :

OA =




0 0 1 1
0 1 0 1
0 1 1 0




The equivalence between OA(4, 3, 2, 2) and T[3,1,2] can be explained in the follow-
ing way :

For each row ri of the OA(4, 3, 2, 2) where i ε {0,1,...,k − 1} i.e i ε {0,1,2} rewrite
each letter a in the row as ai i.e.
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OA =




00 00 10 10

01 11 01 11

02 12 12 02




Now, the kg = 6 varieties in the transversal design T[3,1,2] are ai for a ε {0,1,...,g−1}
and i ε {0,1,...,k−1} i.e the 6 varieties in the transversal design are {00, 10, 01, 11, 02, 12}.
Then, define the k = 3 groups of the transversal design by Gi = {ai : a = 0, 1..., g−1}
for i ε {0,1,...,k − 1} and the blocks in the transversal design are the columns in
the covering array. Similarly, it is possible to construct an OA(g2, k, g, 2) from a
T [k, 1, g].

The equivalence between orthogonal arrays, transversal designs and MOLS are sum-
marized in a theorem which is described below:

THEOREM [12] : Let r,k be positive integers with k≥ 2 and r≥ 3. Then the
existence of any one of the following designs implies the existence of the other two
designs :

1. an OA(g2, k, g, 2)

2. a T[k; 1; g]

3. k − 2 MOLS (g)

2.4 Covering Arrays

For certain values of k, it is impossible to build an orthogonal array (provided values
of n, g, t are fixed) [13], increasing λ can be a solution to this problem, but for many
practical purposes value of λ cannot be very large. Hence increasing λ does not of-
fer any solution to our problem. If we make certain relaxations in the conditions of
orthogonal arrays, we get what are known as covering arrays. Below is the definition:

Definition : A covering array t-CA(n, k, g)(where n, k, g, t are positive integers
with t ≤ k) with strength t and alphabet size g is an k × n array with entries from
{0, 1, ..., g− 1} and the property that any t× n subarray has all gt possible t-tuples
occurring at least once.

Example : The below given array is a covering array 2-CA(11, 5, 3):

C =




0 0 2 1 1 1 0 1 2 2 2
0 1 0 2 1 1 2 0 1 2 2
0 1 1 0 2 1 2 2 0 1 2
0 1 1 1 0 2 2 2 2 0 1
0 2 1 1 1 0 1 2 2 2 0



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An orthogonal array with 18 columns can be constructed using the above values
k = 5, g =3 but it will have 7 more columns so it is beneficial to construct a cover-
ing array instead of orthogonal array.

Remark : The condition on orthogonal array that is relaxed in case of covering
array is that each t− tuple occurs exactly once is relaxed to be that each t− tuple
occurs at least once.
The number n, is the number of columns of the covering array t-CA(n, k, g) is called
the size of the covering array or the covering array number. The main focus of the
research is to minimize this number as for many applications, CA with smallest
possible size are used. The smallest possible size of the covering array is denoted by
t-CAN(k, g).

2.5 Qualitatively Independent Vectors

Definition : Two vectors u, v ε Zn
g (where g, n are positive integers) are qualita-

tively independent if for each one of the possible g2 ordered pairs (a, b) ε Zg × Zg,
there is an index i so that (ui,vi) = (a, b).

Example : Suppose g =3 and n = 9, so we have Z9
3 , therefore the possible g2 = 9

ordered pairs are the following:

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}, for i = 2, (u2,v2) = (0,1)

Remark : A set of vectors is qualitatively independent if any two distinct vec-
tors in the set are qualitatively independent.
A set of rows in a covering array 2-CA(n, k, g) is a set of k pairwise qualitatively
independent vectors from Zn

g .
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Chapter 3

Constructions of Covering Arrays

Most of the work on covering arrays has focused on construction of covering ar-
rays with minimum possible number of columns (which is a difficult problem) [14].
The constructions illustrated here for covering arrays give an upper bound for t-
CAN(k, g). We provide here three constructions namely : the finite field construc-
tion; the block size recursive construction and the group construction. Our main
focus in this project is the group construction of the covering arrays. This construc-
tion has improved many upper bounds on covering array number.

3.1 Finite Field Construction

The construction given here is called finite field construction for orthogonal arrays
[8]. This construction is used to construct a complete set of MOLS of order k where
k is a prime power. The construction builds an orthogonal array OA(k2, k + 1, k, 2)
and this is also a covering array CA(k2, k + 1, k). The construction shown below is
done through a series of lemmas and corollaries.

Lemma : Let k be a prime power, then CAN(k + 1, k) = k2.

Proof : Consider an array C = (cij) with k + 1 rows and k2 columns. In this
proof we will index the rows and columns of C starting from 0. Consider GF [k] to
be a finite field of order k with the ordering of the elements as {f0,f1,f2,...,fk−1} and
f0 = 0 and f1 = 1.
Let the first row of C be each element in the field repeated k times in the fixed
order, so that the entry in column p of the first row is fl where l = bp/kc. Now, for
i = {0,1,2,...,k − 1}, set the entry in the row i + 1 and column p of the array C to
be fifl + fj where l = bp/kc and j ≡ p(modk).
Now we need to see that any row of C is qualitatively independent from any other
row of C.
First we will check that row 1 is qualitatively independent from all the other rows.
We will prove this by contradiction.
Suppose row 1 and row n are not qualitatively independent. This means that for two
distinct columns p and q, a pair is repeated between them. Now as there are only k2
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columns, if their is a repetition of any pair, then there will be problem in covering all
possible pairs (x,y) such that x,y ε {f0,f1,...,fk−1}. According to condition discussed
above, we have

(c1p, cnp) = (c1q, cnq)

fbp/kc = fbq/kc (3.1)

fn−1fbp/kc + fj1 = fn−1fbq/kc + fj2 (3.2)

where j1 = x mod k and j2 = y mod k. From Equation 3.1, we have

bp/kc = bq/kc (3.3)

Also from Equation 3.2, we have
fj1 = fj2 (3.4)

i.e.

j1 = j2

this implies,
p = q(modk) (3.5)

But Equations 3.2 and 3.5 cannot hold true simultaneously if p 6= q. Therefore, we
arrive at contradiction and hence row 1 and any other row of C are qualitatively
independent.
Now, we want to show that any two arbitrary rows are qualitatively independent.
To prove this we again go by contradiction.
Assume that any two rows a and b are not qualitatively independent. Then for some
distinct columns p and q, a pair is repeated between them.

(cap, cbp) = (caq, cbq) (3.6)

thus,
fa−1fbp/kc + fj3 = fa−1fbq/kc + fj4 (3.7)

and
fb−1fbp/kc + fj3 = fb−1fbq/kc + fj4 (3.8)

where j3 = x mod k and j4 = y mod k. Now, we subtract Equation 3.8 from 3.7,
we get

fbp/kc(fa−1 − fb−1) = fbq/kc(fa−1 − fb−1) (3.9)

which implies
bp/kc = bq/kc(∵ a 6= b, fa−1 6= fb−1) (3.10)

so we get,
fj3 = fj4 (3.11)

j3 = j4

12



or,
x = y(modk) (3.12)

But Equations 3.12 and 3.10 cannot be true simultaneously if x 6= y. Therefore,
we get a contradiction. Hence, rows a and b are qualitatively independent. So, we
can say that all rows are qualitatively independent with all the other rows. By this
method, we have constructed a CA(k2, k + 1, k) which proves that CAN(k + 1, k)
= k2 for k a prime power.

We show an example below of finite field construction a CA(16, 5, 4) from the finite
field construction from the finite field of four elements {0,1,2,3}

CA(16, 5, 4) =




0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1




Definition : Two disjoint columns in a covering array are the ones those have dif-
ferent entries for each row.

Corollary [8] : A covering array CA(k2, k, k) exists for any prime power k with the
property that it has k disjoint columns .

Proof : Let the Covering array CA(k2, k + 1, k) built by finite field construction
be denoted by C. Let C ′ be the Covering Array formed by deleting the first row of
C. Now, by finite field construction, for columns j = {0,1,2,...,k − 1}, the entry on
row i of C ′ is fi×0 + fj = fj. Thus the first k columns are disjoint.

Example : Below is the example shown of CA(16, 4, 4) with its first four columns
disjoint.

CA(16, 4, 4) =




0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1




At least m columns are pairwise disjoint in a covering array with m disjoint
columns.

3.2 Block Size Recursive Construction

The construction shown below is known as block-size recursive construction [15] and
[13]. This construction uses 2 covering arrays with same alphabet, k and then com-
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bining those two CA to form a new covering array with larger parameters. Let P =
(pij) be a covering array CA(n, r, k) and Q = (qij) be a covering array CA(m, s, k),
now we combine these two covering array using block-size recursive construction to
get a covering array R = CA(m + n, rs, k). Let pi for i = 1, ..., r be the rows of P
and let qj for j = 1, ..., s denote the rows of Q.

P =




p11 p12 . . . p1n

p21 p22 . . . p2n

.

.

.
pr,1 pr,2 . . . pr,n




and

Q =




q11 q12 . . . q1m

q21 q22 . . . q2m

.

.

.
qs,1 qs,2 . . . qs,m




Now the way this construction of CA(n + m, rs, k) goes about is :

The first s rows of the resultant CA(n + m, rs, k) are row p1 of P concatenated
with rows qj of Q for j = 1, ..., s. The next s rows of the resultant CA are row p2 of
P concatenated with rows qj of Q for j = 1, ..., s. The procedure continues till all
the rows of P are covered. The resultant array is shown below :
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R =




p11 p12 . . . p1n q11 q12 . . . q1m

p11 p12 . . . p1n q21 q22 . . . q2m

. .

. .

. .
p11 p12 . . . p1n qs,1 qs,2 . . . qs,m

p21 p22 . . . p2n q11 q12 . . . q1m

p21 p22 . . . p2n q21 q22 . . . q2m

. .

. .

. .
p21 p22 . . . p2n qs,1 qs,2 . . . qs,m

. .

. .

. .
pr,1 pr,2 . . . pr,n q11 q12 . . . q1m

pr,1 pr,2 . . . pr,n q21 q22 . . . q2m

. .

. .

. .
pr,1 pr,2 . . . pr,n qs,1 qs,2 . . . qs,m




To prove that R is a covering array we have the following argument.

Any two distinct rows t1 and t2 of the covering array CA(m + n, rs, k) are of the
form ai1bj1 and ai2bj2 . If i1 6= i2, then all possible pairs in the k−alphabet occur
in the first n columns between ai1 and ai2 . If i1 = i2, then j1 6= j2 and all possible
pairs in the k−alphabet occur in the last m columns between bi1 and bi2 . Hence R
is indeed a covering array.

Lemma : For any prime power g, there exists a CA(2g2 − g, g(g + 1), g). Equiva-
lently, for any prime power g and any integer k ≤ g(g+1), CAN(k, g) ≤ 2g2 − g.

Proof : For k a prime power, use the block-size recursive construction on the
following two arrays. First, the CA(g2, g + 1, g) (from the finite field construction)
and second, the CA(g2, g, g) with g disjoint columns. Here, the first g2 columns cover
all the distinct g pairs (i, i) ε Zg ×Zg. Therefore, the first g columns of CA(g2, g, g)
need not to be necessarily included in the final covering array. So, removing the
mentioned k columns from the 2k2 columns gives us the CA(2g2 − g, g(g + 1), g).

Definition : A balanced covering array is a covering array CA(n, k, g) with the
property that each alphabet occurs exactly n/g times in each row.
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Lemma : For any positive integer i and a prime power g, there exists a balanced cov-
ering array CA(g2+i(g2−g), gi(g+1), g) and thus, CAN(gi(g+1), g) ≤ g2+i(g2−g).

Proof : We are going to prove this by mathematical induction.
For i = 1, CA(g2+i(g2−g), gi(g+1), g) becomes CA(g2+g2−g, g(g+1), g) and hence
from the above lemma we can say that there exists a CA(g2 + i(g2− g), gi(g + 1), g)
for i = 1.
Now, suppose there exists a CA(g2 + i(g2− g), gi(g +1), g) for i = n i.e. there exists
a covering array

CA(g2 + n(g2 − g), gn(g + 1), g). Now, use the block-size recursive construction
on CA(g2 +n(g2− g), gn(g +1), g) and CA(g2, g, g) with g disjoint columns, we can
give the similar argument as given in the above lemma that g2 + n(g2 − g) columns
cover all the distinct g pairs (i, i) ε Zg×Zg and so the first g columns of CA(g2, g, g)
need not to be necessarily included in the final covering array and hence remove
g2+n(g2−g)+1 from g2+n(g2−g)+g to get CA(g2+(n+1)(g2−g), g(n+1)(g+1), g).
Therefore, it is true for i = n + 1 and so this holds for any integer i.

3.3 Group Construction of Covering Arrays

This construction method combines an algebraic construction with a computer
search. This construction improves some of the best known upper bounds on the
covering array number. The key incentive for this construction is that it uses a small
vector to construct a covering array rather than using an entire array.
First, we provide some background results that are used through out this construc-
tion.

1. For g a prime power, 2-CAN(g + 1, g) = g2 (This result is given by standard
finite field construction for orthogonal arrays).

2. If a 2-CA(n, k, g) exists then there is a 2-CA(n + g(g − 1), 2k, g) by applying
the block size recursive construction we get the above result.

3. For g a prime power and k ≤ 2(g + 1), 2-CAN(k, g) ≤ 2g2 − g.

3.3.1 The Group Construction

This construction appeared in [16] and [1]. This construction involves selecting a
subgroup G < Sym(g) and then finding a starter vector v ε Zg

k. Sym(g) is the
symmetric group on g elements and G is a subgroup selected. The starter vector v
is then used to create a circulant matrix. Then the group G acts on this circulant
matrix and produces several matrices which are then concatenated to form a cov-
ering array. It is often necessary to add a small matrix C, (generally an array of
zeros) to complete the covering array. But the choice of C depends on the group G
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and the starter vector v.
The example given below will show how the group construction is done.

Example : Let G = {e,(12)} < Sym(3) and v = (0,2,2,2,1) ε Z5
3 .

We build the circulant matrix M in the following way taking v as the first col-
umn.

M =




0 1 2 2 2
2 0 1 2 2
2 2 0 1 2
2 2 2 0 1
1 2 2 2 0




Now, the two elements of G when act on matrix M , gives

Me =




0 1 2 2 2
2 0 1 2 2
2 2 0 1 2
2 2 2 0 1
1 2 2 2 0




and M(12) =




0 2 1 1 1
1 0 2 1 1
1 1 0 2 1
1 1 1 0 2
2 1 1 1 0




Now Me and M(12) are concatenated along with the array C = [0 0 0 0 0]T . This
is done to ensure the coverage of all pairs. Therefore, finally we get CA(11, 5, 3) as
shown below :

CA(11, 5, 3) =




0 0 1 2 2 2 0 2 1 1 1
0 2 0 1 2 2 1 0 2 1 1
0 2 2 0 1 2 1 1 0 2 1
0 2 2 2 0 1 1 1 1 0 2
0 1 2 2 2 0 2 1 1 1 0




To determine which vectors v = (v0,v1,...,vk−1) can be used as starter vectors to
form circulant matrix, consider the sets di for i = 1,2,...,k − 1,

di = {(vj,vj+i)| j = 0,1,...,k − 1}

where the subscripts are taken modulo k.

Consider the group action of G (taken in the above example) on the pairs of Zg.
The set of orbits O from this action is shown below :

1. (0,0)
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2. {(1,2),(2,1)}

3. {(1,1),(2,2)}

4. {(0,1),(0,2)}

5. {(1,0),(2,0)}

In general, consider the action of the subgroup G = 〈(1 2 ...g − 1)〉 < Sym(g) on
the pairs from Zg, g + 2 orbits are generated by this group action (shown below):

1. {(0,0)},

2. {(0,i) : i = 1,...,g − 1},

3. {(i,0) : i = 1,...,g − 1} and

4. {(a,b): a,b ε Zg \ {0} and a− b ≡ j(mod g − 1)} for j = 0,1,...g − 2

for v to be a valid starter vector it should have the property that the set of differ-
ences vj - vj+i for all (vj,vj+i) ε di covers Zg over i = 1,...g − 1. In other words, for
a starter vector the sets di for all i = 1,...g contain at least one element from each
of the orbits {(a,b): a,b ε Zg \ {0} and a− b ≡ j(mod g − 1)} for j = 0,1,...g − 2.
Now, to prove that the matrix produced by the group construction is indeed a cov-
ering array, we give the following argument:

Suppose M is a k×k circulant matrix generated by a starter vector v. Then, for any
two rows in M , at least one element from each of the orbits of G (except {(0,0)})
occurs in some column. Suppose Mgbe the matrix formed by the group action g ε
G on M . Now, since any two rows in M have a representative from each orbit of G,
for any two rows all pairs from Zg (except {(0,0)}) will occur in Mg for some g ε G.
Finally the k×1 array C with all zero entries is concatenated with Mg for all g ε G
to form a covering array.

18



Chapter 4

Algorithms for Covering Arrays

The main findings in our project are listed in this chapter. As illustrated in the
previous chapter, we try to find the starter vector v, but not by using exhaustive
search (as exhaustive search is practically impossible for g ≥ 10) but by heuristic
search through which we can get better results for larger g.

The algorithm used was a simple hill-climbing algorithm. It takes an arbitrary
vector and counts the number of the orbits of G that occur in all the sets di. Then
a single entry from v is randomly chosen. This entry is then changed to a random
value (from the set Zg, other than what is already there). If the change increases
the number of orbits in the sets di, the change is accepted otherwise it is rejected.
This procedure is continued until a starter vector is found or if a certain number of
changes have been tried.

4.1 Methods

We have done the whole programming in MATLAB and the results obtained are
shown in tables in the end of this chapter.
First, by using the hill-climbing algorithm discussed above we found out the starter
vectors for many values of k and g . These can also be computed by an exhaustive
search (as starter vector is not unique) for values of g = 3,4,...10 as it is feasible.
The exhaustive search can only be done upto g = 10 and for finding the further
starter vectors we have to use the above mentioned hill-climbing algorithm which is
fast and easy to use.

To further improve our results substantially, we have written a code in MATLAB,
not to construct starter vector but to construct a circulant matrix directly of size k
× n where n is some number which is obviously greater than the number of orbits
(this is done keeping in mind that for large k, unnecessary repetition of starter vec-
tor lead to larger size of the circulant matrix). Then we can delete some rows (one
by one) and keep on checking that it should follow the property that any two rows
have representative from each orbit and see how farther we can go in deleting the
rows .
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4.2 Results Obtained

Our main focus in this thesis is the group construction of covering arrays as dis-
cussed earlier.
Using the hill-climbing algorithm as discussed above we have been able to get the
starter vectors for many values of k and g. Tables listed in this chapter shows all
the values of k and g with g +1 ≤ k ≤ 2(g+1) for which the starter vector exists
that we got and also shows the comparison between existing values and our bounds.

Surprisingly enough, the papers that we followed for referring to this group con-
struction says that for g = 3, starter vector only exists for k = 5,8 but using our
computer search we came across the fact that the starter vectors exist for k = 5,6,7,8.
Also, for g = 3 onwards, it can be checked through our program that the starter vec-
tors do exist for given values of k and the upper bound on covering arrays matches
with the given upper bound in the paper.

Using the program that constructs circulant matrix as mentioned in the earlier
paragraph, the results match with the already existing bounds that are given in
tables below. But, it provides us a good starting point so as to proceed further in
our search for a better method that can be used for the construction of optimal
covering array.

4.3 Heuristic Search for Starter Vectors

In [2] the starter vectors are found by using exhaustive search but in [3] the method
for using hill-climbing algorithm has been introduced, that we have mainly used in
our study. Replacing exhaustive search by heuristic search produced good results
and in less time mainly for covering arrays with larger g. Through the very simple
hill-climbing algorithm, we have managed to find many new upper bounds for cover-
ing arrays 2-CA(n, k, g) with g+ ≤ k ≤ 2g. These bounds are shown in Tables at the
end of this chapter along with the starter vectors that can be used to produce these
bounds. Many of the new bounds are substantially smaller than previously known
bounds, that the more relevant part of this study is that this method provides a
very efficient tool to build smaller covering arrays with larger alphabet size.

4.4 Table of Bounds on CAN(k,g)

The table below shows the comparison between existing bounds and the bounds
that we have obtained using our Matlab programs and computer search.
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g =3 Starter Vector Bound Obtained Known Bound
k = 4 Starter Vector Do not Exist – –
k = 5 0 1 1 2 1 11 13
k = 6 0 1 1 2 1 2 13 13
k = 7 0 1 1 2 1 2 1 15 15
k = 8 0 1 1 2 1 2 1 1 17 15

g = 4 Starter Vector Bound Obtained Known Bound
k = 5 0 1 2 2 1 16 22
k = 6 0 1 1 2 1 2 19 24
k = 7 0 2 1 2 1 1 1 22 27
k = 8 0 1 1 2 1 2 1 1 25 27
k = 9 0 1 1 2 1 2 2 2 2 28 29
k = 10 0 1 2 1 1 2 2 2 1 1 31 29

g = 5 Starter Vector Bound Obtained Known Bound
k = 7 0 1 2 4 3 1 1 29 41
k = 8 0 1 2 4 3 3 2 3 33 41
k = 9 0 1 2 4 3 3 1 3 3 37 44
k = 10 0 1 2 4 3 3 1 1 2 1 41 45
k = 11 0 1 2 4 3 3 1 1 1 1 3 45 46
k = 12 0 1 2 4 3 3 1 1 1 1 1 3 49 48

g = 6 Starter vector Bound obtained Known bound
k = 9 0 2 2 3 2 2 4 1 4 46 48
k = 10 0 1 1 1 1 2 4 3 1 2 51 52
k = 11 0 1 1 1 1 2 4 3 1 2 2 56 64
k = 12 0 1 1 1 1 2 4 3 1 2 2 1 61 67
k = 13 0 1 1 1 1 2 4 3 1 2 2 1 2 66 68
k = 14 0 1 1 1 1 2 4 3 1 2 2 1 2 1 71 68

g = 7 Starter Vector Bound obtained known bound
k = 10 0 2 2 2 4 5 2 4 3 1 61 63
k = 11 0 1 1 1 1 2 1 4 6 5 3 67 73
k = 12 0 1 1 1 1 1 2 1 4 6 5 3 73 76
k = 13 0 1 1 1 1 1 1 2 1 4 6 5 3 79 –
k = 14 0 1 1 1 1 1 1 1 2 1 4 6 5 3 85 –
k = 15 0 1 1 1 1 1 1 1 1 2 1 4 6 5 3 91 –
k = 16 0 1 1 1 1 1 1 1 1 1 2 1 4 6 5 3 97 –
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g = 8 Starter vector Bound obtained known bound
k = 11 0 2 2 3 3 5 3 6 7 4 3 78 80
k = 12 0 2 2 2 3 7 3 7 2 2 7 6 85 99
k = 13 0 1 1 1 1 2 1 3 7 5 1 3 4 92 102
k = 14 0 1 1 1 1 1 2 1 3 7 5 1 3 4 99 104
k = 15 0 1 1 1 1 1 1 2 1 3 7 5 1 3 4 106 –
k = 16 0 1 1 1 1 1 1 1 2 1 3 7 5 1 3 4 113 –
k = 17 0 1 1 1 1 1 1 1 1 2 1 3 7 5 1 3 4 120 –
k = 18 0 1 1 1 1 1 1 1 1 1 2 1 3 7 5 1 3 4 127 –

g =9 Starter vector Bound obtained Known bound
k = 13 0 2 2 2 4 3 2 7 3 6 6 4 5 105 120
k = 14 0 2 2 2 2 3 1 6 7 3 2 4 7 8 113 131
k = 15 0 1 1 1 1 1 2 3 2 7 1 5 4 2 5 121 135
k = 16 0 1 1 1 1 1 1 2 3 2 7 1 5 4 2 5 129 145
k = 17 0 1 1 1 1 1 1 1 2 1 2 6 8 5 3 6 7 137 148
k = 18 0 1 1 1 1 1 1 1 1 2 1 2 6 8 5 3 6 7 145 151
k = 19 0 1 1 1 1 1 1 1 1 1 2 1 2 6 8 5 3 6 7 153 –
k = 20 0 1 1 1 1 1 1 1 1 1 1 2 1 2 6 8 5 3 6 7 161 –

g = 10 Starter Vector Bound obtained Known bound
k = 15 0 2 2 2 2 5 3 9 2 1 5 6 7 9 5 136 166
k = 16 0 1 1 1 1 1 2 9 5 7 1 5 5 3 2 8 145 177
k = 17 0 2 2 2 2 2 2 3 5 1 6 9 8 3 2 9 6 154 180
k = 18 0 2 2 2 2 2 2 2 3 5 1 6 9 8 3 2 9 6 163 180
k = 19 0 1 1 1 1 1 1 1 1 2 1 4 9 7 8 2 6 8 5 172 180
k = 20 0 1 1 1 1 1 1 1 1 1 2 1 4 9 7 8 2 6 8 5 181 –
k = 21 0 1 1 1 1 1 1 1 1 1 1 1 2 5 6 8 4 8 6 5 2 190 202
k = 22 0 1 1 1 1 1 1 1 1 1 1 1 1 2 5 6 8 4 8 6 5 2 199 202

g = 11 Starter vector Bound obtained Known bound
k = 17 0 1 1 1 1 1 3 10 6 9 4 10 9 7 1 4 5 171 221
k = 18 0 2 2 2 2 2 2 3 6 9 4 2 4 1 7 6 9 3 181 225
k = 19 0 2 2 2 2 2 2 2 3 6 9 4 2 4 1 7 6 9 3 191 231
k = 20 0 2 2 2 2 2 2 2 2 3 6 9 4 2 4 1 7 6 9 3 201 231
k = 21 0 2 2 2 2 2 2 2 2 2 3 6 9 4 2 4 1 7 6 9 3 211 231
k = 22 0 2 2 2 2 2 2 2 2 2 2 3 6 9 4 2 4 1 7 6 9 3 221 231
k = 23 0 2 2 2 2 2 2 2 2 2 2 2 3 6 9 4 2 4 1 7 6 9 3 231 231
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g = 12 Starter vector Bound obtained Known bound
k = 18 0 6 5 10 7 3 9 1 13 2 3 7 6 6 3 1 4 8 199 255
k = 19 0 9 4 4 7 8 11 10 8 11 6 10 6 8 5 3 11 10 4 210 276
k = 20 0 7 9 2 10 10 2 9 8 9 4 9 2 3 1 4 5 6 1 9 221 276
k = 21 0 6 2 10 2 5 3 8 10 5 8 7 6 6 3 4 8 8 3 8 10 232 276
k = 22 0 1 1 3 10 6 9 4 10 9 1 1 1 4 8 6 3 2 7 8 4 11 243 288
k = 23 0 1 1 1 3 10 6 9 4 10 9 1 1 1 1 9 2 11 5 11 1 6 5 254 288
k = 24 0 2 2 2 2 4 11 7 10 5 11 10 2 2 2 2 7 6 3 1 2 6 7 3 265 288
k = 25 0 8 11 8 9 3 3 2 2 11 2 6 6 6 2 8 11 2 7 2 7 5 10 10 11 276 288

Similarly, we can find many starter vectors for higher values of g by this method and
it can be seen clearly in the tables, this method of construction of covering array
improves the upper bound on the covering array number significantly.

4.5 Conclusions and Further Suggesstions

The upper bounds found here need not be the best possible, but that certainly
brings us closer to the optimal. The covering arrays found here can also be used as
good starting points to may be able to produce much tighter bounds. The use of a
variety of algorithms for heuristic search can help us to find starter vectors which
can in turn, find good upper bounds and in lesser time.
Another area that can be explored is the group action, is that the group, Zg that
we have used is not transitive but it produced good results quickly. Groups like A3

< S3 can be tried for results in the case of strength 3 covering arrays. Eventually, if
a method can be developed that will take a group action, find the orbits and then
search for useful starter vectors for strength 3 covering arrays, that can work as
good starting point to explore for success in strength 3.
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Appendix A

Important MATLAB Programmes

Here we have shown the important Matlab Programmes that are used in generating
the result, and are crucial for this project. Rest of the work done in MATLAB is
not been shown here as they are not very important in generating the results that
are shown in the table given in Appendix A.

A.1 main code(count2m.m)

clc clears the window
clear all clears the memory of all the variables
k=input(’input length of vector’); input length of vector from user in k
g1=input(’number of symbols’); input number of symbol from user in g1
g=g1-1; g=g1-1
m=zeros(1,k); declare a zeros array named m with 1 row and k column
n=zeros(1,k); declare a zeros array named n with 1 row and k column
for i=1:k-1 command for loop to run i from 1 to k-1
m(1,i+1)=input(’input any integer among symbols except 0 ’);
input from user to fill m from 2nd to last column
end loop end after running all the iterations
disp(’initial vector’); displays ’initial vector’ on the screen window of
user
n=m; copies m to n
disp(’initial count’); displays ’initial count’ on the screen window of user
s0=r1(n,g1);
calls function named r1 by passing parameters n and g1 to r1
and stores the return value by function r1 in s0.
if sum(s0)<(g1+1)*(k-1) ; Checks for the condition, where
sum(s0) equals the sum of components of s0
disp(’invalid starter vector’); If above conditions satisfied it
displays ’invalid starter vecter’
end end of if condition
if sum(s0)==(g1+1)*(k-1); Again checks for the condition
disp(’valid starter vector’); If above condition satisfied it dis-
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plays ’valid starter vector’
end end of if condition
n1=zeros(1,k*k); declare a zeros array named n1 with 1 row and k*k
coloumn
n1(1)=n(1); copies column 1 value of n to position 1 of n1
for i=1:k*k-1 command for loop to run i from 1 to k*k-1
n1(i+1)=n(mod(i,k)+1); copies coloumn (mod(i,k)+1) value to position i+1
of n1
end loop end after running all the iterations
ca=zeros(k,k); declare a zeros array named ca with k row
and k coloumn
for i=1:k command for loop to run i from 1 to k
for j=1:k command for loop to run j from 1 to k
ca(i,j)=n1(1,i+j-1); copies coloumn (i+j-1) value of n1 to position (i,j) of ca
end loop for j end
end loop for i end
ca displays contents of ca
c1=zeros(1,(k*(k-1)/2),k); declare a 3-d zeros array named c1 with 1 row and
(k*(k-1)/2) coloumn and k stacks
for l=1:k runs loop for l from 1 to k
A=zeros(2,k,(k*(k-1)/2)); declare a 3-d zeros array named A with 2 row and
k coloumn and (k*(k-1)/2) stacks
Z=1; z=1
for i=1:k-1 runs loop for i from 1 to k-1
for j=i+1:k runs loop for j from i+1 to k
A(1,:,Z)=ca(i,:); copies ca ith row to A 1st row and z stack
A(2,:,Z)=ca(j,:); copies ca jth row to A 2nd row and z stack
Z=Z+1; z transforms to z+1
end j loop end
end i loop end
A(:,l,:)=[]; A transforms with deleted l coloumn
o=orbit2(g1); calls for function named orbit2 and store the return value in o
c0=count2(g1,k-1,(k*(k-1)/2)+1,A,o); calls for function named count2 and
store the return value in c0
c1(1,:,l)=c0(1,:); copies c0 row 1 to c1 row 1 and stack l
end loop l ends

A.2 function(r1.m)

function [s0]=r1(n,g1)
f=n;
k=length(n);
v=zeros(1,2*k);
for i=1:k
v(1,i)=f(1,i);
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v(1,i+k)=f(1,i);
end
o=zeros(2,g1-1,g1+1);
o=orbit2(g1);
d=zeros(2,k,k-1);
for i=1:k
d(1,i,:)=v(1,i);
end
for j=1:k-1
for i=1:k
d(2,i,j)=v(1,i+j);
end
end
s0=count2(g1,k,k,d,o);

A.3 function(count2.m)

function [ic]=count2(g1,k,k1,d,o)
count=zeros(1,g1+1,k1-1);
for i=1:k1-1
for j=1:k

for q=1:g1+1
for r=1:g1-1
if(d(:,j,i)==o(:,r,q))
count(1,q,i)=1;
end
end
end
end
end
t=zeros(1,k1-1);
for i=1:k1-1
for m=1:g1+1
t(1,i)=t(1,i)+count(1,m,i);
end
end
ic=t;

A.4 function(orbit2)

function [z1]=orbit2(g1)
g=g1-1;
v=zeros(1,2*g);
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for i=1:g
v(i)=i;
v(g+i)=i;
end
z1=zeros(2,g,g+2);
for k=1:g
for i=1:g
z1(1,i,k)=v(i);
z1(2,i,k)=v(i+k);
end
end
for i=1:g
z1(2,i,g+1)=v(i);
z1(1,i,g+2)=v(i);
end
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