Representation theory of symmetric groups.

A thesis submitted to Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme

Thesis Supervisor: Amritanshu Prasad

by
Venkata Raghu Tej Pantangi

April, 2012

Indian Institute of Science Education and Research Pune
Sai Trinity Building, Pashan, Pune India 411021

This is to certify that this thesis entitled "Representation theory of symmetric groups." submitted towards the partial fulfillment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research Pune, represents work carried out by Venkata Raghu Tej Pantangi under the supervision of Amritanshu Prasad.

Venkata Raghu Tej Pantangi

Thesis committee:
Amritanshu Prasad
Anupam Singh

A. Raghuram

Coordinator of Mathematics

Acknowledgments

Firstly, I would like to thank my Thesis Supervisor Dr Amritanshu Prasad for taking on the task of supervising my thesis. Despite being a busy person, he gave ample amount of attention to my Master's Thesis Project. Working under him helped me mature as a student of mathematics. I am extremely grateful to him.

I would like to thank the faculty of mathematics, IISER Pune for the wonderful course they offered. Specifically, I would like to thank Dr Anupam Singh for introducing me to the topic of representation theory. I am thankful to him for agreeing to be on my Thesis Advisory Committee.

I would like to thank Prof R. Balasubramanian, Director The Institute of Mathematical Sciences(IMSc) for allowing me to pursue my Master's Thesis at IMSc. I am grateful that he provided me accommodation at IMSc and access to its Library and Internet.

Finally I would like to thank my friends both at IISER and IMSc for creating a pleasant environment. I am grateful to my family for their constant encouragement and support. I owe any success, I may achieve to them.

Abstract
 Representation theory of symmetric groups.

by Venkata Raghu Tej Pantangi

This is an expository thesis exploring various results on representations of symmetric groups. Ordinary representation theory of symmetric groups (i.e representation theory over fields of characteristic zero) has been worked out by Frobenius, Schur and Young, around the beginning of the twentieth century. The modular representation theory of symmetric groups(i.e representation theory over field of positive characteristic) is still an active area of research. For example Calculation of Decomposition matrices for symmetric groups is still an important open problem. "The Representation Theory of symmetric Groups" by G.D James [1] was the primary reference followed in the course of my Mater's Thesis project.

Classifying of irreducible representations of symmetric groups over arbitrary fields and determining the corresponding decomposition matrices are the focus of this thesis.

Contents

Abstract vii
1 Introduction 1
2 Some Linear Algebra 5
3 Specht Modules 7
3.1 Tableaux and Tabloids 7
3.2 Specht Modules 10
3.3 Standard basis of specht modules 13
4 Irreducible Representations of Symmetric Groups. 17
4.1 Classification of ordinary irreducible representations of S_{n} 17
4.2 Classification of modular irreducible representations of S_{n} 18
5 Semistandard homomorphisms 23
6 Littlewood-Richardson Rule 29
6.1 Sequences 29
6.2 Littlewood-Richardson Rule 32
$7 \quad$ Specht series for M^{μ} 35
8 Dimension of Specht Modules 39
8.1 Hooks, Skew hooks and the Determinantal form 39
9 Murnaghan-Nakayama Rule 43
10 Some Irreducible Specht Modules 49
10.1 Combinatorial results 49
10.2 Some irreducible Specht Modules 50
11 Decomposition matrix of S_{n} 59

Chapter 1

Introduction

Let G be a finite group, and k be a field. A representation of G over k is a group homomorphism $\rho: G \rightarrow G L(V)$, where V is any finite dimensional k - vector space and $G L(V)$ is the set of all invertible linear endomorphisms of V. It is convenient to denote a representation by the pair (ρ, V). Define $k G$ to be the set of all maps $f: G \rightarrow k$. For $f, g \in k G$, we define their product

$$
f . g(z)=\sum_{h k=z} f(h) g(k) .
$$

Clearly, this product along with point wise addition give a k - algebra structure to $k G$. Given a representation $(\rho, V), V$ can be given a $k G$-module structure via the map ρ. Conversely given any finitely generated $k G$-module M, which is also a k-vector space, we can construct a representation $\rho: G \rightarrow G L(M)$ by the rule $\rho(g)(m)=1_{g}$. m, where $1_{g}(g)=1$ and $1_{g}(h)=0$ for $h \neq g$. Therefore representations of G are same as finitely generated $k G$-modules. We say a representation (ρ, V) is irreducible if V, as a $k G$ module is irreducible (i.e has no proper submodule). A representation (ρ, V) is called completely reducible if V can be written as a direct sum of irreducible $k G$ modules.

Theorem. (Mashcke) If k is a field and G a finite group such that $\operatorname{char}(k) \nmid|G|$, then every representation of G over k is completely reducible. Moreover if $\operatorname{char}(k)||G|$, then the representation corresponding to $k G$ as a right module over itself is not completely reducible.

This is a well known result in representation theory that can be found in any text on representation theory of groups such as Curtis and Reiner [2]. So in the case when $\operatorname{char}(k) \nmid$ $|G|$, it is enough to find all the irreducible representations. An irreducible representation (ρ, V) of G over k is said to be absolutely irreducible if for any field extension K of k, the $K G$ module $\left(V \otimes_{k G} K\right)$ is also irreducible. The field k is called a splitting field for G if all
irreducible representations of G over k are absolutely irreducible. A conjugacy class of G is called p-regular if the order of elements in it is not divisible by p.

Theorem. (Brauer) Let k be a splitting field for a finite group G, of characteristic p. The number of inequivalent irreducible representations of G over k is the same as number of p-regular conjugacy classes in G.

An elegant proof of this result can be found in the article "Brauer Characters and Greens Theorem" (sporadic.stanford.edu/bump/brauer.ps) by Daniel Bump. An indecomposable module is a module which cannot be written as direct sum of its proper submodules. It is clear that classification of all indecomposable $k G$ modules is enough to classify all representations of G over k. This still remains an open problem. However we have some results relating the so called "principal indecomposable modules" with the irreducible modules.

Theorem (Krull-Remak-Schmidt). Let $M \neq 0$ be a module which is both Noetherian and Artinian. Then E is a finite direct sum of indecomposable modules. Up to a permutation, the indecomposable components in such a direct sum are uniquely determined upto isomorphism.

The above result is quoted from Lang [3], Theorem 7.5 on p.441. It is easy to verify that all finitely generated $k G$-modules are both Artinian and Noetherian and thus the above results holds true for them. In particular $k G$, as a right $k G$ - module can be written as a finite direct sum of indecomposable modules and upto permutation these indecomposable components are determined uniquely upto isomorphism. These indecomposable components are called principal indecomposable modules of $k G$.

Theorem (Brauer). There is a one-one correspondence between isomorphism classes of principal indecomposable $k G$ modules and isomorphism classes of irreducible $k G$ modules given by associating every indecomposable P to $P / \operatorname{Rad}(P)(\operatorname{Rad} P$ is the Jacobson Radical of P).

This is a special case of Theorem 3 on page 31 of Alperin [4]. Let $P_{1}, P_{2} \ldots P_{n}$ be a set of representatives of isomorphism classes of principal indecomposable $k G$-modules. Then $U_{1}:=P_{1} / \operatorname{Rad}\left(P_{1}\right), U_{2}:=P_{2} / \operatorname{Rad}\left(P_{2}\right) \ldots U_{n}:=P_{n} / \operatorname{Rad}\left(P_{n}\right)$ is a complete set of representatives of isomorphism classes of irreducible $k G$-modules. Define $c_{i j}$ to be the multiplicity of U_{j} as a composition factor of P_{i} in its Jordan-Holder composition series. The matrix $C:=\left(c_{i j}\right)$ is called the Cartan matrix of $k G$ and the $c_{i j}$'s are called Cartan invariants.

Let K be a number field with O_{K} as its ring of integers. Let P be a prime lying over an integral prime p, then $k=O_{K}$ is a finite field of characteristic p. Since $\operatorname{char}(K)=0$, all $K G$ modules are irreducible. Given a finite dimensional $K G$-module M, we have

Theorem. Let R_{P} denote the localization of O_{K} at P. There exists an $R_{P}[G]$ module M_{P} in M such that $K M_{P}=M$.

Now $\bar{M}:=M_{P} / P R_{P} M_{P}$ is a finite dimensional $k G$ module. Any module obtained by such a construction is called a $k G$-module associated to M. Let $M_{1}, M_{2} \ldots M_{m}$ be a set of representatives of isomorphisms classes of irreducible $K G$ modules and let $\bar{M}_{1}, \bar{M}_{2} \ldots \bar{M}_{m}$ be the corresponding $k G$ modules associated to them. Define $d_{i j}$ to be the multiplicity of U_{j} as a composition factor of \bar{M}_{i}. The matrix $D:=\left(d_{i j}\right)$ is called a decomposition matrix of $k G$ and the $d_{i j}$'s are called decomposition numbers.

Theorem. (Brauer and Nesbitt [5]) $D^{T} D=C$
Calculation of Decomposition and Cartan matrices for $k G$, when $\operatorname{char}(k)||G|$ is still an important open problem in representation theory.

This thesis explores various results on representation theory of symmetric groups over any arbitrary field. We follow a characteristic-free approach given in [1]. We begin with classification of irreducible representation of S_{n} and then focus on various results concerning decomposition numbers. All the definitions and results concerning representations of symmetric group are essentially from the primary reference [1]. Most of the proofs also mimic those given in [1]. Unless otherwise mentioned, all the results and definitions are attributed to [1].

Chapter 2

Some Linear Algebra

Let G be a group, F a field and $F G$ the group algebra generated by them. Let M be an $F G$ module (a G representation). Let $<,>$ be a symmetric bilinear non-singular G invariant form on M. Let U be a sub-module of M. As the form is G-invariant, we have $<u, v g>=<u g^{-1}, v>$ and thus $U^{\perp}=\{v \mid<u, v>=0$ for all $u \in U\}$ is also a submodule. Let M^{*} be the dual space of M. Let V be a subspace of M and $V_{0}=\left\{f \in M^{*} \mid f(V)=0,\right\}$. Let $e_{1}, e_{2} \ldots e_{k}$ be a basis for V. Extend it a basis $e_{1}, e_{2} \ldots e_{m}$ of M. Let $f_{1}, f_{2} \ldots f_{m}$ be the basis of M^{*}, dual to $e_{1}, e_{2} \ldots e_{m}$. Observe that $f \in V_{0}$ if and only if $f\left(e_{i}\right)=0$ for all $1 \leq i \leq k$. Therefore $f_{k+1}, f_{k+2} \ldots f_{m}$ spans V_{0}. Thus we have $\operatorname{dim}(V)+\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}(M)$. Define

$$
\theta: M \rightarrow M^{*} \text { by } m \mapsto \theta_{m} \text { where } \theta_{m}(x)=<m, x>
$$

The form being non-singular makes θ, a linear isomorphism. Observe that $\theta\left(V^{\perp}\right)=V_{0}$. Therefore we have

$$
\begin{equation*}
\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=\operatorname{dim}(M) \tag{2.1}
\end{equation*}
$$

The above equation implies that $V^{\perp \perp}=V$. Also given $0 \subset U \subset V \subset M$, we have $V^{\perp} \subset U^{\perp}$, and we may define

$$
\begin{aligned}
g: V \rightarrow & \left(U^{\perp} / V^{\perp}\right)^{*}, \text { by } v \mapsto f_{v}, \text { where } \\
& f_{v}\left(x+V^{\perp}\right)=<v, x>
\end{aligned}
$$

If $x+V^{\perp}=y+V^{\perp}$, we have $\langle v, x\rangle-\langle v, y\rangle=\langle v, x-y\rangle=0$. This shows that f_{v} is well defined. It is easy to see that g and f_{v} are linear. Now $\operatorname{Ker}(g)=\{v \in V \mid$ for all $x \in$ $\left.U^{\perp},\langle v, x\rangle=0\right\}=V \cap U^{\perp \perp}=V \cap U=U$. Hence we have $V / U \cong\left(U^{\perp} / V^{\perp}\right)^{*}$. Since $<,>$ is a G - invariant form, we have $V / U \cong\left(U^{\perp} / V^{\perp}\right)^{*}$ as $F G$-modules. In particular we have $V \cong\left(M / V^{\perp}\right)^{*}$.

Lemma 1. For every $F G$ sub-module V of $M, \frac{V}{V \cap V^{\perp}}$ is a self dual $F G$ module.
Proof. By second isomorphism theorem for modules, we have

$$
\frac{V}{V \cap V^{\perp}} \cong \frac{V+V^{\perp}}{V^{\perp}}
$$

Now by this and the the results proved prior to this lemma, we have

$$
\frac{V+V^{\perp}}{V^{\perp}} \cong\left(\frac{V^{\perp}}{\left(V+V^{\perp}\right)^{\perp}}\right)^{*} \cong\left(\frac{V}{V \cap V^{\perp}}\right)^{*} .
$$

Definition 2. The gram matrix A of V defined with respect to a basis $\left\{e_{1} . e_{2} \ldots e_{k}\right\}$ is the matrix whose (i, j) th entry is $\left\langle e_{i}, e_{j}\right\rangle$.

Theorem 3. The dimension of $\frac{V}{V \cap V^{\perp}}$ is equal to the rank of a gram matrix of V with respect to a given basis.

Proof. Map V into V^{*} by the canonical map, f defined by the form $<,>$. Let f_{v} be the image of $v \in V$. Let $\left\{e_{1}, e_{2} \ldots e_{k}\right\}$ be a given basis of V and let $\left\{\epsilon_{1}, \epsilon_{2} \ldots \epsilon_{k}\right\}$ be its dual basis in V^{*}. It is easy to see that

$$
f_{e_{i}}=\sum_{j=1}^{k}<e_{i}, e_{j}>\epsilon_{j} .
$$

This implies that the gram matrix A with respect to $\left\{e_{1}, e_{2} \ldots e_{k}\right\}$ is the same as the matrix of f with respect to the dual bases. Since $\operatorname{ker}(f)=V \cap V^{\perp}$, we have $\operatorname{dim}\left(\frac{V}{V \cap V^{\perp}}\right)=\operatorname{rank}(A)$.

Chapter 3

Specht Modules

3.1 Tableaux and Tabloids

Definition 4. A partition of n is a sequence of non-negative integers $\lambda=\left(\lambda_{1}, \lambda_{2} \ldots\right)$ such that $n=\sum_{i} \lambda_{i}$. In addition if $\lambda_{i} \geq \lambda_{i+1}$ for all i, λ is called a proper partition of n. If λ a proper-partition of n, we write $\lambda \vdash n$

Definition 5. If $\lambda=\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{i} \ldots\right)$ is a partition of n, then the diagram of λ, [λ] is the pattern of $n \times$'s made up of r left aligned rows of \times 's with i-th row containing $\lambda_{i} \times$'s.

By (i, j) th node of $[\lambda]$, we mean the j-th \times from the left in the i-th row. example: $\lambda=\left(4,2^{2}, 1\right)$ then

$$
[\lambda]=\begin{aligned}
& \times \times \times \times \\
& \times \times \\
& \times \\
& \\
& \times
\end{aligned}
$$

We now define a partial order \unrhd by
Definition 6. If λ and μ are two partitions, we say $\lambda \unrhd \mu$ if and only if

$$
\sum_{i=1}^{j} \lambda_{i} \geq \sum_{i=1}^{j} \mu_{i}
$$

for all $j \in \mathbb{N}$.
We now define a total order \geq on partition by

Definition 7. If λ and μ are two partitions, we say $\lambda \geq \mu$ if and only if the least i for which $\lambda_{i} \neq \mu_{i}$ satisfies $\lambda_{i}>\mu_{i}$.

One can easily check that \geq is a linear extension of \unrhd i.e. $\lambda \unrhd \mu$ implies $\lambda \geq \mu$.
Give an partition λ, we define the conjugate partition of λ as $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime} \ldots\right)$, where $\lambda_{i}^{\prime}=\left|\left\{i \mid \lambda_{i} \geq i\right\}\right|$.

Definition 8. A λ-tableau is one of the n ! array of integers obtained by replacing each node in $[\lambda]$ by one of the integers $1,2 \ldots n$, without replacement.
example: The array $\begin{array}{ll}1 & 2 \\ 3\end{array}$ is a $(2,1)$ - tableau. The group S_{n} acts on λ-tableau's in a natural way(by acting on each node individually). Many forms of the following lemma are going to be used to prove results about representations of S_{n}.

Lemma 9. Let λ and μ be partitions of n, and t_{1} and t_{2} be λ and μ tableau respectively. If for all i, the integers in the ith row of t_{2} belong to different columns of t_{1}, then $\lambda \unrhd \mu$.

Proof. No two of the μ_{1} numbers in the first row t_{2} are in the same column of t_{1}. So t_{1} has at least μ_{1} columns so we have $\lambda_{1} \geq \mu_{1}$. Similarly no two of the μ_{2} numbers in the second row of t_{2} are in the same column of t_{1}. Therefore We must have $\lambda_{1}+\lambda_{2} \geq \mu_{1}+\mu_{2}$. Continuing in the way we get $\lambda \unrhd \mu$.

Definition 10. The Row stabilizer (Column-stabilizer) $R_{t}\left(C_{t}\right)$ of a tableau t is the subgroup of S_{n} keeping the rows (columns) fixed set-wise.

It is simple to see that $R_{t \pi}=\pi^{-1} R_{t} \pi$ and $C_{t \pi}=\pi^{-1} C_{t} \pi$ for all $\pi \in S_{n}$. We now define an equivalence class on the set of λ-tableau's by $t_{1} \sim t_{2}$ if and only if $t_{1} \pi=t_{2}$ for some $\pi \in R_{t_{1}}$.

Definition 11. A tabloid $\{t\}$ is the equivalence class containing the tableau t.
Just as in the case of tableau, we represent a tabloid as an array of integers. The tabloid $\{t\}$, is represented as the diagram got by drawing lines between the rows of t. For example if $t=\begin{array}{ll}1 & 2 \\ 3\end{array}$, then
$\{t\}=\sqrt{\frac{1}{3}}$ 2 The group S_{n} acts on the set of λ-tabloids by $\{t\} \pi=\{t \pi\}$. This is well defined, since $t_{1} \sim t_{2}$ implies for some $\sigma \in R_{t_{1}}, t_{2}=t_{1} \sigma$. So we have $\pi^{-1} \sigma \pi \in \pi^{-1} R_{t_{1}} \pi=$ $R_{t_{1} \pi}$, and therefore $\left\{t_{1} \pi\right\}=\left\{t_{1} \sigma \pi\right\}=\left\{t_{2} \pi\right\}$. Now we define a partial order \unrhd and a total order \geq extending it on the set of λ-tabloids.

Definition 12. 1. Given a tableau t, let $m_{i, r}(t)$ be the total number of integers less than equal to i in the first r rows of t. We say $\left\{t_{1}\right\} \unrhd\left\{t_{2}\right\}$ if and only if $m_{i, r}\left(t_{1}\right) \geq m_{i, r}\left(t_{2}\right)$ for all relevant i and r.
2. Write $\left\{t_{1}\right\}>\left\{t_{2}\right\}$ if and only if for some i

- Whenever $j>i, j$ and i are in the same row of $\left\{t_{1}\right\}$ and $\left\{t_{2}\right\}$
- i is in a higher row of $\left\{t_{2}\right\}$ than $\left\{t_{1}\right\}$

Claim. If $\left\{t_{1}\right\}$ and $\left\{t_{2}\right\}$ are λ-tabloids, then $\left\{t_{1}\right\} \triangleleft\left\{t_{2}\right\}$ implies $\left\{t_{1}\right\}<\left\{t_{2}\right\}$.
Proof. Assume $\left\{t_{1}\right\} \triangleleft\left\{t_{2}\right\}$ Consider the largest i such that $m_{i, r}\left(t_{1}\right)<m_{i, r}\left(t_{2}\right)$, for some r. If $j>i$, then $m_{j, r}\left(t_{1}\right)=m_{j, r}\left(t_{r}\right)$ for all r. This implies j is in the same row of both t_{1} and t_{2}. It is clear by the choice of i, that i is in a higher row of t_{1} than of t_{2}. Thus we have $\left\{t_{1}\right\}<\left\{t_{2}\right\}$.

From the definition of $m_{i, r}(t)$, we get:
Observation 13. For $w<x$ with w and x being in the ath and bth row of t respectively, we have

- $m_{i, r}(t(w, x))-m_{i, r}(t)=1$ if $b \leq r<a$ and $w \leq i<x$
- $m_{i, r}(t(w, x))-m_{i, r}(t)=-1$ if $a \leq r<b$ and $w \leq i<x$

Here (w, x) is the transposition in S_{n} taking w to x and vice-versa. This gives us the following

Lemma 14. $\{t\} \triangleleft\{t(w, x)\}$ if $w<x$ and w is lower than x in t.

Lemma 15. If $x-1$ is lower than x in t and t is a λ-tableau, then there is no λ-tableau t_{1} such that $\{t\} \triangleleft\left\{t_{1}\right\} \triangleleft\{t(x-1, x)\}$

Proof. If s is any tableau with i in the r th row, the number

$$
m_{i, j}(s)-m_{i-1, j}(s)=\text { the number of } i \text { 's in the first } j \text { rows of } s
$$

Thus we have $m_{i, r}(s)-m_{i-1, r}(s)=0$ if $r>j$ and $m_{i, r}(s)-m_{i-1, r}(s)=1$ if $j \geq r$. Assume that the lemma is false. Let t_{1} be the tableau such that $\{t\} \triangleleft\left\{t_{1}\right\} \triangleleft\{t(x-1, x)\}$ By Observation 13.

$$
\begin{gathered}
m_{i, r}(t)=m_{i, r}(t(x-1), s) \text { if } i \neq x-1, \\
\text { whence } \\
m_{i, r}\left(t_{1}\right)=m_{i, r}(t) \text { if } i \neq x-1 \\
\text { and } \\
m_{i, r}(t)-m_{i-1, r}(t)=m_{i, r}\left(t_{1}\right)-m_{i-1, r}\left(t_{1}\right) \text { if } i \neq x-1 \text { or } x .
\end{gathered}
$$

This implies that all numbers other than x and $x-1$ are in the same places in t and t_{1}. This requires either $\left\{t_{1}\right\}=\{t\}$ or $\left\{t_{1}\right\}=\{t(x-1, x)\}$.

3.2 Specht Modules

Let $[n]=\{1,2,3, \ldots, n\}$. If $X \subset[n], S_{X}$ is the subgroup of S_{n} which fixes elements of [n] outside X. Given a partition λ of n, the Young subgroup S_{λ} associated with it is the subgroup $\left(S_{\left\{1,2, \ldots \lambda_{1}\right\}} \times S_{\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}} \times \ldots \times S_{\left\{\lambda_{i}+1, \ldots, \lambda_{i}+\lambda_{i+1}\right\}} \times \ldots\right)$ of S_{n}. Let F be any arbitrary field and $\mu \vdash n$, then define M_{F}^{μ} to be the F-vector space spanned by the set of μ-tabloids as a basis. Extending the natural action of S_{n} on the set of μ tabloids, makes M_{F}^{μ} an $F S_{n}$ module. Since S_{n} acts transitively on the set of μ-tabloids with the all the isotropy subgroups isomorphic (via conjugation) to S_{μ}, we have

Lemma 16. M_{F}^{μ} is an $F S_{n}$ - module that can be associated to the permutation representation obtained by the action of S_{n} on the right cosets of $S_{\mu} . M_{F}^{\mu}$ is a cyclic module generated by any single μ-tabloid, and $\operatorname{dim}\left(M^{\mu}\right)=n!/\left(\mu_{1}!\mu_{2}!\ldots\right)$.

If t is a tableau, we define the signed sum κ_{t} as $\sum_{\pi \in C_{t}} \operatorname{sgn}(\pi) \pi$ and the polytabloid e_{t} as $\{t\} \kappa_{t}$.

Definition 17. The Specht module S_{F}^{μ} for the proper-partition μ is the submodule of M_{F}^{μ} spanned by the polytabloids.

Remark 18. Give a μ - tableau t, let $\rho_{t}=\sum_{\pi \in R_{t}} \pi$. The map $\theta: \rho_{t} \sigma \rightarrow\{t\} \sigma\left(\sigma \in S_{n}\right)$, gives an $F S_{n}$ module isomorphism from the ideal $\rho_{t} F S_{n}$ to M_{F}^{μ}. Restriction of θ to the ideal $\rho_{t} \kappa_{t} F S_{n}$ is an isomorphism onto the Specht module S_{F}^{μ}.

We say that a μ-tabloid $\{t\}$ is involved in an element $v \in M^{\mu}$ if it has a non-zero coefficient in the representation of v as the unique linear combination of μ-tabloids. As $\kappa_{t \pi} \pi=\pi \kappa_{t}$, we have $e_{t \pi}=e_{t} \pi$ and therefore S_{F}^{μ} is a cyclic module generated by any one of the μ - polytabloids. Let $<,>$ be the unique bilinear form on M_{F}^{μ} for which the set of μ - tabloids is a orthonormal basis. Clearly this is a symmetric, $S_{n^{-}}$invariant, non-singular bilinear form on M_{F}^{μ} irrespective of the field F. The following theorem by James is the first step in classifying irreducible modules of $F S_{n}$.

Theorem 19 (The submodule theorem). If U is a $F S_{n}$ submodule of M_{F}^{μ}, then either $U \supset$ S_{F}^{μ} or $U \subset S_{F}^{\mu \perp}$.

In order to prove this theorem, we need the following lemma and its corollary.
Lemma 20. Let λ and μ be partitions of n If t is a λ-tableau and t^{*} a μ-tableau such that $\left\{t^{*}\right\} \kappa_{t} \neq 0$. Then $\lambda \unrhd \mu$, and if $\lambda=\mu$, then $\left\{t^{*}\right\} \kappa_{t}= \pm e_{t}$.

Proof. Let a, b be two numbers in the same row of t^{*}. If a, b are in the same column of t as well, then the transposition $(a, b) \in C_{t}$. Let $\pi_{1} \ldots \pi_{k}$ be the coset representatives of $\{e,(a, b)\}$ as a subgroup of C_{t}. Without loss Of generality, we may assume $\operatorname{sgn}\left(\pi_{j}\right)=1$ for all $1 \leq j \leq k$. Thus we have $\kappa_{t}=(1-(a, b))\left(\pi_{1}+\ldots \pi_{k}\right)$. Since a, b are in the same row of t^{*}, we get $\left\{t^{*}\right\} \kappa_{t}=\left\{t^{*}\right\}(1-(a, b))\left(\pi_{1}+\ldots \pi_{k}\right)=0$. This is contrary to our hypothesis that $\left\{t^{*}\right\} \kappa_{t} \neq 0$. So for all i, the numbers in i th row of t^{*} belong to different columns of t. Application of Lemma 9 implies $\lambda \unrhd \mu$. Also if $\lambda=\mu$, then $\left\{t^{*}\right\}$ is involved in $\{t\} \kappa_{t}$, by construction. Therefore $\left\{t^{*}\right\}=\{t\} \pi$ for some $\pi \in C_{t}$. Hence $\left\{t^{*}\right\} \kappa_{t}= \pm\{t\} \kappa_{t}$.

The following corollary follows from that fact that the set of μ-tabloids form a basis of M^{μ}

Corollary 21. If $u \in M_{F}^{\mu}$, and t is a μ-tableau, then $u \kappa_{t}$ is a multiple of e_{t}

Proof of the Submodule Theorem

Let t be any μ-tableau. For $u, v \in M^{\mu}$, we have

$$
\begin{align*}
<u \kappa_{t}, v> & =\sum_{\pi \in C_{t}}<\operatorname{sgn}(\pi) u \pi, v>(<,>\text { is a bilinear form }) \tag{3.1}\\
& =\sum_{\pi \in C_{t}}<u, \operatorname{sgn}(\pi) v \pi^{-1}>\left(<,>\text { is } S_{n} \text {-invariant }\right) \tag{3.2}\\
& =<u, v \kappa_{t}> \tag{3.3}
\end{align*}
$$

Let U be any submodule of M_{F}^{μ} and let $u \in U$. By the above corollary, we have $u \kappa_{t}$ is a multiple of e_{t}. If $u \kappa_{t} \neq 0, e_{t} \in U$ and thus $S_{F}^{\mu} \subset U$. If for all $u \in U, u \kappa_{t}=0$, by 3.1 we have

$$
0=<u \kappa_{t},\{t\}>=<u, \kappa_{t}\{t\}>=<u, e_{t}>
$$

i.e $S_{F}^{\mu \perp} \supset U$. Hence proved.

Define $D_{F}^{\mu}=S_{F}^{\mu} / S_{F}^{\mu} \cap S_{F}^{\mu \perp}$. By the results in the first section, we know D_{F}^{μ} is a self dual module.

Note: Unless otherwise mentioned, F is any arbitrary field and $S_{F}^{\mu}=S^{\mu}$ and $M_{F}^{\mu}=$ M^{μ}.

Theorem 22. D_{F}^{μ} is zero or an absolutely irreducible $F S_{n}$ module. Moreover if D_{F}^{μ} is non-zero, then $S_{F}^{\mu} \cap S_{F}^{\mu \perp}$ is the unique maximal ideal of S_{F}^{μ}, and D_{F}^{μ} is self dual.

Proof. Let U be any submodule of S_{F}^{μ}, by submodule theorem, $U=S_{F}^{\mu}$ or $U \subset S_{F}^{\mu} \cap S_{F}^{\mu \perp}$. It is now clear that D_{F}^{μ} is either zero or irreducible. By Theorem 3, $\operatorname{dim}\left(D^{\mu}\right)_{F}$ is the rank of the Gram matrix with respect to any basis of S^{μ}. As polytabloids span S_{F}^{μ}, we can consider a basis inside the set of polytabloids. Since all the tabloids involved in a polytabloid have coefficient ± 1. This implies:

1. $\operatorname{dim}_{F}\left(S_{F}^{\mu}\right)=\operatorname{dim}_{E}\left(S_{E}^{\mu}\right)$ for any extension E of F.
2. The rank of the gram matrix of S_{F}^{μ} with respect to the polytabloid basis is same as its rank over the prime field k of F. Therefore the dimensions of D_{F}^{μ} as F-space and D_{k}^{μ} as k-vector space are the same.

One can establish an $E S_{n}$ isomorphism between M_{E}^{μ} and $M_{F}^{\mu} \otimes_{F} E$, by sending $\{t\} \otimes 1$ to the a tabloid $\{t\}$ (t is any μ-tableau.) By the rank nullity theorem and 1 , this map upon restriction
to $S_{F}^{\mu} \otimes_{F} E$ is an isomorphism onto S_{E}^{μ}. The same map sends $S_{F}^{\mu^{\perp}} \otimes_{F} E$ to $S_{E}^{\mu^{\perp}}$. Since $\operatorname{dim}\left(S_{F}^{\mu} \cap S_{F}^{\mu \perp}\right)=\operatorname{dim}\left(S_{F}^{\mu}\right)-\operatorname{dim}\left(D_{F}^{\mu}\right)$ and $\operatorname{dim}\left(S_{E}^{\mu} \cap S_{E}^{\mu \perp}\right)=\operatorname{dim}\left(S_{E}^{\mu}\right)-\operatorname{dim}\left(D_{E}^{\mu}\right)$, we have $\operatorname{dim}\left(S_{F}^{\mu} \cap S_{F}^{\mu \perp}\right)=\operatorname{dim}\left(S_{E}^{\mu} \cap S_{E}^{\mu \perp}\right)$ and thus $S_{F}^{\mu} \cap S_{F}^{\mu \perp} \otimes_{F} E \simeq S_{E}^{\mu} \cap S_{E}^{\mu^{\perp}}$ under the map defined in this paragraph (by 1,2 in the previous paragraph). Thus we have $D_{E}^{\mu} \simeq D_{F}^{\mu} \otimes_{F} E$. This implies D_{E}^{μ} is non-zero and hence irreducible. Therefore D_{F}^{μ} is absolutely irreducible.

3.3 Standard basis of specht modules

In this section, we find a basis of Specht modules consisting of polytabloids. Recall that given a set $X \subset\{1,2 \ldots, n\}$, the group S_{X} is the subgroup of S_{n} which fixes all the elements outside X.

Definition 23 (Garnir Element). Suppose that t is a given μ-tableau. Let X and Y be subsets of the $i^{t h}$ and $(i+1)$ st column of t for some i, and $\sigma_{1}, \sigma_{2} \ldots \sigma_{k}$ be the coset representatives of the group $S_{X} \times S_{Y}$ in the group $S_{X \times Y}$. The element $G_{X, Y}=\sum_{i=1}^{k} \operatorname{sgn}\left(\sigma_{i}\right) \sigma_{i}$ is called a Garnir element.

For all practical purposes, we take X to be the bottom most $|X|$ elements of the i th column and Y to be the topmost $|Y|$ elements of the $(i+1)$ st column. Also we choose the coset representatives $\sigma_{1}, \sigma_{2} \ldots \sigma_{k}$ in such a way that $t \sigma_{1}, t \sigma_{2} \ldots t \sigma_{k}$ agree with t except on $X \cup Y$.

Theorem 24. If $|X \cup Y|>\mu_{i}^{\prime}$, then $e_{t} G_{X, Y}=0$ for any base field. $\left(\mu_{i}^{\prime}=\right.$ length of the ith column.)

Proof. Define $\overline{S_{X} S_{Y}}:=\sum\left\{\operatorname{sgn}(\sigma) \sigma \mid \sigma \in S_{X} \times S_{Y}\right\}$ and $\overline{S_{X \cup Y}}=\sum\left\{\operatorname{sgn}(\sigma) \sigma \mid \sigma \in S_{X \cup Y}\right\}$. Now $|X \cup Y|>\mu_{i}^{\prime}$, for all $\pi \in C_{t}$, a pair of numbers in $X \cup Y$ is in the same row of $t \pi$. Thus we have $\{t \pi\} \overline{S_{X \cup Y}}=0$ and hence $\{t\}_{K_{t}} \overline{S_{X \cup Y}}=0$. It is easy to verify that $\overline{S_{X} S_{Y}}$ is a factor of κ_{t} and $\overline{S_{X \cup Y}}=\overline{S_{X} S_{Y}} G_{X, Y}$. Therefore we have $0=\{t\}_{t} \overline{S_{X \cup Y}}=|X|!|Y|!G_{X, Y}$. When the base field is \mathbb{Q}, we have $\{t\}_{\kappa_{t}} G_{X, Y}=0$. As the tabloid coefficients are integers, the result holds for any field.

Definition 25. A tableau t is called a standard tableau if the numbers increase along the rows (left to right) and down the columns.

We shall prove that the set $\left\{e_{t} \mid t \mathrm{t}\right.$ is a standard $\mu-$ tableau $\}$ is a basis for S^{μ} defined over any field.

Lemma 26. If t has numbers increasing down the columns, then all the tabloids $\left\{t^{\prime}\right\}$ involved in e_{t} satisfy $\left\{t^{\prime}\right\} \unlhd\{t\}$.

Proof. If $\left\{t^{\prime}\right\} \neq\{t\}$ is involved in $e_{t},\left\{t^{\prime}\right\}=\{t\} \pi$ for some $\pi \in C_{t}$. Since t is standard, in some column of t^{\prime} there are integers $w<x$ such that w is lower than x. By Lemma 14 we have $\left\{t^{\prime}\right\} \triangleleft$ $\left\{t^{\prime}(w, x)\right\}$. If $t^{\prime}(w, x)$ has its entries increasing down the columns, then obviously $\left\{t^{\prime}(w, x)\right\}=$ $\{t\}$. If this is not the case, repeat the process till we reach $\{t\}$. Hence the result.

Theorem 27. $S=\left\{e_{t} \mid t\right.$ is a standard μ-tableau $\}$ is a linearly independent set of S^{μ}.

Proof. The above lemma shows that all the tabloids $\left\{t^{\prime}\right\}$ involved in e_{t}, where t is a standard tableau satisfy $\left\{t^{\prime}\right\} \unlhd\{t\}$. In other words, if t is standard, $\{t\}$ is the last tabloid involved in e_{t} Let $\left\{e_{t_{1}}, e_{t_{2}} \ldots e_{t_{m}}\right\}$ be the set S, where $\left\{t_{1}\right\}<\left\{t_{2}\right\}<\ldots<\left\{t_{m}\right\}$. For every $1<i \leq m, e_{t_{i}}$ is not an element of span of $\left\{e_{t_{1}}, e_{t_{2}} \ldots e_{t_{i-1}}\right\}$. This is because $\left\{t_{i}\right\}>t_{j}$ for all $1 \leq j \leq i-1$. Thus by induction, the set S is a linearly independent set.

From now on we refer to the elements of S as standard polytabloids. We now prove that the set S is in fact a basis for S^{μ}. For this, we shall apply Theorem 24 . We define a new equivalence class on set of μ-tableaux by $t_{1} \sim t_{2}$ if and only if $t_{1} \pi=t_{2}$ for some $\pi \in C_{t_{1}}$. Notice that this is similar to the equivalence class used to define μ-tabloids (we just replace R_{t} by C_{t}). Therefore on the equivalences classes [t], we may define a total order in a way similar to the total order on tabloids. If t is not standard, by induction, we may assume that for all $\left[t^{\prime}\right]<[t], e_{t}$ is a linear combination of standard polytabloids and prove that the results holds for t as well. Since for every $\pi \in C_{t}, e_{t} \pi=\operatorname{sgn}(\pi) e_{t}$, we may assume without loss of generality that entries in t increase down the order. If t is not standard, there are two columns say j th and $j+1$ st with entries $a_{1}<a_{2} \ldots a_{r}$ and $b_{1}<b_{2}<\ldots<b_{r}$ respectively with $a_{q}>b_{q}$ for some q. Now consider the Garnir element $G_{X, Y}$ for the sets $X=\left\{a_{1} \ldots a_{r}\right\}$ and $Y=\left\{b_{1} \ldots b_{q}\right\}$. If $G_{X, Y}=\sum \operatorname{sgn}(\sigma) \sigma$, by Theorem 24 , we have

$$
0=e_{t} \sum \operatorname{sgn}(\sigma) \sigma=\sum \operatorname{sgn}(\sigma) e_{t \sigma} .
$$

Since $b_{1}<\ldots<b_{q} a_{q}<a_{q+1} \ldots a_{r}$, we have $[t \sigma]<[t]$. Because $e_{t}=-\sum_{\sigma \neq 1} \operatorname{sgn}(\sigma) e_{t \sigma}, e_{t}$ is a linear combination of standard polytabloids. Therefore we have:

Theorem 28. The set of standard μ-polytabloids forms a basis for the specth module S^{μ}.

Now we see some application of this standard basis.

Lemma 29. If $v \in S_{\mathbb{Q}}^{\mu}$, and the coefficients of tabloids involved in v are all integers, then v is an integral linear combination of the standard polytabloids.

Proof. We assume $v \neq 0$, otherwise, the lemma is vacuously true. Let $\{t\}$ be the last tabloid involved in v under the total order on tabloids. Since v can be written as a linear combination of standard polytabloids, by Lemma 26, the last tabloid involved in v is standard. Again Lemma 26 shows that the last tabloid involved in $v-a e_{t}($ here $a=<v,\{t\}>\in \mathbb{Z})$ is a standard tabloid $\left\{t^{\prime}\right\}$ with $t^{\prime}<t$. So by induction $v-a e_{t}$ is an integral linear combination of standard polytabloids. Therefore even v is an integral linear combination of standard polytabloids

Corollary 30. The matrices representing S_{n} over \mathbb{Q} with respect to the basis of standard polytabloids of $S_{\mathbb{Q}}^{\mu}$ are integral matrices.

Proof. We know that $e_{t} \pi=e_{t \pi}$. Now apply the lemma on $e_{t \pi}$.
Corollary 31. If $v \in S_{Q}^{\mu}$ and the coefficients of tabloids involved in v are integers, then we may reduce all the integers modulo p and obtain an element of S_{F}^{μ}, where F is the Galois field of size p.

Proof. We may consider $S_{\mathbb{Q}}^{\mu}$ and S_{F}^{μ} to be the \mathbb{Q} and F span respectively of the set of μ-polytabloids. By the above lemma, we have $v=\sum_{i} a_{i} e_{i}$ for some $a_{i} \in \mathbb{Z}$ and standard polytabloids e_{i}. Clearly the element $\bar{v}=\sum_{i} a_{i}(\bmod p) e_{i}$ is an element of S_{F}^{μ}.

This corollary gives the following:
Theorem 32. If F is the Galois field of size p, then S_{F}^{μ} is the p-modular representation of S_{n} obtained from $S_{\mathbb{Q}}^{\mu}$.

Observation 33. Suppose that $\left\{t_{1}\right\}<\left\{t_{2}\right\} \ldots\left\{t_{m}\right\}$ are the standard μ-tabloids. Now the only standard tabloid involved in $e_{t_{1}}$ is t_{1}. If the coefficient of $\left\{t_{1}\right\}$ in $e_{t_{2}}$ is a, then then only tabloid involved in $f_{2}=e_{t_{2}}-a\left\{t_{1}\right\}$ is $\left\{t_{2}\right\}$. Continuing in this way, we get the basis $\left\{f_{1}, f_{2} \ldots f_{m}\right\}$ with the property that each element involved a unique standard tabloid.

The next lemma helps us to construct elements of $\operatorname{Hom}_{F S_{n}}\left(M_{F}^{\lambda}, M_{F}^{\mu}\right)$ from certain kind

Lemma 34. Suppose that $\theta \in \operatorname{Hom}_{\mathbb{Q} S_{n}}\left(M_{\mathbb{Q}}^{\lambda}, M_{\mathbb{Q}}^{\mu}\right)$ and that all tabloids involved in $\theta(\{t\})$ have integer coefficients $\left(\{t\} \in M_{Q}^{\lambda}\right)$. Then reducing all the integers modulo p, we obtain an element $\bar{\theta}$ of $\operatorname{Hom}_{F S_{n}}\left(M_{F}^{\lambda}, M_{F}^{\mu}\right)\left(F\right.$ is the field with pelements). Moreover if $\operatorname{ker}(\theta)=S^{\lambda_{\varrho}^{\perp}}$, then $\operatorname{ker}(\bar{\theta}) \supset S_{F}^{\lambda \perp}$.

Proof. By construction, $\bar{\theta} \in \operatorname{Hom}_{F S_{n}}\left(M_{F}^{\lambda}, M_{F}^{\mu}\right)$.
Take a basis $f_{1}, f_{2}, \ldots f_{k}$ of $S_{\mathbb{Q}}^{\lambda^{\perp}}$ and extend by the standard basis of $S_{\mathbb{Q}}^{\lambda}$ to a basis $f_{1}, f_{2} \ldots f_{m}$ of $M_{\mathbb{Q}}^{\lambda}$. Define $N=\left(n_{i j}\right)$ to be the matrix with $n_{i, j}=<f_{i},\left\{t_{j}\right\}>$. We may assume that N has integer entries. By row reducing the first k rows of N, we may assume that the first k rows of N (these correspond to the basis of $S_{\mathbb{Q}}^{\lambda^{\perp}}$) are linearly independent modulo p. Reducing entries of N modulo p, we obtain a set of m vectors, of which $m-k$ form the standard basis for S_{F}^{λ} and the other k are linearly independent and orthogonal to standard basis of S_{F}^{λ}. These k vectors form a basis for $S_{F}^{\lambda^{\perp}}$ because $\operatorname{dim}\left(S_{F}^{\lambda^{\perp}}\right)=\operatorname{dim}\left(M_{F}^{\mu}\right)-\operatorname{dim}\left(S_{F}^{\lambda}\right)=k$. Thus we have constructed a basis of $S_{\mathbb{Q}}^{\lambda^{\perp}}$, whose vectors give a basis for $S_{F}^{\lambda^{\perp}}$, when coefficients of tabloids involved in them are reduced modulo p. Let B be this basis and \bar{B} be the basis of $S_{\mathbb{F}}^{\lambda^{\perp}}$ obtained from B. Clearly if $\theta(B)=0$, then $\bar{B} \subset \operatorname{ker}(\bar{\theta})$ and hence the result.

Chapter 4

Irreducible Representations of Symmetric Groups.

4.1 Classification of ordinary irreducible representations of S_{n}

In this section we show that for any field F of characteristic $0,\left\{D_{F}^{\mu} \mid \mu \vdash n\right\}$ is the set of inequivalent irreducible representations. If $F=\mathbb{Q},<,>$ is an inner product and therefore $S_{\mathbb{Q}}^{\mu} \cap S_{\mathbb{Q}}^{\mu \perp}=0$. From the proof of Theorem 44, we may deduce that $S_{\mathbb{F}}^{\mu} \cap S_{\mathbb{F}}^{\mu \perp}=0$ for any field F of characteristic zero (\mathbb{Q} is the prime subfield of F). Therefore if $\operatorname{char}(F)=0$, the set $\left\{S_{F}^{\lambda} \mid \lambda \vdash n\right\}$ is a set of irreducible $F S_{n}$ modules. The following lemma is useful in showing Specht modules corresponding to different proper-partitions are in fact inequivalent

Lemma 35. Let θ be an element of $\operatorname{Hom}_{F S_{n}}\left(M^{\lambda}, M^{\mu}\right)$, such that $S^{\lambda} \nsubseteq \operatorname{ker}(\theta)$, then $\lambda \unrhd \mu$. Moreover if $\lambda=\mu$, then the restriction of θ to S^{λ} is a multiplication by a constant.

Proof. Suppose that t is a λ-tableau. Since $e_{t} \notin \operatorname{ker}(\theta)$, we have

$$
0 \neq \theta\left(e_{t}\right)=\theta\left(\{t\} \kappa_{t}\right)=\theta(\{t\}) \kappa_{t}=\text { a linear combination of } \mu \text {-tabloids }
$$

So we have a μ-tabloid $\{t *\}$ such that $\{t *\} \kappa_{t} \neq 0$ and thus by Lemman we get $\lambda \unrhd \mu$. Schur's lemma gives us the proof of remainder of the lemma.

We have seen that if $\operatorname{char}(F)=0, S_{\mathbb{F}}^{\mu} \cap S_{\mathbb{F}}^{\mu \perp}=0$ and thus we get $M_{F}^{\mu}=S_{F}^{\mu} \oplus S_{F}^{\mu \perp}$. This implies that any non-zero element f of $\operatorname{Hom}_{F S_{n}}\left(S_{F}^{\lambda}, M_{F}^{\mu}\right)$ can be extended to an element θ of
$\operatorname{Hom}_{F S_{n}}\left(M^{\lambda}, M^{\mu}\right)$, such that $\operatorname{ker}(\theta)=S^{\lambda_{F}}$. This is because $\operatorname{ker}(f)=0$ as S_{F}^{μ} is irreducible. Application of the above lemma gives that $\lambda \unrhd \mu$ if $\operatorname{Hom}_{F S_{n}}\left(S_{F}^{\lambda}, M_{F}^{\mu}\right) \neq 0$. Thus we have:

Lemma 36. $S_{F}^{\mu} \simeq S_{F}^{v}$ if and only if $\mu=v$.
Proof. The discussion prior to the lemma proves that $\lambda \unrhd \mu$ and $\mu \unrhd \lambda$ and thus $\lambda=\mu$
Since the number of inequivalent ordinary irreducible representations of S^{n} is equal to number of proper-partitions of n, we have the following:

Theorem 37. The Specht modules over \mathbb{Q} are self dual and absolutely irreducible and give all the ordinary irreducible representations of S_{n}

4.2 Classification of modular irreducible representations of S_{n}

In this section let F be any field of characteristic p, a prime. Since most of the results in this section depend only on $\operatorname{char}(F)$, we denote $M_{F}^{\lambda}, S_{F}^{\lambda}, D_{F}^{\lambda}$ by $M^{\lambda}, S^{\lambda}, D^{\lambda}$ respectively. We have seen that D^{μ} is either irreducible or zero. $D^{\mu} \neq 0$ for certain kind of partitions called p-regular partitions.

Definition 38. A partition μ is called p-singular if for some i,

$$
\mu_{i+1}=\mu_{i+2}=\ldots=\mu_{i+p}>0 .
$$

Otherwise μ is called p-regular partition
A conjugacy class of S_{n} is called p-regular if the order of elements in it is not divisible by p.

Lemma 39. The number of p-regular conjugacy classes of S_{n} is same as the number of p-regular partitions of n

Proof. The number of p-regular conjugacy classes of S_{n} is same as the number of partitions μ of n where no non-zero part μ_{i} is divisible by p. We simplify the following ratio in two different ways to prove the lemma.

$$
\frac{\left(1-x^{p}\right)\left(1-x^{2 p}\right) \ldots}{(1-x)\left(1-x^{2}\right) \ldots}
$$

- Cancel equal factors $\left(1-x^{m p}\right)$ in the numerator and denominator. This leaves

$$
\prod_{p \nmid i}\left(1-x^{i}\right)^{-1}=\prod_{p \nmid i}\left(1+x^{i}+x 2 i+x^{3 i}+\ldots\right) .
$$

Let the partition ($1^{a}, 2^{b}, 3^{c} \ldots$) correspond to the multiplication of x^{a} from the 1st infinite sum, $x^{2 b}$ from the second infinite sum and so on. This correspondence shows that the co-efficient of x^{n} in the ratio is equal to number of partitions of μ of n such that no part μ_{i} is divisible by p.

- Now we rearrange the ratio to look as follows

$$
\prod_{m=1}^{\infty} \frac{\left(1-x^{m p}\right)}{1-x^{m}}=\prod_{m=1}^{\infty}\left(1+x^{m}+x^{2 m} \ldots x^{(p-1) m}\right) .
$$

One can see that here, the coefficient of x^{n} is equal to number of p-regular partitions of n.

Comparing the coefficients of x^{n} in the above methods of simplification of the ratio gives us the lemma.

Define g^{μ} to be $\operatorname{gcd}\left(\left\{<e_{t}, e_{t *}>\mid e_{t} \& e_{t *}\right.\right.$ are polytabloids in $\left.\left.S_{\mathbb{Q}}^{\mu}\right\}\right)$.
Lemma 40. Suppose that μ is a partition with z_{j} parts equal to j. Then $\prod_{j=1}^{\infty}\left(z_{j}\right)$! divides g^{μ} and g^{μ} divides $\prod_{j=1}^{\infty}\left(z_{j}!\right)^{j}$

Note: Since all partitions have finitely many parts and $0!=1$, there is no problem in taking the infinite products in the lemma.

Proof. Define an equivalence relation \sim on the set of tabloids as follows: $\left\{t_{1}\right\} \sim\left\{t_{2}\right\}$ if and only if for all i and j, i and j belong to the same row of $\left\{t_{2}\right\}$ when they belong to the same row of $\left\{t_{1}\right\}$. In other words, we can go from $\left\{t_{1}\right\}$ to $\left\{t_{2}\right\}$ by "shuffling" rows. Clearly the size of each equivalence class is $\prod_{j=1}^{\infty}\left(z_{j}\right)$!. If $\left\{t_{1}\right\}$ is involved in a polytabloid e_{t} and we have $\left\{t_{1}\right\} \sim\left\{t_{2}\right\}$, then the definition of e_{t} shows that $\left\{t_{2}\right\}$ is involved in e_{t}. Moreover the sign of the coefficient of $\left\{t_{2}\right\}$ depends only on the sign of coefficient of $\left\{t_{1}\right\}$. This gives us that any two polytabloids have a multiple of $\prod_{j=1}^{\infty}\left(z_{j}\right)$! tabloids in common and that $\prod_{j=1}^{\infty}\left(z_{j}\right)$! divided the g^{μ}. Now let t be any tableau and $t *$ be the tableau obtained by reversing the order of numbers in the rows of t. Let $\pi \in C_{t}$ such that both i and $i \pi$ are in rows of t with the same lengths. Then $t \pi$ is involved in both e_{t} and $e_{t *}$ with the same coefficient. Conversely any
common tabloid of e_{t} and $e_{t *}$ has this form. Therefore $<e_{t}, e_{t *}>=\prod_{j=1}^{\infty}\left(z_{j}!\right)^{j}$, and thus g^{μ} divides $\prod_{j=1}^{\infty}\left(z_{j}!\right)^{j}$

Corollary 41. A prime p divides g^{μ} if and only if μ is p-singular.
Proof. μ is p-singular if and only if p divides z_{j} ! for some j. By the above theorem, this happens if and only if p divides g^{μ}.

Corollary 42. If $t *$ is obtained by reversing the order of elements in each row of t, then $e_{t *} \kappa_{t}$ is a multiple of e_{t}, and this multiple is co-prime to p if and only if p is μ-regular.

Proof. Corollary of Lemma 20 shows that $e_{t *} \kappa_{t}$ is a multiple of $e_{t}, e_{t *} \kappa_{t}=h e_{t}$ say. We have

$$
h=h<e_{t},\{t\}>=<h e_{t},\{t\}>=<e_{t *} \kappa_{t},\{t\}>=<e_{t *}, e_{t}>.
$$

In the proof of the above theorem, we have seen that $h=\prod_{j=1}^{\infty}\left(z_{j}!\right)^{j}$, which is co-prime to p if and only if μ is p-regular.

Theorem 43. D^{μ} is zero if and only if μ is p-singular.
Proof. $S^{\mu} \subset S^{\mu^{\perp}}$ if and only if $\left\langle e_{t}, e_{t *}\right\rangle=0$ for all μ-tableau's t and $t *$. This is equivalent to p dividing g^{μ}. Lemma 40, implies the result.

This proves that the set $\left\{D^{\mu} \mid \mu p\right.$-regular proper-partition of $\left.n\right\}$ is a set of irreducible representations of S_{n} over the field F of characteristic p. We have shown that \mathbb{Q} is a splitting field of S_{n} i.e all irreducible representations over \mathbb{Q} are absolutely irreducible. We assume the following results from general representation theory:

1. If F is a splitting field of G and $\operatorname{char}(F)=p \neq 0$, the number of irreducible representations of G over F is same as the number of p-regular conjugacy classes of G.
2. If \mathbb{Q} is a splitting field of a group G, then every field F is a splitting field of F.

These results have been taken from Curtis and Riener [2] (83.5 on page 591 and 83.7 on page 592). Once we prove that D^{μ} and D^{ν} are inequivalent representations for distinct p-singular partitions, we have:

Theorem 44. Suppose that F is a field of characteristic $p \neq 0$. As μ varies over μ-regular proper-partitions of n, D^{μ} varies over a complete set of inequivalent $F S_{n}$ modules. Moreover each D^{μ} is absolutely irreducible and self dual.

4.2. CLASSIFICATION OF MODULAR IRREDUCIBLE REPRESENTATIONS OF $S_{N} 21$

We use the following lemma to prove that $D^{\mu} \not \equiv D^{\nu}$ for distinct p-regular partitions μ and v.

Lemma 45. Let λ and μ are partitions of n with λ being p-regular. Assume that U is an M^{μ} submodule such that there is a a non zero $\theta \in \operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu} / U\right)$. Then $\lambda \unrhd \mu$ and if $\lambda=\mu$, we have $\operatorname{Im}(\theta) \subset\left(S^{\mu}+U\right) / U$.

Proof. Let t be a λ-tableau and $t *$ be the tableau obtained by reversing the order of elements in each row of t. By Corollary 41, we have $e_{t *} \kappa_{t}=h e_{t}$ where $h \neq 0$ (because λ is p-regular). As $\theta \neq 0$ and $h \neq 0$, we have $\theta\left(e_{t *} \kappa_{t}\right)=\theta\left(e_{t *}\right) \kappa_{t} \notin U$. Now Lemma 20 implies that $\lambda \unrhd \mu$. Now if $\mu=\lambda, \theta\left(e_{t}\right)=\theta\left(h^{-1} e_{t *}\right) \kappa_{t}=m e_{t}+U$ for some m in the prime field of F (again by Lemma 20). The lemma follows because S^{λ} is generated by e_{t}.

Corollary 46. Let λ and μ are partitions of n with λ being p-regular. Assume that U is an M^{μ} submodule such that there is a a non zero $\theta \in \operatorname{Hom}_{F S_{n}}\left(D^{\lambda}, M^{\mu} / U\right)$. Then $\lambda \unrhd \mu$ and $\lambda \triangleright \mu$ if $S^{\mu} \subset U$.

Proof. We lift $\theta \neq 0$ onto S^{λ} as follows

$$
S_{\text {Canonical }}^{\lambda} P^{\lambda} \xrightarrow[\theta]{\longrightarrow} M^{\mu} / U
$$

By the above lemma $\lambda \unrhd \mu$. Now if $\lambda=\mu$, then $\operatorname{Im}(\theta)$ is a non-zero submodule of $S^{\mu}+U / U$, so U does not contain S^{μ}.

If $D^{\lambda} \cong D^{\mu}$ for two distinct p-regular partitions μ and λ, by the above corollary, we have $\lambda \unrhd \mu$ and $\mu \unrhd \lambda$. This completes the proof of Theorem 44.

Chapter 5

Semistandard homomorphisms

In this chapter we find a basis for $\operatorname{Hom}_{F}\left(S_{F}^{\lambda}, M_{F}^{\mu}\right)$ except in the case $\operatorname{Char}(F)=2$ and λ is 2 -singular. We have already seen from Lemma 16, that M^{μ} is isomorphic to the permutation module associated with the action of S_{n} on S_{n} / S_{μ}. A tableau T of shape λ and type μ is one of the $n!/\left(\prod_{i} \mu_{i}!\right)$ objects obtained by replacing the nodes of [λ] by $\mu_{1} 1^{\prime}$ s, μ_{2} 2^{\prime} s, so on. Denote the set of tableau of shape λ and type μ by $\mathcal{T}(\lambda, \mu)$. One can see that the set of λ-tableaux is same as $\mathcal{T}\left(\lambda,\left(1^{n}\right)\right)$.
example: $\begin{array}{lllll}2 & 2 & 1 & 1 \\ 1 & 2 & & & \\ & \text { is a tableau of shape }(4,2) \text { and type }(3,3) \text {. }\end{array}$
For this section, fix t to be a given λ-tableau. If $T \in \mathcal{T}(\lambda, \mu)$, define $T(i)$ to be the entry in T, which occurs in the same position as i occurs in t. We define the action of S_{n} on $\mathcal{T}(\lambda, \mu)$ by $(T \pi)(i)=T\left(\pi^{-1}(i)\right)$. This is a transitive action on $\mathcal{T}(\lambda, \mu)$, with all the isotropy subgroups isomorphic to S^{μ}. Thus we may define M_{F}^{μ} to be the F-vector space spanned by $\mathcal{T}(\lambda, \mu)$. We make it a $F S_{n}$ module of S_{n} action $\mathcal{T}(\lambda, \mu)$.

If $T_{1}, T_{2} \in \mathcal{T}(\lambda, \mu)$, we say T_{1} and T_{2} are row equivalent (respectively, column equivalent) if $T_{2}=T_{1} \pi$ for some $\pi \in R_{t}\left(\right.$ respectively $\left.C_{t}\right)$.

Definition 47. If $T \in \mathcal{T}(\lambda, \mu)$, define $\theta_{T} \in \operatorname{Hom}\left(M^{\lambda}, M^{\mu}\right)$ by the extending the relation

$$
\theta_{T}(\{t\})=\sum\left\{T_{1} \mid T_{1} \text { is row equivalent to } T\right\}
$$

to the unique S_{n}-invariant linear transformation.
Now we prove the simple
Theorem 48. $C:=\left\{\theta_{T} \mid T \in \mathcal{T}(\lambda, \mu)\right.$ and the numbers are non-decreasing along each row of $\left.T\right\}$

Proof. The set $A=\{T \in \mathcal{T}(\lambda, \mu)$ and the numbers are non-decreasing along each row of $T\}$ is a set of representatives of the row equivalence classes of $\mathcal{T}(\lambda, \mu)$. The definition of θ_{T} and the fact that $\mathcal{T}(\lambda, \mu)$ is a basis of M^{μ} proves that C consists of linearly independent homomorphisms.

Suppose θ is a non-zero element of $\operatorname{Hom}_{F S_{n}}\left(M^{\lambda}, M^{\mu}\right)$. If T and T^{\prime} are row equivalent, then $T^{\prime}=T \pi$ for some $\pi \in R_{t}$, and therefore

$$
<\theta(\{t\}), T^{\prime}>=<\theta(\{t\}), T \pi>=<\theta\left(\{t\} \pi^{-1}\right), T>=<\theta(\{t\}), T>
$$

Since A is a set of representatives of row equivalence classes, we have

$$
\theta(\{t\})=\sum_{T \in A}<\theta(\{t\}), T>\theta_{T}(\{T\}) .
$$

Since M^{λ} is a cyclic modules, we can say that θ is infact in the linear span of C.
One can verify that
Observation 49. $T \kappa_{t}=0$ if and only if some column of T contains two identical numbers.
Define $\widehat{\theta^{T}}$ as the restriction of θ_{T} to S^{λ}. Now if T has two identical numbers in some column, then by the above observation, we have $\theta_{T}\left(S^{\curlywedge}\right)=0$. To eliminate such cases, we consider the kind of tableau defined below.

Definition 50. A tableau $T \in \mathcal{T}(\lambda, \mu)$ is called semi-standard if the numbers in T are nondecreasing along the rows of T (left to right) and strictly increasing down the column. The set of semi-standard tableaux of type μ and shape λ is denoted by $\mathcal{T}_{0}(\lambda, \mu)$.

We defined column equivalence of two elements of $\mathcal{T}(\lambda, \mu)$. Denote the equivalence class containing T by $[T]$. We now define a partial order on the column equivalence classes.

Definition 51. Let $\left[T_{1}\right] \measuredangle\left[T_{2}\right]$ if $\left[T_{2}\right]$ can be obtained form [T_{1}] by interchanging w and x, where w belongs to a later column than x and $w<x$. We now define a partial order \triangleleft by $T_{1} \triangleleft T_{2}$ if and only if there is a chain of the form $\left[T_{1}\right] \triangleleft\left[T_{i_{1}}\right] \triangleleft\left[T_{i_{2}}\right] \triangleleft \ldots \triangleleft\left[T_{i_{k}}\right] \triangleleft\left[T_{2}\right]$.

It is trivial to see that:

Observation 52. If T is semi-standard, and T^{\prime} is row equivalent to T, then $\left[T^{\prime}\right] \triangleleft[T]$ unless $T^{\prime}=T$.

Lemma 53. $\left\{\widehat{\theta}_{T} \mid T \in \mathcal{T}_{0}(\lambda, \mu)\right\}$ is a linearly independent subset of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$.
Proof. Consider any linear combination $\sum_{T \in \mathcal{T}_{0}(\lambda, \mu)} a_{T} \theta_{T}$, such that not all $a_{T}^{\prime} \mathrm{S}$ are zero. Let T_{1} be such that $a_{T_{1}} \neq 0$ and $a_{T}=0$ for all T such that $\left[T_{1}\right] \triangleleft\left[T_{1}\right]$. From the above observation,

$$
\sum_{T \in \mathcal{\mathcal { T } _ { 0 }}(\lambda, \mu)} a_{T} \theta_{T}(\{t\})=a_{T_{1}} T_{1}+\text { a linear combination of tableaux } T_{2} \text { such that }\left[T_{1}\right] \not \perp\left[T_{2}\right] .
$$

As $T_{1} \in \mathcal{T}_{0}(\lambda, \mu)$, we have $T \kappa_{t} \neq 0$ and also by definition of $[T]$, we have $\left[T \kappa_{t}\right]=[T]$. This shows that

$$
\begin{gathered}
\sum_{T \in \mathcal{T}_{0}(\lambda, \mu)} a_{T} \theta_{T}\left(\{t\} \kappa_{t}\right)=\sum_{T \in \mathcal{T}_{0}(\lambda, \mu)} a_{T} \theta_{T}(\{t\}) \kappa_{t} \\
=\left(a_{T_{1}} T_{1}+\text { a linear combination of tableaux } T_{2} \text { such that }\left[T_{1}\right] \not \pm\left[T_{2}\right]\right) \kappa_{t} \neq 0 .
\end{gathered}
$$

Therefore $\sum_{T \in \mathcal{T}_{0}(\lambda, \mu)} a_{T} \widehat{\theta}_{T}$ is a non-zero element of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$.
We shall prove that $\left\{\widehat{\theta\}}_{T} \mid T \in \mathcal{T}_{0}(\lambda, \mu)\right\}$ is a basis of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$ unless $\operatorname{char}(F)=2$ and λ is $2-$ singular.

Lemma 54. Suppose that $\theta \in \operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$ is a non-zero homomorphism and $\theta\left(e_{t}\right)=$ $\theta\left(\{t\} \kappa_{t}\right)=\sum_{T \in \mathcal{T}(\lambda, \mu)}\left(S^{\lambda}, M^{\mu}\right) c_{T} T$ for some $c_{T} \in F$. Unless char (F) and λ is 2-singular, we have

1. $c_{T^{\prime}}=0$ for all T^{\prime} with repeated entries in some column
2. $c_{T_{1}} \neq 0$ for some $T_{1} \in \mathcal{T},(\lambda, \mu)$.

Proof. We prove both parts of the lemma separately

1. If T^{\prime} has repeated entries in some column, there are i, j such that $i \neq j$ and i and j are in same column of t and $T^{\prime}(i)=T^{\prime}(j)$. Since $\kappa_{t}(i, j)=-\kappa_{t}$,

$$
\sum c_{T} T(i, j)=\theta\left(\{t\} \kappa_{t}\right)(i, j)=\theta(\{t\}) \kappa_{t}(i, j)=-\sum c_{T} T
$$

Because $T^{\prime}(i, j)=T^{\prime}, c_{T^{\prime}}=0\left(\right.$ since $T(\lambda, \mu)$ is a basis of $\left.M^{\mu}\right)$, unless $\operatorname{char}(F)=2$.
If $\operatorname{char}(F)=2$ and λ is 2 -regular, define π to be the permutation reversing the orders of elements in each row of t. By Corollary 42, $\{t\} \kappa_{t} \pi \kappa_{t}=\{t\} \kappa_{t}$. Hence

$$
\sum c_{T} T=\theta\left(\{t\} \kappa_{t}\right)=\theta\left(\{t\} \kappa_{t}\right) \pi \kappa_{t}=\sum C_{t} T \pi \kappa_{t} .
$$

By Observation 49, no tableau containing a column with a repeated entry has non-zero coefficient in $\sum c_{T} T \pi \kappa_{t}$, so $c_{T^{\prime}}=0$

If $\pi \in C_{t}$, we have $\kappa_{t} \operatorname{sgn}(\pi) \pi=\kappa_{t}$. Therefore $\sum c_{T} T=\sum c_{T} \operatorname{sgn}(\pi) T \pi$, and so if T_{1} is column equivalent to T_{2}, then $c_{T_{1}}= \pm c_{T_{2}}$.

As $\theta \neq 0$, choose T_{1} such that $c_{T_{1}} \neq 0$ and $c_{T *}=0$ for all $\left[T_{1}\right] \triangleleft[T *]$. By part(1) of the lemma and the preceding paragraph, we may assume that numbers strictly increase along the column. If T_{1} is semi-standard tableau, then the proof is complete. If T_{1} is not semi-standard, there are two columns say j th with entries $a_{1}<a_{2}<\ldots<a_{r}$ and $j+1$ th with entries $b_{1}<b_{2}<\ldots<b_{s}$ such that $a_{q}<b_{q}$ for some q. Let $x_{i, j}$ denote the entry in the (i, j) th node of t. Let $G_{X, Y}=\sum \operatorname{sgn}(\pi) \pi$ be the garnir element $(\operatorname{cf}$ 23) for the sets $X=\left\{x_{q, j}, \ldots x_{r, j}\right\}$ and $Y=\left\{x_{1, j+1}, \ldots x_{q, j+1}\right\}$. By Theorem 24,

$$
\sum c_{T} T \sum \operatorname{sgn}(\pi) \pi=\theta\left(\{t\} \kappa_{t} \sum \operatorname{sgn}(\pi) \pi\right)=0
$$

For any $T \in \mathcal{T}(\lambda, \mu), T \sum \operatorname{sgn}(\pi) \pi$ is a linear combination of tableaux agreeing on T except at $(1, j+1)$ th, $(2, j+1)$ th, $\ldots,(q, j+1)$ th; (q, j) th $, \ldots,(r, j)$ th nodes. All the tableaux involved in $T_{1} \sum \operatorname{sgn}(\pi) \pi$ have coefficients $\pm c_{T_{1}}$. But $\sum c_{T} T \sum \operatorname{sgn}(\pi) \pi=0$, therefore, there is a tableau \bar{T} which agrees with T except on the nodes described above. Since $b_{1}<b_{2}<$ $\ldots<b_{q}<a_{q}<\ldots<a_{r}$, we must have $[\bar{T}] \triangleright\left[T_{1}\right]$. This contradiction to the choice of $\left[T_{1}\right]$. Therefore T is semi-standard.

Using this we prove the main result of this section.
Theorem 55. Unless char $(F)=2$ and λ is 2-singular, $B=\left\{\widehat{\theta} \mid T \in \mathcal{T}_{0}(\lambda, \mu)\right\}$ is a basis of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$.

Proof. We have already seen that B is a linearly independent set. It is enough to show that B spans $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$.

Suppose that $\theta \neq 0$ be an element of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$. By the previous lemma

$$
\theta\left(\{t\} \kappa_{t}\right)=\sum c_{T} T, \text { where } c_{T_{1}} \neq 0 \text { for some } T_{1} \in \mathcal{T}_{0}(\lambda, \mu) .
$$

By Observation 52, $\left(\theta-c_{T_{1}} \widehat{\theta}_{T_{1}}\right)\left(\{t\} \kappa_{t}\right)$ is a linear combination of tableaux T_{2} with the property $\left[T_{1}\right] \nexists\left[T_{2}\right]$. By induction, $\left(\theta-c_{T_{1}} \widehat{\theta}_{T_{1}}\right)$ is a linear combination of elements of B, and therefore so is θ. Thus B is a basis.

Definition 56. The elements of the set B as in the above are called semi-standard homomorphisms.

Remark 57. Given any total order $>$ on the set $\{1,2, \ldots n\}$, we may define $\mathcal{T}_{0}(\lambda, \mu)$ to be the set of tableaux in $\mathcal{T}(\lambda, \mu)$ whose entries increase along the rows and strictly increase down the columns, with respect to $>$. One can see that all the previous results still hold.

Corollary 58. Unless char $(F)=2$ or λ is 2 -singular, every element of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$ can be extended to an element of $\operatorname{Hom}_{F S_{n}}\left(M^{\lambda}, M^{\mu}\right)$.

Proof. We can extend $\widehat{\theta}_{T}$ to θ_{T}. The corollary follows from the previous theorem.
Theorem 55 and the above corollary can be false if $\operatorname{char}(F)=2$ and λ is $2-$ singular. This is illustrated by the following example

Given $\{t\}=\frac{\overline{1}}{2}$, then $e_{t}=\frac{\overline{1}}{2}+\frac{\overline{2}}{1}$. Now define $\theta \in \operatorname{Hom}_{F S_{n}}\left(S^{\left(1^{2}\right)}, M^{(2)}\right)$ by $\theta\left(e_{t}\right)=$ $\overline{12}$. It is trivial to see that one cannot extend θ to an element of $\operatorname{Hom}_{F S_{n}}\left(M^{\left(1^{2}\right)}, M^{(2)}\right)$. Therefore Theorem 55 and the previous corollary need not hold when $\operatorname{char}(F)=2$ and λ is $2-$ singular.

The following corollary gives us more information about $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$.
Corollary 59. Unless char $(F)=2$ and λ is $2-$ singular, $\lambda \not \perp \mu$ implies $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)=0$ and $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right) \cong F$.

Proof. By Theorem 55, $\operatorname{dim}\left(\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)\right)$ is equal $\left|\mathcal{T}_{0}(\lambda, \mu)\right|$. Denote this number by $K_{\lambda \mu}$. Assume $K_{\lambda, \mu} \neq 0$, i.e there is a semi-standard tableau T of shape λ and type μ. The μ_{1} 1^{\prime} s sit in the first row of T, thus $\mu_{1} \leq \lambda_{1}$. The $\mu_{1} 1$'s and $\mu_{2} 2^{\prime}$ s sit in the first two rows of T, thus $\mu_{1}+\mu_{2} \leq \lambda_{1}+\lambda_{2}$. Continuing in this way, we get $\lambda \unrhd \mu$. Clearly $K_{\lambda, \lambda}=1$. Therefore $\lambda \nsubseteq \mu$ implies $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)=0$ and $\operatorname{dim}\left(\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)\right)=1$ i.e $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right) \cong$ F.

Corollary 60. Unless char $(F)=2$ and λ is $2-$ singular, S^{λ} is indecomposable.
Proof. If S^{λ} is a decomposable module, the projection map into one of the component gives a non-trivial element of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\lambda}\right)$. This contradicts the previous corollary.

Remark 61. In the later part of this thesis, we shall prove that $S^{\left(5,1^{2}\right)}$ is decomposable over any field of characteristic 2 .

Chapter 6

Littlewood-Richardson Rule

We can now explicitly describe the composition factors of $M_{\mathbb{Q}}^{\mu}$. Since \mathbb{Q} is a splitting field of S_{n}, the multiplicity of $S_{\mathbb{Q}}^{\lambda}$ is same as $\operatorname{dim}\left(\operatorname{Hom}_{\mathbb{Q} S_{n}}\left(S_{\mathbb{Q}}^{\lambda}, M_{\mathbb{Q}}^{\mu}\right)\right)$. By Theorem 55 , we know $\operatorname{dim}\left(\operatorname{Hom}_{\mathbb{Q} S_{n}}\left(S_{\mathbb{Q}}^{\lambda}, M_{\mathbb{Q}}^{\mu}\right)\right)=K_{\lambda \mu}$. This implies the following theorem

Theorem 62 (Young's Rule). The multiplicity of $S_{\mathbb{Q}}^{\lambda}$ as a composition factor of $M_{\mathbb{Q}}^{\mu}$ is equal to the number of semi-standard tableau of shape λ and type μ.

We have $M_{\mathbb{C}}^{\mu}=\oplus_{\lambda \vdash n} K_{\lambda \mu} S_{\mathbb{C}}^{\lambda}$. Again since \mathbb{Q} is a splitting field, we also have $M_{\mathbb{Q}}^{\mu}=\oplus_{\lambda \vdash n} K_{\lambda \mu} S_{\mathbb{Q}}^{\lambda}$. The Young's Rule 62 is a special case of the "Littlewood-Richardson" rule which helps us calculate the composition factors of $\operatorname{In} d_{S_{r} \times S_{n-r}}^{S_{n}}\left(S_{\mathbb{Q}}^{\lambda} \otimes S_{\mathbb{Q}}^{\mu}\right)$, where $\lambda \vdash r$, $\mu \vdash n-r$, and Ind denotes the induction process.

Before going into Littlewood-Richardson rule, we need to study combinatorial objects called sequences.

6.1 Sequences

Definition 63. Suppose that μ is a partition of a positive integer. A finite sequence of integers is called a sequence of type μ if for each i, i occurs μ_{i} times in the sequence.

Definition 64. Given a finite sequence of positive integers, we assign a quality (good or bad) to each term using the following rules:

1. All the 1 's are good
2. An $i+1$ is good if and only if the number of good i 's preceding it is strictly greater than the number of $\operatorname{good}(i+1)$'s preceding it.

It follows from the definition that an $i+1$ is bad if and only if the number of previous i^{\prime} s is equal to the number of previous $i+1$'s and also if a sequence contains $m i-1$'s in succession, then the next $m i^{\prime} \mathrm{s}$ are good.

Definition 65. Let μ be any partition of n, let $\mu^{\#}$ be a proper-partition of some positive integer such that $\mu_{i+1}^{\#} \leq \mu_{i}^{\#} \leq \mu_{i}$, then $\left(\mu^{\#}, \mu\right)$ is called a pair of partitions for n.

Definition 66. Given any pair of partitions $\left(\mu^{\#}, \mu\right)$ for n, define $s\left(\mu^{\#}, \mu\right)$ to be the set of sequences of type μ in which for each i, the number of good i^{\prime} s is atleast $\mu_{i}^{\#}$.

The following observation is useful.
Observation 67. If $v_{1}^{\#}=\mu_{1}$ and $v_{i}^{\#}=\mu_{i}^{\#}$ for all $i>1$, then $s\left(v^{\#}, \mu\right)=s\left(\mu^{\#}, \mu\right)$. This is true because all 1 's are good.

Given a pair of partitions for $n,\left(\mu^{\#}\right), \mu$, the diagram $\left[\mu^{\#}\right]$ is contained in $[\mu]$. We represent ($\mu^{\#}, \mu$) by the diagram $\left[\mu^{\#}, \mu\right]$, obtained from $[\mu]$ by:

- drawing horizontal lines demarcating the rows of $[\mu]$
- drawing vertical lines to the right of the $\mu_{i}^{\#}$ th element of the i th row of μ, for all i.

For example $((3,1),(4,2,1))$ is represented by

x	x	x	X
x	x		
x			

. In other words, the diagram enclosed by the vertical and horizontal lines in $\left[\mu^{\#}, \mu\right]$ is $\left[\mu^{\#}\right]$.
We now introduce operations R_{c} and A_{c} on a pair of partitions for n
Definition 68. Let $\left(\mu^{\#}, \mu\right)$ be a pair of partitions for n such that $\mu^{\#} \neq \mu$. Let $c>1$ be an integer such that $\mu_{c}^{\#}<\mu_{c}$ and $\mu_{c-1}^{\#}=\mu_{c-1}$.

1. If $\mu_{c-1}^{\#} \geqslant \mu_{c}^{\#}$, then $\left(\mu^{\#} A_{c}, \mu A_{c}\right)$ is the pair of partitions such that $\mu_{c}^{\#} A_{c}=\mu_{c}^{\#}+1$, $\mu_{i}^{\#} A_{c}=\mu_{i}^{\#}$ for $i \neq c$ and $\mu A_{c}=\mu$. If $\mu_{c-1}^{\#}=\mu^{\#}$, then $\left(\mu^{\#} A_{c}, \mu A_{c}\right)=(0,0)$.
2. $\mu^{\#} R_{c}, \mu R_{c}$ is the pair of partitions such that $\mu^{\#} R_{c}=\mu^{\#}$ and $\mu_{i} R_{c}=\mu_{i}$ for $i \neq c, c-1$, $\mu_{c} R_{c}=\mu_{c}^{\#}$ and $\mu_{c-1} R_{c}=\mu_{c-1}+\mu_{c}-\mu_{c}^{\#}$.

Remark 69. - Since $s\left(\mu_{\#}, \mu\right)=s\left(\lambda^{\#}, \mu\right)$, where $\lambda_{1}^{\#}=\mu_{1}$ and $\lambda_{i}^{\#}=\mu_{i}^{\#}$ for $i>1$, we may replace $\left(\mu_{\#}, \mu\right)$ by $\left(\lambda^{\#}, \mu\right)$ and take $c=2$. Also we always enclose the first row by vertical of any $\left[\mu^{\#}, \mu\right]$

- The diagram $\left[\mu^{\#}\right]$ sits inside $\left[\mu^{\#}, \mu\right]$. The operation R_{c} merely "raises" nodes outside [$\mu^{\#}$] in the c th row to the end of $c-1$ th row. The operation A_{c} "adds" one of the nodes of the $c^{t h}$, outside $\left[\mu^{\#}\right]$ to the $c^{t h}$ row of $\left[\mu^{\#}\right]$.

The following example will help in understanding the essence of the above remark.

It is clear that any sequence of operations R_{c}, A_{c} on a given pair of partitions eventually leads to some pair of partitions of the form (λ, λ) for some proper-partition λ.

Lemma 70. Given any pair of partitions $\left(\mu^{\#}, \mu\right)$, there is a pair $(0, v)$ and a sequence of operations R_{c} and A_{c} leading from ($0 . v$) to ($\mu^{\#}, \mu$).

Proof. Let $\mu_{1}^{\#}, \mu_{2}^{\#}, \ldots, \mu_{r}^{\#}$ be the non-zero parts of $\mu^{\#}$. Assign

$$
v=\left(\mu_{1}^{\#}, \mu_{2}^{\#}, \ldots, \mu_{r}^{\#}, \mu_{1}-\mu_{1}^{\#}, \ldots \mu_{i}-\mu_{i}^{\#}, \ldots\right) .
$$

We use A_{c} 's to "enclose" the diagram [$\mu^{\#}$], sitting in $[0, \nu]$, and then use R_{c}^{\prime} s to "raise" the nodes in the $r+1$ th, $r+2$ th \ldots to 1st, 2 nd \ldots rows, thus transforming $(0, v)$ to $\left(\mu^{\#}, \mu\right)$

The following example captures the main idea in the proof of the previous lemma
Example: We obtain $((4,3,1),(4,5,2,2))$ from ((0), (4, 3, 1, 2, 1, 2)) by applying operations $A_{2}, A_{2}, A_{2}, A_{3} ; R_{3}, R_{5}, R_{6}, R_{4}, R_{5}$, in that order.

The main theorem about sequences we shall apply is
Theorem 71. Given any pair of partitions ($\mu^{\#}, \mu$), the following is a bijection between the sets $s\left(\mu^{\#}, \mu\right) \backslash s\left(\mu^{\#} A_{c}, \mu A_{c}\right)$ and $s\left(\mu^{\#} R_{c}, \mu R_{c}\right)$:

Given a sequence in $s\left(\mu^{\#}, \mu\right) \backslash s\left(\mu^{\#} A_{c}, \mu A_{c}\right)$, change all the bad $c^{\prime} s$ to $c-1^{\prime} s$.

The proof of the previous result is purely combinatorial and can be found as Theorem 15.14(page no: 57) in "The representation theory of symmetric group" [1].

6.2 Littlewood-Richardson Rule

If λ and v are partitions of $n-r$ and r respectively $(0<r<n)$, the Littlewood-Richardson rule gives us an algorithm to calculate the composition factors of $\operatorname{Ind} d_{S_{n-r} \times S_{r}}^{S_{n}}\left(S_{\mathbb{Q}}^{\lambda} \otimes S_{\mathbb{Q}}^{\mu}\right)$. We define $[\lambda][v]=\sum_{\nu-n} a_{v}[v]$, where a_{v} is the multiplicity of $S_{\mathbb{Q}}^{v}$ as a composition factor of $\operatorname{Ind} d_{S_{n-r} \times S_{r}}^{S_{n}}\left(S_{\mathbb{Q}}^{\lambda} \otimes S_{\mathbb{Q}}^{\mu}\right)$.
Remark 72. If μ is a partition of n, Young's Rule 62 implies: $\left[\mu_{1}\right]\left[\mu_{2}\right] \ldots\left[\mu_{i}\right] \ldots=\sum_{\lambda \vdash n} K_{\lambda, \mu}[\lambda]$
Consider the additive group G, generated by $\{[\lambda] \mid \lambda$ is a partition of some intger $\}$. Given a pair of partitions $\left(\mu^{\#}, \mu\right)$, we define a group endomorphisms $\left[\mu^{\#}, \mu\right]^{\bullet}$ as follows:

Definition 73. $[\lambda]^{\left[\mu^{\#}, \mu\right]^{\bullet}}=\sum a_{v}[\nu]\left([\lambda]^{\left[\mu^{\#}, \mu\right]^{\bullet}}\right.$ is the image of $[\lambda]$ under $\left.\left[\mu^{\#}, \mu\right]^{\bullet},\right)$ where $a_{v}=0$ unless $\lambda_{i} \leq v_{i}$ for every i, and if $\lambda_{i} \leq v_{i}$ for every i, then a_{v} is the number of ways if replacing the nodes of $[\lambda] \backslash[\nu]$ by integers such that :

1. The numbers are non-decreasing along rows
2. The numbers are strictly increasing along the columns
3. While reading from right to left in successive rows, we get a sequence in $s\left(\mu^{\#}, \mu\right)$.

If $\mu^{\#}=\mu$, we denote $\left[\mu^{\#}, \mu\right]^{\bullet}$ by $[\mu]^{\bullet}$.
Lemma 74. If $\mu=\left(\mu_{1}, \mu_{2} \ldots \mu_{k}, 0,0 \ldots 0 \ldots\right)$ is a composition, then $[0]^{[0, \mu]^{\bullet}}=\left[\mu_{1}\right]\left[\mu_{2}\right] \ldots\left[\mu_{k}\right]$. If μ is a partition, $[0]^{[\mu]^{\bullet}}=[\mu]$.

Proof. The set $s(0, \mu)$ is the set of all sequences of type μ. Therefore if $[0]^{[0, \mu]^{\bullet}}=\sum a_{\nu}[v]$, by definition, a_{v} is the number of tableaux of shape v and type μ. i.e $a_{v}=K_{v, \mu}$. By the Remark 72, we have $[0]^{[0, \mu]^{\bullet}}=\left[\mu_{1}\right]\left[\mu_{2}\right] \ldots\left[\mu_{k}\right]$.

Let $[v]$ be any diagram appearing in $[0]^{[\mu]^{\bullet}}$. Then the nodes of v can be replaced by $\mu_{1} 1$'s, $\mu_{2} 2$'s, and so on such that the conditions in the previous definition hold. Let i be the least number such that i appears in the j th row with $j>i$. No $i-1$'s appear higher than this by minimality of i. By condition 1 of the previous definition, $i-1$ cannot be to the right of i in the same row. Therefore i is not preceded by any $(i-1)$ when reading from right to left in successive rows, and hence i is bad in this sequence. This contradicts condition 3 of the
previous definition. By condition 2 of the previous definition, no i can occur in the j th row with $j>i$. This implies $[v]=[\mu]$. It is easy to see that a_{μ} is 1 . Therefore $[0]^{[0, \mu]^{\bullet}}=[\mu]$.

The following lemma is central in proving the Littlewood-Richardson rule.
Lemma 75. $\left[\mu^{\#}, \mu\right]^{\bullet}=\left[\mu^{\#} A_{c}, \mu A_{c}\right]^{\bullet}+\left[\mu^{\#} R_{c}, \mu R_{c}\right]^{\bullet}$.
Proof. Suppose that μ is a composition of r, λ a partition of $n-r$ and v, a partition of n, with $\lambda_{i} \leq v_{i}$ for all i. Let $[\lambda]^{\left[\mu^{*}, \mu\right]^{-}-\left[\mu^{\#} A_{c}, \mu A_{c}\right]^{\bullet}}=\sum a_{\lambda}[\lambda]$. If a_{ν} is non-zero,by definition of [$\left.\mu^{\#}, \mu\right]^{\bullet}$ and that of $\left[\mu^{\#} A_{c}, \mu A_{c}\right.$], we can replace nodes of $[v] \backslash[\lambda]$ by $\mu_{1} 1$'s, $\mu_{2} 2$'s, and so on such we have a sequence in $s\left(\mu^{\#}, \mu\right) \backslash s\left(\mu^{\#} A_{c}, \mu A_{c}\right)$. Let A be the set of all objects we get by replacing nodes of $[v] \backslash[\lambda]$ by $\mu_{1} 1$'s, $\mu_{2} 2$'s, and so on such we have a sequence in $s\left(\mu^{\#}, \mu\right) \backslash s\left(\mu^{\#} A_{c}, \mu A_{c}\right)$ and B be the set of all objects we get by replacing nodes of $[v] \backslash[\lambda]$ by $\mu_{1} 1$'s, $\mu_{2} 2$'s, and so on such we have a sequence in $s\left(\mu^{\#} R_{c}, \mu R_{c}\right)$. If we can prove that an object Ξ of A satisfies

1. The numbers are non-decreasing along rows
2. The numbers are increasing along columns
if and only if the object $\Delta \in B$ obtained by changing all the bad c^{\prime} s in Ξ to $c-1$, satisfies these conditions, the lemma will follow from Theorem 71.

Suppose $\Xi \in A$ be an object satisfying the conditions (1) and (2) given in the first paragraph of this proof. A bad c cannot be to the right of a good c in the same row, because any c immediately after a bad c is bad. Therefore even after changing all the bad c^{\prime} s to $c-1$, the numbers remain non-decreasing along the row. Now assume $c-1$ occurs in place of $(i-1, j)$ th node and a bad c occurs in place of (i, j) th node. Let m be maximal such that c occurs in the place of (i, j) th, $(i, j+1)$ th, $\ldots(i, j+m)$ th nodes. The conditions in the first paragraph imply that $c-1$ is in place of $(i-1, j)$ th, $(i-1, j+1) \ldots(i, j+m)$ th nodes. Since all the $c-1$'s in any sequence of $s\left(\mu^{\#}, \mu\right) \backslash s\left(\mu^{\#} A_{c}, \mu A_{c}\right)$ are good, by definition of a good c, the c in the (i, j) th place is good. Therefore such a configuration is not possible. We can now conclude that the object $\Delta \in B$ obtained by changing the bad c^{\prime} s in Ξ satisfies the conditions given in the previous paragraph if Ξ satisfies them.

Now let $\Xi \in A$ and $\Delta \in B$ be the object obtained by changing all the bad c^{\prime} s in Ξ to $c-1$. Assume that Δ satisfies (1) and (2) in the first paragraph. Ξ will satisfy these condition unless a bad c lies is to the left of a $c-1$, in the same row or a bad c lies immediately above a good c, in the same column. Since all $c-1^{\prime} s$ of a sequence in $s\left(\mu^{\#}, \mu\right) \backslash s\left(\mu^{\#} A_{c}, \mu A_{c}\right)$
are good and that the c following a good $c-1$ is good, no bad c lies to the left of a $c-1$. Suppose that a bad c occurs in $(i-1, j)$ th place and a good c is in the (i, j) th place. Reading the sequence from right to left along successive rows, the number of $c-1$'s(since all $c-1$'s are good) to the left of the bad c in the $(i-1, j)$ position is atleast equal to the number of good c 's in the i th row. Since the c in the (i, j) th place is good and Δ satisfies the conditions (1) and (2), every $c-1$ in the $i-1$ th row to the left of $(i-1, j)$ th place must have a good c immediately below it in the i th row. This provides a contradiction to the assumption that the c in the (i, j) th place is good. Thus Ξ satisfies (1) and (2) if Δ satisfies. This completes the proof of the lemma.

Theorem 76 (Littlewood-Richardson Rule). $[\lambda][\mu]=[\lambda]^{[\mu]^{\circ}}$.
Proof. Suppose that v is a partition of n. By repeated application of $A_{c}^{\prime} \mathrm{s}$ and $R_{c}{ }^{\prime}$'s, we can go from $[0, \nu]$ to pairs of partitions of the form $[\pi, \pi]$. Then the previous lemma implies that we may write $[0, \nu]^{\bullet}=\sum_{\pi \vdash n} a_{\pi}[\pi]^{\bullet} \quad\left(a_{\pi} \in \mathbb{Z}\right)$. It is clear that $a_{v}=1$ and also that $a_{\pi}=0$ unless $[\pi] \unrhd[v]$. That is we may transform the set $\{[\pi] \mid \pi \vdash n\}$ to $\left\{[0, v]^{\bullet} \mid v \vdash n\right\}$ by an integral upper triangular matrix of determinant 1 . Therefore we have integers b_{α} and c_{β} such that $[\lambda]^{\bullet}=\sum_{\alpha \vdash n} b_{\alpha}[0, \alpha]^{\bullet}$ and $[\mu]^{\bullet}=\sum_{\beta \vdash n} c_{\beta}[0, \beta]^{\bullet}$

Lemma 74 implies that $[\lambda]^{[\mu]^{*}}=[0]^{[\lambda]^{*}}[\mu]^{\circ}$. We have

$$
\begin{aligned}
{[0]^{[\lambda]^{\bullet}[\mu]^{\bullet}} } & =[0]^{\sum b_{\alpha}[0, \alpha]^{\bullet}} \sum c_{\beta}[0, \beta]^{\bullet} \\
& \left.=\sum b_{\alpha}\left(\left[\alpha_{1}\right]\left[\alpha_{2}\right] \ldots\left[\alpha_{j}\right]\right) \sum c_{\beta}\left(\left[\beta_{1}\right] \ldots\left[\beta_{k}\right]\right) \quad \text { (by Lemma } 74\right) \\
& =[0]^{\sum b_{\alpha}[0, \alpha]^{\bullet}}[0]^{\sum c_{\beta}[0, \beta]^{\bullet}} \quad(\text { by Lemma } 74) \\
& =[\lambda][\mu] \quad \text { (by Lemma } 74) .
\end{aligned}
$$

Chapter 7

Specht series for M^{μ}

In this chapter, we generalize Young's Rule 62 over arbitrary field. We find a filtration of submodules of M^{μ} with each factor isomorphic to a Specht Module. Such a filtration is called a Specht series. We have proved that if characteristic of the underlying field is 0 , the Jordan-Holder composition series of M^{μ} is a Specht series. At the end of this chapter, we shall arrive at a very useful characterisation of Specht Modules.

Definition 77. Suppose that $\left(\mu^{\#}, \mu\right)$ be a pair of partitions for n and t a μ-tableau. Let $e_{t}^{\left(\mu^{\#}, \mu\right)}=\sum\left\{\operatorname{sgn}(\pi)\{t\} \pi \mid \pi \in C_{t}\right.$ and π fixes the numbers outside $\left.\left[\mu^{\#}\right]\right\} . S^{\left(\mu^{\#}, \mu\right)}$ is the submodule of M^{μ} spanned by $e_{t}^{\left(\mu^{*}, \mu\right)}$,s.

Example: If $\mu^{\#}=(3,1)$ and $\mu=(3,2,1)$ and $t=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | |
| 6 | | | (the numbers outside the box in t are the ones which are fixed), then

$$
e_{t}^{\mu^{\mu^{+}, \mu}=\begin{array}{lll}
\begin{array}{lll}
1 & 2 & 3 \\
\hline 4 & 5
\end{array} \\
\hline 6 & -\begin{array}{lll}
\hline 4 & 2 & 3 \\
\hline 1 & 5 & \\
\hline 6 &
\end{array} \\
\hline
\end{array}{ }^{2}}
$$

It is clear the $S^{(0, \mu)}=M^{\mu}$ and $S^{(\mu, \mu)}=S^{\mu}$ and that
Observation 78. If $\lambda_{1}=\mu_{1}$ and for $\lambda_{i}=\mu_{i}^{\#}$ for $i>1$, then $S^{(\lambda, \mu)}=S^{\left(\mu^{\#}, \mu\right)}$.
This observation hints a close relation between sequences and $S^{\left(\mu^{\#}, \mu\right)}$.

Construction 79. Given a sequence of type μ, we construct a μ-tableau t as follows. If j th term of the sequence is a good i, put j as far left as possible in the i th row. If j th term of a sequence is a bad i, put j as far right as possible in the i th row. It is clear that different sequences in $s(0, \mu)$ correspond to tableaux belonging to different μ-tabloids. This construction gives a 1 - 1 correspondence between $s(0, \mu)$ and the set of μ-tabloids. We may view $s(0, \mu)$ as a basis for M^{μ}.

Lemma 80. $\left\{e_{t}^{\mu^{\#}, \mu} \mid t\right.$ corresponds to a sequence in $s\left(\mu^{\#}, \mu\right)$ via the above construction $\}$ is a linearly independent subset of $S^{\left(\mu^{\#}, \mu\right)}$

Proof. Given a μ-tableau t and a pair of partitions ($\mu^{\#}, \mu$), we say t is standard in $\left[\mu^{\#}\right]$ if the numbers in place of nodes in $\left[\mu^{\#}\right]$ sitting inside $[\mu]$ are increasing along the rows and down the columns. The Construction 79 takes sequences in $s\left(\mu^{\#}, \mu\right)$ to μ-tableaux t which are standard in $\left[\mu^{\#}\right]$. Using arguments similar to those in the proof of Lemma 26, we can say that $\{t\}$ is the last tabloid involved in $e_{t}^{\mu^{*}, \mu}$. Let $t_{1}<t_{2}<\ldots t_{k}$ be all the tableaux standard in [$\mu^{\#}$]. By inducing on the sets $A_{i}=\left\{e_{t_{1}}^{\mu^{\#}, \mu}, e_{t_{2}}^{\mu^{\#}, \mu} \ldots, e_{t_{i}}^{\mu^{\#}, \mu}\right\}$, we get the result.

In the course of this chapter, we will prove that the set in the above lemma is in fact a basis for $S^{\left(\mu^{\#}, \mu\right)}$. In order to find a specht series for M^{μ}, we first prove that $S^{\left(\mu^{\#}, \mu\right)} / S^{\mu^{\#} A_{c}, \mu A_{c}} \simeq$ $S^{\mu^{*} R_{c}, \mu R_{c}}$. (Let t be a given μ-tableau and $\pi_{1}, \pi_{2} \ldots \pi_{k}$ be the co-set representatives of subgroup of C_{t} fixing elements outside $\left[\mu^{\#}\right]$ inside the subgroup of C_{t} fixing numbers outside $\left[\mu^{\#} A_{c}\right]$. One can verify that $e_{t}^{\left(\mu^{\mu} A_{c}, \mu A_{c}\right)}=e_{t}^{\mu^{\mu}, \mu} \sum_{i=1}^{k} \operatorname{sgn}\left(\pi_{i}\right) \pi$, and therefore $S^{\mu^{\#} A_{c}, \mu A_{c}} \subset$ $S^{\left(\mu^{\#}, \mu\right)}$.) We now wish to construct a $F S_{n}$-homomorphisms from $S^{\left(\mu^{\#}, \mu\right)}$ to $S^{\left(\mu^{\#}, \mu\right)}$. One homomorphisms defined in the next definition may do the job.

Definition 81. Suppose that $\mu=\left(\mu_{1}, \mu_{2} \ldots\right)$ and $v=\left(\mu_{1}, \mu_{2}, \ldots \mu_{i}+\mu_{i+1}-v, v, \mu_{i+2} \ldots\right)$ for some positive integers i and v such that v is a partition. We define $\psi_{i, v} \in \operatorname{Hom}_{F S_{n}}\left(M^{\mu}, M^{v}\right)$ by

$$
\psi_{i, v}(\{t\})=\sum\left\{\left\{t_{1}\right\} \mid\left\{t_{1}\right\} \text { agrees with }\{t\} \text { in all except } i \text { th and }(i+1)\right. \text { st rows, }
$$ and the $(i+1)$ st row of $\left\{t_{1}\right\}$ is a subset of size v of the $(i+1)$ st row of $\left.\{t\}\right\}$.

Lemma 82. $\psi_{c-1, \mu_{c}^{(}}\left(S^{\left(\mu^{\#}, \mu\right)}\right)=S^{\left(\mu^{\#} R_{c}, \mu R_{c}\right)}$ and $S^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)} \subset \operatorname{ker}\left(\psi_{\left.c-1, \mu_{c}^{\#}\right)}\right)$.

Proof. Let t be any μ-tableau, and let $\kappa_{t}=\sum\left\{\operatorname{sgn}(\pi) \pi \mid \pi\right.$ fixes numbers in t outside $\left.\left[\mu^{\#}\right]\right\}$. Now move all but $\mu_{c}^{\#}$ numbers from c th row of t into the $c-1$ th row. If the $\mu_{c}^{\#}$ numbers are the first $\mu_{c}^{\#}$ numbers, then we get a μR_{c} tableau say $t R_{c}$ and $\left\{t R_{c}\right\} \kappa_{t^{\#}}=e_{t R_{c}}^{\left(\mu^{\#} R_{c}, \mu R_{c}\right)}$.

If the $\mu_{c}^{\#}$ numbers are not the first $\mu_{c}^{\#}$ numbers, we still get a $m u R_{c}$ tableau say $\{t *\}$, but in this case, one of the numbers which has been moved up, say x lies inside [$\mu^{\#}$]. If y is the number above x in $t, 1-(x, y)$ is a factor of $\kappa_{t^{*}}$ and hence $\{t *\} \kappa_{t^{\#}}=0$ (because $\{t *\}(1-(x, y))=0)$.
$\psi_{c-1, \mu_{c}^{\#}}\left(e_{t}^{\left(\mu^{*}, \mu\right)}\right)=\psi_{c-1, \mu_{c}^{\#}}(\{t\}) \kappa_{t^{*}}$ (since $\psi_{c-1, \mu_{c}^{\#}}$ is $F S_{n}$-invariant). By definition $\psi_{c-1, \mu_{c}^{\#}}(\{t\})$ is the sum of all tabloids obtained my moving all but $\mu_{c}^{\#}$ from the c th row of $\{t\}$ into its $c-1$ th row. The arguments in the previous paragraphs prove that $\psi_{c-1, \mu_{c}^{\#}}\left(e_{t}^{\left(\mu^{\#}, \mu\right)}\right)=e_{t R_{c}}^{\left(\mu_{c}^{\#} R_{c}, \mu R_{c}\right)}$ and hence $\psi_{c-1, \mu_{c}^{\#}}\left(S^{\left(\mu^{\#}, \mu\right)}\right)=S^{\left(\mu^{\#} R_{c}, \mu R_{c}\right)}$.

If $\left(\mu^{\#} A_{c}, \mu A_{c}\right)=(0,0)$, by convention $\psi_{c-1, \mu_{c}^{\#}}\left(S^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)}\right)=\psi_{c-1, \mu_{c}^{(\#}}(0)=0$. If not, let $\kappa_{t^{\#}, c}=\sum\left\{\operatorname{sgn}(\pi) \pi \mid \pi\right.$ fixes numbers in t outside $\left.\left[\mu^{\#} A_{c}\right]\right\}$, then clearly $e_{t}^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)}=\{t\} \kappa_{t^{\#}, c}$. Hence we have $\psi_{c-1, \mu_{c}^{\#}}\left(e_{t}^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)}\right)=\psi_{c-1, \mu_{c}^{\#}}(\{t\}) \kappa_{t^{\#}, c}$. Since $\mu_{c}^{\#}+1=\mu^{\#} A_{c}$, every tabloid $\left\{t_{1}\right\}$ involved in $\psi_{c-1, \mu_{c}^{\#}}(\{t\})$ has elements x and y in the same row such that $1-(x, y)$ is a factor of $\kappa_{t^{\#}, c}$ and therefore $\psi_{c-1, \mu_{c}^{\#}}\left(e_{t}^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)}\right)=0$.

Theorem 83. 1. $\psi_{c-1, \mu_{c}^{\#}}\left(S^{\left(\mu^{\#}, \mu\right)}\right)=S^{\left(\mu^{\#} R_{c}, \mu R_{c}\right)}$ and

$$
S^{\left(\mu^{\#}, \mu\right)} \cap \operatorname{ker}\left(\psi_{\left.c-1, \mu_{c}^{\#}\right)}\right)=S^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)}
$$

2. $S^{\left(\mu^{\#}, \mu\right)} / S^{\mu^{\#} A_{c}, \mu A_{c}} \simeq S^{\mu^{\#} R_{c}, \mu R_{c}}$
3. $\operatorname{dim}\left(S^{\left(\mu^{\#}, \mu\right)}\right)=\left|s\left(\mu^{\#}, \mu\right)\right|$ and hence
$\left\{e_{t}^{\mu^{\#}, \mu} \mid t\right.$ corresponds to a sequence in $s\left(\mu^{\#}, \mu\right)$ via Construction 79 $\}$ is a basis of $S^{\left(\mu^{\#}, \mu\right)}$.
4. $S^{\left(\mu^{\#}, \mu\right)}$ has a Specht series. The factors in this series are the Specht modules corresponding to the diagrams involved in $[0]^{\left[\mu^{\#}, \mu\right]^{\bullet}}$ (c.f Definition 73)

Proof. By Lemma 70, there is a pair of partitions $(0, v)$ from which we can reach $\left(\mu^{\#}, \mu\right)$ by a sequence of A_{c} 's and R_{c} 's. We have seen that $|s(0, v)|=\operatorname{dim}\left(M^{v}\right)$, since $S^{(0, v)}=M^{\nu}$, we have $\operatorname{dim}(0, v)=|s(0, v)|$.

Let $\left(\pi^{\#}, \pi\right)$ be a pair of partitions such that $\left|\operatorname{dim}\left(S^{\left(\left(\pi^{\#}, \pi\right)\right)}\right)\right|=\left|s\left(\left(\pi^{\#}, \pi\right)\right)\right|$. Now,

$$
\begin{aligned}
\left|s\left(\left(\pi^{\#}, \pi\right)\right)\right| & =\operatorname{dim}\left(S^{\left(\pi^{\#}, \pi\right)}\right) \\
& \geq \operatorname{dim}\left(S^{\left(\pi^{\#} R_{c}, \pi R_{c}\right)}\right)+\operatorname{dim}\left(S^{\left(\pi^{\#} A_{c}, \pi A_{c}\right)}\right) \quad \text { (Lemma82) } \\
& \geq\left|s\left(\pi^{\#} R_{c}, \pi R_{c}\right)\right|+\left|s\left(\pi^{\#} A_{c}, \pi A_{c}\right)\right| \quad \text { (Lemma8) } \\
& =\left|s\left(\pi^{\#}, \pi\right)\right| \quad(\text { Theorem } 71
\end{aligned}
$$

) Therefore we must have $\left|s\left(\pi^{\#} R_{c}, \pi R_{c}\right)\right|=\operatorname{dim}\left(S^{\left(\pi^{\#} R_{c}, \pi R_{c}\right)}\right)$ and $\left|s\left(\pi^{\#} A_{c}, \pi A_{c}\right)\right|=\operatorname{dim}\left(S^{\left(\pi^{\#} A_{c}, \pi A_{c}\right)}\right)$. Since $\operatorname{dim}\left(S^{(0, v)}\right)=|s(0, v)|$ and $\left(\mu^{\#}, \mu\right)$ result of application of a sequence of A_{c} 's and $R_{c}{ }^{\prime}$'s, we have $\left|s\left(\mu^{\#}, \mu\right)\right|=\operatorname{dim}\left(S^{\left(\mu^{\#}, \mu\right)}\right)$. This result with Lemma80 and Lemma82 imply (1),(2) and (3).

If μ is a proper-partition of n, we have seen that $[0]^{[\mu]^{\bullet}}=[\mu]($ Lemma 74$)$. Since $S^{(\mu, \mu)}=$ S^{μ}, the specht series of $S^{(\mu, \mu)}$ is given by the diagrams involved in $[0]^{[\mu]^{\bullet}}=[\mu]$. Thus, we may now assume inductively that $S^{\left(\mu^{\#} A_{c}, \mu A_{c}\right)}$ and $S^{\left(\mu^{\#} R_{c}, \mu R_{c}\right)}$ have Specht series given by $[0]^{\left[\mu^{\#} A_{c}, \mu A_{c}{ }^{\bullet}\right.}$ and $[0]^{\left[\mu^{\#} R_{c}, \mu R_{c}\right]^{\bullet}}$. By (1), and $\left[\mu^{\#}, \mu\right]^{\bullet}=\left[\mu^{\#} A_{c}, \mu A_{c}\right]^{\bullet}+\left[\mu^{\#} R_{c}, \mu R_{c}\right]^{\bullet}($ Lemma 75] , $S^{\left(\mu^{\#}, \mu\right)}$ has a Specht series given by $[0]^{\left[\mu^{\#}, \mu\right]^{\bullet}}$.

The most important result of this chapter is the following corollary of Theorem 83, which gives us a characterisation of Specht Modules.

Corollary 84. If μ is a proper partition of n with k non-zero parts, then

$$
S^{\mu}=\bigcap_{i=2}^{k} \bigcap_{v=0}^{\mu_{i}-1} \operatorname{ker}\left(\psi_{i-1, v}\right)
$$

Chapter 8

Dimension of Specht Modules

In this chapter, we derive a formula to calculate the dimension of Specht module. To do so, we define "hooks" of a partition. Hooks play a very important role in representation theory of S_{n}, especially in determining if a particular specht module is irreducible.

8.1 Hooks, Skew hooks and the Determinantal form

Definition 85. Let λ be a proper partition of n. Now consider the (i, j) th node of $[\lambda]$, then

1. the hook corresponding to (i, j) is the set $H_{i, j}=\{(i, l) \mid l>j\} \cup\{(k, j) \mid k \leq j\}$. The set $\{(i, l) \mid l>j\}$ is called the arm of $H_{i, j}$ and $\{(k, j) \mid k \leq j\}$, the leg. The leg length of a hook is $|\{(k, j) \mid k \leq j\}|$
2. the skew hook corresponding to (i, j) is the minimal set of nodes on the rim of $[\lambda]$, containing the last cell of i th row and the last cell of j th column such that they can be connected by drawing lines through them.
3. the hook length, $h_{i j}$ of (i, j) is $\mu_{i}+\mu_{j}^{\prime}+1-i-j$.
4. The hook graph of λ is the the object obtained by replacing each node of $[\lambda]$ with its corresponding hook length.

Examples:

- $H_{2,2}$ of the partition $(4,4,3)$ is the one enclosed by the horizontal and vertical lines

- The $(2,2)$ skew hook of the partition $(4,4,3)$ is the one enclosed by the horizontal

- The hook graph of $(4,4,3)$ is $\begin{array}{llll}6 & 5 & 4 & 2 \\ 5 & 4 & 3 & 1 \\ 3 & 2 & 1\end{array}$

From Young's rule 62, we know that if λ is a proper partition of $n, M^{\lambda}=\sum_{\mu \vdash-n} K_{\mu, \lambda} S^{\mu}$. By the notation introduced in the chapter on Littlewood-Richardson rule, we may write $\left[\lambda_{1}\right]\left[\lambda_{2}\right] \ldots=\sum K_{\mu, \lambda}[\mu]$, where $\lambda_{1} \geq \lambda_{2} \ldots$ are the parts of λ. If K is the matrix whose rows and columns indexed by proper partitions of n, with the (μ, λ) th entry being $K_{\mu, \lambda}$, then K is an upper triangular matrix with 1's in the diagonal, because $K_{\mu, \lambda} \neq 0$ if and only if $\mu \unrhd \lambda$ and $K_{\mu, \mu}=1$ for all $\mu, \lambda \vdash n$. Inverting the matrix K, we may write each $[\mu]$ as integral linear combinations of ($\left[\lambda_{1}\right]\left[\lambda_{2}\right] \ldots$)'s.

Theorem 86 (Determinental Form). If λ is a proper partition of n, then $[\lambda]=\operatorname{det}(A)$, where A is a the matrix with its (i, j) th entry being the diagram $\left[\lambda_{i}-i+j\right]$, where $[m]=0$ for all $m<0$.(The size of the the matrix A is same as the number of non-zero parts of λ.) The matrix A is called the determinantal matrix of $[\lambda]$

Remark 87. Note that here that [0] is distinct from 0. [0] acts like the multiplicative identity, this is because $[0][\lambda]=[0]^{[\lambda]}=[\lambda]$ by the Littlewood-Richardson 76 and Lemma74. On the other hand, $0[\lambda]=0$.

Proof. Let $\lambda_{1}, \lambda_{2} \ldots \lambda_{k}$ be the non-zero parts of λ. By induction, we may assume that the theorem is true for partitions with less than k non-zero parts.

Observe that the last column of the matrix A are $\left[h_{1,1}\right],\left[h_{2,1}\right] \ldots h_{k, 1}$, where $h_{i, j}$ is the hook length of the (i, j) th hook. This is because $h_{i, 1}=\lambda_{i}+\lambda_{1}^{\prime}+1-i-1=\lambda_{i}-i+k$. Let s_{i} be the skew hook corresponding to $(i, 1)$ th node of $[\lambda]$.

Upon omitting the last column and the i th row of A, we get the determinantal matrix of $\left[\lambda \backslash s_{i}\right]$. Since the proper-partition corresponding to $\left[\lambda \backslash s_{i}\right]$ has less than k non-zero parts, induction hypothesis ensures that the result of expanding the determinant of A along its last column is
$\left[\lambda \backslash s_{k}\right]\left[h_{k, 1}\right]-\left[\lambda \backslash s_{k-1}\right]\left[h_{k-1,1}\right]+\ldots \pm\left[\lambda \backslash s_{1}\right]\left[h_{1,1}\right]$.
Now consider $\left[\lambda \backslash s_{i}\right]\left[h_{i, 1}\right]$. By Littlewood-Richardson 76, all the diagrams involved in [$\left.\lambda \backslash s_{i}\right]\left[h_{i, 1}\right]$ are obtained adding $h_{i, 1}$ nodes to $\left[\lambda \backslash s_{i}\right]$ such that no two added nodes are in the same column. [$\left.\lambda \backslash s_{i}\right]$ definitely contains the last nodes of the 1 st, 2 nd $\ldots i-1$ th rows of λ, and thus all the diagrams in $\left[\lambda \backslash s_{i}\right]\left[h_{i, 1}\right]$,

- contain the last nodes of $1 \mathrm{st}, 2 \mathrm{nd} \ldots i-1$ th rows of λ and
- do not contain the last nodes of the $(i+1) \mathrm{st},(i+2) \mathrm{nd} \ldots k$ th rows of $[\lambda]$.

Divide the diagrams in $\left[\lambda \backslash s_{i}\right]\left[h_{i, 1}\right]$ into 2 sets, according to whether or not the last node of i th row is in the diagram. It is clear that $[\lambda]$ is the only tableau involved in $\left[\lambda \backslash s_{k}\right]\left[h_{k, 1}\right]$ $\left[\lambda \backslash s_{k-1}\right]\left[h_{k-1,1}\right]+\ldots \pm\left[\lambda \backslash s_{1}\right]\left[h_{1,1}\right]$, which contains all the last nodes of all rows of $[\lambda]$. Observe that all other diagrams get cancelled in pairs and thus we have the result.

Corollary 88. $\operatorname{dim}\left(S^{\lambda}\right)=n!\operatorname{det}\left(\frac{1}{\left(\lambda_{i}-i+j\right)!}\right)$, where $1 / r!=0$ if $r<0$.

Proof. The dimension of module M^{μ} corresponding to $\left[\mu_{1}\right]\left[\mu_{2}\right] \ldots$ is $\left(\frac{n!}{\mu_{1}!\mu_{2}!\ldots}\right)$, and thus the corollary follows.

Theorem 89 (Hook Lenght Formula). If λ is any proper partition with k non-zero parts and S^{λ} is the corresponding specht module over any dimension, $\operatorname{dim}\left(S^{\lambda}\right)=n!\frac{\prod_{i<k} h_{i, 1}-h_{k, 1}}{\prod_{i} h_{i, 1}!}=\frac{n!}{\text { product of hook lengths in }[\lambda]}$.

Proof. We proceed by induction on the number of non-zero parts of λ. By induction hypothesis, assume that the result is true for partitions with 2 parts. If λ has 3 parts, by the above corollary, we have

$$
\begin{align*}
\frac{\operatorname{dim}\left(S^{\lambda}\right)}{n!} & =\operatorname{det}\left(\begin{array}{lll}
\frac{1}{\left(h_{1,1}-2\right)!} & \frac{1}{\left(h_{1,1}-1\right)!} & \frac{1}{h_{1,1}!} \\
\frac{1}{\left(h_{2,1}-2\right)!} & \frac{1}{\left(h_{2,1}-1\right)!} & \frac{1}{h_{2,1}!} \\
\frac{1}{\left(h_{3,1}-2\right)!} & \frac{1}{\left(h_{3,1}-1\right)!} & \frac{1}{h_{3,1}!}
\end{array}\right) \tag{8.1}\\
& =\frac{1}{h_{1,1}!, h_{2,1}!h_{3,1}!} \operatorname{det}\left(\begin{array}{lll}
h_{1,1}\left(h_{1,1}-1\right) & h_{1,1} & 1 \\
h_{2,1}\left(h_{2,1}-1\right) & h_{2,1} & 1 \\
h_{3,1}\left(h_{3,1}-1\right) & h_{3,1} & 1
\end{array}\right) \tag{8.2}\\
& =\frac{\left(h_{1,1}-h_{2,1}\right)\left(h_{1,1}-h_{3,1}\right)\left(h_{2,1}-h_{3,1}\right)}{h_{1,1}!, h_{2,1}!h_{3,1}!} \tag{8.3}
\end{align*}
$$

This gives the first equality. To get the second equality, we induce on $n(\lambda$ is a partition of n). Now,

$$
\frac{1}{h_{1,1}!, h_{2,1}!h_{3,1}!} \operatorname{det}\left(\begin{array}{lll}
h_{1,1}\left(h_{1,1}-1\right) & h_{1,1} & 1 \\
h_{2,1}\left(h_{2,1}-1\right) & h_{2,1} & 1 \\
h_{3,1}\left(h_{3,1}-1\right) & h_{3,1} & 1
\end{array}\right)=\frac{1}{h_{1,1} h_{2,1} h_{3,1}} \operatorname{det}\left(\begin{array}{cll}
\frac{1}{\left(h_{1,1}-3\right)!} & \frac{1}{\left(h_{1,1}-2\right)!} & \frac{1}{\left(h_{1,1}-1\right)!} \\
\frac{1}{\left(h_{2,1}-3\right)!} & \frac{1}{\left(h_{2,1}-2\right)!} & \frac{1}{\left(h_{2,1}-1\right)!} \\
\frac{1}{\left(h_{3,1}-3\right)!} & \frac{1}{\left(h_{3,1}-2\right)!} & \frac{1}{\left(h_{3,1}-1\right)!}
\end{array}\right)
$$

By induction, the R.H.S of the above equation is same as

$$
\frac{1}{h_{1,1} h_{2,1} h_{3,1}} \times \frac{1}{\prod\left(\text { hook lengths of the partition with parts } \lambda_{1}-1, \lambda_{2}-1, \lambda_{3}-1\right)}
$$

,which is same as

$$
\left(\frac{1}{\text { product of hook lengths in }[\lambda]}\right)
$$

. This gives us the second equality. The induction step from partitions with 2 parts to 3 parts may be mimicked to get the induction step from partitions with k parts to $k+1$. Therefore the theorem is true by principles of mathematical induction.

Chapter 9

Murnaghan-Nakayama Rule

Murnaghan-Nakayama rule is gives an algorithm for calculating the ordinary irreducible characters of S_{n}. The leg length of skew hook corresponding to a node is the same as the leg length of the corresponding hook(c.f Definition 85). Let χ^{μ} be the character corresponding to the irreducible module $S_{\mathbb{Q}}^{\lambda}$. By skew- r-hook, we mean a skew hook containing r-nodes.

Theorem 90 (Murnaghan-Nakayama Rule). Suppose that $\pi \rho \in S_{n}$, where ρ is an r-cycle and π is a permutation of the remaining $n-r$ numbers. Then
$\chi^{\mu}(\pi \rho)=\sum_{v}\left\{(-1)^{i} \chi^{\nu}(\pi) \mid[\lambda] \backslash[v]\right.$ is a skew-r-hook of leg length $\left.i\right\}$.
Before going to the proof of this theorem, let us apply it to an example. Example: Suppose we want to find the value of $\chi^{(5,4,4)}$ on the class $(5,4,3,1)$. There are two skew-5hooks,(the ones enclosed in the following diagrams)

So only upon removing [3, 3, 2] or [5, 3],
we get a skew-5-hook and hence by the Murnaghan Nakayama Rule, we get $\chi^{(5,4,4)}$ on $(5,4,3,1)=\chi^{(3,3,2)}-\chi^{(5,3)}$ on $(4,3,1)$. Upon repeated application of we have

$$
\begin{aligned}
\chi^{(5,4,4)} \text { on }(5,4,3,1) & =\chi^{(3,3,2)}-\chi^{(5,3)} \text { on }(4,3,1) \\
& =\chi^{(2,1,1)}-\chi^{(3,1)}+\chi^{(2,2)} \text { on }(3,1) \\
& \left.=\chi^{(2,2)} \text { on }(3,1) \text { (because there are no skew-3-hooks in }[2,1,1] \text { or }[3,1]\right) \\
& =-\chi^{(1)} \text { on }(1) \\
& =-1
\end{aligned}
$$

It is evident that the only character table required in construction of character table of S_{n} using Murnaghan-Nakayam rule is that of S_{1}. A hook diagram is a diagram of the form [$\left.x, 1^{y}\right]$.

Lemma 91. Unless both $[\alpha]$ and $[\beta]$ are hook diagrams, no hook diagram is involved in $[\alpha][\beta]$. If $[\alpha]=\left[a, 1^{(n-r-a)}\right]$ and $[\beta]=\left[b, 1^{(r-b)}\right]$ then
$[\alpha][\beta]=\left[a+b, 1^{n-a-b}\right]+\left[a+b-1,1^{(n-a-b+1)}\right]+$ some non-hook diagrams.
Proof. If one of $[\alpha]$ or $[\beta]$ is not a hook diagram, then one of them contains a $(2,2)$ node. By Littlewood-Richardson 76, $[\alpha][\beta]=[\alpha]^{[\beta]^{\bullet}}=[\beta]^{[\alpha]^{\bullet}}$ and therefore all tabloids involved in $[\alpha][\beta]$ contains a $(2,2)$ node whenever one of $[\alpha]$ or $[\beta]$ contains a $(2,2)$ node. By the definition of $[\alpha]^{[\beta]}{ }^{\bullet}$ (c.f Definition 73), any hook diagram $[\lambda]$ involved in $[\alpha][\beta]$ can accommodate a sequence of type β in $[\lambda] \backslash[\alpha]$ such that the numbers are non-decreasing along the rows and increasing along the rows. Therefore the first row of $[\lambda]$ must contain either $a+b$ or $a+b-1$ nodes and thus they the only hook representations involved in $[\alpha][\beta]$ are $\left[a+b, 1^{n-a-b}\right]$ and $\left[a+b-1,1^{(n-a-b+1)}\right]$. The co-efficient of each of them is the number of ways in which they can accommodate a sequence of type μ such that when read from right to left along successive rows, it is in $s(\mu, m u)$. Clearly, this can be done in only one way for both $\left[a+b, 1^{n-a-b}\right]$ and $\left[a+b-1,1^{(n-a-b+1)}\right]$. Hence the result.

The following lemma is a special case of the Murnaghan Nakayama rule.
Lemma 92. If ρ is an n-cycle and v is a proper partition of n, then

$$
\chi^{v}(\rho)= \begin{cases}(-1)^{n-x} & \text { if } v=\left[x, 1^{n-x}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let α be a partition of r and β of $n-r$. Then the inner product $\left\langle\chi^{[\alpha][\beta]}, \chi^{(n)-(n-1,1)+\ldots \pm\left(1^{n}\right)}\right\rangle$ is zero. This is because, by the previous lemma, $[\alpha][\beta]$ contains no hook diagrams or has adjacent hook diagrams, each with co-efficient 1. The Frobenius reciprocity theorem implies that $\chi^{(n)-(n-1,1)+\ldots \pm\left(1^{n}\right)}$ is zero on all Young subgroups of the form $S_{(r, n-r)}$ with $0<r<n$. This implies $\chi^{(n)-(n-1,1)+\ldots \pm\left(1^{n}\right)}$ is zero on all conjugacy classes of S_{n}, except perhaps on the conjugacy class containing the n-cycle ρ (let this conjugacy class be represented by (n)). Therefore the column vector which has $(-1)^{n-x}$ opposite $\chi^{\left(x, 1^{n-x}\right)}$ and zero opposite all other irreducible characters is orthogonal to all the columns of the character table of S_{n}, except the one associated with (n) . Since the character table is nonsingular, this column vector is a multiple of the column associated with (n) of the character table. But since the entry opposite $\chi^{1^{n}}$ is 1 , this is in fact the column associated with (n) as implicitly stated in the lemma.

Lemma 93. Suppose that λ is a partition of n and v is a partition of $n-r$. Then

1. The multiplicity of $[\lambda]$ in $[v]\left[x, 1^{(r-x)}\right]$ is zero unless $[\lambda] \backslash[v]$ is a union of skew hooks.
2. If $[\lambda] \backslash[v]$ is a union of m disjoint skew hooks having (in total) c columns, then multiplicity of $[\lambda]$ in $[v]\left[x, 1^{(r-x)}\right]$ is the binomial coefficient $\binom{m-1}{c-x}$.

Proof. By Littlewood-Richardson 76, we know that $[\lambda]$ is involved in $[v]\left[x, 1^{(r-x)}\right]$ if and only if $[v] \subset[\lambda]$ and it is possible to replace the nodes of $[\lambda] \backslash[\nu]$ by $x 1$'s,one 2 , one $3 \ldots$, one $r-x$ in such a way that

1. Any column containing 1 has just one 1 , which is at the top of the column.
2. For $i>1, i+1$ occurs in a later row than i; in particular, no two numbers greater than 1 appear in the same row.
3. The first non-empty row contains no number greater than 1 .
4. Any row containing a number greater than 1 has that number at the end of the row.

This implies that $[\lambda] \backslash[v]$ does not contain the following diagram
$\mathrm{X} \quad \mathrm{X}$
X X
, this is because neither of the left hand node(in the above diagram) can be replaced, either by a number greater than 1 (by condition 4 given above); or by 1 (by condition 1). Thus we conclude that $[\lambda] \backslash[v]$ is a union of skew hooks.

Now, suppose that $[\lambda] \backslash[\mu]$ is a disjoint union of m skew hooks, having c columns in total. Now replace nodes of $[\lambda] \backslash[v]$ with x 1's,one 2 , one $3 \ldots$, one $r-x$ as directed by the 4 conditions given above. Each column contains at most one 1(by 1) and also each column contains at least one 1 , except may be the last column of the 2 nd, 3 rd $\ldots m$ th skew hook, by 2,3 and 4 (skew hooks are ordered from left to right). Therefore, $(c-m+1)$ 1's are forced and the remaining $(x-c+m-1) 1$'s can be put in any of the $m-1$ spaces left at the top of the last columns in 2nd, 3rd ... m th skew hooks. The condition 2 in the first paragraph ensures that the positions of numbers greater than 1 are determined once the positions of 1 's are fixed. The multiplicity of $[\lambda]$ in $[v]\left[x, 1^{(r-x)}\right]$ is therefore $\binom{m-1}{x-c+m-1}=\binom{m-1}{c-x}$, as claimed in the lemma.

Proof of Murnaghan-Nakayama Rule 90

Let $a_{\nu \mu}=\left\langle\chi^{\lambda} \downarrow_{S_{n-r, r},}, \chi^{[\nu] \mu]}\right\rangle$, where μ is a partition of r and v a partition of $n-r$. If ρ is an r cycle and π is a permutation of the remaining $n-r$ numbers, we have

$$
\begin{aligned}
\chi^{\lambda}(\rho \pi) & =\sum_{v, \mu} a_{v \mu} \chi^{\nu}(\pi) \chi^{\mu}(\rho) \\
& =\sum_{v} \chi^{\nu}(\pi) \sum_{x=1}^{r} a_{v,\left(x, 1^{(r-x)}\right)}(-1)^{(r-x)} \quad \text { (Lemma 92) }
\end{aligned}
$$

But by Frobenius Reciprocity, $a_{v,\left(x, 1^{(r-x)}\right)}=\left\langle\chi^{\lambda}, \chi^{[v][\mu]}\right\rangle$

$$
=\binom{m-1}{c-x} \quad \text { (by the previous lemma.) }
$$

Clearly $r \geq c \geq m(c$ is the number of columns in $[\lambda] \backslash[\mu], r$ the number of nodes in $[\lambda] \backslash[\mu]$ and m the number of disjoint skew hooks into which $[\lambda] \backslash[\mu]$ can be split up), so

$$
\begin{aligned}
\sum_{x=1}^{r}\binom{m-1}{c-x}(-1)^{r-x} & =(-1)^{r-c}\left(\sum_{i=0}^{m-1}(-1)^{i}\binom{m-1}{i}\right) \\
& = \begin{cases}(-1)^{r-c} \quad \text { if } m=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

When $m=1,[\lambda] \backslash[\mu]$ is a single skew r-hook of leg length $r-c$. This completes the proof.
The following result about modular characters of S_{n}, inspired by the Murnaghan-Nakayama rule is useful.

Theorem 94. If v is a partition of $n-r$, then the generalized character of S_{n} corresponding to
$\sum\left\{(-1)^{i}[\lambda] \mid[\lambda] \backslash[v]\right.$ is a skew-r-hook of leg length $\left.i\right\}$ is zero on all classes except those containing an r cycle.

Proof. From Lemma93, if $[\lambda]$ is involved in $[v]\left([r]-[r-1,1]+\left[r-2,1^{2}\right] \ldots \pm\left[1^{r}\right]\right)[\lambda] \backslash[v]$, then $[\lambda] \backslash[v]$ is a union of m disjoint skew hooks. Its coefficient will be $\sum_{x=1}^{r}\binom{m-1}{c-x}(-1)^{(r-x)}(c$ is number of columns in $[\lambda] \backslash[\mu]$). This is $(-1)^{r-c}$ if $m=1$ and 0 otherwise. Therefore we have
$[v]\left([r]-[r-1,1]+\left[r-2,1^{2}\right] \ldots \pm\left[1^{r}\right]\right)=\sum\left\{(-1)^{i}[\lambda] \mid[\lambda] \backslash[v]\right.$ is a skew- r-hook of leg length $\left.i\right\}$.

But, by definition, $\operatorname{Ind}_{S_{(n-r, r)}}^{S_{n}} \chi^{[\nu]]} \chi^{\left.[r r]-[r-1,1]+\left[r-2,1^{2}\right] \ldots \pm\left[1^{r}\right]\right)}$ is zero on all of S_{n}, except perhaps on $S_{n-r, r}$. Lemma2 implies that it is zero on all of $S_{(n-r, r)}$ except on the class containing $\pi \rho$, where ρ is an r cycle and thus the result follows.

Chapter 10

Some Irreducible Specht Modules

Specht Modules are irreducible over any field of characteristic zero and since every field is a splitting field for S_{n}, a Specht module is irreducible over a field of characteristic p if and only if it is irreducible over the Galois field of size p. We will see some results which give information about irreducibility of Specht Modules. In this chapter, unless otherwise mentioned, S^{μ} is $S_{\mathbb{F}_{p}}^{\mu}$. Before proceeding further, we will state some combinatorial results about certain binomial coefficients without proof.

10.1 Combinatorial results

Definition 95. Suppose p is a prime and $n=n_{0}+n_{1} p+\ldots n_{r} p^{r}$ where, for each $i, 0 \leq n_{i}<p$ and $n_{r} \neq 0$. Then

1. $v_{p}=\max \left\{i \mid n_{j}=0\right.$ for $\left.j<i\right\}$
2. $\sigma_{p}=n_{0}+n_{1} \ldots n_{r}$
3. $l_{p}(n)=r+1$

Lemma 96. $v_{p}(n!)=\left(n-\sigma_{p}(n)\right) /(p-1)$
Lemma 97. If $a \geq b>0$, then $\left.v_{p}\binom{a}{b}\right)<l_{p}(a)-l_{p}(b)$

Lemma 98. If $a \geq b$

$$
\begin{array}{ll}
a=a_{0}+a_{1} p+\ldots+a_{r} p^{r} & 0 \leq a_{i}<p \\
b=b_{0}+b_{1} p+\ldots+b_{r} p^{r} & 0 \leq b_{i}<p
\end{array}
$$

such that $a_{i} \geq b_{i}$, then $\binom{a}{b} \equiv \prod_{i=0}^{r}\binom{a_{i}}{b_{i}}$ mod p. In particular, $p\binom{a}{b}$ if and only if $a_{i}<b_{i}$ for some i

Corollary 99. If $a \geq b \geq 1$, then all the binomial coefficients $\binom{a}{b},\binom{a-1}{b-1} \ldots\binom{a-b+1}{1}$ are divisible by p if and only if $a-b \equiv-1 \bmod p^{l_{p}(b)}$.

The proofs of these results may be found in Chapter 22 of [1].

10.2 Some irreducible Specht Modules

Unless otherwise mentioned $F=\mathbb{F}_{1}$ and $S^{\mu}=S_{F}^{\mu}$.
Lemma 100. Suppose that $\operatorname{Hom}_{F S_{n}}\left(S^{\mu}, S^{\mu}\right) \cong F$. Then S^{μ} is irreducible if and only if S^{μ} is self dual.

Proof. If S^{μ} is irreducible, it is self dual because all irreducible modules of $F S_{n}$ are self dual(Theorem44). Let U be an irreducible sub-module of S^{μ}. If S^{μ} is self dual, there is a sub-module V of S^{μ} such that $S^{\mu} / V \cong U$. Since map

$$
S^{\mu} \xrightarrow[\text { cannonical }]{ } S^{\mu} / V \xrightarrow[\text { iso }]{ } U
$$

is a non-zero element of $\operatorname{Hom}_{F S_{n}}\left(S^{\mu}, S^{\mu}\right) \cong F$, we must have $U=S^{\mu}$, so S^{μ} is irreducible.

Recall that given a proper-partition μ, g^{μ} is the g.c.d of integers $<e_{t}, e_{t_{1}}>$, where e_{t} and $e_{t_{1}}$ are polytabloids in $S_{\mathbb{Q}}^{\mu}$. Also recall that if t is a μ-tableau, then $\kappa_{t}=\sum_{\pi \in C_{t}} \operatorname{sgn}(\pi) \pi$ and $\rho_{t}=\sum_{\pi \in R_{t}} \pi$.

Lemma 101. Let t be a μ-tableau. Then

1. The gcd of coefficients of the tabloids involved in $\{t\}_{\kappa_{t}} \rho_{t}$ is $g^{\mu^{\prime}}$, where μ^{\prime} is the conjugate partition of μ,
2. $\{t\} \kappa_{t} \rho_{t} \kappa_{t}=\Pi$ (hook lenghts in $\left.[\mu]\right)\{t\} \kappa_{t}$.

Proof. By definition $g^{\mu^{\prime}}=\operatorname{gcd}\left(\left\{<e_{t^{\prime}}, e_{t^{\prime}} \pi>\mid \pi \in S_{n}\right\}\right)$, where t^{\prime} is a μ^{\prime}-tableau. Now,

$$
\begin{aligned}
\operatorname{sgn}(\pi)<e_{t^{\prime}}, e_{t^{\prime}} \pi> & =\operatorname{sgn}(\pi)<\left\{t^{\prime}\right\},\left\{t^{\prime}\right\} \kappa_{t^{\prime}} \pi \kappa_{t^{\prime}}> \\
& =\sum\left\{\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau) \mid \sigma, \tau \in C_{t^{\prime}}, \sigma \pi \tau \in R_{t^{\prime}}\right\} \\
& =\sum\left\{\operatorname{sgn}(\omega) \mid \tau \in C_{t^{\prime}}, \omega \tau^{-1} \pi^{-1} \in C_{t^{\prime}}, \omega \in R_{t^{\prime}}\right\} \\
& =\sum\left\{\operatorname{sgn}(\omega) \mid \tau \in R_{t}, \omega \tau^{-1} \pi^{-1} \in R_{t}, \omega \in C_{t}\right\} \\
& =<\{t\},\{t\} \kappa_{t} \rho_{t} \pi^{-1}> \\
& =<\{t\} \pi,\{t\} \kappa_{t} \rho_{t}>
\end{aligned}
$$

and hence the result 1 follows.
By Corollary 21, we have $\{t\} \kappa_{t} \rho_{t} \kappa_{t}=c\{t\} \kappa_{t}$ for some $c \in \mathbb{Q}$. By remark $18, \rho_{t} \kappa_{t} \mathbb{Q} S_{n} \cong$ S_{Q}^{μ} and hence we can say that $\rho_{t} \kappa_{t} \rho_{t} \kappa_{t}=c \rho_{t} \kappa_{t}$. By Maschke's theorem, let U be a right ideal of $\mathbb{Q} S_{n}$ such that $U \oplus \rho_{t} \kappa_{t} \mathbb{Q} S_{n}$. Multiplication on left by $\rho_{t} \kappa_{t}$ of $\mathbb{Q} S_{n}$ is a linear transformation. With respect the basis $\left\{\rho_{t} \kappa_{t} \mid t t\right.$ is a standard tableau $\} \cup B$, where B is a basis of $U\left(\left\{\rho_{t} \kappa_{t} \mid t t\right.\right.$ is a standard tableau $\}$ is a basis of $\rho_{t} K_{t} \mathbb{Q} S_{n}$ by Theorem 28), the matrix of this linear transformation is the block diagonal matrix $\left(\begin{array}{c|c}\mathrm{A} & \mathrm{B} \\ \hline \mathrm{C} & \mathrm{D}\end{array}\right)$, where A is a square diagonal matrix of size $\operatorname{dim}\left(S^{\mu}\right)$ whose diagonal entries are all equal to c, B is a zero matrix of size $\operatorname{dim}\left(S^{\mu}\right) \times\left(n!-\operatorname{dim}\left(S^{\mu}\right), D\right.$ a zero matrix of size $\left(n!-\operatorname{dim}\left(S^{\mu}\right) \times\left(n!-\operatorname{dim}\left(S^{\mu}\right)\right)\right.$ and C some matrix of size $\left(n!-\operatorname{dim}\left(S^{\mu}\right)\right) \times \operatorname{dim}\left(S^{\mu}\right)$. On the other hand its matrix with respect to the basis $\left\{\pi \mid \pi \in S_{n}\right\}$ has 1's along the diagonal since e (the identity permutation) has coefficient 1 in $\rho_{t} \kappa_{t}$. Since trace of both the matrices is same, we have $n!=\operatorname{cdim}\left(S^{\mu}\right)$. By the Hook length Formula 89, we have $c=\Pi$ (hook lenghts in $[\mu]$)

The first part of the lemma gives that $\frac{1}{g^{\mu}}\{t\} \kappa_{t} \rho_{t}$, is an integer linear combination of the tabloids involved in it. This with Theorem 32, shows that the map defined in the following definition is well defined.

Definition 102. Define $\theta \in \operatorname{Hom}_{F S_{n}}\left(M^{\mu}, S^{\mu}\right)$, given by
$\theta:\{t\} \mapsto\left(\frac{1}{g \mu^{\prime}}\{t\}_{t} \rho_{t}\right)_{p}$, where $\left(\frac{1}{g^{\mu^{\prime}}}\{t\} \kappa_{t} \rho_{t}\right)_{p}$ is the element of S^{μ} obtained from the vector $\frac{1}{g^{\mu^{\prime}}}\{t\} \kappa_{t} \rho_{t} \in S_{\mathbb{Q}}^{\mu}$, by reducing all the tabloids coefficients modulo p.

Theorem 103. 1. If $\operatorname{Im}(\theta) \subset S^{\mu}$, equivalently if $\operatorname{ker}(\theta) \supset S^{\mu^{\perp}}$, then S^{μ} is reducible.
2. If $\operatorname{Im}(\theta)=S^{\mu}$, equivalently if $\operatorname{ker}(\theta)=S^{\mu}$ and if $\operatorname{Hom}_{F S_{n}}\left(S^{\mu}, S^{\mu}\right) \cong F$, then S^{μ} is irreducible.

Proof. Suppose that $\phi \in \operatorname{Hom}_{\mathbb{Q} S_{n}}\left(M_{\mathbb{Q}}^{\mu}, S_{\mathbb{Q}}^{\mu}\right)$ is defined by $\phi(\{t\})=\frac{1}{g^{\prime}}\{t\}_{\kappa_{t}} \rho_{t}$. By lemma 101, ϕ sends $\{t\} \kappa_{t}$ to a non-zero multiple of itself. Since $\operatorname{dim}(\operatorname{Im}(\phi))=\operatorname{dim}\left(S_{\mathbb{Q}}^{\mu}\right)$, we have $\operatorname{dim}(\operatorname{ker}(\phi))=\operatorname{dim}\left(S^{\mu^{\perp}}\right)$. Submodule theorem 19 implies $\operatorname{ker}(\phi)=S_{\mathbb{Q}}^{\mu^{\perp}}$. Theorem 34 tells us that $\operatorname{ker}(\phi)=S_{\mathbb{Q}}^{\mu^{\perp}}$ implies $\operatorname{ker}(\theta) \supseteq S^{\lambda^{\perp}}$. Therefore, $\operatorname{ker}(\theta) \supset S^{\mu^{\perp}}$ if and only if $\operatorname{Im}(\theta) \subset S^{\mu}$. The first part of the theorem follows now, because $\operatorname{Im}(\theta)$ is a proper submodule of S^{μ} in this case.

If $\operatorname{ker}(\theta)=S^{\mu^{\perp}}, \theta$ is an isomorphism between $M^{\mu} / S^{\mu^{\perp}}$ and S^{μ}. This implies S^{μ} is self dual. The second part of the theorem now follows from Lemma 100 .

Theorem 104. Suppose that μ is a p-regular partition. Then S^{μ} is reducible if and only if p divides
$\frac{\{\text { П hook lengths in }[\mu]\}}{g^{\mu^{\prime}}}$

Proof. The previous theorem and Corollary 59 imply that S^{μ} is reducible if and only if $\operatorname{ker}(\theta)=S^{\mu \perp}$. When μ is p-regular, $S^{\mu} \cap S^{\mu^{\perp}}$ is the unique maximal ideal of S^{μ} and hence $M^{\mu} / S^{\mu^{\perp}}$ has the unique minimal ideal $\frac{S^{\mu}+S^{\mu^{\perp}}}{S^{\mu^{\perp}}}$. Therefore S^{μ} is reducible if and only if $\operatorname{ker}(\theta) \supset S^{\mu}$.

But by Lemma 101, we have

$$
\begin{aligned}
\theta\left(\{t\} \kappa_{t}\right) & =\left(\frac{1}{g_{\mu^{\prime}}}\{t\} \rho_{t} \kappa_{t}\right)_{p} \\
& =\left(\frac{\left\{\prod \text { hook lengths in }[\mu]\right\}}{g^{\mu^{\prime}}}\{t\} \kappa_{t}\right)_{p}
\end{aligned}
$$

. Since S^{μ} is a cyclic module, S^{μ} is reducible if and only if p divides the integer $\frac{\left\{\prod \text { hook lengths in }[\mu]\right\}}{g_{\square}^{\mu^{\prime}}}$.

We need the following result relating S^{μ} and $S^{\mu^{\prime}}$
Theorem 105. $S_{K}^{\mu} \otimes S_{K}^{\left(1^{n}\right)}$ is isomorphic to the dual of $S_{F}^{\mu^{\prime}}$, where μ^{\prime} is the conjugate partition of μ. Where K is any field.

Proof. We first prove the theorem for $K=\mathbb{Q}$. In this case, since $S_{\mathbb{Q}}^{\lambda}$ is self dual for any $\lambda \vdash n$, we need to prove $S_{\mathbb{Q}}^{\mu} \otimes S_{\mathbb{Q}}^{\left(1^{n}\right)} \cong S_{\mathbb{Q}}^{\mu^{\prime}}$. Given t a μ-tableau, let t^{\prime} be the corresponding μ^{\prime} tableau. For example if $t=\begin{array}{lll}1 & 2 & 3 \\ 4 & 5\end{array}$, then $t^{\prime}=\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3\end{array}$. Let $\rho_{t^{\prime}}=\sum\left\{\pi \mid \pi \in R_{t^{\prime}}\right\}$ and $\kappa_{t^{\prime}}=\sum\left\{\operatorname{sgn}(\pi) \pi \mid \pi \in C_{t^{\prime}}\right\}$ as always. Let u be a generator for the cyclic module $S_{\mathbb{Q}}^{\left(1^{n}\right)}$, so that $u \pi=\operatorname{sgn}(\pi) u\left(\right.$ since $\left.\operatorname{dim}\left(S_{\mathbb{Q}}^{\left(1^{n}\right)}\right)=1\right)$. Define $\theta: M_{\mathbb{Q}}^{\mu^{\prime}} \rightarrow S_{\mathbb{Q}}^{\left(1^{n}\right)} \otimes S_{\mathbb{Q}}^{\mu}$ as the $\mathbb{Q} S_{n}$ mapping sending $\left\{t^{\prime}\right\}$ to $(\{t\} \otimes u) \rho_{t^{\prime}}$. Since $R_{t^{\prime}}=C_{t}$ and $\pi u=\operatorname{sgn}(\pi) u$, we have $(\{t\} \otimes u) \rho_{t^{\prime}} \pi=\operatorname{sgn}(\pi)\{t \pi\} \kappa_{t \pi} \otimes u$. Therefore θ sends $e_{t^{\prime}}=\left\{t^{\prime}\right\} \kappa_{t^{\prime}}$ to $(\{t\} \otimes u) \kappa_{t^{\prime}} \rho_{t^{\prime}}=\left(\{t\} \kappa_{t} \rho_{t} \otimes u\right)$. Consider,

$$
\begin{aligned}
<\{t\} \kappa_{t} \rho_{t},\{t\}> & =<\{t\} \kappa_{t},\{t\} \rho_{t}> \\
& =<\{t\} \kappa_{t},\left|R_{t}\right|\{t\}> \\
& =\left|R_{t}\right|
\end{aligned}
$$

Since $\left|R_{t}\right|$ is non-zero, $\theta\left(e_{t^{\prime}}\right) \neq 0$ and hence $\operatorname{ker}(\theta) \nsupseteq S_{\mathbb{Q}}^{\mu^{\prime}}$. Therefore by sub modules theorem, $\operatorname{ker}(\theta) \subseteq S_{\mathbb{Q}}^{\mu^{\prime \perp}}$. Now we have
$\operatorname{dim}\left(S_{\mathbb{Q}}^{\mu}\right)=\operatorname{dim}(\operatorname{Im}(\theta))=\operatorname{dim}\left(M_{\mathbb{Q}}^{\mu^{\prime}} / \operatorname{ker}(\theta)\right) \geq \operatorname{dim}\left(M_{\mathbb{Q}}^{\mu^{\prime}} / S_{\mathbb{Q}}^{\mu^{\prime \perp}}\right)=\operatorname{dim}\left(S_{\mathbb{Q}}^{\mu^{\prime}}\right)$. Similarly interchanging roles of μ and μ^{\prime}, we have $\operatorname{dim}\left(S_{\mathbb{Q}}^{\mu^{\prime}}\right) \geq S_{\mathbb{Q}}^{\mu^{\prime}}$. Therefore $\operatorname{ker}(\theta)=S_{\mathbb{Q}}^{\mu^{\prime}}$. The proof for $K=\mathbb{Q}$ is now complete since $S_{\mathbb{Q}}^{\mu^{\prime}} \cong M_{\mathbb{Q}}^{\mu^{\prime}} / S_{\mathbb{Q}}^{\mu^{\prime \perp}} \cong S_{\mathbb{Q}}^{\mu} \otimes S_{\mathbb{Q}}^{1^{n}}$. The theorem holds for all fields of characteristic zero since \mathbb{Q} is a splitting field.

If K is any field of characteristic p, then the theorem holds true for K if it is true over $F=\mathbb{F}_{p}$. By Theorem34, we have a map $\left.\overline{(} \theta\right)$ from $M_{F}^{\mu^{\prime}}$ onto $S_{F}^{\mu} \times S_{F}^{1^{n}}$ with $\operatorname{ker}(\bar{\theta}) \supseteq S_{F}^{\mu^{\prime \perp}}$. By dimensions, $\operatorname{ker}(\bar{\theta})=S_{F}^{\mu^{\prime \perp}}$. The theorem follows since $M_{F}^{\mu^{\prime}} / S_{F}^{\mu^{\prime \perp}}$ is isomorphic to dual of $S_{F}^{\mu^{\prime}}$.

Recall that a hook partition is any partition of the form $\left(X, 1^{y}\right)$.
Theorem 106. Suppose that μ is a hook partition. Then S^{μ} is irreducible if and only if one of the following holds
(a) $\mu=(n)$ or $\left(1^{n}\right)$
(b) $p \nmid n$ and $\mu=(n-1,1)$ or $\left(2,1^{(n-2)}\right)$
(c) $p \nmid n$ and $p \nmid 2$

Proof. $S^{(n)}$ and $S^{\left(1^{n}\right)}$ are one-dimensional and hence irreducible. We now assume $\mu=$ $\left(x, 1^{y}\right)$, where $x>1, y>0$ and $x+y=n$. Let

$$
\begin{array}{cccc}
1 & y+2 & \ldots & (y+x) \\
2 & & & \\
\vdots & & & \\
(y+1) & & &
\end{array}
$$

and $\bar{\kappa}_{t}=\sum\left\{\operatorname{sgn}(\pi) \pi \mid \pi \in S_{\{2,3 \ldots y+1\}}\right\}$. Clearly
$\kappa_{t}=(1-(1,2)-(1,3)-\ldots-(1, y+1)) \bar{\kappa}_{t}$. Considering κ_{t} and $\bar{\kappa}_{t}$ as elements of $\mathbb{Q} S_{n}$, we have
$\{t\} \kappa_{t} \rho_{t} \bar{\kappa}_{t}=\{t\} \kappa_{t} \bar{\kappa}_{t} \rho_{t}=y!\{t\} \kappa_{t} \rho_{t}$. Therefore we have

$$
\begin{aligned}
y!\{t\} \kappa_{t} \rho_{t}(1-(1,2) \ldots-(1, y+1)) & =\{t\} \kappa_{t} \rho_{t} \kappa_{t} \\
& =\prod(\text { hook lengths in }[\mu])\{t\} \kappa_{t} \text { by } 101 \\
& =(x-1)!y!(x+y)\{t\} \kappa_{t} .
\end{aligned}
$$

By Lemma 40, $g^{\mu^{\prime}}=(x-1)$! and thus
$\frac{1}{g^{\mu^{\prime}}}\{t\} \kappa_{t} \rho_{t}(1-(1,2) \ldots-(1-y+1))=(x+y)\{t\} \kappa_{t}$. If θ is the homomorphism defined in Definition 102,
$\theta(\{t\}(1-(1,2) \ldots-(1, y+1)))=(x+y)\{t\} \kappa_{t}$. By the virtue of definition of θ, we are back to working over $\mathbb{F}_{p} . \theta(\{t\}(1-(1,2) \ldots-(1, y+1)))=(x+y)\{t\} \kappa_{t}$ shows that if $p \nmid(x+y)=n$, $\operatorname{Im}(\theta)=S^{\mu}$. Since by Theorem 103, this is equivalent to $\operatorname{ker}(\theta)=S^{\mu^{\perp}}, S^{\left(x, 1^{y}\right)}$ is self dual if $p \nmid n$. Corollary 59 implies $\operatorname{Hom}_{F S_{n}}\left(S^{\mu}, S^{\mu}\right) \cong F$ if $p \neq 2$ or if $\mu=(n-1,1)$. Thus by Lemma 100, S^{μ} is irreducible in the case $p \nmid n$ and $p \neq 2$ or if $p \nmid n$ and $\mu=(n-1,1)$. Since $\left(2,1^{(n-2)}\right)$ is the conjugate of $(n-1,1)$, Theorem $105 \mathrm{implies} S^{\mu}$ is irreducible if $p \nmid n$ and $\mu=\left(2,1^{(n-2)}\right)$. Therefore S^{μ} is irreducible if
(a) $\mu=(n)$ or $\left(1^{n}\right)$ or
(b) $p \nmid n$ and $\mu=(n-1,1)$ or $\left(2,1^{(n-2)}\right)$ or
(c) $p \nmid n$ and $p \nmid 2$

Now if $p \mid n$, then $\{t\}(1-(1,2) \ldots-(1, y+1)) \in \operatorname{ker}(\theta)$. Let
$(y+x) \quad(y+x-1) \quad \ldots \quad(y+2) \quad 1$
$t *=\begin{gathered}2 \\ \vdots\end{gathered}$
$(y+1)$
Since $x>1, t *$ is a $\left(x, 1^{y}\right)$ tableau and hence we may define $e_{t *}$. It is clear that all the tabloids involved in $e_{t *}$ contain 1 in the first row and hence $\{t *\}$ is the unique tabloid involved in both $\{t\}(1-(1,2) \ldots-(1, y+1))$ and $e_{t *}$. So we have $<\{t\}(1-(1,2) \ldots-(1, y+1)), e_{t *}>=1$ and thus $\{t\}(1-(1,2) \ldots-(1, y+1)) \in \operatorname{ker}(\theta) \backslash S^{\mu^{\perp}}$. Therefore by Theorem103, $S^{\left(x, 1^{y}\right)}$ is reducible if $p \mid n$.

Finally we prove that $S^{\left(x, 1^{y}\right)}$ is reducible when $p=2 x>1$ and $y>1$. By Theorem 105 , we may assume $x>y$. By Littlewood-Richardson Rule 76, we have

$$
\begin{aligned}
{[x][y] } & =[x+y]+[x+y-1,1]+\ldots[x, y] \\
{[x]\left[1^{y}\right] } & =\left[x+1,1^{y-1}\right]+\left[x, 1^{y}\right]
\end{aligned}
$$

. If $p=2$, then $S^{(y)} \cong S^{1^{y}}$ because $S^{\left(1^{y}\right)}$ is the sign representation of S_{y} and S^{y}, the trivial one. Therefore we have
$\chi^{\left(x+1,1^{y-1}\right)}+\chi^{\left(x, 1^{y}\right)}=\chi^{(x+y)}+\chi^{(x+y-1,1)} \ldots+\chi^{(x, y)}$ as $2-$ modular characters. We may now induce on y and prove that $\chi^{\left(x, 1^{y}\right)}=\chi^{(x, y)}+\chi^{(x+2, y-2)}+\chi^{(x+4, y-4)} \ldots$.. and so $\chi^{x, 1^{y}}$ is a reducible $2-$ modular character.

Remark 107. By Theorem 32, one can see that the p-modular character corresponding to S^{μ} is same as the regular character corresponding to $S_{\mathbb{Q}}^{\mu}$.

Notice that the calculation of $g^{\mu^{\prime}}$ was not difficult for hook partition μ. In general, it is not easy to calculate $g^{\mu^{\prime}}$. However we shall classify all irreducible Specht modules corresponding to partitions of the type (x, y).

Lemma 108. If $\mu=(x, y)$, then $g^{\mu^{\prime}}=y!g c d\{x!,(x-1)!1!,(x-2)!2!, \ldots,(x-y)!y!\}$
Proof. Let t_{1} and t_{2} be two μ^{\prime} tableaux and
$X_{i, j}=\left\{k \mid k\right.$ belongs to the i th column of t_{1} and j th column of $\left.t_{2}\right\}$ It is clear that the polytabloids $e_{t_{1}}$ and $e_{t_{2}}$ have the tabloid t_{3} in common if and only if no two numbers from any one of the sets $X_{1,1} \cup X_{1,2}, X_{2,1} \cup X_{2,2}, X_{1,1} \cup X_{2,1}, X_{1,2} \cup X_{2,2}$. Any row of $\left\{t_{3}\right\}$ must contain a number from $X_{1,2}$ and a number from $X_{2,1}$ or no numbers from $\left|X_{1,2} \cup X_{2,1}\right|$. Therefore $\left.<e_{t_{1}}, e_{t_{2}}\right\rangle=0$ unless $\left|X_{1,2}\right|=\left|X_{2,1}\right|$.

If $\left|X_{1,2}\right|=\left|X_{2,1}\right|$, then the tabloid $\left\{t_{3}\right\}$ is common to $e_{t_{1}}$ and $e_{t_{2}}$ if and only if each of the first y rows of t_{3} is occupied by only one element of $X_{2,1} \cup X_{2,2}$ and each row containing a number from $X_{2,1}$ contains a number from $X_{1,2}$. Thus $e_{t_{1}}$ and $e_{t_{2}}$ have $y!\left|X_{1,2}\right|!\left(x-\left|X_{1,2}\right|\right)$! common tabloids.

Let $t_{3}=t_{1} \pi_{1}$, where $\pi \in C_{t_{1}}$ be the tabloid representative of the tabloid $\left\{t_{3}\right\}$ common in $e_{t_{1}}$ and $e_{t_{2}}$. Let $\sigma \in R_{t_{3}}$ be the permutation which interchanges each number in $X_{1,2}$ with a number $X_{2,1}$, leaving the other fixed. Clearly $\operatorname{sgn}(\sigma)=(-1)^{\left|X_{1,2}\right|}$. Since $\left\{t_{3}\right\}$ is involved in $e_{t_{2}}$, we have $t_{3} \sigma=t_{2} \pi^{\prime}$ for some $\pi^{\prime} \in R_{t_{2}}$. Therefore $t_{1} \pi \sigma \pi^{\prime-1}=t_{2}$ and $\operatorname{sgn}(\pi) \operatorname{sgn}\left(\pi^{\prime}\right)$ depends only of t_{1} and t_{2} and not on t_{3}. Since $\left\{t_{3}\right\}=\left\{t_{1}\right\} \pi=\left\{t_{2}\right\} \pi^{\prime}$, $<e_{t_{1}}, e_{t_{2}}>= \pm y!\left(\left|X_{1,2}\right|!\right)\left(x-\left|X_{1,2}\right|!\right.$.

By definition $g^{\mu^{\prime}}$ is the gcd of integers $\pm y!\left(\left|X_{1,2}\right|!\right)\left(x-\left|X_{1,2}\right|!\right.$ for all values of $\left|X_{1,2}\right|$. But since $0 \leq\left|X_{1,2}\right| \leq y$, we get the result.

Definition 109. The p-power diagram $[\mu]^{p}$ for a partition μ is obtained by replacing each integer $h_{i, j}$ of the hook graph(c.f 85) for μ by $v_{p}\left(h_{i, j}\right)$ (c.f Definition 95)

Now we are in a position to classify irreducible Specht modules corresponding to 2-part partitions.

Theorem 110. Suppose that $\mu=(x, y)$ is p-regular proper partition. Then S^{μ} is reducible if and only if some column of $[\mu]^{p}$ contains two different columns.

Proof. It is easily calculated that the hook lengths for $[\mu]$ are given by

$$
\begin{array}{ll}
h_{1, j}=x-j+2 & \text { for } 1 \leq j \leq y \\
h_{1, j}=x-j+1 & \text { for } y \leq j \leq x \\
h_{2, j}=y-j+1 & \text { for } 1 \leq j \leq y
\end{array}
$$

If there is a j such that $v_{p}\left(h_{1, j}\right) \neq v_{p}\left(h_{2, j}\right)$, consider the largest j with this property. Then $j+p^{r} \leq y+1$ and
$v\left(h_{1, i}\right)=v\left(h_{2,1}\right)<r$ for $j+1 \leq i<j+p^{r}$. Clearly, $\left\{h_{1, i} \mid j \leq i<j+p^{r}\right\}$ is a set of p^{r} consecutive integers and hence $v_{p}\left(h_{1, j}\right)>r=v_{p}\left(h_{2, j}\right)$. If $b=x-j+2$, since $v_{p}(b)>v_{p}(b-x+y-1)$ if and only if $v_{p}(b)>v_{p}(x-y+1)$, we have:

Observation 111. Some column of $[(x, y)]^{p}$ contains two different number if and only if there is an integer b such that $x-y+2 \leq b \leq x+1$ and $v_{p}(b)>v_{p}(x-y+1)$

Now, Π hook lengths in $[x, y]=(y!(x+1)!) /(x-y+1)$ and $g^{\mu^{\prime}}=y!g c d(\{x!,(x-$ $1)!1!, \ldots(x-y)!y!\})$ by lemma 108 , so by Theorem 104 , we have S^{μ} is reducible if and only if p divide
$\frac{x+1}{x-y+1} \operatorname{lcm}\left(\left\{\binom{x}{x},\binom{x}{x-1} \ldots,\binom{x}{x-y}\right\}\right)$. Because $(x+1)\binom{x}{b-1}=b\binom{x+1}{b}$, we have
$S^{(x, y)}$ is reducible if and only if there is an integer b such that $x-y+1 \leq b \leq x+1$ and $v_{p}\left(\frac{b}{x-y+1}\binom{x+1}{b}\right.$. Comparing this result with 111 , we can conclude that $S^{(x+y)}$ is reducible if $[(x, y)]^{p}$ contains two different numbers.

On the other hand, assume no column of $[(x, y)]^{p}$ contains different numbers. Then for every b with $x-y+2 \leq b \leq x+1, v_{p}(b) \leq v_{p}(x-y+1)$. Now, if
$x-y+1=a_{r} p^{r}+a_{r+1} p^{r+1} \ldots a_{s} p^{s}$ where $0 \leq a_{i}<p, a_{r} \neq 0 \neq a_{s}$, then
$x-y+1<\left(a_{r+1}+1\right) p^{r+1}+a_{r+2} p^{r+2}+\ldots a_{s} p^{s}$
and $v_{p}\left(\left(a_{r+1}+1\right) p^{r+1}+a_{r+2} p^{r+2}+\ldots a_{s} p^{s}\right)>v_{p}(x-y+1)$. Thus our assumption implies
$x+1<\left(a_{r+1}+1\right) p^{r+1}+a_{r+2} p^{r+2}+\ldots a_{s} p^{s}$, and hence
$x+1=c_{0}+c_{1} p+\ldots c_{r} p^{r}+a_{r+1} p^{r+1} \ldots a_{s} p^{s}\left(0 \leq c_{i}<p\right)$
and if $x-y+1 \leq b \leq x+1$,
$b=b_{q} p^{q}+\ldots b_{r} p^{r}+a_{r+1} p^{r+1} \ldots a_{s} p^{s}\left(0 \leq b_{i}<p, b_{q} \neq 0\right)$.
Therefore,
$x+1-b=c_{0}+c_{1} p \ldots+c_{q-1} p^{q-1}+d_{q} p^{q} \ldots+d_{r} p^{r}(0 \leq<p)$, where
$+d_{q} p^{q} \ldots+d_{r} p^{r}=c_{q} p^{q} \ldots+c_{r} p^{r}-b_{q} p^{q} \ldots-b_{r} p^{r}$.
By Lemma 96, we have

$$
\begin{aligned}
\binom{v_{p}(x+1}{b)} & =\left(\sigma_{p}(b)+\sigma_{p}(x+1-p)-\sigma_{p}(x+1)\right) /(p-1) \\
& =\left(b_{q}+\ldots+b_{r}+d_{q}+\ldots+d_{r}-c_{q} \ldots-c_{r}\right) /(p-1) \\
& =v_{p}\binom{c_{q} p^{q} \ldots+c_{r} p^{r}}{b_{q} p^{q}+\ldots+b_{r} p^{r}} \\
& \leq r-q \quad \text { by lemma } 97 \\
& =v_{p}(x-y+1)-v_{p}(b) .
\end{aligned}
$$

Therefore, for $x-y+1 \leq b \leq x+1, v_{p}\left(\frac{b}{x-y+1}\binom{x+1}{b}\right) \leq 0$ and $S^{(x, y)}$ is irreducible.

Chapter 11

Decomposition matrix of S_{n}

Let $F=\mathbb{F}_{p}($ field of size $p)$ and $S^{\mu_{1}} \ldots S^{\mu_{d}}$ be all the Specht modules over $F\left(\left\{\mu_{1}, \ldots \mu_{d}\right\}\right.$ is the set of all proper partitions of n). Let $\left\{D^{\lambda_{1}}, \ldots D^{\lambda_{c}}\right\}$ be the set of all inequivalent irreducible modules over $F S_{n}$, where $\lambda_{1} \ldots \lambda_{c}$ are the p-regular partitions of $n($ c.f 44). Let $d_{i, j}$ be the multiplicity of $D^{\lambda_{j}}$ in the composition series of $S^{\mu_{i}}$. The $d \times c$ matrix $D=\left(d_{i, j}\right)$ is called the decomposition matrix. Decomposition matrix is an invariant of representations of the group algebra $F S_{n}$. It is still an open problem to find the decomposition matrix of symmetric group over F. Through out this chapter, $F=\mathbb{F}_{p}, S^{\mu}=S_{F}^{\mu}$ and $D_{F}^{\mu}=D^{\mu}$. Let χ^{μ} be the p-modular character corresponding to S^{μ} and ϕ^{λ}, the p-modular irreducible character corresponding to D^{λ} (λp-regular proper partition). By Remark 107, χ^{μ} is same as the ordinary character corresponding to $S_{\mathbb{Q}}^{\mu}$. Therefore, D is the matrix of transformation between p-modular characters and ordinary irreducible characters.

Before going into results on decomposition matrix, we prove some elementary results about composition series of S^{μ}.

Theorem 112. All the composition factors of M^{μ} are of the form $D^{\lambda}\left(=\frac{S^{\lambda}}{S^{\lambda} \cap S^{\lambda^{\perp}}}\right)$ with $\lambda \triangleright \mu$, except if μ is p-regular partition, when D^{μ} appear precisely once.

Proof. By Corollary 46, all the composition factors of M^{μ} / S^{μ} are of the form D^{λ} with $\lambda \triangleright \mu$. Since $S^{\mu^{\perp}}$ is isomorphic to the dual of M^{μ} / S^{μ}, it has them same composition factors in the opposite order. We proved that $\frac{S^{\lambda}}{S^{\lambda} \cap S^{\lambda^{\perp}}}$) is non-zero if and only if λ is p-regular, in which case it is D^{μ}. Since $0 \subseteq S^{\mu} \cap S^{\mu^{\perp}} \subseteq S^{\mu} \subseteq M^{\mu}$ is a filtration of submodules for M^{μ}, the theorem is proved.

The following is an immediate and useful corollary of the above theorem.

Corollary 113. If μ is p-regular, S^{μ} has a a unique top composition factor D^{μ}. If D is a composition factor of $S^{\mu} \cap S^{\mu^{\perp}}$, then $D \cong D^{\lambda}$ for some $\lambda \triangleright \mu$. If μ is p-singular, all the composition factors of S^{μ} have the form D^{λ} with $\lambda \triangleright \mu$.

The following theorem gives us information about composition factors of hook representations when p is odd.

Theorem 114. Suppose p is odd

1. If $p \nmid n$, all the hook representations of S_{n} over the field $\mathbb{F}_{p}=F$.
2. If $p \mid n$, then for all $\left(x, 1^{y}\right) \vdash n$ with $0<x<n$ and $1<y<n-1$, then for any $2 \leq x \leq n-1$ and $0<y \leq n-2, S^{\left(x, 1^{y}\right)}$ has two composition factors say D^{x+} and D^{x-} with $D^{x+}=D^{(x-1)-}$, where $D^{n-}=0, D^{1+}=0, D^{n+}=S^{n}$ and $D^{1-}=S^{1^{n}}$.

Proof. We prove the result by induction on n. The result is vacuously true for $n=1$ and we assume it is true for $n-1$. By Murnaghan-Nakayama rule, we have

$$
\begin{equation*}
\operatorname{Res}_{S_{n-1}}^{S_{n}^{n}}\left(\chi^{x, 1^{y}}\right)=\chi^{\left(x-1,1^{y}\right)}+\chi^{\left(x, 1^{(y-1)}\right)} \text { if } x>1, y>0 \text { and } x+y=n . \tag{11.1}
\end{equation*}
$$

Case 1: $p \nmid n$
By Theorem 106, all hook representations are irreducible in this case. We just need to prove they are inequivalent. This follows at once, because by induction they are inequivalent when restricted to S_{n-1} (c.f 11.1).

Case2: $p \mid n$ Clearly $p \nmid(n-1)$ and thus $\chi^{\left(x, 1^{y-1}\right)}$ and $\chi^{\left(x-1.1^{y}\right)}$ are two inequivalent irreducible p-modular characters of S_{n-1} by case1. Therefore by 11.1 , $\operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\chi^{\left(x, 1^{y}\right)}\right)$ has two modular constituents and thus $\chi^{\left(x, 1^{y}\right)}$ has atmost two modular constituents. Since by Theorem106, $S^{\left(x, 1^{y}\right)}$ is reducible of $p \mid n, \chi^{\left(x, 1^{y}\right)}$ has precisely tow modular components say ϕ_{x}^{+}and ϕ_{x}^{-}, where $\operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\phi_{x}^{+}\right)=\chi^{\left(x-1,1^{y}\right)}$ and $\operatorname{Res}_{S_{n-1}}^{S_{n}}\left(\phi_{x}^{-}\right)=\chi^{\left(x, 1^{y-1}\right)}$. Also Let $\phi_{n}^{-}=0$ and $\phi_{1}^{+}=0$. If we show for every $x, \phi_{x-1}^{-}=\phi_{x}^{+}$, the theorem follows; no other equality can hold because there are different restrictions to S_{n-1}.

By Theorem 94,
$\chi^{(n)}-$ chi $^{(n-1,1)}+\chi^{\left(n-1,1^{2}\right)}-\ldots \pm \chi^{1^{n}}=0$
on all conjugacy classes of S_{n} except the (n). In particular, the above relation hold on all p-regular conjugacy classes. When written in terms of modular characters we have $\chi_{n}^{+}-\left(\chi_{n-1}^{-}+\chi_{n-1}^{+}\right)+\left(\chi_{n-2}^{-}+\chi_{n-2}^{+}\right) \ldots \pm \chi_{1}^{-}=0$.

If some ϕ_{x-1}^{-}were not equal to ϕ_{x}^{+}, then ϕ_{x-1}^{-}appaears just once in the relation, contradicting the linear independence of modular characters of a group.

We shall use this result to find the decomposition matrix of S_{5} and S_{3} in the the case when $p=3$

Theorem. When $p=3$, the decomposition matrix of S_{5} is :

	(5)	$(4,1)$	$(3,2)$	$\left(3,1^{2}\right)$	$\left(2^{2}, 1\right)$
(5)	1	0	0	0	0
$(4,1)$	0	1	0	0	0
$(3,2)$	0	1	1	0	0
$\left(3,1^{2}\right)$	0	0	0	1	0
$\left(2^{2}, 1\right)$	1	0	0	0	1
$\left(2,1^{3}\right)$	0	0	0	0	1
$\left(1^{5}\right)$	0	0	1	0	0

The partitions λ 's indexing the rows correspond to the Specht modules S^{λ} 's and the p-regular partitions μ 's indexing the columns correspond to the Irreducible modules D^{μ} 's.

Proof. The rows corresponding to $(5),(4,1)$ and $\left(3,1^{2}\right)$ come from Theorem 114 .
By taking [v] $=$ [2] and $r=3$ in Theorem 94, we have
$\chi^{(5)}-\chi^{\left(2^{2}, 1\right)}+\chi^{\left(2,1^{3}\right)}=0$ on all 3-regular conjugacy classes. By Theorem $114, \chi^{(5)}$ and $\chi^{\left(2,1^{3}\right)}$ are inequivalent and irreducible. Therefore $\chi^{2^{2}, 1}$ has two components. Since $\left(2^{2}, 1\right)$ is 3-regular partitions, one of the component must be $\phi^{\left(2^{2}, 1\right)}$ (cf Corollary 113). Since $\chi^{(5)}=\phi^{(5)}$, we have $\chi^{\left(2,1^{3}\right)}=\phi^{\left(2^{2}, 1\right)}$ and $\chi^{\left(2^{2}, 1\right)}=\phi^{(5)}+\phi^{\left(2^{2}, 1\right)}$ Again by 94 , we have the equation
$\chi^{\left(1^{5}\right)}-\chi^{(3,2)}+\chi^{(4,1)}=0$.
Again here $\chi^{\left(1^{5}\right)}$ and $\chi^{(4,1)}$ are irreducible and inequivalent by Theorem 114 . Therefore $\chi^{(3,2)}$ has two modular constituents and by Corollary 113 , one of them has to be $\phi^{(3,2)}$. Since $\phi^{(4,1)}=\chi^{(4,1)}$, we have $\chi^{(3,2)}=\phi^{(3,2)}+\chi^{(4,1)}$ and $\chi^{\left(1^{5}\right)}=\phi^{(3,2)}$. This completes the result.

Theorem. When $p=3$, the decomposition matrix of $S^{(3)}$ is of the form:

	(3)	$(2,1)$
(3)	1	0
$(2,1)$	1	1
$\left(1^{3}\right)$	0	1

Proof. The proof follows directly from 114 .
Observation 115. 1. If $\theta \in \operatorname{Hom}_{F S_{n}\left(M^{\lambda}\right), S^{\mu}}$ such that $\operatorname{ker}(\theta) \subseteq S^{\lambda^{\perp}}$, every composition factors of S^{λ} is a composition factor of S^{μ}. This is beacue $M / S^{\lambda^{\perp}}$ is isomorphic to dual of S^{λ}.
2. If $\theta \in \operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, S^{\mu}\right)$, and if λ is p-regular, D^{λ} is a composition factor of S^{μ}. This is because when λ is p-regular , $S^{\lambda} \cap S^{\lambda^{\perp}}$ is the unique maximal ideal of S^{λ}.

A tableaux T of shape λ and type μ is called reverse semi-standard if the numbers are non-increasing along the rows and strictly decreasing down the columns The following theorem gives sufficient conditions for the premise of the above observation to hold.

Theorem 116. Suppose that λ and μ are proper partitions of n and that T is a reverse semi-standard tableaux of shape λ and type μ. Let $N_{i, j}$ be the number of i 's in the jth row of T.

1. If for all $i \geq 2$ and $j \geq 1, N_{i-1, j} \equiv-1$ modp ${ }^{a_{i j}}$ where $a_{i j}=l_{p}\left(N_{i j}\right)$ (cf Definition 95), then $\theta_{T} \in \operatorname{Hom}_{F S_{n}}\left(M^{\lambda}, M^{\mu}\right)$ as defined in Definition 47 is in fact an element of $\operatorname{Hom}_{F S_{n}}\left(M^{\lambda}, S^{\mu}\right)$ such that $\operatorname{ker}\left(\theta_{T}\right) \subseteq S^{\lambda^{\perp}}$
2. If for all $i \geq 2$ and $j \geq 1, N_{i-1, j} \equiv-1 \bmod p^{b_{i j}}$, where
$b_{i j}=\min \left(l_{p}\left(N_{i, j}\right), l_{p}\left(\sum_{m=1}^{i-1}\left(\lambda_{j+m-1} \sum_{s=j}^{\infty} N_{m, s}\right)\right)\right)$, then $\widehat{\theta_{T}}$, the restriction of θ_{T} to S^{λ} is a non-zero element of $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, S^{\mu}\right)$.

Proof. By Theorem 55 and Remark 57, $\widehat{\theta_{T}}$ is a basis element for $\operatorname{Hom}_{F S_{n}}\left(S^{\lambda}, M^{\mu}\right)$ and thus non-zero. Therefore $\operatorname{ker}(\theta) \nsupseteq S^{\lambda}$ and thus by the Submodule Theorem, $\operatorname{ker}(\theta) \subseteq S^{\lambda^{\perp}}$.

Let t be the lambda tableau used to define action of S_{n} on $\mathcal{T}(\lambda, \mu)$ (in turn on M^{μ}), the set of tableaux of shape λ and type μ. By definition, $\theta_{T}(\{t\})$ is the sum of tableau of shape λ and type μ which are row equivalent to T.

Let $i \geq 2$ and $0 \leq v \leq \mu_{i}-1$. We can choose $v_{1}, v_{2} \ldots$ such that $0 \leq v_{j} \leq N_{i, j}$ for each j such that $\sum v_{j}=v$, because $\sum_{j=1}^{\infty} N_{i, j}=\mu_{i}$. Now, choose a tableau T_{1} row equivalent to T and change all but $v_{j} i^{\prime} s$ in the j th row of T_{1} to $i-1$'s. Let T_{2} be the resulting tableau. By definition , each T_{2} involved in $\psi_{i-1, v}\left(\theta_{T}(\{t\})\right)$ (c.f Definition 81) is obtained in this way from
$\prod_{j=1}^{\infty}\binom{N_{i-1, j}+N_{i, j}-v_{j}}{N_{i, j}-v_{j}}$
different tableaux row equivalent to T.

Since $\sum_{j=1}^{\infty} N_{i, j}=\mu_{i}>v=\sum_{j=1}^{\infty} v_{j}$, we may choose k such that $0 \leq v_{k}<N_{i, k}$. Now, if for all $j, N_{i-1, j} \equiv-1 \bmod p^{a_{i, j}}$, then by Corollary 99 ,
$\binom{N_{i-1, k}+N_{i, k}-v_{k}}{N_{i, k}-v_{k}}$ is divisible by p. Therefore if the hypothesis of part 1 of the theorem holds, by Corollary 84, $\theta_{T}\left(M^{\lambda}\right) \subseteq S^{\mu}$.

Using similar arguments, under the hypothesis of part 2, it becomes evident that $\psi_{i-1, v}\left(\theta_{T}\left(\{t\} \kappa_{t}\right)\right)$ does not involve T_{2}, unless
$N_{i, k}-v_{k}>\sum_{m=1}^{i-1}\left(\lambda_{k+m-1}-\sum_{s=k}^{\infty} N_{m, s}\right)$.
For $m<i-1, T_{2}$ has $\sum_{s=k}^{\infty} N_{m, s}$ equal to m in rows $k, k+1, \ldots$, because T_{2} is obtained from a tableau row equivalent to T. Similarly, T_{2} has atleast $\sum_{s=k^{\infty} N_{i-1, s}}+N_{i, k}-v_{k} i-1$'s in rows $k, k+1, \ldots$, since $N_{i, k}-v_{k} i$'s have been changed to $i-1$'s in the k th row. Therefore T_{2} has atleast

$$
N_{i, k}-v_{k}+\sum_{m=1}^{i-1}\left(\sum_{s=k}^{\infty} N_{m, s}\right)
$$

numbers less than equal to $i-1$ in rows $k, k+1, \ldots$. If this exceeds $\sum_{m=1}^{i-1} \lambda_{k+m-1}$, some column of T_{2} must contain two identical numbers. In this case, T_{2} is annihilated by κ_{t}. This shows that under the hypothesis of part $2, \psi_{i-1, v}\left(\theta_{T}(\{t\})\right) \kappa_{t}=0$ for $i \leq 2$ and $0 \leq v \leq \mu_{i}, 1$. Therefore by Corollary $84, \theta_{T}\left(\{t\} \kappa_{t}\right) \in S^{\mu}$, as we wished to prove.

Now by Corollary 113 , composition factors of $S^{(n-m, m)}$ have the form $D^{(n-j, j)}$ with $j \neq m$.

Definition 117. Given two non-negative integers a and b, let

$$
\begin{aligned}
a & =a_{0}+a_{1} p+\ldots a_{r} p^{r}\left(0 \leq a_{i}<p, a_{r} \neq 0\right) \\
b & =b_{0}+b_{1} p+\ldots b_{s} p^{s}\left(0 \leq a_{i}<p, b_{s} \neq 0\right) .
\end{aligned}
$$

We say a contains b to base p if $s<r$ and for each $i b_{i}=0$ or $b_{i}=a_{i}$
We define a function f_{p} on $\mathbb{N} \times \mathbb{N}$ by:

$$
f_{p}(n, m)=\left\{\begin{array}{l}
1 \text { if } n+1 \text { contains } m \text { to the base } p \\
0 \text { otherwise }
\end{array}\right.
$$

The next result completely determines the decomposition numbers associated to $S^{(n-m, m)}$.
Theorem 118. (James) The multiplicity of $D^{(n-j, j)}$ as a factor of $S^{(n-m, m)}$ is $f_{p}(n-2 j, m-j)$.

This theorem by James fills out many rows of the decomposition matrix in the case when n is small. The proof of this result may be found in [1] (pages:106-110).

Bibliography

[1] G.D.JAMES, "The Representation Theory of the Symmetric Groups," Lecture Notes in Mathematics, Vol.682, Springer-Verlag, Berlin/New York, 1978.
[2] C.W.Curtis and I.Reiner, "Representation theory of finite groups and associative algebras," Interscience Publishers, New York, 1962.
[3] Serge Lang, "Algebra", Addison-Wesley (International Student Edition), third edition, 1999.
[4] J.L.Alperin, "Local Representation Theory", Cambridge studies in Advanced Mathematics II, Cambridge University Press, 1986.
[5] R.Brauer and C.Nesbitt, "On Modular Characters of Groups", The Annals of Mathematics, Second Series, Vol.42, No. 2 (Apr., 1941), pp. 556-590.

