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Abstract

The main aim of this project is to study the expansion of Coronal Mass Ejec-
tions (CMEs) from the Sun due to Lorentz self-forces. We use data from the
SOHO/LASCO and STEREO/SECCHI coronographs. We assume a flux rope ge-
ometry for the CMEs and fit a polynomial to the data of flux rope minor radius
vs time. We derive the expansional acceleration of the flux rope using the second
derivative of this polynomial. In trying to examine if Lorentz self-forces are (pri-
marily) responsible for flux rope expansion, we compute the predicted flux rope
expansion rate using two prescriptions: 1) One in which the axial current enclosed
by the nearly force-free flux rope configuration remains constant, and 2) one in which
the axial current decreases approximately in inverse proportion to the height of the
fluxrope from the Sun-center. The latter prescription is motivated by considerations
of magnetic helicity conservation. We generally find that a model where the axial
current decreases as R™%%! (where R is the heliocentric height of the flux rope CME)
agrees best with the data.

Furthermore, we have computed the surface area of CMEs observed with SEC-
CHI using a three-dimensional flux rope model. The variation of the flux rope
surface area with time is expected to be a valuable tool in analyzing the drag force
on a CME as it travels through the solar wind.
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Chapter 1

Introduction

The optical radiation that we see, is emitted from the photosphere (surface of
the sun). These emissions are produced by Thompson scattering in the much more
tenous atmosphere or the corona above, is many orders of magnitude less intense
and hence can only be seen when the solar surface is occulted (e.g., by the moon
during solar eclipses).

The observations of the solar corona date back to as early as 2800 B.C. Regular

observations of solar eclipses and prominence started with the eclipse of 1842 A.D.,
which was observed by experienced astronomers like Airy, Arago, Baily, Littrow
and, Struve. Photographic records started since 1851 eclipse in Norway and Sweden,
when the professional photographer Berwoski succeeded to produce a dagguerotype
of prominence and the inner corona.
Bernard Lyot built the first coronagraph at Pic-du-Midi Observatory in 1930, an
instrument that occults the bright solar disk and thus allows for routine coronal
observations, without the need to wait for rare total eclipse events. In 1942, Edlén,
identified the forbidden lines of highly ionized atoms and in this way established for
the first time the million-degrees temperature of the corona.

The solar corona is divided into three major zones namely: (1) active regions (2)
quiet sun regions and the (3) coronal holes.
Active Regions: The active regions on the solar surface are the areas where most
the activity happens, but it actually makes up of a very small fraction of the total
surface area. Active regions are located in areas of strong magnetic field concen-
trations, visible as sunspot groups in optical wavelengths or magnetograms. These
groups typically exhibit a strong concentrated leading magnetic polarity, followed by
a more fragmented trailing group of opposite polarity. Due to such bipolar nature,
these regions are associated with closed magnetic field lines.
Quiet Regions: Because of recent technological advances this term has now be-
come a misnomer, and is now classified in relative terms as an area where dynamic
small scale phenomena like such as network heating events, nanoflares, explosive
events, bright points, and soft X-ray jets, to large-scale structures that overarch
quiet sun-regions are rooted in the active regions.
Coronal Holes: The northern and southern regions have been found to be darker



than the equatorial regions on the coronal surface. These are regions of open field
lines that act as efficient conduits for flushing heated plasma from the corona into
the solar wind. Because of this efficient transport mechanism, coronal holes are
empty of plasma most of the times, and thus appear darker than the quiet sun.

The solar corona is observed during total eclipses or with an instrument called a
coronagraph. Eclipses only occur roughly once a year while coronagraphs can record
images of the solar corona all year long. Space coronagraphs like LASCO aboard the
SOHO spacecraft and SECCHI aboard STEREO spacecraft, are positioned between
the Sun and Earth, so that it can record images of the corona without interruptions
of the night and day cycle we have on earth.

The software used on these satellites are intended to simulate the Thomson
scattering of the photospheric light by the electrons of the corona. This is the
component of the solar corona is called the K corona. This is in this component
that we observe the most structured and transient phenomenons, like streamers and
Coronal Mass Ejections (CMEs). The K corona is optically thin: the line of sight
(LOS) are then simple straight lines.

The K corona structures that are observed, are linked to the solar magnetic
field. Loops and streamers are the main structures we observe. They are related
respectively to closed and open field lines.

The reversal of the magnetic polarity of the global solar magnetic field, modu-

lates the total radiation output in many wavelengths in a dramatic way. This solar
magnetic cycle is of about 11 years. The full cycle is of 22 years, after which the
original magnetic configuration is restored, is called a Hale cycle. The total mag-
netic flux reaches a maximum during the peaks of the cycle and drops to a low level
during the minimum of the cycle.
Since many radiation mechanisms are governed by dissipation of the magnetic en-
ergy and the resultant plasma heating, the radiation output in these wavelengths
is correspondingly modulated from solar maximum to minimum. During a cycle,
the active regions migrate from higher latitude to lower latitude near the equatorial
region, leading to the butterfly diagram of the sunspots (Sporer’s Law), when their
latitudinal position is plotted with time.

1.1 Coronal Mass Ejections

Every main sequence star is losing mass, caused by the dynamic phenomena
in the atmosphere that accelerate plasma or particles beyond the escape speed.
The mass loss is accounted to broadly two main phenomena: the steady solar wind
outflow and the sporadic ejection of the plasma structures (Coronal Mass Ejections).
The frequency of such a phenomena is about a few per day, carrying mass in the range
from 10'* — 10'g. The geometric shapes of such events have, range from fluxropes,
semi-shells, or bubbles. Coronal Mass Ejection (CMEs) are dynamically evolving
plasma structures, propagating outward from the sun into the inter-planetary space,
carrying a frozen-in magnetic field and expanding in size. If a CME travels radially
towards the earth, it is called halo-CME.



Some of them can travel toward Earth and can generate magnetic and particle
storms. The main manifestation we can see on Earth are the aurora borealis. They
can also have more dramatic consequences as they can damage orbiting satellites or
irradiate astronauts. Understanding their mechanism is then of a particular interest
for both science and space weather forecasts. The resultant geomagnetic storms
in the Earth’s Magnetosphere can cause disruption of global communications and
navigation networks, or failure of satellites and commercial power systems.

The study of Coronal Mass Ejections (CMEs) started in the early 1970s and have

been subject to intensive investigation. In coronagraph images, a CME is identified
by a discrete electron density enhancement expanding outward from the sun. Such
structures have spatial structures of the order of the solar radius (R0) near the sun
and masses of 104 — 10'6g.
Although CMEs observed in coronagraphs have velocities biased towards the plane
of the sky, there is a strong correlation between CMEs and large geomagnetic storms.
White-light coronagraphs regularly record expulsions of plasma in the solar corona.
The shape and sizes of coronal mass ejections (CMEs) vary from event to event.

1.1.1 Causes:

Various explanations have come to light, that give us an insight on the causes of
CMEs based in terms of mechanical analogues: [1]
Thermal Blast Model: This model suggests that the driving force of the CME is
caused by greatly enhanced thermal pressure, produced by a flare, which cannot be
contained by a magnetic field and thus pushes CME outwards into the heliosphere.
With recent investigation it was found that sometimes CME were launched first,
and a flare-emitted emission later, or the relative timing of the two events was very
close, hence this model has run out of favor.
Dynamo Model: This model suggests that there is a rapid generation of mag-
netic flux by real-time stressing of the magnetic field. The driver of the magnetic
stressing is accomplished by rapid displacements of footpoints of a coronal magnetic
field systems. Blackman & Brandenberg also suggest that the launch of a CME bal-
ances the conservation of magnetic helicity during the solar cycle, by simultaneously
liberating small-scale twist and large-scale writhe of opposite sign.
Mass Loading Model: This models comes under the broad classification of
storage and release models, which entails a slow build-up of magnetic stress before
eruption begins. The mass loading process can be manifested in the form of a grow-
ing quiescent or eruptive filament. Theoretical studies compare the total magnetic
energy in the pre-eruption and posteruption equilibrium configurations in order to
demonstrate the plausible transitions from a higher to lower energy state.
Tether Release Model: = Magnetically dominated configurations like coronal
loops generally involve a balance between upward-directed magnetic pressure, and
downward-directed force of magnetic tension. The field lines that hold the tension
are called tethers. Once the tethers are released one after the other, the tension
on the other tethers increases, until the strain becomes eventually large that the
remaining tethers begin to break and the spring uncoils in a catastrophic explosion.



Tether Straining Model: This model is similar to the tether release model, ex-
cept that the strain on the tethers is constant, but is distributed to fewer and fewer
tethers with time until they break.

This chapter has been inspired by the book "Physics of the Solar Coronal” [2]



Chapter 2

Theory

The magnetic geometry of the Coronal Mass Ejections are of fundamental im-
portance in understanding the dynamics of CMEs because the Lorentz force acting
on the structure critically depends on the 3D configuration of the electric current
(J) and magnetic field (B). Although magnetic field in the corona is not directly
measurable, there are observable signatures in the CME dynamics that are charac-
teristic of the flux-rope geometry [3]. There is a broad understanding, that CMEs
are envisaged as a magnetic fluxrope, wound radially along the axis of the major
radius R.

Figure 2.1 shows a schematic drawing of a magnetic flux rope. The electric current
is localized to a current channel of major radius R and minor radius a, with com-
ponents J; and J, in the toroidal and poloidal directions [4]. The magnetic field of
the flux rope, given by

J = (c/4n) v xB (2.1)

which the has poloidal component B, and toroidal component B,. The toroidal
field is confined to the current channel, but the poloidal field can extend beyond. A
helical field line inside the current channel and some poloidal field lines outside the
current channel are also mentioned in the diagram. Coronal magnetic field B, due
to currents unrelated to the electric current is shown in the poloidal direction. By
a flux rope, we refer to the current and the magnetic field of the system, including
the poloidal field B, outside the current channel (but not B.).
The outward force per unit length f on the flux rope (in cgs units) is given by

GM,

+ 77§ (VPx) + I X By — mpry—
a

I3 l;
—O[l (Sa L b 3 (2.2)

f:c% nE) 2 2

[5] which is quite similar to the equation presented in [6] Yeh (1995), it also includes
the Lorentz self-force, which was previously not in corporated in Yeh’s (1995) treat-
ment.

The defination of the magnetic field inside a magnetic field structure can be de-
scribed with the use of the Lundquist solution [7] [8] in which the terms (J x B)
vanish. But actually, in reality the Lorentz self-force do not actually vanish.

Upon looking at the Lundquist solution we find that it was derived with the as-
sumption that current density was parallel to the magnetic field (j = aB), which
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Figure 2.1: The figure from [3]. Schematic of a flux rope above the photosphere.
The toroidal loop structure is the current channel with major radius R and minor
radius a. The toroidal J; and poloidal J, currents and the corresponding poloidal
B, and toroidal B; magnetic field components are indicated. Coronal pressure p.
and the overlying coronal field B, (in the toroidal direction) are indicated. The
outermost flux surface, represented by three poloidal field lines, is at » = 2a(6) from
the toroidal axis of the current channel, where a(f) is the local minor radius at
angular position . The centroid of the apex of the flux rope is at height Z from the
base of the corona. The CME LE is at height Z; F = Z + 2a, at the apex. The apex
of the prominence is at Z, = Z — a,. These heights are indicated by the arrows on
the left. The flux-rope footpoints are separated by S, measured center to center.
The prominence footpoints are separated by Sp = Sy — 2ay.



in turn implies the vanishing of the Lorentz stress [4]. The Lunquist solution would
still remain valid in the regime where the current density and the magnetic field
vectors make a very small angle x with respect to each other. As I, x B, gives
rise to the Lorentz self-force in the 7 direction (in cylindrical coordinates), leading
to the expansion of the minor radius. Due the small misalignment in [, (in the
axial direction) gives rise to the translational motion. In the case of solar filaments,
[9] Kumar and Rust (1994) showed that x lying between 0.36° and 3.6° degrees is
enough to support the dense filament material against solar gravity. Therefore, in
this regime the Lundquist solution remains approximately valid even in the non-
force-free cases. So in the case of a large aspect-ratio fluxrope, even a minute angle
between the current density and magnetic field is sufficient to provide the required
Lorentz force for the translational motion.

In Demoulin and Dasso 2009 [10], it is stated that the rapid decrease in total
solar wind with the solar distance is the main factor which drives the expansion of
the fluxrope. Factors such as internal over-pressure, the radial distribution and the
amount of twists in the fluxrope have a minuscule effect on the expansion of the
fluxrope.

In Wang et al. 2009 [11], it is stated that the both the thermal pressure force and the
Lorentz self-force decrease rapidly as the CME moves out and the thermal pressure
is the internal driver of the CME expansion.

In this study it is assumed that, the minor radius does not seem to affected
by conditions in the external environment. The factor on which the evolution of
the minor radius depends are mainly the conditions in the internal magnetic confi-
gration [4]. The major factors being the conservation of magnetic helicity and the
axial flux. Hence, if the major radius of the fluxrope configuration of the CME
increases (resulting in the increase in the length of the fluxrope), so as to ensure the
conservation of magnetic helicity and the axial flux, an expansion in the fluxrope,
implying that the minor radius of the CME increases. Further observations also
show that the evolution of the minor and the major radius of the CME moving in
the inter-planetary space evolve linearly with time.

The energy of a current ring (the cross-section of the CME) is given by

W = LI?/2 ~ I’R[In(8R/a) — 7/4] (2.3)

[12] where I, R, a, and L are the current, major and minor radius, and the induc-
tance of the ring, respectively. Since magnetic energy must be released in order to
accelerate the ejecta (CMEs) and the term in brackets ([In(8R/a) — 7/4]) does not
vary strongly, the current in the rising flux loop of the CME must decrease faster
than R~2 . In the approximation the current in the loop decreases roughly as R~!,
because the number of field line turns in the loop is conserved. Consequently, only
a minor part of the initial relative helicity leaves the system with the ejected flux.
We will see that the data do indeed conform to the law I oc R7091,



2.1 Studying the evolution of the minor radius of
the CME

In order to facilitate the study of hydrodynamic properties of the CMEs, a cir-
cular cross-section of the magnetic cloud (CME) is considered [6]. This section is
assumed to be moving in the heliographic equitorial plane, with axis oriented per-
pendicular to the plane. The heliocentric distance and azimuth of the cloud’s axis,
is denoted by 7y and 6 in the polar coordinates (r, ), which change with time.

Figure 2.2: The figure from Yeh 1995 [6]. With the shaded area being the area of
cross-section of the magnetic cloud. The bold lines being the spiral interplanetary
magnetic field lines. While the magnetic cloud is moving along the heliographic
equitorial plane.

Also the cloud’s cross-sectional radius, denoted by a(t). The assumption of
varying cross-section is to account for the Lorentz self-force acting on the magnetic
cloud. In terms of cylindrical coordinates (g,¢,z) aligned with the axis of the clouds,
the velocity of the elemental magnetic cloud can be represented by

up(t;q, ¢, 2) = ug + (1,V + 1,Qa) (2.4)

QI

Hence, uo(t) denotes the translational velocity and V(t) denotes the expansional
speed of the magnetic cloud, and €Q(¢) denotes the angular speed at which the
magnetic cloud is rotating about its axis. The ratio ¢/a remains invariant with time
so that the periphery of the cross-section remains circular [6]. The magnetic field
inside the cloud is entirely due to the internal currents that flow inside the cloud.
The external currents which sustain the inter-planetary magnetic field, is canceled
out because of the polarization current, induced on the interface that separates the
magnetic cloud from the solar wind.

A simple current distribution is taken to define the permissible fields inside the
magnetic cloud [13]:

g\ 1/2 1
Bg(t;q,¢,2) = 1.5y (1 - ¥> + 1¢§MJoq,
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produced by the current distribution:
u 1B q/a

Je(t;q,¢,2) = 1.Jo + Ly a 1/2
(1= 1)

Each of these mass elements is subject to both Lorentz force of the magnetic
field and the gradient force of gas pressure in addition to the gravitational force of
the sun. Hence, the magnetic force density of the magnetic cloud:

pBy 1 ) (2.5)

JEXBE:L]( a —§MJ02(I

The expansional motion is driven by the force-density in the direction from the
axis to the periphery. Hence, the equation of expansional motion is thus:

—1p2
PO%V S aBO - %MJOQCHL 2

Of which the self-induced Lorentz force resulting from self-interaction of the
internal current is a part, another part is the gradient force resulting from the
difference in internal (pg) and external pressures (p,). There is also a contribution
from the dynamic and magnetic pressures of the solar wind amplified from the
interaction between the magnetic cloud and the surrounding solar wind(p.., s and
B, are the plasma density, velocity and magnetic field respectively associated with
the solar wind).
If the gas pressure if completely ignored, the magnetic force in the fluxrope of the
dynamical model will be zero when the ratio uJoa/By is equal to £2'/2 (for left or
right handed helicity). The required constraint in the case of force-free equilibrium
gives us the situation where uJoa/By equal to +2.405 (the first zero of the zeroth-
order Bessel function), which in turn gives us:

oo, + 1~ B,
a

-2

Po — P
2.6
_ (26)

q 1 q

By(q) = 1.B (2.405—) 1y—— (2.405—)

£(q) 0J0 u + ¢2.405M 0@J1 u
with the current distributed as

-1

B
Ti(q) = 1.JoJ0 (2.405Q) +1,2.4052—20, (2.405g>
a a a

So with the radial velocity proportional to q/Q, the equation of expansional motion

takes the form
d v 2.405% 172 B,
po a2 a

This is the primary equation that will be used in studying the evolution of the
minor radii.

1
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Chapter 3
Methods

The actual fitting is done on the minor radius of the CME, obtained from the
mapping of minor radius from SECCHI and LASCO data, and fitting it to a 5"
order polynomial w.r.t. time. Upon differentiating the polynomial fit to the minor
radius vs. time data, we obtain the expansional velocity of the fluxrope. The ex-
pansional acceleration is obtained, upon double differentiating the polynomial.

Equation 2.7 is the theoretical prediction for the expansional accelerations for a
magnetic cloud (cross-section of a CME). Upon using this fact we see the variation
of Yeh’s equation and with that try to check whether the behavior of accelera-
tion over different time intervals is in good accordance with the actual acceleration
found by double differentiating the the polynomial found when it was fit to the data.

We use LASCO data from the events in group A of Subramanian and Vourlidas,
2007 [14]. To which we fit the polynomial, on the minor radius.

We also use SECCHI data, to fit the Graduated Cylinder Shell model (figure
3.1) [5] for successive time stamps to obtain the evolution of the major radius of
CME as a function of time and, hence simultaneously obtaining the minor radius.
Based on the observed characteristics of CME velocity v(t) and acceleration profiles
dv/dt(t) observed with SOHO/LASCO and SECCHI over the distance range of r
= 2-30 Ry.

3.1 Analysis done on LASCO data

The data obtained from SOHO/LASCO data is an image of the projection of the
event on the plane of the coronagraph, enabling us to just measure the parameters
that are specific to that plane of view. LASCO, onboard the Solar and Heliospheric
Observatory (SOHO), has two working coronagraphs observing the solar corona from
2.1R, to about 32R, with a cadence of about 40 minutes [16].

Two approaches were taken in this analysis:

i. In the first approach, the axial current is taken to be a constant, as mentioned

11
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Figure 3.1: Representations of the Graduated Cylindrical Shell (GCS)
model. (a) face-on and (b) edge-on . The dash-dotted line is the axis through
the center of the shell. The solid line represents a planar cut through the cylindri-
cal shell and the origin. O corresponds to the center of the Sun. (c) Positioning
parameters. The loop represents the axis through the center of the shell, ¢ and 6
are the longitude and latitude, respectively, and - is the tilt angle around the axis
of symmetry of the model[15].

in Subramanian and Vourlidas 2009 [5].

ii. In the second approach, the axial current varies inversely with respect to the
major radius (R~%?), as mentioned in B. Kliem et al. 2010 [12].

3.1.1 For constant current:

When the axial current is assumed to constant, we use the equation of Sub-
ramanian and Vourlidas 2009 (eq. 2.2) [5], to compute the axial current. With
l; = 0.5 from Kliem and Torok 2006 [17]|, and also assuming the force-free scenario,
in which all the other components like gravitational, magnetic and drag forces do
not come into play. Upon computing the force by dividing the power generated by
the velocity of CME, we then are able to arrive at the values for the axial current.

Upon dividing the current with the cross-sectional area of the CME, we get the
current density. As the magnetic field is frozen in the CME, upon using the equation
mentioned in DeVore 2000 [18]

® = 1.4Bya” (3.1)

with ¢, By and a being the magnetic flux, axial magnetic field and the cross-sectional
radius (minor radius) of the CME respectively. With the help of this equation the
magnetic field associated with the CMEs were obtained. In Subramanian and Vourl-
idas 2009 [5], it was noted that the values of the magnetic flux was found to be a
few times of 102! Maxwell. Just concentrating on the proportionality, I took just
10! Maxwell as the magnetic flux and obtained the various values of the associated
magnetic fields at various time stamps.

12



With the help all the data, the values of accelerations were found, at various time
intervals using the using equation 2.7. Then the acceleration found out by double
differentiating w.r.t. time were overplotted on the the theoretical value and a corre-
lation coefficient between the two were found, so as to ascertain the extent to which
the two approaches have in common.

3.1.2 For variable current:

When the axial current is assumed to be variable, we use the equation 2.3, to
compute the axial current. Just concentrating on the proportionalities, the axial
current is computed:

10"
=
The 10'® term in the equation 3.2 was chosen so as to match the exponent of the
constant axial current obtained in the constant axial current section. The variable
current is computed by varying the exponent of the major radius (n) from 0.5 to
1.2. With the value of n being 0.91 we get the maximum values for the correlation
coefficient, hence the exponent value of 0.91 is retained for further analysis and
hence, it is speculated that axial current flowing within the fluxropes varies with
R7991 as the CME propagates in space.

Upon dividing the current with the cross-sectional area of the CME, we get the
current density. As the magnetic field is frozen in the CME, upon using the equation
mentioned in DeVore 2000 [18]

AzialCurrent(I)

(3.2)

® = 1.4Bya*

with ¢, By and a being the magnetic flux, axial magnetic field and the cross-sectional
radius (minor radius) of the CME. With the help of this equation the magnetic field
associated with the CMEs were obtained. In Subramanian and Vourlidas 2009 [5],
it was noted that the values of the magnetic flux was found to be few times of 10%!
Maxwell. Just concentrating on the proportionality, I took just 102! Maxwell as the
magnetic flux and obtained the various values of the associated magnetic fields at
various time stamps.

With the help all the data, the values of accelerations were found, at various time
intervals using the using equation 2.7. Then the acceleration found out by double
differentiating w.r.t. to time were overplotted on the the theoretical value and and
a correlation coefficient between the two were found, so as to ascertain the extent
to which the two approaches have in common.

3.2 Analysis done on SECCHI data

Upon using SECCHI data, we get the whole 3-D view of the event and the pa-
rameters we measure give us the real picture. The SECCHI instruments aboard the
recently launched STEREO spacecraft enable for the first time the continuous track-
ing of coronal mass ejections (CMEs) from the Sun to 1 AU [19]. The coronagraphs
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and heliospheric imagers part of the SECCHI investigation onboard STEREO are
COR-1, COR-2, Heliospheric Imager 1, and Heliospheric Imager 2 (HI-1 and HI-2,
respectively). Their fields of view are 2.13° (4R, with a 1.5R, occulting disk), 8°
(15Ry with a 2Ry occulting disk), 20°, and 70°, respectively.

Also, the HIs are not pointed at the Sun but along the Sun Earth line and their
fields of view are offset by an angle of 13.65° and 53.35° with respect to the Sun
spacecraft line, respectively [20]. At the time of the ejections, STEREO was in
its commissioning phase and STEREO-A was rolled by 22.4° from the solar north,
which resulted in HI-1 and HI-2 imaging higher latitude regions than during the
normal phase of the mission [20]. The spacecraft were separated by approximately
0.4° from Earth and were at a radial distance of 0.97AU from the Sun.

3.2.1 For variable current:

After downloading the FITS images from the SECCHI online database, those
images were processed and converted from 0.5 level image to 1.0 image level using
the software SOLARSOFT IDL (SSWIDL). Then these images were grouped and
further processed using the raytrace software suite mentioned in the SECCHI wiki
page. Then with the help of a GUI the GRADUATED CYLINDER (GCS) MODEL
is modeled on to these images.

The ray trace software suite is used to reproduce with a computer the image

of a three-dimensional object as seen by an imaging device. The three-dimensional
object can be either a solid object or a diffuse object. The Solar corona being a
diffuse object: it is made of a plasma of electrons and particles of dust. These
electrons and dusts scatter the light coming from the photosphere.
The main goal of the raytracing software is to reproduce by numerical simulation
coronagraphic observations. These simulations are important to test different model
and compare the simulated image with the true data. The software is also useful
when designing new instruments to simulate the future observations [21] [22]).

The analysis is done, by using the same procedure mentioned in section 3.1.1 for
the variable current subsection, on the data obtained from SECCHI.
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Chapter 4

Results

Upon studying the evolution of the minor radius of the CME, a decent correlation
is found between the theoretical and actual data, which in turn gives some credibility
to prediction, that the axial current of the CME varies inversely as the major radius
of the CME.

In the present study, we use the Graduated Cylindrical Shell (GCS) model of
Thernisien, Howard, and Vourlidas (2006) (as shown in figure 4.12) to fit CME
events observed by the SECCHI/COR2 A and B instruments.

Upon overplotting the LASCO data with a 5 order polynomial, we check
whether if a good fit is obtained on the data. After a decent fit is obtained for
the data, we differentiate the polynomial twice w.r.t. time to obtain the accelera-
tion by which the radial expansion of the CME takes place.

The analysis is divided into two sections:

i. We first take up the evolution of minor radius of the CME using LASCO data.

ii. We first take up the evolution of minor radius of the CME using SECCHI
data.

4.1 Analysis done on LASCO data

The analysis in this section is further is divided in two parts. Depending on the
variation of the axial current flowing within the fluxropes we try to ascertain that
of the two; which is far more robust approach at looking at the rate at which the
minor radius of the CME propogates, namely:

i. the axial current is taken to be a constant, as mentioned in Subramanian and

Vourlidas 2009 [5].

ii. the axial current varies inversely with respect to the major radius (R7°7), as
mentioned in B. Kliem et al. 2010 [12].

15



4.1.1 Analysis done on LASCO data, by assuming constant
current.

Figure 4.1 - figure 4.4 show the plots for the various events, described below:

i. Plot for the minor radius vs. time. Also the 5" order polynomial overplotted
on it, and the correlation coefficient is mentioned between the two.

ii. Plot of the acceleration (dv/dt) vs time. The acceleration is obtained by double
differentiating the polynomial w.r.t. time(denoted by the continuous line).
The acceleration obtained by the Lorentz self-force is overplotted (denoted by
the dashed line) and the coefficient of correlation is mentioned.

The table shown below (Table 4.1) gives us the dates of the event on the left
hand side and on the right hand side are the correlation coefficients between the
approaches of getting to the acceleration of the evolution of the minor radius of
the CME, based on the assumption of constant axial current. As it is evident from
the table that the there are a few events which show pretty good matches for the
two approaches for calculating the accelerations, but it is not proof enough so as to
obtain a clear picture from this data set.

4.1.2 Analysis done on LASCO data, by assuming variable
current.

Figure 4.5 - Figure 4.8 show the plots for the various events, described below:

i. Plot for the minor radius vs. time. Also the 5 order polynomial overplotted
on it, and the correlation coefficient is mentioned between the two.

ii. Plot of the acceleration (dv/dt) vs time. The acceleration is obtained by double
differentiating the polynomial w.r.t. time (denoted by the continuous line).
The acceleration obtained by the Lorentz self-force is overplotted (denoted by
the dashed line) and the coefficient of correlation is mentioned.

The table shown below (Table 4.2) gives us the dates of the event on the left
hand side and on the right hand side are the correlation coefficients between the
approaches of getting to the acceleration of the evolution of the minor radius of the
CME, based on the assumption of variable axial current (varies inversely as R%Y).
As it is evident from the table that the two distinct groups in the table. One which
shows negative values of the correlation coefficients, the other group shows high
positive value, which implies that the variable axial current model takes well to the
data.

The actual data in most cases shows a good correlation with the theoretical
predictions. Implying that there the axial current within the fluxropes of the CME
does decay at a rate some what inversely propotional to the major radius of the
CME (R) as it moves out from the solar corona and into the interplanetary space,
so as to conserve helicity.
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Datelyy/mm/dd| | Fit of data
00/06/06 20.48
00/08/02 0.12
00/08/03 0.55
00/11/17 10.59
01/01/07 0.71
01/01/19 0.52
01/02/09 0.33
01/03/01 0.57
08/02,/04 0.29
99/07/02 0.89
99/08/02 0.44
00/03/22 10.68
00/05/05 -0.85
00/05,/29 -0.75
00/10/26 -0.76
00/11/17 0.28
01/03/23 -0.68
97/11/01 -0.64
08/02,/24 0.29
98/05/07 -0.70

Table 4.1: This table highlights the results obtained from the LASCO data. On
the left hand column the date of the events are given. On the right hand side
the correlation coefficient are mentioned that are obtained when we overplot the
acceleration (by using the assumption of constant axial current) obtained by the
equation 2.7.)
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Figure 4.1: The plot shows two graphs. The first depicts the graph for the minor
radius vs. time. Also the 5" order polynomial overplotted on it, and the correlation
coefficient is mentioned between the two. The second plot is of the acceleration
(dv/dt) vs time. The acceleration is obtained by double differentiating the polyno-
mial w.r.t. time (denoted by the continuous line). The acceleration obtained by the
Lorentz self-force is overplotted (denoted by the dashed line) and the coefficient of
correlation is mentioned (for the assumption of constant axial current). This is for
the event on 7 Jan 2001.

4.2  Analysis done on SECCHI data

Upon using the raytrace software suite from the SECCHI wiki page we use the
SECCHI data to call upon the GUI for the fitting of the wire cloud on the image
of the coronagraph. Figure 4.12 shows the two FITS images which are view from
the satellites COR-A and COR-B on which with the help of the GUI the wire frame
model (in green) is fit. Table 4.3 shows the parameters upon which the Grdauated
Cylinder Shell (GCS) model depends.

4.2.1 Analysis for the variable axial current

Further using the evolution of the Leading Edge (LE) of the CME with time we
again fit a 5" order polynomial to the minor radius w.r.t. time. Upon using the
assumption of variable axial current of the fluxropes as mentioned in the section
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Figure 4.2: The description of this graph is same as figure 4.1. This is for the event
on 19 Jan 2001.

4.1.2, so as to check whether the SECCHI data is in accordance with the theoretical
predictions. Figure 4.9 - Figure 4.11 and Table 4.4 shows the parameters of the
fitting done and the correlation coefficient between the two accelerations.
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Figure 4.3: The description of this graph is same as figure 4.1. This is for the event
on 1 Mar 2001.
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Figure 4.4: The description of this graph is same as figure 4.1. This is for the event
on 2 Aug 1997.
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Datelyy/mm/dd| | Fit of data
00/06,/06 20.534
00/08/02 -0.296
00/08,/03 20.342
00/11/17 -0.285
01/01/07 -0.356
01/01/19 -0.105
01/02/09 10.353
01/03/01 -0.406
98/02/04 -0.244
99/07/02 -0.255
99/08/02 -0.443
00/03/22 0.760
00/05/05 0.611
00/05/29 0.889
00/10/26 0.759
00/11/17 0.696
01/03/23 0.524
97/11/01 0.602
98/02/24 0.692
98/05/07 0.690

Table 4.2: This table highlights the results obtained from the LASCO data. On
the left hand column the date of the events are given. On the right hand side
the correlation coefficient are mentioned that are obtained when we overplot the
acceleration (by the using the assumption of variable axial current obtained by the
equation 2.7).
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Figure 4.5: The plot shows two graphs. The first depicts the graph for the minor
radius vs. time. Also the 5 order polynomial overplotted on it, and the correlation
coefficient is mentioned between the two. The second plot is of the acceleration
(dv/dt) vs time. The acceleration is obtained by double differentiating the polyno-
mial w.r.t. time (denoted by the continuous line). The acceleration obtained by the
Lorentz self-force is overplotted (denoted by the dashed line) and the coefficient of
correlation is mentioned (for the assumption of variable axial current). This is for
the event on 26 Oct 2000.
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Figure 4.6: The description of this figure is same as 4.5. This is for the event on 29
May 2000.
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Figure 4.7: The description of this figure is same as 4.5. This is for the event on 22
Mar 2000.
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Figure 4.8: The description of this figure is same as 4.5. This is for the event on 17
Nov 2000.
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Date Time 0 [0) v LE K Q@

25/03/2008 | 19:22 199.004 -11.736 -44.162 4.49 0.203 21.2418
25/03/2008 | 19:52 199.004 -11.736 -44.162 7.50 0.203 21.2418
25/03/2008 | 20:22 199.004 -11.736 -44.162 10.07 0.203 21.2418
25/03/2008 | 20:52 199.004 -11.736 -44.162 12.28 0.203 21.2418
25/03/2008 | 21:22 199.004 -11.736 -44.162 15.00 0.203 21.2418
25/03/2008 | 21:52 199.004 -11.736 -44.162 16.92 0.203 21.2418
25/03/2008 | 22:22 199.004 -11.736 -44.162 18.32 0.203 21.2418

12/12/2008 | 08:22  73.78 7.26 87.20 492 0.10 18.16
12/12/2008 | 08:52  73.78 7.26 8§7.20  6.14  0.10 18.16
12/12/2008 | 09:22  73.78 7.26 8§7.20  6.64 0.10 18.16
12/12/2008 | 09:52  73.78 7.26 8§7.20 7.30 0.10 18.16
12/12/2008 | 10:22  73.78 7.26 8720 7.64 0.10 18.16
12/12/2008 | 10:52  73.78 7.26 87.20  8.42 0.10 18.16
12/12/2008 | 11:22  73.78 7.26 87.20 9.82 0.10 18.16
12/12/2008 | 11:52  73.78 7.26 87.20 10.78 0.10 18.16
12/12/2008 | 12:22  73.78 7.26 8§7.20 11.85 0.10 18.16
12/12/2008 | 12:52  73.78 7.26 87.20 12.78 0.10 18.16
12/12/2008 | 13:22  73.78 7.26 87.20 14.07 0.10 18.16
12/12/2008 | 13:52  73.78 7.26 87.20 15.21 0.10 18.16

12/02/2008 | 17:22 243.72 -13.900 67.08 14.42 0.30 20.68
12/02/2008 | 18:22 243.72 -13.900 67.08 16.50 0.30 20.68
12/02/2008 | 18:52 243.72 -13.900 67.08 17.21 0.30 20.68
12/02/2008 | 19:22 243.72 -13.900 67.08 20.07 0.30 20.68
12/02/2008 | 19:52 243.72 -13.900 67.08 20.64 0.30 20.68
12/02/2008 | 20:22 243.72 -13.900 67.08 21.84 0.30 20.68

13/02/2008 | 16:22 351.05 17.88  -68.75 11.28 0.31 6.98
13/02/2008 | 16:52 351.05  17.88  -68.75 11.78 0.31 6.98
13/02/2008 | 17:22  351.05  17.88  -68.75 12.42 0.31 6.98
13/02/2008 | 17:52 351.05 17.88  -68.75 13.24 0.31 6.98
13/02/2008 | 18:22 351.05 17.88  -68.75 13.57 0.31 6.98
13/02/2008 | 18:52 351.05 17.88  -68.75 13.92 0.31 6.98
13/02/2008 | 19:22  351.05  17.88  -68.75 14.57 0.31 6.98
13/02/2008 | 19:52  351.05  17.88  -68.75 15.01 0.31 6.98
13/02/2008 | 20:22  351.05 17.88  -68.75 15.78 0.31 6.98
13/02/2008 | 20:52 351.05 17.88  -68.75 16.00 0.31 6.98
13/02/2008 | 22:22 351.05 17.88  -68.75 17.42 0.31 6.98
13/02/2008 | 23:22 351.05 17.88  -68.75 18.85 0.31 6.98
13/02/2008 | 23:52 351.05  17.88  -68.75 19.35 0.31 6.98
13/02/2008 | 00:22 351.05  17.88  -68.75 20.01 0.31 6.98

Table 4.3: This table shows the various parameters on which the GCS model de-
pends. Namely, the Carrington Latitude, the Carrington Longitude, the tilt angle
around the axis, the height of the Leading7edge of the CME in solar radii, the aspect
ratio and the half-angle between the legs respectively.



Datel[yy/mm/dd| | Fit of data to prediction
08/03/25 0.663
08/02/13 0.535
08/02/12 0.113
08/12/12 0.618

Table 4.4: This table depicts the date of the event on the left. On the right the cor-
relation coefficients are mentioned between the two accelerations, the first obtained
by the double differentiating the polynomial fit on the data w.r.t. time and the
other obtained (using the assumption of variable axial currents) by using equation
2.7
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Figure 4.9: The plot shows two graphs. The first depicts the graph for the minor
radius vs. time. Also the 5 order polynomial overplotted on it, and the correlation
coefficient is mentioned between the two. The second plot is of the acceleration
(dv/dt) vs time. The acceleration is obtained by double differentiating the polyno-
mial w.r.t. time (denoted by the continuous line). The acceleration obtained by the
Lorentz self-force is overplotted (denoted by the dashed line) and the coefficient of
correlation is mentioned (for the assumption of variable axial current). This is for
the event on 12 Dec 2008.
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Figure 4.10: The description of this figure is same as figure 4.9. This is for the event
on 25 Mar 2008.
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Figure 4.11: The description of this figure is same as 4.9. This is for the event on
13 Feb 2008.

b)

Figure 4.12: The figure depicts the wire frame model (GCS) modeled upon the FITS
(Flexible Image Transport System) images, with help of the GUI from the ray trace
software suite. a) Depicts the view from spacecraft COR-A. b) Depicts the view
from spacecraft COR-B. The wireframe rendering gives a 3-D view, which provides
the actual parameters for the event.
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Chapter 5

Discussion

After analyzing the data from both the satellites (LASCO and SECCHI), various
conclusions can be drawn, which do provide an insight on the nature of the expansion
of the minor radius of the coronal mass ejections due to the Lorentz self-forces.
Upon determining the acceleration by double differentiating the fitting polynomial
wrt time. Then the acceleration of the CME is computed from equation 2.7 and
the plotted together to see, how they match. Also with the help of the SECCHI
data, the total surface area of the CME can be obtained which is instrumental in
the determination of the drag forces acting on the CME.

5.1 For LASCO data

Upon checking the consistency of the rate of the expansion of the CME with
the theoretical considerations of the Lorentz self-force, a considerable amount of
evidence was obtained to support the hypothesis that to conserve helicity the axial
current decays at a rate of approximately R~!. Upon observing Table 4.2, there
are a lot of events, which show a decent match with the theoretical values to the
actual data. The matching for most being above 0.65. Also in the same table, there
are same events that match poorly with the data. Hence, nothing concrete can be
determined from the analysis and it can only be speculated that the axial current
of the fluxrope might decay at the CME moves forward.

Upon observing the table 4.1, we find that a decent match are too few and in
between, also while the rest of the data match poorly with the data, hence with
better certainty we it can be speculated that the axial current does not remain
constant as it CME moves outwards into interplanetary space.

5.2 For SECCHI data

Four events were observed with the help of the SECCHI data. As the LASCO
data gave us the partial picture of what exactly happened (being just a 2-D pro-
jection in the plane of the image), SECCHI on the other hand gives us the full 3-D
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picture of the event, and hence the parameters observed are real in terms of signifi-
cance.

Upon observing the table 4.4, we find that there is a decent match between the two
theoretical and actual data. As the number of events observed are here are very
small, as compared to LASCO data, again we can’t say for sure, but still can spec-
ulate that to conserve helicity the axial current of the fluxropes of the CME does
vary at a rate proportional to R~!.
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Appendix A

Surface Area Calculations

The dynamics of an CME is determined (equation 2.2) by (a) the outward or
inward Lorentz force, (b) the inward gravitational force and (c) forces due to the
interaction of the CME with the solar wind, referred to as the drag force(p cargill
2004). There are a lot difficulties in determining the drag forces as it is dependent
on a number of independent factors. The drag force can be quantified in terms of
[23]:

Fdrag = peACD(‘/i - ‘/e)“/; - ‘/e‘

where p. is the solar wind density, A is the total surface area of the CME, V; is the
velocity of the CME and V, is velocity of the solar wind. Hence, it is imperative to
know the total surface area of the CME so that exact calculations can be made to
determine the drag forces that act on the CME.

Upon observing the GCS model (referring to figure 3.1), a conclusion is made
that the model is actually made up of three parts. One being the partial torus fitted
on top of the legs with the major radius r and the minor radius a. The other two
parts being the conical legs of the CME with radius as a and the height mentioned
as h. By using the raytrace software, we are able to determine h.,; or the height
of the leading edge of the CME in solar radii, the half angle between the legs «
and k: the aspect ratio (from table 4.3), which are vital for the calculations for the
parameters such as h, a and r. This can be done by using the equations:

a = Kr
T o«

1ty

Furthermore, we also come to conclude on observing the figure A.1 that:

h = hex(1 — K)/ tan(

r+a=hey (A.1)

hence upon using the equation 1 in the paper of A. Thernisien et. al 2009 [15] , we
get:
hezt o th'e:vt

r = a =
14+ K’ 1+k

(A.2)
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h'!ram

Figure A.1: Representations of the face-on Graduated Cylindrical Shell
(GCS) model

Now, to calculate the total surface area we first need to calculate the surface area

of the two cones.
Seones = 2mav h? + a?

The surface area of the torus is:
Storous = 2ma(m + 2a)[r — hsec(a)]

Hence, the total surface area of the whole model can be calculated by summing
up the surface area of the two cones and the torus:

Stotal = 2 X 2maV'h? + a? + 2ma X (7 + 2a)[r — hsec(a)] (A.3)
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Appendix B

Results obtained from the surface
area calculations

Upon using equation A.3, we compute the total surface area of the CME and it
is plotted against time, for the various events. Figure B.4 shows the plots of the
total surface area with time, for the various events.

Upon observing the total surface area of the events and plotting them w.r.t time,
we see a gradual increase in the surface area as time progresses. By studying the
evolution of the total surface area, we are one step further in estimating the drag
force acting on the CME as it propogates further in time. This information is vital
as it actually gives us the complete surface area of the CME as compared to the
LASCO data, which is just a projection of the CME on the plane of projection. The
drag force on CME is not an easy quantity to determine as it depends on various
parameters which keep changing with each event. By determining the total surface
area of the CME, we at least have the information about one of the factors and
which in its own is a huge step.
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Figure B.1: This figure shows the plot of the total surface area of the CME with
time. Depicts the plot for the event on 25 Mar 2008.
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Figure B.2: This figure shows the plot of the total surface area of the CME with
time. Depicts the plot for the event on 12 Dec 2008.
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Figure B.3: This figure shows the plot of the total surface area of the CME with
time. Depicts the plot for the event on 12 Feb 2008.
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Figure B.4: This figure shows the plot of the total surface area of the CME with
time. Depicts the plot for the event on 13 Feb 2008.
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