Introduction to Affine and Projective Varieties

A thesis submitted to
Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme

Thesis Supervisor: Prof. Nitin Nitsure
by
Ayesha Fatima
April, 2012

IISER PUNE

Indian Institute of Science Education and Research Pune
Sai Trinity Building, Pashan, Pune India 411021

This is to certify that this thesis entitled "Introduction to Affine and Projective Varieties" submitted towards the partial fulfillment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research Pune, represents work carried out by Ayesha Fatima under the supervision of Prof. Nitin Nitsure.

Ayesha Fatima

Thesis committee:
Prof. Nitin Nitsure
Dr. Rabeya Basu

Prof. A. Raghuram

Coordinator of Mathematics

To Baba...
For everything

Acknowledgments

This dissertation owes its form and existence to all the people who supported it and guided me through it and also to those who were very sceptical about it. I would like to express my thanks to all those who made it possible.

The extreme patience and continuous encouragement of Prof. Nitin Nitsure as he guided me through this work has been invaluable. I express my deep gratitude to him for this and also for the verve that he instilled in the project.

I owe a very big thanks to Prof. S M Bhatwadekar for having spent many afternoons discussing the requisite (and also the non requisite) Commutative Algebra with me. His very methodical approach has been very instrumental in making me appreciate the beauty of rigour in mathematics.

My very special thanks to Dr. Rabeya Basu for her kind attention and for being a constant source of guidance and encouragement.

Most importantly, I thank my family for the constant support that they have been in all the tough circumstances. I thank my father for his belief in me. I also thank all my friends who were there with me in both the good times and the bad times.

Abstract

Introduction to Affine and Projective Varieties

by Ayesha Fatima

In this thesis we give detailed solutions of the exercises in the first chapter of the textbook 'Algebraic Geometry' by Robin Hartshorne. We have followed this with an essay in which we have proved two theorems which bring out some relationships between the algebro-geometric notions and those coming from complex manifolds.

Contents

Abstract ix
1 Affine Varieties 1
2 Projective Varieties 17
3 Morphisms 41
4 Rational Maps 67
5 Nonsingular Varieties 77
6 Varieties and Submanifolds 85
6.1 Introduction 85
6.2 Closed Submanifolds of \mathbb{C}^{n} 85
6.3 Implicit Function Theorem 87
6.4 Non-singular varieties 88
6.5 Chow's Theorem 90

Chapter 1

Affine Varieties

Exercise 1.0.1. (a) Let Y be the plane curve $y=x^{2}$ i.e., Y is the zero set of the polynomial $f=y-x^{2}$. Show that $A(Y)$ is isomorphic to a polynomial ring in one variable over k.
(b) Let Z be the plane curve $x y=1$. Show that $A(Z)$ is not isomorphic to a polynomial ring in one variable over k.
(c) Let f be any irreducible quadratic polynomial in $k[x, y]$, and let W be the conic defined by f. Show that $A(W)$ is isomorphic to either $A(Y)$ or $A(Z)$. Which one is it when?

Solution:
(a) We have $Y=\mathcal{Z}\left(y-x^{2}\right)$. We prove that $y-x^{2}$ is an irreducible polynomial. Consider $y-x^{2}$ as a polynomial in x with coefficients in $k[y]$. Suppose $y-x^{2}$ is reducible. Then it has two factors each of degree 1 . Let $a x+b$ and $c x+d$ be the two linear factors where a, b, c, and d are elements of $k[y]$. Therefore we have $a c=-1$. Therefore a and c are elements of k such that $a=-1 / c$. We also have $a d+b c=0$. Putting $c=-1 / a$ in this, we get $a^{2} d-b=0$ i.e., $b-a^{2} d=0$. But $b d=y$ i.e., $(a d)^{2}=y$. This means that y is a square of a polynomial in y which is not true. Therefore $y-x^{2}$ is irreducible. Since $k[x, y]$ is a Unique Factorization Domain, $\left(y-x^{2}\right)$ is a prime ideal of $k[x, y]$ and $\sqrt{\left(y-x^{2}\right)}=\left(y-x^{2}\right)$. Therefore $I(Y)=\sqrt{\left(y-x^{2}\right)}=\left(y-x^{2}\right)$.
$A(Y)=k[x, y] / I(Y)=k[x, y] /\left(y-x^{2}\right)$. We claim that $k[x, y] /\left(y-x^{2}\right)$ is isomorphic to a polynomial ring in one variable $k[t]$. Define a map $\phi: k[x, y] \longrightarrow k[t]$ by $f(x, y) \mapsto f\left(t, t^{2}\right)$. This map is clearly a ring homomorphism. Also, any polynomial $f(t) \in k[t]$ is the image of the polynomial $f(x) \in k[x, y]$. Therefore this is a surjective ring homomorphism.

Let $f(x, y)$ be an element in the ideal generated by $y-x^{2}$. Therefore $f(x, y)=\left(y-x^{2}\right) g(x, y)$ for some polynomial $g(x, y)$ and thus $f\left(t, t^{2}\right)=0$. Therefore $\left(y-x^{2}\right) \subsetneq k e r \phi$.
Let $f(x, y)$ be an element of $\operatorname{ker} \phi$. Consider $f(x, y)$ as a polynomial in y with coefficients in $k[x]$. If we divide $f(x, y)$ by the polynomial $y-x^{2}$, which is a linear polynomial in y, then we have $f(x, y)=\left(x^{2}-y\right) g(x, y)+h(x, y)$. Since $\operatorname{deg} h(x, y)<\operatorname{deg}\left(y-x^{2}\right)=1, h(x, y)$ is polynomial in y of degree 0 i.e., a polynomial in x. Since $f\left(t, t^{2}\right)=0$, we have $h(t)=0$. Therefore $h(x)$ is the zero polynomial and hence $f(x, y) \in\left(y-x^{2}\right)$. Therefore $\operatorname{ker} \phi=\left(y-x^{2}\right)$. Therefore we have $A(Y)=k[x, y] /\left(y-x^{2}\right) \cong k[t]$.
(b) $Z=\mathcal{Z}(x y-1)$. We claim that $x y-1$ is irreducible. Consider $x y-1$ as a polynomial in x with coefficients in $k[y]$. Suppose it is reducible. Then it has two linear factors. Suppose $a x+b$ and $c x+d$ are the two linear factors of $x y-1$. Then $a c=0$ and $b d=1$. Therefore both b and d are elements of k. also either a or c is equal to 0 . Suppose $a=0$. Then $a x+b \in k$. This contradicts the fact that $a x+b$ is a polynomial of degree 1 in x. Therefore $x y-1$ is an irreducible polynomial and $(x y-1)$ is a prime ideal of $k[x, y]$ and thus $\sqrt{(x y-1)}=(x y-1)$. Therefore $I(Z)=(x y-1)$ and $A(Z)$ $=k[x, y] / I(Z)=k[x, y] /(x y-1)$.

We claim that $k[x, y] /(x y-1)$ is isomorphic to the Laurent polynomial ring in $x, k\left[x, \frac{1}{x}\right]$. Define a map $\phi: k[x, y] \longrightarrow k\left[x, \frac{1}{x}\right]$ by sending the polynomial $f(x, y)$ to the Laurent polynomial $f\left(x, \frac{1}{x}\right)$. This map is clearly a ring homomorphism. Also, ϕ is surjective because any Laurent polynomial $f\left(x, \frac{1}{x}\right)$ is the image of the polynomial $f(x, y)$.

Suppose $f(x, y)$ is a polynomial in $(x y-1)$. Then $f(x, y)=(x y-1) g(x, y)$ for some polynomial $g(x, y)$ in $k[x, y]$. Therefore $f\left(x, \frac{1}{x}\right)=0$ and $f(x, y) \in \operatorname{ker} \phi$. Therefore $(x y-1) \subset k e r \phi$.

Let $f(x, y)$ be an element of $\operatorname{ker} \phi$. Consider $f(x, y)$ as a polynomial in y with coefficients in $k[x]$. If we divide $f(x, y)$ by the polynomial $x y-1$, which is a linear polynomial in y, then we have $f(x, y)=(x y-1) g(x, y)+h(x, y)$. Since $\operatorname{deg} h(x, y)<\operatorname{deg}(x y-1)=1, h(x, y)$ is polynomial in y of degree 0 i.e., a polynomial in x. Since $f\left(x, \frac{1}{x}\right)=0$, we have $h(x)=0$. Therefore $f(x, y) \in(x y-1)$ and thus $\operatorname{ker} \phi=(x y-1)$. Thus $A(Y)=k[x, y] /(x y-1) \cong k\left[x, \frac{1}{x}\right]$.

Suppose $k\left[x, \frac{1}{x}\right] \cong k[t]$, polynomial ring in the variable t. Suppose φ is an isomorphism from $k\left[x, \frac{1}{x}\right]$ to $k[t]$. Since φ maps an invertible element to an invertible element, $\varphi\left(k^{\times}\right) \subset k^{\times}$. Also since x is an invertible element of $k\left[x, \frac{1}{x}\right]$, $\varphi(x)$ has to be an invertible element of $k[t]$ and therefore an element of k^{\times}. Therefore $\varphi\left(k\left[x, \frac{1}{x}\right]\right) \subset k$. This is a contradiction. Therefore $k\left[x, \frac{1}{x}\right]$ is not isomorphic to a polynomial ring in one variable.
(c) Suppose $f=a x^{2}+b x y+c y^{2}+d x+e y+f$ be any irreducible quadratic polynomial. We let $x=u \cos \theta-v \sin \theta$ and $y=u \sin \theta+v \cos \theta$ for a some angle θ (This amounts to a rotation of axes by an angle θ). Substituting these equations in f and letting the coefficient of $u v$ be 0 , we get $\tan \theta=b / a-c$. The equation is now of the form $A u^{2}+C v^{2}+D u+E v+F=0$.
Completing the squares and by a change of coordinates, we can convert the irreducible equation to one of the following standard forms:
$Y=X^{2}$ (parabola) $\longrightarrow(e q .1)($ when $A C=0)$
$\frac{X^{2}}{A_{1}^{2}}+\frac{Y^{2}}{B_{1}^{2}}=1$ (ellipse) $\longrightarrow(e q .2)($ when $A C>0)$
$\frac{X^{2}}{A_{1}^{2}}-\frac{Y^{2}}{B_{1}^{2}}=1$ (hyperbola) $\longrightarrow(e q .3)($ when $A C<0)$
Equation (1) is the case considered in part (a). Putting $X_{1}=X / A_{1}$ and $Y_{1}=i Y / B_{1}$ in the equation (2) converts it to the equation $X_{1}^{2}-Y_{1}^{2}=1$. Putting $X_{1}=X / A_{1}$ and $Y_{1}=Y / B_{1}$ in the equation (2) converts it to the equation $X_{1}^{2}-Y_{1}^{2}=1$. Putting $X_{1}=(U-V) / \sqrt{2}$ and $Y_{1}=U+V / \sqrt{2}$, the equation $X_{1}^{2}-Y_{1}^{2}=1$ gets converted to $U V=1$ which is the same as the case considered in part (b).

Exercise 1.0.2 (The twisted cubic curve). Let $Y \subsetneq \mathbb{A}^{3}$ be the set $Y=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in\right.$ $k\}$. Show that Y is an affine variety of dimension 1. Find the generators of the ideal
$I(Y)$. Show that $A(Y)$ is isomorphic to the polynomial ring in one variable over k. We say that Y is given by the parametric representation $x=t, y=t^{2}, z=t^{3}$.

Solution:
$Y=\mathcal{Z}\left(y-x^{2}, z-x^{3}\right)$. We claim that $I=\left(y-x^{2}, z-x^{3}\right)$ is a radical ideal. Consider the map $\phi: k[x, y, z] / I \longrightarrow k[x]$ which sends the element $f(x, y, z)$ to the element $f\left(x, x^{2}, x^{3}\right)$ and the map $\psi: k[x] \longleftrightarrow k[x, y, z] / I$ sending the element $f(x)$ to itself. Then ϕ and ψ are ring homomorphisms. Also $\phi(\psi(f))=f$ for any polynomial $f \in k[x]$. If f is an element of $k[x, y, z] / I$, then $\psi(\phi(f))$ $=\psi\left(f\left(x, x^{2}, x^{3}\right)\right)=f\left(x, x^{2}, x^{3}\right)$. Since $x^{2} \equiv y$ and $x^{3} \equiv z$ in $k[x, y, z] / I$, $f\left(x, x^{2}, x^{3}\right) \equiv f(x, y, z)$ in $k[x, y, z] / I$. Therefore the ring homomorphisms ϕ and ψ are inverses of each other and thus $k[x, y, z] /\left(y-x^{2}, z-x^{3}\right) \cong k[x]$. Since $k[x]$ is an integral domain, $\left(y-x^{2}, z-x^{3}\right)$ is a prime ideal and thus a radical ideal. Therefore $I(Y)=\sqrt{\left(y-x^{2}, z-x^{3}\right)}=\left(y-x^{2}, z-x^{3}\right)$.
Therefore $A(Y)=k[x, y, z] / I(Y) \cong k[x]$ and $\operatorname{dim} Y=\operatorname{dim} A(Y)=\operatorname{dim} k[x]=1$. Therefore $A(Y)$ is an affine variety of dimension 1.

Exercise 1.0.3. Let Y be the algebraic set in \mathbb{A}^{3} defined by two polynomials $x^{2}-y z$ and $x z-x$. Show that Y is the union of three irreducible components. Describe them and find their prime ideals.

Solution:
$Y=\mathcal{Z}\left(x^{2}-y z, x z-x\right)$. Therefore for any point $(x, y, z) \in Y$ we have $x^{2}-y z=0$ and $x(z-1)=0$. If $x=0$, we have $y z=0$ and therefore either $y=0$ or $z=0$. Therefore any point of the form $(0, t, 0)$ or $(0,0, t)$ in \mathbb{A}^{3} belongs to Y where $t \in k$.
If $z=1$, we have $x^{2}=y$. Therefore any point of the form $\left(t, t^{2}, 1\right)$ belongs to Y for all $t \in k$.
Therefore $\mathcal{Z}\left(x^{2}-y z, x z-x\right)=\mathcal{Z}(x, z) \cup \mathcal{Z}(x, y) \cup \mathcal{Z}\left(x^{2}-y, z-1\right)$.
Let $I_{1}=(x, z), I_{2}=(x, y)$ and $I_{3}=\left(x^{2}-y, z-1\right)$. We claim that we have $k[x, y, z] / I_{i} \cong k[t]$ for $i=1,2,3$.
To prove for $i=1$:
Let $\phi: k[x, y z] \longrightarrow k[y]$ be the map defined by sending the element $f(x, y, z)$ to the element $f(0, y, 0)$. This map is clearly a ring homomorphism. Also, any
$f(y) \in k[y]$ is the image of the element $f(y) \in k[x, y z]$. Therefore ϕ is a surjective ring homomorphism. Let $f(x, y, z) \in(x, z)$. Then $f(x, y, z)=x g(x, y, z)+z h(x, y, z)$ for some polynomials $g(x, y, z)$, $h(x, y, z) \in k[x, y, z]$. Since $\phi(f(x, y, z))=0, f(x, y, z) \in \operatorname{ker} \phi$. Therefore $(x, z) \subset \operatorname{ker} \phi$. Conversely, let $f(x, y, z)$ be an element of $\operatorname{ker} \phi$. Therefore $f(0, y, 0)=0$. Write $f(x, y, z)$ as $x g(x, y, z)+h(y, z)$ where g and h are polynomials. Therefore $h(y, 0)=0$. Write $h(y, z)$ as $z p(y)+q(y)$ where p and q are polynomials. Therefore $q(y)=0$. Thus $f(x, y, z)=x g(x, y, z)+z p(y)$ i.e., $f(x, y, z) \in(x, z)$. Therefore $k[x, y, z] /(x, z) \cong k[y] \cong k[t]$.

To prove for $i=2$:
Let $\psi: k[x, y z] \longrightarrow k[z]$ be the map defined by sending the element $f(x, y, z)$ to the element $f(0,0, z)$. This map is clearly a ring homomorphism. Also, any $f(z) \in k[z]$ is the image of the element $f(z) \in k[x, y z]$. Therefore ψ is a surjective ring homomorphism. Let $f(x, y, z) \in(x, y)$. Then $f(x, y, z)=x g(x, y, z)+y h(x, y, z)$ for some polynomials $g(x, y, z)$, $h(x, y, z) \in k[x, y, z]$. Since $\psi(f(x, y, z))=0, f(x, y, z) \in \operatorname{ker} \psi$. Therefore $(x, y) \subset \operatorname{ker} \psi$. Conversely, let $f(x, y, z)$ be an element of ker ψ. Therefore $f(0,0, z)=0$. Write $f(x, y, z)$ as $x g(x, y, z)+h(y, z)$ where g and h are polynomials. Therefore $h(0, z)=0$. Write $h(y, z)$ as $y p(z)+q(z)$ where p and q are polynomials. Therefore $q(z)=0$. Thus $f(x, y, z)=x g(x, y, z)+y p(z)$ i.e., $f(x, y, z) \in(x, y)$. Therefore $k[x, y, z] /(x, y) \cong k[z] \cong k[t]$.

To prove for $i=3$: Let $\varphi: k[x, y, z] / I_{3} \longrightarrow k[x]$ be the map defined by sending the element $f(x, y, z)$ to the element $f\left(x, x^{2}, 1\right)$. This map is clearly a ring homomorphism. Also, any $f(x) \in k[x]$ is the image of the element $f(x) \in k[x, y, z]$. Therefore φ is a surjective ring homomorphism. Let $\phi: k[x] \longrightarrow k[x, y, z] / I_{3}$ be the map defined by sending the element $f(x)$ to itself. ϕ is clearly a ring homomorphism. Also $\varphi(\phi(f(x)))=f(x)$ for any element $f(x) \in k[x]$. For any element $f(x, y, z) \in k[x, y, z] / I_{3}, \phi(\varphi(f(x, y, z)))=$ $f\left(x, x^{2}, 1\right)$. Since $x^{2} \equiv y$ and $z \equiv 1$ in $k[x, y, z] / I_{3}$, we have $f\left(x, x^{2}, 1\right) \equiv f(x, y, z)$ in $k[x, y, z] / I_{3}$. Therefore the ring homomorphisms ϕ and φ are inverses of each other and thus $k[x, y, z] / I_{3} \cong k[x] \cong k[t]$.

Since $k[t]$ is an integral domain, I_{i} is a prime ideal and thus $I\left(\mathcal{Z}\left(I_{i}\right)\right)=\sqrt{I_{i}}=I_{i}$ for each $i=1,2,3$. Therefore we have $\mathcal{Z}\left(I_{1}\right), \mathcal{Z}\left(I_{2}\right)$ and $\mathcal{Z}\left(I_{3}\right)$ as the irreducible
components of Y with I_{1}, I_{2} and I_{3} as their respective prime ideals.

Exercise 1.0.4. If we identify \mathbb{A}^{2} with $\mathbb{A}^{1} \times \mathbb{A}^{1}$ in the natural way, show that the Zariski topology on \mathbb{A}^{2} is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^{1}.

Solution:
Proper closed subsets of \mathbb{A}^{1} are finite subsets of \mathbb{A}^{1}. Closed sets of $\mathbb{A}^{1} \times \mathbb{A}^{1}$ in product topology are finite union of basic open sets which are of the form $X \times Y$ where X and Y are closed in \mathbb{A}^{1}. If X (or Y) is equal to \mathbb{A}^{1}, then $X \times Y$ looks like a finite union of horizontal (or vertical) lines in $\mathbb{A}^{1} \times \mathbb{A}^{1}$. If both X and Y are proper subsets of \mathbb{A}^{1}, then $X \times Y$ is finite set of points in $\mathbb{A}^{1} \times \mathbb{A}^{1}$. If both X and Y are equal to $\mathbb{A}^{1}($ or $\emptyset)$, then $X \times Y$ is equal to $\mathbb{A}^{1} \times \mathbb{A}^{1}($ or $\emptyset)$.
Consider the closed set $\mathcal{Z}(y-x)$ in \mathbb{A}^{2}. It is an infinite subset of \mathbb{A}^{2} because it is equal to the set $\{(t, t) \mid t \in k\}$. We claim that it is also not equal to union of finite number of vertical and horizontal lines. Suppose that it is equal to a union of finite number of vertical and horizontal lines H_{i} and V_{j} where $i=1, \ldots, n$ and $j=1, \ldots, m$ for some non-negative integers m and n. Each H_{i} is of the form $\left\{\left(t, h_{i}\right) \mid t \in k\right\}$ for a fixed element $h_{i} \in k$ and each V_{j} is of the form $\left\{\left(v_{j}, t\right) \mid t \in k\right\}$ for a fixed element $v_{j} \in k$. Each H_{i} has only one point of the form (t, t) i.e., the point $\left(h_{i}, h_{i}\right)$ and each V_{j} has only one point of the form (t, t) i.e., $\left(v_{j}, v_{j}\right)$. Therefore there are only finitely many points of the form (t, t) in $\left(\bigcup_{i=1}^{n} H_{i}\right) \cup\left(\bigcup_{j=1}^{m} V_{j}\right)$. This is a contradiction since $\mathcal{Z}(y-x)=\{(t, t) \mid t \in k\}$ has infinitely many points (because k is an algebraically closed field). Therefore $\mathcal{Z}(y-x)$ is not a closed set of $\mathbb{A}^{1} \times \mathbb{A}^{1}$. Therefore the product topology and the Zariski topology on \mathbb{A}^{2} is not the same.

Exercise 1.0.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^{n}, for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Solution:
Suppose B is a k-algebra such that $B \cong k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I(Y)$ where Y is an algebraic set in \mathbb{A}^{n}. Clearly B is a finitely generated k-algebra. Let \bar{x} be nilpotent element of B. Then $\bar{x}^{m}=0$ for some m. Therefore $x^{m} \in I(Y)$ i.e., $x \in \sqrt{I(Y)}=I(Y)$ (because $I(Y)$ is a radical ideal).

Conversely, suppose B is a finitely generated k-algebra with no nilpotent elements. Then B is of the form $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$ for some n. We claim that I is a radical ideal. If $x \in \sqrt{I}$, then $x^{m} \in I$ for some m and \bar{x} is a nilpotent element of B. But B has no nilpotent elements; therefore, $\bar{x}=0$ i.e., $x \in I$. Therefore I is a radical ideal and $I(\mathcal{Z}(I))=I$. Thus B is the affine coordinate ring of $\mathcal{Z}(I)$.

Exercise 1.0.6. Any non empty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \bar{Y} is also irreducible.

Solution:
Let U be a non-empty open subset of the irreducible topological space X. Suppose closure of U, \bar{U}, is a proper subset of X. Then X can be written as union of two non empty proper closed subsets U^{c} and \bar{U} which is a contradiction. Therefore $\bar{U}=X$ i.e., U is dense.

Suppose U is reducible. Let $U=A_{1} \cup A_{2}$ where A_{1} and A_{2} are proper closed subsets of U.
Then $A_{1}=B_{1} \cap U$ and $A_{2}=B_{2} \cap U$ for some proper closed subsets B_{1} and B_{2} of X.
Then $X=\left(B_{1} \cup U^{c}\right) \cup B_{2}$. Since $B_{1} \cup U^{c}$ and B_{2} are proper closed subsets of X, this is a contradiction. Therefore U is irreducible.

Suppose \bar{Y} is reducible. Let $\bar{Y}=A_{1} \cup A_{2}$ where A_{1} and A_{2} are proper closed subsets of \bar{Y}. Since \bar{Y} is the smallest closed subset containing Y, Y is not properly contained in either A_{1} or A_{2} and $A_{1} \cap Y$ and $A_{2} \cap Y$ are proper closed subsets of Y. But then $Y=\left(A_{1} \cap Y\right) \cup\left(A_{2} \cap Y\right)$ which is a contradiction. Therefore \bar{Y} is irreducible.

Exercise 1.0.7. (a) Show that the following conditions are equivalent for a topological space X :
(i) X is noetherian; (ii) every non-empty family of closed subsets has a minimal element;
(iii) X satisfies the ascending chain condition for open sets (iv) every non-empty family of open subsets has a maximal element.
(b) A noetherian topological space is quasi compact, i.e., every open cover has a finite sub-cover.
(c) Any subset of a noetherian topological space is noetherian in its induced topology.
(d) A noetherian space which is also Hausdorff must be a finite set with the discrete topology.

Solution:
(a) 1) $\Longrightarrow 2$): Suppose there exists a non empty family Σ of closed subsets of X which has no minimal element. Let C_{1} be any closed set in Σ. Since C_{1} is not a minimal element of Σ, there exists a closed subset C_{2} such that $C_{2} \subsetneq C_{1}$. Since C_{2} is not minimal, there exists a closed subset C_{3} in Σ such that $C_{3} \subsetneq C_{2}$. Proceeding in this way, we can produce by the axiom of choice an infinite strictly decreasing chain of closed sets of Σ. Therefore X is not noetherian. $2) \Longrightarrow 3)$: Consider an ascending chain of open subsets
$U_{1} \subsetneq U_{2} \subsetneq \ldots \subsetneq U_{n} \subsetneq \ldots$ Let $C_{i}=U_{i}^{c}$. Then $C_{1} \supset C_{2} \supset \ldots C_{n} \supset \ldots$ terminates because the collection of closed subsets $\left\{C_{i}\right\}$ has a minimal element. Therefore the chain $U_{1} U_{2} \subsetneq \ldots \subsetneq U_{n} \subsetneq \ldots$ terminates. $3) \Longrightarrow 4)$: Suppose there exists a non empty family Σ of open subsets which has no maximal element. Let U_{1} be any open set of Σ. Since U_{1} is not maximal, there exists an open set U_{2} in Σ such that $U_{1} \subsetneq U_{2}$. Since U_{2} is not maximal, there exists an open set U_{3} in Σ such that $U_{2} \subsetneq U_{3}$. proceeding in this way, we can construct by axiom of choice an infinite strictly increasing chain of open sets in Σ.
4) $\Longrightarrow 1)$: Consider any descending chain $C_{1} \supset C_{2} \supset \ldots C_{n} \supset \ldots$ of X. Let $U_{i}=C_{i}$. Then $\left\{U_{i}\right\}$ is a family of open subsets of X. Let U_{n} be the maximal element of this family. Then $U_{m}=U_{m+1}$ for all $m \geq n$. Therefore $C_{m}=C_{m+1}$ for all $m \geq n$ and the descending chain of closed subsets terminates.
(b) Let $\left\{U_{i}\right\}_{i \in I}$ be an open cover of the noetherian topological space X. Consider the family Σ consisting of all open sets which are finite unions of open sets in the open cover. Then Σ has a maximal element. Suppose the maximal element
is $U_{1} \cup U_{2} \cup \ldots U_{n}$. For any open set U_{i} in the open cover, $U_{1} \cup U_{2} \cup \ldots U_{n} \cup U_{i}=U_{1} \cup U_{2} \cup \ldots U_{n}$, i.e., $U_{i} \subset U_{1} \cup U_{2} \cup \ldots U_{n}$.
Therefore $U_{1} \cup U_{2} \cup \ldots U_{n}$ forms a finite sub-cover of the open cover $\left\{U_{i}\right\}_{i \in I}$.
Therefore there exists a finite sub-cover of every open cover of X and X is quasi compact.
(c) Let Y be a subset of the noetherian topological space X. Let $A_{0} \subsetneq A_{1} \subsetneq A_{2} \ldots$ be an ascending chain of open subsets of Y. Then $A_{i}=B_{i} \cap Y$ for some open subset B_{i} of X. We have an ascending chain of open subsets $B_{0} \subsetneq B_{0} \cup B_{1} \subsetneq B_{0} \cup B_{1} \cup B_{2} \subsetneq \ldots$. Therefore for some n we have $B_{0} \cup B_{1} \cup \ldots \cup B_{n}=B_{0} \cup B_{1} \cup \ldots \cup B_{n} \cup B_{n+1}$ i.e., $B_{n+1} \subsetneq B_{0} \cup B_{1} \cup \ldots B_{n}$. Thus $B_{n+1} \cap Y \subsetneq\left(B_{0} \cup B_{1} \cup \ldots B_{n}\right) \cap Y=$ $\left(B_{0} \cap Y\right) \cup\left(B_{1} \cap Y\right) \cup \ldots \cup\left(B_{n} \cap Y\right)=A_{0} \cup A_{1} \cup \ldots \cup A_{n}=A_{n}$ Therefore $A_{n+1}=A_{n}$ and any ascending chain of open subsets of Y terminates and Y is noetherian.
(d) Let Y be any subset of a Hausdorff, noetherian topological space X. From part (c) we have that Y is noetherian. Therefore Y is quasi compact. We claim that any quasi-compact subset of a Hausdorff space is closed. To prove this let $x \in X \backslash Y$ be a point. Since X is Hausdorff, for any $y \neq x$ in X we can find two disjoint open subsets U_{y} and V_{y} of X such that $y \in U_{y}$ and $x \in V_{y}$. Therefore $\left\{U_{y}\right\}_{y \in Y}$ is an open cover of Y. Since Y is quasi-compact, there exists a finite sub-cover of $\left\{U_{y}\right\}_{y \in Y}$. Let $U_{y_{1}}, U_{y_{2}}, \ldots U_{y_{n}}$ be the finite sub-cover. $A=\bigcap_{i=1}^{n} V_{y_{i}}$ is an open subset of X containing x such that $A \cap U_{y_{i}}=\emptyset$ for $i=1,2, \ldots n$. Therefore $A \cap Y=\emptyset$. Therefore for every $x \in X \backslash Y$ we can find an open subset A of X such that $x \in A$ and $A \subsetneq X \backslash Y$ i.e., $X \backslash Y$ is open. Therefore Y is closed. Therefore any subset of a Hausdorff, noetherian topological space X is closed and thus X has discrete topology. So, $X \backslash\{x\}$ is closed for any point $x \in X$ and thus $\{x\}$ is open. Consider the open cover $\bigcup_{x \in X}\{x\}$ of X. This has a finite sub-cover and thus X has a finite number of points.

Exercise 1.0.8. Let Y be an affine variety of dimension r in \mathbb{A}^{n}. Let H be a hypersurface in \mathbb{A}^{n}, and assume that $Y \nsubseteq H$. Then every irreducible component of $Y \cap H$ has dimension $r-1$.

Solution:
Let $H=\mathcal{Z}(f)$ for some irreducible polynomial $f \in k\left[x_{1}, x_{2}, \ldots x_{n}\right]$. Let X be any closed irreducible component of $H \cap Y$. Since $X \subsetneq H \cap Y$ in Y, $I(H \cap Y) \subsetneq I(X)$ in $A(Y)$. Since X is an irreducible component i.e., a maximal irreducible subset, $I(X)$ is a minimal prime ideal containing $I(Y \cap H)$. Therefore $I(X)$ is a minimal prime ideal of $A(Y)$ containing f. Since $Y \nsubseteq H, f$ does not belong to $I(Y)$ and therefore is not zero or nilpotent in $A(Y)$. From Krull's Haupidealsatz we have $h t(I(X))=1$ in $A(Y)$. We have $\operatorname{dim} A(Y)=\operatorname{dim} Y=r$. Therefore $\operatorname{dim} A(Y) / I(X)=\operatorname{dim} A(Y)-h t(I(X))=r-1 . \operatorname{dim} A(X)=$ $\operatorname{dim} k\left[x_{1}, x_{2}, \ldots x_{n}\right] / I(X)=\operatorname{dim} A(Y) / I(X)$ because $I(Y) \subsetneq I(X)$. Therefore $\operatorname{dim} X=\operatorname{dim} A(X)=r-1$.

Exercise 1.0.9. Let $\mathfrak{a} \subsetneq A=k\left[x_{1}, x_{2}, \ldots x_{n}\right]$ be an ideal which can be generated by r elements. Then every irreducible component of $\mathcal{Z}(\mathfrak{a})$ has dimension $\geq n-r$.

Solution:
Let Y be an irreducible component of $\mathcal{Z}(\mathfrak{a})$. Therefore $I(Y)$ is a minimal prime over $I(\mathcal{Z}(\mathfrak{a}))=\sqrt{\left(f_{1}, \ldots, f_{r}\right)}$. We claim that $I(Y)$ is minimal prime ideal over \mathfrak{a}.
Suppose Q is a prime ideal such that $\mathfrak{a} \subset Q \subset I(Y)$. Since $\sqrt{\mathfrak{a}}$ is the intersection of all prime ideals that contain $\mathfrak{a}, \sqrt{\mathfrak{a}} \subset Q \subset I(Y)$. This contradicts the minimality of $I(Y)$ over $\sqrt{\mathfrak{a}}$. Therefore $I(Y)$ is a minimal prime ideal containing \mathfrak{a}. Krull's dimension theorem states that in a noetherian ring any prime ideal which is minimal over an ideal generated by r elements has height $\leq r$. Therefore height $I(Y) \leq r . \operatorname{Dim} Y=\operatorname{dim} A(Y)=\operatorname{dim} A-\operatorname{height} I(Y) \geq n-r$.

Exercise 1.0.10. (a) If Y is any subset of a topological space X, then $\operatorname{dim} Y \leq$ $\operatorname{dim} X$.
(b) If X is a topological space which is covered by a family open subsets $\left\{U_{i}\right\}$, then $\operatorname{dim} X=\sup \operatorname{dim} U_{i}$.
(c) Give an example of a topological space X and a dense open subset U with $\operatorname{dim} U<$ $\operatorname{dim} X$.
(d) If Y is a closed subset of an irreducible finite dimensional topological space X, and if $\operatorname{dim} Y=\operatorname{dim} X$, then $Y=X$.
(e) Give an example of a noetherian topological space of infinite dimension.

Solution:
(a) Let $Y_{0} \subsetneq Y_{1} \subsetneq \ldots \subsetneq Y_{t}$ be any chain of irreducible closed subsets of Y. Consider the chain of irreducible closed subsets of $X, \overline{Y_{0}} \subsetneq \overline{Y_{1}} \subsetneq \ldots \subsetneq \overline{Y_{t}}$. We claim that $\overline{Y_{i}}$ are distinct. Assume the contrary. Suppose $\overline{Y_{i}}=\overline{Y_{i+1}}$. Since $Y_{i+1} \subsetneq \overline{Y_{i+1}}=\overline{Y_{i}}$, we have $Y \cap Y_{i+1} \subsetneq Y \cap \overline{Y_{i}}=Y_{i}$ which is a contradiction. This proves the claim. Thus $\operatorname{dim} Y \leq \operatorname{dim} X$.
(b) Let $X=\bigcup U_{i}$. Since $\operatorname{dim} X \geq \operatorname{dim} U_{i}, \operatorname{dim} X \geq \sup \operatorname{dim} U_{i}$. Consider any chain of distinct irreducible closed subsets $Z_{0} \subsetneq Z_{1} \subsetneq \ldots \subsetneq Z_{t}$ of X. For any open set U of $X, Z_{i} \cap U$ is an open subset of the irreducible subset Z_{i} and is therefore irreducible. Also, closure of $U \cap Z_{i}$ in Z_{i} is equal to Z_{i}. Since Z_{i} is closed in X, closure of $U \cap Z_{i}$ in X is also equal to Z_{i}. Let x be any point in Z_{0}. Since $\left\{U_{i}\right\}$ forms an open cover of $X, x \in U_{i}$ for some i. Then $Z_{0} \cap U_{i} \subset \ldots \subset Z_{t} \cap U_{i}$ is a chain of irreducible closed subsets of U_{i}. Also, each of the subsets in the chain is distinct. If $Z_{j} \cap U_{i}=Z_{k} \cap U_{i}$, then $\overline{Z_{j} \cap U_{i}}=Z_{j}=\overline{Z_{k}} \cap U_{i}=Z_{k}$ which is not true. Therefore we get a chain of distinct irreducible subsets of U_{i}. Therefore $\operatorname{dim} U_{i} \geq \operatorname{dim} X$ and hence $\sup \operatorname{dim} U_{i} \geq X$. Therefore, $\operatorname{dim} X=\sup \operatorname{dim} U_{i}$.
(c) Let $X=\{a, b, c\}$. Define topology on X by letting $X, \emptyset,\{a, b\}$ and $\{a\}$ to be the closed subsets. $U=\{c\}$ is an open subset. The smallest closed subset containing U i.e., closure of U is X itself. Therefore U is a dense open subset of X. Since no non empty closed subset is contained in $U, \operatorname{dim} U=0$. But $\{a, b\} \subsetneq X$ is a chain of irreducible subsets of X. Therefore $\operatorname{dim} X \geq 1$.
(d) Suppose $\operatorname{dim} X=\operatorname{dim} Y=n$. Let $Y_{0} \subsetneq Y_{1} \subsetneq \ldots \subsetneq Y_{n}$ be a chain of closed irreducible subsets of Y. Since Y is closed in X, each of the Y_{i} is closed in X. Therefore we have a chain $Y_{0} \subsetneq Y_{1} \subsetneq \ldots \subsetneq Y_{n} \subsetneq X$ of closed irreducible subsets of X. If $Y_{n} \subsetneq X$, we have $\operatorname{dim} X \geq n+1$ which is a contradiction. Therefore $Y_{n}=X$. But $Y_{n} \subsetneq Y$. Therefore $X=Y$.
(e) Let $X=\left\{a_{1}, a_{2}, \ldots a_{n}, \ldots\right\}$. Let the closed sets of X be X, \emptyset and all sets of the form $\left\{a_{i}\right\}_{i=1}^{n}$. This space is noetherian. But it has infinite dimension because we have an infinite chain $\left\{a_{1}\right\} \subsetneq\left\{a_{1}, a_{2}\right\} \subsetneq\left\{a_{1}, a_{2}, a_{3}\right\} \ldots$ of irreducible closed subsets of X.

Exercise 1.0.11. Let $Y \subsetneq \mathbb{A}^{3}$ be the curve parametrically given by $x=t^{3}, y=t^{4}$, $z=t^{5}$. Show that $I(Y)$ is a prime ideal of height 2 in $k[x, y, z]$ which cannot be generated by two elements. We say that Y is not a local complete intersection.

Solution:
For a monomial $f=x^{\alpha} y^{\beta} z^{\gamma} \in k[x, y, z]$ we define $\operatorname{deg}_{w}(f)$ (weighted degree) to be $3 \alpha+4 \beta+5 \gamma$. For any polynomial $f \in k[x, y, z]$ we define $\operatorname{deg}_{w}(f)$ to be the maximum of the weighted degrees of the monomial terms of f. Therefore, the minimum weighted degree that a non- zero polynomial can have is 3 . We call a polynomial f weighted homogeneous if all its monomial have the same weighted degrees.

Suppose $f=$ be a polynomial in $I(Y)$. We can write f as $g_{1}+g_{2}+\ldots g_{r}$ where $g_{i}=a_{i 1} x^{\alpha_{i 1}} y^{\beta_{i 1}} z^{\gamma_{i 1}}+a_{i 2} x^{\alpha_{i 2}} y^{\beta_{i 2}} z^{\gamma_{i 2}}+\ldots+a_{i n} x^{\alpha_{i n}} y^{\beta_{i n}} z^{\gamma_{i n}}$ is a weighted homogeneous polynomial of weighted degree d_{i}. Therefore $3 \alpha_{i j}+4 \beta_{i j}+5 \gamma_{i}=d_{i}$ for $j=i, \ldots, n$. $f\left(t^{3}, t^{4}, t^{5}\right)=0$ for all t. Therefore, $t^{d_{1}}\left(a_{11}+\ldots+a_{1 n}\right)+$ $t^{d_{2}}\left(a_{21}+\ldots+a_{2 n}\right)+\ldots t^{d_{r}}\left(a_{r 1}+\ldots+a_{r n}\right)=0$. Therefore, $a_{i 1}+\ldots+a_{i n}=0$ for each $i=1, \ldots, r$. Therefore f belongs to the ideal generated by the set of weighted homogeneous polynomials with sum of coefficients equal to 0 .
Conversely, assume that $f=a_{1} x^{\alpha_{1}} y^{\beta_{1}} z^{\gamma_{1}}+a_{2} x^{\alpha_{2}} y^{\beta_{2}} z^{\gamma_{2}}+\ldots+a_{n} x^{\alpha_{n}} y^{\beta_{n}} z^{\gamma_{n}}$ is weighted homogeneous with sum of coefficients equal to 0 . Then $f\left(t^{3}, t^{4}, t^{5}\right)=0$. Therefore we have that $I(Y)$ is the ideal generated by the set of weighted homogeneous polynomials with sum of coefficients equal to 0 .

We claim that $(1,0,1)$ and $(0,2,0)$ are the only non-negative integer solutions of $3 \alpha+4 \beta+5 \gamma=8$. For any positive integers α and $\gamma, 3 \alpha+5 \gamma \geq 8$. Therefore $8-4 \beta \geq 8$ which implies that $\beta=0$. Then $3 \alpha+5 \gamma=8$. For $\gamma \geq 2$, $3 \alpha+5 \gamma \geq 10$. Therefore $\gamma=1$ which implies $\alpha=1$. Therefore $(1,0,1)$ is the only non-negative solution of $3 \alpha+4 \beta+5 \gamma=8$ such that both $\alpha, \gamma \neq 0$.
Suppose $\gamma=0$ and $\alpha \neq 0$. Then $3 \alpha=8-4 \beta$. Therefore $8-4 \alpha \geq 3$ which implies that $\beta \leq 5 / 4$ i.e., $\beta=1$. Therefore $3 \alpha=4$ which is clearly a contradiction. Therefore there exist no solution for which $\gamma=0$ and $\alpha \neq 0$.

Suppose $\alpha=0$ and $\gamma \neq 0$. Therefore $5 \gamma=8-4 \beta$. Therefore $8-4 \alpha \geq 5$ which implies that $\beta \leq 3 / 4$ i.e., $\beta=0$. Therefore $5 \alpha=8$ which is clearly a contradiction. Therefore there exist no solutions for which $\alpha=0$ and $\gamma \neq 0$.

Therefore $\alpha=0$ and $\gamma=0$ which implies that $\beta=2$. Therefore $(0,2,0)$ is the only solution which allows $\gamma=0$ and $\alpha=0$.
Thus $(0,2,0)$ and $(1,0,1)$ are the only solutions and therefore $f_{1}=x z-y^{2}$ is the only weighted homogeneous polynomial (upto multiplication by an element of k) of weighted degree 8 in $I(Y)$.

We claim that $(3,0,0)$ and $(0,1,1)$ are the only non-negative integer solutions of $3 \alpha+4 \beta+5 \gamma=9$. For any positive integers β and $\gamma, 4 \beta+5 \gamma \geq 9$. Therefore $9-3 \alpha \geq 9$ which implies that $\alpha=0$. Then $4 \beta+5 \gamma=9$. For $\gamma \geq 2$, $4 \beta+5 \gamma \geq 10$. Therefore $\gamma=1$ which implies $\beta=1$. Therefore $(0,1,1)$ is the only solution of $3 \alpha+4 \beta+5 \gamma=9$ such that both $\beta, \gamma \neq 0$.
Suppose $\beta=0$ and $\gamma \neq 0$. Then $3 \alpha+5 \gamma=9$. Therefore $5 \gamma=9-3 \alpha \geq 5$ which implies $\alpha \leq 4 / 3$. Therefore $\alpha=0$ or 1 . When $\alpha=0$, we get $5 \gamma=9$ which is not possible. When $\alpha=1$, we get $5 \alpha=6$ which is also not possible. Therefore there exists no solution for which $\beta=0$ and $\gamma \neq 0$.
Suppose $\beta \neq 0$ and $\gamma=0$. Then $3 \alpha+4 \beta=9$. Therefore $4 \beta=9-3 \alpha \geq 4$ which implies $\alpha \leq 5 / 3$. Therefore $\alpha=1$ or 0 . When $\alpha=0$, we get $4 \beta=9$ which is not possible. When $\alpha=1$, we get $4 \beta=6$, which is also not possible. Therefore there exists no solution for which $\beta \neq 0$ and $\gamma=0$.

When $\beta=\gamma=0$, we get $3 \alpha=9$ or $\alpha=9$. Therefore ($3,0,0$) is the only solution which allows both β and γ to be equal to 0 .
Therefore $(3,00)$ and $(0,1,1)$ are the only solutions and therefore $f_{2}=x^{3}-y z$ is the only weighted homogeneous polynomial (upto multiplication by an element of k) of weighted degree 9 in $I(Y)$.

We claim that $3 \alpha+4 \beta+5 \gamma=7$ has only one non-negative integer solution (1, 10). If both β and γ are non zero, then $3 \alpha+4 \beta+5 \gamma \geq 9$. Therefore either β or γ has to be 0 . If $\beta=0$, then $3 \alpha+5 \gamma=7$. $\alpha=0$ (or $\gamma=0$) is not possible because 7 is not a multiple of 5 (or 3). But for $\gamma, \alpha \geq 1,3 \alpha+5 \gamma \geq 8$. Therefore there is no solution with $\beta=0$. If $\gamma=0$, then $3 \alpha+4 \beta=7 . \alpha=0$ (or $\beta=0$) is not possible because 7 is not a multiple of 4 (or 3). For $\alpha \neq 0$ and $\beta \neq 0$, there is only one solution $(1,1,0)$ which is thus the only solution.

By similar arguments we can show that there is only one non-negative integer solution to $3 \alpha+4 \beta+5 \gamma=n$ for $n=3,4,5,6$ and no non-negative integer solution for $n=2,3$.

Since any weighted homogeneous polynomial of $I(Y)$ is such that the sum of coefficients is $0, f_{1}=x z-y^{2}$ and $f_{2}=x^{3}-y z$ are the two weighted homogeneous non-zero polynomials of least weighted degree that belong to $I(Y)$ (upto multiplication by an element of k).

Suppose $I(Y)$ is generated by two elements. We then claim that the generators are f_{1} and f_{2}. Let g_{1} and g_{2} be the two generators of $I(Y)$. Then, for $i=1,2 g_{i}$ is a weighted homogeneous polynomial whose sum of coefficients is zero. Since $f_{1} \in I(Y), f_{1}=g_{1} h_{1}+g_{2} h_{2}$ for some polynomials $h_{1}, h_{2} \in k[x, y, z]$. Therefore $\operatorname{deg}_{w}\left(f_{1}\right)=\max \left\{\operatorname{deg}_{w}\left(g_{1}\right)+\operatorname{deg}_{w}\left(h_{1}\right), \operatorname{deg}_{w}\left(g_{2}\right)+\operatorname{deg}_{w}\left(h_{2}\right)\right\}$. Suppose $\operatorname{deg}_{w}\left(g_{1}\right)+\operatorname{deg}_{w}\left(h_{1}\right) \geq \operatorname{deg}_{w}\left(g_{2}\right)+\operatorname{deg}_{w}\left(h_{2}\right)$. Then, $\operatorname{deg} g_{w}\left(f_{1}\right)=\operatorname{deg} g_{w}\left(g_{1}\right)+\operatorname{deg}_{w}\left(h_{1}\right)$. Since f_{1} is the homogeneous polynomial of least weighted degree that belongs to $I(Y)$, $\operatorname{deg}_{w}\left(h_{1}\right)=0$, i.e., $h_{1}=a \in k$. Therefore $g_{1}=a f_{1}$ for some scalar a.
Since we are assuming $g_{1} \neq g_{2}, \operatorname{deg}\left(g_{2}\right) \geq 9$. Since $f_{2} \in I(Y), f_{2}=a f_{1} h_{1}+g_{2} h_{2}$ for some polynomials $h_{1}, h_{2} \in k[x, y, z]$. Suppose $\operatorname{deg}_{w}\left(g_{2}\right)>9$. Then $h_{2}=0$ which implies that $d e g_{w}\left(h_{1}\right)=1$ which is not possible. Therefore $d e g_{w}\left(g_{2}\right)=9$. Since $x^{3}-y z$ is the only weighted homogeneous polynomial in $I(Y)$ of weighted degree 9 (upto multiplication by an element of k), we have $g_{2}=b f_{2}$ for some $b \in k$.

Consider the weighted degree 10 polynomial $f=x^{2} y-z^{2}$ in $I(Y)$. Then it cannot be written as an element of the ideal generated by f_{1} and f_{2}. Because if $f=f_{1} h_{1}+f_{2} h_{2}$ for some polynomials $h_{1}, h_{2} \in k[x, y, z]$, then either $\operatorname{deg}_{w}\left(h_{1}\right)=2$ or $\operatorname{deg}_{w}\left(h_{2}\right)=2$ both of which are not possible. Therefore $I(Y)$ cannot be generated 2 elements.

To prove that $I(Y)$ is a prime ideal:
Suppose $f=a_{1} x^{\alpha_{1}} y^{\beta_{1}} z^{\gamma_{1}}+a_{2} x^{\alpha_{2}} y^{\beta_{2}} z^{\gamma_{2}}+\ldots+a_{n} x^{\alpha_{n}} y^{\beta_{n}} z^{\gamma_{n}}$ and $g=b_{1} x^{\lambda_{1}} y^{\mu_{1}} z^{\nu_{1}}+b_{2} x^{\lambda_{2}} y^{\mu_{2}} z^{\nu_{2}}+\ldots+b_{m} x^{\lambda_{m}} y^{\mu_{m}} z^{\nu_{m}}$ be two polynomials such that $f g \in I(Y)$. Then the sum of coefficients of $f g$, $\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(b_{1}+b_{2}+\ldots+b_{m}\right)$ is equal to zero. Therefore either $\left(a_{1}+a_{2}+\ldots+a_{n}\right)=0$ or $\left(b_{1}+b_{2}+\ldots+b_{m}\right)=0$. Also replacing x with X^{3},
y with Y^{4} and z with Z^{5}, we have $f g$ is a homogeneous polynomial (in the usual sense) in X, Y and Z. Therefore either f or g is a homogeneous polynomial (in the usual sense) in X, Y and Z. Therefore either f or g is weighted homogeneous in x, y and z and thus $I(Y)$ is a prime ideal.

Exercise 1.0.12. Give an example of an irreducible polynomial $f \in \mathbb{R}[x, y]$ whose zero set $\mathcal{Z}(f)$ in $\mathbb{A}_{\mathbb{R}}^{2}$ is not irreducible.

Solution:
Let $f=x^{2}\left(x^{2}-1\right)+y^{2}=x^{4}-2 x^{3}+x^{2}+y^{2}$. We claim that f is irreducible in $\mathbb{R}[x, y]$. Consider f as a polynomial in y with coefficients in $\mathbb{R}[x]$. If f were reducible then it has two factors $a y+b$ and $c y+d$, each of degree 1 in y. Here $a, b, c, d \in \mathbb{R}[x]$. Then $a c=1$ which implies that $a, c \in \mathbb{R}$. Also, $a d+b c=0$. Putting $c=1 / a$ in this we get $b=-a^{2} d$. Therefore $b d=x^{4}-2 x^{2}+x^{2}=\left(x^{2}-x\right)^{2}=-(a d)^{2}$. Since $a \in \mathbb{R}$, this implies that $a^{2}=-1$ which is not possible in \mathbb{R}. Therefore f is irreducible. But $\mathcal{Z}(f)=\{(0,0),(1,0)\}$ which is not an irreducible subset of $\mathbb{A}_{\mathbb{R}}^{2}$ because it can be written as a union of two closed proper subsets $\mathcal{Z}\left(x^{2}+y^{2}\right)=\{(0,0)\}$ and $\mathcal{Z}\left((x-1)^{2}+y^{2}\right)=\{(1,0)\}$.

Chapter 2

Projective Varieties

Exercise 2.0.13 (Homogeneous Nullstellenstaz). Prove the homogeneous nullstellenstaz which states that if $\mathfrak{a} \subset S$ is a homogeneous ideal, and if f is a homogeneous polynomial with $\operatorname{deg} f>0$, such that $f(P)=0$ for all $P \in \mathcal{Z}(\mathfrak{a})$ in \mathbb{P}^{n}, then $f^{q} \in \mathfrak{a}$ for some $q>0$.

Solution:
Let \mathfrak{a} be a proper ideal of S. Let $\hat{\mathcal{Z}}(\mathfrak{a})$ denote the set $\left\{P \in \mathbb{A}^{n+1} \mid f(P)=0 \forall f \in \mathfrak{a}\right\}$. For any point $P=\left(a_{0}: \ldots: a_{n}\right) \in \mathbb{P}^{n}$, let \hat{P} denote the subset $\left\{\left(t a_{0}, t a_{1}, \ldots t a_{n}\right) \in \mathbb{A}^{n+1} \mid t \in k\right\}$. Since \mathfrak{a} is a homogeneous ideal of S, if $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in \hat{\mathcal{Z}}(\mathfrak{a})$ then $\hat{P} \subset \hat{\mathcal{Z}}(\mathfrak{a})$. Therefore if $P \in \mathcal{Z}(\mathfrak{a})$, then $\hat{P} \subset \hat{\mathcal{Z}}(\mathfrak{a})$. Moreover, $\hat{\mathcal{Z}}(\mathfrak{a})$ is exactly equal to these points and 0 .

If a non constant homogeneous polynomial f vanishes at all points of $\mathcal{Z}(\mathfrak{a})$, then it vanishes at all points of $\hat{\mathcal{Z}}(\mathfrak{a})$. From the usual nullstellensatz, we have $f^{q} \in \mathfrak{a}$ for some q.

Exercise 2.0.14. For any homogeneous ideal $\mathfrak{a} \subset S$ show that the following conditions are equivalent:
(i) $\mathcal{Z}(\mathfrak{a})=\emptyset$;
(ii) $\sqrt{\mathfrak{a}}$ is either S or the ideal $S_{+}=\bigoplus_{d>0} S_{d}$;
(iii) $\mathfrak{a} \supset S_{d}$ for some $d>0$.

Solution:
i) \Longrightarrow ii):

Case i :
If \mathfrak{a} is a proper ideal of S, then from the solution to problem 1 , we know that if $\mathcal{Z}(\mathfrak{a})=\emptyset$ then $\hat{\mathcal{Z}}(\mathfrak{a})=\{0\}$. Let $I(\hat{\mathcal{Z}}(\mathfrak{a}))$ be the ideal of $\hat{\mathcal{Z}}(\mathfrak{a})$ when considered as a subset of \mathbb{A}^{n+1}. Then we have $\sqrt{\mathfrak{a}}=I(\hat{\mathcal{Z}}(\mathfrak{a}))=I(0)=S_{+}$i.e., all polynomials with constant term equal to 0 .
Case ii:
If $\mathfrak{a}=S$, then $\hat{\mathcal{Z}}(\mathfrak{a})=\emptyset$ and therefore $\sqrt{\mathfrak{a}}=I\left(Z_{a}(\mathfrak{a})\right)=I(\emptyset)=S$.
ii) \Longrightarrow iii): Consider the ideal I generated by the elements $x_{0}, x_{1}, \ldots, x_{n}$. Then $I \subset \sqrt{\mathfrak{a}}$. Since I is finitely generated $I^{d} \subset \mathfrak{a}$ for some $d>0$. But any element of S_{d} belongs to I^{d}. Therefore $S_{d} \subset \mathfrak{a}$ for some $d>0$.
iii) \Longrightarrow i): Suppose $P=\left(a_{0}: a_{1} ; \ldots: a_{n}\right) \in \mathcal{Z}(\mathfrak{a})$. Then $f(P)=0$ for any homogeneous polynomial $f \in \mathfrak{a}$. But since $S_{d} \subset \mathfrak{a}, x_{i}^{d} \in \mathfrak{a}$ for $i=0$ to n. Therefore $a_{i}^{d}=0$ for $i=0$ to n. Since S is an integral domain, $a_{i}=0$ for $i=0$ to n. This is not possible. Therefore $\mathcal{Z}(\mathfrak{a})=\emptyset$.

Exercise 2.0.15. (a) If $T_{1} \subset T_{2}$ are subsets of S^{h}, then $\mathcal{Z}\left(T_{1}\right) \supset \mathcal{Z}\left(T_{2}\right)$.
(b) If $Y_{1} \subset Y_{2}$ are subsets of \mathbb{P}^{n}, then $I\left(Y_{1}\right) \supset I\left(Y_{2}\right)$.
(c) For any two subsets Y_{1}, Y_{2} of $\mathbb{P}^{n}, I\left(Y_{1} \cup Y_{2}\right)=I\left(Y_{1}\right) \cap I\left(Y_{2}\right)$.
(d) If $\mathfrak{a} \subset S$ is a homogeneous ideal with $\mathcal{Z}(\mathfrak{a}) \neq \emptyset$, then $I(\mathcal{Z}(\mathfrak{a}))=\sqrt{\mathfrak{a}}$.
(e) For any subset $Y \subset \mathbb{P}^{n}, \mathcal{Z}(I(Y))=\bar{Y}$.

Solution:

(a) Let $P \in \mathcal{Z}\left(T_{2}\right)$. Then $f(P)=0$ for all $f \in T_{2}$ and hence for all f in T_{1}. Therefore $P \in \mathcal{Z}\left(T_{1}\right)$.
(b) Let $A=\left\{f \in S \mid f\right.$ is homogeneous and $f(P)=0$ for all $\left.P \in Y_{2}\right\}$ and $B=\left\{f \in S \mid f\right.$ is homogeneous and $f(P)=0$ for all $\left.P \in Y_{1}\right\}$. We have $A \subset B$ and therefore $(A) \subset(B)$. But $(A)=I\left(Y_{2}\right)$ and $(B)=I\left(Y_{1}\right)$.
Therefore $I\left(Y_{1}\right) \supset I\left(Y_{2}\right)$.
(c) Let A and B be as above. Then $I\left(Y_{1} \cup Y_{2}\right)$ is the ideal generated by the homogeneous polynomials f that vanish at points of $Y_{1} \cup Y_{2}$. Clearly, if any homogeneous polynomial f vanishes on Y_{1} and on Y_{2}, then f vanishes at $Y_{1} \cup Y_{2}$. Therefore $I\left(Y_{1}\right) \cap I\left(Y_{2}\right) \subset I\left(Y_{1} \cup Y_{2}\right)$. Conversely, consider any polynomial f in the generating set of $I\left(Y_{1} \cup Y_{2}\right)$. Then f is a homogeneous polynomial that vanishes on all points of $Y_{1} \cup Y_{2}$ and therefore f vanishes on all points of Y_{1} and on all points of Y_{2}. Therefore $f \in A$ and $f \in B$. Therefore $f \in I\left(Y_{1}\right) \cap I\left(Y_{2}\right)$.
(d) From problem 1 we have that $I(\mathcal{Z}(\mathfrak{a})) \subset \sqrt{\mathfrak{a}}$. Since \mathfrak{a} is a homogeneous ideal, $\sqrt{\mathfrak{a}}$ is homogeneous. Let f be any one of the generating elements of $\sqrt{\mathfrak{a}}$. Then $f^{q} \in \mathfrak{a}$ for some $q>0$. Also, f^{q} is a homogeneous element. Since for any homogeneous polynomial $g \in \mathfrak{a}, g(P)=0$ for all points $P \in \mathcal{Z}(\mathfrak{a})$, we have $f^{q}(P)=0$ for all points $P \in \mathcal{Z}(\mathfrak{a})$. Therefore $f(P)=0$ for all points $P \in \mathcal{Z}(\mathfrak{a})$. Therefore $f \in I(\mathcal{Z}(\mathfrak{a}))$ and $I(\mathcal{Z}(\mathfrak{a}))=\sqrt{\mathfrak{a}}$.
(e) Suppose $P \notin \mathcal{Z}(I(Y))$. Then there is a homogeneous polynomial $f \in I(Y)$ such that $f(P) \neq 0$. But $f(Q)=0$ for any point $Q \in Y$. Therefore $P \notin Y$. Therefore $Y \subset \mathcal{Z}(I(Y))$. Since \bar{Y} is the smallest closed subset containing Y, $\bar{Y} \subset \mathcal{Z}(I(Y))$. To prove the converse, assume that $P \notin \bar{Y}$. Therefore there is a homogeneous polynomial $f \in I(\bar{Y})$ such that $f(P) \neq 0$. Since $Y \subset \bar{Y}$, $I(\bar{Y}) \subset I(Y)$. Therefore $f \in I(Y)$. Since $f(P) \neq 0, P \notin \mathcal{Z}(I(Y))$. Therefore $\mathcal{Z}(I(Y)) \subset \bar{Y}$. Hence $\mathcal{Z}(I(Y))=\bar{Y}$.

Exercise 2.0.16. (a) There is a one-one inclusion reversing correspondence between algebraic sets in \mathbb{P}^{n}, and the homogeneous ideals of S not equal to S_{+}, given by $Y \longmapsto I(Y)$ and $\mathfrak{a} \longmapsto \mathcal{Z}(\mathfrak{a})$. Note: Since S_{+}does not occur in this correspondence it is sometimes called the irrelevant maximal ideal of S.
(b) An algebraic set $Y \subset \mathbb{P}^{n}$ is irreducible if and only if $I(Y)$ is a prime ideal.
(c) Show that \mathbb{P}^{n} itself irreducible.

Solution:
(a) For any subset $Y \subset \mathbb{P}^{n}, I(Y)$ is clearly a homogeneous ideal. Also, when Y is a closed subset i.e., $Y=\mathcal{Z}(\mathfrak{a})$, we have from part (d) of Exercise 2.3
$\sqrt{I(Y)}=I(\mathcal{Z}(I(Y)))$. From part (e) of the same Exercise, $\mathcal{Z}(I(Y))=\bar{Y}=Y$. Therefore $\sqrt{I(Y)}=I(Y)$. Therefore the map I is from the set of algebraic sets to the set of homogeneous radical ideals. Also, if $I\left(Y_{1}\right)=I\left(Y_{2}\right)$, then $\mathcal{Z}\left(I\left(Y_{1}\right)\right)=\mathcal{Z}\left(I\left(Y_{2}\right)\right)$ i.e., $Y_{1}=Y_{2}$. Therefore the map is 1-1. If I_{1} and I_{2} are radical ideals none equal to S_{+}or S such that $\mathcal{Z}\left(I_{1}\right)=\mathcal{Z}\left(I_{2}\right)$, then $I\left(\mathcal{Z}\left(I_{1}\right)\right)=I\left(\mathcal{Z}\left(I_{2}\right)\right)$.i.e., $I_{1}=I_{2}$. Also, when $\mathfrak{a}=S$ $\mathcal{Z}(\mathfrak{a})=\emptyset$. When $\mathcal{Z}(\mathfrak{a}) \neq \emptyset$ from exercise 2.3 we get that $I(\mathcal{Z}(\mathfrak{a}))=\mathfrak{a}$. When $\mathcal{Z}(\mathfrak{a})=\emptyset$, we have $\sqrt{\mathfrak{a}}=S$ or S_{+}. But since we are not considering S_{+}in the image of the map $I, \sqrt{\mathfrak{a}}=S$. Therefore these two maps are inverses of each other. Also, from part (a) and (b) of Exercise 2.3, these maps are inclusion reversing.
(b) Suppose $I(Y)$ is not a prime ideal. Then there exist homogeneous elements f and g such that $f g \in I(Y)$ but $f \notin I(Y)$ and $g \notin I(Y)$. Let $Y_{1}=\mathcal{Z}(f) \cap Y$ and $Y_{2}=\mathcal{Z}(g) \cap Y$. Then Y_{1} and Y_{2} are proper closed subsets of Y Then $Y_{1} \cup Y_{2} \subset Y$. Since $f g \in I(Y), \mathcal{Z}(I(Y))=Y \subset \mathcal{Z}(f g)=\mathcal{Z}(f) \cup \mathcal{Z}(g)$. Therefore $Y=Y_{1} \cup Y_{2}$ and Y is reducible.

Conversely, assume that Y is reducible. Let $Y=Y_{1} \cup Y_{2}$ where Y_{1} and Y_{2} are proper closed subsets of Y. Since $I(Y) \subset I\left(Y_{1}\right)$ and $I(Y) \subset I\left(Y_{2}\right)$, there exist polynomials $f_{1} \in I\left(Y_{1}\right) \backslash I(Y)$ and $f_{2} \in I\left(Y_{2}\right) \backslash I(Y)$. But $f_{1} f_{2} \in I\left(Y_{1}\right) \cap I\left(Y_{2}\right)=I\left(Y_{1} \cup Y_{2}\right)=I(Y)$. Therefore $I(Y)$ is not a prime ideal.
(c) $I\left(\mathbb{P}^{n}\right)=\{0\}$. Since the zero ideal is a prime ideal (because S is an integral domain), \mathbb{P}^{n} is irreducible.

Exercise 2.0.17. (a) \mathbb{P}^{n} is a noetherian topological space.
(b) Every algebraic set in \mathbb{P}^{n} can be written uniquely as a finite union of irreducible algebraic sets, no one containing the another. These are called the irreducible components.

Solution:
(a) Let $Y_{1} \supset Y_{2} \supset \ldots \supset Y_{n} \supset \ldots$ be a decreasing chain of closed subsets of \mathbb{P}^{n}. Then $I\left(Y_{1}\right) \subset I\left(Y_{2}\right) \subset \ldots \subset I\left(Y_{n}\right) \subset \ldots$ is a chain of homogeneous radical ideals in S. Since S is homogeneous, there exists an N such that $I\left(Y_{N}\right)=I\left(Y_{i}\right)$ for all $i>N$. Therefore $\mathcal{Z}\left(I\left(Y_{i}\right)\right)=\mathcal{Z}\left(I\left(Y_{N}\right)\right)$ for all $i>N$. Therefore every descending chain of closed subsets in \mathbb{P}^{n} terminates and thus \mathbb{P}^{n} is a noetherian topological space.
(b) The statement is true because of the result which states that every closed subset of a noetherian topological space can be written as a finite union of irreducible closed subsets, no one containing another.

Exercise 2.0.18. If Y is a projective variety with homogeneous coordinate ring $S(Y)$, show that $\operatorname{dim} S(Y)=\operatorname{dim} Y+1$.

Solution:
Let U_{i} be the open set of \mathbb{P}^{n} defined by $a_{i} \neq 0$. Let $\varphi_{i}: U_{0} \longrightarrow \mathbb{A}^{n}$ be the homeomorphism defined by sending the point $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ to the point with the affine coordinate $\left(\frac{a_{0}}{a_{i}}, \ldots, \frac{x_{n}}{a_{i}}\right)$ with $\frac{a_{i}}{a_{i}}$ omitted. We may assume, for notational convenience, that $i=0$. Let $Y_{0}=\varphi\left(Y \cap U_{0}\right)$ and let $A\left(Y_{0}\right)$ be the affine coordinate ring of Y_{0}. Assume that $Y_{0} \neq \emptyset$. We note that localization is exact i.e., for any ring S and any ideal I of $S, D^{-1}(S / I)=D^{-1} S / D^{-1} I$ where D is a any multiplicatively closed subset of S. Define a map $\theta: k\left[y_{1}, y_{2}, \ldots, y_{n}\right] \longrightarrow S(Y)_{x_{0}}$ by sending the polynomial $f\left(y_{1}, \ldots, y_{n}\right)$ to the element $f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \bmod I(Y)_{x_{0}}$.
We claim that $\operatorname{ker} \theta=I\left(Y_{0}\right)$. To prove the claim first suppose that $f \in \operatorname{ker} \theta$. Therefore $f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in I(Y)_{x_{0}}$. Suppose $\operatorname{deg} f=e$. Then $x_{0}^{e} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in I(Y)$. Therefore for any point $a=\left(a_{0}: a_{1}: \ldots: a_{n}\right) \in Y$,
$a_{0}^{e} f\left(\frac{a_{1}}{a_{0}}, \ldots, \frac{a_{n}}{a_{0}}\right)=0$. If $a \in Y \cap U_{0}$, then $a_{0} \neq 0$ and therefore $f\left(\frac{a_{1}}{a_{0}}, \ldots, \frac{a_{n}}{a_{0}}\right)=0$. Therefore $f \in I\left(Y_{0}\right)$.

Conversely if $f \in I\left(Y_{0}\right)$, then for any point $a=\left(\frac{a_{1}}{a_{0}}, \ldots, \frac{a_{n}}{a_{0}}\right) \in Y_{0}$,
$f\left(\frac{a_{1}}{a_{0}}, \ldots, \frac{a_{n}}{a_{0}}\right)=0$. Suppose $\operatorname{deg} f=e$. Then $a_{0}^{e} f\left(\frac{a_{1}}{a_{0}}, \ldots, \frac{a_{n}}{a_{0}}\right)=0$. Therefore $x_{0}^{e} f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in I(Y)$ and thus $f\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right) \in I(Y)_{x_{0}}$. This proves the claim that $\operatorname{ker} \theta=I\left(Y_{0}\right)$.

Therefore $A\left(Y_{0}\right)$ is isomorphic to a subring of $S(Y)_{x_{0}}$. We identify $A\left(Y_{0}\right)$ with the subring of $S(Y)_{x_{0}}$ that is the isomorphic image of $A\left(Y_{0}\right)$. Any element of $A\left(Y_{0}\right)$ is a homogeneous element of degree 0 . Also, if some element
$f\left(x_{0}, \ldots, x_{n}\right) / x_{0}^{e} \in S(Y)_{x_{0}}$ is homogeneous of degree 0 , then $\operatorname{deg} f=e$. Therefore, $f\left(x_{0}, \ldots, x_{n}\right) / x_{0}^{e}=f\left(1, \frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)=\theta\left(f\left(1, y_{1}, \ldots, y_{n}\right)\right.$. Therefore, image of φ is equal to the set of all homogeneous elements of degree 0 in $S(Y)_{x_{0}}$ and thus $A\left(Y_{0}\right)$ is isomorphic to the subring of homogeneous elements of degree 0 of the localized ring $S(Y)_{x_{0}}$. We identify $A\left(Y_{0}\right)$ with this subring of $S(Y)_{x_{0}}$.

We claim that $S(Y)_{x_{0}} \cong A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]$. To prove this, consider an element $f\left(x_{0}, \ldots, x_{n}\right) / x_{0}^{e} \in S(Y)_{x_{0}}$. Suppose degree of $f=d$. Then f can be written as $g_{0}+g_{1}+\ldots+g_{d}$ where g_{i} is homogeneous of degree i. Then,
$f\left(x_{0}, \ldots, x_{n}\right) / x_{0}^{e}=\frac{g_{0}}{x_{0}^{e}}+\ldots+\frac{g_{d}}{x_{0}}$. We have $\frac{g_{i}}{x_{0}^{e}}=\frac{g_{i}}{x_{0}^{i}} x_{0}^{i-e}$. Since $\frac{g_{i}}{x_{0}^{i}}$ is a homogeneous element of degree 0 , it is an element of $A\left(Y_{0}\right)$. Therefore, $\frac{g_{i}}{x_{0}^{e}}$ is an element of $A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]$ and hence $f\left(x_{0}, \ldots, x_{n}\right) / x_{0}^{e}$ is an element of $A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]$. Therefore $S(Y)_{x_{0}} \cong A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]$ and thus $\operatorname{dim} S(Y)_{x_{0}}=\operatorname{dim} A\left(Y_{0}\right)\left[x_{0}, x_{0}^{-1}\right]$.

This result is independent of the assumption that $i=0$ and can be deduced for any i for which $Y_{i} \neq \emptyset$. Therefore $S(Y)_{x_{i}} \cong A\left(Y_{i}\right)\left[x_{i}, x_{i}^{-1}\right]$ and $\operatorname{dim} S(Y)_{x_{i}}=\operatorname{dim} A\left(Y_{i}\right)\left[x_{i}, x_{i}^{-1}\right]$ for any i for which $Y_{i} \neq \emptyset$.

Let $A\left(Y_{i}\right)\left[x_{i}, x_{i}^{-1}\right]$ be denoted by B_{i}. When $Y_{i} \neq \emptyset$, we know that B_{i} is an integral domain which is finitely generated as a k-algebra. Therefore $\operatorname{dim} B_{i}$ is equal to the transcendence degree of the quotient field $K\left(B_{i}\right)$ of B_{i} over k. But $K\left(B_{i}\right)=K\left(A\left(Y_{i}\right)\right)\left(x_{i}\right)$. Therefore the transcendence degree over k of $K\left(B_{i}\right)$ is equal to the transcendence degree of $K\left(A\left(Y_{i}\right)\right)+1$. Since transcendence degree of $K\left(A\left(Y_{i}\right)\right)=\operatorname{dim} A\left(Y_{i}\right)=\operatorname{dim} Y_{i}$, we have $\operatorname{dim} S\left(Y_{i}\right)_{x_{i}}=\operatorname{dim} Y_{i}+1$.

We have $\operatorname{dim} S\left(Y_{i}\right)_{x_{i}}$ is equal to the transcendence degree of the quotient field $K\left(S\left(Y_{i}\right)_{x_{i}}\right)$. But $K\left(S\left(Y_{i}\right)_{x_{i}}\right)=K\left(S(Y)\right.$). Therefore $\operatorname{dim} S\left(Y_{i}\right)_{x_{i}}=\operatorname{dim} S(Y)$ and thus $\operatorname{dim} Y_{i}=\operatorname{dim} S(Y)-1$ whenever $Y_{i} \neq \emptyset$.

Since φ is a homeomorphism, $\operatorname{dim} Y_{i}=\operatorname{dim}\left(Y \cap U_{i}\right)$. But $\left\{Y \cap U_{i}\right\}$ forms an open cover of Y. Therefore, from exercise 1.10, $\operatorname{dim} Y=\sup \operatorname{dim}\left(Y \cap U_{i}\right)=\sup \operatorname{dim} Y_{i}$. But whenever $Y_{i} \neq \emptyset, \operatorname{dim} Y_{i}=\operatorname{dim} S(Y)-1$ and is equal to -1 whenever $Y_{i}=\emptyset$. Therefore $\operatorname{dim} Y=\operatorname{dim} S(Y)-1$.

Exercise 2.0.19. (a) $\operatorname{dim} \mathbb{P}^{n}=n$.
(b) If $Y \subset \mathbb{P}^{n}$ is a quasi projective variety, then $\operatorname{dim} Y=\operatorname{dim} \bar{Y}$.

Solution:
(a) From the exercise 2.6, we know that $\operatorname{dim} \mathbb{P}^{n}=\operatorname{dim} k\left[x_{0}, \ldots x_{n}\right]-1$. From Theorem 1.8 A . we know that $\operatorname{dim} k\left[x_{0}, \ldots, x_{n}\right]$ is equal to the transcendence degree of the quotient field of $k\left[x_{0}, \ldots, x_{n}\right]$ over k which is equal to $n+1$. Therefore $\operatorname{dim} \mathbb{P}^{n}=n+1-1=n$.
(b) If $Y \subset \mathbb{P}^{n}$ is a quasi-projective variety, then $Y \cap U_{i}$ is a quasi-affine variety when U_{i} is identified with \mathbb{A}^{n} using the homeomorphism of Theorem 2.2. Also, since U_{i} is an open cover of \mathbb{P}^{n}, there exist at least one i for which $Y \cap U_{i} \neq \emptyset$.

We know that closure of $Y \cap U_{i}$ in $U_{i} \cong \mathbb{A}^{n}$ is equal to $\bar{Y} \cap U_{i}$. Let Y_{0} denote the closure of $Y \cap U_{i}$ in U_{i}. Then the closure $\overline{Y_{0}}$ of Y_{0} in \mathbb{A}^{n} is equal to \bar{Y}. Since Y_{0} is closed in U_{i} which is open in \mathbb{A}^{n}, we get $Y_{0}=\bar{Y} \cap U_{i}$.

The family of curves $\left\{Y \cap U_{i}\right\}$ is an open cover of Y. Therefore from Exercise 1.10, $\operatorname{dim} Y=\sup \operatorname{dim} Y \cap U_{i}$

From proposition 1.10, we have $\operatorname{dim}\left(Y \cap U_{i}\right)=\operatorname{dim}\left(\bar{Y} \cap U_{i}\right)$. From the solution to Exercise 2.6, $\operatorname{dim}\left(\bar{Y} \cap U_{i}\right)=\operatorname{dim} \bar{Y}$ whenever $\bar{Y} \cap U_{i} \neq \emptyset$. When $\bar{Y} \cap U_{i}=\emptyset, \operatorname{dim} \bar{Y} \cap U_{i}=-1$. Therefore $\operatorname{dim} Y=\sup \{\operatorname{dim} \bar{Y},-1\}=\operatorname{dim} \bar{Y}$.

Exercise 2.0.20. A projective variety $Y \subset \mathbb{P}^{n}$ has dimension $n-1$ if and only if it is the zero set of a single irreducible homogeneous polynomial f of positive degree. Y is called a hypersurface in \mathbb{P}^{n}.

Solution:
Suppose $\operatorname{dim} Y=n-1$. We have $\operatorname{dim} S(Y)+$ height $I(Y)=\operatorname{dim} S$. Since $\operatorname{dim} S(Y)=\operatorname{dim} Y+1$, we have height of $I(Y)=1$. Since S is a noetherian integral domain which is a unique factorization domain, from theorem $1.12 \mathrm{~A}, I(Y)$ is a principal ideal. Therefore $I(Y)=(f)$ for some irreducible polynomial $f \in S$. Therefore $Y=I(\mathcal{Z}(f))=\sqrt{(f)}=(f)$. Therefore Y is the zero set of a single irreducible homogeneous polynomial.
Conversely, let $Y=\mathcal{Z}(f)$ where f is an irreducible homogeneous polynomial of positive degree. Therefore $I(Y)=I(\mathcal{Z}(f))=\sqrt{(f)}=(f)$. Since S is a unique factorization domain, $I(Y)$ is a prime ideal and height of $I(Y)=1$. Therefore $\operatorname{dim} S(Y)=n$ and thus $\operatorname{dim} Y=n-1$.

Exercise 2.0.21 (Projective closure of an affine variety). If $Y \subset \mathbb{A}^{n}$ is an affine variety, we identify \mathbb{A}^{n} with an open set $U_{0} \subset \mathbb{P}^{n}$ by the homeomorphism φ_{0}. Then we can speak of \bar{Y}, the closure of Y in \mathbb{P}^{n}, which is called the projective closure of Y.
(a) Show that $I(\bar{Y})$ is the ideal generated by $\beta(I(Y))$, where β is as in the proof of proposition 2.2.
(b) Let $Y \subset \mathbb{A}^{3}$ be the twisted cubic curve (as in problem 1.2). Its projective closure \bar{Y} is called the twisted cubic curve in \mathbb{P}^{3}. Find the generators of $I(Y)$ and $I(\bar{Y})$ and use this example to show that if f_{1}, \ldots, f_{r} generate $I(Y)$, then $\beta\left(f_{1}\right), \ldots, \beta\left(f_{r}\right)$ does not necessarily generate $I(\bar{Y})$.

Solution:
(a) We recall that α is the map from the set S^{h} of homogeneous elements of $S=k\left[x_{0}, \ldots, x_{n}\right]$ to $k\left[y_{1}, \ldots, y_{n}\right]$ defined by sending the homogeneous element f to the element $f\left(1, y_{1}, \ldots, y_{n}\right)$. We also recall that β is the map from $k\left[y_{1}, \ldots, y_{n}\right]$ to the set S^{h} which sends a polynomial g of degree e to the element $x_{0}^{e} g\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)$.

Let $A=\beta(I(Y))$ and let $J=(A)$. Any element of A, will be of the form $x_{0}^{e} g\left(\frac{x_{1}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)$ where g is an element of degree e in $I(Y)$. If we identify Y with $Y_{0}=\varphi\left(Y \cap U_{0}\right)$, then $Y \subset \mathcal{Z}(J)$. Therefore $\bar{Y} \subset \mathcal{Z}(J)$. Therefore
$I(\mathcal{Z}(J)) \subset I(\bar{Y})$, i.e., $\sqrt{J} \subset I(\bar{Y})$. Therefore $J \subset I(\bar{Y})$. Conversely, let $f \in I(\bar{Y})$. If we identify any point $\left(a_{1}, \ldots, a_{n}\right)$ of Y with the point $\left(1, a_{1}, \ldots, a_{n}\right)$ of $Y_{0} \subset \bar{Y}$, then $f\left(1, a_{1}, \ldots, a_{n}\right)=0$. Since $\alpha(f)=f\left(1, y_{1}, \ldots, y_{n}\right)$, we have $\alpha(f)\left(a_{1}, \ldots, a_{n}\right)=0$ for any point $\left(a_{1}, \ldots, a_{n}\right) \in Y$. Therefore $\alpha(f) \in I(Y)$ and hence $f=\beta(\alpha(f)) \in \beta(I(Y))=A$. Therefore $f \in J$.
(b) Let $X=\left\{\left(p^{3}: p^{2} t: p t^{2}: t^{3}\right) \mid p, t, \in k\right.$, not both 0$\} \subset \mathbb{P}^{3}$ be a subset. Consider the subset $X_{0}=\left\{\left(p^{3}: p^{2} t: p t^{2}: t^{3}\right) \mid p, t, \in k ; p \neq 0\right\}$ of X. When $p \neq 0$, then $\left(p^{3}: p^{2} t: p t^{2}: t^{3}\right)=\left(1: \frac{t}{p}: \frac{t^{2}}{p^{2}}: \frac{t^{3}}{p^{3}}\right)$. Therefore X_{0} is equal to the subset $\varphi_{0}^{-1}(Y)$ of U_{0} where φ_{0} is the homeomorphism of proposition 2.2. Henceforth we identify X_{0} with its homeomorphic image in U_{0} and call it Y. Also $X_{1}=X \backslash Y$ is the set consisting of the single point $\left(0,0,0, t^{3}\right)=(0,0,0,1) \in \mathbb{P}^{3}$.

Let $I \subset k[u, x, y, z]$ be the ideal $\left(x y-u z, u y-x^{2}, x z-y^{2}\right)$. We claim that $\mathcal{Z}(I)=X$. Clearly, any point of X belongs to $\mathcal{Z}(I)$. To prove the converse, let $P=\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ be a point in $\mathcal{Z}(I)$. If $a_{0}=0$, then $a_{0} a_{2}=a_{1}^{2}=0$ which implies that $a_{1}=0$. Then $a_{2}^{2}=0$ which implies that $a_{2}=0$. Therefore P is a point of the form $(0: 0: 0: t) \in \mathbb{P}^{3}$ which is the point corresponding to X_{1}. Now suppose that $a_{0} \neq 0$. We can put $a_{0}=1$. Let $a_{1}=h$ for some $h \in k$. Then $a_{0} a_{2}=a_{1}^{2}$ implies that $a_{2}=h^{2}$. Then $a_{1} a_{2}=a_{3}$ implies that $a_{3}=h^{3}$. Therefore $P=\left(1: h: h^{2}: h^{3}\right)$ for some $h \in k$. Let $h=\frac{t}{p}$ for some $t, p \in k$ and $p \neq 0$. Then $P=\left(p^{3}: p^{2} t: p t^{2}: t^{3}\right)$. Thus P is a point of A. This proves the claim that $\mathcal{Z}(I)=X$.

We now claim that $\bar{Y}=X=A \cup X_{1}$. Since we have that $X=Y \cup\{(0: 0: 0: 1)\}$, it is enough to show that $P=(0: 0: 0: 1) \in \bar{Y}=\mathcal{Z}(I(Y))$. Consider any polynomial f in $I(Y)$. Any point of $Y \cap U_{3}$ is of the form $\left(\frac{p^{3}}{t^{3}}: \frac{p^{2}}{t^{2}}: \frac{p}{t}: 1\right)$ for some $t, p \in k^{\times}$. Therefore $f\left(\frac{p^{3}}{t^{3}}, \frac{p^{2}}{t^{2}}, \frac{p}{t}: 1\right)=0$. Let $f\left(x_{0}, x_{1}, x_{2}, 1\right)=g\left(y_{0}, y_{1}, y_{2}\right) \in k\left[y_{0}, y_{1}, y_{2}\right]$. Then $g\left(\frac{p^{3}}{t^{3}}, \frac{p^{2}}{t^{2}}, \frac{p}{t}\right)=0$ for all $p, t \in k^{\times}$. Therefore $g\left(s^{3}, s^{2}, s\right)=0$ for all $s \in k^{\times}$which implies that $g\left(x^{3}, x^{2}, x\right) \in k[x]$ is the zero polynomial. Therefore $g(0,0,0)=f(0,0,0,1)=0$ which proves that $(0 ; 0: 0: 1) \in \bar{Y}$.

We have $\beta\left(f_{1}\right)=u y-x^{2}$ and $\beta\left(f_{2}\right)=z u^{2}-x^{3}$. Consider the generator $G=x z-y^{2}$ of I. Suppose $G=h_{1}\left(u y-x^{2}\right)+h_{2}\left(z u^{2}-x^{3}\right)$. Now, any monomial of $h_{1}\left(u y-x^{2}\right)+h_{2}\left(z u^{2}-x^{3}\right)$ will be a multiple of either $u y$ or x^{2} or $z u^{2}$ or x^{3}. But neither $x z$ nor y^{2} is a multiple of any of these terms. Therefore $G \notin\left(\beta\left(f_{1}\right), \beta\left(f_{2}\right)\right.$. But $G \in I \subset \sqrt{I}=I(\bar{Y})$. Therefore $\beta\left(f_{1}\right), \beta\left(f_{2}\right)$ do not generate $I(\bar{Y})$.

Exercise 2.0.22 (The cone over a projective variety). Let $Y \subset \mathbb{P}^{n}$ be a non empty algebraic set, and let $\theta: \mathbb{A}^{n+1} \backslash\{(0, \ldots, 0)\} \longrightarrow \mathbb{P}^{n}$ be the map which sends the point with affine coordinates $\left(a_{0}, \ldots, a_{n}\right)$ to the point with homogeneous coordinates $\left(a_{0}, \ldots, a_{n}\right)$. We define the affine cone over Y to be

$$
C(Y)=\theta^{-1}(Y) \cup\{(0, \ldots 0)\} .
$$

(a) Show that $C(Y)$ is an algebraic set in \mathbb{A}^{n+1}, whose ideal is equal to $I(Y)$, considered as an ordinary ideal in $k\left[x_{0}, \ldots, x_{n}\right]$.
(b) $C(Y)$ is irreducible if and only if Y is.
(c) $\operatorname{dim} C(Y)=\operatorname{dim} Y+1$.

Sometimes we consider the projective closure $\overline{C(Y)}$ of $C(Y)$ in \mathbb{P}^{n+1}. This is called the projective cone over Y.

Solution:
(a) For any point $P=\left(a_{0}: \ldots: a_{n}\right) \in Y \subset \mathbb{P}^{n}$, we get
$\theta^{-1}(P)=\left\{\left(t a_{0}, \ldots, t a_{n}\right) \mid t \in k\right\}$. Suppose $Y=\mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$ for some
homogeneous polynomials $f_{i} \in k\left[x_{0}, \ldots, x_{n}\right]$. We claim that
$C(Y)=\hat{\mathcal{Z}}\left(f_{1}, \ldots, f_{r}\right) \subset \mathbb{A}^{n+1}$. Suppose $P=\left(a_{0}, \ldots a_{n}\right) \in C(Y)$. Then either $P=(0, \ldots, 0)$ or $P \in \theta^{-1}(Y)$. Since f_{i} are homogeneous polynomials, $(0, \ldots, 0) \in \mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$. If $P \in \theta^{-1}(Y)$, then $P=\left(t b_{0}, \ldots, t b_{n}\right)$ for some point $\left(b_{0}: \ldots: b_{n}\right) \in Y$. Since f_{i} is homogeneous $f_{i}\left(b_{0}, \ldots b_{n}\right)=0$ implies
that $f_{i}\left(t b_{0}, \ldots, t b_{n}\right)=0$. Therefore $P \in \mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$. Conversely, suppose $P=\left(a_{0}, \ldots a_{n}\right) \in \mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)$. Then either $P=(0, \ldots, 0)$ or $P \neq(0, \ldots, 0)$. In the latter case, $P \in \theta^{-1}\left(a_{0}, \ldots, a_{n}\right)$ for $\left(a_{0}: \ldots: a_{n}\right) \in \mathbb{P}^{n}$. But since $P \in \mathcal{Z}\left(f_{1}, \ldots, f_{r}\right)=Y \subset \mathbb{P}^{n}, P \in \theta^{-1}(Y)$. Therefore $C(Y)$ is an affine algebraic subset of \mathbb{A}^{n+1}.

To prove that $I(C(Y))=I(Y)$, let f be one of the elements in the generating set of $I(Y)$. Since f is a homogeneous element $f(0, \ldots, 0)=0$. Also, any point in $\theta^{-1}(Y)$ is of the form $\left(t a_{0}, \ldots, t a_{n}\right)$ for some point $\left(a_{0}: \ldots: a_{n}\right) \in Y$. Since f is homogeneous, $f\left(a_{0}, \ldots, a_{n}\right)=0$ implies $f\left(t a_{0}, \ldots, t a_{n}\right)=0$ for all $t \in k^{\times}$. Therefore $f \in I(C(Y))$. Conversely, assume $f \in I(C(Y))$. Therefore, $f\left(t a_{0}, \ldots, t a_{n}\right)=0$ for any point $P=\left(a_{0}: \ldots: a_{n}\right) \in Y$ and any $t \in k$.
Suppose $\operatorname{deg} f=d$. Then $f=f_{0}+f_{1}+\ldots+f_{d}$ where f_{i} is a homogeneous polynomial of degree i. Therefore, $f_{0}(P)+t f_{1}(P)+\ldots+t^{d} f_{d}(P)=0$ for all $t \in k$. This implies that the polynomial
$F=f_{0}(P)+x f_{1}(P)+\ldots+x^{d} f_{d}(P) \in k[x]$ has all elements of k as its roots. Since k is an algebraically closed field, this is possible only if F is the zero polynomial. Therefore $f_{i}(P)=0$ for $i=0, \ldots, d$. Therefore for each $i=0, \ldots, d, f_{i}$ is a homogeneous polynomial such that $f_{i}(P)=0$ for any point $P \in Y$. Therefore $f \in I(Y)$.
(b) From Corollary 1.4, $C(Y)$ is irreducible if and only if $I(C(Y))$ is a prime ideal. From Exercise 2.4, Y $\subset \mathbb{P}^{n}$ is irreducible if and only if $I(Y)$ is a prime ideal. Therefore Y is irreducible if and only if $C(Y)$ is irreducible.
(c) From proposition 1.7, $\operatorname{dim} C(Y)=\operatorname{dim} k\left[x_{0}, \ldots, x_{n}\right] / I(C(Y))=S(Y)$. From Exercise 2.6, $\operatorname{dim} S(Y)=\operatorname{dim} Y+1$. Therefore $\operatorname{dim} C(Y)=\operatorname{dim} Y+1$.

Exercise 2.0.23 (Linear Varieties in \mathbb{P}^{n}). A hypersurface defined by a linear polynomial is called a hyperplane.
(a) Show that the following two conditions are equivalent for a variety Y in \mathbb{P}^{n} :
(i) $I(Y)$ can be generated by linear polynomials.
(ii) Y can be written as an intersection of hyperplanes.

In this case we say that Y is a linear variety in \mathbb{P}^{n}.
(b) If Y is a linear variety of dimension r in \mathbb{P}^{n}, show that $I(Y)$ is minimally generated by $n-r \quad$ linear polynomials.
(c) Let Y and Z be linear varieties in \mathbb{P}^{n}, with $\operatorname{dim} Y=r$ and $\operatorname{dim} Z=s$. If $r+s-n \geq 0, \quad$ then $Y \cap Z \neq \emptyset$. Furthermore, if $Y \cap Z \neq \emptyset$, then $Y \cap Z$ is a linear variety of dimension $\geq r+s-n$.

Solution:
(a) i) \Rightarrow ii): Suppose $\left.I(Y)=\left(f_{1}\right), f_{2}, \ldots, f_{n}\right)$ where f_{i} are linear polynomials. Then $Y=\mathcal{Z}(I(Y))=Y=\mathcal{Z}\left(f_{1}\right) \cap \ldots \mathcal{Z}\left(f_{n}\right)$.
ii) \Rightarrow ii): Suppose $Y \mathcal{Z}\left(l_{1}, \ldots, l_{r}\right)$ for some linear homogeneous polynomials l_{i}.

We know that by a change of coordinates we can assume $l_{i}=x_{i}$. Therefore $Y=\mathcal{Z}\left(x_{1}, \ldots, x_{r}\right)$. Let $I=\left(x_{1}, \ldots, x_{r}\right)$. We know that $k\left[x_{1}, \ldots, x_{n}\right] / I=k\left[x_{r+1}, \ldots, x_{n}\right]$ which is an integral domain. Therefore I is a prime ideal and thus a radical ideal. Therefore $I(Y)=\sqrt{I}=I$ which gives that $I(Y)$ is generated by linear polynomials.
(b) Let $Y=\mathcal{Z}\left(f_{1}, \ldots, f_{t}\right)$ be a linear variety. Then any point of Y is the non-trivial solution of the system of t linear equations $\left\{f_{i}\right\}_{i=1}^{t}$. Therefore Y is the solution set of t linear equations and thus is a subspace of \mathbb{A}^{n}. Let $\operatorname{dim}_{V}(Y)$ denote the dimension of Y as a subspace of \mathbb{A}^{n}. Assume that $\operatorname{dim}_{V}(Y)=r$. We claim that Y can be written as $\mathcal{Z}\left(l_{1}, \ldots, l_{n-r}\right)$ for some linear homogeneous equations l_{i}. Let A be the coefficient matrix of the system of equations $\left\{f_{i}\right\}_{i=1}^{t}$. Then A is an $t \times n$ matrix. Let $T: V^{n} \longrightarrow V^{t}$ be the linear transformation corresponding to A where V^{n}, V^{t} are vector spaces over k of dimension n and t respectively. Then Y is the null space of T. Now nullity of $T=\operatorname{dim}_{V}(Y)=r$. Therefore rank of T, which is equal to the dimension of the range of T, is equal to $n-r$. Therefore T can be considered as a surjective linear transformation from V^{n} to V^{n-r}. Let T^{\prime} be the map T with the co-domain restricted to V^{n-r}. Then Y is the null space of T^{\prime} and thus Y is the solution space of $n-r$ equations. Therefore Y can be written as $\mathcal{Z}\left(l_{1}, \ldots, l_{n-r}\right)$.

Let $\operatorname{dim}(Y)$ denote the dimension of Y as a topological space. We claim that $\operatorname{dim}_{V}(Y)=\operatorname{dim}(Y)$, which will solve the exercise. Suppose $\operatorname{dim}_{V}(Y)=r$.

Then Y can be written as an intersection of $n-r$ hyper-planes. Suppose $Y=\mathcal{Z}\left(l_{0}, \ldots, l_{n-r-1}\right)$ for some linear homogeneous polynomials l_{i}. Then from part (a) we know that $I(Y)=\left(l_{0}, \ldots, l_{n-r-1}\right)$. By a linear change of coordinates we may assume that $I(Y)=\left(x_{0}, \ldots, x_{n-r-1}\right)$. We have that $S(Y)=k\left[x_{0}, \ldots, x_{n}\right] / I(Y)$ which can be shown to be isomorphic to $k\left[x_{n-r}, \ldots, x_{n}\right]$. From theorem 1.8A, we know that $\operatorname{dim} S(Y)=$ transcendence degree of $k\left(x_{n-r}, \ldots, x_{n}\right)$ over k, which is equal to $r+1$. Therefore $\operatorname{dim}(Y)=\operatorname{dim} S(Y)-1=r=\operatorname{dim}_{V}(Y)$.

We know that $\operatorname{dim} Y=r$ implies that $\operatorname{dim} S(Y)=r+1$. Since $h t I(Y)+\operatorname{dim} S(Y)=n+1$, we have height $I(Y)=n-r$. Suppose $I(Y)=\left(l_{1}, l_{2}, \ldots, l_{m}\right)$. Since Y is a variety $I(Y)$ is a prime ideal and therefore is the minimal prime over $\left(l_{1}, l_{2}, \ldots, l_{m}\right)$. Krull's dimension theorem states that in a noetherian ring the height of a prime ideal P which is minimal over an ideal $I=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is $\leq m$. Therefore we have ht $I(Y) \leq m$. Therefore, $m \geq n-r$.
(c) Suppose $Y=\mathcal{Z}\left(f_{1}\right) \cap \ldots \mathcal{Z}\left(f_{2}\right) \cap \ldots \cap \mathcal{Z}\left(f_{l}\right)$ and $Z=\mathcal{Z}\left(g_{1}\right) \cap \mathcal{Z}\left(g_{2}\right) \cap \ldots \cap \mathcal{Z}\left(g_{m}\right)$ where f_{i} and g_{j} are linear equations in the variables $x_{0}, x_{1}, \ldots, x_{n}$. From part (b) we know that $l \geq n-r$ and $m \geq n-s$. Any point in $Y \cap Z$ is a non trivial solution of the system of $l+m$ linear equations $\left\{f_{i}\right\}_{i=1}^{l} \cup\left\{g_{j}\right\}_{j=1}^{m}$. Suppose $Y \cap Z=\emptyset$ (i.e., the system of equations has only trivial solution). Then $n+1 \geq l+m$. But $l+m \geq(n-r)+(n-s)$. Therefore $r+s-n<0$. Therefore $Y \cap Z \neq \emptyset$ if $r+s-n \geq 0$.

Exercise 2.0.24 (The d-Uple Embedding). For given $n, d>0$, let M_{0}, \ldots, M_{N} be all monomials of degree d in the variables x_{0}, \ldots, x_{n} where $N=\binom{n+d}{n}-1$. We define the mapping $\rho_{d}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$ by sending the point $P=\left(a_{0}, a_{1}, \ldots a_{n}\right)$ to the point $\rho_{d}(P)=\left(M_{0}(a), M_{1}(a), \ldots, M_{N}(a)\right)$ obtained by substituting the a_{i} in the monomials M_{j}. This is called the d-uple embedding of \mathbb{P}^{n} in \mathbb{P}^{N}. For example if $n=1 d=2$, then $N=2$, and the image Y of the 2 -uple embedding of \mathbb{P}^{1} in \mathbb{P}^{2} is a conic.
(a) Let $\theta: k\left[y_{0}, \ldots, y_{N}\right] \longrightarrow k\left[x_{0}, \ldots, x_{n}\right]$ be the homomorphism defined by sending
y_{i} to M_{i}, and let \mathfrak{a} be the kernel of θ. Then \mathfrak{a} is a homogeneous prime ideal, and so $\mathcal{Z}(\mathfrak{a})$ is a projective variety in \mathbb{P}^{N}.
(b) Show that the image of ρ_{d} is exactly $\mathcal{Z}(\mathfrak{a})$.
(c) Show that ρ_{d} is a homeomorphism of \mathbb{P}^{n} onto the projective variety $\mathcal{Z}(\mathfrak{a})$.
(d) Show that the twisted cubic curve in \mathbb{P}^{3} is equal to the 3-uple embedding of \mathbb{P}^{1} in \mathbb{P}^{3}, for suitable choice of coordinates.

Solution:
(a) We know that $k\left[y_{0}, \ldots, y_{N}\right] / \mathfrak{a}$ is isomorphic to a subring of $k\left[x_{0}, \ldots, x_{n}\right]$. Since $k\left[x_{0}, \ldots, x_{n}\right]$ is an integral domain and since subring of an integral domain is an integral domain, $k\left[y_{0}, \ldots, y_{N}\right] / \mathfrak{a}$ is an integral domain and thus \mathfrak{a} is a prime ideal.

Let f be an element of $\operatorname{ker} \theta$. Suppose $f=f_{0}+f_{1}+\ldots+f_{r}$ where f_{i} is a homogeneous polynomial of degree i. We have
$\theta(f)=f\left(M_{0}, \ldots, M_{n}\right)=\theta\left(f_{0}\right)+\ldots+\theta\left(f_{r}\right)=0$. But $\theta\left(f_{i}\right)$ is a homogeneous polynomial of degree di. Therefore each $\theta\left(f_{i}\right)=0$ and thus each $f_{i} \in \operatorname{ker} \theta$. Therefore for any $f \in \operatorname{ker} \theta$, each of the homogeneous component of f belongs to $\operatorname{ker} \theta$. Therefore $\operatorname{ker} \theta$ is an homogeneous ideal.
(b) We first exhibit a set of generators for \mathfrak{a}. We know that each M_{i} is of the form $x_{0}^{\alpha_{i 0}} x_{1}^{\alpha_{i 1}} \ldots x_{n}^{\alpha_{i n}}$ where $\alpha_{i k}$ are non negative integers such that $\sum_{k=0}^{n} \alpha_{i k}=d$. Let \mathcal{I} be the ideal generated by the set of all polynomials of the form $\prod_{i \in I} y_{i}^{d_{i}}-\prod_{j \in J} y_{j}^{d_{j}}$ for which $\sum_{i \in I} d_{i} \alpha_{i k}=\sum_{j \in J} d_{j} \alpha_{j k}$, for some subsets I, J of $\{0, \ldots, N\}$, for each $k=0,1, \ldots, n$. We claim that $\mathfrak{a}=\mathcal{I}$. For any element $f=\prod_{i \in I} y_{i}^{d_{i}}-\prod_{j \in J} y_{j}^{d_{j}}$ of the generating set of the polynomials $\theta(f)=\prod_{i \in I} M_{i}^{d_{i}}-\prod_{j \in J} M_{j}^{d_{j}}$. For a fixed k, the exponent of x_{k} in $\prod_{i \in I} M_{i}^{d_{i}}$ is equal to $\sum_{i \in I} d_{i} \alpha_{i k}$ and the exponent of x_{k} in $\prod_{j \in J} M_{j}^{d_{j}}$ is equal to $\sum_{j \in J} d_{j} \alpha_{j k}$. Since for each $k, \sum_{i \in I} d_{i} \alpha_{i k}=\sum_{j \in J} d_{j} \alpha_{j k}$, we get that $\theta(f)=0$. Therefore $\mathcal{I} \subset \operatorname{ker} \theta$.

To prove the converse, let $f \in \mathfrak{a}$. We can group together the monomials $a_{m} \prod_{i=0}^{N} y_{i}^{d_{m i}}$ of f for which $\theta\left(\prod_{i=0}^{N} y_{i}^{d_{m i}}\right)=\prod_{i=0}^{N} M_{i}^{\beta_{m i}}$ is same. Suppose after a permutation of the terms of f that $\prod_{i=0}^{N} M_{i}^{d_{m i}}=\prod_{i=0}^{N} M_{i}^{d_{n i}}=M$ for all $m, n \in\{1, \ldots, l\}$. This means that for each $m, n \in\{1, \ldots, l\}$, $\sum_{i \in I} d_{i} \alpha_{i m}=\sum_{n \in J} d_{n} \alpha_{n m}$. Let Y_{m} denote $\prod_{i=0}^{N} y_{i}^{d_{m i}}$. Therefore $Y_{m}-Y_{n}$ is an element of the generating set of \mathcal{I}. Also, $F_{M}=\left(a_{1}+a_{2}+\ldots+a_{l}\right) M=0$ and therefore $a_{1}+a_{2}+\ldots+a_{l}=0$. Then
$f_{M}=\theta^{-1}\left(F_{M}\right)=a_{1} Y_{1}+\ldots+a_{l} Y_{l}$.
Using the property that $\sum_{i=1}^{l} a_{i}=0$ we get that $f_{M}=a_{1}\left(Y_{1}-Y_{2}\right)+$ $\left(a_{1}+a_{2}\right)\left(Y_{2}-Y_{3}\right)+\ldots \ldots+\left(a_{1}+\ldots+a_{l-1}\right)\left(Y_{l-1}-Y_{l}\right)$. Therefore $f_{M} \in \mathcal{I}$. But f is a sum of such f_{M}. Therefore $f \in \mathcal{I}$ which proves that $\mathfrak{a} \subset \mathcal{I}$. Therefore $\mathfrak{a}=\mathcal{I}$.

Suppose $P=\left(M_{0}(a), M_{1}(a), \ldots, M_{N}(a)\right)$ for some point $a \in \mathbb{P}^{n}$. Consider any one of the generating elements of $\mathfrak{a}: \prod_{i \in I} y_{i}^{d_{i}}-\prod_{j \in J} y_{j}^{d_{j}}$ for which $\sum_{i \in I} d_{i} \alpha_{i k}=\sum_{j \in J} d_{j} \alpha_{j k}$ for each $k=0,1, \ldots, n$. Then $F(P)=\prod_{i \in I} M_{i}^{d_{i}}(a)-\prod_{j \in J} M_{j}^{d_{j}}(a)$. Since $F \in \mathfrak{a}$, we get that $\prod_{i \in I} M_{i}-\prod_{j \in J} M_{j}=0$ and therefore $F(P)=0$. Therefore $P \in \mathcal{Z}(\mathfrak{a})$ proving that image of ρ_{d} is contained in $\mathcal{Z}(\mathfrak{a})$.

To prove the converse, consider $P=\left(b_{0}, \ldots, b_{N}\right) \in \mathcal{Z}(\mathfrak{a})$. We can label the coordinates of \mathbb{P}^{N} using $n+1$ tuples $a_{0} a_{1} \ldots a_{n}$ such that $\sum_{i=0}^{n} a_{i}=d$. Consider, after relabelling the coordinates, the $a_{0} a_{1} \ldots a_{n}$-th coordinate $b_{a_{0} \ldots a_{n}}$ of P. Since $P \in \mathcal{Z}(\mathfrak{a}), \prod_{i \in I} b_{\alpha_{i 1} \ldots \alpha_{i n}}=\prod_{j \in J} b_{\beta_{j 1} \ldots \beta_{j n}}$ whenever for each $k=1, \ldots, n, \sum_{i \in I} \alpha_{i k}=\sum_{j \in J} \alpha_{j k}$. Using these conditions we derive that $\left(b_{a_{0} \ldots a_{n}}\right)^{d}=\left(b_{d 00 \ldots 0}\right)^{a_{0}}\left(b_{0 d 0 \ldots 0}\right)^{a_{1}} \ldots \ldots\left(b_{00 \ldots 0 d}\right)^{a_{n}}$. If each coordinate of the form $b_{00 \ldots d . . .00}=0$, then $b_{a_{0} a_{1} \ldots a_{n}}=0$. Since $b_{a_{0} a_{1} \ldots a_{n}}=0$ was any general coordinate of P, this would imply that all the coordinates of P are zero which is false. This implies that at least one of the coordinates of the form $b_{00 \ldots d . . .00} \neq 0$.

Suppose, after a permutation of the coordinates, $b_{d 00 \ldots 00} \neq 0$. Let $u=\left(u_{0}, u_{1}, \ldots u n\right) \in \mathbb{P}^{n}$ be such that

$$
\begin{aligned}
& u_{0}=b_{d 00 \ldots \ldots . .00} \\
& u_{1}=b_{d-1,100 \ldots 0}
\end{aligned}
$$

$$
\begin{gathered}
u_{2}=b_{d-1,010 \ldots 0} \\
\vdots \\
u_{n}=b_{d-100 \ldots 01}
\end{gathered}
$$

We claim that $\rho_{d}(u)=P$. We have $\rho_{d}(u)=\rho_{d}\left(1, \frac{u_{1}}{u_{0}}, \ldots, \frac{u_{n}}{u_{0}}\right)$. The $\left(a_{0}, \ldots, a_{n}\right)$-th coordinate of the image is

$$
\begin{gathered}
=\left(\frac{u_{0}}{u_{0}}\right)^{a_{0}}\left(\frac{u_{1}}{u_{0}}\right)^{a_{1}} \ldots\left(\frac{u_{n}}{u_{0}}\right)^{a_{n}} \\
=u_{0}^{-d} u_{0}^{a_{0}} u_{1}^{a_{1}} \ldots \ldots \ldots u_{n}^{a_{n}}
\end{gathered}
$$

Using the fact that $P \in \mathcal{Z}(\mathfrak{a})$, we derive that $\left(b_{d 00 \ldots 00}\right)\left(u_{0}^{-d} u_{0}^{a_{0}} u_{1}^{a_{1}} \ldots u_{n}^{a_{n}}\right)=b_{a_{0} a_{1} \ldots a_{n}}$. Therefore the $\left(a_{0}, \ldots, a_{n}\right)$-th coordinate of the $\rho_{d}(u)$ is $\frac{b_{a_{0} a_{1} \ldots a_{n}}}{b_{d 00 \ldots 00}}$. Since $b_{d 00 \ldots 00}$ is a constant which is same for each coordinate of $\rho_{d}(u)$, we get that $\rho_{d}(u)=P$.
(c) To show that ρ_{d} is a continuous mapping, consider a closed subset $\mathcal{Z}(\beta)$ of $\mathcal{Z}(\mathfrak{a})$. Suppose $\mathcal{Z}(\beta)=\left(f_{1}, \ldots, f_{r}\right)$ where f_{i} are homogeneous polynomials in $k\left[x_{0}, \ldots, x_{N}\right]$. We claim that $\rho_{d}^{-1}(\mathcal{Z}(\beta))=\left(\theta\left(f_{1}\right), \ldots, \theta\left(f_{r}\right)\right)$. Suppose $P=\left(a_{0}, \ldots, a_{n}\right) \in \rho_{d}^{-1}(\mathcal{Z}(\beta))$ i.e, $\rho_{d}(P) \in \mathcal{Z}(\beta)$. Since
$\rho_{d}(P)=\left(M_{0}(a), \ldots, M_{N}(a)\right), f_{i}\left(M_{0}(a), \ldots, M_{N}\right)=0$ for all $i=1$ to l.
Therefore $\theta\left(f_{i}\right)(P)=0$ for all $i=1$ to r. Therefore $P \in \mathcal{Z}\left(\theta\left(f_{1}\right), \ldots, \theta\left(f_{r}\right)\right)$.
To prove the converse, consider a point
$P=\left(a_{0}, \ldots, a_{n}\right) \in \mathcal{Z}\left(\theta\left(f_{1}\right), \ldots, \theta\left(f_{r}\right)\right)$. Therefore $\theta\left(f_{i}\right)\left(a_{0}, \ldots, a_{n}\right)=0$ which implies that $f_{i}\left(M_{0}(a), \ldots, M_{N}(a)\right)=0$. Therefore $P \in \rho_{d}^{-1}(\mathcal{Z}(\beta))$. This proves that ρ_{d} is a continuous map onto $\mathcal{Z}(\mathfrak{a})$.

To prove that ρ_{d} is a closed map, consider a closed subset $\mathcal{Z}\left(\mathcal{J}_{0}\right)$ of \mathbb{P}^{n}. Suppose $\mathcal{J}_{0}=\left(f_{1}, f_{2}, \ldots, f_{l}\right)$. Consider the ideal $\mathcal{J}=\left(f_{1}^{d}, \ldots f_{l}^{d}\right)$. Since $\mathcal{J} \subset \mathcal{J}_{0}$,
$\mathcal{Z}\left(\mathcal{J}_{0}\right) \subset \mathcal{Z}(\mathcal{J})$. Also, if $f^{d}(P)=0$, then $f(P)=0$. Therefore
$\mathcal{Z}(\mathcal{J}) \subset \mathcal{Z}\left(\mathcal{J}_{0}\right)$. Therefore $\mathcal{Z}\left(\mathcal{J}_{0}\right)=\mathcal{Z}(\mathcal{J})$.
Consider any monomial $F=x_{0}^{\alpha_{0}} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \in k\left[x_{0}, \ldots, x_{n}\right]$.
$F^{d}=x_{0}^{d \alpha_{0}} x_{1}^{d \alpha_{1}} \ldots x_{n}^{d \alpha_{n}}=\left(x_{0}^{d}\right)^{\alpha_{0}}\left(x_{1}^{d}\right)^{\alpha_{1}} \ldots\left(x_{n}^{d}\right)^{\alpha_{n}}$. This is clearly an element in
the image of θ. Since any f_{i}^{d} is a sum of elements of the form $F^{d}, f_{i}^{d} \in \operatorname{Im}(\theta)$ and thus $\mathcal{J} \subset \operatorname{Im}(\theta)$.

Let I be the ideal $\theta^{-1}(\mathcal{J})$. Then I is generated by the elements $\theta^{-1}\left(f_{i}^{d}\right)$ for $i=1$ to l. Let $\theta^{-1}\left(f_{i}^{d}\right)$ be denoted by g_{i}. We claim that $\mathcal{Z}(I)=\rho_{d}(\mathcal{Z}(\mathcal{J}))$.
Suppose $P=\left(a_{0}, \ldots, a_{n}\right) \in \rho_{d}^{-1}(\mathcal{Z}(I))$. Then
$\rho_{d}(P)=\left(M_{0}(a), \ldots, M_{N}(a)\right) \in \mathcal{Z}(I)$. Therefore
$g_{i}\left(\rho_{d}(P)\right)=g_{i}\left(M_{0}(a), \ldots, M_{N}(a)\right)=0$ which implies that $\theta\left(g_{i}\right)(P)=0$.
Since $\theta\left(g_{i}\right)=f_{i}, P \in \mathcal{Z}(\mathcal{J})$. Now suppose $P=\left(a_{0}, \ldots, a_{n}\right) \in \mathcal{Z}(\mathcal{J})$.
Therefore $f^{d}(P)=\theta\left(g_{i}\right)(P)=0$ which implies that
$g_{i}\left(M_{0}(a), \ldots, M_{N}(a)\right)=g_{i}\left(\rho_{d}(P)\right)=0$. Therefore $\rho_{d}(P) \in \mathcal{Z}(\mathcal{J})$ and hence $P \in \rho_{d}^{-1}(\mathcal{Z}(\mathcal{J}))$. This proves that ρ_{d}^{-1} is continuous. Therefore ρ_{d} is a homeomorphism of \mathbb{P}^{n} onto the projective variety $\mathcal{Z}(\mathfrak{a})$.
(d) Let $M_{0}=x^{3}, M_{1}=x^{2} y, M_{2}=x y^{2}$ and $M_{3}=y^{3}$. Then the 3-uple embedding of \mathbb{P}^{1} in \mathbb{P}^{3} maps a point $P=(a, b)$ to the point $\left(a^{3}, a^{2} b, a b^{2}, b^{3}\right)$. Therefore $\left.\operatorname{Im}\left(\rho_{d}\right)=\left\{a^{3}, a^{2} b, a b^{2}, b^{3}\right) \mid a, b \in k\right\}$ which is the twisted cubic curve in \mathbb{P}^{3}.

Exercise 2.0.25. Let Y be the image of the 2-uple embedding of \mathbb{P}^{2} in \mathbb{P}^{5}. This is the Veronese surface. If $Z \subset Y$ is a closed curve (a curve is a variety of dimension 1), show that there exist a hypersurface $V \subset \mathbb{P}^{5}$ such that $V \cap Y=Z$.

Solution:
Since ρ_{2} is a homeomorphism of \mathbb{P}^{2} onto the image $Y \subset \mathbb{P}^{5}, \rho_{2}^{-1}(Z)$ is a closed curve of \mathbb{P}^{2} whenever Z is a closed curve of Y. A closed curve of \mathbb{P}^{2} is of the form $\mathcal{Z}(F)$ for some homogeneous polynomial in $k\left[x_{0}, x_{1}, x_{1}\right]$. Let $M_{0}=x_{0}^{2}, M_{1}=x_{1}^{2}, M_{2}=x_{2}^{2}$, $M_{3}=x_{0} x_{1}, M_{4}=x_{1} x_{2}$ and $M_{5}=x_{2} x_{0} . F\left(x_{0}, x_{1}, x_{2}\right)^{2}$ is a homogeneous polynomial of degree $2 m$ where m is the degree of F. Consider any monomial term $x^{2 \alpha} y^{2 \beta} z^{2 \gamma}$ of F^{2}. Without loss of generality, we can assume that $\alpha \geq \beta \geq \gamma$.
Therefore $x^{2 \alpha} y^{2 \beta} z^{2 \gamma}=(x y)^{2 \beta}(x z)^{2 \alpha-2 \beta}(z)^{2 \gamma-2 \alpha-2 \beta}$. Therefore each monomial of F^{2} is a product of some powers of M_{i} 's. Therefore F^{2} is a polynomial in M_{i} 's. We substitute y_{i} in place of M_{i} in F^{2} to get a polynomial G in $k\left[y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right]$. We claim that $\mathcal{Z}(G) \cap Y=\rho_{2}(\mathcal{Z}(F))$. Consider a point $P \in \mathcal{Z}(G) \cap Y$. Let $a=\left(a_{0}, a_{1}, a_{2}\right)=\rho_{2}^{-1}(P)$. Hence $P=\left(M_{0}(a), M_{1}(a), \ldots, M_{5}(a)\right)$. Therefore $G\left(M_{0}(a), M_{1}(a), \ldots, M_{5}(a)\right)=F^{2}\left(a_{0}^{2}, a_{1}^{2}, a_{2}^{2}, a_{0} a_{1}, a_{1} a_{2}, a_{2} a_{0}\right)=0$. Therefore
$F^{2}\left(a_{0}, a_{1}, a_{2}\right)=0$ and thus $F\left(a_{0}, a_{1}, a_{2}\right)=0$ which implies that $\rho_{2}^{-1}(P) \in \mathcal{Z}(F)$.
Therefore $P \in \rho_{2}(\mathcal{Z}(F))$ and thus $\mathcal{Z}(G) \cap Y \subset \rho_{2}(\mathcal{Z}(F))$
To prove that $\mathcal{Z}(G) \cap Y \supset \rho_{2}(\mathcal{Z}(F))$, assume that $P=\left(b_{0}, \ldots, b_{N}\right) \in \rho_{2}(\mathcal{Z}(F))$.
So $P=\rho_{2}(a)$ for some $a=\left(a_{0}, a_{1}, a_{2}\right) \in \mathcal{Z}(F)$ i.e.,
$P=\left(M_{0}(a), M_{1}(a), \ldots, M_{5}(a)\right)$ Hence $F\left(a_{0}, a_{1}, a_{2}\right)=0$ and therefore
$F^{2}\left(a_{0}, a_{1}, a_{2}\right)=F^{2}\left(a_{0}^{2}, a_{1}^{2}, a_{2}^{2}, a_{0} a_{1}, a_{1} a_{2}, a_{2} a_{0}\right)=0$. Therefore
$G(P)=G\left(M_{0}(a), M_{1}(a), \ldots, M_{5}(a)\right)=F^{2}\left(a_{0}^{2}, a_{1}^{2}, a_{2}^{2}, a_{0} a_{1}, a_{1} a_{2}, a_{2} a_{0}\right)=0$.
Therefore $P \in \mathcal{Z}(G)$ and thus $\mathcal{Z}(G) \cap Y \supset \rho_{2}(\mathcal{Z}(F))$. This proves the claim.

Exercise 2.0.26 (The Segre Embedding). Let $\psi: \mathbb{P}^{r} \times \mathbb{P}^{s} \longrightarrow \mathbb{P}^{N}$ be the map defined by sending the ordered pair $\left(a_{0}, \ldots, a_{r}\right) \times\left(b_{0}, \ldots, b_{s}\right)$ to $\left(\ldots, a_{i} b_{j}, \ldots\right)$ in lexicographic order where $N=r s+r+s$. Note that ψ is well defined and injective. It is called the Segre embedding. show that the image of ψ is a subvariety of \mathbb{P}^{N}.

Solution:
Any element of \mathbb{P}^{N}, where $N=r s+r+s$, can be considered as an
$(r+1) \times(s+1)$ matrix. Let $r_{0}=r+1$ and $s_{0}=s+1$. Consider any matrix $M=\psi(P \times Q)$ in the image of ψ where $P=\left(a_{0}: \ldots: a_{r}\right) \in \mathbb{P}^{r}$ and $Q=\left(b_{0}: \ldots: b_{s}\right) \in \mathbb{P}^{s}$. We can consider P as a $1 \times r_{0}$ matrix over k and Q as a $1 \times s_{0}$ matrix over k. Then $M={ }^{t} P Q$.

We claim that a $r_{0} \times s_{0}$ matrix M is of the form ${ }^{t} P Q$ for some $1 \times r_{0}$ matrix P and $1 \times s_{0}$ matrix Q if and only if rank of M is 1 . Suppose $M={ }^{t} P Q$. Let $T_{1}: k^{s_{0}} \rightarrow k$ be the linear transformation corresponding to Q where $k^{s_{0}}$ be the vector space over k of dimension s_{0}. Let $T_{2}: k \rightarrow k^{r_{0}}$ be the linear transformation corresponding to ${ }^{t} P$. Then the linear transformation corresponding to the matrix M is $T_{0} \circ T_{1}$. Since the range of T_{1} is a subspace of k, the rank of T_{1} is either 1 or 0 . But Q is not the zero matrix. Therefore the rank of T_{1} is 1 . Also, the rank of T_{2} is either 1 or 0 . But since P is not the zero matrix, the rank of T_{2} is 1 . Therefore the rank of $T_{2} \circ T_{1}$ is 1 and therefore rank of M is 1 .

Conversely, suppose rank of M is 1 . Let $T: k^{s_{0}} \longrightarrow k^{r_{0}}$ be the linear transformation corresponding to M. Then the rank of T, which is the dimension of the image of T, is 1 . Therefore we can write T as a composition $T_{2} \circ T_{1}$ where $T_{1}: k^{s_{0}} \longrightarrow k$ is the surjective linear transformation which is equal to T but with the co-domain restricted to the range of T and $T_{2}: k \longrightarrow k^{r_{0}}$ is the natural
inclusion of k in $k^{r_{0}}$. Let P^{\prime} be the $r_{0} \times 1$ matrix corresponding to T_{2} and let Q be the $1 \times s_{0}$ matrix corresponding to T_{1}. Then $M={ }^{t} P Q$ where $P={ }^{t} P^{\prime}$. This proves the claim.

Since the rank of M is 1 , the determinant of any 2×2 minor of M is 0 . Therefore the image of ψ is the set of all $r_{0} \times s_{0}$ matrices for which the determinant of any 2×2 minor is 0 . The determinant of any 2×2 minor is an homogeneous expression of degree 2 . Therefore the image of ψ is a closed subset of \mathbb{P}^{N}.

Exercise 2.0.27 (The Quadric Surface in \mathbb{P}^{3}). Consider the surface Q (a surface is a variety of dimension 2) in \mathbb{P}^{3} defined by the equation $x y-z w=0$.
(a) Show that Q is equal to the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3}, for suitable choice of coordinates.
(b) Show that Q contains two families of lines (a line is a linear variety of dimension 1) $\left\{L_{t}\right\}, \quad\left\{M_{t}\right\}$, each parametrized by $t \in \mathbb{P}^{1}$, with the properties that if $L_{t} \neq L_{u}$, then $L_{t} \cap L_{u}=\emptyset$; if $\quad M_{t} \neq M_{u}, M_{t} \cap M_{u}=\emptyset$, and for all t, u, $L_{t} \cap M_{u}=$ one point.
(c) Show that Q contains other curves besides these lines, and deduce that the Zariski topology on $\quad Q$ is not homeomorphic via ψ to the product topology on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ (where each \mathbb{P}^{1} has its zariski topology).

Solution:
(a) We can relabel the coordinates of \mathbb{P}^{3} to let $x=z_{11}, y=z_{00}, z=z_{01}$ and $w=z_{10}$. Then from the solution to Exercise 14, the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3} is equal to $\mathcal{Z}\left(z_{11} z_{00}-z_{10} z_{01}\right)$ which is nothing but Q.
(b) Consider a fixed point $t=\left(t_{0}, t_{1}\right) \in \mathbb{P}^{1}$. Then for any point $b=\left(b_{0}, b_{1}\right) \in \mathbb{P}^{3}$, $\psi(t \times b)=\left(t_{0} b_{0}, t_{0} b_{1}, t_{1} b_{0}, t_{1} b_{1}\right)$. Therefore $\psi(t \times b)=\mathcal{Z}\left(t_{0} z-t_{1} x, t_{1} y-t_{0} w\right)$. This is a linear variety. Let this be called L_{t}. As t varies L_{t} defines a family of curves in Q.

Let $I=\left(t_{0} z-t_{1} x, t_{1} y-t_{0} w\right)$. For any fixed $t=\left(t_{0}, t_{1}\right)$, either $t_{0} \neq 0$ or $t_{1} \neq 0$. Without loss of generality we may assume that $t_{0} \neq 0$. Let $l=t_{1} / t_{0}$. Then $I=(z-l x, y-l y)$. Let $\varphi_{1}: k[x, y, z, w] / I \longrightarrow k[x, y]$ be the map sending the $f(x, y, z, w) \bmod I$ to $f(x, y, l x, l w)$. Let $\varphi_{2}: k[x, y] \longleftrightarrow k[x, y, z, w] / I$ be the map sending $f(x, y)$ to $f(x, y) \bmod I$. Then it is clear that φ_{1} and φ_{2} are ring homomorphisms. Also, $\varphi_{1}\left(\varphi_{2}(f(x, y))\right)=\varphi_{1}(f(x, y) \bmod I)=f(x, y)$. Also, for any element $f(x, y, z, w) \in k[x, y, z, w] \bmod I, \varphi_{2}\left(\varphi_{1}(f)\right)=\varphi_{2}(f(x, y, l x, l w))$. Since $l x \equiv z$ and $l w \equiv z$ in $k[x, y, z, w] / I, f(x, y, z, w)=f(x, y, l x, l y)$ in $k[x, y, z, w] / I$. Hence the ring homomorphisms φ_{1} and φ_{2} are inverses of each other which gives us that $k[x, y, z, w] / I \cong k[x, y]$. Therefore I is a prime ideal and therefore a radical ideal. Since $I(\mathcal{Z}(I))=\sqrt{I}=I$ is a prime ideal, $\mathcal{Z}(I)=L_{t}$ is irreducible.

Also, since it is a subset of $Q, \operatorname{dim} L_{t} \leq \operatorname{dim} Q=2$. Since Q is defined by an irreducible polynomial, Q is irreducible. From Exercise 1.10(d), if $\operatorname{dim} L_{t}=2$, then $Q=L_{t}$ which is not true. Also, since L_{t} does not consists of a single point, $P \subset L_{t}$ is a chain of distinct irreducible closed subsets of L_{t} for any point $P \in L_{t}$. Therefore $\operatorname{dim} L_{t} \neq 0$. Therefore $\operatorname{dim} L_{t}=1$.

Consider a fixed point $t=\left(t_{0}, t_{1}\right) \in \mathbb{P}^{1}$. Then for any point $b=\left(a_{0}, a_{1}\right) \in \mathbb{P}^{3}$, $\psi(a \times t)=\left(a_{0} t_{0}, a_{0} t_{1}, a_{1} t_{1}, a_{1} t_{1}\right)$. Therefore $\psi(a \times t)=\mathcal{Z}\left(t_{1} x-t_{0} y, t_{1} z-t_{0} w\right)$. This is a linear variety. Let this be called M_{t}. As t varies M_{t} defines a family of curves in Q. Using arguments similar to the ones used in calculation of $\operatorname{dim} L_{t}$, it can be calculated that $\operatorname{dim} M_{t}=1$.

Suppose that $L_{t} \neq L_{u}$ i.e., $u \neq t$. Suppose for some $b=\left(b_{0}, b_{1}\right)$ and $c=\left(c_{0}, c_{1}\right), t \times b=u \times c$. Therefore $\left(t_{0} b_{0}, t_{0} b_{1}, t_{1} b_{0}, t_{1} b_{1}\right)=$ $\left(u_{0} c_{0}, u_{0} c_{1}, u_{1} c_{0}, u_{1} c_{1}\right)$. Therefore $t_{0} b_{0}=\lambda u_{0} c_{0}, t_{0} b_{1}=\lambda u_{0} c_{1}, t_{1} b_{0}=\lambda u_{1} c_{0}$ and $t_{1} b_{1}=\lambda u_{1} c_{1}$ for some $\lambda \in k^{\times}$. We have that either $c_{0} \neq 0$ or $c_{1} \neq 0$. If $c_{0} \neq 0$, then $\lambda t_{1} u_{0} c_{0}=t_{0} t_{1} b_{0}=\lambda t_{0} u_{1} c_{0}$. Since $c_{0}, \neq 0 ; \lambda \neq 0, t_{1} u_{0}=t_{0} u_{1}$ which implies that $t=u$. But this is a contradiction. Therefore $L_{t} \cap L_{u}=\emptyset$. If $c_{1} \neq 0, \lambda u_{0} c_{1} t_{1}=t_{1} t_{0} b_{1}=\lambda u_{1} c_{1} t_{0}$ implies that $t_{0} u_{1}=t_{1} u_{0}$ i.e., $t=u$. This is a contradiction. Therefore $L_{t} \cap L_{u}=\emptyset$. Similarly it can be proved that if $M_{t} \neq M_{u}$, then $M_{t} \cap M_{u}=\emptyset$. Also, $M_{t} \cap L_{u}=\{t \times u\}$.
(c) Consider the twisted cubic curve in \mathbb{P}^{3}. It is equal to the subset $X=\left\{\left(p^{2} t, p t^{2}, p^{3}, t^{3}\right) \mid p, t, \in k\right\}$. Then clearly any point of twisted cubic curve lies on Q. We claim that $X \neq L_{t}$ or M_{u} for any $t, u \in \mathbb{P}^{1}$. Any point of the twisted cubic curve satisfies the equation $y^{2}=w x$. Any point of M_{t}, for a fixed $t \in \mathbb{P}^{1}$, is of the form $\left(a_{0} t_{0}, a_{0} t_{1}, a_{1} t_{0}, a_{1} t_{1}\right)$ for some $\left(a_{0}, a_{1}\right) \in \mathbb{P}^{1}$. This point does not satisfy the given equation. Therefore $M_{t} \neq X$ for any $t \in \mathbb{P}^{1}$. Also. any point of L_{u}, for a fixed $u \in \mathbb{P}^{1}$, is of the form $\left(t_{0} a_{0}, t_{0} a_{1}, t_{1} a_{0}, t_{1} a_{1}\right)$ for some $\left(a_{0}, a_{1}\right) \in \mathbb{P}^{1}$. This point also does not satisfy the given equation. Therefore $X \neq L_{u}$ for any $u \in \mathbb{P}^{1}$.

Exercise 2.0.28. (a) The intersection of two varieties need not be a variety. For example, let Q_{1} and Q_{2} be the quadric surfaces in \mathbb{P}^{3} given by the equations $x^{2}-y w=0$ and $x y-z w=0$, respectively. Show that $Q_{1} \cap Q_{2}$ is the union of a twisted cubic curve and a line.
(b) Even if the intersection of two varieties is a variety, the ideal of the intersection may not be the sum of the two ideals. For example, let C be the conic in \mathbb{P}^{2} given by the equation $x^{2}-y z=0$. Let L be the line given by $y=0$. Show that $C \cap L$ consists of on point P, but $I(C)+I(L) \neq I(P)$.

Solution:
(a) Any point $P=(x, y, z, w)$ in $Q_{1} \cap Q_{2}$ satisfies the equations $x^{2}-y w$ and $x y-z w$. When $w=0, x^{2}=0$ which implies that $x=0$. Therefore, $(0, y, z, 0) \in Q_{1} \cap Q_{2}$ for any $y, z \in k$. These points are given by $L=\mathcal{Z}(x, w)$. We claim that $\operatorname{dim} L=1$. Let $I=(x, w)$. It can be proved that $k[x, y, z, w] / I \cong k[y, z]$ which is an integral domain. Therefore I is prime and hence a radical ideal. Since $L=\mathcal{Z}(I), I(L)=\sqrt{I}=I$. Now, $\operatorname{dim} S(L)=\operatorname{dim} k[x, y]=2$. Therefore $\operatorname{dim} L=1$. Hence L is a linear variety of dimension 1 and hence a line.

When $w \neq 0$, we may assume that $w=1$. Then we have $x^{2}=y$ and $x y=z$ which implies that $z=x^{3}$. Therefore any point of $Q_{1} \cap Q_{2}$ for which $w \neq 0$ is of the form $\left(x, x^{2}, x^{3}, 1\right)$ which is the twisted cubic curve.
(b) Let C be the conic $\mathcal{Z}\left(x^{2}-y z\right)$ and let L be the line $\mathcal{Z}(y)$. Any point (x, y, z) in $C \cap L$ has $y=0$ and therefore $x^{2}=0$. Therefore $C \cap L$ consists of one point $(0,0,1)$. Therefore $C \cap L=\mathcal{Z}(x, y)$. Let $J=(x, y)$ It can be shown that $k[x, y, z] / J$ is isomorphic to $k[z]$ which is a PID and hence J is a prime ideal. Therefore $I(C \cap L)=\sqrt{J}=J$. Also, it can be shown that $k[x, y, z] /(y) \cong k[x, z]$ which is an integral domain. Therefore $I_{1}=(y)$ is a prime ideal. Also, it can be shown that $x^{2}-y z$ is an irreducible element of $k[x, y, z]$. Since $k[x, y, z]$ is a UFD, $I_{2}=\left(x^{2}-y z\right)$ is a prime ideal. Since $L=\mathcal{Z}\left(I_{1}\right)$ and $C=\mathcal{Z}\left(I_{2}\right)$, we have $I(L)=\sqrt{I_{1}}=I_{1}$ and $I(C)=\sqrt{I_{2}}=I_{2}$.
$I(C)+I(L)=\left\{\left(x^{2}-y z\right) f_{1}+y f_{2} \mid f_{1}, f_{2} \in k[x, y, z]\right\}$. We claim that $x \in I(C)+I(L)$. Any term of $\left(x^{2}-y z\right) f_{1}$ is a multiple of either x^{2} or $y z$ and any term $y f_{2}$ is a multiple of y. Since x is not a multiple of either $x^{2}, y z$ or y, $x \notin I(C)+I(L)$. Therefore $I(P) \neq I(C)+I(L)$.

Exercise 2.0.29 (Complete Intersections). A variety Y of dimension r in \mathbb{P}^{n} is a strict complete intersection if $I(Y)$ can be generated by $n-r$ elements. Y is a set theoretic complete intersection if Y can be written as the intersection of $n-r$ hyperplanes.
(a) Let Y be a variety in \mathbb{P}^{n}, let $Y=\mathcal{Z}(\mathfrak{a})$; and suppose that \mathfrak{a} can be generated q elements. Then show that $\operatorname{dim} Y \geq n-q$.
(b) Show that a strict complete intersection is a set theoretic complete intersection.
(c) The converse of (b) is false. For example let Y be the twisted cubic curve in \mathbb{P}^{3}. Show that $I(Y)$ cannot be generated by two elements. On the other hand, find hypersurfaces H_{1} and H_{2} of degree 2 and 3 respectively, such that $Y=H_{1} \cap H_{2}$.
(d) It is an unsolved problem whether every closed irreducible curve in \mathbb{P}^{3} is a set theoretic intersection of two surfaces.

Solution:
(a) Let $\mathfrak{a}=\mathcal{Z}\left(f_{1} \ldots, f_{q}\right)$. Since $Y=\mathcal{Z}(\mathfrak{a}), I(Y)=\sqrt{\mathfrak{a}}$. Since Y is a variety, $I(Y)$ is a prime ideal. We know that for any ideal I, \sqrt{I} is the intersection of all prime ideals containing I. Therefore $I(Y)$ is the minimal prime ideal over \mathfrak{a}. From Krull's dimension theorem we get that $h t I(Y) \leq q$. From Theorem $1.8 \mathrm{~A}(\mathrm{~b})$ we get that $\operatorname{dim} S(Y) \geq n+1-q$. Since $\operatorname{dim} Y=\operatorname{dim} S(Y)-1$, we get that $\operatorname{dim} Y \geq n-q$.
(b) We assume that the variety Y of dimension r is a strict complete intersection, i.e., $I(Y)$ can be generated by $n-r$ elements. Let $I(Y)=\left(f_{1}, \ldots, f_{n-r}\right)$. Then $Y=\mathcal{Z}(I(Y)) \mathcal{Z}\left(f_{1}, \ldots, f_{n-r}\right)=\bigcap_{i=1}^{n-r} \mathcal{Z}\left(f_{i}\right)$. Since each $\mathcal{Z}\left(f_{i}\right)$ is a hypersurface, Y can be written as an intersection of $n-r$ hypersurfaces and is thus a set theoretic complete intersection.
(c) We know that the twisted cubic curve in \mathbb{P}^{3} consists of points of the form $\left(p^{3}: p^{2} t: p t^{2}: t^{3}\right)$ for some $p, t \in k$ such that $p^{2}+t^{2} \neq 0$. It is clear that no homogeneous polynomial of degree 1 in $k[u, x, y, z]$ belongs to $I(Y)$ because any homogeneous polynomial of degree 1 is of the form $x_{i}-a x_{j}$ for some $a \in k^{\times}$ and some $x_{i} x_{j} \in\{u, x, y, z\}$. Also, any polynomial in $I(Y)$ can be written as $u^{d_{1}} x^{d_{1}} y^{d_{2}} z^{d_{3}}$ such that $3 d_{0}+2 d_{1}+d_{2}=0$ and $d_{1}+2 d_{2}+3 d_{3}=0$. Using these equations we can deduce that the only homogeneous polynomials of degree 2 that belong to $I(Y)$ are $f_{1}=u z-x y, f_{2}=u y-x^{2}$ and $f_{3}=x z-y^{2}$.

Suppose $I(Y)=\left(g_{1}, g_{2}\right)$ for some homogeneous polynomials $g_{1}, g_{2} \in k[u, x, y, z]$. Then $f_{1}=g_{1} h_{1}+g_{2} h_{2}$ for some $h_{1}, h_{2} \in k[u, x, y, z]$. Since f_{1} is homogeneous , we may assume that h_{1} and h_{2} are homogeneous polynomials. Now, we have that $g_{1} h_{1}$ is homogeneous of degree $\operatorname{deg} g_{1}+\operatorname{deg} h_{1}$ and $g_{2} h_{2}$ is homogeneous of degree deg $g_{2}+\operatorname{deg} h_{2}$. Therefore $\operatorname{deg} g_{1}+\operatorname{deg} h_{1}=\operatorname{deg} g_{2}+\operatorname{deg} h_{2}=2$. Therefore $\operatorname{deg} g_{i} \leq 2$ for $i=1,2$. But $I(Y)$ has no homogeneous polynomials of degree 1 . Therefore deg $g_{i}=2$ for $i=1,2$ and thus $\left\{g_{1}, g_{2}\right\} \subset\left\{f_{1}, f_{2}, f_{3}\right\}$.

Suppose $I(Y)=\left(f_{1}, f_{2}\right)$. Then $f_{3}=h_{1} f_{1}+h_{2} f_{2}$ for some homogeneous polynomials h_{i}. But using arguments similar to the above, we get that $h_{1}, h_{2} \in k$. Say $h_{i}=a_{i} \in k$ for $i=1,2$. But clearly $x z-y^{2}$ cannot be
written as $a_{1}(u z-x y)+a_{2}\left(u y-x^{2}\right)$ for any constants $a_{1}, a_{2} \in k$. Therefore $I(Y) \neq\left(f_{1}, f_{2}\right)$. Similarly, if $I(Y)=\left(f_{2}, f_{3}\right)$, then $f_{1}=a_{2} f_{2}+a_{3} f_{3}$ for some constants $a_{2}, a_{3} \in k$. But clearly this is not possible. Therefore $I(Y) \neq\left(f_{2}, f_{3}\right)$. Similarly, it can be shown that $I(Y) \neq\left(f_{1}, f_{3}\right)$. Therefore $I(Y)$ is not generated by two elements and is thus not a strict complete intersection.

Let $H_{1}=\mathcal{Z}\left(y^{2}-x z\right)$ and $H_{2}=\mathcal{Z}\left(x^{3}+u^{2} z-2 x y u\right)$. We claim that $Y=H_{1} \cap H_{2}$. Clearly any point $\left(p^{3}: p^{2} t: p t^{2}: t^{3}\right)$ of Y lies on both H_{1} and H_{2}. Consider a point $P=(a: b: c: d) \in H_{1} \cap H_{2}$. Then $c^{2}=b d$ and thus $b^{2} c^{2}=b^{3} d$. But $b^{3}=2 a b c-a^{2} d$. Therefore $b^{2} c^{2}=2 a b c d-a^{2} d^{2}$ which implies that $(b c-a d)^{2}=0$ i.e., $b c=a d$.

Since $c^{2}=b d$, we get $a^{2} c^{2}-a^{2} b d=0$ which gives that
$a^{2} c^{2}+b^{4}-b^{4}-a^{2} b d=0$. But $b^{3}+a^{2} d=2 a b c$. Therefore
$b^{4}+a^{2} c^{2}-2 b^{2} c a=\left(b^{2}-a c\right)^{2}=0$. Therefore $b^{2}=a c$. Clearly any point of this form is a point in Y. Therefore $H_{1} \cap H_{2} \subset Y$ proving that $Y=H_{1} \cap H_{2}$. This proves that Y is a set theoretic complete intersection. Therefore every set theoretic complete intersection need not be a strict complete intersection.

Chapter 3

Morphisms

We fix some notation which will be used throughout this section. For any variety X, we denote the open set $X \backslash \mathcal{Z}(f)$ by $D(f)$.

We state and prove a lemma which will be then used in solving the exercises.
Lemma (3E). Let $U=D(f)$ be a Zariski open subset of an affine variety $X \subset \mathbb{A}^{n}$ where f is some polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$. Then the ring of regular functions on U is the localization $A(X)\left[\frac{1}{f}\right]$.

Proof. By definition, a regular function on U is a function g such that for any point $P \in U$ we can write $g=h / l$ for some polynomials h, l in the neighbourhood $U_{l}=U \cap D(l)$ of P. Hence U is covered by the open subsets U_{l}. Since the Zariski topology is noetherian, we can find a finite open sub-cover $\left\{U_{\alpha}\right\}$ of U. Here each U_{α} is of the form $U \cap U_{l_{\alpha}}$ for some polynomial l_{α}. We have that $U \subset \bigcup U_{\alpha}$ which implies that $X \backslash \bigcup U_{\alpha} \subset X \backslash U$. But $X \backslash U=\mathcal{Z}(f)$. Therefore we have that $\bigcap C_{\alpha} \subset \mathcal{Z}(f)$ where $C_{\alpha}=X \backslash U_{\alpha}$. But $\bigcap C_{\alpha}$ is the set of common zeroes of $\left\{l_{\alpha}\right\}$. By the Nullstellensatz, we have that there exists a positive integer m such that $f^{m} \in I$ where I is the ideal generated by the l_{α}. Therefore we can write $f^{m}=\sum f_{\alpha} l_{\alpha}$ for some polynomials f_{α}. Therefore $f^{m} g=\sum\left(f_{\alpha} l_{\alpha}\right)\left(h_{\alpha} / l_{\alpha}\right)=\sum f_{\alpha} h_{\alpha}$ which implies that $g=\frac{\sum f_{\alpha} h_{\alpha}}{f^{m}}$ which is an element of $A(X)[1 / f]$. This proves the lemma.

Exercise 3.0.30. Show that

(a) Any conic in \mathbb{A}^{2} is isomorphic to either \mathbb{A}^{1} or $\mathbb{A}^{1}-\{0\}$.
(b) \mathbb{A}^{1} is not isomorphic to any proper open subset of itself.
(c) Any conic in \mathbb{P}^{2} is isomorphic to \mathbb{P}^{1}.
(d) \mathbb{A}^{2} is not homeomorphic to \mathbb{P}^{2}.
(e) If an affine variety is isomorphic to a projective variety then it consists of only one point.

Solution:
(a) From exercise 1.1 we know that a conic Z in \mathbb{A}^{2} is isomorphic to either the parabola $y=x^{2}$ or the hyperbola $x y=1$.
Case i: Let Z be isomorphic to the parabola $y=x^{2}$. Then $A(Z) \cong k[x]$. But we know that $A\left(\mathbb{A}^{1}\right)=k[x]$. Therefore from proposition 3.5, we get that Z is isomorphic to \mathbb{A}^{1}.
Case ii: Let Z be isomorphic to the hyperbola $x y=1$. We can define a map $\varphi: \mathbb{A}^{1} \backslash\{0\} \longrightarrow Z$ by $x \mapsto\left(x, x^{-1}\right)$. From Lemma 3.6, we get that this map is a morphism. It is also bijective. To see that φ is an isomorphism we have to check that the inverse map of φ is a morphism. We can check that $\varphi^{-1}: Z \longrightarrow \mathbb{A}^{1} \backslash\{0\}$ is given by $(x, y) \mapsto x$. This is the restriction of the projection map which is clearly a morphism.
Therefore any conic Z in \mathbb{A}^{2} is isomorphic to either \mathbb{A}^{1} or $\mathbb{A}^{1} \backslash\{0\}$.
(b) Suppose $U \subsetneq \mathbb{A}^{1}$ is isomorphic to \mathbb{A}^{1}. Then $A(U) \cong A\left(\mathbb{A}^{1}\right)=k[x]$. But we know that U is of the form $\mathbb{A}^{1} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ for some finite number of points $p_{i} \in \mathbb{A}^{1}$. Let f be the polynomial having precisely p_{1}, \ldots, p_{n} as its roots. Then we know from Lemma 3 E that $A(U)$ is of the form $k[x]\left[\frac{1}{f}\right]$.
Now, suppose \mathbb{A}^{1} is isomorphic to U. Then from Corollary 3.7 we know that the the coordinate ring of U is isomorphic to the coordinate ring of \mathbb{A}^{1}. Therefore $k\left[x, \frac{1}{f}\right]$ is isomorphic to $k[y]$ for some indeterminate y. Let $\phi: k\left[x, \frac{1}{f}\right] \longrightarrow k[y]$ be an isomorphism. Let $\phi(x)=p(y) \in k[y]$. Let $f=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$. Since ϕ is an isomorphism $\phi(f)=b_{0}+b_{1} p(y)+\ldots+b_{n} p(y)^{n}$ where $b_{i}=\phi\left(a_{i}\right) \in k$. Since f is a unit in $k\left[x, \frac{1}{f}\right]$ we know that $\phi(f) \in k^{\times}$. Therefore $p(x) \in k$. This implies that ϕ is not surjective which is a contradiction.
Therefore ϕ is not an isomorphism.
(c) We claim that any two conics in \mathbb{P}^{2} are isomorphic. Consider any conic Y in \mathbb{P}^{2}. Then $Y=\mathcal{Z}\left(a x y+b y z+c x z+d x^{2}+e y^{2}+f z^{2}\right)$. Let P, Q, R be any three
non collinear points in \mathbb{P}^{2}. Let $P=\left(p_{1}: p_{2}: p_{3}\right), Q=\left(q_{1}: q_{2}: q_{3}\right)$, $R=\left(r_{1}: r_{2}: r_{3}\right)$ be any representations of these points in \mathbb{P}^{2}. Let $v_{P}=\left(p_{1}, p_{2}, p_{3}\right), v_{Q}=\left(q_{1}, q_{2}, q_{3}\right), v_{R}=\left(r_{1}, r_{2}, r_{3}\right)$ be the vectors in k^{3} corresponding to these representations of P, Q, R. Then clearly these vectors are linearly independent vectors in the vector space k^{3}. Now, given any two sets of non collinear points in \mathbb{P}^{2}, we know that they give two sets of basis vectors of the vector space k^{3}. Hence there exists a linear transformation $T: k^{3} \longrightarrow k^{3}$ which is the change of basis transformation corresponding to these two bases.

But a linear transformation corresponds to a linear change of coordinates which is an isomorphism. Therefore we can assume that the points $(1,0,0),(0,1,0)$ and $(0,0,1)$ lie on Y. Therefore $Y=\mathcal{Z}(a x y+b y z+c x z)$ for some $a, b, c \in k$, none of them zero. Now, we scale x, y, z by a factor of $\lambda_{1}=\sqrt{\frac{c}{a b}}$, $\lambda_{2}=\sqrt{\frac{b}{a c}}$ and $\lambda_{3}=\sqrt{\frac{a}{b c}}$ respectively i.e., we put $X=\lambda_{1} x, Y=\lambda_{2} y$ and $Z=\lambda_{3} z$. Then $Y=\mathcal{Z}(X Y+Y Z+Z X)$. This proves that any curve in \mathbb{P}^{2} is isomorphic to the curve $Y=(x y+y z+z x)$ and therefore any two curves in \mathbb{P}^{2} are isomorphic. Therefore it is enough to prove that the conic $Y=\mathcal{Z}\left(z^{2}-x y\right)$ is isomorphic to \mathbb{P}^{1}. We can check that $Y=\left\{\left(t^{2}, u^{2}, t u\right) \in \mathbb{P}^{2} \mid t, u, \in k\right.$; both not 0$\}$. Define a map $\rho: \mathbb{P}^{1} \longrightarrow Y$ by $(t, u) \mapsto\left(t^{2}, u^{2}, t u\right)$. Then clearly, ρ is a morphism. Also, the inverse map $\rho^{-1} ; Y \longrightarrow \mathbb{P}^{1}$ can be given by $(x, y, z) \mapsto\left(1, \frac{z}{x}\right)$ when $x \neq 0$ and by $(x, y, z) \mapsto\left(\frac{z}{y}, 1\right)$ when $y \neq 0$. This map is clearly a morphism. Therefore Y is isomorphic to \mathbb{P}^{1} and hence any conic in \mathbb{P}^{2} is isomorphic to \mathbb{P}^{1}.
(d) Let $\mathcal{C} \subset \mathbb{A}^{2}$ be irreducible closed of dimension 1 . If \mathbb{A}^{2} is homeomorphic to \mathbb{P}^{2}, then the dimension of the homeomorphic image of \mathcal{C} is of dimension 1 in \mathbb{P}^{2} and hence is a curve in \mathbb{P}^{2}. If we take two curves $\mathcal{Z}(f), \mathcal{Z}(g)$ in \mathbb{A}^{2} which have an empty intersection, say two parallel lines, then the homeomorphic image of these curves in \mathbb{P}^{2} should have an empty intersection. To prove this let $\rho: \mathbb{A}^{2} \longrightarrow \mathbb{P}^{2}$ be the homeomorphism and $\rho(\mathcal{Z}(f))=\mathcal{C}_{1}$ and $\rho(\mathcal{Z}(g))=\mathcal{C}_{2}$. If $P \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$, then $\rho^{-1}(P) \in \mathcal{Z}(f) \cap \mathcal{Z}(g)$ which is a contradiction. Therefore $\mathcal{C}_{1} \cap \mathcal{C}_{2}=\emptyset$. We show in exercise 3.7 that any two curves in \mathbb{P}^{2} have a non-empty intersection. Therefore there exists no homeomorphism between \mathbb{A}^{2} and \mathbb{P}^{2}.
(e) Suppose $Y \subset \mathbb{A}^{n}$ is an affine variety. Suppose $Y: \varphi \longrightarrow Z$ is an isomorphism
where Z is a projective variety. Then from the proof of Proposition 3.5, φ induces an isomorphism of the ring of regular functions $\mathcal{O}(Y)$ and $\mathcal{O}(Z)$. We know, from Theorem 3.2 and Theorem 3.4, that $\mathcal{O}(Y)=A(Y)$ and $\mathcal{O}(Z)=k$. Therefore $A(Y)=k\left[x_{1}, \ldots, x_{n}\right] / I(Y) \cong k$. This implies that $I(Y)$ is a maximal ideal of $k\left[x_{1}, \ldots, x_{n}\right]$ which in turn implies that Y consists of only a single point.

Exercise 3.0.31. A morphism whose underlying map on the topological spaces is a homeomorphism need not be an isomorphism.
(a) For example, let $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{2}$ be defined by $t \longmapsto\left(t^{2}, t^{3}\right)$. Show that φ defines a bijective bi-continuous morphism of \mathbb{A}^{1} onto the curve $y^{2}-x^{3}$, but that φ is not an isomorphism.
(b) For another example, let the characteristic of the base field be $p>0$, and define a map $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{1}$ by $t \mapsto t^{p}$. Show that φ is bijective and bi-continuous but not an isomorphism. This is called the Frobenius morphism.

Solution:
(a) Let H denote the curve $\mathcal{Z}\left(y^{2}-x^{3}\right)$. Let $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{2}$ be the map defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Let x_{1} and x_{2} be the coordinate functions on \mathbb{A}^{2}. Then the map $x_{1} \circ \varphi: X \longrightarrow k$ is given by $t \mapsto t^{2}$ and the map $x_{2} \circ \varphi: X \longrightarrow k$ is given by $t \mapsto t^{3}$. Clearly, these maps are regular functions. Therefore from Lemma 3.6, we get that $\varphi: X \longrightarrow Y$ is a morphism. This map is clearly a bijection onto the image, which is the curve H. Now consider an closed subset $X \subset \mathbb{A}^{1}$. Then X consists of a finite number of points. Since φ is a bijective map, we get that $\varphi(X)$ is a finite set and thus is a closed subset of \mathbb{A}^{2} and hence φ is a closed map. If we let μ denote the inverse map of φ, then for any closed subset $X \subset \mathbb{A}^{1}$ we have that $\mu^{-1}(X)=\varphi(X)$ which is a closed subset of \mathbb{A}^{2}.
Therefore φ is a bicontinuous bijection.
Now,, suppose that φ is an isomorphism of \mathbb{A}^{1} onto H. Then from proposition 3.5 we know that the morphism $\psi=\varphi: H \longrightarrow \mathbb{A}^{1}$ induces a k-algebra isomorphism $\psi^{\#}$ from $A\left(\mathbb{A}^{1}\right)=k[t]$ onto $A(H)=k[x, y] /\left(y^{2}-x^{3}\right)$ given by $f(t) \mapsto f(t) \circ \psi=f\left(\frac{y}{x}\right)$. But this map is clearly not surjective and hence is not an isomorphism. Therefore φ is not an isomorphism.

We can further show that H is not isomorphic to \mathbb{A}^{1}. Suppose that H is isomorphic to \mathbb{A}^{1}. Then from proposition $3.5, A(H) \cong A\left(\mathbb{A}^{1}\right)=k[x]$. We now show that $A(H)=k[x, y] /\left(y^{2}-x^{3}\right)$ is not a Unique Factorization Domain (UFD). But since $k[x]$ is a UFD, we get a contradiction to the assumption that $A(H) \cong A\left(\mathbb{A}^{2}\right)$ which proves that φ is not an isomorphism.

Let us denote $k[x, y] /\left(y^{2}-x^{3}\right)$ by R. We claim that R is isomorphic to the $k\left[t^{2}, t^{3}\right]$ for some indeterminate t. We define a map $\varphi: k[x, y] \longrightarrow k\left[t^{2}, t^{3}\right]$ by $a \mapsto a$ for all $a \in k, x \mapsto t^{2}$ and $y \mapsto t^{3}$. Then clearly this map is a k-algebra homomorphism. Also, it can be easily checked that $\operatorname{ker} \varphi=\left(y^{2}-x^{3}\right)$. This proves the claim. We now prove that $k\left[t^{2}, t^{3}\right]$ is not integrally closed in its field of fractions which will prove that R is not a unique factorization domain. We know that the field of fractions of R is equal to the field $k(t)$. Consider the monic polynomial $x^{3}-t^{3}$ with coefficients in $k\left[t^{2}, t^{3}\right]$. Then clearly t is a root of this monic polynomial and hence t is integral over $k\left[t^{2}, t^{3}\right]$. But $t \notin k\left[t^{2}, t^{3}\right]$ which proves that $k\left[t^{2}, t^{3}\right]$ is not integrally closed.
(b) Suppose char $k=p>0$. Then the morphism $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{1}$ defined by $t \mapsto t^{p}$ is an injective. Indeed, for any $t, s \in k$, we have $0=t^{p}-s^{p}=(t-s)^{p}$ which implies that $t=s$. Also, since k is algebraically closed field, φ is surjective. We know that the proper closed subsets of \mathbb{A}^{1} are precisely the finite subsets of \mathbb{A}^{1}. Therefore to prove that φ is a continuous map, it is enough to prove that the inverse image of a single point is a closed subset of \mathbb{A}^{1}. But since φ is a bijection, the inverse image of the singleton set is a singleton set, which is a closed subset of \mathbb{A}^{1}. Therefore φ is a continuous map. The same argument proves that $\varphi^{-1}: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{1}$, which is a bijection, is a continuous map. Therefore φ is a bicontinuous, bijection.

Consider $x_{1} \circ \varphi: \mathbb{A}^{1} \longrightarrow k$, where x_{1} is the coordinate function on \mathbb{A}^{1}, which is nothing but the identity function. Then $x_{1} \circ \varphi$ is defined by $t \mapsto t^{p}$ and hence is a regular function. Therefore from Lemma 3.6, we get that φ is a morphism.

Suppose $\varphi: \mathbb{A}^{1} \longrightarrow \mathbb{A}^{1}$ is an isomorphism. Then the map $h: k[x] \longrightarrow k[x]$ defined by $f(x) \mapsto f(x) \circ \varphi$ is an isomorphism. But $f(x) \circ \varphi=f\left(x^{p}\right)$. This map is clearly not surjective and hence is not an isomorphism. Therefore φ is not an isomorphism.

Exercise 3.0.32. (a) Let $\varphi: X \longrightarrow Y$ be a morphism. Then for each $P \in X, \varphi$ induces a homomorphism of local rings $\varphi_{P}^{*}: \mathcal{O}_{\varphi(P), Y} \longrightarrow \mathcal{O}_{P, X}$.
(b) Show that a morphism φ is an isomorphism if and only if φ is a homeomorphism, and the induced map φ_{P}^{*} on the local rings is an isomorphism, for all $P \in X$.
(c) Show that if $\varphi(X)$ is dense in Y, then the map φ_{P}^{*} is injective for all $P \in X$.

Solution:
(a) Let $\varphi: X \longrightarrow Y$ be a morphism. Consider the induced map $\varphi_{P}^{*}: \mathcal{O}_{\varphi(P), Y}: \longrightarrow \mathcal{O}_{P, X}$ defined by $(V, f) \mapsto\left(\varphi^{-1}(V), f \circ \varphi\right)$. Since φ is a morphism and $f: V \longrightarrow k$ is a regular map, we know that $f \circ \varphi: \varphi^{-1}(V) \longrightarrow k$ is a regular map. To check that this map is well defined, suppose that $\left(V_{1}, f_{1}\right)=\left(V_{2}, f_{2}\right)$ i.e., $f_{1}=f_{2}$ on $V_{1} \cap V_{2}$. Then we want to prove that $f_{1} \circ \varphi=f_{2} \circ \varphi$ on $\varphi^{-1}\left(V_{1}\right) \cap \varphi^{-1}\left(V_{2}\right)$. Consider $x \in \varphi^{-1}\left(V_{1}\right) \cap \varphi^{-1}\left(V_{2}\right)$. Then $\varphi(x) \in V_{1} \cap V_{2}$. Therefore $f_{1}(\varphi(x))=f_{2}(\varphi(x))$ which proves that $f_{1} \circ \varphi=f_{2} \circ \varphi$ on $\varphi^{-1}\left(V_{1}\right) \cap \varphi^{-1}\left(V_{2}\right)$.

To check that the map is a ring homomorphism. Consider
$\varphi_{P}^{*}\left(\left(V_{1}, f_{1}\right)+\left(V_{2}, f_{2}\right)\right)=\varphi_{P}^{*}\left(V_{1} \cap V_{2}, f_{1}+f_{2}\right)=$
$\left(\varphi^{-1}\left(V_{1} \cap V_{2}\right),\left(f_{1}+f_{2}\right) \circ \varphi\right)=\left(\varphi^{-1}\left(V_{1}\right) \cap \varphi^{-1}\left(V_{2}\right), f_{1} \circ \varphi+f_{2} \circ \varphi\right)=$ $\left(\varphi^{-1}\left(V_{1}\right), f_{1} \circ \varphi\right)+\left(\varphi^{-1}\left(V_{2}\right), f_{2} \circ \varphi\right)=\varphi_{P}^{*}\left(V_{1}, f_{1}\right)+\varphi_{P}^{*}\left(V_{2}, f_{2}\right)$. This proves that φ_{P}^{*} is a ring homomorphism.
(b) If φ is an isomorphism, then it is a homeomorphism. Also, for any $P \in X$ the map $\left(\varphi^{-1}\right)_{P}^{*}$ defines an inverse homomorphism for the map φ_{P}^{*}.

Conversely, assume that φ is an homeomorphism and that φ_{P}^{*} is an isomorphism for each $P \in X$. We have to prove that $\varphi^{-1}: Y \longrightarrow X$ is a morphism. Let $U \subset X$ be any open subset of X and $f: U \longrightarrow k$ be any regular map. Let $P \in U$ be any point. Then $(U, f) \in \mathcal{O}_{P, X}$. Since φ_{P}^{*} is an isomorphism, it has an inverse morphism. Let $\mu_{P}^{*}: \mathcal{O}_{P, X} \longrightarrow \mathcal{O}_{\varphi(P), Y}$ be the inverse map of φ_{P}^{*}. Then $\mu_{P}^{*}(U, f) \in \mathcal{O}_{\varphi(P), Y}$. Suppose $\mu_{P}^{*}(U, f)=(V, g)$ where V is an open subset of Y and $g: V \longrightarrow k$ is a regular function. But $(U, f)=\varphi_{P}^{*}\left(\mu_{P}^{*}(U, f)\right)=\varphi_{P}^{*}(V, g)=\left(\varphi^{-1}(V), g \circ \varphi\right)$. Therefore, $f=g \circ \varphi$ on $U \cap \varphi^{-1}(V)$ which in turn implies that $f \circ \varphi^{-1}=g$ on $V \cap \varphi(U)$.

Therefore, we have that $f \circ \varphi^{-1}$ is a regular function in a open neighbourhood $V \cap \varphi(U)$ of $\varphi(P)$, i.e, $f \circ \varphi^{-1}$ is regular at $\varphi(P)$. Since P is any general of point of U we have that $f \circ \varphi^{-1}$ is regular on $\varphi(U)$. Therefore $\varphi^{-1}: Y \longrightarrow X$ is a morphism.
(c) Consider the morphism $\varphi: X \longrightarrow Y$ and the induced morphism $\varphi_{P}^{*}: \mathcal{O}_{\varphi(P), Y} \longrightarrow \mathcal{O}_{P, X}$. Suppose $\varphi(X)$ is dense in Y. Consider an element of $(U, f) \in \mathcal{O}_{\varphi(P), Y}$ such that $\varphi_{P}^{*}(U, f)=0$. We now prove that $(U, f)=0$ which proves that φ_{P}^{*} is injective. Now, $\varphi_{P}^{*}(U, f)=\left(f \circ \varphi, \varphi^{-1}(U)\right)$. Therefore $f(\varphi(x))=0$ for all $x \in \varphi^{-1}(U)$. Therefore $f=0$ on $U \cap \varphi(X)$ which implies that $U \cap \varphi(X) \subset \mathcal{Z}(f)$. If we prove that $U \subset \mathcal{Z}(f)$, then $f(x)=0$ for all $x \in U$ and therefore $(U, f)=0$ which will prove the claim. We have $\varphi(X) \subset \mathcal{Z}(f) \cup U^{c}$ which is a closed subset of Y. Also, since U is non-empty, U^{c} is a proper subset of Y. Now, suppose $U \not \subset \mathcal{Z}(f)$. Therefore $\mathcal{Z}(f) \cup U^{c} \neq Y$. Therefore $\mathcal{Z}(f) \cup U^{c}$ is a proper closed subset of Y which contains $\varphi(X)$, which contradicts the property that $\varphi(X)$ is dense in Y. Therefore $U \subset \mathcal{Z}(f)$ as required.

Exercise 3.0.33. Show that the d-uple embedding of \mathbb{P}^{n} is an isomorphism onto its image.

Solution:

Let $\rho_{d}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{N}$ be the d-uple embedding of \mathbb{P}^{n} in \mathbb{P}^{N} where $N=\binom{n+d}{n}-1$. It is defined by sending the point $P=\left(a_{0}: a_{1}: \ldots: a_{n}\right)$ to the point $\rho_{d}(P)=\left(M_{0}(a): \ldots: M_{N}(a)\right)$ where M_{i} are the monomials of degree d in $n+1$ variables. Since the map is defined by polynomial functions, it is clearly a morphism. Also, from the solution to the exercise 2.12, we know that ρ_{d} is a homeomorphism onto the image $\rho_{d}\left(\mathbb{P}^{n}\right)$.
We label the coordinates of \mathbb{P}^{N} using $n+1$ tuples $a_{0} a_{1} \ldots a_{n}$ such that $\sum_{i=0}^{n} a_{i}=d$. Then from Exercise 2.12 we know that for any point in $\rho_{d}\left(\mathbb{P}^{n}\right)$ at least one of the coordinates of the form $b_{00 \ldots 00 d . . .00}$ is on zero. Suppose after permutation of the coordinates we assume that $b_{d 00 \ldots 00} \neq 0$, then we know from the same exercise that $\rho^{-1}(P)=\left(u_{1}, \ldots, u_{n}\right)$ where $u_{0}=b_{d 00 \ldots 00}, u_{1}=b_{d-1,1 \ldots 00}$, $u_{2}=b_{d-1,01 \ldots 00}, \ldots \ldots, u_{n}=b_{d-1,00 \ldots 01}$. Therefore ρ_{d}^{-1} is a morphism.

Exercise 3.0.34. By the abuse of language, we will say that a variety 'is affine' if it is isomorphic to an affine variety. Let $H \subset \mathbb{P}^{n}$ be any hypersurface, show that $\mathbb{P}^{n}-H$ is affine.

Solution:
Let $H \subset \mathbb{P}^{n}$ be a surface of degree d. Suppose $H=\mathcal{Z}\left(\sum a_{i_{0} \ldots i_{n}} x_{0}^{i_{0}} \ldots x_{n}^{i_{n}}\right)$. Let L be the hyperplane $\mathcal{Z}\left(\sum a_{i_{0} \ldots a_{i_{n}}} x_{i_{0} i_{1} \ldots x_{i_{n}}}\right)$. Consider the d-uple embedding of \mathbb{P}^{n}. Then $\rho_{d}(H)=L \cap \rho_{d}\left(\mathbb{P}^{n}\right)$. We know that $\mathbb{P}^{N} \backslash \mathcal{Z}\left(Y_{j}\right)$ is isomorphic to \mathbb{A}^{N}. Also, any two hyperplanes are isomorphic (by a linear change of coordinates). Therefore $\mathbb{P}^{N} \backslash L$ is affine. Since ρ_{d} is an isomorphism of \mathbb{P}^{n} onto its image in \mathbb{P}^{N}, we have that $\mathbb{P}^{n} \backslash H$ is isomorphic to $\rho_{d}\left(\mathbb{P}^{n} \backslash H\right)$. But $\rho_{d}\left(\mathbb{P}^{n} \backslash H\right)=\left(\mathbb{P}^{N} \backslash L\right) \cap \rho_{d}\left(\mathbb{P}^{n}\right)$ which is a closed subset of $\mathbb{P}^{N} \backslash L$ and is therefore affine.

Exercise 3.0.35. There are quasi-affine varieties which are not affine. For example, show that $X=\mathbb{A}^{2}-\{(0,0)\}$ is not affine.

Solution:
We know that $X=U_{1} \cup U_{2}$ where $U_{1}=\{(x, y) \in X \mid x \neq 0\}$ and $U_{2}=\{(x, y) \in X \mid y \neq 0\}$ are open subset of X. Now, consider an element $f \in \mathcal{O}(X)$. Then f is regular at every point of U_{1} and hence from the above lemma we get that f is of the form g_{1} / x^{n} on U_{1} for some positive integer n. We may assume that g_{1} is not divisible by x^{n}. Similarly, we get that f is of the form g_{2} / y^{m} on U_{2} for some positive integer m such that g_{2} is not divisible by y^{m}. On $U_{1} \cap U_{2}$ we have $g_{1} / x^{n}=g_{2} / y^{m}$. Therefore $g_{1} y^{m}=g_{2} x^{n}$. But $x^{n} \nmid g_{1}$ and $y^{m} \nmid g_{2}$ and $k[x, y]$ is a unique factorization domain. Therefore we have that $m=n=0$ and hence $f=g_{1}=g_{2}$. Therefore $\mathcal{O}(X) \cong k[x, y]$.

Suppose that X is affine. Suppose X is isomorphic to the affine variety $V \subset \mathbb{A}^{n}$. Then from Proposition 3.5 we get that $A(V) \cong k[x, y]$. But $A\left(\mathbb{A}^{2}\right) \cong k[x, y]$. Now from Corollary 3.7 we get that V is isomorphic to \mathbb{A}^{2}. Therefore we get that X is isomorphic to \mathbb{A}^{2}. Let $A\left(\mathbb{A}^{2}\right)=k[u, t]$. Now from Proposition 3.5 we get that the identity isomorphism h from $A\left(\mathbb{A}^{2}\right)=[u, t]$ to $A(X)=k[x, y]$ induces an isomorphism from X to \mathbb{A}^{2}. But the morphism induced by the identity isomorphism $h: k[u, t] \longrightarrow k[x, y]$ induces the inclusion morphism $i: X \longrightarrow \mathbb{A}^{2}$. But i is not surjective and hence is not an isomorphism. This proves that X is not affine.

Exercise 3.0.36. (a) Show that any two curves in \mathbb{P}^{2} have a non-empty intersection.
(b) More generally, show that if $Y \subset \mathbb{P}^{n}$ is a projective variety of dimension ≥ 1, and if H is a hypersurface, then $Y \cap H \neq \emptyset$.

Solution:
(a) Let $Y_{1}=\mathcal{Z}\left(f_{1}\right)$ and $Y_{2}=\mathcal{Z}\left(f_{2}\right)$ be two curves in \mathbb{P}^{2}, where f_{1}, f_{2} are homogeneous polynomials in $k[x, y, z]$. Let $Z=Y_{1} \cap Y_{2}=\mathcal{Z}\left(f_{1}, f_{2}\right) \subset \mathbb{P}^{2}$. Let $C(Y)=\mathcal{Z}\left(f_{1}, f_{2}\right) \subset \mathbb{A}^{3}$. Since f_{1}, f_{2} are homogeneous polynomials in $k[x, y, z], O=(0,0,0) \in C(Z)$. Now, Z is non-empty if and only if $C(Z)$ has points other than O. From Proposition 1.13 we know that the dimension of $C\left(Y_{1}\right)$ is 2 , where $C\left(Y_{1}\right)$ denotes the cone over Y_{1}. Also, from exercise 1.8, dimension of every irreducible component of $C(Z)$ is 1 . If $C(Z)=\{(0,0,0)\}$, then $\operatorname{dim} C(Z)=0$ which is a contradiction. Therefore $C(Z)$ contains points other than $(0,0,0)$ and therefore $Y_{1} \cap Y_{2} \neq \emptyset$.
(b) Suppose $\operatorname{dim} Y=r \geq 1$. Then we know that $C(Y)$ is an affine variety of dimension $r+1$. Now, $Y \cap H \neq \emptyset$ if and only if $C(Y) \cap C(H)$ has some point other than $(0,0,0)$. From exercise 1.8, dimension of every irreducible component of $C(Y) \cap C(H)$ is equal to $r \geq 1$. If $C(Y) \cap C(H)=\{(0,0,0)\}$, then $\operatorname{dim}(C(Y) \cap C(H))=0$, which is a contradiction. Therefore $C(Y) \cap C(H)$ has some point other than $(0,0,0)$ and thus $Y \cap H \neq \emptyset$.

Exercise 3.0.37. Let H_{i} and H_{j} be the hyperplanes in \mathbb{P}^{n} defined by $x_{i}=0$ and $x_{j}=0$, with $i \neq j$. Show that any regular function on $\mathbb{P}^{n}-\left(H_{i} \cap H_{j}\right)$ is constant.

Solution:

Let $X=\mathbb{P}^{n} \backslash\left(H_{i} \cap H_{j}\right)$. Therefore X consists of points in \mathbb{P}^{n} where either $x_{i} \neq 0$ or $x_{j} \neq 0$. Therefore $X=U_{i} \cup U_{j}$ where $U_{i}=\mathcal{Z}\left(x_{i}\right)^{c}$ and $U_{j}=\mathcal{Z}\left(x_{j}\right)^{c}$. We have that $f \in A\left(U_{i}\right)=k\left[\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right]$ which implies that $f=g / x_{i}^{r}$ on U_{i} where $g \in k\left[x_{0}, \ldots, x_{n}\right]$ and $r=\operatorname{deg}(g)$. Similarly we get that $f=h / x_{j}^{s}$ on U_{j} where $h \in k\left[x_{0}, \ldots, x_{n}\right]$ and $s=\operatorname{deg}(h)$. Also, on $U_{i} \cap U_{j}$ we get that $x_{j}^{s} g=x_{i}^{r} h$. Using the fact that $k\left[x_{0}, \ldots, x_{n}\right]$ is a unique factorization domain we get that $r=s=0$. Therefore $f=g=h$ which are degree 0 polynomials and hence constants. Therefore $f \in k$.

Exercise 3.0.38. The homogeneous coordinate ring of a projective variety is not invariant under isomorphism. For example, let $X=\mathbb{P}^{1}$ and let Y be the 2 -uple embedding of \mathbb{P}^{1} in \mathbb{P}^{2}. Then $X \cong Y$. But show that $S(X) \nsubseteq S(Y)$.

Solution:
Let $\rho_{2}: \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2}$ be the 2-uple embedding map. Then ρ_{2} is given by $(a, b) \mapsto\left(a^{2}, a b, b^{2}\right)$. Also, $\rho_{2}\left(\mathbb{P}^{1}\right)=\mathcal{Z}\left(y^{2}-x z\right)$. Let $X=\mathbb{P}^{1}$ and $Y=\rho_{2}\left(\mathbb{P}^{1}\right)$.
From exercise 3.4, we know that $Y \cong X$. We know that $S(X)=k[t, u]$ and $S(Y)=k[x, y, z] /\left(y^{2}-x z\right)$. Let R denote $k[x, y, z] /\left(y^{2}-x z\right)$. We have to show that $k[x, y] \not \equiv R$. We know from Hilbert Nullstellensatz that every maximal ideal of $k[t, u]$ is generated by two elements. We construct a maximal ideal in R which is not generated by two elements which will prove that R is not isomorphic to $k[u, t]$. Let us denote the polynomial $y^{2}-x z$ by f. Consider the maximal ideal $M=(x, y, z)$ of the polynomial ring $k[x, y, z]$. Then clearly $f \in M^{2}$. We have that $M /(f)$ is a maximal ideal of R. Let this ideal be denoted by \mathfrak{m}. Then we claim that \mathfrak{m} is not generated by two elements. Assume the contrary. Let $g, h k[x, y, z]$ be polynomials such that $\mathfrak{m}=(\bar{g}, \bar{h})$. This implies that $M=(f, g, h)$. But we know that M / M^{2} is a three dimensional vector space over k. We also know that if $M=(f, g, h)$, then M / M^{2} is generated by $\bar{f}, \bar{g}, \bar{h}$ as a k vector space. But since $\bar{f}=0$, we have that M / M^{2} is generated by \bar{g}, \bar{h} which is a contradiction since M / M^{2} is a three dimensional vector space. Therefore \mathfrak{m} is not generated by two elements. This proves that $k[x, y, z] /\left(y^{2}-x z\right) \not \approx k[u, t]$.

Exercise 3.0.39 (Subvarieties). A subset of a topological space is called locally closed if its is an open subset of its closure, or, equivalently, if it is the intersection of an open set with a closed set.

If X is a quasi affine (or a quasi projective) variety and if Y is an irreducible locally closed subset, then Y is also quasi affine(respectively, quasi projective) variety, by virtue of being a locally closed subset of the same affine or projective space. We call this the induced structure on Y and we call Y a subvariety of X.

Now let $\varphi: X \longrightarrow Y$ be a morphism, let $X^{\prime} \subset X$ and $Y^{\prime} \subset Y$ be irreducible locally closed subsets such that $\varphi\left(X^{\prime}\right) \subset Y^{\prime}$. Show that $\left.\varphi\right|_{X^{\prime}}: X^{\prime} \longrightarrow Y^{\prime}$ is a morphism.

Solution:
Consider the map $\varphi \circ i: X^{\prime} \longrightarrow Y$ where i is the inclusion morphism $X^{\prime} \hookrightarrow X$. Since the composition of morphisms is a morphism, we get that $\varphi \circ i$ is a morphism. Let $\varphi \circ i$ be denoted by φ^{\prime}. Since $\varphi\left(X^{\prime}\right) \subset Y^{\prime}$, we know that $\operatorname{Im} \varphi^{\prime} \subset Y^{\prime}$. Now consider the map $\left.\varphi\right|_{X^{\prime}}: X^{\prime} \longrightarrow Y^{\prime}$ defined by restricting the co-domain of φ^{\prime} to Y^{\prime}. This map is also clearly a morphism.

Exercise 3.0.40. Let X be any variety and let $P \in X$. Show there is a $1-1$ correspondence between the prime ideals of the local ring \mathcal{O}_{P} and the closed sub-varieties of X containing P.

Solution:
Case 1: Suppose X is a quasi-affine variety. Suppose X is an open subset of the affine variety $Z \subset \mathbb{A}^{n}$. From theorem 3.2 , we know that the prime ideals of \mathcal{O}_{P} are in 1-1 correspondence with the prime ideals $A(Z)$ contained in \mathfrak{m}_{P}. But the prime ideals \mathfrak{p} of $A(Z)$, contained in \mathfrak{m}_{P}, correspond to the varieties Y of Z containing P. Therefore there is a 1-1 correspondence between the prime ideals of \mathcal{O}_{P} and the varieties of Z containing P.

But if Y is a variety of Z, then $Y \cap X$ is an irreducible locally closed subset of X. Also, if Y_{1} and Y_{2} are two varieties of Z such that $Y_{1} \cap X=Y_{2} \cap X$ then $Y_{1}=Y_{2}$. Because if $Y_{1} \neq Y_{2}$, then $A=Y_{1} \cap Y_{2}$ and $B=\left(Y_{1} \cap X\right)^{c}$ are two proper closed subsets of Y_{1} such that $Y_{1}=A \cup B$ which contradicts the irreducibility of Y_{1}. Therefore, there is a $1-1$ correspondence between the varieties of Z containing P and the closed sub-varieties of X containing P. This implies that there is a 1-1 correspondence between the prime ideals of \mathcal{O}_{P} and the closed sub-varieties of X containing P.

Case 2: Suppose X is a quasi-projective variety. Suppose X is an open subset of the projective variety $Z \subset \mathbb{P}^{n}$. From theorem 3.4, we know that the prime ideals of \mathcal{O}_{P} are in 1-1 correspondence with the homogeneous prime ideals of $S(Y)$ contained in \mathfrak{m}_{P}. But the homogeneous prime ideals \mathfrak{p} of $A(Z)$, contained in \mathfrak{m}_{P}, correspond to the varieties Y of Z containing P. Therefore there is a 1-1 correspondence between the prime ideals of \mathcal{O}_{P} and the varieties of Z containing P.

Now, arguing as in the quasi-affine case, we get that there is a 1-1 correspondence between the prime ideals of \mathcal{O}_{P} and the varieties of Z containing P.

Exercise 3.0.41. If P is a point on the variety X, then the $\operatorname{dim} \mathcal{O}_{P}=\operatorname{dim} X$.

Solution:
If X is an affine variety, then the result is the same as proposition 3.2(c). Suppose $X \subset \mathbb{P}^{n}$ is a projective variety, then it is covered by a finite number of affine open subsets $\left\{U_{i}\right\}_{i-1}^{n+1}$ of \mathbb{P}^{n}. Since $P \in X, P \in U_{i}$ for some $i=1, \ldots, n+1$.
Without loss of generality, we may assume that $P \in U_{1}$. Then we know that $\mathcal{O}_{P, U_{1}}=\mathcal{O}_{P, X}$. Since U_{1} is an affine variety, we get from proposition $3.2(\mathrm{c})$ that $\operatorname{dim} U_{1}=\operatorname{dim} \mathcal{O}_{P, U_{1}}=\operatorname{dim} \mathcal{O}_{P, X}$. From the exercise 1.10 we know that if $\left\{U_{i}\right\}$ forms an open cover of a irreducible noetherian space, then $U_{i} \cap X \neq \emptyset$ implies that $\operatorname{dim} U_{i}=\operatorname{dim} X$. Therefore $\operatorname{dim} \mathcal{O}_{P, X}=\operatorname{dim} X$.

Exercise 3.0.42 (The Local Ring of a Subvariety). Let $Y \subset X$ be a subvariety. Let $\mathcal{O}_{Y, X}$ be the set of equivalence classes (U, f) where $U \subset X$ is open, $U \cap Y \neq \emptyset$, and f is a regular function on U. We say (U, f) is equivalent to (V, g), if $f=g$ on $U \cap V$ Show that $\mathcal{O}_{Y, X}$ is a local ring with residue field $K(Y)$ and dimension $=\operatorname{dim} X-\operatorname{dim} Y$. It is the local ring of Y on X. Note if $Y=P$ is a point we get \mathcal{O}_{P}, and if $Y=X$ we get $K(X)$. Note also that if Y is not a point, then $K(Y)$ is not algebraically closed, so in this way we get local rings whose residue fields are not algebraically closed.

Solution:
Let \mathfrak{m}_{Y} denote the ideal $\left\{(U, f) \in \mathcal{O}_{Y, X} \mid f(x)=0 \forall x \in U \cap Y\right\}$. We prove that any element of $\mathcal{O}_{Y, X}$ not in \mathfrak{m}_{Y} is a unit which proves that $\mathcal{O}_{Y, X}$ is a local ring with maximal ideal \mathfrak{m}_{Y}. Suppose $(U, f) \notin \mathfrak{m}_{Y}$. Then $f \neq 0$ on $U \cap Y$. Therefore $\exists P \in Y \cap U$ such that $f(P) \neq 0$. Since f is regular on U, there exists a neighbourhood V of P in U such that $f=\frac{f_{1}}{f_{2}}$ on V. Let $g=\frac{f_{2}}{f_{1}}$. Consider $(g, V)(f, U)=(f g, V \cap U)=\left(I_{d}, V \cap U\right)$. Therefore (f, U) is a unit in $\mathcal{O}_{Y, X}$.

We now claim that $\mathcal{O}_{Y, X} / \mathfrak{m}_{Y} \cong K(Y)$. Consider an element $(U, f) \in \mathcal{O}_{Y, X}$. Therefore f is a regular function on U. Therefore f is regular on $U \cap Y$ which is an open subset of Y. We define a map $\varphi: \mathcal{O}_{Y, X} \longrightarrow K(Y)$ by $\varphi(U, f)=(U \cap Y, f)$. It can be checked that this ring homomorphism. Now consider an element in $K(Y)$. It is an equivalence class of the form (V, f) where V is a non empty open subset of Y and f is a regular function on V and where two pairs $\left(V_{1}, f_{1}\right)$ and $\left(V_{2}, f_{2}\right)$ are identified if $f_{1}=f_{2}$ on $V_{1} \cap V_{2}$. Since f is regular on V for any point $P \in V$, we
can find a open neighbourhood V_{0}, open in V, of P such that $f=h / g$ on V_{0}. Since $P \in V \cap D(g)$, we have that $V \cap D(g) \neq \emptyset$. Also, $(V, f)=(V \cap D(g), f)$. Also, $D(g) \cap Y \neq \emptyset$ and $(D(g) \cap Y, h / g)=(V, f)$. Therefore we have that $\varphi(D(g), h / g)=(D(g) \cap Y, h / g)=(V, f)$ proving that φ is surjective.

Consider any element $(U, f) \in \mathfrak{m}_{Y}$. Then $\varphi(U, f)=(U \cap Y, f)=0$. Therefore $\mathfrak{m}_{Y} \subset \operatorname{ker} \varphi$. Since \mathfrak{m}_{Y} is a maximal ideal, we get that $\mathfrak{m}_{Y}=\operatorname{ker} \varphi$. Therefore $K(Y) \cong \mathcal{O}_{Y, X} / \mathfrak{m}_{Y}$ and hence $K(Y)$ is the residue field of $\mathcal{O}_{Y, X}$.

Suppose X is a projective variety. Let $\left\{X_{i}\right\}$ be the open cover of X by affine open subsets where $X_{i}=U_{i} \cap X$ and U_{i} is as defined before proposition 2.2. Then $\left\{Y \cap X_{i}\right\}$ is a cover of Y by affine open subsets. Also, $Y \cap X_{i}=Y \cap U_{i}$. Let $Y \cap X_{i}$ be denoted by Y_{i}. Now $Y_{i} \neq \emptyset$ implies that $X_{i} \neq \emptyset$. Also, by definition of the local ring $\mathcal{O}_{Y, X}$ we know that $\mathcal{O}_{Y, X} \cong \mathcal{O}_{Y_{i}, X_{i}}$. Also, from the solution to the exercise 2.6 we know that $\operatorname{dim} X=\operatorname{dim} X_{i}$ and $\operatorname{dim} Y=\operatorname{dim} Y_{i}$. Therefore it is enough if we prove that dimension of $\mathcal{O}_{Y, X}$ is equal to $\operatorname{dim} X-\operatorname{dim} Y$ in the case when X is a affine variety.

Let us assume that X is an affine variety. For this we make the claim that $\mathcal{O}_{Y, X} \cong A(X)_{\mathcal{I}}$ where \mathcal{I} is the prime ideal of regular functions on X vanishing on Y. Any element of $A(X)_{\mathcal{I}}$ is of the form f / g where g is a polynomial which does not vanish on Y. Let $U=D(g)$. Then $U \cap Y \neq \emptyset$. Define $\varphi: A(X)_{\mathcal{I}} \longrightarrow \mathcal{O}_{Y, X}$ by sending the f / g to the equivalence class $(U, f / g)$. Suppose f_{1} / g_{1} and f_{2} / g_{2} are two elements of $A(X)_{\mathcal{I}}$ such that $\left(f_{1} / g_{1}, U_{1}\right)=\left(f_{2} / g_{2}, U_{2}\right)$ where $U_{1}=D\left(g_{1}\right)$ and $U_{2}=D\left(g_{2}\right)$. Then $f_{1} / g_{1}=f_{2} / g_{2}$ on $U_{1} \cap U_{2}$. Now $X \backslash\left(U_{1} \cap U_{2}\right)$ is a closed set and hence is of the form $\mathcal{Z}\left(h_{1}, \ldots, h_{l}\right)$ for some polynomials h_{i}. Therefore for any $i=1, \ldots, l$ we have $h_{i}\left(f_{1} g_{2}-f_{2} g_{1}\right)=0$. Since $Y \cap\left(U_{1} \cap U_{2}\right) \neq \emptyset, h_{i} \notin \mathcal{I}$ for any $i=1, \ldots, l$. Therefore $f_{1} / g_{1}=f_{2} / g_{2}$ in $A(X)_{\mathcal{I}}$. Therefore the map is injective.

Consider any element (U, f) where f is a regular function on U. Then for any point $P \in U$, there exists a neighbourhood $V \subset U$ containing P such that $f=f_{1} / g_{1}$ on V and $g \not \equiv 0$ on V. Since $g_{1}(P) \neq 0$, we have that $g \notin \mathcal{I}$. We claim that (U, f) is the image of f_{1} / g_{1}. But we know that the image of f_{1} / g_{1} is $\left(U_{0}, f_{1} / g_{1}\right)$ where $U_{0}=D\left(g_{1}\right)$. Therefore it is enough to prove that $f=f_{1} / g_{1}$ on $U \cap U_{0}$. But we can take $V=U_{0} \cap U$ which proves the claim. Therefore $\operatorname{dim} \mathcal{O}_{Y, X}=h t(\mathcal{I})$. Recall that $A(X) / \mathcal{I}=A(Y)$. Then it follows that $\operatorname{dim} \mathcal{O}_{Y, X}=h t(\mathcal{I})=$
$\operatorname{dim} A(X)-\operatorname{dim} A(Y)=\operatorname{dim} X-\operatorname{dim} Y$.
Exercise 3.0.43 (Projection from a point). Let \mathbb{P}^{n} be a hyperplane in \mathbb{P}^{n+1} and let $P \in \mathbb{P}^{n+1}-\mathbb{P}^{n}$. Define a mapping $\varphi: \mathbb{P}^{n+1}-\{P\} \longrightarrow \mathbb{P}^{n}$ by $\varphi(Q)=$ the intersection of the unique line containing P and Q with \mathbb{P}^{n}.
(a) Show that φ is a morphism.
(b) Let $Y \subset \mathbb{P}^{3}$ be the twisted cubic curve which is the image of the 3 -uple embedding of \mathbb{P}^{1}. If t, u are the homogeneous coordinates of \mathbb{P}^{1}, we say that Y is the curve given parametrically by $(x, y, z, w)=\left(t^{3}, t^{2} u, t u^{2}, u^{3}\right)$. Let $P=(0,0,1,0)$, and let \mathbb{P}^{2} be the hyperplane $z=0$. Show that the projection of Y from P is the cuspidal cubic curve and find its equation in the plane.

Solution:
(a) We are given that \mathbb{P}^{n} is a hyperplane in \mathbb{P}^{n+1} and $P \in \mathbb{P}^{n+1} \backslash \mathbb{P}^{n}$. Suppose the coordinates of \mathbb{P}^{n+1} are given by x_{0}, \ldots, x_{n}. By a linear change of coordinates, we may assume that \mathbb{P}^{n} is given by $x_{n}=0$ and that $P=(0: 0: \ldots: 1)$. Suppose $Q \in \mathbb{P}^{n+1} \backslash\{P\}$ is given by $\left(z_{0}: \ldots: z_{n}\right)$.
Then $\varphi(Q)=\left(z_{0}: \ldots: z_{n-1}\right)$. We now prove that the map φ is continuous.
Any closed subset of \mathbb{P}^{n} is of the form $\mathcal{Z}(\mathfrak{a})$ for some ideal $\mathfrak{a}=\left(f_{1}, \ldots, f_{r}\right)$ of $k\left[x_{0}, \ldots, x_{n}\right]$. We claim that $\varphi^{-1}(\mathcal{Z}(\mathfrak{a}))=\mathfrak{b}$ where \mathfrak{b} is the ideal of $k\left[x_{0}, \ldots, x_{n+1}\right]$ generated by the elements f_{1}, \ldots, f_{r} when considered as polynomials of $k\left[x_{0}, \ldots, x_{n+1}\right]$. Suppose $T=\left(t_{0}: \ldots: t_{n+1}\right) \in \mathcal{Z}(\mathfrak{b})$. Then for each $i=1, \ldots, r, f_{i}(T)=0$ i.e, $f\left(t_{0}, \ldots, t_{n}\right)=0$. Therefore $\varphi(T) \in \mathcal{Z}(\mathfrak{a})$ which implies that $T \in \varphi^{-1}(\mathcal{Z}(\mathfrak{a}))$. Conversely, assume that $T=\left(t_{0}: \ldots: t_{n+1}\right) \in \varphi^{-1}(\mathcal{Z}(\mathfrak{a}))$. Let $S=\varphi(T)$. Then $S=\left(t_{0}: \ldots: t_{n}\right)$ and $S \in \mathcal{Z}(\mathfrak{a})$. Therefore for each $i=1, \ldots, r$, we have $f_{i}(S)=0$ and therefore $T \in \mathcal{Z}(\mathfrak{b})$.

To prove that φ is a morphism consider any open subset U of \mathbb{P}^{n} and a regular function $f: U \longrightarrow k$. Let $P \in U$ be any point. Then there exists an open neighbourhood of $W \subset U$ of P such that $f=\frac{f_{1}}{f_{2}}$ where $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n}\right]$.
We have $\frac{f_{1}}{f_{2}} \circ \varphi=\frac{f_{1}}{f_{2}}$ where f_{1}, f_{2} are considered as polynomials in $k\left[x_{0}, \ldots, x_{n+1}\right]$. Therefore for any point $\varphi^{-1}(P) \in \varphi^{-1}(U)$, there exists a
neighbourhood $\varphi^{-1}(W)$ such that $f \circ \varphi=\frac{f_{1}}{f_{2}}$ for some polynomials $f_{1}, f_{2} \in k\left[x_{0}, \ldots, x_{n+1}\right]$. Therefore $f \circ \varphi: \varphi^{-1}(U) \longrightarrow k$ is a regular function and therefore φ is a morphism.
(b) The map $\varphi: \mathbb{P}^{3} \backslash P: \longrightarrow \mathbb{P}^{2}$ where $P=(0,0,1,0)$ is given by $(x: y: z: w) \mapsto(x: y: w)$. If Y is the twisted cubic curve, parametrized by $(x: y: z: w)=\left(t^{3}: t^{2} u: t u^{2}: u^{3}\right)$, then the projection of Y from P is parametrized by $(x: y: z)=\left(t^{3}: t^{2} u: u^{3}\right)$. Let Z denote the projection of Y from P. Then clearly $Z \subset \mathcal{Z}\left(y^{3}-x^{2} w\right)$. Now consider any point $Q=(x: y: w) \in \mathcal{Z}\left(y^{3}-x^{2} w\right)$. When $x=0$, the point $Q=(0: 0: w)$ for arbitrary values of w. Consider the case when $x \neq 0$. We can assume that $x=1$. Therefore the point is of the form $\left(1: y: y^{3}\right)$ for arbitrary values of y. Put $y=\frac{u}{t}$. Then $\left(1: y: y^{3}\right)=\left(t^{3}: t^{2} u: u^{3}\right)$. In the case when $t=0$, this is equal to the point $(0: 0: w)$. Therefore we have that $Z \subset \mathcal{Z}\left(y^{3}-x^{2} w\right)$.
Therefore projection from P is equal to $\mathcal{Z}\left(y^{3}-x^{2} w\right)$ which is the twisted cubic curve.

Exercise 3.0.44 (Product of Affine Varieties). Let $X \subset \mathbb{A}^{n}$ and $Y \subset \mathbb{A}^{m}$ be affine varieties.
(a) Show that $X \times Y \subset \mathbb{A}^{n+m}$ with its induced topology is irreducible.
(b) Show that $A(X \times Y) \cong A(X) \otimes_{k} A(Y)$.
(c) Show that $X \times Y$ is a product in the category of varieties, i.e., show (i) the projections $p_{1}: X \times Y \longrightarrow X$ and $p_{2}: X \times Y \longrightarrow Y$ are morphisms, and (ii) given a variety Z, and the morphisms $\varphi_{1}: Z \longrightarrow X, \varphi_{2}: Z \longrightarrow Y$, there is a unique morphism $\varphi: Z \longrightarrow X \times Y$ such that $p_{i} \circ \varphi=\varphi_{i}$ for $i=1,2$.
(d) Show that $\operatorname{dim} X \times Y=\operatorname{dim} X+\operatorname{dim} Y$.

Solution:
(a) Suppose $X \times Y$ is the union of two closed sets $Z_{1} \cup Z_{2}$. Let $X_{i}=\left\{x \in X \mid x \times Y \subset Z_{i}\right\}, i=1,2$. We claim that $X=X_{1} \cup X_{2}$. It is clear that $X_{1} \cup X_{2} \subset X$. Conversely, consider a point $x \in X$. Then $(x \times Y) \cap Z_{i}$ is a closed subset of $X \times Y$ because it is the intersection of two
closed subsets Z_{i} and $x \times Y$. Also, it is clear that $x \times Y=$
$\left((x \times Y) \cap Z_{1}\right) \cup\left((x \times Y) \cap Z_{2}\right)$. Since Y is irreducible and $x \times Y$ is the homeomorphic image of $Y, x \times Y$ is irreducible. Therefore
$x \times Y=(x \times Y) \cap Z_{i}$ for either $i=1,2$. Therefore $x \times Y \subset Z_{i}$ for either $i=1,2$. Therefore $x \in X_{1} \cup X_{2}$. Hence $X=X_{1} \cup X_{2}$.

We now prove that X_{i} are closed subsets of X. Let $U_{i}=X \subset X_{i}$ and $V_{i}=X \times Y \subset Z_{i}$. We now claim that $P\left(V_{i}\right)=U_{i}$. Since V_{i} is open subset of $X \times Y$ and since P is an open map, this proves that U_{i} is an open subset of X and hence that X_{i} is an closed subset of X. Consider the case when $i=1$. Consider a point $a \in P\left(V_{1}\right)$. Therefore there exists a point $b \in Y$ such that $a \times b \in V_{1}$. Suppose that $a \in X_{1}$. Then $a \times Y \subset Z_{1}$ which implies that $a \times b \in Z_{1}$ which is a contradiction. Therefore $a \notin X_{1}$ and hence $P\left(V_{1}\right) \subset U_{1}$.

Conversely let $a \in U_{1}$. Since $a \notin X_{1}$, we have that $a \times Y \not \subset Z_{1}$. Therefore there exists a point $b \in Y$ such that $a \times b \notin Z_{1}$. Therefore $a \times b \in V_{1}$ and hence $a \in P\left(V_{1}\right)$. This proves that $P\left(V_{1}\right)=U_{1}$. Similarly we can prove that $P\left(V_{2}\right)=U_{2}$.

Since X is irreducible $X=X_{i}$ for either $i=1,2$. Therefore $X \times Y=Z_{i}$ for either $i=1,2$ and hence $X \times Y$ is irreducible.
(b) To prove that $A(X \times Y) \cong A(X) \otimes_{k} A(Y)$, we first define a map $F: A(X) \times A(Y) \longrightarrow A(X \times Y)$ given by sending the ordered pair (f, g) to the element $f \times g \in A(X \times Y)$ where $f \times g$ is the defined by $f \times g(x, y)=f(x) g(y)$. Clearly this map is a bilinear map and hence by the universal property of tensor product there exists a unique homomorphism $\tilde{F}: A(X) \otimes_{k} A(Y) \longrightarrow A(X \times Y)$ given by $f \otimes g \mapsto f \times g$.

Now $A(X \times Y)$ is generated as a k-algebra by the elements $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{j}\right\}_{j=1}^{m}$ where $x_{i}=X_{i} \operatorname{modI}(X \times Y)$ and $y_{j}=Y_{j} \bmod I(X \times Y)$ where X_{i} and Y_{j} are the coordinate functions of \mathbb{A}^{n} and \mathbb{A}^{m} respectively. Clearly $\tilde{F}\left(x_{i} \times 1\right)=x_{i}$ for $i=1, \ldots, n$ and $\tilde{F}\left(1 \times y_{j}\right) y_{j}$ for $j=1, \ldots, m$. Therefore the map \tilde{F} is surjective.

To prove that \tilde{F} is injective consider an element $f \otimes g \in A(X) \otimes A(Y)$ such
that $\tilde{F}(f \otimes g)=0$. Therefore $f \times g=0$. Therefore $f(x) g(y)=0$ for all $x \in X$ and $y \in Y$. Therefore either $f=0$ or $g=0$. Therefore $f \otimes g=0$.
(c) From lemma 3.6, we get that the projection maps are morphisms. Suppose φ, ϕ are two morphism from Z to $X \times Y$ such that $p_{i} \circ \varphi=\varphi_{i}$ and $p_{i} \circ \phi=\varphi_{i}$ for $i=1,2$. Since for any $z \in Z, p_{i}(\varphi(z))=p_{i}(\phi(z))$ for $i=1$, 2 , we get that $\varphi=\phi$. Therefore if such a map exists, it is unique.

Define a map $\varphi=\varphi_{1} \times \varphi_{2}: Z \longrightarrow X \times Y$ by $\varphi(z)=\left(\varphi_{1}(z), \varphi_{2}(z)\right)$. This map clearly satisfies the property $p_{i} \circ \varphi=\varphi_{i}$. Since X is a affine variety, we know from Lemma 3.6 that there exist n regular functions $f_{1}, \ldots, f_{n} \in A(X)$ such that $\varphi_{1}=\left(f_{1}, \ldots, f_{n}\right)$. Similarly there exist m regular functions $g_{1}, \ldots, g_{m} \in A(Y)$ such that $\varphi_{2}=\left(g_{1}, \ldots, g_{m}\right)$. Therefore $\varphi=\left(f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{m}\right)$ and hence is a morphism.
(d) We have that $A(X \times Y)=A(X) \otimes_{k} A(Y)$. Therefore we have to prove that $\operatorname{dim} A(X) \otimes_{k} A(Y)=\operatorname{dim} A(X)+\operatorname{dim} A(Y)$. Let $\operatorname{dim} A(X)=r$ and $\operatorname{dim} A(Y)=s$. We know that $A(X)$ and $A(Y)$ are finitely generated k-algebras. Suppose $A(X)$ is generated by $x_{1}, x_{2}, \ldots, x_{m}$ over k as an algebra such that x_{1}, \ldots, x_{r} are algebraically independent. Similarly assume that $A(Y)$ is generated by y_{1}, \ldots, y_{n} over k as an algebra such that y_{1}, \ldots, y_{s} are algebraically independent.

We claim that $A(X) \otimes A(Y)$ is generated by $x_{1} \otimes 1, \ldots, x_{m} \otimes 1$ $1 \otimes y_{1}, \ldots, 1 \otimes y_{n}$ over k as an algebra. We know that $A(X) \otimes A(Y)$ is generated by elements of the form $a \otimes b$ as a k-module (i.e, k-vector space) where $a \in A(X)$ and $b \in A(Y)$. But $a \otimes b=(a \otimes 1)(1 \otimes b)$. We know that $a \otimes 1$ is given by a polynomial in $x_{i} \otimes 1$ and $1 \otimes b$ is given by a polynomial in $1 \otimes y_{j}$. Therefore $a \otimes b$ is given by a polynomial in $x_{i} \otimes 1$ and $1 \otimes y_{j}$. Therefore $A(X) \otimes_{k} A(Y)$ is generated by $x_{1} \otimes 1, \ldots, x_{m} \otimes 1,1 \otimes y_{1}, \ldots, 1 \otimes y_{n}$ as a k-algebra.

We now claim that $x_{1} \otimes 1, \ldots, x_{r} \otimes 1,1 \otimes y_{1}, \ldots, 1 \otimes y_{s}$ are algebraically independent.
Suppose $\sum a_{\alpha 1 \ldots \alpha r \beta 1 \ldots \beta s}\left(x_{1} \otimes 1\right)^{\alpha 1} \ldots\left(x_{r} \otimes 1\right)^{\alpha r}\left(1 \otimes y_{1}\right)^{\beta 1} \ldots\left(1 \otimes y_{s}\right)^{\beta s}=0$ for some $a_{\alpha 1 \ldots \alpha r \beta 1 \ldots \beta s} \in k$. Then for any point $\left(u_{1}, \ldots, u_{m}\right) \in X$ we have that
$\sum a_{\alpha 1 \ldots \alpha r \beta 1 \ldots \beta s}\left(u_{1}^{\alpha 1} \ldots u_{r}^{\alpha r}\right)\left(1 \otimes y_{1}^{\beta 1} \ldots y_{s}^{\beta s}\right)=0$. We know that in the tensor product of k-algebras, $1 \otimes y=0$ if and only if $y=0$. We use this fact along with the fact that the y_{i} are algebraically independent to conclude that in the above summation each of the coefficients $a_{i}\left(u_{1}, \ldots, u_{m}\right)$, which is a polynomial in u_{i} with coefficients from among the $a_{\alpha 1 \ldots \alpha r \beta 1 \ldots \beta s}$, is 0 . But this is true for each $\left(u_{1}, \ldots, u_{m}\right) \in X$. Hence each of the polynomials $a_{i}\left(x_{1}, \ldots, x_{m}\right)=0$. We now use the fact that x_{i} are algebraically independent to conclude that each of the $a_{\alpha 1 \ldots \alpha r \beta 1 \ldots \beta s}=0$. Therefore we get that
$x_{1} \otimes 1, \ldots, x_{r} \otimes 1,1 \otimes y_{1}, \ldots, 1 \otimes y_{s}$, are algebraically independent. This proves that the $\operatorname{dim} X \times Y \geq \operatorname{dim} X+\operatorname{dim} Y$.

Suppose after some relabelling of the x_{i} we get that $x_{1} \otimes 1, \ldots, x_{t} \otimes 1$,
$1 \otimes y_{1}, \ldots 1 \otimes y_{s}$ are algebraically independent for some $t<r$. We claim that this implies that x_{1}, \ldots, x_{t} are algebraically independent which is not true since the dimension of $A(X)$ is $r>t$. Suppose x_{1}, \ldots, x_{t} are algebraically dependent. Then there exist $\left\{a_{\alpha 1 \ldots \alpha t}\right\}$ not all zero, such that $\sum a_{\alpha 1 \ldots \alpha t} x_{1}^{\alpha 1} \ldots x_{t}^{\alpha t}=0$. Therefore $1 \otimes \sum a_{\alpha 1 \ldots \alpha 2} x_{1}^{\alpha 1} \ldots x_{t}^{\alpha t}=0$ which implies that $\sum a_{\alpha 1 \ldots \alpha t}\left(1 \otimes x_{1}\right)^{\alpha 1} \ldots\left(1 \otimes x_{t}\right)^{\alpha t}=0$. But this implies that $x_{1} \otimes 1, \ldots, x_{t} \otimes 1,1 \otimes y_{1}, \ldots 1 \otimes y_{s}$ are algebraically dependent. Therefore $x_{1} \otimes 1, \ldots, x_{t} \otimes 1,1 \otimes y_{1}, \ldots 1 \otimes y_{s}$ are algebraically dependent for any $t<r$.

Similarly if we suppose that after some relabelling of the y_{j} that
$x_{1} \otimes 1, \ldots, x_{r} \otimes 1,1 \otimes y_{1}, \ldots 1 \otimes y_{u}$ are algebraically independent for some $u<s$. Then by an argument similar to above we get a contradiction. Therefore $x_{1} \otimes 1, \ldots, x_{r} \otimes 1,1 \otimes y_{1}, \ldots 1 \otimes y_{s}$ is the smallest algebraically independent subset from $x_{1} \otimes 1, \ldots, x_{m} \otimes 1,1 \otimes y_{1}, \ldots 1 \otimes y_{n}$. This proves that $\operatorname{dim} X \times Y=\operatorname{dim} X+\operatorname{dim} Y$.

Exercise 3.0.45 (Product of Quasi-projective Varieties). Use the Segre embedding to identify $\mathbb{P}^{n} \times \mathbb{P}^{m}$ with its image and hence give it the structure of a projective variety. Now for any two quasi-projective varieties $X \subset \mathbb{P}^{n}$ and $Y \subset \mathbb{P}^{m}$, consider $X \times Y \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$.
(a) Show that $X \times Y$ is a quasi-projective variety.
(b) If X and Y are both projective, show that $X \times Y$ is projective.
(c) Show that $X \times Y$ is a product in the category of varieties.

Solution:
We first prove (b) and then use the proof to give a proof of (a).
(b) It is clear that $X \times Y=\left(X \times \mathbb{P}^{m}\right) \cap\left(\mathbb{P}^{n} \times Y\right)$. We now claim that $X \times \mathbb{P}^{m}$ and $\mathbb{P}^{n} \times Y$ are closed subsets of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ which will prove that $X \times Y$ is a closed subset of $\mathbb{P}^{n} \times \mathbb{P}^{m}$. Let $X=\mathcal{Z}(\mathfrak{a})$ and $Y=\mathcal{Z}(\mathfrak{b})$. Let the homogeneous coordinates of \mathbb{P}^{N} be $\left\{z_{i j} \mid i=0, \ldots n ; j=0, \ldots m\right\}$. Suppose $\mathfrak{a}=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ for some homogeneous polynomials $f_{l} \in k\left[x_{0}, \ldots, m\right]$. For each $l=1, \ldots, r$ and $j=0, \ldots, m$, define $f_{l j}=f_{l}\left(z_{0 j}, z_{1 j}, \ldots z_{n j}\right) \in k\left[\left\{z_{i j}\right\}\right]$. For each $j=0, \ldots m$ define $\mathfrak{a}_{j} \subset k\left[\left\{z_{i j}\right\}\right]$ to be the ideal $\left\langle f_{1 j}, \ldots, f_{r j}\right\rangle$.

We claim that $X \times \mathbb{P}^{m}=\bigcap_{j=0}^{m} \mathcal{Z}\left(\mathfrak{a}_{j}\right)$ and hence is a closed subset of $\mathbb{P}^{n} \times \mathbb{P}^{m}$. Let $\varphi: \mathbb{P}^{n} \times \mathbb{P}^{m} \longrightarrow \mathbb{P}^{N}$ be the Segre embedding. Consider a point $\varphi(a, b) \in X \times \mathbb{P}^{m}$. Then $a \in X$ and $\varphi(a, b)=\left(a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{i} b_{j}, \ldots, a_{n} b_{m}\right)$ in the lexicographic order. Suppose $b_{j} \neq 0$. To illustrate the point we consider the case when $i=0$. Then $\varphi(a \times b)=\left(a_{0}, a_{0} b_{1} / b_{0}, \ldots, a_{i}, \ldots, a_{n}, \ldots, a_{n} b_{m} / b_{0}\right)$. Therefore $\varphi(a, b) \in \mathcal{Z}\left(\mathfrak{a}_{0}\right)$. Also when $b_{0}=0$, it is very clear that $\varphi(a, b) \in \mathcal{Z}\left(\mathfrak{a}_{0}\right)$. Therefore $\varphi(a, b) \in \bigcap_{j=0}^{m} \mathcal{Z}\left(\mathfrak{a}_{j}\right)$ and hence $X \times \mathbb{P}^{m} \subset \bigcap_{j=0}^{m} \mathcal{Z}\left(\mathfrak{a}_{j}\right)$.

Conversely let $\varphi(a, b) \in \bigcap_{j=0}^{m} \mathcal{Z}\left(\mathfrak{a}_{j}\right)$. Suppose $b_{j} \neq 0$. Since $\varphi(a, b) \in \mathcal{Z}\left(\mathfrak{a}_{j}\right)$, for each $l=1, \ldots, r, f_{l j}(\varphi(a, b))=0$. But $f_{l j}(\varphi(a, b))=f_{l}\left(a_{0} b_{j}, a_{1} b_{j}, \ldots, a_{n} b_{j}\right)=$ $b_{j} f_{l}\left(a_{0}, \ldots, a_{n}\right)$ since f_{l} are homogeneous polynomials. Since $b_{j} \neq 0$, we get that $f_{l}\left(a_{0}, \ldots, a_{n}\right)=0$ for each $l=1, \ldots, r$. Therefore $a \in \mathcal{Z}(\mathfrak{a})=X$ and hence $\varphi(a, b) \in X \times \mathbb{P}^{m}$ proving that $X \times \mathbb{P}^{m}=\bigcap_{j=0}^{m} \mathcal{Z}\left(\mathfrak{a}_{j}\right)$. We can similarly prove that $\mathbb{P}^{n} \times Y$ is a closed subset of $\mathbb{P}^{n} \times \mathbb{P}^{m}$.
(a) Suppose X is an open subset of the projective variety X_{0} and Y is an open subset of the projective variety Y_{0}. Let $X_{0} \backslash X=C$ and $Y_{0} \backslash Y=D$. Since D is a closed subset of Y_{0}, we know that D is of the form $D_{0} \cap Y_{0}$ for some closed subset D_{0} of \mathbb{P}^{m}. Now, $X_{0} \times D=\left(X_{0} \times Y_{0}\right) \cap\left(X_{0} \times D\right)$. We know from part (a) that $X_{0} \times D$ is a closed subset of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ and therefore $X_{0} \times D$ is a closed subset of $X_{0} \times Y_{0}$. We can similarly prove that $C \times Y_{0}$ is a closed subset of $X_{0} \times Y_{0}$.

We now claim that $X_{0} \times Y_{0}=(X \times Y) \cup\left(X_{0} \times D\right) \cup\left(C \times Y_{0}\right)$. It is clear that $(X \times Y) \cup\left(X_{0} \times D\right) \cup\left(C \times Y_{0}\right) \subset X_{0} \times Y_{0}$. Conversely, suppose that $\varphi(a, b) \in X_{0} \times Y_{0}$. If $a \in X$ and $b \in Y$, then $\varphi(a, b) \in X \times Y$. If $b \in Y_{0} \backslash Y$,
then $\varphi(a, b) \in X_{0} \times D$ and if $a \in X_{0} \backslash X$, then $\varphi(a, b) \in C \times Y_{0}$. Therefore $\varphi(a, b) \in(X \times Y) \cup\left(X_{0} \times D\right) \cup\left(C \times Y_{0}\right)$. This proves the claim.

We now claim that $\left(X_{0} \times D\right) \cup\left(C \times Y_{0}\right) \cup(X \times Y)=\emptyset$. Suppose $\varphi(a, b) \in\left(X_{0} \times D\right) \cup\left(C \times Y_{0}\right) \cup(X \times Y)$. Since $\varphi(a, b) \in X \times Y$, we have that $a \in X$ and $b \in Y$. Now $\varphi(a, b)$ also belongs to $\left(X_{0} \times D\right) \cup\left(C \times Y_{0}\right)$. Consider the case when $\varphi(a, b) \in X_{0} \times D$. Therefore $b \in D$ and we get a contradiction. Similarly if $\varphi(a, b) \in C \times Y_{0}$, we get a contradiction. This proves the claim.

Now, $X \times Y=\left(X_{0} \times Y_{0}\right) \backslash\left(X_{0} \times D \cup C \times Y_{0}\right)$. Since $X_{0} \times D \cup C \times Y_{0}$ is a closed subset of $X_{0} \times Y_{0}$, we get that $X \times Y$ is an open subset of $X_{0} \times Y_{0}$ and hence is a quasi-projective variety.
(c) Let the Segre embedding of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ in \mathbb{P}^{N} where $N=n m+n+m$ be denoted by σ. Let $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in X$ and $b=\left(b_{0}, \ldots, b_{m}\right) \in Y$ be any two points. We may assume that $a_{0} \neq 0$ and $b_{0} \neq 0$. Consider the point $\sigma(a \times b)=\left(a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{n} b_{m}\right) \in X \times Y$. Let $P_{1}: X \times Y \longrightarrow X$ be the map defined by $\left(a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{n} b_{m}\right) \mapsto\left(a_{0} b_{0}, a_{1} b_{0}, \ldots a_{n} b_{0}\right)$ and $P_{2}: X \times Y \longrightarrow Y$ be the map defined by $\left(a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{n} b_{m}\right) \mapsto\left(a_{0} b_{0}, a_{0} b_{1}, \ldots a_{0} b_{m}\right)$. Since these maps are defined by polynomials locally they are morphisms. These maps are the projection maps.

Let $\varphi_{1}: Z \longrightarrow X$ and $\varphi_{2}: Z \longrightarrow Y$ be any two morphisms. Define a map $F: Z \longrightarrow X \times Y$ by $z \mapsto\left(a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{n} b_{m}\right)$ where $\varphi_{1}(z)=\left(a_{0}, \ldots, a_{n}\right)=a$ and $\varphi_{2}(z)=\left(b_{0}, b_{1}, \ldots, b_{m}\right)=b$. We claim that this map is morphism. It is enough to prove that this map is locally defined by quotients of polynomial functions. We know that for any point $a \in X$ and $b \in Y$ we have affine open neighbourhoods $U \subset X$ and $Y \subset Y$ containing a and b respectively such that the product of affine varieties $U \times V$ is isomorphic to $\sigma(U \times V)$. Let $W=\varphi_{1}^{-1}(U) \cap \varphi_{2}^{-1}(V) \subset Z$. Then the restriction of φ_{1} to $W,\left.\varphi_{1}\right|_{W}: W \longrightarrow U$ is a morphism where U is an affine variety. Therefore $\left.\varphi_{1}\right|_{W}$ is defined by polynomial functions. Similarly the restriction of φ_{2} to $W,\left.\varphi_{2}\right|_{W}: W \longrightarrow V$ is defined by polynomial functions. Now, the restriction of F to $W,\left.F\right|_{W}: W \longrightarrow U \times V$ is given by $z \mapsto \sigma_{0}\left(\varphi_{1}^{\prime}(z), \varphi_{2}^{\prime}(z)\right)$ where $\sigma_{0}=\left.\sigma\right|_{U \times V}, \varphi_{1}^{\prime}=\left.\varphi_{1}\right|_{W}$ and $\varphi_{2}^{\prime}=\left.\varphi_{2}\right|_{W}$. Since $\sigma_{0},\left.\varphi_{1}\right|_{W}$ and $\left.\varphi_{2}\right|_{W}$ are morphisms of affine varieties and hence are given by polynomial functions and hence $\left.F\right|_{W}$ is given by polynomial functions. Hence we have that F is given by polynomial functions locally and hence F is a morphism.

Also, $P_{1} \circ F=\varphi_{1}$ and $P_{2} \circ F=\varphi_{2}$. Hence $X \times Y$ is a product in the category of varieties.

Exercise 3.0.46 (Normal Variety). A variety X is said too be Normal at a point $P \in X$ if \mathcal{O}_{P} is integrally closed. X is normal if it is normal at every point.
(a) Show that every conic in \mathbb{P}^{2} is normal.
(b) Show that the quadric surfaces Q_{1}, Q_{2} given by $Q_{1}: x y=z w ; Q_{2} ; x y=z^{2}$ are normal.
(c) Show that the cuspidal cubic $y^{2}=x^{3}$ in \mathbb{A}^{2} is not normal.
(d) If Y is affine, then Y is normal if and only if $A(Y)$ is integrally closed.
(e) Let Y be an affine variety. Show that there exists a normal affine variety \tilde{Y} and a morphism $\pi: \tilde{Y} \longrightarrow Y$ with the property that whenever Z is a normal variety and $\varphi: Z \longrightarrow Y$ is a dominant morphism (i.e., $\varphi(Z)$ is dense in Y), then there is a unique morphism $\theta: Z \longrightarrow \tilde{Y}$ such that $\varphi=\pi \circ \theta$. \tilde{Y} is called the normalization of Y.

Solution:
(a) From Exercise 3.1 we know that every conic \mathcal{C} in \mathbb{P}^{2} is isomorphic to \mathbb{P}^{1} and hence $S(\mathcal{C}) \cong k[x, y]$. If we consider any point $P \in \mathcal{C}$ then from Theorem 3.4 we know that $\mathcal{O}_{P} \cong k[x, y]_{\left(\mathfrak{m}_{P}\right)}$. But from the proof of the same theorem we know that $k[x, y]_{\left(\mathfrak{m}_{P}\right)} \cong k[x]_{\mathfrak{m}_{P}^{\prime}}$ where $\mathfrak{m}_{P}^{\prime}$ is the ideal of $A\left(Y_{i}\right)=k[x]$ corresponding to P and Y_{i} is the affine open subset of \mathbb{P}^{1} containing P. But $k[x]_{\mathfrak{m}_{P}^{\prime}}$ is a discrete valuation ring and hence is integrally closed. This proves that \mathcal{O}_{P} is integrally closed for $P \in \mathcal{C}$ and hence any conic \mathcal{C} in \mathbb{P}^{2} is normal.

We first prove (d) and then apply it to prove (c).
(d) From theorem 3.2 we know that for any point $P \in Y \subset \mathbb{A}^{n}, \mathcal{O}_{P} \cong A(Y)_{\mathfrak{m}_{P}}$ where $\mathfrak{m}_{P} \subset A(Y)$ is the ideal of functions vanishing at P. Also, there is a 1-1 correspondence between ideals of $A(Y)$ and points of Y. Suppose Y is a normal variety, i.e., Y is normal at every point $P \in Y$. Then $\mathcal{O}_{P}=A(Y)_{\mathfrak{m}_{P}}$ is integrally closed for each maximal ideal \mathfrak{m}_{P} of Y. But we know that an integral domain R is
integrally closed if and only if R_{M} is integrally closed for each maximal ideal M of R. Therefore Y is normal if and only if $A(Y)$ is integrally closed.
(c) In the view of the above, to prove that Y is not normal it is enough to prove that $A(Y)$ is not integrally closed. When $Y=\mathcal{Z}\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$, $A(Y)=k[x, y] /\left(y^{2}-x^{3}\right)$. Let $k(Y)$ denote the field of fractions of $A(Y)$. Consider the element $t=y / x \in k(Y)$. Clearly $t^{2}=x$ in $A(Y)$. Therefore t is an integral element of $k(Y)$. But $t \in A(Y)$. Therefore $A(Y)$ is not integrally closed and hence Y is not normal.
(e) Let $A(Y)$ denote the coordinate ring of Y and let $k(Y)$ denote the field of fractions of $A(Y)$. Let A denote the integral closure of $A(Y)$ in $k(Y)$. Then we know that A is an integrally closed. We claim that $A=A(X)$ for some affine variety X. To prove this it is enough to rove that A is a finitely generated k-algebra with no nilpotent elements. Since Y is a variety, $\mathcal{I}(Y)$ is a prime ideal and hence the nilradical of $A(Y)$ is the zero ideal From theorem 3.9 A , we know that A is finitely generated as an $A(Y)$ module and hence the nilradical of A is the zero ideal. Therefore A has no nilpotent elements. Also, from theorem $3.9 \mathrm{~A}, A$ is a finitely generated k-algebra. Therefore $A=A(X)$ for some affine variety X. Also, since A is integrally closed we have that X is a normal variety. We claim that X satisfies the property stated in the exercise.

We know that when $\varphi: Z \longrightarrow Y$ is any morphism of affine varieties, then the induced homomorphism of the affine algebras $\tilde{\varphi}: A(Y) \longrightarrow A(Z)$ is injective if and only if $\varphi(Z)$ is a dense subset of Y. Therefore, in the view of theorem 3.5, the property of the variety \tilde{Y} stated in the exercise is the same as saying this: There exists a homomorphism $f_{\pi}: A(Y) \longrightarrow A(\tilde{Y})$ with the property that whenever $A(Z)$ is a integrally closed ring and $f_{\varphi}: A(\tilde{Y}) \longrightarrow A(Z)$ is an injective homomorphism, then there exists a unique homomorphism $f_{\theta}: A(Y) \longrightarrow A(Z)$ such that $f_{\varphi} \circ f_{\pi}=f_{\theta}$. Let f_{π} be the inclusion map. Since f_{φ} is an injective morphism, we have that the homomorphic image of $A(Y)$ is isomorphic to $A(\tilde{Y})$. Let $B=f_{\varphi}(A(Y))$. Then $B \subset A(Z)$ where $A(Z)$ is integrally closed. Therefore $A(Z) \subset \tilde{B}$, where \tilde{B} represents the algebraic closure of B. But \tilde{B} is isomorphic to $A(\tilde{Y})$. Let f_{θ} be the homomorphism. Then we have that $f_{\theta} \circ f_{\pi}=f_{\varphi}$.

Exercise 3.0.47 (Projectively Normal Varieties). A projective variety $Y \subset \mathbb{P}^{n}$ is projectively normal (with respect to the given embedding) if its homogeneous coordinate ring $S(Y)$ is integrally closed. If Y is projectively normal, then Y is normal.

Solution:
We want to prove that \mathcal{O}_{P} is normal for any point $P \in Y$. We know that $S(Y)=k\left[X_{0}, \ldots, X_{n}\right] / \mathcal{I}(Y)$ has a graded structure. Let $S(Y)=\oplus \sum_{i=0}^{\infty} S_{i}$ where $S_{0}=k$. Also, $S(Y)$ is a finitely generated as an algebra over k by x_{0}, \ldots, x_{n} where $x_{i} \equiv X_{i} \bmod \mathcal{I}(Y)$. Let \mathfrak{m}_{P} be the ideal generated by the set of homogeneous polynomials $f \in S(Y)$ such that $f(P)=0$. Let T be the set of homogeneous elements of $S(Y)$ not in \mathfrak{m}_{P}. Then $T^{-1} S(Y)$ has graded structure. Let $T^{-1} S(Y)=\oplus \sum_{i=-\infty}^{\infty} R_{i}$. Using the notation fixed before Theorem 3.4 we denote R_{0} by $S(Y)_{\left(\mathfrak{m}_{P}\right)}$. Then from Theorem 3.4 we know that $\mathcal{O}_{P}=S(Y)_{\mathfrak{m}_{P}}$. Now, \mathfrak{m}_{P} is a prime ideal of $S(Y)$ such that $\mathfrak{m}_{P} \subsetneq\left(x_{0}, \ldots, x_{n}\right)$. Therefore there exists an i such that $x_{i} \notin \mathfrak{m}_{P}$. Without loss of generality, we may assume that $x_{0} \notin \mathfrak{m}_{P}$. Let U be the multiplicatively closed subset $\left\{1, x_{0}, x_{0}^{2}, \ldots\right\}$. Then clearly $U^{-1} S(Y)$ has a graded structure. Let the $U^{-1} S(Y)=\oplus \sum_{i=-\infty}^{\infty} R_{i}^{\prime}$. Then clearly $U^{-1} S(Y)=R_{0}^{\prime}\left[x_{0}, x_{0}^{-1}\right]$.

We now make two claims.
Claim 1: x_{0} is transcendental over R_{0}^{\prime} which implies that $U^{-1} S$ is the Laurent polynomial ring over R_{0}^{\prime}.
Claim 2: R_{0} is a localization of R_{0}^{\prime}.
Suppose we prove these two claims. Then the proof proceeds as follows. Since $S(Y)$ is integrally closed, $U^{-1} S(Y)$ is integrally closed. But $U^{-1} S(Y)=R_{0}^{\prime}\left[x_{0}, x_{0}^{-1}\right]$. Therefore R_{0}^{\prime} is integrally closed. Since R_{0} is a localization of R_{0}^{\prime} we get that R_{0} is integrally closed.

To prove the first claim: Suppose x_{0} is the root of a polynomial with coefficients in
 homogeneous polynomials of degree d_{i} in $S(Y)$. Let $d=\max \left\{d_{n}, d_{n-1}, \ldots, d_{0}\right\}$. Then $\frac{f_{n} x_{0}^{n+d-d_{n}}+f_{n-1} x_{0}^{n-1+d-d_{n}} \ldots+f_{0} x_{0}^{d-d_{0}}}{x_{0}^{d}}=0$ in $U^{-1} S(Y)$. Therefore $\exists r \geq 0$ such that $x_{0}^{r}\left(f_{n} x_{0}^{n+d-d_{n}}+f_{n-1} x_{0}^{n-1+d-d_{n}} \ldots+f_{0} x_{0}^{d-d_{0}}\right)=0$ in $S(Y)$. Now, $x_{0}^{r}=0 \Longrightarrow x_{0}=0 \Longrightarrow X_{0} \in I(Y)$. But we know that $I(Y) \subset M_{P}$ where M_{P} is the contraction of the ideal \mathfrak{m}_{P} in $S(Y)$. This implies that $X_{0} \in M_{P} \Longrightarrow x_{0} \in \mathfrak{m}_{P}$
which is a contradiction. Therefore we have that
$f_{n} x_{0}^{n+d-d_{n}}+f_{n-1} x_{0}^{n-1+d-d_{n}} \ldots+f_{0} x_{0}^{d-d_{0}}=0$. But $f_{n-i} x_{0}^{n-i+d-d_{n}}$ is a homogeneous polynomial of degree $n-i+d$. Therefore each $f_{n-i} x_{0}^{n-i+d-d_{n}}=0$. But $x_{0} \neq 0$. Therefore $f_{n-i}=0$. Therefore x_{0} is transcendental over R_{0}^{\prime}.

To prove the second claim: Let f / g be an element in R_{0}. Then f, g are homogeneous polynomials in $S(Y)$ of the same degree such that $g \notin \mathfrak{m}_{P}$. Consider the ideal Q_{0} of R_{0}^{\prime} generated by the elements of the form $\frac{h}{x_{0}^{\text {degh }}}$ where $h \in \mathfrak{m}_{P}$. Then clearly Q_{0} is a prime ideal of R_{0}^{\prime}. Define a map $\varphi: R_{0} \longrightarrow R_{0 Q_{0}}^{\prime}$ by $f / g \mapsto \frac{f}{x_{0}^{\alpha}} / \frac{g}{x_{0}^{\alpha}}$ where $\alpha=\operatorname{deg} f=\operatorname{deg} g$. It can be checked that this map is a ring homomorphism. Also, it can be checked that this map is surjective. Suppose $\varphi\left(f_{1} / g_{1}\right)=\varphi\left(f_{2} / g_{2}\right)$. This implies that there exists an element $g_{3} / x_{0}^{\alpha_{3}} \notin Q_{0}$ such that $\frac{g_{3}}{x_{0}^{\alpha_{3}}}\left(\frac{f_{1}}{x_{0}^{\alpha_{1}}} \frac{g_{2}}{x_{0}^{\alpha_{2}}}-\frac{f_{2}}{x_{0}^{\alpha_{2}}} \frac{g_{1}}{x_{0}^{\alpha_{1}}}\right)=0$. This implies that $\frac{g_{3} f_{1} g_{2}-g_{3} f_{2} g_{1}}{x_{0}^{\alpha_{1}+\alpha_{2}+\alpha_{3}}}=0$. This implies that $g_{3}\left(f_{1} g_{2}-g_{1} f_{2}\right)=0$. Now, since $g_{3} / x_{0}^{\alpha_{3}} \notin Q_{0}$, we have that $g_{3} \neq 0$. This implies that $f_{1} g_{2}-g_{1} f_{2}=0$ which in turn implies that $f_{1} / g_{1}=f_{2} / g_{2}$ proving that the map is injective. Therefore φ is an isomorphism and hence that R_{0} is localization of R_{0}^{\prime}.

Exercise 3.0.48 (Automorphism of $\left.\mathbb{A}^{n}\right)$. Let $\varphi: \mathbb{A}^{n} \longrightarrow \mathbb{A}^{n}$ be a morphism of \mathbb{A}^{n} to \mathbb{A}^{n} given by n polynomials f_{1}, \ldots, f_{n} of n variables x_{1}, \ldots, x_{n}. Let $J_{\varphi}=$ $\operatorname{det}\left|\partial f_{i} / \partial x_{j}\right|$ be the Jacobian polynomial of φ.

If φ is an isomorphism (in which case we call φ an automorphism of \mathbb{A}^{n}) show that J_{φ} is a non-zero constant polynomial. The converse of (a) is an unsolved problem, even for $n=2$.

Solution:

Let $\phi: \mathbb{A}^{n} \longrightarrow \mathbb{A}^{n}$ be the inverse morphism of the morphism φ. Suppose ϕ is given by the polynomials g_{1}, \ldots, g_{n} of n variables. Let J_{ϕ} denote the Jacobian polynomial of ϕ and let $J_{\varphi \circ \phi}$ denote the Jacobian polynomial of $\varphi \circ \phi$. But we know that $\varphi \circ \phi=I_{d}$ where I_{d} denotes the identity morphism which is given by the polynomials x_{1}, \ldots, x_{n} and hence $J_{I_{d}}=1$. But $J_{\varphi \circ \phi}(X)=J_{\varphi}(\phi(X)) J_{\phi}(X)$. Therefore J_{φ} is a unit in $k\left[x_{1}, \ldots, x_{n}\right]$ and hence J_{φ} is a non-zero constant polynomial.

Exercise 3.0.49 (Group Varieties). A group variety consists of a variety Y together with the morphism $\mu: Y \times Y \longrightarrow Y$, such that the set of points of Y with the operation given by μ is a group, and such that the inverse map $y \mapsto y^{-1}$ is also a morphism of $Y \longrightarrow Y$.
(a) The additive group \mathbf{G}_{a} is given by the variety \mathbb{A}^{1} and the morphism $\mu: \mathbb{A}^{2} \longrightarrow$ \mathbb{A}^{1} defined by $\mu(a, b)=a+b$. Show that it is a group variety.
(b) The multiplicative group \mathbf{G}_{m} is given by the variety $\mathbb{A}^{1}-\{(0)\}$ and the morphism $\mu(a, b) a b$. Show that it is a group variety.
(c) If G is a group variety, and X is any variety, show that the set $\operatorname{Hom}(X, G)$ has a natural group structure.
(d) For any variety X, show that $\operatorname{Hom}\left(X, \mathbf{G}_{a}\right)$ is isomorphic to $\mathcal{O}(X)$ as a group under addition.
(e) For any variety X, show that $\operatorname{Hom}\left(X, \mathbf{G}_{m}\right)$ is isomorphic to the group of units in $\mathcal{O}(X)$, under multiplication.

Solution:
(a) Clearly, the operation given by μ is an associative binary operation. Also, for any $a \in \mathbb{A}^{1},-a \in \mathbb{A}^{1}$ is the inverse of a under the operation defined by μ. The element $0 \in \mathbb{A}^{1}$ is the identity element. Therefore \mathbf{G}_{a} is a group. The inverse map $x \mapsto-x$ is a morphism of $\mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ from lemma 3.6. Therefore \mathbf{G}_{a} is a group variety.
(b) Let $X=\mathbb{A}^{1} \backslash\{(0)\}$. Then we can check that operation defined by μ makes X into group. Consider the inverse map $x \mapsto \frac{1}{x}$. Then clearly this map is a morphism of X and hence \mathbf{G}_{m} is a group variety.
(c) Let φ_{1} and φ_{2} be any two morphism from X to G. Define the operation $*$ on $\operatorname{Hom}(X, G)$ by $\varphi_{1} * \varphi_{2}(x)=\varphi_{1}(x) \varphi_{x}$ where the multiplication on the right is in G. We have that $\varphi^{-1}(x)=\varphi(x)^{-1}$. Since in G, the inverse map is a morphism, the map ψ defined by $\psi(x)=\varphi(x)^{-1}$ is a morphism. The associativity property of this operation follows from the associativity property in the group variety G. Therefore $\operatorname{Hom}(X, G)$ has a natural group structure.
(d) Consider any element $f \in \operatorname{Hom}\left(X, \mathbf{G}_{a}\right)$. Then f is a morphism from X to $\mathbf{G}_{a}=\mathbb{A}^{1}=k$. Therefore f is a regular function on X and hence an element of $\mathcal{O}(X)$. This defines a bijection between $\mathcal{O}(X)$ and $\operatorname{Hom}\left(X, \mathbf{G}_{a}\right)$. Let this bijection be called F. For any two elements $\varphi_{1}, \varphi_{2} \in \operatorname{Hom}\left(X, \mathbf{G}_{a}\right)$, we have $\varphi_{1}+\varphi_{2}(x)=\varphi_{1}(x)+\varphi_{2}(x)$. Therefore $F\left(\varphi_{1}+\varphi_{2}\right)=F\left(\varphi_{1}\right)+F\left(\varphi_{2}\right)$ and hence F is a group isomorphism.
(e) We know that $G_{\mathbf{m}}=\mathbb{A}^{1} \backslash\{(0)\}=D(t)$. Therefore we know from Lemma 3E that $\mathcal{O}\left(G_{\mathbf{m}}\right)=k[t]\left[\frac{1}{t}\right]=k(t)$. Therefore there is a bijection μ between the set $\operatorname{Hom}(k(t), \mathcal{O}(X))$ and the set $\mathcal{O}(X)^{*}$. We claim that this bijection is a group homomorphism. Suppose $h_{1}: k(t) \longrightarrow \mathcal{O}(X)^{*}$ and $h_{2}: k(t) \longrightarrow \mathcal{O}(X)^{*}$ be two k-algebra homomorphisms. Then $\mu\left(h_{1}\right)=h_{1}(t) \in \mathcal{O}(X)^{*}$ and $\mu\left(h_{2}\right)=h_{2}(t) \in \mathcal{O}(X)^{*}$. We have that $h_{1} h_{2}: k(t) \longrightarrow \mathcal{O}(X)^{*}$ is the k-algebra homomorphism defined by $h_{1} h_{2}(t)=h_{1}(t) h_{2}(t) \in \mathcal{O}(X)^{*}$. Therefore $\mu\left(h_{1} h_{2}\right)=h_{1} h_{2}(t)=h_{1}(t) h_{2}(t)$ and hence μ is a group homomorphism. Since it is a bijection we get that $\operatorname{Hom}(k(t), \mathcal{O}(X))$ is isomorphic to $\mathcal{O}(X)^{*}$.

We know from Proposition 3.5 that there exists a bijection $\beta: \operatorname{Hom}(k(t), \mathcal{O}(X)) \longrightarrow \operatorname{Hom}\left(X, G_{\mathbf{m}}\right)$. We know from the proof of the same proposition that if $h: k(t) \longrightarrow \mathcal{O}(X)$ is k-algebra homomorphism then $\beta(h)$ is the morphism $\varphi_{h}: X \longrightarrow G_{\mathbf{m}}$ given by $P \mapsto h(t)(P)$. If $h^{\prime}: k(t) \mathcal{O}(X)$ is another k-algebra homomorphism, then $h h^{\prime}$ is the k-algebra homomorphism given by $t \mapsto h(t) h^{\prime}(t)$. Then $\beta\left(h h^{\prime}\right)=\varphi_{h h^{\prime}}$ which is given by $P \mapsto h(t) h^{\prime}(t)(P) h(t)(P) h^{\prime}(t)(P)$. Therefore β is a bijective group homomorphism and hence is an isomorphism. Therefore we get that $\operatorname{Hom}\left(X, G_{\mathbf{m}}\right) \cong \operatorname{Hom}(k(t), \mathcal{O}(X)) \cong \mathcal{O}(X)^{*}$.

Chapter 4

Rational Maps

Exercise 4.0.50. If f and g are regular functions on open subsets U and V of a variety X, and if $f=g$ on $U \cap V$, show that the function which is f on U and g on V is a regular function on $U \cup V$. Conclude that if f is a rational function on X, then there is a largest open subset U of X on which f is represented by a regular function. We say that f is defined at the points of U.

Solution:
Let F be the function which is equal to f on U and g on V. Consider any point $P \in U \cup V$. Then either $P \in U$ or $P \in V$. Without loss of generality we may assume that $P \in U$. Since f is regular on U, there exists an open neighbourhood W of P such that $f=f_{1} / f_{2}$ on W. Also, $W \subset U$ is open in the variety X because U is open in X. Therefore for any point $P \in U \cup V$, there exists an open neighbourhood $W \subset X$ of P such that $f=f_{1} / f_{2}$ on W. Therefore the function F is regular on all points $P \in U \cap V$ and hence is regular on $U \cup V$. Any rational function on X is an equivalence class (U, f) where f is a regular function on U. Let $\mathcal{F}=\left\{\left(U_{i}, f_{i}\right)\right\}_{i \in I}$ be the family of all pairs that occur in the equivalence class of (U, f). This implies that for any two $i, j \in I, f_{i}=f_{j}$ on $U_{i}=U_{j}$. Let $V=\bigcup_{i \in I} U_{i}$ and let F be the function on V which is equal to f_{i} on U_{i}. Then F is regular on V. Let U_{0} be any open subset such that f is represented as a regular function f_{0} on U_{0}. Then $\left(U_{0}, f_{0}\right) \in \mathcal{F}$ and hence $U_{0} \subset V$. Therefore V is the largest subset on which the rational function f is represented as a regular function.

Exercise 4.0.51. Same problem for rational maps. If φ is a rational map of X to Y, show that there is a largest open set on which φ is represented by a morphism. We say that the rational map is defined on the points of that open set.

Solution:

Let X and Y be any two varieties. Let U and V be any two non-empty open subsets of X. Let φ_{U} be a morphism of U to Y and let φ_{V} be a morphism of V to Y. Suppose that $\varphi_{U}=\varphi_{V}$ on $U \cap V$. Let F be the function which is equal to φ_{U} on U and φ_{V} on V. Then we claim that F is a morphism of $U \cup V$ to Y. Clearly F is a continuous map. Let W be any open subset of Y and let $f: W \longrightarrow k$ be any regular function. We have to prove that $f \circ F: F^{-1}(W) \longrightarrow k$ is a regular function. Now, $F^{-1}(W)=\varphi_{U}^{-1}(W) \cup \varphi_{V}^{-1}(W)$. Consider any $P \in F^{-1}(W)$. Then either $P \in \varphi_{U}^{-1}(W)$ or $P \in \varphi_{V}^{-1}(W)$. We may assume that $P \in \varphi_{U}^{-1}(W)$. Since φ_{U} is regular, there exists an open subset $U_{0} \subset \varphi_{U}^{-1}(W)$ containing P such that $f \circ \varphi_{U}$ is of the form f_{1} / f_{2} on U_{0}. But $F=\varphi_{U}$ on U_{0}. Also, U_{0} is an open subset of $\varphi_{U}^{-1}(W)$ which is an open subset of $F^{-1}(W)$. Therefore U_{0} is an open subset of $F^{-1}(W)$. Therefore for any point $P \in F^{-1}(W)$ we have an open subset U_{0} containing P such that $f \circ F$ is of the form f_{1} / f_{2} on U_{0}. Therefore $f \circ F: F^{-1}(W) \longrightarrow k$ is a regular function which proves that F is a morphism. Any rational map $\varphi: X \longrightarrow Y$ is an equivalence class of pairs $\left(U, \varphi_{U}\right)$ where U is a non empty open subset of X and φ_{U} is a morphism of U to Y. Let $\mathcal{F}=\left\{\left(U_{i}, \varphi_{U_{i}}\right)\right\}$ be the family of all pairs that occur in the equivalence class of $\left(U, \varphi_{U}\right)$. This implies that for any $i, j \in I, \varphi_{U_{i}}=\varphi_{U_{j}}$ on $U_{i} \cap U_{j}$. Let $V=\bigcup_{i \in I} U_{i}$ and let F be the function which is equal to $\varphi_{U_{i}}$ on U_{i}. Then F is a morphism on V. Let U_{0} be any open subset such that φ is represented by a morphism $\varphi_{U_{0}}$ on U_{0}. Then $\left(U_{0}, \varphi_{U_{0}}\right) \in \mathcal{F}$ and hence $U_{0} \subset V$. Therefore V is the largest open subset on which φ is represented as a morphism.

Exercise 4.0.52. (a) Let f be a rational map on \mathbb{P}^{2} given by $f=x_{1} / x_{0}$. Find the set of points where f is defined and the corresponding regular function.
(b) Now think of this function as a rational map from \mathbb{P}^{2} to \mathbb{A}^{1}. Embed \mathbb{A}^{1} in \mathbb{P}^{1}, and let $\varphi: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{1}$ be the resulting rational map. Find the set of points where φ is defined, and describe the corresponding morphism.

Solution:
(a) The rational map $f=x_{1} / x_{0}$ on \mathbb{P}^{2} can be represented by the equivalence class $\left(U_{x_{0}}, x_{1} / x_{0}\right)$ where $U_{x_{0}}$ represents the open set $\mathcal{Z}\left(x_{0}\right)^{c}$. We claim that f is defined at U_{0}. Suppose $\left(U_{x_{0}}, x_{1} / x_{0}\right)=(V, g)$ and that $V \not \subset U_{x_{0}}$. Let $P=\left(a_{0}, a_{1}, a_{2}\right) \in V \backslash U_{x_{0}}$. There exists a neighbourhood W of P such that g has the form g_{1} / g_{2} on W where g_{1} and g_{2} are homogeneous polynomials of same degree. Also, since $g_{2}(P) \neq 0, x_{0} \nmid g_{2}$. Also, $g_{1} / g_{2}=x_{1} / x_{0}$ on $W \cap U_{x_{0}}$. We can homeomorphically identify $U_{x_{0}}$ with \mathbb{A}^{2} and consider $W \cap U_{x_{0}}$ as an open subset of \mathbb{A}^{2}. Let this open subset be denoted by W_{0}. Therefore we have that $g_{1}\left(1, x_{1}, x_{2}\right)=x_{1} g_{2}\left(1, x_{1}, x_{2}\right)$ on $W_{0} \subset \mathbb{A}^{2}$. This implies that $W_{0} \subset \mathcal{Z}\left(g_{1}\left(1, x_{1}, x_{2}\right)-x_{1} g_{2}\left(1, x_{1}, x_{2}\right)\right)=Z$. If $Z \neq \mathbb{A}^{2}$, then Z^{c} is a non empty subset of \mathbb{A}^{2} which is disjoint from W_{0}. But any two non empty open subsets of \mathbb{A}^{2} intersect. This implies that
$Z=\mathcal{Z}\left(g_{1}\left(1, x_{1}, x_{2}\right)-x_{1} g_{2}\left(1, x_{1}, x_{2}\right)\right)=\mathbb{A}^{2}$. Hence
$g_{1}\left(1, x_{1}, x_{2}\right)=x_{1} g_{2}\left(1, x_{1}, x_{2}\right)$ on \mathbb{A}^{2}. This implies that degree of
$g_{1}\left(1, x_{1}, x_{2}\right)=$ (degree of $\left.g_{2}\left(1, x_{1}, x_{2}\right)+1\right)$. Now, since $x_{0} \nmid g_{2}$, the degree of $g_{2}\left(1, x_{1}, x_{2}\right)$ is the same as the degree of $g_{2}\left(x_{0}, x_{1}, x_{2}\right)$ which in turn is the same as the degree of g_{1}. Now, degree of $g_{1}\left(x_{0}, x_{1}, x_{2}\right)$ is greater than or equal to the degree of $g_{1}\left(1, x_{1}, x_{2}\right)$. But degree of $g_{1}\left(1, x_{1}, x_{2}\right)$ is strictly greater than the degree of $g_{2}\left(x_{0}, x_{1}, x_{2}\right)$. But this gives a contradiction to the fact that degree of $g_{1}\left(x_{0}, x_{1}, x_{2}\right)=$ degree of $g_{2}\left(x_{0}, x_{1}, x_{2}\right)$. Hence $V \subset U_{x_{0}}$ and hence the rational map is defined on $U_{x_{0}}$.
(b) Let U_{0} denote the open subset $\mathcal{Z}\left(x_{0}\right)^{c}$ of \mathbb{P}^{2}. Let $\varphi_{0}: U_{0} \longrightarrow \mathbb{P}^{1}$ be the morphism given by $\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(1, x_{1} / x_{0}\right)$. Let U_{1} denote the open subset $\mathcal{Z}\left(x_{1}\right)^{c}$ of \mathbb{P}^{2}. Let $\varphi_{1}: U_{1} \longrightarrow \mathbb{P}^{1}$ be the morphism given by $\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0} / x_{1}, 1\right)$. Then $\varphi_{0}=\varphi_{1}$ on $U_{0} \cap U_{1}$. Therefore $\left(U_{0}, \varphi_{0}\right)=\left(U_{1}, \varphi_{1}\right)$ and the given rational map can be represented by the equivalence class $\left(U_{0}, \varphi_{0}\right)=\left(U_{1}, \varphi_{1}\right)$. Clearly, the rational map is defined at the points of the open set $U=U_{0} \cup U_{1}$ and is represented by the morphism $\varphi: U \longrightarrow \mathbb{P}^{1}$ given by $\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(1, x_{1} / x_{0}\right)$ when $x_{0} \neq 0$ and by $\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0} / x_{1}, 1\right)$ when $x_{1} \neq 0$. But $U=\mathbb{P}^{2} \backslash\{P\}$ where P is the point $(0,0,1)$.

We now claim that the morphism φ cannot be extended to the point P. Assume
the contrary. Therefore there exists a neighbourhood W of P and a morphism $\mu: W \longrightarrow \mathbb{P}^{1}$ such that $\mu=\varphi$ on $W \cap U$. Therefore $\mu\left(x_{0}, x_{1}, x_{1}\right)=\left(1, x_{1} / x_{0}\right)$ when $x_{0} \neq 0$ and $\mu\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0} / x_{1}, 1\right)$ when $x_{1} \neq 0$. Let $W_{0}=W \cap U_{0}$. We can identify U_{0} by \mathbb{A}^{2} and thus consider W_{0} as an open subset of \mathbb{A}^{2}. Let $W_{0}^{\prime}=W_{0} \cup\{P\}$. Consider the restriction of μ to W_{0}^{\prime}. It is a morphism and hence the map $F=\pi_{2} \circ \mu: W_{0}^{\prime} \longrightarrow k$ is a regular map, where π_{2} is the projection on the second coordinate. Therefore there exists a neighbourhood $V \subset W_{0}^{\prime}$ of P where F has the form f_{1} / f_{2} for some homogeneous polynomials f_{1}, f_{2} of the same degree. But on $V \backslash\{P\}$, $F=x_{1} / x_{0}$. But $V \backslash\{P\}$ is an open subset of $W_{0}^{\prime} \backslash\{P\}=W_{0}$ which is an open subset of \mathbb{A}^{2}. Therefore $f_{1}\left(1, x_{1}, x_{2}\right)=x_{1} f_{2}\left(1, x_{1}, x_{2}\right)$ on the open subset $V \backslash\{P\}$. Using the same arguments as in part (a), $f_{1}\left(1, x_{1}, x_{2}\right)=x_{1} f_{2}\left(1, x_{1}, x_{2}\right)$ on the whole of \mathbb{A}^{2}. Since $f_{2}(0,0,1) \neq 0$, we have that $x_{0} \nmid f_{2}\left(x_{0}, x_{1}, x_{2}\right)$ and hence the degree of $f_{2}\left(1, x_{1}, x_{2}\right)=$ degree of $f_{2}\left(x_{0}, x_{1}, x_{2}\right)$. Let d_{1} denote the degree of $f_{i}\left(x_{0}, x_{1}, x_{2}\right)$ for $i=1,2$. Therefore we have that the degree of $f_{1}\left(1, x_{1}, x_{2}\right)=1+d_{2}$. But $d_{1} \geq$ degree of $f_{1}\left(1, x_{1}, x_{2}\right)=1+d_{2}>d_{2}$ which implies that $d_{1}>d_{2}$ which is a contradiction since $d_{1}=d_{2}$. Therefore the morphism φ cannot be extended to the point P.

Exercise 4.0.53. A variety Y is rational if it is birationally equivalent to \mathbb{P}^{n} for some n (or equivalently by (4.5), if $K(Y)$ is a pure transcendental extension of k).
(a) Any cubic in \mathbb{P}^{2} is a rational curve.
(b) The cuspidal cubic $y^{2}-x^{3}$ is a rational curve.
(c) Let Y be the nodal curve $y^{2} z=x^{2}(x+z)$ in \mathbb{P}^{2}. Show that the projection φ from the point $P=(0,0,1)$ to the line $z=0$ induces a birational map from Y to \mathbb{P}^{1}. Thus Y is a rational curve.

Solution:
(a) From exercise 3.1 (c), we know that any conic in \mathbb{P}^{2} is isomorphic to \mathbb{P}^{1} and hence is birationally isomorphic to \mathbb{P}^{1}. Therefore any conic in \mathbb{P}^{2} is a rational.
(b) Let $Y=\mathcal{Z}\left(y^{2}-x^{3}\right)$. Consider the morphism $\varphi: \mathbb{A}^{1} \longrightarrow Y$ given by $t \mapsto\left(t^{2}, t^{3}\right)$. Let $U=\mathbb{A}^{1} \backslash\{0\}$. Then U is open in \mathbb{A}^{1} which is open in \mathbb{P}^{1}. Let
$Y^{\prime}=Y \backslash\{(0,0)\}$. Then Y^{\prime} is an open subset of Y. Now the map $\varphi^{\prime}: U \longrightarrow Y^{\prime}$ given by $t \mapsto\left(t^{2}, t^{3}\right)$ is a morphism. Also, the map $\phi: Y^{\prime} \longrightarrow U$ given by $(x, y) \mapsto y / x$ is an inverse morphism to φ. Hence the open subsets $U \subset \mathbb{P}^{1}$ and $Y^{\prime} \subset Y$ are isomorphic and hence Y is birationally equivalent to \mathbb{P}^{1} and hence is rational.
(c) Let $Y=\mathcal{Z}\left(y^{2} z-x^{3} x^{2} z\right) \subset \mathbb{P}^{2}$. Let $P=(0,0,1)$ and let $\mathbb{P}^{1} \subset \mathbb{P}^{2}$ be given by $z=0$. Then the projection $\varphi: \mathbb{P}^{2} \backslash\{P\} \longrightarrow \mathbb{P}^{1}$ is given by $(x, y, z) \mapsto(x, y)$. Let φ again denote the restriction of this morphism to $Y \backslash\{P\}$. Let $\mu: \mathbb{P}^{1} \longrightarrow Y \backslash\{P\}$ be the map defined by $(x, y) \mapsto\left(x, y, \frac{x^{3}}{y^{2}-x^{2}}\right)$. This map is well defined because if $y^{2}=x^{2}$ in Y, then $y^{3}=0$ which implies that $y=0$ and hence $x=0$. Also, since μ is defined by quotients of polynomials it is a morphism. It is also clear that μ is the inverse morphism to φ. Hence the open subset $Y \backslash\{P\}$ is isomorphic to \mathbb{P}^{1} and hence Y is birationally equivalent to \mathbb{P}^{1}. Therefore Y is a rational curve.

Exercise 4.0.54. Show that the quadric surface $Q: x y=z w$ in \mathbb{P}^{3} is birational to \mathbb{P}^{2}, but not isomorphic to \mathbb{P}^{2}.

Solution:
Let $W=Q \cap U_{w}$ where U_{w} denotes the open subset $\mathcal{Z}(w)^{c}$. Therefore W is an open subset of Q. We define a morphism $\varphi: W \longrightarrow \mathbb{A}^{2}$ by $(w, x, y, z) \mapsto(x / w, z / w)$. We define a morphism $\mu: \mathbb{A}^{2} \longrightarrow W$ by $(x, y) \mapsto(1, x, y, x y)$. Clearly φ and μ are inverses of each other and thus W is isomorphic to \mathbb{A}^{2} which is an open subset of \mathbb{P}^{2}. Therefore \mathbb{P}^{2} and Q are birationally equivalent.
If Q were isomorphic to \mathbb{P}^{2}, then Q would be homeomorphic to \mathbb{P}^{2}. We know from exercise 2.15 , that Q contains a family of lines $\left\{L_{t}\right\}$ with the property that if $L_{t} \neq L_{u}$, then $L_{t} \cap L_{u}=\emptyset$. But we have proved in exercise 3.7 that any two curves in \mathbb{P}^{2} have a non-empty intersection. Therefore Q is not homeomorphic (and hence not isomorphic) to \mathbb{P}^{2}.

Exercise 4.0.55 (Plane Cremona Transformations). A birational map of \mathbb{P}^{2} into itself is called a plane Cremona transformation. We give an example called the Quadratic Transformation. It is a rational map $\varphi: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$ given by $\left(a_{0}, a_{1}, a_{2}\right) \mapsto$ $\left(a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right)$ when no two of a_{0}, a_{1}, a_{2} are 0 .
(a) Show that φ is birational and is its own inverse.
(b) Find open sets $U, V \subset \mathbb{P}^{2}$ such that $\varphi: U \longrightarrow V$ is an isomorphism.
(c) Find the open sets where φ and φ^{-1} are defined, describe the corresponding morphisms.

Solution:
(a) Let U be the open neighbourhood where no two of a_{0}, a_{1}, a_{2} are 0 . Let $\varphi: U \longrightarrow \mathbb{P}^{2}$ be the morphism defined by $\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right)$. We claim that the rational map defined by the equivalence class (U, φ) is its own inverse. Consider the composition $(U, \varphi) \circ(U, \varphi)$. It is given by the equivalence class $\left(\varphi^{-1}(U), \varphi \circ \varphi\right)$.
We have that $U=\mathbb{P}^{2} \backslash\{A, B, C\}$ where
$A=(1,0,0), B=(0,1,0), C=(0,0,1)$. Therefore $\varphi^{-1}(U)$ will be equal to $\mathbb{P}^{2} \backslash\left(\varphi^{-1}(A) \cup \varphi^{-1}(B) \cup \varphi^{-1}(C)\right)$. We now claim that $\varphi^{-1}(A)=\mathcal{Z}\left(x_{0}\right)$. Clearly for any point $P=(0, t, u) \in \mathcal{Z}\left(x_{0}\right), \varphi(P)=(1,0,0)$. Therefore $\mathcal{Z}\left(x_{0}\right) \subset \varphi^{-1}(A)$. Now, suppose $\left(a_{0}, a_{1}, a_{2}\right) \in \varphi^{-1}(A)$. Therefore $\varphi\left(a_{0}, a_{1}, a_{2}\right)=\left(a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right)=(1,0,0)$. Hence $a_{0} a_{2}=0$ and $a_{0} a_{1}=0$. But since $a_{1} a_{2}=1$, we have that $a_{1}, a_{2} \neq 0$. Therefore $a_{0}=0$ and hence $\left(a_{0}, a_{1}, a_{2}\right) \in \mathcal{Z}\left(x_{0}\right)$. Similarly we can prove that $\varphi^{-1}(B)=\mathcal{Z}\left(x_{1}\right)$ and $\varphi^{-1}(C)=\mathcal{Z}\left(x_{2}\right)$. Therefore $\varphi^{-1}(U)=\mathbb{P}^{2} \backslash \mathcal{Z}\left(x_{0} x_{1} x_{2}\right)$. Let this open subset be denoted by V. Then it can be easily checked that $\varphi \circ \varphi=I_{d}$ on V. Therefore (U, φ) is birational and is its own inverse.
(b) From the proof of the corollary 4.5, we know that φ gives an isomorphism of the open subset $\varphi^{-1}\left(\varphi^{-1}(U)\right)$ to itself. Now, $\varphi^{-1}\left(\varphi^{-1}(U)\right)=\varphi^{-1}(V)$ where V is as in part (a). We claim that $\varphi^{-1}(V)=V$. Clearly, $V \subset U$ which implies that $\varphi^{-1}(V) \subset \varphi^{-1}(U)=V$. Consider any $\left(a_{0}, a_{1}, a_{2}\right) \in V$. Now, $\varphi\left(a_{0}, a_{1}, a_{2}\right)=\left(a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right)$. Since $a_{0}, a_{1}, a_{2} \neq 0, \varphi\left(a_{0}, a_{1}, a_{2}\right) \in V$. This proves that $\varphi^{-1}(V)=V$. Hence φ induces an isomorphism of the open subset V to itself.
(c) It is clear from the definition of the rational map φ that it is defined at all the points of the open subset $\mathbb{P}^{2} \backslash\{A, B, C\}$ where $A=(1,0,0), B=(0,1,0)$ and $C=(0,0,1)$. Let this open subset be denoted by U. We now claim that
the morphism $\varphi: U \longrightarrow \mathbb{P}^{2}$ defined by $\left(a_{0}, a_{1}, a_{2}\right) \mapsto\left(a_{1} a_{2}, a_{0} a_{2}, a_{0} a_{1}\right)$ cannot be extended to any of the points A, B, C.

Suppose that φ can be extended to the point A. Then there exists an open subset W of A and a morphism $\mu: W \longrightarrow \mathbb{P}^{2}$ such that $\varphi=\mu$ on $W \cap U$. Let $W_{1}=W \cap U_{1}$ where $U_{1}=\mathcal{Z}\left(x_{1}\right)^{c}$. Since U_{1} can be identified with \mathbb{A}^{2}, we can consider W_{1} as an open subset of \mathbb{A}^{2}. Clearly $A \notin W_{1}$. Let $W_{1}^{\prime}=W_{1} \cup\{A\}$. Consider the restriction of the map μ to W_{1}^{\prime}. It is a morphism and hence the $\operatorname{map} F=\pi \circ \mu: W_{1}^{\prime} \longrightarrow k$ is a regular map where π represents the projection onto the first coordinate. Therefore there exists a neighbourhood $V \subset W_{1}^{\prime}$ of A where F has the form f_{1} / f_{2} for some homogeneous polynomials f_{1}, f_{2} of same degree. But on $V \backslash\{A\}$, we know that F has the form $x_{1} x_{2}$. Now $V \backslash\{A\}$ is an open subset of $W_{1}^{\prime} \backslash\{A\}=W_{1}$ which is an open subset of \mathbb{A}^{2}. Therefore $f_{1}\left(x_{0}, 1, x_{2}\right)=x_{2} f_{2}\left(x_{0}, 1, x_{2}\right)$ on the open subset $V \backslash\{A\}$. Using the same argument as in 4.3 (a), we get that $f_{1}\left(x_{0}, 1, x_{2}\right)=x_{2} f_{2}\left(x_{0}, 1, x_{2}\right)$ on the whole of \mathbb{A}^{2}. Let $\overline{f_{i}}=f_{i}\left(x_{0}, 1, x_{2}\right)$ for $i=1,2$. Therefore $\operatorname{deg}\left(\overline{f_{1}}\right)=\operatorname{deg}\left(\overline{f_{2}}\right)+1$. Since $f_{2}(1,0,0) \neq 0$, we have that $x_{1} \nmid f_{2}$ and hence $\operatorname{deg}\left(f_{2}\right)=\operatorname{deg}\left(\overline{f_{2}}\right)$. Therefore we have that $\operatorname{deg}\left(\overline{f_{1}}\right)=\operatorname{deg}\left(f_{2}\right)+1$. Since $\operatorname{deg}\left(\overline{f_{1}}\right) \leq \operatorname{deg}\left(f_{1}\right)$, we get that $1+\operatorname{deg}\left(f_{2}\right) \leq \operatorname{deg}\left(f_{1}\right)$ which implies that $\operatorname{deg}\left(f_{2}\right)<\operatorname{deg}\left(f_{1}\right)$ which is a contradiction. Therefore the morphism φ cannot be extended to the point A. Using similar arguments we can prove that φ cannot be extended to any of the points A, B or C. Therefore U is the largest open set on which the rational map φ can be expressed as a morphism.

Exercise 4.0.56. Let X and Y be two varieties. Suppose there are points $P \in X$ and $Q \in Y$ such that the local rings $\mathcal{O}_{P, X}$ and $\mathcal{O}_{Q, Y}$ are isomorphic as k-algebras. Then show that there are open sets $P \in U \subset X$ and $Q \in V \subset Y$ and an isomorphism of U to V which sends P to Q.

Solution:
Let X^{\prime} and Y^{\prime} be any affine open sets in X and Y respectively such that $P \in X^{\prime}$ and $Q \in Y^{\prime}$. Then we know that $\mathcal{O}_{P, X} \cong \mathcal{O}_{P, X^{\prime}}$ and $\mathcal{O}_{Q, Y} \cong \mathcal{O}_{Q, Y^{\prime}}$. Also, if we get an isomorphism of U and V such that $\varphi(P)=Q$ where $U \subset X^{\prime}$ and $V \subset Y^{\prime}$ are open neighbourhoods of P, Q respectively, then we are done with the problem. So we may assume that X and Y are affine varieties.

From theorem 3.2 we know that $\mathcal{O}_{P, X} \cong A(X)_{\mathfrak{m}_{P}}$ and $\mathcal{O}_{Q, Y} \cong A(Y)_{\mathfrak{m}_{Q}}$. Therefore we have inclusions $A(X) \hookrightarrow \mathcal{O}_{P, X}$ and $A(Y) \hookrightarrow \mathcal{O}_{Q, Y}$. Let $\theta: \mathcal{O}_{Q, Y} \longrightarrow \mathcal{O}_{P, X}$ be the isomorphism. Suppose $A(Y)$ is generated by $y_{1}, y_{2}, \ldots y_{m}$ as a k-algebra. Then $\theta\left(y_{i}\right) \in \mathcal{O}_{P, X}$ for $i=1, \ldots m$. Therefore for each $i=1, \ldots, m$, we have $\theta\left(y_{i}\right)=\left(U_{i}, f_{i}\right)$ where U_{i} is an open subset of X and $f_{i} ; U_{i} \longrightarrow k$ is a regular function. Let $U=\bigcap_{i=1}^{m} U_{i}$. Then $\theta\left(y_{i}\right)$ is a regular function on U for each $i=1, \ldots, m$. Therefore θ defines a homomorphism from $A(Y)$ to $\mathcal{O}(U)=A(U)$ and hence from Proposition 3.5 we have a morphism $\varphi: U \longrightarrow Y$.

Let $\mathfrak{m}_{P} \subset A(U)$ be the ideal corresponding to the point P. We claim that $\theta^{-1}\left(\mathfrak{m}_{P}\right)=\mathfrak{m}_{\varphi(P)}$. Suppose $f \in \theta^{-1}\left(\mathfrak{m}_{P}\right)$. Then $f=\theta^{-1}(g)$ for some $g \in \mathfrak{m}_{P}$. Therefore $\theta(f)=f \circ \varphi=g$. Since $g(P)=0$, we have that $f(\varphi(P))=0$. Therefore $f \in \mathfrak{m}_{\varphi(P)}$. Conversely let $f \in \mathfrak{m}_{\varphi(P)}$. Therefore $f(\varphi(P))=0$ which implies that $f \circ \varphi(P)=0$. Therefore $f \circ \varphi \in \mathfrak{m}_{P}$. But $f \circ \varphi=\theta(f)$. Therefore $\theta(f) \in \mathfrak{m}_{P}$ and hence $f \in \theta^{-1}\left(\mathfrak{m}_{P}\right)$. This proves the claim.
Let $\mathfrak{m}_{P}^{\prime}$ be the unique maximal ideal of $\mathcal{O}_{P, X}$ and let $\mathfrak{m}_{Q}^{\prime}$ be the unique maximal ideal of $\mathcal{O}_{Q, Y}$. Since θ is an isomorphism of $\mathcal{O}_{P, X}$ and $\mathcal{O}_{Q, Y}$, we have $\theta^{-1}\left(\mathfrak{m}_{P}^{\prime}\right)=\mathfrak{m}_{Q}^{\prime}$. Since $\mathcal{O}_{P, X} \cong A(X)_{\mathfrak{m}_{P}}$, we know that $\mathfrak{m}_{P}^{\prime}=\mathfrak{m}_{P} \mathcal{O}_{P, X}$ and similarly $\mathfrak{m}_{Q}^{\prime}=\mathfrak{m}_{Q} \mathcal{O}_{Q, Y}$. Therefore $\theta^{-1}\left(\mathfrak{m}_{P}\right) \subset \mathfrak{m}_{Q}$. But we have proved that $\theta^{-1}\left(\mathfrak{m}_{P}\right)=\mathfrak{m}_{\varphi(P)}$. Therefore $\mathfrak{m}_{Q}=\mathfrak{m}_{\varphi(P)}$. From theorem 3.2 we know that there is a 1-1 correspondence between the points of Y and the maximal ideals of $A(Y)$. Therefore we get that $\varphi(P)=Q$.
Let $\eta=\theta^{-1}$. Then using the same arguments as above we get a morphism $\mu: V \longrightarrow X$ such that $\mu(Q)=P$ where V is an open subset containing Q. Now, $\varphi^{*}=\theta$ and $\mu^{*}=\eta$. Hence $(\varphi \circ \mu)^{*}=\mu^{*} \circ \varphi^{*}=I_{d}$ where I_{d} is the identity homomorphism of the ring $\mathcal{O}_{Q, Y}$. Therefore $\varphi \circ \mu=I_{d}$ on $\mu^{-1}(U)$ where I_{d} is the identity morphism of the open subset $\mu^{-1}(U)$. Similarly we get that $\mu \circ \varphi=I_{d}$ on $\varphi^{-1}(V)$ where I_{d} is the identity morphism of the set $\varphi^{-1}(V)$. Now restricting the open sets as in the proof of corollary 4.5 , we get that an isomorphism of open subsets of P and Q which maps P to Q.

Exercise 4.0.57. Let Y be the cuspidal cubic curve $y^{2}-x^{3}$ in \mathbb{A}^{2}. Blow up the point $(0,0)$, let E be the exceptional curve, and let \tilde{Y} be the strict transform of Y. Show that E meets \tilde{Y} in one point, and that $\tilde{Y} \cong \mathbb{A}^{1}$. In this case the morphism $\varphi: \tilde{Y} \longrightarrow Y$ is bijective and bicontinuous, but it is not an isomorphism.

Solution:
Let t, u be the homogeneous coordinates for \mathbb{P}^{1}. Let X denote the blowing-up of \mathbb{A}^{2} at O. It is defined by the equation $x u=t y$ inside $\mathbb{A}^{2} \times \mathbb{P}^{1}$. The total inverse image of Y in X is obtained by considering the equations $y^{2}=x^{3}$ and $x u=t y$ in $\mathbb{A}^{2} \times \mathbb{P}^{1}$. We know that \mathbb{P}^{1} is covered by two open sets $t \neq 0$ and $u \neq 0$. When $t \neq 0$, we set $t=1$ and then obtain the equations $y^{2}=x^{3}$ and $x u=t y$ which gives the the reducible equation $x^{3}=x^{2} u^{2}$. The first irreducible component of this is given by $x=0, y=0$ and u arbitrary. This corresponds to the exceptional curve E. The other irreducible component is given $x=u^{3}, y=u^{3}$. This is \tilde{Y}. Clearly \tilde{Y} meets E only in one point which is $P=(0,0) \times(1, u) \in \mathbb{A}^{1} \times \mathbb{P}^{1}$. Clearly the $\operatorname{map} \phi: \tilde{Y} \longrightarrow \mathbb{A}^{1}$ defined by $\left(u^{2}, u^{3}\right) \times(1, u) \mapsto u$ is a morphism. Also, the map $\mu: \mathbb{A}^{1} \longrightarrow \tilde{Y}$ given by $u \mapsto\left(u^{2}, u^{3}\right) \times(1, u)$ is the inverse morphism to ϕ. Therefore \mathbb{A}^{1} is isomorphic to \tilde{Y}.
Since φ induces an isomorphism of $\tilde{Y} \backslash \varphi^{-1}(O)$ to $Y \backslash O$, we know that φ is a bijective bicontinuous map of these two sets. Now since $\varphi^{-1}(O) \cap \tilde{Y}$ is the singleton set, φ is a bijective map from Y to \tilde{Y}. Also, since $\varphi^{-1}(O)=P$, the inverse image of the closed subset $\{O\}$ is the closed set $\{P\}$. Hence the $\operatorname{map} \varphi$ is bicontinuous.

Chapter 5

Nonsingular Varieties

Exercise 5.0.58 (Multiplicities). Let $Y \subset \mathbb{A}^{2}$ be the curve defined by the equation $f(x, y)=0$. Let $P=(a, b)$ be a point of \mathbb{A}^{2}. Make a linear change of coordinates so that P becomes the point $(0,0)$. Then write f as a sum $f=f_{0}+\ldots,+f_{d}$ where f_{i} is a homogeneous polynomial of degree i in x and y. Then we define the multiplicity of P on Y, denoted by $\mu_{P}(Y)$, to be the least r such that $f_{r} \neq 0$. The linear factors of f_{r} are called the tangent directions at P. Show that $\mu_{P}(Y)=1 \Leftrightarrow P$ is a nonsingular point of Y

Solution:
We know from Theorem 5.1 that a variety $Y \subset \mathbb{A}^{n}$ is non singular at a point $P \in Y$ if and only if the local ring $\mathcal{O}_{P, Y}$ is a regular local ring. A linear change of coordinates will change $\mathcal{O}_{P, Y}$ only upto an isomorphism. Therefore the
nonsingularity property of a point on a variety remains unchanged under a linear change of coordinates. Then after a linear change of coordinates such that $P=(0,0)$ we know that f has the form $f_{0}+f_{1}+\ldots+f_{d}$ where f_{i} is a homogeneous polynomial of degree i in x and y. Since $P=(0,0) \in Y$, we know that $f_{0}=0$ and since $\mu_{P}(Y)=1$ we have that $f_{1} \neq 0$. Suppose the linear term is $\alpha x+\beta y$. Then both α and β cant be zero simultaneously. Now, $\partial f / \partial x(P)=\alpha$ and $\partial f / \partial y(P)=\beta$ and hence both are not simultaneously zero and hence P is non singular.
To prove the converse also we make a linear change of coordinates such that $P=(0,0)$. Suppose now that $f=f_{1}+\ldots+f_{d}$. Suppose the linear term is $\alpha x+\beta y$. Then $\partial f / \partial x(P)=\alpha$ and $\partial f / \partial y(P)=\beta$. Since f is non singular at P, both α and β cant be simultaneously zero and hence $f_{1} \neq 0$. Therefore $\mu_{P}(Y)=1$.

Exercise 5.0.59. For every degree $d>0$ and every $p=0$ or a prime number, give the equation of a non singular curve of degree d in \mathbb{P}^{2} over a field k of characteristic p.

Solution:
For characteristic 0 we consider the curve Y given by $f=x^{d}++y^{d}+z^{d}$. Then $\partial f / \partial x=d x^{d-1}, \partial f / \partial y=d y^{d-1}$ and $\partial f / \partial z=d z^{d-1}$. Hence the Jacobian of this curve at any point $P \in \mathbb{P}^{2}$ is a non zero row matrix. Now we know from Exercise 5.8 we know that this implies that Y is a non singular curve at every point of \mathbb{P}^{2} and hence is a non singular curve. Also, when the field has a positive characteristic p such that p does not divide d, then f still satisfies the Jacobian condition and hence is a non singular curve.
When the positive characteristic p is such that p divides d, then we can consider the curve Y given by $f=x y^{d-1}+y z^{d-1}+z x^{d-1}$. Then $\partial f / \partial x=(d-1) z x^{d-2}+y^{d-1}$, $\partial f / \partial y=(d-1) x y^{d-2}+z^{d-1}$ and $\partial f / \partial z=(d-1) y z^{d-2}+x^{d-1}$. We can check for the solutions in each of the affine open subsets of $\mathbb{P}^{2},\{x \neq 0\},\{y \neq 0\}$ and $\{z \neq 0\}$. For example to check for a solution in $\{x \neq 0\}$, we put $x=1$. Then it can be checked that the three equations have no solution in this affine open subset. Similarly it can be checked that there are no solutions in each of the other two affine open subsets. Hence the Jacobian of Y at any point $P \in \mathbb{P}^{2}$ is a non zero row matrix. Therefore, from Exercise 5.8, we get that Y is a non singular curve.

Exercise 5.0.60 (Blowing Up Curve Singularities).
(a) Let Y be the cusp $x^{6}+y^{6}=x y$ or the node $y^{2}+x^{4}+y^{4}-x^{3}$. Show that the curve \tilde{Y} obtained by blowing up Y at $(0,0)$ is non singular.
(b) We define a node(also called ordinary double point) to be a point of multiplicity 2 of a plane curve with distinct tangent directions. If P is a node on a plane curve Y, show that $\varphi^{-1}(P)$ consists of two distinct non singular points on the blown up curve \tilde{Y}. We say that 'blowing up P resolves the singularity at P '.
(c) Let $P \in Y$ be the tacnode of $x^{2}=x^{4}+y^{4}$. If $\varphi: \tilde{Y} \longrightarrow Y$ be the blowing up at P, show that $\varphi^{-1}(P)$ is a node. Using (b) we can see that a tacnode can be resolved using two successive blowings-up.
(d) Let Y be the plane curve $y^{3}=x^{5}$ which has a 'higher order cusp' at O. Show that O is a triple point; that blowing up O gives rise to a double point and that one further blowing up resolves the singularity.

Solution:

(a) We first consider the cusp $x^{6}+y^{6}=x y$. We know that $\tilde{Y}-\varphi^{-1}(O)$ is isomorphic to $Y-O$ where φ is the blowing up map of \mathbb{A}^{2} at O. It can be checked that all the points of $Y-O$ are non singular and thus all the points of $\tilde{Y}-\varphi^{-1}(O)$ are non singular. Therefore we need to only check the singularity of the points on $\tilde{Y} \cap \varphi^{-1}(O)$.

Let the homogeneous coordinates of \mathbb{P}^{1} be t, u. Let X denote the blowing up of \mathbb{A}^{2} at the origin. We get the total inverse image of Y in X by considering the equations $x u=t y$ and $x^{6}+y^{6}=x y$. We first consider the affine open subset U_{t} of \mathbb{P}^{1} given by $t \neq 0$. To determine $\tilde{Y} \cap U_{t}$, we set $t=1$ and then obtain the equations $x u=y$ and $x^{6}+y^{6}=x y$ which gives the equation $x^{2}\left(x^{4}+x^{4} u^{6}-u\right)=0$. The first irreducible component of this is given by $x=0, y=0$ and u arbitrary. This corresponds to $\varphi^{-1}(O) \cap U_{t}$.

The second irreducible component $x^{4}+x^{4} u^{2}-u=0$ along with the equation $y=x u$ defines $\tilde{Y} \cap U_{t}$. Now $\tilde{Y} \cap U_{t}$ meets $\varphi^{-1}(O) \cap U_{t}$ in the point $(0,0,0)$.
Now the Jacobian matrix of $\tilde{Y} \cap U_{t}$ at the point $(0,0,0)$ is $\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
which clearly has rank 2 . Now, since \tilde{Y} is birationally equivalent to Y we get, from Theorem 3.2 and Corollary 4.5, that the dimension of \tilde{Y} is the same as the dimension of Y which is equal to 1 . Hence the dimension of $\tilde{Y} \cap U_{t}$ is also 1 . Therefore we get that $\tilde{Y} \cap U_{t}$ is non singular at the point O.

We now consider the affine open subset U_{u} of \mathbb{P}^{2} given by $u \neq 0$. For this we set $u=1$. Then we get the equation $y^{2}\left(t^{6} y^{4}+y^{4}-t\right)=0$. The first irreducible component of this, given by $x=0, y=0$ and t arbitrary is $\varphi^{-1}(O) \cap U_{u}$. The second irreducible component $t^{6} y^{4}+y^{4}-t=0$ along with $x=t y$ defines $\tilde{Y} \cap U_{u}$. Now, $\tilde{Y} \cap U_{u}$ meets $\varphi^{-1}(O) \cap U_{u}$ in the point ($0,0,0$). Now the Jacobian matrix of $\tilde{Y} \cap U_{u}$ at the point $(0,0,0)$ is $\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
which clearly has rank 2 . Using the arguments same as above we get that the
dimension of $\tilde{Y} \cap U_{u}$ is 1 and hence that $\tilde{Y} \cap U_{u}$ is non singular at the point O. Therefore we get that \tilde{Y} is a non singular variety.

We now consider the cusp Z defined by $y^{2}+x^{4}+y^{4}-x^{3}=0$. Let the homogeneous coordinates of \mathbb{P}^{1} be t, u. Let X be as before. Then the total inverse image of Z in X is obtained by considering the equations $y^{2}+x^{4}+y^{4}-x^{3}=0$ and $x u=t y$. We know that each point of $Z-O$ is non singular. Hence, as noted above, we need to only check the singularity of the points on $\tilde{Z} \cap \varphi^{-1}(O)$. We first consider the affine open subset U_{t} of \mathbb{P}^{1} given by $t \neq 0$. To determine $\tilde{Z} \cap U_{t}$, we set $t=1$ and then obtain the equations $y=x u$ and $y^{2}+x^{4}+y^{4}-x^{3}=0$ which gives us the equation $x^{2}\left(u^{2}+x^{2}+x^{2} u^{4}-x\right)=0$. The first irreducible component of this is given by $x=0, y=0$ and u arbitrary. This corresponds to $\varphi^{-1}(O) \cap U_{t}$.
The second irreducible component $u^{2}+x^{2}+x^{2} u^{4}-x=0$ along with the equation $y=x u$ corresponds to $\tilde{Z} \cap U_{t}$. Now, $\tilde{Z} \cap U_{t}$ meets $\varphi^{-1}(O) \cap U_{t}$ in the point $(0,0,0)$. The Jacobian of $\tilde{Z} \cap U_{t}$ at the point $(0,0,0)$ is $\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ which clearly has rank 2 . Using arguments similar to the ones used in the case of cusp we get that the dimension of $\tilde{Z} \cap U_{t}$ is 1 and hence that $\tilde{Z} \cap U_{t}$ is non singular at the point $(0,0,0)$.
We can easily check that $\left(\tilde{Z} \cap \varphi^{-1}(O)\right) \cap U_{u} \emptyset$. Hence the $\tilde{Z} \cap \varphi^{-1}(O)$ is non singular. Therefore we get that \tilde{Z} is a non singular variety.
(b) By a linear change of coordinates we can assume that the node is $P=(0,0)$. Let Y be defined by the equation $f=f_{1}+f_{2}+\ldots+f_{d}$. Since $\mu_{P}(Y)=2$ we have that $f_{1}=0$. Also since there are two distinct tangent directions, we have that $f_{2}=\left(\alpha_{1} x+\beta_{1} y\right)\left(\alpha_{2} x+\beta_{2} y\right)$ such that $\alpha_{1} / \alpha_{2} \neq \beta_{1} / \beta_{2}$. We can write f as $f_{2}+g(x, y)$ where $g(x, y)$ has only terms of degree 3 or more. By another change of coordinates we can assume that $f_{2}=x y$.

We let the homogeneous coordinates of \mathbb{P}^{2} be t, u. Then the total inverse image of Y in the blow up of \mathbb{A}^{2} at the origin, X, is given by $x u=t y$ and $f(x, y)=0$. We first consider the affine open subset given by $t \neq 0$. We set $t=1$ to get the equation $x u=y$. Substituting in f, we get that $f=x^{2} u+g(x, x u)$. Since $g(x, x u)$ has terms of degree 3 or more, we can write $g(x, x u)$ as $x^{3} h(x, x u)$ for some polynomial h. Therefore $f=x^{2}(u+x h(x, x u))$. Now, $\tilde{Y} \cap U_{t}$ is given
by $u+x h(x, x u)=0$ and $y=x u$ and it meets $\varphi^{-1}(P)$ at the point $(0,0,0)$. This point corresponds to the point $(0,0,1,0)$ in $\mathbb{A}^{2} \times \mathbb{P}^{1}$. The Jacobian matrix of this variety at any point $Q=(a, b, c)$ is given by
$\left[\begin{array}{ccc}-b & -a & 1 \\ 1+b \frac{\partial h}{\partial u}(Q) & b \frac{\partial h}{\partial x}(Q)+h(Q) & 0\end{array}\right]$. Therefore at the point $(0,0,0)$ the Jacobian matrix is $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ which clearly has rank 2 . Since the dimension of $\tilde{Y} \cap U_{t}$ is 1 we get that $\tilde{Y} \cap U_{t}$ is non singular at the point P.

We now consider the affine open subset U_{u} of \mathbb{P}^{2} given by $u \neq 0$. We set $u=1$ in the equations to obtain the equation $x=t y$. Substituting in $f(x, y)$ we get $t y^{2}+g(t y, y)=0$. Since the degree of $g(x, y)$ is ≥ 3, we can write $g(x, y)$ as $y^{3} h(t y, t)$ for some polynomial h. Hence $f=y^{2}(t+y h(t y, y))$. Now $\tilde{Y} \cap U_{u}$ is given by $t+y h(t y, y)=0$ and $x=t y$ and meets $\varphi^{-1}(P)$ in $(0,0,0)$. This point is the point $(0,0,0,1)$ in $\mathbb{A}^{2} \times \mathbb{P}^{1}$. It can be checked that the Jacobian matrix of this variety is $\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ which clearly has rank 2 . Since the dimension of $\tilde{Y} \cap U_{u}$ is 1 we get that $\tilde{Y} \cap U_{u}$ is non singular at the point P. Therefore we get that $\varphi^{-1}(P) \cap \tilde{Y}=\{(0,0,0,1),(0,0,1,0)\}$ both of which are non singular points.
(c) Let the homogeneous coordinates of \mathbb{P}^{1} be t, u. Then the total inverse image of Y in the blow up of \mathbb{A}^{2} at the origin is given by $x u=t y$ and $x^{2}=x^{4}+y^{4}$. We first consider the affine piece given by $t \neq 0$ by putting $t=1$. We then get the equations $x u=y$ and $x^{2}=x^{4}+y^{4}$ from which we obtain the equation $x^{2}-x^{4}-x^{4} u^{4}=0$. This has two irreducible components, $x=0$ and $x^{2}+x^{2} u^{4}-1=0$. The first component corresponds to the exceptional curve, $E=\psi^{-1}(P) \cap U_{t}$ where $\psi: X \longrightarrow \mathbb{A}^{2}$ is the blowing up of \mathbb{A}^{2} at the origin. The second component corresponds to $\tilde{Y} \cap U_{t}$. We can check that $\tilde{Y} \cap U_{t} \cap E=\emptyset$.

We now consider the second affine subset U_{u} given by $u \neq 0$ by setting $u=1$. We then get the equations $t y=x$ and $x^{2}=x^{4}+y^{4}$ from which we get the equation $t^{2} y^{2}-t^{4} y^{4}-y^{4}$. This has two irreducible components $y=0$ and $t^{2}-t^{4} y^{2}-y^{2}=0$. The first component corresponds to the exceptional curve, $E=\psi^{-1}(P) \cap U_{u}$ where $\psi: X \longrightarrow \mathbb{A}^{2}$ is the blowing up of \mathbb{A}^{2} at the origin.

The second component corresponds to $\tilde{Y} \cap U_{u}$. This intersects E at the point $(0,0,0)$. The lowest degree terms of $t^{2}-t^{4} y^{2}-y^{2}=0$ are $t^{2}-y^{2}=(t+y)(t-y)$ and hence $\varphi^{-1}(P) \cap U_{u}$ is a node.
(d) Let Y be the variety defined by $y^{3}-x^{5}=0$. Then clearly the origin is a triple point of Y. Let the homogeneous coordinates of \mathbb{P}^{1} be u, t. The total inverse image of Y in the blow up of origin at origin is given by the equations $x u=t y$ and $y^{3}-x^{5}=0$. We first consider the affine piece U_{u} given by $u \neq 0$ by setting $u=1$. Then we get equations $x=y t$ and $y^{3}-x^{5}=0$ from which we obtain the equation $y^{5} t^{5}-y^{3}=0$. This has two irreducible components $y=0$ and $y^{2} t^{5}-1=0$. The first component corresponds to the exceptional curve $E=\psi^{-1}(P) \cap U_{t}$ where ψ is the blowing up of \mathbb{A}^{2} at the origin. The second component corresponds to $\tilde{Y} \cap U_{u}$. We can check that $\tilde{Y} \cap U_{u} \cap E=\emptyset$. Therefore this component of \tilde{Y} has no singularity.

We consider the affine piece U_{t} given by $t \neq 0$ by setting $t=1$. Then we get the equations $y=x u$ and $y^{3}-x^{5}=0$ from which we obtain the equation $x^{3} u^{3}-x^{5}=0$. This has two irreducible components $x=0$ and $u^{3}-x^{2}=0$. The first component corresponds to the exceptional curve $E=\psi^{-1}(P) \cap U_{t}$ where ψ is the blowing up of \mathbb{A}^{2} at the origin. The second component corresponds to $\tilde{Y} \cap U_{t}$. This is the cuspidal cubic curve with a double point at the origin.

Let us denote this cuspidal cubic curve by Z. We now blow up Z at the point $(0,0)$. Let the homogeneous coordinate of \mathbb{P}^{1} be w, v. Then the inverse image of Z in the blow up of \mathbb{A}^{2} at the origin is given by the equations $x w=u v$ and $u^{3}-x^{2}=0$. We first consider the affine piece U_{w} given by $w \neq 0$ by setting $w=1$. We then get the equations $x=u v$ and $u^{3}-x^{2}=0$ from which we get the equation $u^{3}-u^{2} v^{2}=0$. This has two irreducible components $u=0$ and $u-v^{2}=0$. The first component corresponds to $E=\varphi^{-1}(P) \cap U_{w}$ where φ is the blow up of \mathbb{A}^{2} at the origin. The second component corresponds to $\tilde{Z} \cap U_{w}$. This meets E at the point $(0,0,0)$ and it can be checked that $\tilde{Z} \cap U_{w}$ is non singular at this point.

We now consider the affine piece U_{v} given by $v \neq 0$ by setting $v=1$. We then get the equations $x w=u$ and $u^{3}-x^{2}=0$ from which we get the equation $x^{3} w^{3}-x^{2}=0$. This has two irreducible components $x=0$ and $x w^{3}-1=0$.

The first component corresponds to $E=\varphi^{-1}(P) \cap U_{v}$ and the second component corresponds to $\tilde{Z} \cap U_{v}$. We can check that $\tilde{Z} \cap U_{w} \cap E=\emptyset$.

Therefore we cusp at the point P obtained by blowing up Y is resolved by a subsequent blowing up.

Chapter 6

Varieties and Submanifolds

6.1 Introduction

Complex analysis deals with holomorphic functions which are defined on open subsets of the euclidean topology on \mathbb{C}^{n}. This leads to the notion of holomorphic submanifolds of $\mathbb{C}^{n}\left(\right.$ and $\left.\mathbb{P}^{n}(\mathbb{C})\right)$ which are loosely speaking subsets of $\mathbb{C}^{n}\left(\right.$ and $\left.\mathbb{P}^{n}(\mathbb{C})\right)$ which are locally given by holomorphic functions.

On the other hand we have defined on \mathbb{C} and $\mathbb{P}^{2}(\mathbb{C})$ a topology called the Zariski topology in which the closed subsets are the set of common zeroes of polynomials functions. The closed subsets in the Zariski topology are called algebraic varieties. These may or may not be reducible.

In this essay we state and prove two basic yet remarkable theorems which bring out the relationship between these two kinds of subspaces of $\mathbb{P}^{2}(\mathbb{C})$, namely the algebraic varieties and the analytical submanifolds thus connecting the algebro-geometric notions over abstract fields with the ideas coming from complex manifolds.

6.2 Closed Submanifolds of \mathbb{C}^{n}

In this section we define a closed holomorphic submanifold of \mathbb{C}^{n}. We begin by defining a few preliminaries.

Definition 6.2.1 (Holomorphic Function). A map $f: U \longrightarrow \mathbb{C}$ from an open subset $U \subset \mathbb{C}^{n}$ to \mathbb{C} is said to be holomorphic (or complex analytic) if for any point $P=\left(a_{1}, \ldots, a_{n}\right) \in U$ there exists an neighbourhood of P in which f can be expressed
as a convergent power series in the n complex variables $x_{1}-a_{1}, \ldots, x_{n}-a_{n}$.
A map $f: U \longrightarrow \mathbb{C}^{m}$ which is given by $\left(f_{1}, \ldots, f_{m}\right)$ is said to be holomorphic if each of the $f_{i}: U \longrightarrow \mathbb{C}$ is holomorphic.

Definition 6.2.2 (Holomorphic Isomorphism). Let $U \subset \mathbb{C}^{n}$ and $V \subset \mathbb{C}^{m}$ be open subsets. A map $f: U \longrightarrow V$ is called a holomorphic isomorphism if it is a topological homeomorphism such that f and the inverse map $g: V \longrightarrow U$ are holomorphic when regarded as maps from $U \longrightarrow \mathbb{C}^{m}$ and $V \longrightarrow C^{n}$ respectively.

It can be checked that when $U \subset \mathbb{C}^{n}$ is non empty and when there is a holomorphic isomorphism $f: U \longrightarrow V$ fro some $V \subset \mathbb{C}^{m}$, then $m=n$.

Definition 6.2.3 (Holomorphic coordinate chart). The tuple (U, u_{1}, \ldots, u_{n}) where $U \subset \mathbb{C}^{n}$ is non empty and open and each of the $u_{i}: U \longrightarrow \mathbb{C}$ is holomorphic, is called a holomorphic coordinate chart if the resulting map $u: U \longrightarrow \mathbb{C}^{n}$ is a holomorphic isomorphism of U onto an open subset $V \subset \mathbb{C}^{n}$.

We now define a special kind of holomorphic coordinate chart which will be used in the definition of a closed submanifold of \mathbb{C}^{n}.

Definition 6.2.4 (Cubical coordinate chart(polydisk)). Let (U, u_{1}, \ldots, u_{n}) be a holomorphic coordinate chart such that the map $u: U \longrightarrow \mathbb{C}^{n}$ is a holomorphic isomorphism of U onto an open subset $V \subset \mathbb{C}^{n}$.

If V is of the form $\left\{\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{C}^{n}| | b_{i} \mid<a\right\}$ fro some $a>0$, then the holomorphic coordinate chart is called a cubical coordinate chart.

The point $P \in U$ for which $u_{i}(P)=0$ for all $i=1, \ldots, n$ is called the centre of the cubical coordinate chart.

Definition 6.2.5 (Locally closed holomorphic submanifold of \mathbb{C}^{n}). A non empty locally closed subset $X \in \mathbb{C}^{n}$ is called a locally closed submanifold of \mathbb{C}^{n} if each $P \in X$ is the centre of a cubical coordinate chart $\left(U, u_{1}, \ldots, u_{n}\right)$ such that $X \cap U=\left\{Q \mid u_{i}(Q)=0\right.$ for all $\left.d+1 \leq i \leq n\right\}$ where $d \leq n$ is a positive integer.

The positive integer d is called the dimension of the locally closed submanifold.
When X is an empty it vacuously satisfies the criteria of being a locally closed submanifold and therefore we adopt the convention of giving it dimension $-\infty$.

If a locally closed submanifold X of \mathbb{C}^{n} is closed in an open subset V of \mathbb{C}^{n}, we call it a closed submanifold of V.

6.3 Implicit Function Theorem

In this section we state the implicit function theorem which serves to connect analytical geometry and algebraic geometry specifically by showing that non singular algebraic varieties are closed holomorphic submanifolds. We illustrate this use of the theorem in the later sections after defining the concept of non-singularity.

Theorem 6.3.1 (Implicit Function Theorem). Let x_{1}, \ldots, x_{m} be the linear coordinates on \mathbb{C}^{m} and let y_{1}, \ldots, y_{n} be the linear coordinates on \mathbb{C}^{n}. Therefore we get on \mathbb{C}^{m+n} the linear coordinates $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$. Let $U \subset \mathbb{C}^{m+n}$ be an open neighbourhood of the origin $0 \in \mathbb{C}^{m+n}$. Let $f=\left(f_{1}, \ldots, f_{n}\right): U \longrightarrow \mathbb{C}^{n}$ be a holomorphic map such that $f(0)=0$. If the $n \times n$ matrix

$$
\left(\frac{\partial f_{i}}{\partial y_{j}}\right)_{1 \leq i, j \leq n}
$$

is invertible at the point $0 \in \mathbb{C}^{m+n}$, then there exists open neighbourhoods $V_{a} \subset \mathbb{C}^{m}$ and $W_{b} \subset \mathbb{C}^{n}$ which are given $\left|x_{i}\right|<a$ and $\left|y_{j}\right|<b$ for some positive real numbers a, b and a holomorphic function $g=\left(g_{1}, \ldots, g_{n}\right)=V_{a} \longrightarrow W_{b}$ such that $V_{a} \times V_{b} \subset U$ and

$$
f^{-1}(0) \cap\left(V_{a} \times W_{b}\right)=\left\{(x, g(x)) \mid x \in V_{a}\right\}
$$

Proof. See Proposition 1.1.11, Chapter 1, p 11 of [2]

This theorem tells us that under suitable conditions the level set of a holomorphic map is locally the graph of a holomorphic function.

Now, if $f: U \longrightarrow \mathbb{C}^{n}$ be a holomorphic map where $U \subset \mathbb{C}^{q}$ is an open subset. Suppose for each $P \in U$ with $f(P)=0$, the rank of the $n \times q$ matrix

$$
\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)_{1 \leq i \leq n, 1 \leq j \leq q}
$$

is n. If $f^{-1}(0)$ is non empty, we get from the Implicit Function Theorem that it is a closed holomorphic submanifold of U of dimension $q-n$.

6.4 Non-singular varieties

In this section we define the concept of a non-singular algebraic variety of \mathbb{C}^{n} and then use implicit function theorem to connect it to the concept of a holomorphic submanifold of \mathbb{C}^{n}.

Definition 6.4.1 (Non-singular affine variety). Let $Y=\mathcal{Z}\left(f_{1}, \ldots, f_{t}\right) \subset \mathbb{C}^{n}$ be an algebraic variety. Then Y is said to be non-singular at a point $P \in Y$ if the rank of the matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)$ is $n-r$ where r is the dimension of Y.

The variety Y is said to be non-singular if it is non-singular at every point of Y.
Similarly we can define the concept of a non singular algebraic subset of \mathbb{P}^{n}.
Definition 6.4.2 (Non singular projective variety). Let $Y \subset \mathbb{P}^{n}$ be the set $\mathcal{Z}\left(f_{1}, \ldots, f_{t}\right)$ where f_{i} are homogeneous polynomials in $k\left[x_{0}, x_{n}\right]$. Let $P \in Y$ be the point with the homogeneous coordinates $\left(a_{0}, \ldots, a_{n}\right)$. The Y is said to be non-singular at the point P if the rank of the matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)$ is $n-r$ where r is the dimension of Y.

The matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)$ is called the Jacobian matrix of Y. If $Y=\mathcal{Z}\left(f_{1}, \ldots f_{t}\right)=$ $\mathcal{Z}\left(g_{1}, \ldots, g_{s}\right)$, then it can be shown that the rank of the matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)$ is the same as the rank of the matrix $\left(\frac{\partial g_{i}}{\partial x_{j}}(P)\right)$ for any $P \in Y$. Therefore the notion of non-singularity of a variety is independent of the set of generators of the variety. This criteria for non-singularity is called the Jacobian criteria.

We recall a few definitions from algebraic geometry here which will aid us in giving an equivalent condition for son singularity.

Let $Y \subset \mathbb{C}^{n}$ be an algebraic variety.
Definition 6.4.3 (Regular Functions on \mathbb{C}^{n}). A function $f: Y \longrightarrow \mathbb{C}$ is said to be regular at a point $P \in Y$ if there is an open neighbourhood $U \subset Y$ with $P \in U$ and two polynomials $g, h \in k\left[x_{1}, \ldots, x_{n}\right]$ such that h is no where zero on U and $f=g / h$ on U.

We say that f is regular on Y if it is regular at every point on Y.
Definition 6.4.4 (Regular functions on \mathbb{P}^{n}). A function $f: Y \longrightarrow \mathbb{C}$ is said to be regular at a point $P \in Y$ if there is an open neighbourhood $U \subset Y$ with $P \in U$ and
two homogeneous polynomials $g, h \in k\left[x_{o}, \ldots, x_{n}\right]$ of the same degree such that h is no where zero on U and $f=g / h$ on U.

We say that f is regular on Y if it is regular at every point of Y.
Definition 6.4.5 (Local ring of a point on a variety). Suppose Y is an algebraic subset of \mathbb{C}^{n} (or \mathbb{P}^{n}) and suppose $P \in Y$ is a point. Then the set of all pairs (U, f) where U is an open subset of Y containing P and f is a regular function on U with the equivalent condition that $(U, f)=(V, g)$ if $f=g$ on $U \cap V$ is a ring. This ring is called the local ring of P on Y and is denoted by $\mathcal{O}_{P, Y}$.

The local ring $\mathcal{O}_{P, Y}$ is basically the ring of germs of regular functions near P. It can be checked that it is a local ring and the set of germs of regular functions which vanish at P is its the maximal ideal. We denote this maximal ideal by \mathfrak{m}_{P}.

We now define the algebraic notion of a regular local ring.
Definition 6.4.6 (Regular Local Ring). A noetherian local ring (A, \mathfrak{m}) with residue field k is called regular local if $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=\operatorname{dim} A$.

We now state a theorem which gives an equivalent condition for non singularity in terms of the local ring.

Theorem 6.4.7. Let $Y \subset \mathbb{C}^{n}$ be an algebraic set. Let $P \in Y$ be a point. Then Y is non-singular at P if and only if the local ring $\mathcal{O}_{P, Y}$ is a regular local ring.

Proof. See Theorem 5.1, Chapter I, p 32 of [1]
We next state a theorem which tells us that most of the points of an algebraic variety Y are non-singular.

Theorem 6.4.8. Let Y be a variety. Then the set Sing Y of singular points of Y is proper closed subset of Y.

Proof. See Theorem 5.3, Chapter I, p 33 of [1]
We now use the implicit function theorem to show that non-singular algebraic varieties are closed holomorphic submanifolds. Suppose now that the $Y \subset \mathbb{C}^{n}$ is an irreducible non singular algebraic set of dimension r. Suppose that $Y=\mathcal{Z}\left(f_{1}, \ldots, f_{n}\right)$. Since Y is non-singular, at every point P of Y the rank of the matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}(P)\right)$ is $n-r$. Then from the implicit function theorem we know that Y is a closed submanifold of dimension r in \mathbb{C}^{n}.

6.5 Chow's Theorem

We now state and prove a theorem which serves to show an important connection between algebraic geometry and analytical geometry by showing that the local property of being analytic in \mathbb{P}^{n} is equivalent to the global property of being algebraic. In this essay we concentrate on the special case of $n=2$. This result allows us to apply many analytical methods to algebraic geometry.

Theorem 6.5.1. Any 1-dimensional holomorphic closed submanifold of $\mathbb{P}_{\mathbb{C}}^{2}$ is a nonsingular irreducible algebraic curve in $\mathbb{P}_{\mathbb{C}}^{2}$.

Proof. If M is a straight line, then there is nothing to prove, so assume that M is not a straight line. Note that \mathbb{P}^{2} has an affine open cover by three copies of \mathbb{C}^{2}, each the complement of one axis. Therefore, $M \cap \mathbb{C}^{2}$ will be a non-empty closed submanifold for each of these \mathbb{C}^{2}. We first assume that $M \cap \mathbb{C}^{2}$ is connected (this assumption is necessarily satisfied as we will show later).

Therefore, we now begin by considering a 1-dimensional holomorphic closed connected submanifold $M_{0} \subset \mathbb{C}^{2}$.

By definition of a submanifold, around any $Q \in M_{0}$ there is a rectangular open neighbourhood (polydisk) W such that $M_{0} \cap W$ is the graph of a holomorphic function $y=g(x)$ or graph of a holomorphic function $x=h(y)$.

Let $P \in \mathbb{C}^{2}$ be such that $P \notin M_{0}$. Suppose that the line $\overline{P Q}$ is tangent to M_{0} at Q. Then around Q we can choose new local coordinates (u, v) which form a polydisk U such that u and v are first degree polynomials in x and y, and for any line L passing through P and intersecting U, the set $L \cap U$ is given by $v=$ constant. Hence locally (by shrinking U if necessary) there will be a holomorphic function $f(u)$ such that $M_{0} \cap U$ is the graph $v=f(u)$. Suppose that Q is the point $(u, v)=(a, b)$.

Let $T=\left\{Q \in M_{0} \mid \overline{P Q}\right.$ is tangent to M_{0} at $\left.Q\right\}$. We will show that T is closed and discrete. First we will show that T is discrete, that is, each point of T is isolated. The condition that $Q=(a, b)$ is a point in T is that $\frac{d f}{d u}(a)=0$. Since f is holomorphic, we have that $\frac{d f}{d u}$ is holomorphic. Therefore if $\frac{d f}{d u}(a)=0$, then either a is an isolated zero of $\frac{d f}{d u}$ or $\frac{d f}{d u} \equiv 0$ in a neighbourhood of a. If former is the case then we are done. Suppose $\frac{d f}{d u} \equiv 0$ in a neighbourhood of a. Then f is a constant function. Since $f(a)=b$, we have that $f(u)=b$. Let L be the line whose intersection with U is given by $v=b$. Hence $L \cap U \subset M_{0}$. Let L be given by $a x+b y+c=0$ where x, y are the cartesian coordinates on \mathbb{C}^{2}. Then $a x+b y+c$ is a holomorphic function on M_{0}
which vanishes in the open set $M_{0} \cap U$, so vanishes on all of M_{0} as M_{0} is connected, so $L \subset M_{0}$, which means $P \in M_{0}$, a contradiction. This completes the proof that T is discrete. The set T is closed in M for if T has a limit point in M not in T then it is a limit point of zeros of $d f / d u$, so $d f / d u$ is identically zero in a neighbourhood of the point on M. Then the above argument will show again that $P \in M_{0}$, a contradiction.

Let $M \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a closed holomorphic submanifold of dimension 1 . Let the homogeneous coordinates of \mathbb{P}^{2} be X, Y, Z. Since $\mathbb{P}_{\mathbb{C}}^{2}$ is compact, we have that M is compact. We can write $\mathbb{P}_{\mathbb{C}}^{2}$ as $\mathbb{C}^{2} \cup \mathbb{C}^{2} \cup \mathbb{C}^{2}$ and then we get that $M \cap \mathbb{C}^{2}$ is a closed submanifold of dimension 1 in \mathbb{C}^{2}. We will first assume that $M \cap \mathbb{C}^{2}$ is connected.

Let $P \in \mathbb{P}_{\mathbb{C}}^{2}$ be such that $P \notin M$ and let $T=\{Q \in M \mid \overline{P Q}$ is tangent to M at $Q\}$. Since each $T \cap \mathbb{C}^{2}$ is discrete and closed, we have that T is discrete and closed. Hence T is finite by compactness of M.

Let $T=\left\{Q_{1}, \ldots, Q_{d}\right\}$. Let L be a line in \mathbb{P}^{2} such that $P \notin L$. Let $\pi: M \longrightarrow L$ be the projection from the point P. We can choose linear coordinates on \mathbb{P}^{2} such that $P=(0,1,0)$ and the line L is given by $Y=0$ and $(1,0,0) \notin \pi(T)$. Therefore $(1,0,0),(0,0,1) \in L$. Also, the projection is now given by $\pi(a, b, c)=(a, c)$.

Let $U_{Z} \subset \mathbb{P}^{2}$ be the affine open subset given by $Z \neq 0$. Then the affine coordinates of U_{Z} are $x=X / Z$ and $y=Y / Z$. Now, the lines through P will be given by $x=t$ where $t \in \mathbb{C}$ and the projection from P will be given by $\pi(x, y)=x$. Let $M_{Z}=M \cap U_{Z}$. Now, for any point $(a, b) \in M_{Z}$, there exists a holomorphic function h and a positive real number r such that $y=h(x)$ in an open disc D of radius r around a, i.e., $D=\{x \in \mathbb{C}| | x-a \mid<r\}$.

Let $a \notin \pi(T) \subset L$. Suppose there are exactly m points in M over $x=a$, given by $y=b_{1}, \ldots, b_{m}$. Now, for each $\left(a, b_{i}\right)$, there exists a holomorphic function h_{i} and a positive real number r_{i} such that $y=h_{i}(x)$ in an open disc D_{i} of radius r around a. Now, $\Gamma_{h_{1}}\left(D_{1}\right) \cup \ldots \cup \Gamma_{h_{m}}\left(D_{m}\right)$ is open in M_{Z}. Therefore $M_{Z} \backslash\left(\Gamma_{h_{1}}\left(D_{1}\right) \cup \ldots \cup \Gamma_{h_{m}}\left(D_{m}\right)\right)$ is closed in M_{Z} and hence compact in M_{Z} (since M_{Z} is compact).

Let $M_{Z} \backslash\left(\Gamma_{h_{1}}\left(D_{1}\right) \cup \ldots \cup \Gamma_{h_{m}}\left(D_{m}\right)\right)$ be denoted by N. Therefore $\pi(N)$ is compact and hence closed. We know that $a \notin \pi(N)$. Therefore there exists a small neighbourhood U of a such that $U \cap \pi(N)=\emptyset$. Therefore $\pi^{-1}(U) \subset \Gamma_{h_{1}}\left(D_{1}\right) \cup \ldots \cup \Gamma_{h_{m}}\left(D_{m}\right)$. Therefore for any $a \in U$, any point of $\pi^{-1}(a)$ will be of the form $\left(a, h_{i}(a)\right)$ for some $i=1, \ldots, m$. Therefore $\pi^{-1}(a)$ consists of at most m points. Also, we can choose U so small that $\pi^{-1}(U) \cap \Gamma_{h_{i}}\left(D_{i}\right) \cap \Gamma_{h_{j}}\left(D_{j}\right)=\emptyset$. Therefore for any $a \in U, \pi^{-1}(a)$ consists of exactly m points. Therefore the cardinality of the fibre of $\pi: M_{Z} \longrightarrow L$
is locally constant on $L-\pi(T)$. But $L-\pi(T)=\mathbb{P}^{1}-$ finite set $=S^{2}-$ finite set and therefore is connected. Therefore the cardinality of the fibre on $L-\pi(T)$ is constant, say m.

Around a small enough disk with center at any $a \in L-\pi(T)$, we therefore have well defined holomorphic functions $s_{1}(x), s_{2}(x), \ldots, s_{m}(x)$, which are elementary symmetric functions of the $h_{i}(x)$, that is,

$$
y^{m}-s_{1}(x) y^{m-1}+\ldots+(-1)^{m} s_{m}(x)=\prod_{i=1}^{m}\left(y-h_{i}(x)\right)
$$

As the ordering of the h_{i} does not matter in the definition of s_{i}, these are well defined functions on $L-\pi(T)$. Let $F(x, y)=y^{m}-s_{1}(x) y^{m-1}+\ldots+(-1)^{m} s_{m}(x)$, which is a polynomial in y with coefficients which are holomorphic functions on $L-\pi(T)$.

We will next examine the behaviour of the $s_{i}(x)$ at points of $\pi(T)$ and at $x=$ ∞. Consider a point $a \in \pi(T)$, and let $D-\{a\}$ be a punctured disk around a which does not contain any other point of $\pi(T)$. For any $x \in D-\{a\}$, there are m values of y which satisfy $F(x, y)=0$. We claim that all these m values are bounded by a constant c, that is, $|y| \leq c$. For if not, there exists a sequence $a_{n} \rightarrow a$ in $D-\{a\}$, and for each a_{n} a root b_{n} of $F\left(a_{n}, y\right)=0$, such that $\left|b_{n}\right| \rightarrow \infty$. In \mathbb{P}^{2}, we have $\left(a_{n}, b_{n}, 1\right)=\left(a_{n} / b_{n}, 1,1 / b_{n}\right)$, and these points have $P=(0,1,0)$ as their limit in \mathbb{P}^{2}. This contradicts the assumption that $P \notin M$. Therefore each of the m locally defined functions h_{j} is bounded by c in any small disk in $D-\{a\}$, so their elementary symmetric combinations $s_{i}(x)$ are bounded around each point a of $\pi(T)$, so by Riemann removable singularity theorem, the s_{i} extend to entire functions on L.

We next examine the behaviour of s_{i} at the point $x=\infty$ on the line L. By the choice of coordinates we have that the point $x=\infty$ is the point $Q=(1,0,0) \in \mathbb{P}^{2}$. Also, we have that $(1,0,0) \notin \pi(T)$. Consider the affine open set U_{X} of \mathbb{P}^{2} given by $X \neq 0$. Let the affine coordinates on U_{Z} be denoted by $u=\frac{Y}{X}$ and $w=\frac{Z}{X}$. Therefore $u=\frac{y}{x}$ and $w=\frac{1}{x}$. Now, the line joining $(0,1,0)$ and $(1,0,0)$ is given by $w=\frac{Z}{X}=0$. Each of the m points in the fibre over Q is of the form $(u, w)=\left(c_{i}, 0\right)$. Let the local description of the manifold around $\left(c_{i}, 0\right)$ be given by the holomorphic function $u=g_{i}(w)$. Using the same argument as was used in the affine open neighbourhood U_{Z}, we get that g_{i} is bounded in a neighbourhood of $w=0$ because it take the values in a neighbourhood of c_{i}. Let $c=\max \left\{\left|g_{i}(0)\right|\right\}$. If we substitute $u=\frac{y}{x}$, we get that $y=x g_{i}(w)$. Therefore $|y| \sim c|x|$ as $x \rightarrow \infty(w \rightarrow 0)$. But $y=h_{i}(x)$. Therefore each
$h_{i}(x) \sim c|x|$ as $x \rightarrow \infty$. Therefore we have that $s_{i}(x) \sim x^{i} c^{\prime}$ as $x \rightarrow \infty$ for some constant c^{\prime}.

We know that if $s(x)$ is an entire function on \mathbb{C} and if there exists a constant c and an integer $r \geq 0$ such that $|s(x)|<c|x|^{r}$, then $s(x) \in \mathbb{C}[x]$. Therefore we get that each of the $s_{i}(x)$ are polynomials in x. In particular, $F(x, y)=y^{m}-s_{1}(x) y^{m-1}+$ $\ldots+(-1)^{m} s_{m}(x) \in \mathbb{C}[x, y]$. Therefore we get that $M_{Z}=M \cap U_{Z}=\mathcal{Z}(F(x, y))$ is the affine variety defined by $F(x, y)$.

Let $\tilde{F}(X, Y, Z)$ be the homogenization of F with respect to Z. Then we have that $M \subset \mathcal{Z}(\tilde{F})$. We can factor the highest power of Z out of \tilde{F} and therefore assume that Z does not divide \tilde{F}. Then we get that $M=\mathcal{Z}(\tilde{F}) \subset \mathbb{P}^{2}$.

If $M \cap \mathbb{C}^{2}$ were disconnected, by the above proof each connected component will give rise to a projective curve. But by Bezout's theorem, these curves will intersect. A point of intersection of two irreducible components will be singular, which contradicts the assumption that M is a holomorphic submanifold of \mathbb{P}^{2}. Hence there is no loss of generality in our earlier assumption that $M \cap \mathbb{C}^{2}$ is connected. In particular, the above argument shows that $\tilde{F}(X, Y, Z)$ is irreducible.

This completes the proof of the theorem.
We now state and prove a theorem which shows that any zariski closed subset in \mathbb{P}^{2} is connected in the euclidean topology.

Theorem 6.5.2. If $F(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ is a homogeneous polynomial, then the corresponding locus $\mathcal{Z}(F(X, Y, Z))$ is connected in $\mathbb{P}_{\mathbb{C}}^{2}$ in the euclidean topology.

Proof. Let $\mathcal{Z}(F(X, Y, Z))$ be denoted by V. We begin by proving that there are no isolated points on V. Consider any point $P=\left(a_{0}, a_{1}, a_{2}\right) \in V$. Suppose $a_{2} \neq 0$. We now consider the affine open subset U_{Z} of \mathbb{P}^{2} given by $Z \neq 0$. Let $x=\frac{X}{Z}$ and $y=\frac{y}{Z}$. Let the point $\left(a_{0} / a_{2}, a_{1} / a_{2}\right) \in \mathbb{C}^{2}$ be denoted by P itself. Let $a_{0} / a_{2}=a$ and $a_{1} / a_{2}=b$. Let the dehomogenization of $F(X, Y, Z)$ be denoted by $f(x, y)$. Therefore we have that $f(a, b)=0$.

Let ϵ be so chosen that in the open disc $D=\{y \in \mathbb{C}| | y-b \mid<\epsilon\}$ there exists only one root b of $f(a, y)$. Suppose this root occurs with a multiplicity r. Then we have that $\frac{1}{2 \pi i} \int_{|y-b|=\epsilon} \frac{f_{y}(a, y)}{f(a, y)} d y=r$ where $f_{y}(a, y)=\frac{\partial f}{\partial y}(a, y)$. Now, we know that $\frac{1}{2 \pi i} \int_{|y-b|=\epsilon} \frac{f_{y}(x, y)}{f(x, y)} d y$ is a continuous function of x. But this integral can take only positive integral values. Therefore in a small neighbourhood $|x-a|<\delta$, we get that $\frac{1}{2 \pi i} \int_{|y-b|=\epsilon} \frac{f_{y}(x, y)}{f(x, y)} d y=r$. Therefore we get that for any x in the δ neighbourhood of
a, there exists a root y of $f(x, y)=0$. Hence the point (a, b) is not isolated. We now state and prove a lemma which is a special case of the theorem but will be used in the proof of the theorem.

Lemma 6.5.3. Suppose $f(x, y) \in \mathbb{C}[x, y]$ is irreducible then $\mathcal{Z}(f) \subset \mathbb{C}^{2}$ is connected.

Proof. By a linear change of coordinates (Noether normalization), we can assume that $f(x, y)=y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n}(x)$ where $a_{i}(x) \in \mathbb{C}[x]$ are polynomials. Let T be the set of points (x, y) where $f=0$ and $\frac{\partial f}{\partial y}=0$. We claim that the set T is finite. First we recall some facts about discriminants.

If $f, g \in A[y]$ are two polynomials with coefficients in a ring A, their resultant $\operatorname{Res}_{y}(f, g) \in A$ is an element of A. If $\phi: A \rightarrow B$ is a ring homomorphism, and if $\phi: A[y] \rightarrow B[y]$ again denotes the induced homomorphism, then $\phi\left(\operatorname{Res}_{y}(f, g)\right)=$ $\operatorname{Res}_{y}(\phi(f), \phi(g))$, as the resultant is universally given as the determinant of a certain matrix in the coefficients of f and g. The discriminant of $f \in A[y]$ is the element $\mathcal{D}_{y}(f) \in A$ defined by $\mathcal{D}_{y}(f)=\operatorname{Res}_{y}(f, d f / d y)$. A monic polynomial $f(y) \in A[y]$, where A is a UFD, has repeated factors in its unique factorization into irreducibles in $A[y]$ if and only if $\mathcal{D}_{y}(f)=0 \in A$.

Applying the above to the ring $A=\mathbb{C}[x]$ which is a UFD, we get $A[y]=\mathbb{C}[x, y]$. For $f(x, y) \in \mathbb{C}[x, y]$ as above, we get $\mathcal{D}_{y}(f(x, y)) \in \mathbb{C}[x]$. Putting $x=a$ defines a homomorphism $\phi: \mathbb{C}[x] \rightarrow \mathbb{C}$, and \mathbb{C} is also a UFD. By the above, $\left(\mathcal{D}_{y}(f)\right)(a)=$ $\mathcal{D}_{y}(f(a, y)) \in \mathbb{C}$. So the polynomial f and $\frac{\partial f}{\partial y}$ have a common zero at $x=a$, if and only if $\mathcal{D}_{y}(f)$ vanishes at $x=a$. Since f is irreducible, the discriminant polynomial $\mathcal{D}_{y}(f)$ is not the zero polynomial and hence has finitely many roots. Therefore there are only finitely many points a where $f(a, y)$ and $\frac{\partial f}{\partial y}(a, y)$ have a common zero. Also, as f is monic in y of degree n, at each zero a of $\mathcal{D}_{y}(f), f(a, y)$ is a non zero polynomial having at most n roots. Therefore T is a finite set. Let $T=\left\{Q_{1}, \ldots, Q_{d}\right\}$.

Let the line $y=0$ be denoted by L and let $\pi: \mathbb{C}^{2} \longrightarrow L$ be the projection onto this line given by $\pi(x, y)=x$. As the roots of $\mathcal{D}_{y}(f)$ are contained in $\pi(T)$, for any $a \in L-\pi(T)$ there exist exactly n distinct points $\left(a, b_{i}\right)$ of $\mathcal{Z}(f)$ which lie over a. By implicit function theorem, there exists in a small disk U in $L-\pi(T)$ with center a holomorphic functions $h_{i}(x)$ such that $h_{i}(a)=b_{i}$ and $f\left(x, h_{i}(x)\right)=0$, that is, $\pi^{-1}(U) \cap \mathcal{Z}(f)$ is the disjoint union of the graphs of h_{i}. Let $W=\mathcal{Z}(f)-\pi^{-1} \pi(T)$, and let $p=\left.\pi\right|_{W}: W \rightarrow L-\pi(T)$ be the projection. The above shows that the open disk U around a is evenly covered, and $p: W \rightarrow L-\pi(T)$ is therefore a covering
projection of degree n.
Note that by the definition of the $h_{i}(x)$, we have $f(x, y)=\prod_{i}\left(y-h_{i}(x)\right)$ for all $x \in L-\pi(T)$.

Suppose that $\mathcal{Z}(f)$ is not connected. Suppose $\mathcal{Z}(f)=M_{1} \cup M_{2}$ where M_{1} is a connected component and M_{2} is its complement. The projections $p: M_{1} \rightarrow L-\pi(T)$ and $p: M_{2} \rightarrow L-\pi(T)$ are again covering projections. As $L-\pi(T)$ is connected, these have constant degrees, say n_{1} and n_{2}, so that $n_{1}+n_{2}=n$. Around each $a \in L-\pi(T)$, the set of the n holomorphic functions h_{i} gets partitioned into two subsets: the set of n_{1} holomorphic functions h_{j}^{\prime} which correspond to points in M_{1} and the set of remaining n_{2} holomorphic functions $h_{2}^{\prime \prime}$ which correspond to points in M_{2}. Thus, the products $f^{\prime}(x, y)=\prod_{j}\left(y-h_{j}^{\prime}(x)\right)$ and $f^{\prime \prime}(x, y)=\prod_{k}\left(y-h_{k}^{\prime \prime}(x)\right)$ are well defined over $x \in L-\pi(T)$, and

$$
f(x, y)=f^{\prime}(x, y) f^{\prime \prime}(x, y)
$$

We now claim that $f^{\prime}(x, y)$ and $f^{\prime \prime}(x, y)$ are elements of $\mathbb{C}[x, y]$. Note that f^{\prime} is a polynomial in y with coefficients $s_{i}^{\prime}(x)$ which are elementary symmetric polynomials in the $h_{j}^{\prime}(x)$, and similarly, $f^{\prime \prime}$ is a polynomial in y with coefficients $s_{i}^{\prime \prime}(x)$ which are elementary symmetric polynomials in the $h_{k}^{\prime \prime}(x)$. As the $h_{i}(x)$ are roots of $f(x, y)=$ $y^{n}+a_{1}(x) y^{n-1}+\ldots+a_{n}(x)$, and as the coefficients $a_{i}(x)$ are polynomials, the $h_{i}(x)$ are bounded around each point of $\pi(T)$ and have polynomial growth at $x=\infty$. (This follows from the basic estimate that if $y^{n}+b_{1} y^{n-1}+\ldots+b_{n} \in \mathbb{C}[y]$ is any monic polynomial, then its roots are bounded by $\max \left\{1, \sum_{i}\left|b_{i}\right|\right\}$.) It follows that the elementary symmetric polynomials $s_{i}^{\prime}(x)$ and $s_{i}^{\prime \prime}(x)$ are bounded around each point of $\pi(T)$, and have polynomial growth at $x=\infty$. So by the Riemann removable singularity theorem, these are entire functions.

Any entire function with polynomial growth at ∞ is itself a polynomial. Hence the s_{i}^{\prime} and the $s_{i}^{\prime \prime}$ are themselves elements of $\mathbb{C}[x]$. So $f ;(x, y)$ and $f^{\prime \prime}(x, y)$ are in $\mathbb{C}[x, y]$, and $f=f^{\prime} f^{\prime \prime}$. Thus we get a factorization of $f(x, y)$ in $\mathbb{C}[x, y]$, contradicting its irreducibility.

This shows that the assumption that V is not connected must be false. This proves the lemma that an irreducible affine curve is connected in the euclidean topology on \mathbb{C}^{2} 。

We now return to the projective case.

Suppose that the homogeneous polynomial $F(X, Y, Z)$ is irreducible. Therefore, $f(x, y)=F\left(\frac{x}{Z}, \frac{y}{Z}, 1\right)$ is irreducible. Therefore we have that $\mathcal{Z}(F) \cap \mathbb{C}^{2}$ is connected. We have that $\mathcal{Z}(F) \cap \mathcal{Z}(Z)$ is either finite or equal to $\mathcal{Z}(Z)$. If it is equal to $\mathcal{Z}(Z)$, then since F is irreducible we get that $F(X, Y, Z)=Z$ and hence $\mathcal{Z}(F)$ is connected. Otherwise $\mathcal{Z}(F) \cap \mathcal{Z}(Z)$ is a finite set of points. We know that these points are not isolated and hence $\mathcal{Z}(F)$ is connected.

Now suppose F is not irreducible. Suppose $F=F_{1}^{r_{1}} F_{2}^{r_{2}} \ldots F_{s}^{r_{s}}$ where each F_{i} is irreducible. Then $\mathcal{Z}(F)=\mathcal{Z}\left(F_{1}\right) \cap \ldots \cap \mathcal{Z}\left(F_{s}\right)$. But we know that $\mathcal{Z}\left(F_{i}\right)$ is connected for each $i=1, \ldots, s$. Also, for any $i, j \in\{1, \ldots, s\}$, we know from Bezout's Theorem that $\mathcal{Z}\left(F_{i}\right) \cap \mathcal{Z}\left(F_{j}\right) \neq \emptyset$. Therefore we get that $\mathcal{Z}(F)$ is connected.

Corollary 6.5.4. If $M \subset \mathbb{P}^{2}$ is a one dimensional holomorphic submanifold, then M is connected.

Proof. We know from Chow's theorem that M is of the form $\mathcal{Z}(F)$ for some homogeneous $F \in \mathbb{C}[X, Y, Z]$. But from the above theorem we know that $\mathcal{Z}(F)$ is connected.

Bibliography

[1] Hartshorne, Robin (1977). Algebraic Geometry. Springer-Verlag
[2] Huybrechts, Daniel (2005). Complex Geometry. Springer.
[3] Harris, Joe (1992). Algebraic Geometry- A First Course. Springer.
[4] Shafarevich, I R (1994). Basic Algebraic Geometry - I. Springer.
[5] Atiyah M. F. , Macdonald I. G. (1969). Introduction To Commutative Algebra. Addison-Wesley.

