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Abstract

An unsteady 3-D Panel method has been employed to study thdyaamics of a finite
span wing. The wing is unhinged and is pitching about theequatord line as it is moving
in the forward direction. The panel method is used to extifaetioads on the wing and
also to capture the wakes generated by the wing as it exegiitbing. The advantages of
the panel method visa vie other methods are also summeiiedforces on the wing are
plotted with respect to time, from which the propulsive éfficy is calculated. The free
wake is simulated by a lattice of shed and trailing vortiddse wakes are plotted becplot
and compared with plots given in literature. The wake shagpesrated by the code for the

wing in time dependent motion agrees well with the resultaioled in literature.
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1 Introduction

Studying the unsteady aerodynamics of a wing in time dep#ndetion is essential to un-
derstand the aerodynamic performance. For wings in tinpefigant motion, unsteadiness
in the flow is caused by the shed vorticity and temporal charfigee wake geometry. The
cyclic variation of the free stream velocities relative te tving due to the cyclic modula-

tion of the blade pitch introduces an unsteadiness in the flow

Some of the methods used to study unsteady aerodynamicsraeentum method,
blade-element method, hybrid momentum (or vortex) methiidg-line method, 2-D thin
airfoil method and lifting-surfaces(or vortex lattice) thed. Unfortunately, existing meth-
ods of the unsteady aerodynamics of the flapping wing areti@ned. Describing each
of the methods in detail will encompass the thesis, but imbrstrokes current theory and
research on flapping flight(in general)is characterizedapydrreversals in stroke direction
and in wing rotation which result in gross movements ofrliftsurfaces, and produces the
necessary aerodynamic forces for flight in a highly efficanner. The need of the hour
is a method which accommodates both trailing vortex effants wing force resolution in
a detailed mannérA general problem, therefore, with existing methods is Wigte some
can detail vortex effects and others can accommodate wieg fesolution, not one of the
methods reviewed above is capable of detailing both. Famele, the hybrid method has
no detailed wake or detailed force resolution, the liftimge method has no detailed wake
resolution, is valid only for small displacements and hasletailed force resolution, and
the prevailing lifting-surface method has no detailedfneke analysis. Given the need to
model the relavent aerodynamic forces on pitching/flappiimgs, and the disadvantages
of prevailing aerodynamic methods, the present study ashga type of liftingsurface

method known as an unsteady aerodynamic panel method.



2 Theory

The theory underlying my work is as follows:

Fundamental principles of aerodynamics : definitions, varables, dimensional analysis

2.1 Fundamentals in Aerodynamics

Aerodynamics describes the dynamics of gases, especially atmosphégi@ations with
moving objects. The quantities which are most frequentgdus aerodynamics are as fol-

lows

Pressure

Density

Temperature

Velocity

Shear stresses

Pressure is the normal force per unit area exerted on a surface dueettrtte rate change

of the momentum of the gas molecules impacting on (or crassosg that surface.

_dF
P=Ya

Density is the mass per unit volume. It is a point property that cay fram point to point.

(1)

v = element volume around a point in a fluid

dm = mass of the fluid element

_dm

S dv

Temperatureis the average kinetic energy of the molecules of the Flyidalys an important

p (2

role in high speed aerodynamics.



Flow Vel ocity is the velocity of a flowing gas at any fixed point in space aitffiaitesimally
small fluid element as it sweeps through the poihear Sressis defined as follows.

_dr
- dA

F is the tangential force on a particular streamline

3)

T

2.2 Aerodynamic Forces

The aerodynamic forces are due to 2 main basic sources:

1. Pressure distribution over the body surface(p)

2. Shear stress distribution over the body surfac(

Pressure acts normal to the surface whereas the shearattesangential to the surface.
The net effect of the p and tau distributions integrated ehercomplete body surface is
a resultant aerodynamic force R and moment M on the body.rim the resultant R can
be split into components, Lift(L) and Drag(D). If V is the ative wind defined as the flow
velocity far away from the body(free stream). Hencg M called thefree stream vel ocity.
Lift is the component of R perpendicular tqV

Drag is the component of R parallel to.V

Moment is the torque due to the aerodynamic forces, whickneglly taken about a point

on the airfoil.

2.3 Dimensional Analysis

This section is mainly intended to enunciate the variousetisionless quantities in aero-
dynamics. The focus is on how we go about deriving them anal stieds light on the

importance of each in aerodynamics.

The aerodynamic forces and moments on a body have beenlbsatiove, we now
need to determine the physical quantities that determieevdniation of these forces and
moments. The same is done throuwdjimensional analysis.

Consider a body of a given shape at a given angle of attack.r@hdtant aerodynamic

force is R. On a physical intuitive basis, we expect R to ddpman

10



1. Freestream Velocity.

2. Freestream densigy

3. Viscosity of the fluidu,.

4. The size of the body, represented by some chosen refelemglet. The convenient
lenght used here is the chord lenght c.

5. The compressibility of the fluid. The compressibility bétfluid is related to the speed
of sound a,.

We can (without any a priori knowledge) write the variatidrRoas the following

R= f(pa chncnuooaa'oo) (4)

Measuring the variation of R due 9V, ¢, i, as Will take a very long time. For this
reason the method of dimensional analysis is employed, #tkad defines a set of dimen-
sionless parameters that govern the aerodynamic forcesnantents. This will consider-

ably reduce the number of independent variables.

2.3.1 Buckingham pi Theorem

Let K equal the munber of fundamental dimensions requiretkszribe the physical vari-
ables (K=3 as in mechanics all physical variables can beesgpd in terms of mass, lenght

andtime), LetP, P, P, ....., Py represent the N physical variables in the physical relation

fi(P1, Py, Ps,.....; Py) =0 (5)

the above physical relation may be reexpressed as a refatiditK dimensionless prod-

ucts calledI products,

f2(7T1,7T2 ...... ,WN):O (6)

As K =3 and N=6, we get N-K = 3 dimensionless numbers. Thesexeusrdescribe all that
we have to know regarding the aerodynamic forces. Thus, we tealuced the number of
independent variables from 5 to 2. The 3 dimensionless nwswived from this theorem

are

11



1. Reynolds numbéRe = p x V. * ¢/ ioo)

2. Mach numbeiM =V, /as)

3. Force coefficientCr = R/0.5 % p x V2 % S)

Now, if we wish to run a series of wind-tunnel tests for a gibery at a given angle of
attack, we need only to vary the Reynolds and Mach numbensigr ¢o obtain data for the

direct formulation of R through the equation

Cr = f(Re, M). 7)

This analysis was for a given shape at a given angle of attalCkx is allowed to vary,
then G,, Cp, C,, will in general depend on the value af hence
Cr =f(Re, M, o) Wwhere(C, = L/0.5% px V2 x S)
Cp =f(Re, M, o) where(Cp = D/0.5% p* V2 % S)
Cu =f(Re, My, ) where(Cyy = M/0.5% px V2 % S x1)
Much of theoretical and experimental aerodynamics is focused on obtaining explicit
expressions for the above quantitieghe above are strictly NOT equations. They define
the quantities such a8, Cp etc. They depend primarily on angle of attack once the
shape is fixed. In any one experiment, it would be possiblestacgmplete dependence
of these quantities with angle of attackoy merely varying speed, for instance. Once the
dependence curve is obtained, it represents behaviourlfsga number of combinations

of speed, density etc.(for specific body shapes).

2.4 Governing equations for irrotational, incompressibleflow
Continuity Equation :
The continuity equation is given by:

dp B
E—FV(p'V)—O (8)

If p is constant then the equation becomes,
V- V=0 9

12



From continuity equation, we get,
V- V=0 (10)

For an irrotational flowy x V' = 0. Hence, a velocity potentigl can be defined such that
V=V¢ (11)

Both the above equations combine to give

V=0 (12)
The above equation is called the Laplace equation. By theeabquation, we conclude
that
1.Any irrotational, incompressible flow has a velocity putal that satisfies the Laplace’s
equation.
2.Conversely, any solution of Laplace’s equation reprisstre velocity potential for an

irrotational and incompressible flow.

2.5 Superposition of elementary flows

In this section, we present the first of a series of element@gmpressible flows that later
will be superimposed to synthesize more complex incomgesiows. Some elementary
flows used in this presentation are given below,

1. Uniform Flow

If ¢ is the velocity potential, then for a uniform flow is given by:

¢ = Voo + const. (13)

2. Source Flow
Source flow is a 2-D incompressible flow where all the strea@sliare straight lines ema-
nating from a central point. Source flow is a physically pbkesincompressible flow, that

is V.V =0 at every point except origin and is irrotational at gveoint.

A

6= otn(r) (14)

13



3. Doublet Flow

A source-sink pair that leads to a singularity is called aldetflow.

k cosf
o=——""

27 (15)
4. Vortex Flow

Consider a flow where all the streamlines are concentritesirabout a given point. More-
over, let the velocity along any given circular streamliredonstant, but let it vary from
one streamline to another inversely with distance from tmaraon center. Such a flow is
called a vortex flow. A vortex flow is a physically possible flswch thatv. V = 0 at all

points andV x V' = 0 at all points except origin.

¢ =——1In(r). (16)

2.6 Circulation

Circulation is the line integral of velocity around a closadve in the flow. It is denoted
by I'. If Vis the fluid velocity on a small element of a defined curaed dl is a vector rep-
resenting the differential length of that small elemeng tntribution of that differential

length to circulation is :

rz]{v-dz (17)

2.7 Kutta-Joukowski Theorem

The lift force acting per unit span on a body in a two dimenalonvisid flow field can be
expressed as the product of circulatibpébout the body, the fluid densip)(and the speed

of the body relative to the free stream(V).

lift = pVT (18)

14



2.8 Biot-Savart Law

If the strength of the vortex filament is definedIggirculation). Consider a directed seg-
ment of the filament dl. The radius vector from dl to an arlpytq@oint P in space isr. The

segment dl induces a velocity at P equal to

Ldlxr

s r|?

av

(19)

2.9 Helmholtz’'s vortex theorem

In an inviscid, incompressible flow:
1. The strength of a vortex filament is constant along itsténg
2. A vortex filament cannot end in a fluid; it must extend to tlo@rfdaries of the fluid

(which can betoo)or form a closed path.

2.10 Propulsive efficiency

For a wing which is flapping, the propulsive efficiency is givey:

Unsteady aerodynamics: Thrust generation, lift generatia, propulsive efficiency:"%?

15



3 Description of the Method: Unsteady Panel Method

Introduction

The unsteady aerodynamic panel method or a classical bouelganent method, relies on
developing a distribution of source and doublet singuksibn wing and body surfaces,
and doublet singularities to represent the lifting surfade date, the panel method has
been used, almost exclusively, to analyze the aerodynasnied on aircraft(Ashley and
Landahl, 1985;Ashby et al. 1988;Katz and Plotkin, 1991)e Thsteady panel method is
based on potential theory which assumes non-viscous flenks¢z and Plotkin, 1991).
Engineers have established that the advantages of the ipatiebd are that it accommo-
dates the detailing of the trailing wake, includes dynarffieots and includes those effects
in a distributed manner (in resonable time). Moreover, theghb method is also capable
of accommodating flexibility and interference effects. Saclvantages render the panel
method more useful than other prevailing methods when amaj\the aerodynamic forces

on flapping wing in the preliminary design phase of aerospaoéigurations.

Figure 1: Panels on the wing surfate

16



3.1 Governing equations and boundary conditions

Taken from-S.R.Ahmed, V. T. Vidjaja: Numerical simulatiohsubsonic unsteady flow around wings and
rotors. AIAA-94-1943-CP
Consider a body moving through an incompressible and imd/isow, with respect to a

body fixed frame of reference, let the body surface be given by
Sp=0 (21)

It is assumed that the flow remains attached everywhere obhdtlg surface expcept at
known and well defined locations such as the trailing edge SEparated flow containing
vorticity is confined to sheets of zero thickness which comeoeeat the trailing edge. If the
motion of the body starts from a state of rest, then the flutdreval to the body and wake
remains irrotational for all subsequent times. The goveymiquations for the velocity po-

tential is the Laplace equation.

V20(r,t) =0 (22)

which is always linear. The velocity potential is deterntiseibject to the following bound-
ary conditions

1. Far away from body or the wake, the fluid is undisturbed ab th

2. The body surface;Ss a stream surface, i.e. the normal component of the totatirg

on the body surface at any instant of time is equal to zero.
[VO(r,t) — Vi(r,t)].n(r,t) = 0onSy(r) =0 (23)

3. Kutta-Joukowski condition of finite fluid velocity at theatling edge at all times expect
the starting instant.

4. Since the wake cannot sustain any load, the pressuresatmasst br continuous.

From Green'’s theoretit follows that any solution of Laplace’s equation can beregged

in an integral form over the boundary surfage \Bhere the surface is replaced by singular-

ity distribution of unknown strength:

@P(t):—1/47r[//T(Sfp)aq)éi’“ds—//@(s,t)%(r(;’m)dﬂ (24)

17



Here®, is the potential at any point P.

The term ~ under the first integral in the above equation is the velosdymal to the

surface S. The argument of the first integral can thus bepreted as the potential of a
: : 0P .

three-dimensional source of strengthz>:

o(S,1t)

(81) = "~ 4mr(S, P)

(25)

Similarly the argument of the second integral in equati@h(&n be interpreted as the po-

tential of a 3-D doublet of strengii=:

w(s,t) o 1
4 8n(r S, P) ) (26)

:—1/47r// (S, 1) SPdS // SP))dS] (27)

The above equation represents a general solution of theatam@quation. To render

®y(S,1) =

the solution unique, additional conditions for physicslué flow under study have to be

invoked.

Consider now for example the flow around a wing, a source/diskibution can be
placed over the wing surface(Figurel). This simulates thitefthickness of the wing pro-
file. The wing profile is extended by a small amount at theitrgiedge along the tangent
to the mean line. If the thickness of this extension is caléapto zero, then the source/sink
distribution on this extended trailing edge is transfornréd a doublet distribution. Fol-
lowing the concept of Kradsthis doublet distribution is continued inside the profilera
the mean line, its strength decreasing to zero at the leadigg. The variation of the dou-
blet strength between zero at the leading edge and a finitgetasnknown value at the
trailing edge is arbitrary. With this artifice large gradi®im singularity strengths at the

trailing edge and associated problems during the numesadation are avoided.

3.2 Numerical Interpretation

The numerical procedure is as follows: the wing is dividad iimite surface elements(we

call them panels)such that th€S, t) andu(S, t) are finite but constant in each panel. The

18
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Surface Panels, Control Points,
and normails to the surface

Figure 2: Surface Panl

strengths vary from panel to panel depending on the bounctanglitions. Additionally,

the equivalence of constant strength doublet panels aridxwongs is used to replace the
doublet panels of strengti by vortex rings of same strengjhplaced on the perimeter
of the doublet panels. Induced velocities for a quadrildtdoublet panel are then , for
example, calculated from the four vortex line filaments atpghnel edge using Biot-Savart

law. Substituting equation(35) in equation(31) one olstain

V(—1/47T[//U(Sb,t)ﬁdS—//,u(Sw,t)a%(r(;,P))dS])-np(r):Vp(r,t)-nP(r)
(28)

If the wing surface $is discretized by m plane surface elements and the inteuntsce

S, by m’ plane surface elements, it follows from the equatios) (3

V-1l ot | [sames-Xuo [ [ e g g S myr) = Vil }mer).

(29)

Here S denotes the area, and . the source/sink or circulation strength of an element j

respectively. The wing surfacg 8nd internal mean surface, $ave been approximated as

S~y S, (30)
j=1
k

Sur Y S (31)

<
Il
3
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with

n=m+l

kK=m+m’

The velocity V, is the net velocity experienced by the point P due to all théone of the

wing. For example for a wing in forward motion,\has basically two components:

Vp(r,t) = Voo (t) + Vo(r, t) (33)

where Wt is the translational velocity and.\s the resultant of the pitching and plung-
ing velocity. For a rigid blade in forward flight, based on limogeometry, flight conditions
and control inputs, the terms on right hand side of the eqoétil) are known. Futher,
with known blade geometry and the chosen surface disctietizahe integrals on the left
hand side of equation(36) as well as the direction of uninrarvectors ncan be evalu-
ated.Imposing equation(36) at a number of discrete poirds the body and Kutta panel
surface leads to a system of linear algebraic equations evitestive solution gives the
strength of the singularities and ;. for each of the generic points P at a time instant t.
As mentioned earlier, the variation of circulation stréngh the profile mean line is pre-
scribed. The circulation strength of the Kutta panel is sgtia¢to that at the trailing edge.
Once the Kutta panel strength is known the relative strengthall vortex panels on the
mean surface are known. The number of unknowns is thus egjtia¢ thumber of surface
elements (panels)on the body surface plus the number & gatiels. Equation(35) is sat-
isfied at one collocation point per panel.
The calculation proceed in the following manner: At time t /e body or the rotor is
impulsively started from rest from a given initial positiohhis means that the right hand
side of equation(36) is evaluated with full values of \nd V.. At this instant there is no
wake present. With the solution of the system of equatio6s48d (37), the strength of the
singularities on the wing surface and circulation strerajthortex rings on Kutta panels is
known. Using these singularities, the induced velocittab@downstream corner points of
the Kutta panel are evaluated. A straight vortex elemerglesased now from the trailing
edge of each Kutta panel. The ends of this vortex element akednwith calculated in-

duced velocities plus the velocity components due to tediosi, rotation and other motions

20



of the body or the wing over a time intervalt. This vortex filament, together with the so
created downstream segments and the Kutta panel trailige, @mprises a quadrilateral
ring vortex. This row of vortex panels released from the &yianels is the first increment
of the blade wake. The distortion of the wake is effected ey dtifering velocities with
which the end points of the released vortex flaments movece@nrow of vortex panels
has been assigned a certain spanwise variation of ciroalathe circulation distribution
for this particular row of panels remains constant as theewsnels move and distort in
space. For the next time step, the system of equations deddra equation(37) is solved
anew, taking into consideration now the induction of thet ficsv of vortex panels at all
collocation points. This process is repeated until the &agramics converge to a desired
behaviour.With each time step the number of vortex panetgxising the wake grows and

with it the number of Biot-Savart operations to compute tlaavinduced velocities.

3.3 Pitching wing

An unsteady 3-D panel code is modified to simulate an unhingid wing with symmet-

ric NACA 0012 airfoil is translating and pitching simultamesly. The airfoil and wake
coordinates are rotated in a prescribed manner aboout #terqrord line of the wing. The
wing is positioned with an® The wing oscillated about the given angle of incidence with

an amplitude of 2.75 The angle of attack at a given instant is given by:

a(t) = ap + asin(ft) (34)

with « the initial incidencea the amplitude of angular oscillation, f the oscillation-fre
guency and t the time. To validate the code, the unsteadytsdeuf = 0 were compared
with results computed by a seperate steady solver. Thetsasaltch closely suggesting
that the code is accurate. After validating the code, themgations were done for two
frequencies f = 0.21 and f = 0.42. The computation was run @@rtime steps with a step
size of 30. The resulting wake develpoment was plotted in tecplot.eAfhe data was

extracted the propulsive efficiency was calculated in easle.c

21



3.4 Results

First, to validate the code the results were computed far giéch(no pitching-steady case),
the same were compared with another program which compatasfar steady cases. In
short, an unsteady solver is compared to a steady solveh tBetresults are supposed to
match as the unsteady solver is forced to compute for zech(sdme as a steady case). As
table 1(page 20) suggests, data aquired from both the soonateh validating the unsteady

code.

In the next few pages, the results of the computed resulidamemented. The contents
of the data extracted are as follows:
1. The plots of G, Cy, Cys VS time.
2. The propulsive efficiency calulated for each case.
3. The wake plot generated in tecplot.

Table 1: comparison between steady and unsteady code

unsteady| unsteady steady | steady
angle of attack Cy C, Cx C,
1.0 0.00089 | 0.0789 | 0.00101| 0.08
2.0 0.00378 | 0.0789 | 0.00101| 0.08
-1.0 0.000904| 0.0799 | 0.00102| 0.081
-2.0 0.00379 | 0.15923 | 0.004 | 0.162

As seen in the table, the unsteady data agrees very well hatlsteady data. Thus,

validating the code.

3.4.1 Propulsive Efficiency

For a wing which is flapping, the propulsive efficiency is givey:

For a wing which is only pitching;=0

(a)Propulsive Efficiency for frequency = 0.21

22



Cr=0.042(Figure 3)
C=0.125(Figure 4)

n=52.36
(b)Propulsive effiency for frequency = 0.42
C_T:OO42
Cy =0.125
n=26.18
CA vs time for f=0.21
0.8
0.7 t— —f— — T ———
0.6
DIS + |
3 o4
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0.2 &
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0.1 3
0
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Figure 3: C, vs time for f=0.21
CW vs time for f=0.21
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Figure 4: Gy vs time for f=0.21
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CM vs time for f=0.21
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Figure 5: G, vs time for f=0.21
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Figure 6: G, vs time for f = 0.42
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Figure 7: Gy vs time for f = 0.42
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CM vs time for f=0.42
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Figure 8: G, vs time for f = 0.42
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Figure 9: C, vs time superposition of f = 0.21 and f=0.42
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Figure 10: Gy vs time superposition of f=0.21 and f=0.42
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Figure 11: G, vs time for f = 0.21 and f =0.42
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Figure 12: G; vs time : comparison with the steady code
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Figure 13: G vs time : comparison with the steady code
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Figure 14: G, vs time : comparison with the steady code

Figure 15: wake plot for f = 0.21

Figure 16: wake plot for f = 0.42
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4 Summary

1. An airfoil which is exposed to steady wind and which exeswinusoidal pitching or
plunging can generate thrust similar to a flapping bird wing pitching fish tail.

2. The vortical signature of this thrust is a karman vortegedtin reverse.

3. When an airfoil executes pitching, it produces a net aofgtack. As it executes pitch-
ing, there is a constant creation and shedding of vorticdss fesults in a normal force
vector with both thrust and lift components, the behaviovatices determine the lift and
thrust forces.

4. The unsteady panel code is advantages compared to threnmthieods as it can capture
both the loads on the wing and the wake vortices generatezhsonable time

5. why study wakes: The wakes impinge objects(trailingdugiter blade etc.) and thus
affect the aerodynamics and inturn the propulsive effigieafche trailing airfoil.

6. The change in the vortex dynamics over/around the awfiildetermine how the Lift
and thrust coeff. change with time.

7. The wakes plotted in tecplot agree well with those founkténature.
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5 Future Study

In future, | plan to investigate the aerodynamics of the ging airfoil. | also plan to study
a 2 wing system, in which we study the effects of the vorticasagated by the leading wing
on the trailing wing(Blade vortex interaction). By studgithe above, other phenomenon

like hovering (with regard to dragon fly flight) can be looked at.
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