
Cryptanalysis of the A5/1 Stream
Cipher

A thesis submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

Thesis Supervisor: Ayan Mahalanobis

by

Jay Jitesh Shah

April, 2012

Indian Institute of Science Education and Research Pune

Sai Trinity Building, Pashan, Pune India 411021

This is to certify that this thesis entitled ”Cryptanalysis of the A5/1 Stream

Cipher” submitted towards the partial fulfillment of the BS-MS dual degree

programme at the Indian Institute of Science Education and Research Pune,

represents work carried out by Jay Jitesh Shah under the supervision of Ayan

Mahalanobis.

Jay Jitesh Shah

Thesis committee:

Ayan Mahalanobis

Amit Kalele

A. Raghuram

Coordinator of Mathematics

Dedicated to my parents, Madhvi Shah and Jitesh Shah.

Acknowledgments

I would like to take this opportunity to thank everyone who helped me directly or

indirectly for the success of this dissertation. First and foremost, I would like to thank

my family for their unconditional love and blessings. Any success I may achieve is

directly traceable to their support of my interests and devotion to my development.

This dissertation could not have been written without the guidance of my mentor,

Dr. Ayan Mahalanobis, who spent hours advising me and encouraged me throughout

this project inspite of innumerable difficulties faced. He never accepted anything less

than my best. I am greatly indebted to him for his patience and enthusiasm.

It is my privilege to thank Prof. Jörg Keller for giving me an opportunity to work

under his guidance at the FernUniversität in Hagen, Germany in the summer of 2011.

With his motivation, I was inspired to convert my summer project to a full-fledged

project.

My internship at the Computational Research Laboratories Ltd., TATA Sons, Pune,

under Dr. Amit Kalele proved of utmost importance as it spurred my interest in the

A5/1 stream cipher. I am greatly indebted to him and his research team for the

discussions which helped me adapt different approaches to solve problems.

Last but not the least, I would like to thank my colleagues Nikhil Kasat, Shadab

Alam and Shashwat Antony for their precious time and assitance during the im-

plemention of my code. A special vote of thanks for my friends Kartik, Amitosh,

Prashant and Niharika who have always been by my side through thick and thin.

vii

viii

Abstract

Cryptanalysis of the A5/1 Stream Cipher

by Jay Jitesh Shah

In Europe and North America, the most widely used stream cipher to ensure privacy

and confidentiality of conversations in GSM mobile phones is the A5/1. In this thesis,

we study the A5/1 and some known attacks on it. We explore the weaknesses of the

cipher and suggest certain modifications to the A5/1 encryption scheme with an aim

to create a more secure cryptosystem resistant to most of the attacks already known.

We have also designed a new attack on the A5/1 stream cipher with a minimum space

complexity of around 240 and an average complexity of 248.5, which is much less than

the brute-force attack with a complexity of 264. We provide a detailed description of

our new attack along with its implementation and results. Various statistical tests

for randomness were performed on the suggested variants of the A5/1 which prove

that these modified stream ciphers are pseudo random number generators.

Keywords: A5/1, GSM, guess-and-determine attack, stream ciphers

ix

x

Contents

Abstract ix

1 Introduction 1
1.1 Introduction to Stream Ciphers . 1
1.2 History of the A5 Ciphers . 3
1.3 Current Research . 4
1.4 Our Contributions . 5

2 The A5/1 Encryption Algorithm 7
2.1 Description of the A5/1 Stream Cipher 7
2.2 Characteristics of an Output Stream 10
2.3 Maximal Length Sequence . 11

3 Known Attacks on the A5/1 13
3.1 Guess-and-Determine Attacks . 13
3.2 Known Plaintext Attack . 23

4 A New Attack on the A5/1 25
4.1 The Attack . 25
4.2 The Attack Algorithms . 31
4.3 Analysis of the Attack . 33
4.4 Discussion . 37
4.5 Conclusion . 40

5 Further Analysis of the A5/1 41
5.1 Weaknesses of the A5/1 . 41
5.2 Modifications Suggested to the A5/1 43
5.3 Tests for Random Number Generators 45

xi

xii CONTENTS

Chapter 1

Introduction

In this review chapter, we give a brief introduction to stream ciphers, discuss the

history of the A5 family and give an insight to the current research of the same. We

conclude this chapter with our contributions to the cryptanalysis of the A5/1 cipher.

1.1 Introduction to Stream Ciphers

The art and science of making and breaking ’secret’ codes is called cryptology. It can

be divided into two parts: cryptography - the art and science of making secret codes;

and cryptanalysis - the science of breaking secret codes i.e., recovering the plaintext

of a message without access to the key. These secret codes are known as ciphers or

cryptosystems [29].

The information a sender wishes to transmit to a receiver is the plaintext, while the

unreadable text that results from encrypting the plaintext is the ciphertext. Encryp-

tion is accomplished by combining the plaintext with the key to yield the ciphertext.

Plaintext + Key = Ciphertext

Decryption is the inverse process, where the ciphertext is converted back to plaintext.

There are two types of ciphers: symmetric ciphers - where the same key is used

for encryption and decryption; and asymmetric ciphers - where different keys are

used for encryption and decryption. Symmetric ciphers can be divided into two

categories: stream ciphers - where the plaintext is encrypted one bit at a time to give

the ciphertext; and block ciphers - where the plaintext is encrypted in blocks (groups

of bits) to give the ciphertext [28].

1

2 CHAPTER 1. INTRODUCTION

A stream cipher is a symmetric key cipher where plaintext bits are combined with

a pseudorandom cipher bit-stream (key), usually by an exclusive-or (XOR) operation,

to give a ciphertext. By definition, exclusive-or (XOR) is a logical operation on two

operands that yields true iff exactly one (but not both) of the two conditions is true,

and false if both conditions are the same. In a stream cipher the plaintext is encrypted

one at a time to give the corresponding ciphertext[29].

In cryptology, a known-plaintext attack is an attack where the attacker has sam-

ples of both the plaintext and the corresponding ciphertext. If the attacker knows the

method of encryption and has access to part or all of the plaintext and the ciphertext,

then the attacker can deduce the secret key used to encrypt the plaintext message.

This in turn can compromise the security of future messages sent with that key[24].

The following is a short representation of the same:

Plaintext ⊕ Key = Ciphertext

Ciphertext ⊕ Plaintext = Key

A shift register is a sequence of bits. The length of a shift register is figured in

bits i.e., if it is n bits long, it is called an n-bit shift register. Each time a bit is

needed, all the bits in the shift register are shifted one place to the left. The new

right-most bit, known as the feedback bit, is computed as a function of other bits

in the register. If a shift register has a linear feedback function, i.e., if the function

involves only XOR operations of certain bits of the register, then it is known as a

linear feedback shift register. The bits that will be XORed to give the right-most bit

are called the tapping bits. The output of the shift register is one bit known as the

most significant bit. The output sequence is known as keystream bits. The security

of a stream cipher completely depends on the keystream. This keystream should be

random for it to be secure. One should not be able to predict the (n + 1)th bit given

n output bits of the keystream. Hence, a stream cipher must be unpredictable and a

pseudorandom number generator to be secure. The period of the shift register is the

length of the output sequence before it starts repeating [26].

The most widely used stream cipher in softwares is the RC4. Other stream ciphers

used are Chameleon, FISH, Helix, ISAAC, MUGI, Panama, Pike, SEAL, those in

the A5 family and so on. A5/1 is used for encryption in GSM mobiles, E0 for

Bluetooth technology, and A5/2, A5/3 and A5/8 ciphers are used for other mobile

phone technologies. A5/1 is used to encrypt both voice and signaling data [28].

1.2. HISTORY OF THE A5 CIPHERS 3

The following four parameters should be considered when comparing attacks from

the viewpoint of efficiency and practical threat to security:

• Time complexity: Time complexity is the number of operations needed to com-

plete an attack. The worst-case time complexity of an exhaustive search is

equivalent to the size of the keyspace. The efficiency of any other attack must

be compared to this. The cipher is said to be broken if there exists an attack

that succeeds in finding the key in less than the exhaustive search 264 in the

case of A5/1.

The time needed to complete an attack can be divided into pre-computational

complexity and attack-time complexity. Pre-computations are those computa-

tions that are done before the attack is launched. Note the difference between

worst-case complexity and the average-case complexity. Worst-case complex-

ity is the time after which the attack is bound to finish, whereas average-case

complexity refers to the time after which the attack is expected to finish.

• Data complexity: It is the amount of plaintext-ciphertext pairs (data) needed

to complete the attack with a given success probability.

• Space complexity: It is the amount of memory needed to perform the attack

successfully. Space complexity is directly related to pre-computational time

complexity, i.e., large memory requirement implies long precomputation time.

• Success probability: Deterministic attacks are guaranteed to succeed within

time T ; given an amount D of plaintext and memory M. Whereas probabilistic

attacks have success probability p < 1 for fixed parameters T, M and D.

1.2 History of the A5 Ciphers

The A5/1 encryption algorithm was developed in the late 1980s, but the develop-

ment of GSM initiated earlier in that decade. In 1982, Groupe Speciale Mobile was

established and the development of a new digital cellular standard began. This was

the first initiative to create a pan-European mobile communication network. This

was also the birth of the GSM acronym, which was later changed to Global System

for Mobile communications. In 1989, the European Telecommunications Standards

4 CHAPTER 1. INTRODUCTION

Institute (ETSI) - a newly created entity, was in charge of the special development of

GSM [17].

There are multiple versions of the encryption algorithm which belong to the A5

family: A5/0 is a dummy cipher with no encryption; A5/1 (the subject of this Mas-

ter’s thesis) is the original A5 algorithm used in Europe and North America that

ensures over-the-air communication privacy and confidentiality of conversations in

GSM mobile phones; A5/2 is an intentionally weaker encryption algorithm created

for export; while A5/3 is a strong encryption algorithm created as part of the 3rd

Generation Partnership Project (3GPP), which is currently responsible for maintain-

ing and developing GSM technical specifications around the world [17].

The A5/1 was developed in 1987, when GSM was not yet considered for use

outside Europe, and A5/2 was developed in 1989. Both were initially kept secret.

However, the general design was leaked in 1994, and the algorithms were entirely

reverse engineered in 1999. In 2002, an additional new version A5/3, was added to

the A5 family. Unlike, A5/1 and A5/2, it’s internal design was published. A5/3 is

based on the block-cipher KASUMI, which is used in third generation (3G) networks.

Anderson [1], Golic [14] and Babbage [2] were the pioneers in initially cryptan-

alyzing the A5/1 encryption algorithm when only a rough outline of the A5/1 was

leaked. After A5/1 was reverse engineered, it was analyzed by Biryukov, Shamir

and Wagner [6]; Biham and Dunkelman [5]; Ekdahl and Johansson [10]; Maximov,

Johansson and Babbage [23]; Barkan and Biham [4]; Keller and Seitz [19]; and a few

other researchers. We shall study some of these attacks in detail.

1.3 Current Research

Several attacks on the A5/1 stream cipher have been designed in the last twenty

years, but only a few of them have been implemented. Attacks on the GSM protocol

can work even if the network supports only A5/1 or A5/3 encryption, as long as the

mobile phone supports A5/2 encryption. The main flaw that allows the implemen-

tation of these attacks is that the same key is used regardless of whether the phone

encrypts using A5/1, A5/2, or A5/3 algorithm. Therefore, the attacker can mount

a man-in-the-middle attack, in which the attacker impersonates the mobile to the

network, and the network to the mobile (by using a fake base station). The attacker

might use A5/1 for communication with the network and A5/2 for communication

1.4. OUR CONTRIBUTIONS 5

with the mobile. But due to the flaw, both algorithms encrypt using the same key.

The attacker can gain the key through the passive attack on A5/2. The attacker who

is in the middle can eavesdrop, change the conversation, perform call theft, etc. The

attack applies to all the traffic including short message service (SMS) [4].

An International Mobile Subscriber Identity (IMSI) is a unique identification as-

sociated with all GSM network mobile phone users. An IMSI catcher is a device for

identifying the IMSI of a nearby GSM mobile phone and intercepting it. It masquer-

ades as a base station for all mobile stations in the vicinity, forcing the mobile to

switch to A5/0 mode, which has no encryption, making the call easy to intercept and

convert to audio.

1.4 Our Contributions

We have studied the A5/1 stream cipher and analyzed its weaknesses. We studied

the known attacks on the A5/1. We have designed a new attack on the existing

A5/1 stream cipher with minimum complexity of approximately 240 and an average

complexity of 248.5, which is much lesser than a brute-force attack of 264 complexity

(refer Chapter 4). This attack has a 100% success rate. With the knowledge of only

11 bits of the known keystream, the attack algorithm is able to determine a set of

64-bit complete state candidates for that input. A complete state candidate is a state

candidate with no vacant bits. With every additional clocking round, the number of

complete state candidates increases. Thus, the probability of finding the correct state

candidate amongst all the complete state candidates increases with every additional

round. We provide a detailed description of our new attack along with its implemen-

tation and results.

We suggest certain modifications to the existing A5/1 with an aim to create a secure

cryptosystem resistant to most of the attacks already known (refer Chapter 5). We

have also performed various statistical tests for randomness on the suggested vari-

ants of the A5/1 which prove that these modified stream ciphers are pseudo random

number generators like the A5/1.

6 CHAPTER 1. INTRODUCTION

Chapter 2

The A5/1 Encryption Algorithm

In this chapter, we describe the A5/1 encryption algorithm. The description of

the A5/1 was initially kept secret, but it’s design was disclosed in 1999 by reverse

engineering [7]. The GSM organization has later confirmed the correctness of the

algorithm [6]. We end this chapter by generalizing certain characteristics of an output

stream and the properties of maximal length sequences.

2.1 Description of the A5/1 Stream Cipher

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 2.1: A5/1 Stream Cipher

The A5/1 stream cipher is built from three short linear feedback shift registers

(LFSRs) of lengths 19, 22, and 23 bits, denoted by R1, R2 and R3 respectively. The

7

8 CHAPTER 2. THE A5/1 ENCRYPTION ALGORITHM

rightmost bit in each register is labeled as bit zero. The tapping bits of R1 are at bit

positions 13, 16, 17, 18; the tapping bits of R2 are at bit positions 20, 21; and the

tapping bits of R3 are at bit positions 7, 20, 21, 22 (Table 2.1).

Table 2.1: The A5/1 Register Parameters

Register Register Length Clocking Bits Primitive Polynimials Tapping Bits

R1 19 bits 8 1 + x + x2 + x5 + x19 18, 17, 16, 13
R2 22 bits 10 1 + x + x22 21, 20
R3 23 bits 10 1 + x + x2 + x15 + x23 22, 21, 20, 7

The tapping bits are pre-determined according to the corresponding primitive

polynomials for the registers. A primitive polynomial is a polynomial that generates

all elements of an extension field from a base field. A polynomial is said to be

irreducible if it cannot be factored into nontrivial polynomials over the same field.

For example, in the field of rational polynomials Q[x] (i.e., polynomials f(x) with

rational coefficients), f(x) is said to be irreducible if there does not exist two non-

constant polynomials g(x) and h(x) in x with rational coefficients such that

f(x) = g(x)h(x)

Primitive polynomials are also irreducible polynomials. A polynomial of degree n

over the finite field GF (2) (i.e., with coefficients either 0 or 1) is primitive if it has

polynomial order 2n − 1. For each register, when the register is clocked, its tapping

bits are XORed together and the result is stored in the rightmost bit of the left-shifted

register. The three registers are maximal length LFSRs with periods 219− 1, 222− 1,

and 223 − 1, respectively [20].

The A5/1 keystream generator works as follows [7]. First, an initialization phase

is run. At the beginning of this phase, all bits of the registers are set to 0. Then

the key setup and the Initialization Vector (IV) setup are performed. During the

initialization phase, all three registers are clocked and the key bits followed by the IV

bits are XORed with the most significant bits (MSBs) of all three registers. Thus,

the initialization phase takes an overall of 64 + 22 = 86 clock-cycles after which state

Si is achieved.

Based on this initial state Si, a warm-up phase is performed where the generator

is clocked for 100 clock-cycles and the output is discarded. This results directly

in state Sw producing the first output bit 101 clock-cycles after the initialization

2.1. DESCRIPTION OF THE A5/1 STREAM CIPHER 9

phase. During the warm-up phase and the stream generation phase that follows, the

registers R1, R2, and R3 are clocked irregularly according to the majority function

rule [8] depending on the clocking bits (CBs) of the three registers. The majority

function is a function from n inputs to one output. The value of the operation is true

when n
2

or more arguments are true, and false otherwise.

The registers are clocked in a stop/go fashion using the following majority rule:

Each register has a single clocking bit (bit 8 for R1, bit 10 for R2, and bit 10 for R3)

which decides the clocking pattern for its respective register. In each clock cycle, the

majority function of the clocking taps is calculated and only those registers whose

CBs agree with the majority function are clocked. At each step either two or three

registers are clocked, and that each register has a probability of moving 3 out of 4

times (Figure 2.2). It is this clocking pattern which makes the stream cipher generate

output bits which are random.

CB1 CB2 CB3 Majority
CLOCKING?
R1 R2 R3

0 0 0 0 ✓ ✓ ✓

0 0 1 0 ✓ ✓ -

0 1 0 0 ✓ - ✓

1 0 0 0 - ✓ ✓

1 1 0 1 ✓ ✓ -

1 0 1 1 ✓ - ✓

0 1 1 1 - ✓ ✓

1 1 1 1 ✓ ✓ ✓

Figure 2.2: Majority Function of the Clocking Bits

10 CHAPTER 2. THE A5/1 ENCRYPTION ALGORITHM

During encryption, a total of four cases are possible for clocking pattern of the regis-

ters. They are:

• Case 1: CB1 = CB2 6= CB3 (Clock R1 and R2 only)

• Case 2: CB1 6= CB2 = CB3 (Clock R2 and R3 only)

• Case 3: CB1 = CB3 6= CB2 (Clock R1 and R3 only)

• Case 4: CB1 = CB2 = CB3 (Clock R1, R2 and R3 i.e., all three registers),

where CBi denotes the clocking bit for register i; i = (1, 2, 3).

After clocking, an output bit is generated from the values of R1, R2, and R3 by

XORing their most significant bits (MSBs), as shown in Equation 2.1. This XORed

bit is called the keystream bit (KS). After warm-up phase, the A5/1 produces 228

output bits. For every clock cycle, 114 bits are used to encrypt uplink traffic, while

the remaining 114 bits are used to decrypt downlink traffic [12].

R1[18]⊕ R2[21]⊕R3[22] = KS[i], (2.1)

where KS[i] denotes the ith keystream bit, i = 0 on initialization and increases by 1

after every clocking round.

2.2 Characteristics of an Output Stream

By definition, the period of a Linear Feedback Shift Register (LFSR) is the length of

the output stream before repetition of the output stream sequence occur. The output

streams for the A5/1 are the keystream bits. Some of the features of the output

stream discussed by Golomb [15] are as follows:

• Number of 0s and 1s: In a random output stream, the difference between the

number of 1s and the number of 0s will tend to grow progressively smaller in

proportion to the length of the stream as the stream gets longer. In an infinite

random stream, the number of 1s and the number of 0s will be equal.

• Runs of 0s and 1s: A run is a pattern of equal values in the bit stream. A bit

stream like 1011101001 has six runs of the following lengths in order: 1, 1, 3,

2.3. MAXIMAL LENGTH SEQUENCE 11

1, 1, 2, 1. One period of an n-bit LFSR with a maximal length tap sequence

will have 2n−1 runs (e.g., a 5 bit stream yields 16 runs in one period). 1
2

the

runs will be one bit long, 1
4

the runs will be two bits long, 1
8

the runs will be

three bits long, etc., up to a single run of zeroes that is n − 1 bits long and a

single run of ones that is n bits long. Statistically, a random stream of sufficient

length shows similar behavior.

• Shifted Stream: Take the stream of bits in one period of an LFSR with a maxi-

mal length tap sequence and circularly shift it any number of bits less than the

total length. Do a bitwise XOR with the original stream. The resulting pattern

must exhibit the behaviors discussed in the above items.

• Deterministic Property: The LFSR output streams are deterministic i.e., if one

knows the present state, one can predict the next state.

• Reversibility: The output stream is reversible. An LFSR with mirrored tapping

bits will cycle through the output sequence in reverse order.

The output bits i.e., keystream bits of the A5/1 have all the above-mentioned features.

2.3 Maximal Length Sequence

A maximum length sequence is a type of pseudorandom binary sequence generated

using maximal linear feedback shift registers (LFSRs). The length of the sequence

before repetition of the sequence occurs is called maximal length sequence. The max-

imal length sequence is equal to 2n − 1 where n is the degree of the shift register.

LFSRs can have multiple maximal length sequences. There is no quick way to deter-

mine if a tap sequence is maximal length. However, there are some ways discussed

by Golomb [15] to determine if one is not maximal length:

1) Maximal length tap sequences always have an even number of taps.

2) The tap values in a maximal length tap sequence are all relatively prime. A tap

sequence like 12, 9, 6, 3 will not be maximal length because the tap values are all

divisible by 3.

The discovery of one maximal length tap sequence automatically leads to another.

If a maximal length tap sequence is described by [n,A,B,C], another maximal length

12 CHAPTER 2. THE A5/1 ENCRYPTION ALGORITHM

tap sequence will be described by [n, n−C, n−B, n−A]. For example, if [32, 3, 2, 1] is

a maximal length tap sequence, [32, 31, 30, 29] is also a maximal length tap sequence.

Chapter 3

Known Attacks on the A5/1

This chapter deals with certain known guess-and-determine attacks on the A5/1

stream cipher. These include Anderson’s Attack [1], Golic’s Attack [14], Biham-

Dunkelman’s Attack [5], Keller-Seitz’s Attack [19] and Gendrullis-Novotny-Rupp’s

Attack (also known as the Modified Keller-Seitz Attack) [13]. We conclude this chap-

ter by giving an insight of Hellman’s Time Memory Trade-Off Attack in the known

plaintext attack approach.

3.1 Guess-and-Determine Attacks

Guess-and-determine attacks [24] are general attacks on stream ciphers where the

attacker guesses some bits of the cipher and the remaining bits are determined ac-

cordingly.

3.1.1 Anderson’s Attack

Assumptions: Guess all the bits of registers R1 and R2. Guess the lower half of reg-

ister R3. 64 bits of keystream (KS) known.

Aim: Determine the remaining bits of register R3 (Figure 3.1).

Protocol: Anderson [1] suggested to clock the registers according to the majority

function and determine the most significant bits (MSBs) of register R3 by the follow-

13

14 CHAPTER 3. KNOWN ATTACKS ON THE A5/1

ing equation

R3[22] = R1[18]⊕R2[21]⊕KS[i]

where KS[i] denotes the ith keystream bit, i = 0 on initialization and increases by 1

after every clocking round.

In the worst-case, each of the 252 determined state candidates need to be verified

against the known keystream.

G G G G G G G G G G G G G G G G G G G

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

G G

D D D D D D D D D D D D G G G G G G G G G G G

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 3.1: Anderson’s Attack on the A5/1 Stream Cipher

Discussion: Golic’s approach [14], Biham-Dunkelman’s approach [5], Keller-Seitz’s ap-

proach [19] and Gendrullis-Novotny-Rupp’s approach [13] are have lesser complexity

than Anderson’s approach. Hence, this attack was not implemented.

3.1.2 Golic’s Attack

Assumptions: Guess the lower half of all three registers. 64 bits of keystream known.

Aim: Determine the remaining bits of all three registers (Figure 3.2).

Protocol: Clock the cipher until all the guessed bits are ‘over’. Golic proposed an

attack that has a complexity of 240 linear equations sets. However, each operation

in this attack is much more complicated since it is based on the solutions of system

of linear equations. In practice, this algorithm is not better than the Anderson’s

approach [1] or Keller-Seitz’s [19] approach. In deriving the solution of the system of

3.1. GUESS-AND-DETERMINE ATTACKS 15

equations, we additionally require solving 44 linear equations.

D D D D D D D D D D G G G G G G G G G

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

D D D D D D D D D D D G G G G G G G G G G G

D D D D D D D D D D D D G G G G G G G G G G G

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 3.2: Golic’s Attack on the A5/1 Stream Cipher

Discussion: In Golic’s attack, we have 44 linear equations. Firstly, guessing the lower

half of each of the registers gives the first 31 equations (9 from register R1, 11 from

R2 and 11 from R3); Secondly, R3 will need atleast 12 clocking cycles for it to be

completely filled, hence 12 equations and one equation from the most significant bit

of all 3 registers which on XOR gives the keystream bit. So in all 1+12+31= 44

equations. The probability for each LFSR to be clocked is three out of four and the

majority-clocking rule guarantees that at least two of the three registers are clocked

at each cycle. With this information, one can solve the system of linear equations

using Gaussian Elimination method.

Now we have 44 equations and thus we have information of 44 bits of the internal

state candidate. But still there are 20 bits vacant. That gives us a 64x64 Linear

System of Equations to be solved, followed by the verification of the corresponding

state candidate. This makes Golic’s approach impractical to implement.

Pornin and Stern [27] proposed a Software-Hardware tradeoff attack that is based

on Golic’s approach. But in contrast to Golic’s approach, they guess the clocking

sequence at the very beginning. The increased assumptions and complexity of the

attacks make the actual implementation very difficult and impractical.

16 CHAPTER 3. KNOWN ATTACKS ON THE A5/1

3.1.3 Biham-Dunkelman’s Attack

The Biham-Dunkelman attack [5] attempts to recover the internal state of the cipher.

The attack is expected to be a thousand times faster than the Anderson’s approach

[5] or Keller-Seitz’s approach [19], so the expected time complexity is less than a day

on a standard PC. The attack requires 247 A5/1 clockings. The attack also requires

about 220.8 bits of plaintext data, which is equivalent to 2.36 minutes of conversation.

Hence, a lot of pre-computation space is needed.

Assumptions: The clocking bit (CB) of register R3 and most significant bit of R3

(i.e., R3[22]) are guessed. Register R3 is assumed not to be clocked for ten consecu-

tive rounds; i.e., CB of R1 = CB of R2 6= CB of R3 for ten rounds. Guess nine bits

of R1 (i.e., R1[(9, 18)] ∼ R1[13]) and one bit of R2 (i.e., R2[0]).

Aim: Determine all the remaining bits of register R1 and register R2 (Figure 3.3).

G G G G G D G G G G D D D D D D D D D

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

D G

G G

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 3.3: Biham-Dunkelman’s Attack on the A5/1 Stream Cipher

Protocol: For 10 rounds, we have 20 bits (10 from R1 and 10 from R2).

R1[18]⊕R2[21]⊕R3[22] = KS[i]

where KS[i] denotes the ith keystream bit, i = 0 on initialization and increases by 1

after every clocking round.

3.1. GUESS-AND-DETERMINE ATTACKS 17

Here, R3[22] works for atleast 11 consecutive rounds; hence we have another 11 linear

equations.

R1[t]⊕R2[t + 3]; where t = [8, 18], t ∈ Z

Guessing R1[18], R1[17] and R1[16] gives R1[13] because of the parity bit, and it also

gives R2[21], R2[20], R2[19] and R2[16].

Complexity: (210 ∗ 24 ∗ 21) ∗ 212 = 227 Since we have 20 possible starting locations for

register R3, the total time complexity is 227 ∗ 220 = 247

A Trade-Off between Computational and Plaintext Complexity

In this section, we note a couple of important questions discussed by Kasper [18]:

Q. By waiting for an event when the third register R3 is not clocked for 10 con-

secutive cycles, what is the computational gain achieved?

A. In order to locate an event where R3 stays unclocked for 10 consecutive cycles,

we need 220 different starting locations (for R3) on average. For each such location,

guessing 12 bits immediately reveals 31 more bits. Hence, the 41 bits of registers R1

and R2, along with 2 bits from register R3, can be determined with a complexity of

212 ∗220 = 232. In comparison with the Keller-Seitz attack [19] approach, for the same

43 bits of internal state candidate, the complexity is almost 242, as compared to only

232 for the Biham-Dunkelman attack. Thus, the latter attack is 210 times faster than

the former attack (for 43 bits).

Q. Find a general solution for other values of n.

A. Fix n to be an integer with the condition 0 ≤ n ≤ 10. The output bits are R1[18],

R2[21] and R3[22] and the clocking bits are R1 [8], R2[10] and R3[10]. The desired

event occurs iff R1[8] = R1[7] = . . . = R1[8 − (n − 1)] = R2[10] = R2[9] = . . . =

R2[10− (n− 1)] 6= R3[10]

If any one of the 2n+ 1 bits is fixed, we can immediately determine the remaining

2n bits. ∴ one out of the 22n internal states satisfy this property. Hence, in order to

locate our answer, on average, 22n locations need to be checked.

Guessing the clocking bit for n consecutive cycles yield 2n bits from the two

registers R1 and R2. Now guess R3[22] and all the remaining 19 − n bits of R1. We

18 CHAPTER 3. KNOWN ATTACKS ON THE A5/1

calculate n+1 bits of R2. Now we need to guess remaining 22−n− (n+1) = 21−2n

bits of R2. Hence, out of 43 bits, only 1 + 1 + (19 − n) + (21 − 2n) = 42 − 3n

bits need to be guessed for 22n different locations, giving us a total complexity of

242−3n ∗ 22n = 242−n.

Confirming the Biham-Dunkelman attack, let n = 10 consecutive clocking cycles

where register R3 is not clocked, we need to guess only 42− 3 ∗ (10) = 12 bits, hence

giving a total complexity of 232.But when n = 0, we need to guess 42 bits, thereby giv-

ing a total complexity of 242 which is the brute force or the exhaustive search method.

Limitations: The attacker must know exactly the location of the information-leaking

event where register R3 is unclocked for 10 consecutive rounds. Such an event will

happen one out of 220 possible cipher states. This is a big assumption. Thus the

attacker will need to probe about 220 different starting locations by trial-and-error

before the event actually occurs. Also, the probability that such an event, where reg-

ister R3 is not clocked for consecutive 10 rounds occurs is close to zero. This attack

requires a lot of data and pre-computation space. Hence this attack is not practical

for implementation.

3.1.4 Keller-Seitz’s Attack

This approach is based on a simple guess-and-determine attack proposed by Ander-

son [1], where the shorter registers R1 and R2 are completely guessed, the lower half

of register R3 is guessed and the rest of the register R3 is determined. But since

Anderson neglected the asynchronous clocking of the registers at first, only the 12

most significant bits of R3 could be determined from the known keystream whereas

the remaining bits have to be guessed as well. Keller-Seitz [19] took into account the

asynchronous clocking of the A5/1 stream cipher and designed this attack.

Assumptions: All bits of registers R1 and R2 are guessed. 64 bits of known keystream.

Aim: Determine all bits of register R3 (Figure 3.4).

Protocol: Keller-Seitz’s attack was divided into two phases: a determination phase

in which a possible state candidate consisting of the three registers of A5/1 after its

warm-up phase [7] is generated, and a subsequent post-processing-phase in which the

3.1. GUESS-AND-DETERMINE ATTACKS 19

G G G G G G G G G G G G G G G G G G G

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

G G

D D

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 3.4: Keller-Seitz’s Attack on the A5/1 Stream Cipher

state candidate is checked for consistency. In the determination phase, the authors

try to reduce the complexity of the simple guess-and-determine attack by early rec-

ognizing contradictions that could occur by guessing the clocking bit of R3 such that

R3 will not be clocked. Hence, all states arising out of the contradictory guess neither

need to be computed further on nor checked afterwards.

Limitations: The authors further reduce the complexity by not only discarding the

incorrect possibilities for R3[22] in case of contradiction, but also limit the number of

choices to the one of not-clocking R3, if this is possible without any contradiction. If a

case arises where R1[8] = R2[10] and R3[10] has to be guessed, then the authors suggest

to always consider the case R1[8] = R2[10] = R3[10] and clock register R3 with regis-

ter R1 and register R2. This leaves out the possible case of R1[8] = R2[10] 6= R3[10].

Thus, the success probability of this attack is approximately 18%, and the number

of state candidates inspected by Keller and Seitz to the number of valid states is
86
471
≈ 0.18.

20 CHAPTER 3. KNOWN ATTACKS ON THE A5/1

3.1.5 Modified Keller-Seitz’s Attack

Gendrullis, Novotny and Rupp [13] proposed a guess-and-determine approach. Unlike

Keller-Seitz [19], the authors only discard the wrong possibilities for the clocking bit

of register R3 that would lead to a contradiction. But if no contradiction exists, they

check all possibilities of the clocking bit of R3, which means the case of clocking and

not-clocking R3. Thus, every possible state candidate is taken into account, hence

giving us a success probability of 100%.

Assumptions: All bits of registers R1 and R2 guessed. 64 bits of known keystream bits.

Aim: Determine all bits of register R3 (Figure 3.5).

G G G G G G G G G G G G G G G G G G G

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

G G

D D

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 3.5: Modified Keller-Seitz’s Attack on the A5/1 Stream Cipher

Protocol: The initial approach was to compute register R3 by regular clocking se-

quence used during the encryption process. The most significant bit of register R3

was computed by the equation R3[22] = R1[18]⊕R2[21]⊕KS[i], where KS[i] denotes

the ith keystream bit, i = 0 on initialization and increases by 1 after every clocking

round. The clocking bit of R3 is guessed, followed by clocking of the respective regis-

ters. If register R3 is clocked, the feedback bit (i.e., R3[0]) is calculated by the XOR of

the tapping bits (i.e., R3[22], R3[21], R3[20] and R3[7]). But since the tapping bits of

R3 are unknown, one cannot create the feedback bit. To create the feedback bit, one

would have to guess the tapping bits of R3 too, which would increase the complexity.

Hence the approach had to be modified.

3.1. GUESS-AND-DETERMINE ATTACKS 21

Solution: Let the register R3 shift in front and no feedback needed after shifting

of register. This was done for 11 clocking cycles of R3. Hence, the total R3 register

was of the length 23+11=34 bits. The number 11 arises because at each point of

determining R3 bits, we could calculate R3[22] and R3[10] (i.e., MSB and clocking

bit of R3 respectively), with an interval of 11 bits between them. This 34-bit register

was required to generate the initial R3.

Note: Let t3 denote the number of times register R3 is clocked. During implementa-

tion, note:

At time t3 = 0, MSB of R3 is R3[11], clocking bit of R3 is R3[23], total length of R3

is 34 bits.

At time t3 = 11, MSB of R3 is R3[0], clocking bit of R3 is R3[11], useful length of R3

is 23 bits, total length is 34 bits.

Problem: During the implementation of the code, we encountered a problem of back-

tracking.

Discussion: We found a solution to implement backtracking in the code.

Implementation of backtracking was attempted in two different ways:

a) Using the concept of doubly-linked list in C programming language.

b) Using recursions in C++ programming language.

In the part (a), we used MALLOC function to allocate space for each bit at each

step. According to graph theory of binary search tree algorithm, everytime we cre-

ated three children from one parent, we stored all the information of the children

in the parent. This used a lot of memory, eventually causing the program to give

‘segmentation fault’ (as this was tried on a normal PC with limited Memory space

allocation). An alternate approach had to be taken to avoid this error.

Solution: Use recursions in C++ programming.

Implementation: We used all the above points to implement the modified Keller-

Seitz attack, which does the cryptanalysis of the A5/1 stream cipher for a fixed

22 CHAPTER 3. KNOWN ATTACKS ON THE A5/1

set of R1 and R2 registers (all bits of R1 and R2 are guessed), and solves for R3.

The most significant bit (MSB) of R3 was computed first according to the equation

R3[22] = R1[18] ⊕ R2[21] ⊕KS[i], followed by guessing the clocking bit of R3. The

method is described below in brief.

Methodology: Using the Modified Keller-Seitz approach, we check the clocking bit

(CB) of R1 and R2 and the known keystream (KS) bits, to decide the CB of R3.

There are two possibilities for R1[8] and R2[10]:

• Case 1: R1[8] = R2[10]

If R1[8] = R2[10], then R1 and R2 are surely going to get clocked by the majority

function (clocking rule). R1[17] and R2[20] will become the new MSBs of R1

and R2 respectively after clocking. Hence the CB of R3 has to be decided on

R1[17], R2[20] and the KS bit after clocking. If R1[17] ⊕ R2[20] ⊕ KS[i + 1]

bit does not equal the MSB of R3, then R3 has to be clocked in that round.

This implies that the CB of R3 will be equal to the CBs of R1 and R2. If

R1[17] ⊕ R2[20] ⊕ KS[i + 1] equals the MSB of R3, then R3 may or may not

be clocked. Consider one of the two possibilities first. If we encounter the

contradiction later, we would come back to this state, change the CB of R3 and

proceed.

• Case 2: R1[8] 6= R2[10]

If R1[8] 6= R2[10], then there exist two possibilities; i.e., if R1[8] = R3[10],

then R1 and R3 are clocked and R2 is not clocked, else if R2[10] = R3[10], then

R2 and R3 are clocked and R1 is not clocked. Proceed until we encounter a

contradiction. If contradiction occurs, discard the state candidate.

This method is carried out recursively till R3 is clocked 11 times (i.e., t3 = 11). Thus,

we have determined the complete register R3. Now perform the post-processing-phase

to bit-wise check if the keystream bits generated by clocking the new state candidate

match the known keystream bits. If it matches with the known keystream bits, then

the state candidate obtained is the correct state candidate. If it does not match the

known keystream then, we go back to the place where we encounter the contradiction,

change the clocking bit of R3 to the case which was not considered yet and continue

determining the remaining bits of register R3.

3.2. KNOWN PLAINTEXT ATTACK 23

3.2 Known Plaintext Attack

The known plaintext attack [24] is an attack model where the attacker has access to

both the plaintext and its encrypted ciphertext. This can be used to reveal the secret

key used for encrypting the known plaintext to the known ciphertext.

3.2.1 Time Memory Trade-Off Attack (TMTOA)

In the known plaintext attack, if the objective is to recover the preceding internal

states for any observed 64 successive keystream bits, one can do so by exhaustive

search or brute force attack. It is then that we use the Time Memory Trade-Off

Attack. This attack was introduced by Hellman [16].

Cryptanalytic attacks based on exhaustive search need a lot of computing power or

a lot of time to completely implement the attack. When this attack has to be carried

out multiple times, it may be possible to execute exhaustive search in advance and

store all results in memory as pre-computed data. Once this pre-computation is

carried out, the attack is instantaneous. But this is not practical because of large

amounts of memory required. Hellman introduced a method to trade memory against

attack time, by using pre-calculated data stored in memory. Thus, Hellman was able

to bring out an optimal solution with this attack.

Let N = number of possible solutions, T = time needed, M = memory required,

then

T = M = N
2
3 (3.1)

Protocol: We try to generate all possible ciphertexts in advance by encrypting the

plaintext with all possible N keys. The ciphertexts are organized in chains, where only

the first and last elements of the chain are stored in memory. This is the trade-off for

this attack (i.e., saving memory space at the cost of cryptanalysis time). The chains

are created using a reduction function R, which creates a key from the ciphertext.

The ciphertext is longer in length than the key and so it is termed as reduction

function. By successively applying encryption function Ek and reduction function R,

we can create chains of alternating keys and ciphertexts as shown below.

Ki

Eki
(P0)−−−−→ Ci

R(Ci)−−−→ Ki+1

Let R(Ek(P0)) = f(k), ∴ this succession generates keys from a key, and so on. Hence

giving us a chain of keys.

24 CHAPTER 3. KNOWN ATTACKS ON THE A5/1

Ki → Ki+1 → Ki+2 → . . .

In this way, m chains of length t are created and their first and last columns are stored

in a table. Given a ciphertext C, we can try to find out if the key used to generate

C is among the ones used to generate the table. To do so, we generate a chain of

keys starting with R(C) upto length t. If C were indeed obtained with a key used

while creating the table, then we would eventually generate the key that matches

the last key of the corresponding chain. The last key has been stored in memory

together with the first key of the chain. With the first key, the complete chain can

be regenerated and in particular, the key that comes just before R(C). This is the

key that was initially used to generate the specific C.

Besides Golic [14] and Babbage [2], Biryukov-Shamir-Wagner [6] proposed an at-

tack with a complexity of 248 requiring about 300GB of memory, where the online

phase of the attack can be executed within minutes with a 60% success probabil-

ity. However, 2 seconds of known keystream (i.e., about 25000 bits) are required to

perform the attack, making this attack impractical.

Barkan-Biham-Keller [4] also proposed another attack along these lines. However,

in the precomputation phase of such an attack huge amounts of data need to be

computed and stored. For example, with three minutes of ciphertext available, one

needs to precompute about 50 TB of data to achieve a success probability of about

60%. These are practical obstacles making actual implementations of such attacks

very difficult.

Chapter 4

A New Attack on the A5/1

This chapter deals with the description of our new attack algorithm. Our approach is

based on the guess-and-determine attack proposed by Anderson [1], but with several

modifications. The attack is divided into two phases: the determination phase and

the post-processing-phase. With 64 bits of the keystream known and all bits of the

shortest register R1 guessed, we can determine all bits of the two longer registers R2

and R3. But unlike the approaches of Anderson [1], Golic [14], Biham-Dunkelman [5]

and Keller-Seitz [19], we consider all possible cases i.e., no case is discarded.

4.1 The Attack

In this attack, all bits of the first register R1 are known (guessed) and all bits of regis-

ters R2 and R3 are determined. We determine these bits based on 64 known keystream

bits (KS). At the end, we come up with about 248.5 possible state candidates, which

is much smaller than the exhaustive search where we have 264 state candidates (refer

Section 4.4). Hence this attack is better than the exhaustive search approach. The

minimum space complexity (lower bound) for the attack is approximately 245.2, which

is attained after 11 rounds of clocking. The attack consists of two phases, the de-

termination phase and the post-processing-phase. The determination phase is again

divided into two parts, the processing-phase1 and the processing-phase2.

25

26 CHAPTER 4. A NEW ATTACK ON THE A5/1

Assumptions: Register R1 is completely guessed (known). 64 bits of keystream (KS)

known.

Aim: Determine all bits of register R2 and register R3 (Figure 4.1).

G G G G G G G G G G G G G G G G G G G

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

D D

D D

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Figure 4.1: New Attack on the A5/1 Stream Cipher

4.1.1 Determination Phase:

The determination phase generates all possible state candidates after the warm-up

phase [7] is completed. Let t2 and t3 denote the number of times the registers R2 and

R3 are clocked, respectively. Everytime a register is clocked, increase the counter of

that register by one. Initialize the algorithm by giving the input of known keystream

bits (KS) and guessing all bits of the smallest register R1 (Figure 4.2).

1. Processing-Phase1: Compute the most significant bits (MSBs) of register R2

and register R3 using the MSB of register R1 and KS bit by Equation 4.1:

KS[i] = R1[18]⊕R2[21]⊕R3[22], (4.1)

where KS[i] denotes the ith keystream bit, i = 0 on initialization and increases

by 1 after every clocking round.

If the values of three of these bits are known, the fourth can be computed easily

by the above equation. But if R2[21] and R3[22] are unknown, then there exist

4.1. THE ATTACK 27

two possible combinations of R2[21] and R3[22] bits. During initialization (refer

Algorithm1), i is set to 0, and with every additional clocking round, the value

of i increases by 1. Note that i also denotes the total number of clocking rounds

that have taken place. There occur two possibilities:

• If R1[18] = KS[i], then R2[21] = R3[22] = 0 or R2[21] = R3[22] = 1.

• If R1[18] 6= KS[i], then R2[21] = 0, R3[22] = 1 or R2[21] = 1, R3[22] = 0.

If we did not use Equation 4.1, there will be four possible combinations for

R2[21] and R3[22]; i.e., 00, 01, 10 and 11. But the equation reduced the number

of possibilities to two. This reduces the number of possible cases by half and

the number of possible state candidates to half.

INITIALIZE

Are R2[21] AND R3[22] filled?

Replicate block twice.
Determine R2[21] AND R3[22] by Equation 1.

Fill each block with a specific valid combination.

Is t2 ≥ 10 AND t3 ≥ 11? TERMINATE

Go to Processing Phase2

Clock registers. Increase counters.
Equation 1: KS[i] = R1[18] ⊕ R2[21] ⊕ R3[22]

t2 = no. of times R2 is clocked
t3 = no. of times R3 is clocked

NO

YES

YES

NO

Is R2[21] filled but R3[22] filled? Determine R3[22] by
Equation 1

YES

NO

Is R3[22] filled but R2[21] filled? Determine R2[21] by
Equation 1

YES

NO

Figure 4.2: Determination Phase of the Attack (Processing-Phase1)

28 CHAPTER 4. A NEW ATTACK ON THE A5/1

2. Processing-Phase2: Consider the clocking bits of registers R2 and R3. There

are three possibilities:

• If R2[10] is filled and R3[10] is vacant, then replicate the state candidate

twice, fill one copy with R3[10] = 0, and the other copy with R3[10] = 1

• If R2[10] is vacant and R3[10] is filled, then replicate the state candidate

twice, fill one copy with R2[10] = 0, and the other copy with R2[10] = 1

• If R2[10] and R3[10] are both vacant, then replicate the state candidate

four times, fill the first copy with R2[10] = 0, R3[10] = 0; the second copy

with R2[10] = 0, R3[10] = 1; the third copy with R2[10] = 1, R3[10] = 0;

and the fourth copy with R2[10] = 1, R3[10] = 1.

Thus, all possible combinations are taken into consideration (Figure 4.3).

Now consider the bits R2[20] and R3[21]. If registers R2 and R3 are clocked,

then these bits will become the new MSBs for their respective registers after

clocking. If both these bits are vacant, there are four possible combinations for

these bits; i.e., 00, 01, 10 and 11. But the Equation 4.1 reduce them to two

possibilities. This reduces the number of possible cases by half.

If only one of these bits is vacant, there are two possibilities for the vacant bit;

i.e., 0 or 1. But the above equation reduces them to only one possibility. For

example, if R2[10] 6= R1[8] = R3[10], then R3[21] = R1[17]⊕KS[i+ 1]⊕R2[21].

In this case, only R3[21] is unknown. This bit can be calculated by the above

equation. Here, two possibilities for R3[21] reduce to only one possibility. This

reduces the number of cases by half.

Follow this protocol till t2 < 10 and t3 < 11. Once this condition is not satisfied,

i.e., the first time t2 ≥ 10 and t3 ≥ 11, stop. At this moment, registers R2 and

R3 are completely determined for the known KS and register R1. The number

of bits between the clocking bit (CB) and the MSB for register R2 is 10 and

for register R3 is 11. Hence, register R2 has to be clocked atleast 10 times and

register R3 has to be clocked atleast 11 times to determine all the bits of that

register.

A complete state candidate is a state candidate with all bits filled. The minimum

number of KS bits required to obtain a set of complete state candidates is eleven.

4.1. THE ATTACK 29

NO

Replicate Block 4 times

Fill the replicated Blocks accordingly:
Block 1: R2[10] = 0, R3[10] = 0
Block 2: R2[10] = 0, R3[10] = 1
Block 3: R2[10] = 1, R3[10] = 0
Block 4: R2[10] = 1, R3[10] = 1

Replicate Block twice

Fill one Block with R3[10] = 0
Fill other Block with R3[10] = 1

Are R2[10] AND R3[10] filled?

Is R2[10] filled but R3[10] vacant?

Is R3[10] filled but R2[10] vacant?
YES

YES

Replicate Block twice

Fill one Block with R2[10] = 0
Fill other Block with R2[10] = 1

Now for each Block, do the following:
If R1[8] = R2[10] = R3[10], then replicate this new Block twice and fill each Block with a

valid combination for R2[20] AND R3[21] by Equation2.
If R1[8] ≠ R2[10] = R3[10], then replicate this new Block twice and fill each Block with a

valid combination for R2[20] AND R3[21] by Equation3.

If R2[10] ≠ R1[8] = R3[10], then R3[21] = R1[17] ⊕ R2[21] ⊕ KS[i+1]
If R3[10] ≠ R1[8] = R2[10], then R2[20] = R1[17] ⊕ R3[22] ⊕ KS[i+1]

Also, if R3[7] is vacant, then duplicate Block twice.
Fill one Block with R3[7] = 0, and other Block with R3[7] = 1

NO

NO

Equation2: R1[17] ⊕ KS[i+1] = R2[20] ⊕ R3[21]
Equation3: R1[18] ⊕ KS[i+1] = R2[20] ⊕ R3[21]

YES

Are R2[20] AND R3[21]
filled?

YESNO

Figure 4.3: Determination Phase of the Attack (Processing-Phase2)

This will happen when both registers R2 and R3 are clocked together for 10

consecutive clocking cycles and register R3 is clocked again in the next round.

30 CHAPTER 4. A NEW ATTACK ON THE A5/1

4.1.2 Post-Processing-Phase:

The post-processing-phase checks a complete state candidate obtained after the de-

termination phase is the correct state candidate i.e., the key (refer Algorithm 3).

As discussed in the preceding subsection, the minimum number of rounds needed

to perform the post-processing-phase to obtain a set of complete state candidates is

11. The number of possible state candidates increases with every additional round.

Hence, the probabilitity of finding the correct state candidate increases with every

additional round.

In this phase we generate output bits by performing normal A5/1 encryption with

each of the complete state candidates obtained from the determination phase. Match

these output bits bit-wise with the known KS bits. If the KS bits and output bits

match, continue clocking and generating output bits till a contradiction of bit-wise

matching occurs. If all the output bits match with the given 64 KS bits and no

contradiction occurs, then that state candidate is the correct state candidate. Hence,

we have found the correct state candidate amongst all the possible state candidates

obtained.

4.2. THE ATTACK ALGORITHMS 31

4.2 The Attack Algorithms

The algorithms for the implementation of the attack are listed in this section.

Algorithm 1 Determination Phase: Processing-Phase1

Input: All bits of register R1 are known, 64 keystream (KS) bits are known.
Aim: Determine all bits of registers R2 and R3. Hence, determine all possible valid
state candidates.

1: Initialize t2 = 0; t3 = 0; i = 0;
2: while R2[21] vacant OR R3[22] vacant do
3: replicate internal state candidate . refer Figure 4.2
4: compute R2[21] AND R3[22] by Equation 4.1: KS[i] = R1[18]⊕R2[21]⊕R3[22]
5: end while . R2[21] AND R3[22] determined
6: goto Processing-Phase2 . Algorithm 2
7: if t2 6= 10 OR t3 6= 11 then
8: apply clocking rule
9: i← i + 1
10: if R2 is clocked then
11: t2 ← t2 + 1
12: else if R3 is clocked then
13: t3 ← t3 + 1
14: goto step 2
15: end if
16: end if
17: terminate . All possible VALID state candidates determined

32 CHAPTER 4. A NEW ATTACK ON THE A5/1

Algorithm 2 Determination Phase: Processing-Phase2

Input: All bits of register R1 are known, 64 keystream (KS) bits are known.
Aim: Determine complete registers R2 and R3. Hence, determine all possible valid
state candidates.

1: while R2[10] vacant OR R3[10] vacant do
2: replicate internal state candidate accordingly . refer Figure 4.3
3: fill each replication with all cases for R2[10] AND R3[10]
4: end while . R2[10] AND R3[10] determined
5: while R2[20] OR R3[21] vacant do
6: replicate internal state candidate
7: if R1[8] = R2[10] = R3[10] then
8: compute R2[20] AND R3[21] by Equation1: KS[i+ 1]⊕R1[17] = R2[20]⊕

R3[21]
9: else if R1[8] 6= R2[10] = R3[10] then
10: compute R2[20] AND R3[21] by Equation2: KS[i+ 1]⊕R1[18] = R2[20]⊕

R3[21]
11: else if R2[10] 6= R1[8] = R3[10] then
12: compute R3[21] by the Equation: KS[i + 1]⊕R1[17]⊕R2[21] = R3[21]
13: else if R1[8] = R2[10] 6= R3[10] then
14: compute R2[20] by the Equation: KS[i + 1]⊕R1[17]⊕R3[22] = R2[20]
15: end if
16: end while . R2[20] AND R3[21] determined
17: while R3[7] vacant do
18: replicate internal state candidate two times
19: fill one replication with value 0 and the other replication with value 1
20: end while . R3[7] determined

4.3. ANALYSIS OF THE ATTACK 33

Algorithm 3 Post-processing Phase

Input: All possible valid state candidates derived from Algorithm1 and Algorithm2
after the determination phase. 64 keystream bits are known.
Aim: Determine the correct state candidate

1: while i 6= 63 do
2: if R1[18]⊕R2[21]⊕R3[22] = KS[i] then
3: continue
4: i← i + 1
5: apply clocking rule
6: else
7: discard current state candidate . contradiction during bit-wise matching

with original KS
8: check next state candidate
9: end if
10: end while
11: terminate . correct state candidate found

4.3 Analysis of the Attack

We now discuss each phase of the attack step-by-step. After initialization, we perform

the first step of implementation, i.e., the determination phase. The state candidate

has all bits of register R1 known and all other bits vacant. According to protocol

(refer Algorithm 1 and Algorithm 2), the determination phase determines the most

significant bits (MSBs) of registers R2 and R3 (i.e., R2[21] and R3[22]) by processing-

phase1; the clocking bits of R2 and R3 (i.e., R2[10] and R3[10]), bit R3[7] and if

possible, bits R2[20] and R3[21] by processing-phase2.

Now we consider the first stage of the determination phase i.e., processing-phase1.

The MSBs of registers R2 and R3 have to be determined. The number of possible

combinations reduces from four to two by Equation 4.1. Thus saving two combina-

tions, i.e., a saving of 50%. During the implementation of further rounds, there is a

possibility where only one of the MSBs of R2 or R3 is vacant. We determine these

vacant bit(s) by Equation 4.1.

We now proceed to processing-phase2 of the determination phase. Here we first

consider the four vacant bits: R2[10] (CB of R2), R3[10] (CB of R3), R2[20] and

R3[21]. But all these four bits (except the first step after initialization) may not

34 CHAPTER 4. A NEW ATTACK ON THE A5/1

be vacant together at all times. In the following table (Figure 4.4), we consider all

possible cases of these four bits being empty, and the number of maximum possible

valid combinations that exist as a result of Equation 4.1. We now consider the bit

R3[7]. There are two possibilities for this bit, i.e., 0 and 1. But we cannot eliminate

any case by any method. Hence, we need to consider both cases.

EMPTY? POSSIBLE
CASES

MAX.
POSSIBLE

VALID CASES
% SAVE

CB2 R2[20] CB3 R3[21]
✓ ✓ ✓ ✓ 16 6 62.5
✓ ✓ ✓ - 8 NA NA
✓ ✓ - ✓ 8 3 62.5
✓ - ✓ ✓ 8 4 50
- ✓ ✓ ✓ 8 3 62.5
✓ ✓ - - 4 2 50
✓ - ✓ - 4 NA NA
✓ - - ✓ 4 2 50
- ✓ - ✓ 4 2 50
- ✓ ✓ - 4 NA NA
- ✓ - ✓ 4 2 50
- - ✓ ✓ 4 2 50
✓ - - - 2 2 0
- ✓ - - 2 1 50
- - ✓ - 2 NA NA
- - - ✓ 2 1 50
- - - - 0 0 0

Figure 4.4: All possibilities during Processing-Phase2

Whenever the CB of register R3 is vacant, the bit R3[21] has to be vacant too.

Hence there are some cases in the following table which are not applicable (NA). The

last column depicts the percentage of the total possible cases that are discarded due

to the attack algorithms.

In the determination phase, a total of 7 bits have to be determined. These 7 bits

would have 27 = 128 possible combinations. But our algorithms give only 24 valid

4.3. ANALYSIS OF THE ATTACK 35

possible combinations. Thus saving 104 combinations i.e., a saving of 81.25%. The

number of possible state candidates where register R3 is not clocked is four.

Consider an example to implement the processing-phase2 of the determination

phase of the attack. Let register R1 be completely filled (guess). Also known are some

bits of the keystream (KS). We have to determine the six vacant bits: R2[21], R2[20],

R2[10], R3[22], R3[21] and R3[10] according to the attack algorithms. Let the bits

R2[21] = a, R2[20] = b, R2[10] = c, R3[22] = d, R3[21] = e and R3[10] = f . Known

KS bits (two bits) = 11. Since we are in the processing-phase2 of the determination

phase, the MSBs of registers R2 and R3 are already determined (in the processing-

phase1). Let the determined bits be R2[21] = a = 0 and R3[22] = d = 0 (Figure

4.5)

We now have four vacant bits. These vacant bits would give rise to 24 = 16

possible combinations to fill them. But our attack algorithm (Algorithm 2) gives

1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

a b c

d e f

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

Known bits: Register R1, R2[21], R3[22], KS[i]
Determined bits: R2[20], R2[10], R3[21], R3[10]

Possible Cases: 16
Max. Possible VALID Cases: 6

(a,d) = (0,0)

(c,f) = (0,0) (c,f) = (1,1)
(c,f) = (1,0)(c,f) = (0,1)

(b,e) = (1,0)
(b,e) = (0,1)

(b,e) = (0,0) (b,e) = (1,1)
(b,e) = (b,1) (b,e) = (1,e)

Figure 4.5: Implementation of the Processing-Phase2 (Determination Phase)

36 CHAPTER 4. A NEW ATTACK ON THE A5/1

only 6 valid cases. The remaining 10 possibilities are discarded. Thus saving 62.5%

of the total possible combinations.

In the above example, we have considered only the implementation of processing-

phase2 of the determination phase, assuming processing-phase1 is completed. But, we

now consider the implementation of the processing-phase1 too. After initialization,

we perform the processing-phase1 of the determination phase. At this stage, the state

candidate has only register R1 completely filled. The MSBs of R2 and R3 (i.e., R2[21]

and R3[22]) are still vacant. We now implement both parts of the determination

phase (Figure 4.6).

Consider the following six vacant bits:R2[21], R2[20], R2[10], R3[22], R3[21] and

R3[10]. These vacant bits would give rise to 26 = 64 possible combinations to fill

1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

Registers R1, R2 and R3
Red Box = Clocking Bit
KS = KeyStream Bit
G = Guessed Bit
D = Determined Bit

a b c

d e f

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Tapping Bits
Register R1: 18, 17, 16, 13
Register R2: 21, 20
Register R3: 22, 21, 20, 7

Clocking Bits
Register R1: 8
Register R2: 10
Register R3: 10

(a,d) = (0,0)

(c,f) = (0,0) (c,f) = (1,1)

(c,f) = (1,0)(c,f) = (0,1)

(b,e) = (1,0)
(b,e) = (0,1)(b,e) = (0,0) (b,e) = (1,1)

(b,e) = (b,1) (b,e) = (1,e)

(a,d) = (1,1)

(c,f) = (0,0) (c,f) = (1,1)

(c,f) = (1,0)(c,f) = (0,1)

(b,e) = (1,0) (b,e) = (0,1)(b,e) = (0,0) (b,e) = (1,1)

(b,e) = (b,0) (b,e) = (0,e)

Known bits: Register R1, KS[i]
Determined bits: R2[21], R2[20], R2[10], R3[22], R3[21], R3[10]

Possible Cases: 64
Max. Possible VALID Cases: 12

Figure 4.6: Implementation of the Complete Determination Phase

4.4. DISCUSSION 37

them. But the attack protocol gives only 12 valid cases. The remaining 52 possibile

cases are discarded. Thus saving 81.25% of the total possible combinations.

If R3[7] is not considered, the first round of implementation will always generate

12 state candidates. On an average, the second round generates 60 state candidates

and the third round generates 300 state candidates. The number of state candidates

(till round 10) can be approximated by the formula 12 ∗ 5n−1, where n denotes the

nth round, n ∈ Z+, n < 11. It is only after the 11th round that we will get the first

set of complete state candidates (with all registers full). When bit R3[7] is taken

into consideration, the first round of implementation will always generate 24 state

candidates. From round three to round ten, the number of possible state candidates

after every round is approximately five times the total number in the previous round.

4.4 Discussion

In this section, we discuss in detail a probabilistic approach to determine the time

complexity, data complexity, memory complexity and the success probability of the

new attack. The results of this probabilistic approach are also corroborated by ex-

perimental data. According to these results, the average number of rounds necessary

to get the correct state candidate (key) is 15.5 and the average number of complete

state candidates obtained after 15.5 rounds is 248.5.

4.4.1 Time complexity

The number of bits between the clocking bit (CB) and the most significant bit (MSB)

for register R2 is 10 and for register R3 is 11. Hence, the number of times the registers

R2 and R3 have to be clocked to determine all the bits of that register is atleast 10 and

11 respectively. The minimum number of KS bits required to obtain a set of complete

state candidates (with no vacant bits) is 11. This will occur when both registers R2

and R3 are clocked together for 10 consecutive clocking cycles and register R3 is

clocked again in the following round.

With every clocking round, the number of complete state candidates increases.

Hence, the probability of finding the correct state candidate increases with every

round of clocking.

According to the majority function of the clocking rule for the A5/1 (Figure 2.2),

a register will get clocked 3 out of 4 times. At every clocking cycle, atleast two

38 CHAPTER 4. A NEW ATTACK ON THE A5/1

registers will get clocked. Let n1 be the event that registers R2 and R3 are clocked

together, and n2 be the event that register R1 is clocked either with register R2 or

with register R3. The probabilities that events n1 and n2 occur are given by P (n1)

and P (n2) respectively. Let n′2 be the event that only registers R1 and R2 are clocked.

Let n′′2 be the event that only registers R1 and R3 are clocked. The probabilities that

events n′2 and n′′2 occur are given by P (n′2) and P (n′′2) respectively. From Figure 2.2,

one can conclude that P (n1) = P (n2) = 1
2
. Thus,

P (n1) + P (n2) =
1

2
+

1

2
= 1

and

P (n2) = P (n′2) + P (n′′2) =
1

4
+

1

4
.

i.e.,

P (n1) + P (n′2) + P (n′′2) = 1

Registers R2 and R3 have to be clocked atleast 10 and 11 times respectively to

determine all bits of that register i.e., to obtain a set of complete state candidates.

They may be clocked by n1 or n2.

Let X be the random variable denoting the number of clocking cycles needed to

obtain complete state candidate. Let x1 be the number of clocking cycles needed for

event n1, x2 for n′2 and x3 for n′′2. Here, x1 = 10, x2 = 10 and x3 = 11. Then the

expectation for this variable X is defined as

E[X] =
x1 ∗ P (n1) + x2 ∗ P (n′2) + x3 ∗ P (n′′2)

P (n1) + P (n′2) + P (n′′2)

=⇒
10 ∗ 1

2
+ 2 ∗ (10 ∗ 1

4
+ 11 ∗ 1

4
)

1
2

+ 1
4

+ 1
4

= 15.5

An Experiment

We now perform normal encryption of A5/1 using random inputs for all three reg-

isters. The aim of this experiment is to determine the average number of clocking

rounds needed for register R2 and R3 to be clocked atleast 10 and 11 times respec-

tively. We performed this experiment thrice, each time with 250 inputs. The average

number of clocking rounds needed turned out to be 15.51 with a standard deviation

of 1.785. Hence, the experimental results corroborate with the theoretical proof.

4.4. DISCUSSION 39

The number of clocking rounds necessary to obtain a set of complete state candi-

dates is approximately 15.5. This set of complete state candidates would contain the

correct state candidate (key) with a high probability.

4.4.2 Data Complexity

The minimum number of KS bits required to generate a set of complete state can-

didates (all bits filled) is 11. With every additional clocking round, the number of

complete state candidates increase. We can perform the post-processing-phase of the

attack after every round simultaneously while performing the determination phase

of the next round. Hence, the probability of finding the correct state candidate also

increases with every round. But we require atleast 64 KS bits for the post-processing-

phase of the attack to bit-wise match and check for the correct state candidate.

4.4.3 Space Complexity and Success Probability

The number of possible state candidates obtained after the 11th round is approxi-

mately 245.2. The total number of complete state candidates is approximately 239.2

i.e., around 1.6% of total number of possible state candidates obtained after the 11th

round. Thus, the minimum complexity of the atack (lower bound) is around 240. As

stated earlier, the number of possible state candidates increases with every round.

Here we plot a table (Table 4.1) of the results of the experimental data. The four

columns of the table are: number of clocking rounds; total number of state candi-

dates obtained after that round; total number of complete state candidates obtained;

and percentage of number of complete state candidates over the total number of

state candidates for that round. All values of the experimental data in the table are

approximated to one decimal place.

Table 4.1: Space Complexity and Success Probability

No. of Rounds Total State Candidates Complete State Candidates Complete
Total

∗ 100

11 245.2 239.2 1.6%
12 246.0 242.5 9.0%
13 246.7 244.5 22%
14 246.9 245.3 30%
15 247.1 246.1 50%

40 CHAPTER 4. A NEW ATTACK ON THE A5/1

Remark: In each round, the number of possible choices reduce to atleast half in

each case (refer Figure 4.4). Hence, a minimum saving of 50% takes place in every

round. As stated in Section 4.4.1, the average number of rounds to get the correct

state candidate (key) is around 15.5. In each round, we save atleast half the possible

cases. Hence for 15.5 rounds we save (1
2
)15.5 cases. Thus, the average number of

complete state candidates obtained after 15.5 rounds will be (264)(1
2
)15.5 = 248.5. The

correct state candidate (key) would be amongst the set of complete state candidates

obtained after the 15th round, with a probability of 50%.

4.5 Conclusion

Our attack is based on the guess-and-determine approach proposed by Anderson [1],

but with several modifications. In this attack, all bits of the first register R1 are known

(guessed) and all bits of registers R2 and R3 are determined. We determine these bits

based on 64 known keystream bits (KS). This attack has an average space complexity

of 248.5. This is much smaller than the exhaustive search where the space complexity

is 264. Hence this attack is better than the exhaustive search approach. The minimum

space complexity (lower bound) for the attack is approximately 240, which is attained

after 11 rounds of clocking. The average number of rounds necessary to obtain the

correct key from the set of complete state candidates is 15.5. The probability of

success in finding the key after 15 rounds, by post-processing phase, is more than

50%. With every round of clocking after 11 rounds, the number of complete state

candidates increases. Thus, the probability of finding the correct state candidate

increases with every clocking round. The attack is successful with 100% probability.

Chapter 5

Further Analysis of the A5/1

In this chapter, we explore in detail certain weaknesses that we discovered during

our study of the A5/1 stream cipher. We then suggest certain modifications to the

existing stream cipher aiming towards a more secure cryptosystem resistant to most

of the attacks already known. We end this chapter with results stating that these

modified stream ciphers are indeed pseudo random number generators too, like the

A5/1 stream cipher.

5.1 Weaknesses of the A5/1

Here we state certain weaknesses in the A5/1 stream cipher and our views on them:

1. The A5/1 stream cipher has three components. An ideal stream cipher would

contain only one component. Hence the concreteness and solidity of the A5/1

security is reduced.

Remark: Since we would not like to change the basic skeletal structure of the

A5/1, we would not modify or change it.

2. The registers are too short in length, i.e., 19, 22 and 23 bits only.

Remark: Although the registers are short in length, they are three in number

and they are aptly divided to give a total of 64 bits.

3. The stream cipher is of only 64 bits; hence an attack can be manipulated on it

in real time.

41

42 CHAPTER 5. FURTHER ANALYSIS OF THE A5/1

Remark: The criteria for acceptance of stream ciphers is 64 bits, 80 bits or 128

bits only (discussed by Eric Zenner [30]). This was stated in the eSTREAM

project organized by the EU ECRYPT network [9].

4. Register R2 of length 22 has only 2 tapping bits, and both are adjacent to each

other. This property can be exploited and made useful for an attack on the

stream cipher.

Remark: Our views on this match with those already discussed by Elad Barkan

[3] where he states:

a) Register R2 has 2 adjacent tapping bits.

b) Clocking bit of register R2 is exactly in the center.

c) A correlation equation can be formed from register R2 useful for further

attack i.e., S(i) + S(i−1) = S(i+22)

5. A major issue in the A5/1 security is the short period of the cipher, which is

based on the three LFSRs. Without stop/go operation, the period of sum of the

three LFSRs is given by: (219−1)(222−1)(223−1). However, experiments show

that the period of A5/1 is roughly around 4
3
(223−1) [20]. Hence, we would like

to create a modified A5/1 stream cipher with a period greater than or equal to

the existing one.

6. The clocking bits should be intermixed with the clocking bits of all three reg-

isters to provide increased randomness. Hence making an attack on the cipher

more difficult.

7. The majority function is not a good function in terms of correlation with all

affine functions.

Remark: We put forward the idea of introducing irregular clocking or motor

clocking to the LFSRs, (for example, when the majority function is equal to 1,

then clock the respective registers twice; else clock the respective registers once).

This will make sure the majority function is not the only criteria essential for

encryption. Motor clocking would further increase the security of the stream

ciphers. This shall be discussed in the next section.

8. A slightly greater modification can be suggested. One could keep the feedback

bit of each register as a combination and dependence of the other two registers

5.2. MODIFICATIONS SUGGESTED TO THE A5/1 43

too. This would modify the basic skeletal structure of the A5 encryption model,

but would increase the security of the cryptosystem immensely; rendering the

existing attacks not so much of use.

Note: It is on points 5, 6 and 7 that we have extensively worked on, with an aim

to make a more secure cryptosystem.

5.2 Modifications Suggested to the A5/1

Erguler-Anarim [11] have suggested a few modifications to the A5 with a match-rule.

We suggest a few different ideas and modifications for the security enhancement of the

A5/1 stream ciphers, making the encryption scheme resistant to most of the attacks

already known. The basic skeletal structure of the A5/1 is kept the same in these

modifications.

1. Encrypt1: The clocking pattern of the A5/1 encryption algorithm is based

on the majority function of the clocking bits (CBs). According to this, if the

CBs match the majority function, the respective registers will get clocked once.

If not, then that register is not clocked for that round. Atleast two registers

will get clocked in each round. The attacks proposed by Anderson [1], Golic

[14], Keller-Seitz [19] and Gendrullis-Novotny-Rupp [13] exploit this clocking

pattern. These attacks can be avoided by the following modification. Let the

tapping bits be the same as in the original A5/1 stream cipher. Let the clocking

pattern of the modified A5/1 stream cipher (Encrypt1) be as follows:

• Case 1: CB1 = CB2 6= CB3 (Clock R1 and R2 twice)

• Case 2: CB1 6= CB2 = CB3 (Clock R2 and R3 twice)

• Case 3: CB1 = CB3 6= CB2 (Clock R1 and R3 twice)

• Case 4: CB1 = CB2 = CB3 (Clock R1, R2 and R3 once),

where CBi denotes the clocking bit for register Ri; i = 1, 2, 3.

This motor clocking pattern would ensure irregular clocking. In the case where

two out of three registers are getting clocked, the bit next to the most significant

bits will never be XORed to give the keystream bit. Hence, according to the

protocol of the attacks mentioned above, that bit can never be determined.

44 CHAPTER 5. FURTHER ANALYSIS OF THE A5/1

That bit will play a crucial role in determining the feedback bit (Bit 0) for the

registers to be clocked. Hence the attacks would require many more rounds

which would add to the complexity and increase the computation space and

time. Also, there would be a case when all three registers are never clocked

for consecutive rounds. In that case, computing the feedback bit becomes very

difficult. Thus, the modified A5/1 becomes more resitant to the known attacks.

Note: Several variants of this type of motor clocking can be designed to make

the encryption scheme more resistant to the known attacks.

2. Encrypt2: The newly proposed stream cipher has the same three LFSRs but

with different maximal length tap sequences [22] (Refer Section 2.3).

(i). A register of length 19 has a maximal length period of 524287. Some of the

tapping bits leading to this maximal period are:

18, 17, 16, 13 (this one is currently used in A5/1)

18, 17, 16, 4

18, 15, 11, 8

18, 15, 8, 4 (we suggest this)

Since the period of the register is the same irrespective of the above-mentioned

tapping bits combination, we suggest the register R1 of length 19 to have tapping

bits 18, 15, 8 and 4. This will be the modified register R1. By doing so, several

flaws encountered in the original register can be dealt with. We know that the

clocking bit of register R1 is bit 8; hence, the security of the register increases if

we include the clocking bit as one of the tapping bits. By including bit R1[4] as

a tapping bit, we have spaced out the tapping bits on both sides of the clocking

bit, making the Biham-Dunkelman attack [5], which exploits this flaw, difficult.

(ii). A register of length 22 has a maximal length period of 4194303. The

existing register R2 in the A5/1 scheme has the tapping bits 21, 20. We suggest

a modification in this with tapping bits 22, 19, 10 and 2. It has already been

discussed that there lay some flaws in the register R2 with 22 bits, as the tapping

bits are too close to each other and only two in number. We suggest changing

the tapping bits of register R2 from bits 21, 20 to bits 21, 19, 10, 2. This new

register will have the same maximal length period of 4194303. The tapping bits

will now be well spaced out, i.e., on either side of the clocking bit. The clocking

bit for this register is bit 10, and if we include the clocking bit as a tapping bit

5.3. TESTS FOR RANDOM NUMBER GENERATORS 45

too, it would make the attack on A5/1 more difficult.

(iii). A register of length 23 has a maximal length period of 8388607. The

existing register R2 of A5/1 has the tapping bits as 22, 21, 20, 7. We suggest

a modification in this to tapping bits 22, 20, 10 and 6. This modified register

also has the same period as the original register R3 in the A5/1 scheme, and

also includes the clocking bit of register R3.

Suggested Modifications (Figure 5.1):

Encrypt0 = A5/1 with no changes in tapping bits and clocking pattern

Encrypt1 = A5/1 with motor clocking

Encrypt2 = A5/1 with tapping bit changes

5.3 Tests for Random Number Generators

A random bit generator is a device or an algorithm that generates an output sequence

of statistically independent and unbiased binary digits. The A5/1 stream cipher is a

pseudorandom bit generator where the input to this generator is called seed and the

output is a pseudorandom bit sequence.

Here, we test the existing A5/1 to check if it truly is a pseudorandom num-

ber generator (PRNG). We shall also test if the newly proposed modified A5/1 are

PRNGs.

Encrypt0, Encrypt1 and Encrypt2 pass the DIEHARD Battery of Tests of Ran-

domness [21] and NIST Test Suites for random number generators [25]. Hence all

three stream ciphers are pseudorandom number generators.

46 CHAPTER 5. FURTHER ANALYSIS OF THE A5/1

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

⊕
⊕

⊕
R3

KS

0

0

021

18

20

22

21

R1

R2

17 16 13

20 7

⊕ ⊕

⊕⊕⊕

8

10

10

Encrypt2

Encrypt1

Encrypt0

⊕
⊕

⊕
R3

KS

0

0

020

18

19

22

21

R1

R2

15 4

6

⊕ ⊕

⊕⊕ ⊕

8

10

10

⊕ ⊕

2

Figure 5.1: The Suggested Variants of the A5/1

Bibliography

[1] Anderson, R., A5 (was: Hacking digital phones),
http://yarchive.net/phone/gsmcipher.html, Newsgroup Communication,
1994.

[2] Babbage, S., A Space/Time Tradeoff in Exhaustive Search Attacks on Stream
Ciphers, European Convention on Security and Detection, 1995.

[3] Barkan, E., Cryptanalysis of Ciphers and Protocols, PhD Research Thesis, Israel
Institute of Technology, Haifa, 2006.

[4] Barkan, E., Biham, E., and Keller, N., Instant Ciphertext-only Cryptanalysis
of GSM Encrypted Communication, Technical Report CS-2006-07, Technion,
2006.

[5] Biham, E. and Dunkelman, O., Cryptanalysis of the A5/1 GSM Stream Cipher,
In Proc. of Indocrypt’00, vol 1977 of LNCS. Springer-Verlag, 2000.

[6] Biryukov, A., Shamir, A. and Wagner, D., Real Time Cryptanalysis of A5/1 on
a PC, In Proc. of FSE’00, vol 1978 of LNCS, pp 1-18. Springer-Verlag, 2001.

[7] Briceno, M., Goldberg, I., and Wagner, D., A Pedagogical Implementa-
tion of the GSM A5/1 and A5/2 “voice privacy” Encryption Algorithms,
http://cryptome.org/gsm-a512.html, 1999.

[8] Donald, E., Introduction to Combinatorial Algorithms and Boolean functions.
The Art of Computer Programming. 4.0, Upper Saddle River, NJ: Addison-
Wesley. pp 64-74. ISBN 0321534964, 2008.

[9] ECRYPT, Call for Stream Cipher Primitives, available online at
http://www.ecrypt.eu.org/stream/call

[10] Ekdahl, P. and Johansson, T., Another Attack on A5/1, IEEE Transactions on
Information Theory, 49(1), pp 284-289, 2003.

[11] Erguler, I., and Anarim, E., A Modified Stream Generator for the GSM En-
cryption Algorithms A5/1 and A5/2, EUSIPCO, 2005.

47

48 BIBLIOGRAPHY

[12] Gendrullis, T., Hardware-Based Cryptanalysis of the GSM A5/1 Encryption
Algorithm, Diploma thesis, Ruhr-University Bochum 2008.

[13] Gendrullis, T., Novotny, M., and Rupp, A., A Real-World Attack Breaking A5/1
within Hours, Proc. of CHES’08, vol 5154 of LNCS, pp 266-282. Springer-Verlag,
2008.

[14] Golic, J., Cryptanalysis of Alleged A5 Stream Cipher, In Proc. of Eurocrypt’97,
vol 1233 of LNCS, pp 239-255. Springer-Verlag, 1997.

[15] Golomb, S., Shift Register Sequences, San Francisco, Holden-Day, ISBN
08941220484, 1967.

[16] Hellman, D., A Cryptanalytic Time-Memory Tradeoff, IEEE Trans. on Info.
Theory, vol 26, pp 401-406, 1980.

[17] Hillebrand, Friedhelm, GSM and UMTS: The creation of Global Mobile Com-
munication, Wiley 2002, ISBN 0470843325.

[18] Kasper, E., Complexity Analysis of Hardware-Assisted Attacks on A5/1, Mas-
ter’s Thesis, University of Tartu, 2006.

[19] Keller, J., and Seitz, B., A Hardware-Based Attack on the A5/1 Stream Cipher,
http://pv.fernuni-hagen.de/docs/apc2001-final.pdf, 2001.

[20] Kostopoulos, G., Sklavos, N., Galanis, M., and Koufopavlou, O., VLSI Imple-
mentation of GSM Security: A5/1 and W7 Ciphers, In Proc. of IEEE Workshop
on Wireless Circuits and Systems (IEEE WoWCAS’04), Canada, 2004.

[21] Marsaglia G., DIEHARD: a battery of tests of randomness, Available online at
http://stat.fsu.edu/ ego/diehard.html, 1996.

[22] Maximal Length tap Sequences, available online at
http://homepage.mac.com/afj/taplist.html

[23] Maximov, A., Johnasson, T. and Babbage, S., An Improved Correlation Attack
on A5/1, In Proc. of SAC’04, vol 3357 of LNCS, pp 239-255. Springer-Verlag,
2005.

[24] Menezes, A., van Oorschot, P., and Vanstone, S., Handbook of Applied Cryp-
tography, CRC Press, 1997.

[25] National Institute of Standards and Technology (NIST), Available online at
http://csrc.nist.gov/groups/ST/toolkit/rng/batteries stats test.html

[26] Paar, C., and Pelzl, J., Understanding Cryptography: A Textbook for Students
and Practitioners, Springer 2010, ISBN 9783642041006

BIBLIOGRAPHY 49

[27] Pornin, T., and Stern, J., Software-hardware Trade-offs: Application to A5/1
Cryptanalysis, Proc. of CHES’00, vol 1965 of LNCS, pp 318-327, Springer-
Verlag, 2000.

[28] Schneier, B., Applied Cryptography: Protocols, Algorithms and Source Code in
C, Wiley 2009, ISBN 9788126513680

[29] Stamp, M., and Low, R., Applied Cryptanalysis: Breaking Ciphers in the Real
World, Wiley 2007, ISBN 9780470114865

[30] Zenner, E., Stream Cipher Criteria, eSTREAM ECRYPT, Report 2006/032,
2006, http://www.ecrypt.eu.org/stream

