
Theory of Elliptic curves over an
arbitrary Scheme

A thesis submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

Thesis Supervisor: Dr. Sreekar M Shastry

by

H. Guhan Venkat

April, 2012

Indian Institute of Science Education and Research Pune

Sai Trinity Building, Pashan, Pune India 411021





This is to certify that this thesis entitled ”Theory of Elliptic curves over an

arbitrary Scheme” submitted towards the partial fulfillment of the BS-MS dual

degree programme at the Indian Institute of Science Education and Research Pune,

represents work carried out by H. Guhan Venkat under the supervision of Dr.

Sreekar M Shastry.

H. Guhan Venkat

Thesis committee:

Dr. Sreekar M Shastry

Dr. Baskar Balasubramanyam

Professor A. Raghuram

Coordinator of Mathematics





Dedicated to the memory of my father, M. Harikumar (1954-2010)





Acknowledgments

First and foremost, I thank my thesis supervisor Dr. Sreekar M Shastry profusely

for the incredible number of hours he spent regularly advising me - from teaching me

basic Arithmetic geometry to carefully writing up the minutes of every meeting to

proof read several drafts of this thesis.

I also wish to thank the Mathematics group at IISER Pune, specifically Professors A.

Raghuram, Rama Mishra, Baskar Balasubramanyam, Anupam Kumar Singh, Soumen

Maity, Ayan Mahalanobis, R. Parthasarathi and Pranay Goel, for their tremendous

effort in creating a terrific atmosphere which has shaped my still growing interest in

Mathematics. I am also greatly indebted to Professors L.S. Shashidhara and Sudar-

shan Ananth for their encouragement.

This work would not have materialised and I would have been lost mid way if not

for the continuous support of Akshaa Vatwani, Sarthak Parikh, Surojit Sural, Manoj

Sahu, Jay Shah, Roshni Bano and many others. I owe any success I may achieve

in life to my family for the encouragement they provided me in taking up this bold

endeavour.

vii



viii



Abstract

Theory of Elliptic curves over an arbitrary Scheme

by H. Guhan Venkat

This thesis presents an exposition of the basic theory of Elliptic curves over an ar-

bitrary Scheme with emphasis on the group scheme structure, the structure of the

N-torsion points on the group scheme, various applications of the Rigidity lemma as

well as applications of the dual isogeny for elliptic curves over finite fields such as the

Riemann hypothesis.

ix



x



Contents

Abstract ix

1 Some Algebraic Geometry 1
1.1 Properties of Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Properties of Morphisms of Schemes . . . . . . . . . . . . . . . . . . . 4
1.3 The relative Picard functor and Cartier divisors . . . . . . . . . . . . 6

2 The Group structure 11
2.1 Cohomology and Base Change . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Group Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The structure of E[N ] 17

4 Rigidity and Isogenies 21
4.1 Rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Quotients by a group scheme . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 The dual Isogeny and Hasse’s theorem. . . . . . . . . . . . . . . . . . 25
4.4 Riemann hypothesis for elliptic curves over finite fields . . . . . . . . 27

xi



xii CONTENTS



Chapter 1

Some Algebraic Geometry

In this review chapter, we recall various properties of schemes and of morphisms

between them. We will also recall some important results for which we will give

explicit references.

1.1 Properties of Schemes

Throughout this chapter, we let (X,OX) denote an arbitrary scheme (we will usually

suppress OX from the notation and write simply X).

Definition 1. By a sheaf of OX-modules, we mean a sheaf F on X such that for

every open set U ⊆ X, F(U) has the additional structure of an OX(U)-module.

Definition 2. By an ideal sheaf, we mean a sheaf of OX-module I, such that for

every U ⊆ X open, I(U) is an ideal in OX(U).

Definition 3. An open subscheme of a scheme X is a scheme U , with underlying

topological space an open subset of X such that its structure sheaf OU is the restriction

of the structure sheaf OX |U , i.e. for U ′ ⊆ U open, OU(U ′) ∼= OX(U ′). An open

immersion of schemes is a scheme morphism f : X → Y such that f(X) is isomorphic

to an open subscheme of Y .

Definition 4. A closed immersion is a scheme morphism f : Y → X such that

topologically, f(Y ) is homeomorphic to a closed subset of X and the induced map on

the structure sheafs f# : OX → f∗OY of sheaves on X is surjective. We can formulate

the definition of closed subschemes as equivalence class of closed immersions, i.e.

1



2 CHAPTER 1. SOME ALGEBRAIC GEOMETRY

immersions f : Y → X and f ′ : Y ′ → X are equivalent if there is an isomorphism

i : Y ′ → Y such that f ′ = f ◦ i.

We now review how to associate a sheaf of OX ideals to a closed subscheme of X.

Remark 1. Given a closed subscheme Y of X (with closed immersion denoted by

i : Y → X), we define its ideal sheaf, denoted IY , to be the kernel of the morphism

i# : OX → i∗OY .

Remark 2. Whenever we say that X is a scheme over S, or X is an S-scheme

(denoted by X/S), we mean that X is a scheme with a given morphism f : X → S.

S will be called the base scheme.

Definition 5. Given two S-schemes, X
f−→ S and Y

g−→ S, we define the fiber product

of X and Y over S, denoted by X ×S Y , to be a scheme with morphisms pr1 and pr2

which makes the following diagram commutative :

X ×S Y
pr1−−−→ Xypr2

yf

Y
g−−−→ S

such that for any other S-scheme Z with morphisms φ : Z → X and γ : Z → Y

which satisfies the commutative diagram :

Z
φ−−−→ Xyγ

yf

Y
g−−−→ S

there exists a unique morphism θ : Z → X×S Y such that φ = pr1 ◦θ and γ = pr2 ◦θ.

Yoneda’s lemma

Definition 6. Let A be a category and let SET S denote the category of sets. A

functor

F : A → SET S

is called representable if there exists an object X ∈ A such that for all Y ∈ A

F(Y ) = MorA(Y,X)

In this case, we say X represents F .
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Definition 7 (Functor of points). Given X ∈ A, we associate to X a natural co-

variant functor hX : A → SET S given by hX(Y ) := MorA(Y,X). The functor hX is

called the functor of points of X.

Yoneda’s lemma states that the object X is determined uniquely by its functor of

points hX .

Lemma 1. [Yoneda′s lemma] Let A be a category and let X, Y be two objects in A.

Then there is an isomorphism between Hom(X, Y ) and Hom(hX , hY ).

Proof. First we show injectivity. Let f and g ∈ Hom(X, Y ) such that fK = gK for

all K ∈ C, where fK , gK : hX(K)→ hY (K). Now for K = X, we get that fX = gX .

But for IdX ∈ hX(X). Since

fX(IdX) = f and gX(IdX) = g

we get that f = g which shows the injectivity. It now suffices to establish the

surjectivity. Let φ ∈ Hom(hX , hY ). We need to associate to it a unique morphism

f ∈ Hom(X, Y ). Set f := φX(IdX). For K ∈ C, let p ∈ hX(K). We need to show

that φK(p) = f ◦ p. Now φK(p) ∈ hY (K) is given by the composition

K
p−→ X → Y (1.1)

Now consider

K
p−→ X

IdX−−→ X → Y

which does not change the image of K as in equation (1.1). But this is the same

as p ◦ φX(IdX) which is p ◦ f . Hence we get that φK(p) = f ◦ p which proves the

lemma.

Definition 8. A group scheme over S is an S-scheme X with a section e : S → X

and S-morphisms ρ : X → X and m : X ×S X → X such that the following set of

diagrams

G×S G×S G
m×id−−−→ G×S G

id×m
y m

y
G×S G

m−−−→ G

G
(e◦π,id)−−−−→ G×S Gy(id,e◦π) m

y
G×S G

m−−−→ G
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G
(inv,id)−−−−→ G×S G

(id,inv)

y m

y
G×S G

m−−−→ G

commute.

Remark 3. Alternatively, by Yoneda’s lemma, a group object in SCH/S is an S-group

scheme with a morphism G ×S G → G such that, the induced map on the functor if

points

G(T )×G(T )→ G(T )

make G(T ) a group for every T ∈ SCH/S.

1.2 Properties of Morphisms of Schemes

Definition 9. A morphism f : X → Y is said to be of locally of finite type if we can

find an open affine covering, {Vi = Spec(Bi)} of Y such that for all i, we can find

an affine open cover of f−1(Vi) denoted by {Ui,j = Spec(Ai,j)} such that each Ai,j is

a finitely generated Bi-algebra. Further, f is said to be of finite type if for all i, the

cover {Ui,j} can be chosen to be finite.

Given a morphism between schemes, f : X → Y , the diagonal morphism

is the unique morphism ∆ : X → X ×Y X, such that the projection onto each

component of X ×Y X is the identity map : id : X → X. By the Yoneda’s lemma,

the diagonal morphism is equivalent to the set theoretic diagonal on the points :

∆T : X(T )→ X(T )×X(T ).

Definition 10. A morphism f : X → Y is separated if the diagonal morphism

∆ : X → X ×Y X is a closed immersion.

A morphism f : X → Y is universally closed if it is closed and for all Y -schemes

T , the base change morphism : fT : X ×Y T → T is also closed.

Definition 11. A morphism f : X → Y is proper if it is separated, of finite type and

universally closed.
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Unramified, etale and smooth morphisms

Definition 12. Let R be a ring. An R-module M is defined to be flat if for every

injective homomorphism of R-modules : N → N ′, the induced R-module homomor-

phism, N ⊗RM → N ′ ⊗RM is also injective.

Definition 13. A morphism f : X → Y is said to be flat at x ∈ X if OX,x is a flat

OY,f(x)-module. f is flat if it is flat at every point of X.

Definition 14. A morphism f : X → Y is said to be unramified at x ∈ X if the

homomorphism of local rings OY,f(x) → OX,x has the property that mf(x)OX,x = mx.

Further the morphism is said to be étale at x if it is both unramified and flat at x ∈ X.

Remark 4. We say that f : X → Y is étale (resp. unramified) if it is étale (resp.

unramified) at every x ∈ X.

Definition 15. A geometric point is a morphism Spec(k)
x̄−→ X such that k is an

algebraically closed field.

Definition 16. A morphism f : X → Y is said to be smooth of relative dimension

n if it is flat, locally of finite presentation and for every geometric point ȳ ∈ Y , the

geometric fiber Xȳ := X ×Y Spec(k(ȳ)) is a smooth n-dimensional variety over k(ȳ).

Remark 5. For Y locally noetherian, f : X → Y is smooth of relative dimension n

at x ∈ X if and only if there exists a neighbourhood U of x such that

U
g−→ An

Y

↘ ↓
Y

such that g is etale and p is the projection, An
Y = An

Z×Y
p−→ Y . f is smooth of relative

dimension n if and only if it is smooth of relative dimension n at all x ∈ X.

Definition 17. An abelian scheme over S of relative dimension g is a proper, smooth,

group scheme A → S whose geometric fibers are connected and of dimension g.



6 CHAPTER 1. SOME ALGEBRAIC GEOMETRY

1.3 The relative Picard functor and Cartier divi-

sors

The relative Picard functor

Let S be an arbitrary scheme and let us fix a morphism f : X → S. We define the

absolute picard functor, PicX, to be the functor

PicX : (Schemes/S)→ (Abelian Groups)

given by PicX(T ) := Pic(XT), the group of isomorphism classes of invertible sheaves

on XT := X ×S T .

Definition 18. The relative Picard functor PicX/S is defined as

PicX/S(T ) := Pic(XT )/Pic(T ).

We shall make an assumption that OS ∼= f∗OX and that the morphism f : X → S

has a section. We will show later that this assumption holds in the case of elliptic

curves.

Remark 6. Under the above assumptions, the relative Picard functor is isomorphic

to its associated sheaf under certain Grothendieck topologies namely fppf, Zariski and

étale. This is beyond the scope of this thesis and we will not treat Grothendieck

topologies in detail.

Definition 19. The Picard scheme, if it exists, is the scheme representing the relative

Picard functor PicX/S(T) = Pic(XT)/Pic(T). We shall denote such a scheme by

PicX/S.

When such a scheme PicX/S exists, by Pic0
X/S, we denote the union of the con-

nected components of the identity at all the fibers, i.e.,

Pic0
X/S := ∪s∈SPic0

Xs/ks

We now state an important result due to Grothendieck about the representability of

PicX/S.
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Theorem 1. When f : X → S is a smooth projective curve with geometrically

connected fibers, PicX/S exists and is separated. Further, Pic0
X/S is an abelian scheme.

Proof. See Theorem 1, p. 210 in [2].

Definition 20. Pic0
X/S is called the Jacobian of X over S.

Cartier Divisors

We follow Section 1, Chapter 1 of [10] closely. Let X be an S-scheme as before.

Definition 21. A closed subscheme D ⊂ X is called an effective Cartier divisor if it

is S-flat and its ideal sheaf, say I(D) is an invertible OX-module.

Remark 7. Locally on S, say S = Spec(R), we can find an affine open cover {Ui}
of X with Ui = Spec(Ai), where Ai is an R-algebra. Then, for an effective Cartier

divisor D ⊆ X, D ∩ Ui is cut out by a single equation fi = 0, fi ∈ Ai such that it is

not a zero divisor and Ai/fiAi is a flat R-module. The exact sequence on X

0→ I(D)→ OX → OD → 0 (1.2)

restricts on each Ui = Spec(Ai) to the sequence

0→ Ai
×fi−−→ Ai → Ai/fiAi → 0.

Definition 22. Let L be an invertible OX-module and let U = Spec(A) be an affine

open which trivializes L. Let g be a generator of L |U as an OX |U -module. Hence

for a global section ` ∈ H0(X,L), we can write ` |U= gh. The scheme of zeroes of `

is the closed subscheme obtained by glueing the pieces corresponding to A→ A/hA.

For two effective Cartier divisors D and D′ in X/S, we can define their sum, de-

noted D + D′ as the effective Cartier divisor in X/S, locally cut out by the product

of the equations which cut out D and D′. Specifically, for S = Spec(R) and on an

affine open Spec(A) of X, if D and D′ are cut out by the equations f = 0 and g = 0

respectively, (f, g ∈ A) then D +D′ is cut out by fg = 0.

For an effective Cartier divisor, D in X/S, we can consider its inverse I−1(D), the
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unique OX-module such that I(D)⊗OX
I−1(D) ∼= OX . Multiplying (1.1) by I−1(D)

, we have

0→ OX → I−1(D)→ OD ⊗OX
I−1(D)→ 0.

Alternatively, for a pair (L, `), where L is an invertible OX-module and ` ∈
H0(X,L), a global section which satisfies the following short exact sequence of OX-

modules

0→ OX
×`−→ L → L/OX → 0

with L/OX flat over S. Then the scheme of zeroes of the section ` of L can be shown

to be an effective Cartier divisor. The Picard group is the group of effective Cartier

divisors, (L, `) under the group operation given by tensor product over OX (See 1.1.3,

Chapter 2 of [10]).

Definition 23. A smooth curve is a smooth morphism f : X → S of relative dimen-

sion one with geometrically connected fibers.

Lemma 2. For X/S a smooth curve, every section s ∈ X(S) defines an effective

Cartier divisor which we denote by [s].

Proof. See Lemma 1.2.2 in [10].

Definition 24. Let X/S be a proper smooth curve and D an effective Cartier divisor.

Zariski locally on S, the affine ring of D is a locally free R-module of finite rank, for

S = Spec(R). We define the degree of D, denoted by deg(D) to be the rank of this

R-module. Alternatively, given an effective Cartier divisor as a pair (L, `) satisfying

the exact sequence

0→ OX
×`−→ L → L/OX → 0

we define its degree to be the rank of the R-module H0(X,L/OX)

Lemma 3. Let C/S be a smooth curve and let [s] an effective Cartier divisor. [s]

is proper over S and of degree one if and only if it is the effective Cartier divisor

associated to a section s ∈ C(S). Moreover s is determined uniquely.

Proof. See Lemma 1.27 of Chapter 1 in [10].

Cartier divisors on the Affine line

In this section, we disucss in detail the construction of effective Cartier divisors for

the Affine line. Let S := Spec(R) be an affine noetherian scheme (i.e. R is a noethe-
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rian ring) and let X be A1
R := Spec(R[x]). By definition, the effective Cartier divisors

in A1
R are the closed subschemes Spec(R[x]/(f)), where (f) is the ideal generated by

the element f in R[x], such that R[x]/(f) is a flat R-module. Since R is noetherian,

R[x]/f is flat over R if and only if it is locally free and hence f is a monic polynomial.

We see that the sum of two effective Cartier divisors in A1
R, sayD1 = Spec(R[x]/f1)

and D2 = Spec(R[x]/f2) is given by

D1 +D2 = Spec(R[x]/(f1f2))

where (f1f2) is the ideal generated by the product of the polynomials f1 and f2 in R[x].

Let s ∈ A1
R(R) be a section. Then we know that s is induced by a ring homomorphism

(which we continue to denote by s) s : R[x]→ R such that

R ↪→ R[x]
s−→ R (1.3)

where R ↪→ R[x] is the usual injection, is the identity on R. Since, s is uniquely

determined by the image of x, the set of sections, A1
R(R) correspond to the ideals of

the form (x− a) for all a ∈ R. Moreover, R[x]/(x− a) is a flat R-module, since it is

isomorphic to R. This verifies Lemma 2.

Let f ∈ R[x] be a polynomial of degree d and let D be the Cartier divisor associ-

ated to f , i.e D = Spec(R[x]/f). Dy definition, the degree of D, deg(D), is the rank

of the module R-module R[x]/f which is the degree of the polynomial f . Thus we

get that

deg(D) = deg(f) = d

When D is of degree one, we know that for D = Spec(R[x]/f), degree of f is one

and hence f = x − a for some a ∈ R. The ring homomorphism R[x]
s−→ R given by

x 7→ a gives rise to a morphism on the schemes Spec(R) → A1
R and hence a section

s ∈ A1
R(R). Conversely, by above, every section corresponds to an effective Cartier

divisor, D of degree one. This verifies Lemma 3.
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Chapter 2

The Group structure

Definition 25. Let S be an arbitrary scheme. An elliptic curve over S is a proper

smooth curve with geometrically connected fibres of genus one with a given (identity)

section e : S → E.

For a section P ∈ E(S), we denote by I(P ) the ideal sheaf of P as an effective

Cartier divisor of degree one and by I−1(P ) its inverse ideal sheaf (i.e. I(P ) ⊗OE

I−1(P ) ∼= OE).

2.1 Cohomology and Base Change

We follow Mumford’s Abelian Varieties [16] as well as Brian Osserman’s notes [18] in

the subject for this section.

Let us assume that we have a morphism f : X → S and a quasi-coherent OX-

module F which is OS flat. Consider the following commutative diagram,

X ′
q−−−→ Xyf ′

yf

S ′
p−−−→ S

where S ′ is an S-scheme and X ′ is the base change X ×S S ′. Denote by F ′ = q∗F
which is O′S flat. We say that cohomology and base change commute for F in degree

i when p∗(Rif∗F) ∼= Rif ′∗(F ′)

Theorem 2. Let f : X → S be a proper morphism with S locally Noetherian and let

F be a coherent OX-module which is OS-flat. The following are equivalent

11
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(a) Cohomology and base change commute for F in degree i

(b) Cohomology commutes with base change for every s ∈ S for F in degree i.

(c) The canonical map Rif∗(F)→ Hi(Xs,Fs) is surjective.

Proof. See Theorem 1.2 in [18].

Theorem 3. Let f : X → S be a proper morphism of Noetherian schemes with F
a coherent OX-module flat over S. Further assume that S is reduced and connected.

Then the following are equivalent :

(i) s→ dimk(s)H
i(Xs,Fs) is a constant function.

(ii) Rif∗(F) is a locally free sheaf E on S such that for all s ∈ S, the natural map

E ⊗OS
k(s)→ Hi(Xs,Fs)

is an isomorphism. Further, when these conditions are satisfied, we also have for all

s ∈ S that

Ri−1f∗(F)⊗Os k(s)→ Hi−1(Xs,Fs)

is an isomorphism.

Proof. See Corollary 2, Section II.5 of [16].

Lemma 4. If S is reduced and F is a coherent sheaf of OY -module such that dimk(y)[F⊗OY

k(y)] = r for all y ∈ Y , then F is locally free of rank r on Y .

Proof. See Lemma 1, Section II.5 of [16].

Theorem 4. Let f : X → S and F be as above except that S need not be reduced.

If there exists some integer i such that Hi(Xs,Fs) vanishes, then for all s ∈ S, the

natural map

Ri−1f∗(F)⊗OS
k(s)→ Hi−1(Xs,Fs)

is an isomorphism.

Proof. See Corollary 3, Setion II.5 of [16].

Corollary 1. Let f : E → S be an elliptic curve. Further let us assume that the base

S is reduced and connected. Then the map

OS → f∗OE

is an isomorphism.
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Proof. Since E is an elliptic curve, we have H0(Es,OEs) = k(s). Hence, by Theorem 3

above, f∗OE is a locally free sheaf on S and φ̄ : f∗OE⊗OS
k(s)→ H0(Es,OEs) = k(s)

is an isomorphism. By Nakayama’s lemma

Lemma 5. [Nakayama] Let R be a local ring with unique maximal ideal m and let M

be a finitely generated module over R. Then, a basis for the vector space M/mM lifts

to a minimal set of generators of M .

we can lift the basis element φ̄(e) of f∗OE ⊗OS
k(s), for e ∈ k(s) a fixed basis of

k(s) (from the isomorphism φ̄) to a generator φ(e) for f∗OE as an OS-module. Then

the natural OS-module homomorphism

OS → f∗OE

sending 1 to φ(e) is an isomorphism.

2.2 Group Law

Due to lack of suitable reference, we shall assume that the base scheme S, is reduced.

Theorem 5 (Abel). There exists a unique structure of commutative group-scheme

on E/S for S reduced such that for any S-scheme T and any three points P,Q,R ∈
E(T ) = ET (T ); we have

P +Q = R

if and only if there exists an invertible sheaf L0 on T and an isomorphism of invertible

sheaves on ET

I−1(P )⊗ I−1(Q)⊗ I(0) ∼= I−1(R)⊗ f ∗T (L0)

where f : E → S is the structure map and fT : ET → T is the base change to T .

Proof. We transport the group-scheme structure (note that it is enough to give a

group structure on the functor of points E(T ) for all S-schemes T ) to E from the

identity component, Pic0, of the relative Picard functor.

We show this via several steps. Let Pic1(ET/T ) denote the set of equivalence

classes of invertible sheaves L on ET which are fiber by fiber of degree one where the

equivalence relation is given by

L ∼ L⊗ f ∗T (L0)
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for some invertible sheaf L0 on T . Now consider the map on the points

E(T )→ Pic1(ET/T ) (2.1)

given by

P 7→ the class of I−1(P )

If we show that this map is bijective , then for P,Q ∈ E(T ), the invertible sheaf on

ET given by

I−1(P )⊗ I−1(Q)⊗ I(0)

which is fiber-by-fiber of degree one, is isomorphic to

I−1(R)⊗ f ∗T (L0)

for some unique R ∈ E(T ). Therefore if the group law exists, it is unique. We now

further compose the above map with the bijection

Pic1(ET/T )→ Pic0(ET/T )

given by the map

L 7→ L ⊗ I(0)

Thus if we show that the map in (1) is bijective, we can transport the group law from

Pic0 (given by the tensor product of Cartier divisors) onto E(T ) via the established

bijections to get a group structure on E(T ). Replacing E/S by ET/T , it is enough to

consider the case T = S. We now show that it suffices to establish 2.1 Zariski locally

on S, i.e. if we are given invertible sheaves L and L′ on E and an affine open covering

Ui = Spec(Ri) on S, invertible sheaves L0,i on Ui and isomorphisms

φi : L → L′ ⊗ f ∗(L0,i)

on f−1(Ui), then there exists an L0 on S and an isomorphism

φ : L ∼= L′ ⊗ f ∗(L0)

By Corollary 1 above, we have

f∗(OE) ∼= OS
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Since f ∗L0,i is a locally free sheaf on OE, we get that

f∗f
∗L0,i

∼= L0,i

Consider the locally invertible sheaves on OS

f∗(L−1 ⊗ L′), f∗(L ⊗ (L′)−1) (2.2)

From the isomorphism φi, we get the two sets of equations

L ∼= L′ ⊗ f ∗(L0,i)

=⇒ f ∗(L−1
0,i )

∼= L−1 ⊗ L′

=⇒ f∗f
∗L−1

0,i
∼= f∗(L−1 ⊗ L′)

L−1
0,i

∼= f∗(L−1 ⊗ L′)

L ∼= L′ ⊗ f ∗(L0,i)

=⇒ L⊗L′−1 ∼= f∗L0,i

=⇒ f∗(L ⊗ L′−1) ∼= f∗f
∗(L0,i)

f∗(L ⊗ L′−1) ∼= L0,i

Thus the two invertible sheaves defined in 2.2 are inverses to each other. Let us

denote the second one L0, and write

L′′ = L′ ⊗ f ∗(L0)

we find isomorphisms f∗(L−1 ⊗ L′′) ∼= OS ∼= f∗(L ⊗ (L′′)−1) under the unit section

1 ∈ Γ(S,OS) = Γ(S, f∗OE) = Γ(E,OE) is the required isomorphism

L ∼= L′′.

Thus we can reduce to the case when S = Spec(R) is affine. We now state a result

from EGA IV (translated) which will enable us to further reduce to the case that R

is noetherian.

Theorem 6. Let A be a ring, X an A-scheme.

(i) The following conditions are equivalent :

a) X is finitely presented over A.
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b) There is a noetherian ring A0, a scheme X0 of finite type over A0, a ring homo-

morphism A0 → A, and an A-isomorphism X0 ⊗A0 A
∼= X.

Proof. This is Proposition 8.9.1 of EGA IV.

We now construct the inverse map under this reduction to establish the bijection.

Lemma 6. Let L be an invertible sheaf on E, fiber-by-fiber of degree one. Then f∗L
is an invertible sheaf on S compatible with arbitrary change of base.

Proof. Note that by Riemann-Roch theorem and Serre Duality, the zeroth and first

cohomology groups of the fibers are H0(Es,Ls) = k(s) and H1(Es,Ls) = 0 for all

s ∈ S. Hence, by Theorem 4 above, we have R0f∗L⊗k(s) ∼= H0(Es,Ls) = k(s) which

shows that f∗L is a locally free sheaf on S.

Now since f∗L is invertible on S, Zariski locally on S, we choose an OS basis l of

f∗L.

Lemma 7. Locally over S, the pair (L, l) on E defines an effective Cartier divisor

in E.

Proof. It suffices to show that

0→ OE
l−→ L → L/OE → 0 (2.3)

is an exact sequence with L/OE flat over OS. Define G := L/OE. Since S = Spec(R)

where R is a noetherian ring, it is enough to show that G is locally free over S. Since

by assumption L is fiber-by-fiber of degree one, by definition we have

dimk(s)H
0(Es,G ⊗ k(s)) = 1

By Lemma 4 above, G is locally free of rank one over OS and hence in particular flat.

Therefore, the pair (L, `) is an effective Cartier divisor on E/S.

Further since L is fiber-by-fiber of degree one it is of the form I(P ) for P ∈ E(S),

a unique section. Hence the map Pic1(E/S) → E(S) given by L 7→ the scheme cut

out by a local on S, OS basis of f∗L is a bijection and in particular inverse to the

map defined in (1). Thus we get a group scheme structure on E/S by giving a group

structure on its functor of points via the relative Picard functor.



Chapter 3

The structure of E[N ]

Theorem 7. Let S be an arbitrary scheme, E/S an elliptic curve and N ≥ 1 an

integer. Then the S-homomorphism “multiplication by N”

[N ] : E → E

is finite locally free of rank N2. Further, if N is invertible on S (i.e. 1/N ∈ OS(U)

for all U ⊆ S open), its group scheme theoretic kernel E[N ] is finite etale over S.

Proof. When S = Spec(C), then E is a torus of the form C/L for a lattice L ⊂ C and

say L = Zω1 ⊕ Zω2 with Im(ω1/ω2) > 0. Then E[N ] ∼= L/N which is a free Z/NZ
module of rank two with basis ω1/N, ω2/N .

By section 2.2, Chapter 2 in [10], Zariski locally on S, we know that E is given by

a smooth Weierstrass cubic in P2
S := P2

Z×Spec(Z) S with origin (0, 0, 1) and conversely

any smooth Weierstrass cubic in P2
S is an elliptic curve over S with origin (0, 0, 1).

Hence by reducing to the universal case, we can assume that S is the open set in

Spec(Z[a1, a2, a3, a4, a6]) over which the cubic

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is smooth. Now S is regular and E → S is smooth. Hence by

Theorem 8. Let Y be a regular locally Noetherian scheme and let f : X → Y be a

smooth morphism. Then X is also regular.

Proof. See Theorem 3.36, pp. 142-143 of [13].

17
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we conclude that E itself is regular. We now show that [N ] : E → E is finite and

flat.

Lemma 8. Let A→ B be a quasi-finite local homomorphism of regular local rings of

the same dimension. Then B is flat over A.

Proof. See Corollary 3.6, p.95 in [1].

Since every finite morphism between schemes is automatically quasi-finite (this is

Remark (2.2), Chapter VI, p. 110 of [1]) and since E is regular, by the above lemma,

we are reduced to showing that [N ] : E → E is a finite morphism. Now consider the

commutative diagram

E
[N ]−−→ E

↘ ↙
S

Denote by gi : E → S the structure morphism of the ith copy of E. Then g1 = [N ]◦g2

is proper and g2 is also proper and hence by

Lemma 9. If f : X → Y and g : Y → Z are two morphisms anf if g ◦ f is proper

and g is separated, then f is proper.

Proof. This is Corollary 4.8(e), pp. 102-103 of [7]

Since every proper morphism is separated, we get that E
[N ]−−→ E is itself proper.

Hence by the following theorem

Theorem 9. Let f : X → Y be a proper morphism with finite fibers. Then f is a

finite morphism

Proof. See Exercise 4.6 of Section 4, Chapter II, p. 106 of [7].

Hence it suffices to show that the morphism [N ] has finite fibers. Further by

Lemma 10. Let f : X → Y be a morphism of S-schemes of finite presentation. Then

f verifies one of the following conditions: flat, smooth, etale, an open immersion,

isomorphism, flat and local complete intersection if only if for every geometric point

s̄ in S, the corresponding map on the fibers fs̄ : Xs̄ → Ys̄ verifies the said condition.

Proof. See (7.4) in [5], pp. 170-171.
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it suffices to show this over geometric fibers of S.

Proposition 1. Let X be a proper regular curve over Spec(k) for k an algebraically

closed field and let f : X → Y be a morphism over Spec(k). Then either (1) f(X) =

a point (i.e f is constant) or (2) k(X) is a finite extension of k(Y ) and f is a finite

morphism.

Proof. See Proposition 6.8, Chapter II, p. 137 of [7]

Thus [N ] is either finite flat or it is a constant.

Lemma 11. If char(k) - N , then [N ] is an etale morphism

Proof. To show that the morphism is etale, it suffices to show that the tangent map

of [N ] at the origin is an isomorphism (See [19]). Since we consider E/Spec(k) we can

consider the tangent space via points in the dual numbers i.e., for k[ε] = k[x]/(x2) we

have a natural map Spec(k)→ Spec(k[ε]) via the ring homomorphism sending ε 7→ 0.

Thus we get a map E(k[ε])→ E(k). We then have

TE(0) = {Q ∈ E(k[ε]) | Q 7→ 0}

Thus [N ] : E → E induces a homomorphism TE(0)→ TE(0). Clearly the map on the

tangent spaces is again given by the multiplication by N homomorphism since [N ] is

a homomorphism of group schemes (hence a group homomorphism E(T )
[N ]−−→ E(T )

for all S-schemes T ). This proves the lemma if char(k) - N .

Over S[1/N ], [N ] is finite flat and fiber-by-fiber etale (hence in particular un-

ramified). But note that for y = [N ](x) where y, x ∈ E, the quotient OE,x/myOE,x
remains unaltered when we pass from E to the fiber Ey and hence this shows that

[N ] is finite flat and unramified or in other words finite etale. We still have to show

in the general case that [N ] is always finite flat. We thus have to show that on an

elliptic curve E/k for k an algebraically closed field, [N ] is not a constant map. Now

for any integer M prime to N and char(k), E(k) has M2 points of order M . Since

(N,M) = 1, the restriction of [N ], which is multiplication by N , to E(k)[M ] - the

M -torsion points, is a non trivial automorphism and hence [N ] is non-constant and

hence finite flat. Because S is noetherian, finiteness along with flatness implies locally

free. Since S is a noetherian connected base scheme, the degree of [N ] is the same as

that over the fiber of any geometric point of S by
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Proposition 2. Let f : E ′ → E be a homomorphism between elliptic curves over a

scheme S. For any integer d ≥ 0, the locus of s ∈ S such that deg(fs̄) = d for a

geometric point s̄ over s is open and closed. If deg(fs̄) = d for all s̄, then f is finite

locally free of degree d when d > 0 and f = 0 when d = 0.

Proof. See Proposition 1.1 of [4] for instance.

Taking any C-valued point, we immediately get that [N ] has degree N2.



Chapter 4

Rigidity and Isogenies

4.1 Rigidity

Theorem 10. [Rigidity] Let X, Y and Z be reduced irreducible schemes over S =

Spec(k) for k any field. Suppose that X is proper over S. Let f : X ×S Y → Z be a

morphism with f(X × y0) = z0 for two closed points y0 ∈ Y and z0 ∈ Z. Then there

exists a morphism g : Y → Z such that f = g ◦ p for the projection p : X ×S Y → Y .

Proof. See Section 4, pp. 43-44 of [16].

Corollary 2. Let S be an arbitrary scheme and let E1 and E2 be elliptic curves over

S. Then any S-morphism f : E1 → E2 such that f(0) = 0 is a homomorphism.

Proof. We first establish the Corollary on every fiber. Hence, let S = Spec(k) for k a

field. We apply Rigidity to the morphism

F : E1 ×S E1 → E2, (4.1)

given by

F = f ◦mE1 −mE2 ◦ (f, f), (4.2)

where mE denotes the usual addition law on the elliptic curve E. In other words,

F on the points is given by F (x, y) = f(x +E1 y) − (f(y) +E2 f(x)). Now since

F (E1 × {0}) = 0E2 , by Rigidity, there exists g : E1 → E2 such that f = g ◦ p2 where

p2 : E1 ×S E1 → E1 is the projection onto the second factor. We get

F (x, y) = F (0, y) = g ◦ p(y)

21
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for all x, y ∈ E1 ×S E1. But, also F ({0} × y) = f(0 + y) − f(0) − f(y) = 0 for all

y ∈ E1. Hence fiber-by-fiber, F is the zero morphism. This completes the proof that

over an arbitrary base scheme S, f : E1 → E2 is a group-scheme homomorphism.

Corollary 3. The structure of the S-group-scheme on E/S given by Abel’s Theorem

is the unique such structure for which “0′′ is the identity element.

Proof. Assume that there exists a different group structure given by

m′E1
: E1 ×S E1 → E1

Apply Corollary 3 with E2 = E1, mE2 = m′E1
and f = idE1 . Then we get

mE1(x, y)−m′E2
(x, y) = 0

Definition 26. Let X, Y be non-singular curves over S = Spec(k) for k an alge-

braically closed field. If f : X → Y is a finite morphism, we define the degree of f

(deg(f)) to be the degree of the field extension [K(X) : K(Y )].

Theorem 11. Let S be an arbitrary scheme and E1 and E2 elliptic curves over S

and f : E1 → E2 an S-homomorphism. Then either f = 0 or f is finite locally free.

Proof. See Proposition 1.1 of [4].

Definition 27. An isogeny is a homomorphism, f : E → E ′, of S-group schemes

that satisfies deg(fs) = d 6= 0 for all s ∈ S. By the above theorem, it is equivalent to

f being finite locally free.

4.2 Quotients by a group scheme

We now describe the concept of a quotient of a group scheme. Let H be an S-group

scheme and X an S-scheme. A right action of H on X is a morphism a : X×SH → X

such that for every S-scheme T , the map on the points X(T ) × H(T ) → X(T ) is a

right action of the group H(T ) on the set X(T ). Further, we call an action strictly

free if the morphism

(id, a) : X ×S H → X ×S X
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i.e., the morphism inducing (x, h) 7→ (x, xh) on the functors is both injective on the

functors and a closed immersion. For a given right action H on X, we call a morphism

f : X → Y constant on orbits if

f ◦ a = f ◦ pr1 : X ×S H → Y,

that is, if f(xh) = f(x), all x ∈ X(T ), h ∈ H(T ) for any S-scheme T .

Theorem 12. (Grothendieck) Let H be a finite flat group scheme over S a locally

noetherian scheme such that it acts strictly freely on a scheme X of finite type over

S. Further if every orbit is contained in an affine open set, then the category of

morphisms X → Z constant on orbits has an initial object; i.e., an S-scheme Y and

a morphism u : X → Y constant on orbits such that for every morphism v : X → Z,

which is constant on orbits, there is a unique morphism f : Y → Z such that v = f ◦u.

We denote Y := X/H. Further the morphism u : X → X/H has the following

properties :

(i) X is finite flat over X/H.

(ii) For every S-scheme T , the map X(T )/H(T )→ (X/H)(T ) is injective.

(iii) If S = Spec(R), H = Spec(B) and X = Spec(A) are affine, then X/H =

Spec(A0), where A0 is the subring of A where the two homomorphisms p̃r1, ã : A →
A⊗R B coincide.

Proof. See Tate’s paper in [20].

The main application of Grothendieck’s Theorem stated above is when X = G

an S-group scheme and H ⊂ G is a finite flat closed subgroup scheme, the action

G×S H → G given by the restriction of the multiplication map G×S G→ G. Then

the quotient scheme G/H is called the scheme of left cosets of H in G. Also, G acts

on the left of the scheme G/H such that the diagram

G×S G
id×u−−−→ G×S (G/H)

m

y yleft action of G

G
u−−−→ G/H

commutes. Further when H acts trivially on G/H or in other words when H is

normal, we get a morphism G/H × G/H → G/H which makes G/H an S-group

scheme and the canonical injection u : G→ G/H an S-group homomorphism.
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Example 1. Let R be a ring of characteristic p. We now compute the quotient group

scheme Ga/αpr . By Grothendieck’s Theorem above, we have

Ga/αpr = Spec(R0)

where R0 ⊂ R[x] is a subring such that on R0, the morphisms R[x]
m̃−→ R[x] ⊗R

R[x]/(xp
r
), given by r(x) 7→ r(x)⊗1+1⊗r(x) and R[x]

p̃r1−−→ R[x]⊗RR[x]/(xp
r
) given

by r(x) 7→ r(x)⊗ 1 coincide. Thus we get, R0 = {r(x) ∈ R[x] | r(x) ∈ (xp
r
)} or in

other words Ga/αpr = SpecR[xp
r
].

Theorem 13. Let f : E → E ′ be an isogeny (in other words, a non-zero S-

homomorphism) and let G := f−1(0) be the scheme-theoretic kernel. Then E ′ ∼= E/G.

Proof. We will first describe the quotient E/G. Note that G acts on E by the re-

striction of the group action

G×S E
m−→ E.

Let
⋃
i Ui = Spec(Ri) be an affine open covering of S. We will construct the quotients

E/G over each Ri and glue them together. By the definition of quotient as an initial

object which is constant on orbits, we are justified in gluing along the overlaps of the

Ui’s (See Grothendieck’s Theorem stated above). Hence we may assume that E is

an elliptic curve over Spec(R). Now if we can find a G-invariant affine open covering

{Vi}i = {Spec(Ai)}i of E (i.e. gVi ⊂ Vi for all i), then by Grothendieck’s recipe, ibid.,

the quotient Vi/G is given by the spectrum of the G-invariant subring of Ai. We can

then glue each Vi/G to get the quotient E/G. Since E/Spec(R) is projective, every

G-orbit Gx (for all x ∈ E) is contained in an affine open subset V . Then
⋂
g ∈ G gV

is a G-invariant affine open neighbourhood of x. Thus we can form the quotient E/G

over each Ui and further glue them to form the quotient E/G over S. Now since, by

definition, G is the scheme theoretic kernel,

E
f−→ E ′

f is constant on orbits of G and hence by the universal property of quotients, we have

E
u−→ E/G

v−→ E ′

such that v◦u = f . Since f is a surjective map, we know that in particular E/G
v−→ E ′
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is surjective. Further, it is injective too since the scheme-theoretic kernel of f is the

same as the scheme-theoretic kernel of u. This proves that v is an isomorphism or in

other words E ′ ∼= E/G.

4.3 The dual Isogeny and Hasse’s theorem.

Definition 28. Let E,E ′ be elliptic curves over an arbitrary scheme S and let f :

E → E ′ be an isogeny. We have a morphism of functors

f t : Pic0(E ′/S)→ Pic0(E/S)

given by L 7→ f ∗L, the inverse image under f of L. Now, f t is a S-homomorphism

and hence by Abel’s Theorem (See Chapter 2), we get an isogeny

f t : E ′ → E (4.3)

which we define as the dual isogeny of f .

Theorem 14. With notation as above, let f have constant fibral degrees N . Then

f t ◦ f = f ◦ f t = [N ], (f t)t = f, [N ]t = [N ] and deg(f t) = N .

Proof. See Section 2.6 in [10].

We will now consider the case when the base scheme has positive characteristic

and review the Frobenius and Verschiebung morphisms.

4.3.1 Frobenius and Verschiebung

Let S be a scheme of characteristic p. We then have a morphism

Frabs : S → S

called the absolute Frobenius. It is given as the identity map on the underlying topo-

logical spaces of S but on the structure sheaf OS, it is the map of raising to the

p-power.

For f : X → S be an S-scheme we denote by X(p) the fiber product:
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X(p) −−−→ Xy f

y
S

Frabs

−−−→ S

Now by the universal property of fiber products, the unique morphism

Fr : X(p) → X. (4.4)

is called the Frobenius morphism. The Frobenius is an S-morphism.

Example 2. Let k be a perfect field of characteristic p. Let S = Spec(k) and let X

be

X = Spec(k[x1, . . . , xn]/(f1, . . . , fm)).

Then we have that the scheme X(p) is

X(p) = Spec(k[x1, . . . , xn]/(g1, . . . , gm)).

where the gi are obtained from fi by raising each coefficient of fi to the p-power. The

Frobenius morphism is then induced by the homomorphism

k[x1, . . . , xn]/(g1, . . . , gm)→ k[x1, . . . , xn]/(f1, . . . , fm),

which is determined by xi 7→ xpi for i = 1, . . . , n.

When G is a finite flat commutative group scheme over S, we denote by Gt the

dual group scheme of G. Now, consider the morphism

Frt : Gt → (Gt)(p)

Upon dualizing, we obtain a morphism which we call the Verschiebung and denote it

by Ver := VerG(p)

Ver := Frt : G(p) → G.

Remark 8. The Verschiebung is a group homomorphism satisfying

FrG ◦ Ver = [p]G(p) , VerG(p) ◦ FrG = [p]G
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4.4 Riemann hypothesis for elliptic curves over fi-

nite fields

Corollary 4. (1) If f : E → E is an S-endomorphism of an elliptic curve over a

connected base S, there exists an integer called trace(f) such that f t + f = trace(f).

(2) In End(E), f is a root of the polynomial in Z[x]

x2 − trace(f)x+ deg(f) = 0 (4.5)

(3) We have the inequality

(trace(f))2 ≤ 4deg(f).

Proof. For (1), note that

deg(1 + f) = (1 + f)(1 + f t) = 1 + deg(f) + trace(f) ∈ Z.

For (2), plugging in f in equation 4.5 above, we get

f 2 − (f t + f)f + f tf = 0.

Now consider the quadratic form given by the polynomial in consideration, i.e., the

form given by

P (x, y) = x2 − trace(f)xy + deg(f)y2 (4.6)

Note that for all integers n,m ∈ Z, P (n,m) = deg(n−mf) ≥ 0. Hence the quadratic

form must be positive definite or in other words, it has a positive discriminant, i.e.,

d = 4deg(f).1− (trace(f))2 ≥ 0 (4.7)

which proves the inequality in part (3).

Theorem 15. [Hasse] If E is an elliptic curve over the finite field Fq (for q = pn a

prime power), then

| aq |:=| (q + 1)−#E(Fq) |≤ 2
√
q

Proof. Let Frobpn denote the Frobenius morphism on E induced by the absolute pn-

Frobenius on Spec(Fq).
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E(q)
Frobpn

−−−−→ Ey y
Spec(Fq)

Frobpn=Id
−−−−−−→ Spec(Fq)

Now it follows that P ∈ E(Fq) if and only if P ∈ E(q)(Fq) and thus,

#E(Fq) = #Ker(1− Frobpn) = deg(1− Frobpn) = (1− Frobtpn)(1− Frobpn)

and hence we get that

#E(Fq) = 1− trace(Frobpn) + deg(Frobpn)

Since deg(Frobpn) = deg(Verpn) and Frobpn ◦Verpn = [pn], we get that deg(Frobpn) =

pn = q. Since aq := (q + 1)−#E(Fq), we get that aq = trace(Frobpn). Now by (3) in

the Corollary above,

trace(Frobpn)2 ≤ 4deg(Frobpn) = 4q

or in other words

| aq |≤ 2
√
q

Definition 29. We define the zeta function for E/Fq by

ZE(t) =
1− aqt+ qt2

(1− t)(1− qt)

where aq = q + 1−#E(Fq) is as defined above.

Theorem 16. [Riemann Hypothesis] Let s = σ + it be a complex variable. If

ZE(q−s) = 0, then Re(s) = 1/2.

Proof. We know that if ZE(q−s) = 0, then qs is a root of the polynomial

f(x) = x2 − aqx+ q

But, by Hasse’s theorem above, the discriminant of f , a2
q−4q ≤ 0. Hence the roots of

f(x), r1, r2, are either repeated or are complex conjugates. In particular | r1 |=| r2 |.
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Also, since r1r2 = q, we have that | r1 |=| r2 |=
√
q. But since one of ri = qs , we get

that | qs |= √q and hence Re(s) = 1/2.
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