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Abstract

An unsteady 3-D Panel method has been employed to study the aerodynamics of a finite

span wing. The wing is unhinged and is pitching about the quater chord line as it is moving

in the forward direction. The panel method is used to extractthe loads on the wing and

also to capture the wakes generated by the wing as it executespitching. The advantages of

the panel method visa vie other methods are also summerized.The forces on the wing are

plotted with respect to time, from which the propulsive efficiency is calculated. The free

wake is simulated by a lattice of shed and trailing vortices.The wakes are plotted intecplot

and compared with plots given in literature. The wake shapesgenerated by the code for the

wing in time dependent motion agrees well with the results obtained in literature.
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1 Introduction

Studying the unsteady aerodynamics of a wing in time dependent motion is essential to un-

derstand the aerodynamic performance. For wings in time-dependant motion, unsteadiness

in the flow is caused by the shed vorticity and temporal changeof the wake geometry. The

cyclic variation of the free stream velocities relative to the wing due to the cyclic modula-

tion of the blade pitch introduces an unsteadiness in the flow.

Some of the methods used to study unsteady aerodynamics are :momentum method,

blade-element method, hybrid momentum (or vortex) method,lifting-line method, 2-D thin

airfoil method and lifting-surfaces(or vortex lattice) method. Unfortunately, existing meth-

ods of the unsteady aerodynamics of the flapping wing are constrained. Describing each

of the methods in detail will encompass the thesis, but in broad strokes current theory and

research on flapping flight(in general)is characterized by rapid reversals in stroke direction

and in wing rotation which result in gross movements of lifting surfaces, and produces the

necessary aerodynamic forces for flight in a highly efficientmanner. The need of the hour

is a method which accommodates both trailing vortex effectsand wing force resolution in

a detailed manner.1 A general problem, therefore, with existing methods is thatwhile some

can detail vortex effects and others can accommodate wing force resolution, not one of the

methods reviewed above is capable of detailing both. For example, the hybrid method has

no detailed wake or detailed force resolution, the lifting-line method has no detailed wake

resolution, is valid only for small displacements and has nodetailed force resolution, and

the prevailing lifting-surface method has no detailed free-wake analysis. Given the need to

model the relavent aerodynamic forces on pitching/flappingwings, and the disadvantages

of prevailing aerodynamic methods, the present study advances a type of liftingsurface

method known as an unsteady aerodynamic panel method.
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2 Theory

The theory underlying my work is as follows:

Fundamental principles of aerodynamics : definitions, variables, dimensional analysis

2.1 Fundamentals in Aerodynamics

Aerodynamics describes the dynamics of gases, especially atmospheric interactions with

moving objects. The quantities which are most frequently used in aerodynamics are as fol-

lows

• Pressure

• Density

• Temperature

• Velocity

• Shear stresses

Pressure is the normal force per unit area exerted on a surface due to the time rate change

of the momentum of the gas molecules impacting on (or cross section) that surface.

p =
dF

dA
(1)

Density is the mass per unit volume. It is a point property that can vary from point to point.

ν = element volume around a point in a fluid

dm = mass of the fluid element

ρ =
dm

dν
(2)

Temperature is the average kinetic energy of the molecules of the Fluid.It plays an important

role in high speed aerodynamics.
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Flow Velocity is the velocity of a flowing gas at any fixed point in space ai theinfinitesimally

small fluid element as it sweeps through the point.Shear Stress is defined as follows.

τ =
dF

dA
(3)

F is the tangential force on a particular streamline

2.2 Aerodynamic Forces

The aerodynamic forces are due to 2 main basic sources:

1. Pressure distribution over the body surface(p)

2. Shear stress distribution over the body surfac(τ )

Pressure acts normal to the surface whereas the shear stressacts tangential to the surface.

The net effect of the p and tau distributions integrated overthe complete body surface is

a resultant aerodynamic force R and moment M on the body. In turn, the resultant R can

be split into components, Lift(L) and Drag(D). If V is the relative wind defined as the flow

velocity far away from the body(free stream). Hence V∞ is called thefree stream velocity.

Lift is the component of R perpendicular to V∞.

Drag is the component of R parallel to V∞.

Moment is the torque due to the aerodynamic forces, which is generally taken about a point

on the airfoil.

2.3 Dimensional Analysis

This section is mainly intended to enunciate the various dimensionless quantities in aero-

dynamics. The focus is on how we go about deriving them and also sheds light on the

importance of each in aerodynamics.

The aerodynamic forces and moments on a body have been described above, we now

need to determine the physical quantities that determine the variation of these forces and

moments. The same is done throughdimensional analysis.

Consider a body of a given shape at a given angle of attack. Theresultant aerodynamic

force is R. On a physical intuitive basis, we expect R to depend on:
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1. Freestream VelocityV∞.

2. Freestream densityρ.

3. Viscosity of the fluidµ∞.

4. The size of the body, represented by some chosen referencelenght. The convenient

lenght used here is the chord lenght c.

5. The compressibility of the fluid. The compressibility of the fluid is related to the speed

of sound a∞.

We can (without any a priori knowledge) write the variation of R as the following

R = f(ρ, V∞, c, µ∞, a∞) (4)

Measuring the variation of R due toρ, V∞, c, µ∞, a∞ will take a very long time. For this

reason the method of dimensional analysis is employed, the method defines a set of dimen-

sionless parameters that govern the aerodynamic forces andmoments. This will consider-

ably reduce the number of independent variables.

2.3.1 Buckingham pi Theorem

Let K equal the munber of fundamental dimensions required todescribe the physical vari-

ables (K=3 as in mechanics all physical variables can be expressed in terms of mass, lenght

and time), Let P1, P2, P3, ....., PN represent the N physical variables in the physical relation.

f1(P1, P2, P3, ....., PN) = 0 (5)

the above physical relation may be reexpressed as a relationfor N-K dimensionless prod-

ucts calledΠ products,

f2(π1, π2......, πN ) = 0 (6)

As K = 3 and N=6, we get N-K = 3 dimensionless numbers. These numbers describe all that

we have to know regarding the aerodynamic forces. Thus, we have reduced the number of

independent variables from 5 to 2. The 3 dimensionless numbers derived from this theorem

are
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1. Reynolds number(Re = ρ ∗ V∞ ∗ c/µ∞)

2. Mach number(M = V∞/a∞)

3. Force coefficient(CR = R/0.5 ∗ ρ ∗ V 2

∞
∗ S)

Now, if we wish to run a series of wind-tunnel tests for a givenbody at a given angle of

attack, we need only to vary the Reynolds and Mach numbers in order to obtain data for the

direct formulation of R through the equation

CR = f(Re, M). (7)

This analysis was for a given shape at a given angle of attackα.Ifα is allowed to vary,

then CL, CD, CM will in general depend on the value ofα, hence

CL = f(Re, M∞, α) where(CL = L/0.5 ∗ ρ ∗ V 2

∞
∗ S)

CD = f(Re, M∞, α) where(CD = D/0.5 ∗ ρ ∗ V 2

∞
∗ S)

CM = f(Re, M∞, α) where(CM = M/0.5 ∗ ρ ∗ V 2

∞
∗ S ∗ l)

Much of theoretical and experimental aerodynamics is focussed on obtaining explicit

expressions for the above quantitiesThe above are strictly NOT equations. They define

the quantities such asCL, CD etc. They depend primarily on angle of attack once the

shape is fixed. In any one experiment, it would be possible to get complete dependence

of these quantities with angle of attackα by merely varying speed, for instance. Once the

dependence curve is obtained, it represents behaviour for alarge number of combinations

of speed, density etc.(for specific body shapes).

2.4 Governing equations for irrotational, incompressibleflow

Continuity Equation :

The continuity equation is given by:

∂ρ

∂t
+ ∇(ρ · V ) = 0 (8)

If ρ is constant then the equation becomes,

∇ · V = 0 (9)
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From continuity equation, we get,

∇ · V = 0 (10)

For an irrotational flow,∇× V = 0. Hence, a velocity potentialφ can be defined such that

V = ∇φ (11)

Both the above equations combine to give

∇2φ = 0 (12)

The above equation is called the Laplace equation. By the above equation, we conclude

that

1.Any irrotational, incompressible flow has a velocity potential that satisfies the Laplace’s

equation.

2.Conversely, any solution of Laplace’s equation represents the velocity potential for an

irrotational and incompressible flow.

2.5 Superposition of elementary flows

In this section, we present the first of a series of elementaryincompressible flows that later

will be superimposed to synthesize more complex incompressible flows. Some elementary

flows used in this presentation are given below,

1. Uniform Flow

If φ is the velocity potential, thenφ for a uniform flow is given by:

φ = V∞x + const. (13)

2. Source Flow

Source flow is a 2-D incompressible flow where all the streamlines are straight lines ema-

nating from a central point. Source flow is a physically possible incompressible flow, that

is∇. V = 0 at every point except origin and is irrotational at every point.

φ =
Λ

2π
ln(r) (14)
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3. Doublet Flow

A source-sink pair that leads to a singularity is called a doublet flow.

φ =
k

2π

cosθ

r
(15)

4. Vortex Flow

Consider a flow where all the streamlines are concentric circles about a given point. More-

over, let the velocity along any given circular streamline be constant, but let it vary from

one streamline to another inversely with distance from the common center. Such a flow is

called a vortex flow. A vortex flow is a physically possible flowsuch that∇. V = 0 at all

points and∇× V = 0 at all points except origin.

φ = −
Γ

2π
ln(r). (16)

2.6 Circulation

Circulation is the line integral of velocity around a closedcurve in the flow. It is denoted

by Γ. If V is the fluid velocity on a small element of a defined curve,and dl is a vector rep-

resenting the differential length of that small element, the contribution of that differential

length to circulation is :

Γ ≡

∮
V · dl (17)

2.7 Kutta-Joukowski Theorem

The lift force acting per unit span on a body in a two dimensional invisid flow field can be

expressed as the product of circulation(Γ) about the body, the fluid density(ρ) and the speed

of the body relative to the free stream(V).

lift = ρV Γ (18)
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2.8 Biot-Savart Law

If the strength of the vortex filament is defined asΓ(circulation). Consider a directed seg-

ment of the filament dl. The radius vector from dl to an arbitrary point P in space is r. The

segment dl induces a velocity at P equal to

dV =
Γ

4π

dl × r

|r|3
(19)

2.9 Helmholtz’s vortex theorem

In an inviscid, incompressible flow:

1. The strength of a vortex filament is constant along its lenght.

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid

(which can be±∞)or form a closed path.4

2.10 Propulsive efficiency

For a wing which is flapping, the propulsive efficiency is given by:

η = C̄T /(ż.C̄L + C̄M . ¯̇α) (20)

Unsteady aerodynamics: Thrust generation, lift generation, propulsive efficiency6,7,8,9
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3 Description of the Method: Unsteady Panel Method

Introduction

The unsteady aerodynamic panel method or a classical boundary element method, relies on

developing a distribution of source and doublet singularities on wing and body surfaces,

and doublet singularities to represent the lifting surface. To date, the panel method has

been used, almost exclusively, to analyze the aerodynamic forces on aircraft(Ashley and

Landahl, 1985;Ashby et al. 1988;Katz and Plotkin, 1991). The unsteady panel method is

based on potential theory which assumes non-viscous flow(see Katz and Plotkin, 1991).

Engineers have established that the advantages of the panelmethod are that it accommo-

dates the detailing of the trailing wake, includes dynamic effects and includes those effects

in a distributed manner (in resonable time). Moreover, the panel method is also capable

of accommodating flexibility and interference effects. Such advantages render the panel

method more useful than other prevailing methods when analyzing the aerodynamic forces

on flapping wing in the preliminary design phase of aerospaceconfigurations.1

Figure 1: Panels on the wing surface11
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3.1 Governing equations and boundary conditions

Taken from-S.R.Ahmed, V. T. Vidjaja: Numerical simulationof subsonic unsteady flow around wings and

rotors. AIAA-94-1943-CP2

Consider a body moving through an incompressible and inviscid flow, with respect to a

body fixed frame of reference, let the body surface be given by:

Sb = 0 (21)

It is assumed that the flow remains attached everywhere on thebody surface expcept at

known and well defined locations such as the trailing edge. The separated flow containing

vorticity is confined to sheets of zero thickness which commence at the trailing edge. If the

motion of the body starts from a state of rest, then the fluid external to the body and wake

remains irrotational for all subsequent times. The governing equations for the velocity po-

tential is the Laplace equation.

∇2Φ(r, t) = 0 (22)

which is always linear. The velocity potential is determined subject to the following bound-

ary conditions

1. Far away from body or the wake, the fluid is undisturbed so that

2. The body surface Sb is a stream surface, i.e. the normal component of the total velocity

on the body surface at any instant of time is equal to zero.

[∇Φ(r, t) − Vb(r, t)].n(r, t) = 0onSb(r) = 0 (23)

3. Kutta-Joukowski condition of finite fluid velocity at the trailing edge at all times expect

the starting instant.

4. Since the wake cannot sustain any load, the pressure across it must br continuous.

From Green’s theorem5it follows that any solution of Laplace’s equation can be expressed

in an integral form over the boundary surface Sb, where the surface is replaced by singular-

ity distribution of unknown strength:

ΦP (t) = −1/4π[

∫ ∫
1

r(S, P )

∂Φ(S, t)

∂n
dS −

∫ ∫
Φ(S, t)

∂

∂n
(

1

r(S, P )
)dS] (24)
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HereΦp is the potential at any point P.

The term ∂Φ

∂n
under the first integral in the above equation is the velocitynormal to the

surface S. The argument of the first integral can thus be interpreted as the potential of a

three-dimensional source of strengthσ=∂Φ

∂n
:

Φs(S, t) = −
σ(S, t)

4πr(S, P )
(25)

Similarly the argument of the second integral in equation(32) can be interpreted as the po-

tential of a 3-D doublet of strengthµ=Φ:

Φd(S, t) =
µ(S, t)

4π

∂

∂n
(

1

r(S, P )
) (26)

ΦP (t) = −1/4π[

∫ ∫
σ(S, t)

1

r(S, P )
dS −

∫ ∫
µ(S, t)

∂

∂n
(

1

r(S, P )
)dS] (27)

The above equation represents a general solution of the Laplace equation. To render

the solution unique, additional conditions for physics of the flow under study have to be

invoked.

Consider now for example the flow around a wing, a source/sinkdistribution can be

placed over the wing surface(Figure1). This simulates the finite thickness of the wing pro-

file. The wing profile is extended by a small amount at the trailing edge along the tangent

to the mean line. If the thickness of this extension is collapsed to zero, then the source/sink

distribution on this extended trailing edge is transformedinto a doublet distribution. Fol-

lowing the concept of Kraus9, this doublet distribution is continued inside the profile along

the mean line, its strength decreasing to zero at the leadingedge. The variation of the dou-

blet strength between zero at the leading edge and a finite, asyet unknown value at the

trailing edge is arbitrary. With this artifice large gradients in singularity strengths at the

trailing edge and associated problems during the numericalsolution are avoided.2

3.2 Numerical Interpretation

The numerical procedure is as follows: the wing is divided into finite surface elements(we

call them panels)such that theσ(S, t) andµ(S, t) are finite but constant in each panel. The

18



Figure 2: Surface Panel11

strengths vary from panel to panel depending on the boundaryconditions. Additionally,

the equivalence of constant strength doublet panels and vortex rings is used to replace the

doublet panels of strengthµ by vortex rings of same strengthµ placed on the perimeter

of the doublet panels. Induced velocities for a quadrilateral doublet panel are then , for

example, calculated from the four vortex line filaments at the panel edge using Biot-Savart

law. Substituting equation(35) in equation(31) one obtains

∇(−1/4π[

∫ ∫
σ(Sb, t)

1

r(S, P )
dS−

∫ ∫
µ(Sw, t)

∂

∂n
(

1

r(S, P )
)dS])·np(r) = VP (r, t)·nP (r)

(28)

If the wing surface Sb is discretized by m plane surface elements and the internal surface

Sw by m’ plane surface elements, it follows from the equation (36)

∇(−1/4π[
m∑

j=1

σ(t)

∫ ∫
1

r(S, P )
dSj−

k∑
j=n

µ(t)

∫ ∫
∂

∂n
(

1

r(S, P )
)dSj ])·np(r) = VP (r, t)·nP (r).

(29)

Here Sj denotes the area,σ andµ the source/sink or circulation strength of an element j

respectively. The wing surface Sb and internal mean surface Sw have been approximated as

Sb ≈
m∑

j=1

Sj (30)

Sw ≈

k∑
j=n

Sj (31)
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with

n = m+1

k = m+m‘

The velocity Vp is the net velocity experienced by the point P due to all the motions of the

wing. For example for a wing in forward motion Vp has basically two components:

VP (r, t) = V∞(t) + Vc(r, t) (33)

where V∞ is the translational velocity and Vc is the resultant of the pitching and plung-

ing velocity. For a rigid blade in forward flight, based on known geometry, flight conditions

and control inputs, the terms on right hand side of the equation(41) are known. Futher,

with known blade geometry and the chosen surface discretization, the integrals on the left

hand side of equation(36) as well as the direction of unit normal vectors ncan be evalu-

ated.Imposing equation(36) at a number of discrete points Pon the body and Kutta panel

surface leads to a system of linear algebraic equations whose iterative solution gives the

strength of the singularitiesσ andµ for each of the generic points P at a time instant t.

As mentioned earlier, the variation of circulation strength on the profile mean line is pre-

scribed. The circulation strength of the Kutta panel is set equal to that at the trailing edge.

Once the Kutta panel strength is known the relative strengths of all vortex panels on the

mean surface are known. The number of unknowns is thus equal to the number of surface

elements (panels)on the body surface plus the number of kutta panels. Equation(35) is sat-

isfied at one collocation point per panel.

The calculation proceed in the following manner: At time t = 0, the body or the rotor is

impulsively started from rest from a given initial position. This means that the right hand

side of equation(36) is evaluated with full values of V∞ and Vc. At this instant there is no

wake present. With the solution of the system of equations (36) and (37), the strength of the

singularities on the wing surface and circulation strengthof vortex rings on Kutta panels is

known. Using these singularities, the induced velocities at the downstream corner points of

the Kutta panel are evaluated. A straight vortex element is released now from the trailing

edge of each Kutta panel. The ends of this vortex element are moved with calculated in-

duced velocities plus the velocity components due to translation, rotation and other motions

20



of the body or the wing over a time interval∆t. This vortex filament, together with the so

created downstream segments and the Kutta panel trailing edge, comprises a quadrilateral

ring vortex. This row of vortex panels released from the kutta panels is the first increment

of the blade wake. The distortion of the wake is effected by the differing velocities with

which the end points of the released vortex filaments move. Once a row of vortex panels

has been assigned a certain spanwise variation of circulation, the circulation distribution

for this particular row of panels remains constant as the wake panels move and distort in

space. For the next time step, the system of equations generated by equation(37) is solved

anew, taking into consideration now the induction of the first row of vortex panels at all

collocation points. This process is repeated until the aerodynamics converge to a desired

behaviour.With each time step the number of vortex panels comprising the wake grows and

with it the number of Biot-Savart operations to compute the wake induced velocities.2

3.3 Pitching wing

An unsteady 3-D panel code is modified to simulate an unhingedrotor wing with symmet-

ric NACA 0012 airfoil is translating and pitching simultaneously. The airfoil and wake

coordinates are rotated in a prescribed manner aboout the quater cord line of the wing. The

wing is positioned with an 6◦. The wing oscillated about the given angle of incidence with

an amplitude of 2.75◦. The angle of attack at a given instant is given by:

α(t) = α0 + α̃sin(ft) (34)

with α0 the initial incidence,̃α the amplitude of angular oscillation, f the oscillation fre-

quency and t the time. To validate the code, the unsteady results for f = 0 were compared

with results computed by a seperate steady solver. The results match closely suggesting

that the code is accurate. After validating the code, the computations were done for two

frequencies f = 0.21 and f = 0.42. The computation was run for 500 time steps with a step

size of 30◦. The resulting wake develpoment was plotted in tecplot. After the data was

extracted the propulsive efficiency was calculated in each case.
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3.4 Results

First, to validate the code the results were computed for zero pitch(no pitching-steady case),

the same were compared with another program which computes data for steady cases. In

short, an unsteady solver is compared to a steady solver. Both the results are supposed to

match as the unsteady solver is forced to compute for zero pitch(same as a steady case). As

table 1(page 20) suggests, data aquired from both the sources match validating the unsteady

code.

In the next few pages, the results of the computed results aredocumented. The contents

of the data extracted are as follows:

1. The plots of CA, CW , CM vs time.

2. The propulsive efficiency calulated for each case.

3. The wake plot generated in tecplot.

Table 1: comparison between steady and unsteady code

unsteady unsteady steady steady

angle of attack CX CZ CX CZ

1.0 0.00089 0.0789 0.00101 0.08

2.0 0.00378 0.0789 0.00101 0.08

-1.0 0.000904 0.0799 0.00102 0.081

-2.0 0.00379 0.15923 0.004 0.162

As seen in the table, the unsteady data agrees very well with the steady data. Thus,

validating the code.

3.4.1 Propulsive Efficiency

For a wing which is flapping, the propulsive efficiency is given by:

η = C̄T /(ż.C̄L + C̄M . ¯̇α)

For a wing which is only pitching,̇z=0

(a)Propulsive Efficiency for frequency = 0.21
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C̄T =0.042(Figure 3)

C̄M=0.125(Figure 4)

η=52.36

(b)Propulsive effiency for frequency = 0.42

C̄T = 0.042

C̄M = 0.125

η = 26.18

Figure 3: CA vs time for f=0.21

Figure 4: CW vs time for f=0.21
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Figure 5: CM vs time for f=0.21

Figure 6: CA vs time for f = 0.42

Figure 7: CW vs time for f = 0.42
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Figure 8: CM vs time for f = 0.42

Figure 9: CA vs time superposition of f = 0.21 and f=0.42
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Figure 10: CW vs time superposition of f=0.21 and f=0.42

Figure 11: CM vs time for f = 0.21 and f = 0.42
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Figure 12: CX vs time : comparison with the steady code

Figure 13: CZ vs time : comparison with the steady code
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Figure 14: CM vs time : comparison with the steady code

Figure 15: wake plot for f = 0.21

Figure 16: wake plot for f = 0.42
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4 Summary

1. An airfoil which is exposed to steady wind and which executes sinusoidal pitching or

plunging can generate thrust similar to a flapping bird wing or a pitching fish tail.

2. The vortical signature of this thrust is a karman vortex street in reverse.

3. When an airfoil executes pitching, it produces a net angleof attack. As it executes pitch-

ing, there is a constant creation and shedding of vortices. This results in a normal force

vector with both thrust and lift components, the behavior ofvortices determine the lift and

thrust forces.

4. The unsteady panel code is advantages compared to the other methods as it can capture

both the loads on the wing and the wake vortices generated in reasonable time

5. why study wakes: The wakes impinge objects(trailing helicopter blade etc.) and thus

affect the aerodynamics and inturn the propulsive efficiency of the trailing airfoil.

6. The change in the vortex dynamics over/around the airfoilwill determine how the Lift

and thrust coeff. change with time.

7. The wakes plotted in tecplot agree well with those found inliterature.
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5 Future Study

In future, I plan to investigate the aerodynamics of the plunging airfoil. I also plan to study

a 2 wing system, in which we study the effects of the vortices generated by the leading wing

on the trailing wing(Blade vortex interaction). By studying the above, other phenomenon

like hovering (with regard to dragon fly flight) can be looked at.
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