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ABSTRACT

Quantum systems with classically chaotic counterparts are studied in the realm

of quantum chaos. A popular indicator of quantum chaos are the level spacing statis-

tics, whose mathematical formulation is given by Random Matrix Theory (RMT).

In this thesis, we study the distribution of ratios of spacings between eigenvalues of

a random matrix or a Hamiltonian matrix corresponding to a quantum chaotic sys-

tem. We also briefly consider other complex systems whose spectral fluctuations

are described by random matrix theory. The main object of interest in this thesis,

the spacing ratio, has recently been introduced, and has gained popularity in RMT

as well as quantum chaos due to its ease of computation.

We study variants of the spacing ratio, and show that its distribution takes dif-

ferent forms depending on the particular scenario considered. In order to study the

effect of localized states on the spectral statistics of a quantum chaotic system, we

propose a basic random matrix model for this interaction, and analytically derive a

form for the distribution of spacing ratios for this model. We show that this model

may be used to understand the strength of interaction between localized states and

their generic neighbors, for various model systems. Next, we show numerically the

form taken by the spacing ratio distribution over longer energy scales, which is an

indicator of long-range correlations in the spectra of random matrices and complex

systems that are modeled by them. Finally we how numerical evidence of scal-

ing relationships in random matrices, for higher order ratio distributions, as well

as for superpositions of random matrices. These results provide a straightforward

but powerful application of the higher order ratios in determining the number of

symmetries present in the Hamiltonian of a given quantum chaotic system.
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CHAPTER 1

Introduction

Trying to understand the way nature works involves a most terrible

test of human reasoning ability. It involves subtle trickery, beautiful

tightropes of logic on which one has to walk in order not to make a

mistake in predicting what will happen.

-Richard P. Feynman

1.1 Introduction

The basis of the scientific method is the idea that given a hypothesis based on pre-

vious observations, predictions may be made regarding the behavior of the system

in question. And these predictions may be tested via experiments, which should

yield identical results when replicated. The development of two physical theories,

however, brought into question the nature of observation and prediction itself; one

being quantum mechanics, and the other, chaos theory.

The study of chaos in the classical regime, starting from the three-body problem

studied by Kepler, established that sensitivity to initial conditions in a dynamical

1
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system makes it behave apparently ‘randomly’, and makes long-time prediction

of the system’s evolution impossible, though it remains deterministic. The rea-

son being that an infinitesimal perturbation in the initial conditions of the system

leads to an exponential divergence of trajectories, a statement that is the crux of

the often-used but thoroughly misunderstood term, `̀ the butterfly effect´́ . It thus

became increasingly evident that all predictions would be limited by accuracy in

measurements and more powerful numerical techniques would be required to un-

derstand the proliferation of chaos in physical systems. Even with the analytical

groundwork for the field laid through the works of Henri Poincaré, Andreï Nico-

laïevitch Kolmogorov and others, it was only sufficient advances in computational

techniques that made the study of chaos in dynamical systems feasible, as increas-

ingly accurate numerical solutions could be provided for the (nonlinear) equations

governing the system in question. This lends a sense of universality to the theory, as

the evolution equations for most dynamical systems fall into the same mathematical

framework.

Thus, chaotic behavior is observed in a wide variety of physical [1], chemi-

cal [2] and biological systems [3], apart from other areas like economics [4], social

sciences [5], engineering [6, 7] etc., and may all be treated within the same math-

ematical framework. There is, however, one notable area where the ideas and for-

malism of classical chaos cannot be directly implemented. The game-changer, so

to speak, is quantum theory.

The idea of trajectories loses meaning in the quantum regime, restricted as it is

by Heisenberg’s Uncertainty Principle. It is not straightforward then, to define chaos

in the manner in which it is talked about classically. This was pointed out by Albert

Einstein in 1917, in the context of Bohr’s Correspondence Principle, which was

an attempt towards bridging the gap between the classical and quantum regimes.

Einstein argued that since there is a breakdown of invariant tori in the phase space

of classically chaotic systems, the idea of quantization of periodic orbits (whose

areas should be integral multiples of the Planck’s constant, according to Bohr’s

theory) is not applicable. It was only later in the 1970s, through the efforts of M.
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Gutzwiller and M. V. Berry [8, 9] towards developing the semiclassical theory of

periodic orbits, that this problem could be addressed.

Thus, what is now studied as quantum chaos [10,11], is really the study of quan-

tum systems which are chaotic in the classical limit [12]. There were some hiccups

along the way regarding the name itself, with Berry preferring the term ‘quantum

chaology’ [13], as there does not exist a direct correspondence with respect to sen-

sitivity to initial conditions between the classical and quantum regimes. Instead,

the object of investigation is the presence of universal signatures in quantum sys-

tems [14] with classically chaotic counterparts, that are not seen in regular quantum

systems. Several of these systems are discussed in Section 1.2. A second class of

systems that have no classical analogues, like compound nuclei are also included

in the discussion as they exhibit all the same signatures of quantum chaos as the

former class of systems.

These signatures are seen in the eigenspectra of the Hamiltonians of the quantum

systems, obtained by solving the corresponding Schrodinger equation, and they are

studied in the mathematical framework of Random Matrix Theory (RMT), which

will be discussed in greater detail in Section 1.3. Random Matrix Theory itself

originated in the study of complex quantum systems, namely the spectra of com-

pound nuclei (although strictly speaking, the first random matrix was introduced by

John Wishart in Ref. [15], in the context of multivariate statistics), but has now ex-

panded in scope to include a multitude of fields, as will be discussed below. Again,

the ubiquity of the quantum signatures of chaos implies that it may be found to be

encompassing various fields of physics including atomic and nuclear physics [16],

quantum optics [17], condensed matter physics [18] and so on [10].

Several of the systems discussed in this thesis are popular theoretical and ex-

perimental models in the fields mentioned above, and the motivation for studying

quantum chaotic systems like these, and the mathematics that describes them, may

be understood in terms of its applicability in problems of quantum transport, en-

tanglement and quantum computation, optical resonators and laser microcavities,

acoustics in systems ranging from crystals to oceans, nuclear resonances, and even
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the Riemann zeta function and generalized L-functions (See references cited above).

The first step in understanding these systems is by building or studying simpler vari-

ations, like some of the models described in the next section. Most of these will be

studied throughout the thesis in the limits in which they are chaotic and in which

they are integrable (a Hamiltonian system with n degrees of freedom is said to

be classically integrable if it possesses n constants of motion, making the corre-

sponding equations of motion completely integrable. Its quantum counterparts are

also referred to as integrable, and analytical solutions exist for their corresponding

Schrodinger equations.)

1.2 Model Quantum Chaotic Systems

1.2.1 Coupled Quartic Oscillator

The two-dimensional coupled quartic oscillator is a classically chaotic system

whose Hamiltonian is given by

H =
p2x
2

+
p2y
2

+ x4 + y4 + αx2y2. (1.1)

In the absence of the coupling parameter α, the system would decouple into

two one-dimensional quartic oscillators, which are integrable. The system is also

integrable for α = 2 and 6, and becomes chaotic for all other values of α. The

classical phase space has both regular and chaotic regions even as α → ∞, making

this a mixed system, and several features including its stability, Poincare sections

[19], scaling in energy [20], existence and occurrence of periodic orbits as well as

bifurcation sequences [21, 22] have been extensively studied for the classical and

quantum versions, as applicable.

Solving the Schrodinger equation corresponding to Eq. 1.1 leads to the study of

the quantum counterpart [23] of this system. It is an interesting model for studying

the quantum signatures of chaos for the following reasons:

• The classical periodic orbits induce localization of quantum eigenfunctions,
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a feature which will be further explored in Chapter 2.

• The scaling in the classical Hamiltonian leads to a scaling in the quantum

energy levels for different values of the Planck’s constant.

• It can be mapped to problems of atoms in strong magnetic fields as the corre-

sponding potentials yield qualitatively similar dynamical features.

• Entanglement dynamics in the system may be studied by considering the cou-

pled quartic oscillator as a bipartite system.

The eigenvalues and eigenvectors of the quantum system may be obtained by

diagonalizing the Hamiltonian in the basis of a linear combination of the corre-

sponding unperturbed system. This is because of the existence of symmetries in

the potential, leading to a block diagonal representation of the Hamiltonian matrix.

Thus it is sufficient to diagonalize only one of the symmetry sectors. The system has

C4v point group symmetry, in the group theory representation, and a desymmetrized

basis set may be constructed as follows [24]:

ψn1,n2(x, y) = N(n1, n2)[φn1(x)φn2(y) + φn2(x)φn1(y)]. (1.2)

Here, N(n1, n2) is the normalization constant and φ(x), φ(y) are the eigenfunctions

of the unperturbed system (that is, Eq. 1.1 with α = 0). Depending on whether the

indices n1 and n2 are odd or even integers, the four irreducible representations for

this system are obtained, and it is sufficient to consider one of them for diagonaliz-

ing the Hamiltonian.

The level spacing distribution for this system, which will be discussed in Section

1.3.5, distinguishes it as a quantum chaotic system, with deviations attributed to the

presence of localized states, which will be dealt with in greater detail in Chapter 2.

1.2.2 Quantum Billiards

The problem of a particle (or ray) confined in a region of space undergoing reflec-

tions from a specified boundary [25] occupies an important position in the study of
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dynamical systems owing to its being analytically tractability [26–28], experimen-

tal feasibility [29–32], and the fact that it exhibits a variety of interesting physical

phenomena [33–38].

The Hamiltonian for a particle moving in two-dimensions in a region Ω defined

by the boundary of the billiard is given by

H =
p2x
2

+
p2y
2

+ V (x, y), (1.3)

with V (x, y) = 0 for x, y ∈ Ω and V (x, y) = ∞ for x, y /∈ Ω.

The classical system shows both integrable and chaotic behavior, depending

on the shape of the boundary, which is the chaos parameter. Integrability is seen

for some basic geometries like circles, ellipses, square and rectangles, and a smooth

transition from integrability to chaos may be studied by treating the shape parameter

as a perturbation of the integrable geometries. The classical phase space shows a

mixture of regular and chaotic regions, and the areas of these regions depend on

the strength of the perturbations (that is, the deformed geometry of the boundary),

which also influences the nature of the periodic orbits.

The quantum version of this system is studied by solving the corresponding

time-independent Schrodinger equation,

(∇2 + V )ψ = Eψ. (1.4)

Written in this form, the equation is reminiscent of the Helmholtz equation,

(∇2 + µ2)ψ = Eψ, where µ is the wave vector, and ψ may be interpreted as the

solution of the electromagnetic wave equation, as well as a quantum wavefunction.

The corresponding analogy between ray and wave chaos is thus extended to the

realm of quantum mechanics, when the wavelength of the incident wavefunction is

comparable in dimension to the size of the billiard.

This leads to several interesting effects, the most important of which is localiza-

tion along classical periodic orbits and dynamical localization due to interference

effects. These aspects will be discussed further in Chapter 2. But the very idea
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of deformations inducing chaos in billiards, and the consequent effects has made it

a very popular system for experimental realization, and it has found several appli-

cations as microwave resonators, laser cavities, acoustic resonators, optical fibres

etc.

Numerically, there exist several methods to analyze this system. In this thesis,

the various kinds of billiards discussed have all been simulated using finite element

method (FEM), via a commercial software, COMSOL Multiphysics [39]. This is

especially useful in the studying billiards with broken time-reversal symmetry, as it

is possible to simulate the experimental set-up exactly, and use the same parameters

and even materials as the experiment.

Analysis of the eigenspectrum of the billiards may be done by specifying the

geometry and the boundary conditions in the software. For billiards possessing dis-

crete symmetries like rotation and reflection (the number of these depends on the

geometry), the whole boundary need not be considered, and a part of the full geome-

try corresponding to an irreducible representation may be studied. For example, for

the popular Bunimovich stadium billiard (whose boundary is defined as the defor-

mation of a circle, with two straight parallel walls and two curved walls opposite to

each other) that has been studied in Chapters 2 and 4, one quarter of the whole sta-

dium corresponds to the irreducible representation. Dirichlet boundary conditions

(ψ = 0) are used at all the boundaries, which preserves time-reversal symmetry.

Other symmetry aspects of billiards are discussed in greater detail in Chapter 4.

One of the methods of breaking time-reversal symmetry is by application of a

static magnetic field, and attaching a magnetized ferrite strip on one of the walls

of the billiards as described in Ref. [40]. The electromagnetic interaction between

the magnetized ferrite and the applied magnetic field leads to the breaking of time-

reversal symmetry, and in this case the boundary conditions are not as straightfor-

ward. However, COMSOL takes into account these interactions and it is not neces-

sary to specify the boundary conditions explicitly, making it convenient to calculate

the eigenvalues and eigenvectors of this system.



1 Introduction 8

1.2.3 One-dimensional Spin chains

Spin chains, like the previously discussed systems are also very popular models to

study a variety of phenomena, chaos being just one of them [41,42]. This popularity,

in large part, is due to their conceptual simplicity, especially considering that they

are many-body systems. Nevertheless, they can be used to model disparate phenom-

ena in statistical mechanics [43–45], condensed matter physics [46–48], quantum

field theory [49, 50], quantum computation [51, 52] etc. Further, spin chains have

mathematically elegant structures and solutions [53], and they lend themselves very

easily to numerical simulations as well [54,55]. Finally, they are experimentally re-

alizable in studies involving magnetization [56,57], critical behavior [58,59], quan-

tum chaos [60, 61] etc.

The starting point in the study of spin chains, is the one-dimensional spin 1/2

Heisenberg model [62], whose Hamiltonian is given by

H =
L−1∑
i=1

[JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1]. (1.5)

Here, L denotes the number of sites, or the length of the spin chain. At each

of the sites, a spin 1/2 object is placed, which can have its spin pointing either

‘up’ (+1/2) or ‘down’ (-1/2). The spin operators in all three directions, x, y and

z at a given site are Sx,y,z = σx,y,z/2, where σx,y,z/2 are the 2 × 2 Pauli spin

matrices. There are nearest-neighbor couplings between the spin, with the spin at

site i interacting only with its nearest neighbors. If the spin chain is along a line,

the spins at the ends of the chain (that is, those at sites 1 and L) couple to only one

neighbor (open boundary conditions), but if the spins are arranged on a ring, the spin

at site L couples to the spins at sites L − 1 and 1 (periodic boundary conditions).

Jx,y,x is the coupling strength along all three directions. If Jx = Jy = Jz, the

system is called the isotropic Heisenberg spin chain or XXX spin chain, whereas if

Jx = Jy 6= Jz, it is the popular XXZ spin chain.

While the above system is integrable even if Jx 6= Jy 6= Jz, there are several

ways of inducing chaos in the system, including the addition of a random magnetic
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field at each site in one of the directions, by the placement of a disorder (or defect)

at one of the sites (as will be seen in Chapter 3), or by introducing higher order

interactions, which may also lead to broken time-reversal symmetry (see Chapters

3 and 4). Other (discrete) symmetries in the spin chain have been further discussed

in Chapter 4, but one that deserves mention at this stage, is invariance under rotation

about the z-axis, leading to conservation of total spin in the z-direction (Sz). This

is an important factor especially when the total Hamiltonian commutes with the Sz

operator, as diagonalization of the Hamiltonian in the basis of Sz (often called the

site basis), leads to a block diagonal structure for the Hamiltonian matrix, with each

block corresponding to a fixed value of Sz. Thus, solving for the eigenspectrum

becomes easier, as it is sufficient to diagonalize one of the blocks. The eigenvalues

and eigenvectors are thus obtained and statistical features of the system may be

studied.

1.2.4 Complex atoms and nuclei

The complexity in the spectra of atoms and molecules arises due to the interac-

tions between the many particles that constitute the given system. For an atom like

Samarium (discussed in Chapter 2), with a high atomic number (Z=62), the atomic

spectrum exhibits complex behavior due to the presence of a large number of va-

lence electrons, existing in various configurations, as well as the effects of spin-orbit

interactions. Though the exact Hamiltonian for such systems has not yet been given,

these high-Z atomic systems may be simulated using the Dirac-Coulomb (relativis-

tic) Hamiltonian, which, for an N -electron atom, has the form

H =
N∑
i=1

(cαi · pi + c2(βi − 1)− Z(ri)

ri
) +

N∑
i>j

1

|ri − rj|
. (1.6)

Most nuclei are considered complex, as the presence of many nucleons leads

to complicated interactions involving the strong, weak and electromagnetic forces.

There are several models to explain nuclear spectra and excitations, including the

nuclear shell model and the collective model [63, 64], but no exact Hamiltonian
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exists to understand experimental observations like neutron resonances or scattering

cross-section data. And it was realized in the 1950s, that models that could exactly

model these features may be next to impossible to construct, given the complex

many-body dynamics of large nuclei.

1.3 Random Matrix Theory

Eugene Wigner, in the 1950s, was studying quantities like the distribution of spac-

ings of nuclear resonance and widths, which prompted him to put forth the idea that

fluctuations in these spectra may be captured in a statistical sense, by comparison

with eigenvalues of large symmetric matrices with random entries. That is, as a sim-

plification at the grossest level, the eigenspectrum of the Hamiltonian corresponding

to the complex nucleus must share some statistical features with the spectrum com-

ing from a matrix whose elements are chosen at random. The Hamiltonian then,

may be considered a black box of sorts, whose output (the energy eigenspectrum) is

compared with the corresponding output of a purely mathematical object (a random

matrix), subject to some symmetry considerations. Not only is this a remarkable

insight, but the fact that this was, and continues to be a highly successful approach

is, in itself, astonishing and non-trivial.

This idea, that some features of a system arising due to its inherent complexity,

can be captured by a mathematical object which is random by design, has a cer-

tain universality. Indeed, Wigner’s proposition gave rise to a field of mathematics

studied as Random Matrix Theory(RMT) [65], and finds widespread application

in various branches of physics, including, but not limited to atomic and nuclear

physics [66, 67], statistical and condensed matter physics [68, 69], quantum field

theories [70, 71], and of course, quantum chaos and mesoscopic physics [11]. It

also has applications in finance, mathematics, biology, climate science, as well as

the social sciences, and is used in multivariate statistics, image processing, control

theory, and basically any field of study that would require modeling of stochastic

features contained within it. [72, 73]
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A more detailed review of Random Matrix Theory, its history and its applica-

tions in physics may be found in Refs. [74, 75] and the references therein.

1.3.1 RMT: Some Mathematical Preliminaries

The mathematical formulation of RMT was put forth in a series of papers by Wigner

and Dyson and several others (collected in Ref. [76]) in the nineteen fifties and

sixties, and Dyson devised a rather elegant classification of random matrices using

symmetry arguments, especially invariance of systems under time reversal, where

the action of the time-reversal operator T on a function φ(t) may be expressed as

Tφ(t) = φ(−t).

A given system may not possess time-reversal symmetry at all, and if it does, then

the eigenvalues of the time-reversal operator must be ±1. These are the only pos-

sibilities, and the Hamiltonian matrix for these three cases must have the following

properties:

• If time-reversal symmetry does not exist, the Hamiltonian must be invariant

under a unitary transformation, and its matrix elements are complex.

• If time-reversal symmetry exists, with the eigenvalue of T being +1, the

Hamiltonian must be invariant under an orthogonal transformation, and a ba-

sis may be found where the matrix elements of the Hamiltonian are real.

• If time-reversal symmetry exists, with the eigenvalue of T being −1, the

Hamiltonian must be invariant under a symplectic transformation, and its ma-

trix elements are quaternions.

This leads to the classification of random matrices as Orthogonal, Unitary

and Symplectic ensembles. If the elements of the random matrix are Gaussian-

distributed random numbers, the most popular class of random matrices, called the

Gaussian Ensemble is obtained.
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1.3.2 Gaussian Ensembles

For random matrices with Gaussian-distributed random numbers, depending on the

symmetry class, they may be classified as Gaussian Orthogonal Ensemble (GOE),

Gaussian Unitary Ensemble (GUE) or Gaussian Symplectic Ensemble (GSE).

The eigenvalues E1, E2, · · ·EN of the Gaussian ensembles have a joint proba-

bility distribution function(JPDF) given by

%(E1, · · ·EN) =
1

ZN,β

N∏
k=1

e−βNE2
k/4

∏
i<j

|Ej − Ei|β. (1.7)

Here, ZN,β is a normalization constant, and the index β is called the Dyson

index. For β = 1, 2 and 4, the above equation gives the JPDF for the Orthogonal,

Unitary and Symplectic ensembles. The Dyson index could also be thought of as

counting the number of real components in the matrix elements corresponding to

each of the ensembles. A GOE matrix is real, symmetric, and has β = 1, a GUE

matrix is Hermitian with complex elements, with β = 2, and a GSE matrix is self-

dual, with quaternion elements and has β = 4. Other values of β do not have a

matrix representation (yet). Hamiltonians of most physical systems belong to one

of these classes, as will be seen in the subsequent chapters.

The Gaussian ensembles may be modified to obtain other classes of random

matrices, and these again correspond to different kinds of physical systems.

1.3.3 Circular Ensembles

If, instead of Hermitian matrices, the statistical properties of Unitary matrices are

investigated, this becomes a useful tool to study the spectra of Floquet systems or

time-periodic systems, as the evolution of these systems are dictated by a unitary

operator. This led to the development of the Circular random matrix ensembles, in

the framework of which, the eigenphases (φi) of the unitary operator (or matrix) U

are studied.

Symmetry considerations appear here as well, and depending on the symme-
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try class (or Dyson index), they can be classified as Circular Orthogonal, Unitary

or Symplectic Ensembles (COE, CUE and CSE). They are called circular, as the

unitary matrices have eigenvalues of the form eiφ, and can be considered to be uni-

formly distributed on a unit circle in the complex plane.

The JPDF of the eigenphases φ1, φ2, · · ·φN is given by

%(φ1, · · ·φN) =
1

Z ′
N,β

∏
1<j<k<N

|eiφj − eiφk |β, (1.8)

where Z ′
N,β is the normalization constant and β = 1, 2, 4 is the Dyson index.

As mentioned earlier, the circular ensembles are used to study Floquet systems

like the kicked rotor and kicked top, and are discussed in greater detail in Chapter

3.

1.3.4 Wishart Ensembles

Wishart matrices may be considered the first example of random matrices, formu-

lated by John Wishart in 1928. In general, given a random N ×M random matrix

X , Wishart matrices may be constructed as W = XXS . Depending on whether X

has real, complex or quaternion elements, the operation XS may be considered as

transposition, complex conjugation, or self-dual operation respectively.

Wishart matrices are generally encountered in the study of multivariate statistics

and used to estimate empirical correlation matrices of order N ×T whose elements

represent the pair-wise Pearson correlation among the N variables, each one being

a time series of length T .

The JPDF for eigenvalues E1, E2, ...ET for Wishart (also known as Wishart-

Laguerre) ensembles is given by

f(E1, E2, ..ET ) =
1

WaβT

T∏
i=1

E
βa/2
i e−βEi/2

∏
1≤j<p≤T

|Ep − Ej|β,

where a = N − T + 1 − 2/β, WaβT is a normalization constant and β = 1, 2, 4 is

the Dyson index.
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1.3.5 Level fluctuations in quantum chaos and RMT

Initially only used in the study of the spectra of complex nuclei, RMT received

a boost with regard to applicability in 1984, due to a conjecture put forth by O.

Bohigas, M. J. Giannoni, and C. Schmit [77] (known as the BGS Conjecture), ac-

cording to which RMT should be applicable to all chaotic quantum systems, and

not just complex systems as previously thought, making a fine distinction between

complexity and chaos in the context of quantum mechanics.

To understand the gist of the BGS Conjecture, it is necessary to take a few steps

back to examine Wigner’s original idea, as applied to the spectra of complex nu-

clei. Beyond the hydrogen atom, there does not exist an analytical solution for

the Schrodinger equation, that would predict the energy of any given state in the

spectrum. In the atomic nucleus the nuclear shell model is successful to a certain

extent, in that it provides a good first approximation for many calculations. Beyond

the low-lying levels, and for increasing number of nucleons however, the observed

spectrum is considered chaotic and analytical predictions cannot be made. However,

fluctuations in the energy levels follow a characteristic distribution, as observed by

Wigner. For an ordered set of energy levels E1 ≤ E2 ≤ E3 · · · , the spacings be-

tween the energy levels are given by si = Ei+1 − Ei, for i = 1, 2, 3 · · · . Sequences

of spacings coming from different nuclei were all observed to have the same distri-

bution, characterized by what has now come to be known as ‘level repulsion’. That

is, there is zero probability of having degeneracies in the spectrum, as consecutive

levels ‘repel’ each other. The notion of level repulsion has come to characterize

the spectra of different kinds of quantum chaotic systems, and this is where the

connection to RMT become more tangible.

In 1956, Wigner derived a form for the distribution of spacings between consec-

utive levels [78] by considering a 2×2 Gaussian random matrix with real elements,

resulting in what is now popularly known as the Wigner surmise, which has the

form

P (s) =
π

2
se−

πs2

4 ,
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where s = E2 − E1 is the spacing between the eigenvalues of the 2 × 2 matrix.

The surmise is an excellent approximation for the distribution of spacings for the

eigenvalues of an N ×N matrix, even for large N .

In general, for a given ordered level sequence E1, E2, · · · , EN , the spacings

between consecutive eigenvalues is defined as si = Ei+1 − Ei, i = 1, 2, ..N − 1,

and the Wigner surmise takes the form

P (s) = Aβs
βe−Bβs

2

. (1.9)

Here β can take the values 1, 2 and 4, indicating the class of random matrices

to be considered. The values of A(β) and B(β) are given by A(β) = 2Γβ+1(β+2)/2)
Γβ+2(β+1)/2)

and B(β) = Γ2(β+2)/2)
Γ2(β+1)/2)

. The factor sβ in the above equation denotes the nature of

the level repulsion, and it is observed to be linear, quadratic or quartic depending

on the value of β.

With this information, the essence of the BGS Conjecture can be put forth as

follows: The spectra of time reversal invariant quantum systems having classically

chaotic counterparts show the same spectral fluctuations as GOE matrices. This

correspondence was later extended to GUE and GSE matrices as well. Though not

rigorously proved, this conjecture has been found to be valid in a host of physical

systems, with semiclassical methods emerging from the works of M. Gutzwiller and

M. V. Berry, that work towards justifying this conjecture, and producing formulae

for calculating eigenvalues of a given system.

In the integrable limit, the distribution of spacings has the form

PP (s) = e−s, (1.10)

and hence the spacing distribution for integrable systems is referred to as Poisso-

nian. This is the essence of the Berry-Tabor Conjecture [79], and this feature, where

the probability of occurrence of degeneracies is the highest, is called level cluster-

ing. However, the effect of symmetries on the spectra of quantum chaotic systems

will be discussed in Chapter 4, where Poisson statistics are seemingly obtained even
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when the system exhibits chaos.

The level spacing distribution continues to be the most popular estimator of

spectral fluctuations. However, the local density of states is a factor that has to be

figured into the calculations, in order to treat spacings from disparate systems on

an equal footing, as it is usually energy-dependent. Thus, the mean level spacing

is renormalized to 1 via a process called unfolding. The idea behind unfolding is

that energy levels should be rescaled such that it maps the spectrum to a constant

local density of states. However, unfolding is often cumbersome, ambiguous and

system-specific.

To overcome this drawback, a new quantity, the ratio of spacings has recently

been proposed as an alternative. The local density of states becomes immaterial

when considering ratios, and hence does not require unfolding. Spacing ratios are

calculated as ri = si+1/si, i = 1, 2, . . . where si is the spacing between eigenvalues

as defined above.

The RMT averages for the spacing ratios, drawn from three standard random

matrix ensembles with β = 1, 2 and 4 corresponding to GOE, GUE and GSE re-

spectively, have been obtained as [80, 81],

P (r, β) = Cβ
(r + r2)β

(1 + r + r2)1+
3
2
β
, (1.11)

where Cβ =
33(1+β)/2Γ(1+β

2
)2

2πΓ(1+β)
is a constant that depends on β.

The integrable limit for this quantity can be trivially obtained by determining

the distribution of the quotient of two Poisson-distributed random variables (level

spacings of integrable systems are uncorrelated), and has the form

PP (r) =
1

(1 + r)2
. (1.12)

This quantity, the ratio of spacings is the primary object of study in this thesis,

and several variants have been discussed in the context of RMT as well as quantum

chaos. But first, it must be noted that the above results for distribution of spacings
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and spacing ratios have been derived for the Gaussian ensembles, but hold good

for Circular and Wishart ensembles as well, in the limit of large matrix dimensions,

though this has not been proved. This correspondence will be carried over in some

of the results presented.

1.4 Thesis Outline

The plan of the thesis is as follows:

• In Chapter 2, localization in quantum chaotic systems is discussed, and the ef-

fect of localized states on the corresponding spectra is studied by considering

the ratio of spacings, where one of the spacings involves a localized state. A

basic RMT model is proposed to simulate the interaction between a localized

state and its nearest neighbors, and analytical expressions for the distribution

of these special kinds of ratios are derived for systems with and without time

reversal symmetry. The analytical and numerical (RMT) results are tested on

some of the systems described earlier in this chapter, and the importance of

the estimation of these ratios is discussed. These results have been published

in Ref [82].

• In Chapter 3, the concept of spacing ratios is generalized to higher orders, and

a functional form is proposed for the higher order spacings, with compelling

numerical evidence provided for this formula, in terms of random matrices as

well as physical systems, with even experimentally observed spectra follow-

ing the proposed form for ratios. Here, Gaussian, Circular as well as Wishart

random matrices are studied, and physical systems from each of these classes

are discussed as well. Also, the proposed formula involves a scaling relation

with respect to the Dyson index β, and it is conjectured that the index may be

generalized to any positive integer. The higher order ratios could also prove to

be a useful probe of spectral correlations at larger energy scales. The results

have been published in Refs. [83] and [84].
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• In Chapter 4, another scaling relation involving higher order spacing ratios

is proposed, this time for superpositions of independent spectra. This rela-

tion is shown to be useful in determining the number of discrete symmetries

or irreducible representations present in the Hamiltonian of a given level se-

quence. This idea has been justified by considering superpositions of random

matrices, and has been tested on quantum chaotic systems that have not un-

dergone symmetry reduction. The relation proposed here is interesting not

only in the framework of RMT, but has direct consequences in the measure-

ment of correlations in observed spectra. These results are under review and

the corresponding manuscript may be found in Ref. [85].

• Chapter 5 summarizes and concludes the work in the thesis, and provides

some future perspectives for the results presented.



CHAPTER 2

Exact distribution of spacing ratios for random
and localized states in quantum chaotic systems

The existence of regular and chaotic regions in the classical phase space of a chaotic

system affects the spectral statistics of the corresponding quantum version. The

generic eigenstates of the quantum system display uniform probability density, ex-

cept for feature-less fluctuations, and consecutive eigenvalues of these generic states

states tend to repel one another in accordance with the Bohigas-Giannoni-Schmidt

conjecture. The spectral statistics for such levels is given by the Wigner surmise for

nearest neighbor level spacings and level spacing ratios. Physically, this reflects the

underlying irregular dynamics of a typical classical trajectory in agreement with the

correspondence principle.

However, a subset of eigenstates selectively display pronounced enhancements

of probability density, effectively localizing in configuration or momentum space.

Such sub-sequences of levels are commonly encountered in quantum chaotic sys-

tems with mixed classical phase space as well as in atomic and nuclear spec-

tra [66, 86, 87]. Some classes of localized states can be identified with the regular

regions in classical phase space, although in general they could occur even in the

19
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absence of stable classical structures. Their corresponding eigenvalues are uncorre-

lated and the level spacing statistics are of the Poisson type.

These represent two limiting kinds of behavior, and in a mixed quantum system

(one which has both regular and chaotic regions in the classical phase space), the

existence of eigenvalues of both types leads to the level statistics having a form in-

termediate to the Poisson and Wigner distributions. The question now arises about

whether or not there exists some kind of level repulsion between these two types

of eigenvalues. If the localized states do interact with their neighboring chaotic

states, how can this be modeled? The answers to these questions form the basis

of this chapter, where we have proposed a single-parameter 3 × 3 random matrix

model for this interaction, and derived an analytical form of the corresponding dis-

tribution. We have then tested it on various physical systems that display localized

eigenmodes, considering both time-reversal-invariant and non-invariant scenarios.

2.1 Localization in quantum chaos

Localized states in quantum chaotic systems could have several physical origins.

They could be induced by classical dynamical structures like periodic orbits, or by

dynamical effects like wavefunction interference. The most prominent examples of

the latter are the localization of a single-particle wavefunction in the presence of

a disordered potential, called Anderson localization, and its many-body analogue,

called many-body localization. The theoretical paradigm here is the standard kicked

rotor, and its localization properties have been well-investigated. In many-body

systems like nuclei, localization is a consequence of several complex interactions

occurring in the system. Localization of this type has been studied in condensed

matter systems, cold atom, billiards, optical systems and several other physical sys-

tems.

The presence of classical structures could also cause localization and can be

explained based on semiclassical approaches. For a quantum eigenfunction having

an enhanced intensity in the vicinity of stable periodic orbits, like the bouncing ball
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modes in billiards, localization is accounted for, by considering the semiclassical

theory of integrable systems. However, this probability density enhancement is

considered anomalous if it occurs due to unstable periodic orbits, as these orbits

cover all of the classical phase space eventually, retaining no memory of their short-

time behavior. This phenomenon is called ‘scarring’ [88], and was first discovered

experimentally in billiards [31], and a semiclassical explanation for its occurrence

was found in due course [89, 90].

Since then, localized states have been experimentally observed in a variety of

chaotic systems including deformed microcavity lasers [17, 91–93], quantum well

with chaotic electron dynamics [94] and hydrogen atom in strong external fields

[95–98]. Recently, scarring localization was also reported in Dirac Fermions [99],

strongly doped quantum wells [100], driven spin-orbit coupled cold atomic gases

[101], a chaotic open quantum system [102] and in an isomerizing chemical reaction

[103–105]. Further, localized modes appear in spectral graph theory in relation to

random graphs [106, 107].

In a semiclassical sense, localized states are associated with short time periodic

orbits with time scales much shorter than the Heisenberg time tH ∼ ~/∆, where ∆

is the mean level spacing. This is reflected in their spectral properties, with localized

states not interacting with each other and essentially behaving like eigenstates of

integrable systems. Their presence in a chaotic spectrum, however, causes deviation

from the standard Wigner surmise, and there have been several attempts to quantify

this deviation. The most popular approach in this direction, is the Brody distribution

[108], which is a straightforward attempt to interpolate between the two extremes

of the Poisson and Wigner distributions. The Brody distribution has the form

P (s) = (q + 1)aqs
q exp

(
−aqsq+1

)
, (2.1)

where

aq =

[
Γ

(
q + 2

q + 1

)]q+1

.

Here, Γ(q) is the Euler’s gamma function, and the parameter 0 ≤ q ≤ 1, called the
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Brody parameter, and was later shown to be related to the fraction of irregular com-

ponent of classical phase space. For q = 0, P (s) has the form of the Poisson distri-

bution and represents integrability, and q = 1 takes P (s) to the Wigner distribution

which implies that the system is completely chaotic. Although phenomenological,

this approach is popular by virtue of its success when applied to different systems.

Other approaches by Izrailev [109], and Berry and Robnik [110], though having a

stronger physical foundation, have not found the same level of success. However,

the Brody distribution does not take into account the statistical weight of generic

and localized states, the latter occurring sparsely in most mixed systems, and also

less frequently in higher energy ranges. Thus, using it to quantify the correlation

between generic and localized states, may lead to the desired correlation signal get-

ting masked by the sheer statistical weight of the generic states. But it is important

to note that the mere existence of several such methods indicates the presence of

nontrivial correlations between the two kinds of states in the spectrum.

The most direct method of probing this correlation is by considering only the

spacings between localized states and their nearest generic neighbors, and obtaining

a probability distribution for these kinds of spacings. It is reasonable to assume that

if the localized states are more and more strongly correlated with their neighbors,

the distribution should eventually converge to the Wigner surmise. To this end, a

simple random matrix model is proposed here to locally account for the interaction

between localized and generic states. The ratio of spacings is the most suitable

quantity to investigate this since unfolding becomes an even more ambiguous pro-

cess here in this case. A 3 × 3 model is considered, from which three eigenvalues

may be obtained to get two spacings and hence one spacing ratio. Any of of these

three eigenvalues may be considered to be localized.

The main motivation behind the random matrix model can be inferred from Fig.

2.1. A short sequence of energy levels of stadium billiards is displayed in Fig.

2.1(a) with localized states indicated by dashed lines. In Fig. 2.1(b) two pairs of

consecutive eigenstates |Ψ(x, y)|2 are shown; (i) consecutive generic states (the k-

th and (k+1)-th states, and we call the corresponding level spacing sgg to be of g-g
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Figure 2.1: (a) Energy levels of stadium billiard. Localized levels are marked in
dashed (red) lines. A g-g type and g-l type spacing is shown. (b) Two consecutive
generic eigenstates (state numbers 200 and 201), and two consecutive states (245
and 246) (a generic state next to a localized state). (c) distribution of spacing ratios
for g-g type spacings, (d) distribution of spacings for g-l type spacings. The red
(solid) and blue (broken) lines are the standard results for pW (r) and ppoisson(r)
respectively.

type and (ii) localized and its nearest neighbor generic state (the n-th and (n+1)-th

states) with spacing sgl of g-l type.

2.2 Random Matrix Model

Consider a chaotic quantum system whose Hamiltonian operator is Ĥ and its energy

spectrum is Ei, where i = 1, 2, ... denotes the state number. The usual approach is

to analyze all the level spacings in the spectrum. In contrast, in this work, we focus

on the spacings sgl between generic and localized states (Fig. 2.1(b)) defined as

follows. From a sequence of consecutive energy levels Ek−1 < Ek < Ek+1, where
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one of them corresponds to a localized state, two spacings, sk = Ek − Ek−1 and

sk+1 = Ek+1 − Ek, and hence one spacing ratio rk = sk/sk+1 may be obtained,

where at least one of the spacings is of the g-l type. Figure 2.1(c) shows the distribu-

tion of spacing ratio p(r) obtained using only the generic levels (g-g type spacings)

and in Fig. 2.1(d) for spacings involving a localized state (g-l type). For g-g type

spacings, agreement with Wigner-type surmise

pW (r) = Cβ
(r + r2)β

(1 + r + r2)1+(3/2)β
(2.2)

(with β = 1 and cβ = 27
8

for GOE, and β = 2 and cβ = 81
√
3

4π
) is clearly evident

whereas the g-l type spacings show marked, though weak, deviation from pW (r).

Hence, the Hilbert space around a localized eigenstate can be locally modeled as a

3× 3 Hamiltonian matrix.

Thus, we are led to consider an ensemble of 3×3 real-symmetric (for β = 1) or

complex-Hermitian (for β = 2) random matrices H from the probability measure

P(H) d[H] ∝ exp

(
−β
2
trΣ−2H2

)
d[H]. (2.3)

where ‘tr’ represents trace, and d[H] represents the product of differentials of all

the independent parameters in the matrix elements, and Σ = diag
(
1, 1,

√
k2

2−k2

)
.

Within the framework of Eq. 2.3, the random matrix is of the form

R3 =


H11 H12 H13

H12 H22 H23

H13 H23 H33

 (2.4)

where, 0 ≤ k2 < 2, and k is a parameter that represents the strength of coupling

between a 2 × 2 (Gaussian Orthogonal Ensemble(GOE) or Gaussian Unitary En-

semble(GUE)) block and a 1 × 1 block representing a localized state. For systems

with time-reversal symmetry (TRS), i.e., β = 1, the matrix elements are drawn from
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independent Gaussian distributions with mean zero and variances given as

〈H2
11〉 = 〈H2

22〉 = 1, 〈H2
33〉 =

(
k2

2− k2

)
,

〈H2
12〉 =

1

2
, 〈H2

13〉 = 〈H2
23〉 =

k2

2
. (2.5)

For β = 2, corresponding to the broken time-reversal symmetry (TRSB) case,

the matrix elements are Gaussian distributed with mean zero (real and complex for

diagonal and off-diagonal), and variances given as

〈
H2

11

〉
=

〈
H2

22

〉
=

1

2
,

〈
Re(H12)

2
〉
=

〈
Im(H12)

2
〉
=

1

4
,〈

Re(H13)
2
〉
=

〈
Im(H13)

2
〉
=
k2

4
,〈

Re(H23)
2
〉
=

〈
Im(H23)

2
〉
=
k2

4
,〈

H2
33

〉
=

1

2

(
k2

2− k2

)
. (2.6)

Physically, 0 ≤ k ≤ 1 indicates the strength of correlation between localized

and generic states. Thus, k << 1 implies strong localization effects and might

require semiclassical methods to understand its physical mechanism. On the other

hand, k ≈ 1 implies negligible localization and RMT framework would be a suit-

able model. As k → 1, the 3×3 matrix tends to that of standard Gaussian en-

sembles. In physical systems the localized and generic states are generally weakly

coupled and we anticipate the coupling strength to be weak, i.e., k � 1. Hence,

this weak coupling limit is the main regime of interest in this work. In this limit, H

becomes the direct sum of a 2×2 GOE or GUE matrix (for β = 1, 2, respectively)

and 0, the latter being also one of the eigenvalues and it notionally corresponds to

the localized state.

It may be noted that similar matrix models have been used to model effects like

chaos-assisted tunneling (see Ref. [111]), wherein locally, the system considered

may be modeled using a three-level mechanism with the energy levels correspond-

ing to two chaotic and one localised state. These states are identified with regions
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of classical phase space that contain regular and chaotic regions. In this case, how-

ever, we show that the matrix model may be used even in the absence of a classical

analogue, as in the case of the Sm atom which will be discussed in 2.4.3.

2.3 Distribution of spacing ratios: Analytical results

The main result of the chapter, namely, the distribution p(r) of spacing ratios r for

the random matrix model defined in Eqs. (2.3-2.6), is obtained analytically in this

section for the cases of β = 1 and β = 2.

2.3.1 β = 1 case

To derive an expression for p(r), firstly the joint probability density of the eigenval-

ues {λ}(≡ λ1, λ2, λ3) of the matrix model in Eq. (2.3) is obtained as

P (k; {λ}) ∝ |∆({λ})|
∫
O3

dµ(O) e−trΣ−2OTΛ2O, (2.7)

where Λ = diag(λ1, λ2, λ3), ∆({λ}) = |(λ2−λ1)(λ3−λ1)(λ3−λ2)| is the Vander-

monde determinant and dµ(O) represents the Haar-measure over group O3 of 3× 3

orthogonal matrices with T being the transpose.

To calculate the ratio of consecutive spacings r we order them as −∞ < λ1 ≤

λ3, −∞ < λ3 < ∞, and λ3 ≤ λ2 < ∞. Then, r = (λ2 − λ3)/(λ3 − λ1).

Moreover, the joint probability density for the ordered eigenvalues is given by

P̃ (k;λ1, λ2, λ) = 3!P (k;λ1, λ2, λ), where the intermediate eigenvalue λ3 = λ.

Introducing x = λ − λ1 and after some calculations whose details are in Ap-

pendix A, the distribution of r can be obtained as,

p(k; r) =

√
2− k2

πk3
r(r + 1)

∫ ∞

−∞
dλ

∫ ∞

0

dx

∫ π
4

0

dφx4 cosφ

e−
(2+k2)

2k2
λ2+ 1

2

[
( 1
k2

−1) cos 2φ+1
][

2λ2−(λ−x)2−(λ+rx)2
]

× I0

(
x

2

( 1

k2
− 1

)
(r + 1)[2λ+ (r − 1)x] cos 2φ

)
. (2.8)
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As k → 1, the correct GOE result p(1; r) = 27
8

r2+r

(r2+r+1)5/2
is recovered as originally

obtained in Ref. [80]. The limiting case k → 0, relevant for the localized states of

chaotic systems, is difficult to obtain using Eq. (2.8). However, starting from the

joint probability density for k = 0 case, it is directly obtained as

p(0; r) =
1

2
√
2

[
(r + 1)

(r2 + 1)3/2
+

1

(2r(r + 1) + 1)3/2
+

r

(r(r + 2) + 2)3/2

]
.(2.9)

In particular, note that p(0; r) is different from ppoisson(r) =
1

(1+r)2
obtained for the

case of uncorrelated levels with Poisson spacing distribution [112].

2.3.2 β = 2 case

For β = 2, the joint probability density of (unordered) eigenvalues turns out to be

P (k;λ1, λ2, λ3) ∝ ∆2({λ})
∫
U3

dU exp
(
−Σ−2UΛ2U †) . (2.10)

In this case, the unitary group integral can be performed using the Harish-Chandra-

Itzykson-Zuber formula [113, 114],

∫
UN

dU exp
(
−s trXUY U †) = N−1∏

m=1

m! ·
(
− s

)−N(N−1)/2

×
det

[
exp(−s xjyk)

]
j,k=1,...,N

∆({x})∆({y})
. (2.11)

Here, dU is the Haar measure on unitary group UN , and X = diag(x1, ..., xN),

Y = diag(y1, ..., yN).

After some calculations whose details may be found in Appendix A, the distri-
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bution of the ratio of spacings can be obtained as

p(k; r) =

√
2− k2

4πk(1− k2)2
r(r + 1)

3∑
j=1

[
bj(5a

2
j + 2b2j)

a4j(a
2
j + b2j)

2
+

3

(a2j + b2j)
5/2

sinh−1
( bj
aj

)
−
cj(5a

2
j + 2c2j)

a4j(a
2
j + c2j)

2
−

3

(a2j + c2j)
5/2

sinh−1
( cj
aj

)]
. (2.12)

The forms of aj, bj and cj for j = 1, 2, 3 (which are functions of k and r) are

rather unwieldy and is shown in Appendix A. In the limit k → 0, the exact result is

obtained as

p(0; r) =
1

π

[
r2

(r(r + 2) + 2)2
+
r(r + 2) + 1

(r2 + 1)2
+

1

(2r(r + 1) + 1)2

]
.(2.13)

As anticipated, when k → 1, the distribution in Eq. (2.12) coincides with the

GUE result, obtained in Ref. [80], namely, p(1; r) = 81
√
3

4π

(r2+r)
2

(r2+r+1)4
.

2.4 Numerical results

2.4.1 Identification of localized states

Localization is determined by examining the individual eigenstates which are ex-

panded in a given basis, as, by definition, it implies a preferential occupation of a

few basis states. For example, in the 3 × 3 model, if k = 0, R3 is block diagonal;

one 2× 2 block with eigenvalues λ1, λ2 and a 1× 1 block with eigenvalue λ3. The

eigenvector corresponding to λi, (i = 1, 2, 3), is (ai,1, ai,2, ai,3). The eigenvalue

whose eigenvector is (0, 0, 1) is far from a generic state and hence can be called

‘localized’ eigenvalue for our purposes.

Of the methods used to determine whether a given state is localized or not, the

participation ratio (or its inverse), and entropy measures [115,116] are the most pop-

ular. Of these, in this chapter, information entropy [117, 118] is used to determine
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localized states both for the RMT simulations as well as for the physical systems

discussed.

For an eigenstate |ψi〉, which can be expanded in terms a given finite basis

set |φj〉, such that |ψi〉 =
∑N

j=1 ai,j |φj〉, the corresponding information entropy

is given by

Si = −
∑
j

|ai,j|2 ln |ai,j|2. (2.14)

As an illustration, the calculated information entropy for 2000 states of the cou-

pled quartic oscillator (which were determined in the basis of the uncoupled quartic

oscillator), is shown in Fig. 2.2(a) as a function of the energy level of the cor-

responding state. Fig. 2.2(b) shows an enlarged portion of (a),consisting of 175

states, out of which 4 may be identified as localized.

It may be noted that for stadium billiards, the most strongly localized states

correspond to the bouncing ball modes, although other kinds of localized states like

the bow-tie modes also exist in the spectrum. In the calculation presented here,

there is no differentiation made between the classes of localized states.

In practice, for most physical systems which display localized states, adiabatic

methods can estimate the energies of localized states without computing the eigen-

vectors and information entropy. Such results exist for quartic oscillator [119, 120]

and stadium billiards [121].



2 Exact distribution of spacing ratios for random and localized states in quantum
chaotic systems 30

1200 2400 3600
E

4

6

8
S

2100 2250
E

4

6

8
(a) (b)

Figure 2.2: (a) Information entropy(S) as a function of energy(E) for the coupled

quartic oscillator system at α=90. The eigenstates having magnitude of information

entropy . 5.5 can be identified as localized states. For the bulk of chaotic states

that form the envelope, value of S is consistent with the random matrix average for

the information entropy (not shown here). (b) Enlarged view of a portion of (a),

consisting of 175 states, out of which 4 may be considered to be localized.
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2.4.2 Random Matrix Model: Numerical results
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Figure 2.3: Spacing ratio distribution, for g-l type spacings for β = 1, obtained

from random matrix simulations of 3 × 3 random matrices (histogram) compared

with analytical p(r) (black line).

In Figs.2.3-2.4, the analytically obtained p(r) in Eqs. (2.8) and (2.12) is compared

with the results obtained by simulating an ensemble of 3 × 3 random matrices R3

following the prescription in Eqs. (2.3) and (2.5). The numerical simulations are

performed by generating matrix elements with prescribed mean and variances. The

eigenvalue corresponding to a localized state is identified using the information

entropy of the eigenstate. If λ is the eigenvalue of the localized state, then the

spacing ratio is calculated as either r = (λ−λ2)/(λ2−λ1), r = (λ3−λ)/(λ−λ1),

or r = (λ3 − λ2)/(λ2 − λ), depending on whether the localized state corresponds

to λ3, λ2 or λ1 respectively.

It may be observed that as k → 1, the analytically obtained p(r) tends towards

the Wigner surmise corresponding to β = 1 and 2, as given by Eq. 2.2.
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Figure 2.4: Spacing ratio distribution, for g-l type spacings for β = 2, obtained
from random matrix simulations of 3 × 3 random matrices (histogram) compared
with analytical p(r) (black line).

2.4.3 Applications to Physical Systems

The spacing ratio distribution for g-l type spacings is obtained for Hamiltonian

systems whose classical limit is chaotic and hence their spacings are Wigner dis-

tributed, PW (s). The systems chosen for illustration are (i) the coupled quartic

oscillator, (ii) computed levels of Sm atom, and (iii) stadium billiards (β = 1 and

β = 2 variants). All of them contain localized eigenstates in their spectrum. The

computed distribution for g-l type spacing ratios agrees with the analytical results

and in this k is treated as a fitting parameter.

Coupled Quartic Oscillator

In Fig. 2.5(a), the results are displayed for the coupled quartic oscillator, with α =

90, such that the classical phase space is largely chaotic, with small regular regions

due to the presence of a series of periodic orbits studied in detail in Ref [119]. This

is manifested in the corresponding quantum system as localized eigenstates, which

are identified using information entropy. In Fig. 2.5(a), the computed distribution
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of g-l type spacings for coupled quartic oscillator displays a good agreement with

the analytical result shown in Eq. 2.8 with k ≈ 0.2.

As an independent verification, the variance of the off-diagonal elements of the

Hamiltonian operator locally around every localized state was calculated. By com-

paring with the form of the variance obtained from the 3× 3 model, these estimates

were used to extract the value of k, and they were found to be in agreement with

each other to within 30% error.

Sm atom (Atomic number 62)

Lanthanide atoms, like Samarium (Sm) have been studied in the context of chaos

and localization, using the multi-configuration Dirac-Fock method to compute their

spectra and identify localized states. Localization in this context, is known to occur

due to strong Coulomb mixing between configuration state functions having similar

occupancy numbers of their subshells [122, 123]. The energy levels of Sm exhibit

complex configuration and mixing and were computed in Ref. [122] using General-

purpose Relativistic Atomic Atomic Structure Package or GRASP code [124]. Fig-

ure 2.5(b) shows p(r) for g-l type spacings in the computed levels of the Sm atom.

The computed histogram of g-l type spacing ratios agree with p(r) for k ≈ 0.3.
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Figure 2.5: Spacing ratio distribution, for g-l type spacings, obtained from systems
whose classical limit is chaotic. Histograms are obtained from spectrum computed
for (a) quartic oscillator and (b) levels of Sm from ab-initio calculations. The solid
(black) line is the fit obtained using the analytical relation in Eq. (2.8).
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Quantum Billiards with and without time-reversal symmetry

The ratio distribution P (r) for quarter stadium billiards is shown in Fig. 2.6(a,b),

respectively, for TRS and TRSB cases. Since the class of localized states the can oc-

cur depends on the shape of the billiard, same kinds of localized modes are observed

in both the TRS and TRSB cases. The bouncing ball modes, which correspond clas-

sically to a particle undergoing successive reflections between the two parallel walls

of the stadium, form a prominent class of localized modes, although other kinds of

localized states occur in the spectrum as well.

In general, depending on the shape, a variety of localized states may exist, in-

cluding bow-tie modes (whose name indicates the form of the underlying periodic

orbit), whispering gallery modes (which are confined to the walls of the billiard) as

well as general polygonal modes.

In Fig. 2.6(a), the simulated histogram of g-l type spacing for billiards agrees

with the analytical result in Eq. (2.8) for k ≈ 0.4.

In order to compute the g-l type spacings, firstly the eigenspectrum of this sys-

tem was computed. Then, using the computed eigenvalues and normalized eigen-

vectors, i.e. the magnitude of the electric field E, the information entropy for each

state is calculated using the relation Si = −
∑

j |Ei,j|2 ln |Ei,j|2, where j is the in-

dex for discretized position space. The localized states may be differentiated from

the bulk of the chaotic states since the former have a significantly smaller magnitude

of information entropy compared to the latter. Using the information entropy, the

localized states are picked from the spectrum (as illustrated in Fig 2.2(b)), and the

required ratio distribution is determined. The result for p(r) is shown as histogram

in Fig. 2.6(b) and it agrees with the analytical result (Eq. (2.12)) with k ≈ 0.2.

2.5 Conclusion

A typical spectrum of a chaotic quantum system has generic and localized eigen-

states occurring as neighbors. Physically, they represent two distinct limiting behav-

iors. The former is modeled by random matrix assumptions and the latter deviates
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Figure 2.6: Spacing ratio distribution, for g-l type spacings, obtained from systems
whose classical limit is chaotic. Histograms are obtained from spectrum computed
for stadium billiards, with time-reversal symmetry (a) preserved (β = 1) and (b)
broken (β = 2). The solid (red) line is the fit obtained using the analytical relation
in Eqs. (2.8) and (2.12) for (a) and (b) respectively.

strongly from RMT based models. In this work, it is demonstrated that they display

non-trivial correlations, quantified by the parameter k, the average strength of the

Hamiltonian matrix element coupling these states. Physically, k is a measure of the

strength of correlation between localized and generic states.

This is a robust characterization that remains unaffected by the semiclassical

limit (~ → 0) in contrast to the phenomenological approach such as Brody distribu-

tion which is often used to model the spectral transition from Poisson to GOE type

statistics. In such an analysis, all the levels (localized and generic) are taken into

account. Then, in the semiclassical limit of ~ → 0 or energy E → ∞, localized

modes ultimately would become a set of measure zero and the Brody distribution

would nearly coincide with random matrix distributions. Hence, signatures of the

localized states are masked by the large number of chaotic states. Thus, the Brody

parameter being a single number representing this transition would become insen-

sitive to presence of localized modes in the semiclassical limit. In the approach

presented in this paper, since the spacings (by construction) always involve at least

one localized mode, the estimated value of k remains unaffected by the semiclassi-

cal limit.

In summary, by considering a 3×3 random matrix model depending on a single
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parameter k (representing the strength of the coupling between a generic and a

localized eigenstate), we have obtained an exact result for the distribution of the

spacing ratio between a generic and a localized state. The analytical results are

in good agreement with numerically computed spectra that we have obtained from

chaotic quantum systems such as billiards, coupled oscillator and atomic spectra.

Quantum stadium billiard had been experimentally realized and hence the results

presented here can be experimentally verified as well.



CHAPTER 3

Higher-order spacing ratios in random matrix
theory and complex systems

The nearest neighbor spacings and the spacing ratios are spacing measures that

probe fluctuations in the spectral scales of the order of unit mean spacing. Long-

range correlations in RMT are usually via quantities like the n-point correlation

function, number variance and spectral rigidity, but their computation is usually not

a trivial exercise. In many physical situations, knowledge of spectral fluctuations

at larger spectral intervals is useful. For quantum chaotic systems with a classical

limit, semiclassical theories [125] dictate that the higher-order spectral fluctuations

would be related to short time periodic orbits, effectively acting as a probe of short

time dynamics [11], at shorter than Heisenberg time-scale. The rare-region effects

or Griffith effects [126] in the vicinity of many-body localization transition influ-

ences the transport and entanglement properties, whose time-scales can be probed

by the higher-order spectral scales. In the study of empirical correlation matrices,

RMT-based tools such as the nearest neighbor eigenvalue spacing and eigenvec-

tor distributions have been employed to extract the significant modes of variability

present in such empirical correlations.

37
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Thus we are led to consider the distribution of higher-order spacings and spacing

ratios, as a potential probe for higher order fluctuations, owing to their popularity in

the literature as well as their relative ease of computation, as opposed to the other

probes for higher-order correlations mentioned above. In this chapter, we show that

the higher-order spacing ratios exhibit a scaling relation with respect to the Dyson

index β and the order of the spacing k considered. We provide ample numerical

evidence from RMT simulations as well as examples from disparate physical sys-

tems and show that this scaling relation holds good for the Gaussian, Circular and

Wishart random matrix ensembles as well as for physical systems corresponding to

each of these.

While computing higher-order spacings or the spacing ratios, it must be noted

that there is no unique way of defining the quantity in question. If higher-order

spacings are to be computed for a sequence of ordered eigenvalues E1, E2, E3, · · · ,

the form is straightforward, given by

s
(k)
i = Ei+k − Ei i, k = 1, 2, . . . (3.1)

for the k-th order spacing, where k = 1 gives the NNSD. After unfolding, it is seen

that the mean spacing 〈s〉 = k. The higher-order spacings may also be rescaled

such that 〈s〉 = 1, in which case the unfolded spectrum is divided by 〈s〉.

The definition of higher spacing order ratios is more open to interpretation. By

extension of the definition of higher-order spacings as given in Eq. 3.1, for a se-

quence of ordered eigenvalues E1, E2, E3, · · · , higher-order ratios may be defined

as

r
(k)
i =

s
(k)
i+k

s
(k)
i

=
Ei+2k − Ei+k

Ei+k − Ei

, i, k = 1, 2, 3, . . . . (3.2)

In Eq. 3.2, going from ri to ri+1 involves moving down the spectrum by one eigen-

value. It is also possible to define ratios where the ri+1 varies from ri by k eigenval-

ues. For example, in the former case, we would have r(2)1 = (E5 − E3)/(E3 − E1)

and r
(2)
2 = (E6 − E4)/(E4 − E2), whereas in the latter it would be defined as
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r
(2)
1 = (E5 − E3)/(E3 − E1) and r(2)2 = (E7 − E5)/(E5 − E3). The difference

between the two is of course that in the second case, a subset of all spacings are

not included in the statistics, and should show the same behavior for large matrix

dimensions.

An alternative definition of k-th order ratios has been given in Ref. [81] for

overlapping ratios, where overlapping implies the existence of shared eigenvalues

between the numerator and denominator of the ratio. Thus for the k-th overlapping

ratio, there are k shared eigenvalues between the numerator and denominator. That

is,

r
(k)
i =

Ei+k+1 − Ei

Ei+k − Ei−1

(3.3)

Throughout this thesis, we will use Eq. 3.2 to define higher-order ratios, and this

will be used in all RMT numerics as well as for data obtained from quantum chaotic

and other complex systems.

3.1 Scaling relation for the distribution of higher-

order ratios

A Wigner-like surmise for the nearest neighbor spacing ratios gives

P (r, β) = Cβ
(r + r2)β

(1 + r + r2)1+
3
2
β
, (3.4)

where β = 1, 2, 4 is the Dyson index for the matrix representation corresponding

to the orthogonal, unitary and symplectic ensembles of random matrix theory. The

form of this distribution has been proved for the Gaussian ensembles, but can be

extended to the Circular and Wishart ensembles in the limit of large matrix dimen-

sions. It is shown below that even for the higher-order spacing ratios, the form of

the distribution is the same for these three classes of random matrices. In each case,

compelling numerical evidence is provided, which demonstrate an elegant relation

between the k−th order spacing ratio distribution P k(r, β) and the nearest neighbor
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spacing ratio distribution P (r, β′):

P k(r, β) = P (r, β′), β = 1, 2, 4, (3.5)

β′ =
k(k + 1)

2
β + (k − 1), k ≥ 1. (3.6)

Note that 4 ≤ β′ < ∞ can take large integer values and, unlike β = 1, 2, 4,

does not have corresponding random matrix model as yet. Thus, Eq. 3.5 may be

considered as a generalization of the Wigner surmise, that holds good for integer

values of β > 0. A special case of Eq. 3.5 has been proved by Forrester for 0 ≤

β ≤ 1 at the level of the joint distribution of eigenvalues. However, only spectral

fluctuations like spacings and spacing ratios will be discussed in this chapter.

It is also pertinent to point out that similar relation between the higher-order and

nearest neighbor spacing distributions had been proposed earlier without rigorous

proof [127, 128], though their validity had never been tested on spectra from ran-

dom matrices or physical systems. One exception is the well-known relation that

the next-nearest neighbor (k = 2) level spacings of levels from circular orthogonal

ensemble are distributed as the nearest neighbor (k = 1) spacings of levels from

circular symplectic ensemble [129]. As pointed out earlier, in the limit of large ma-

trix dimensions, this is known to be valid for the corresponding Gaussian ensemble

as well. Some numerical results are shown below for the higher-order spacings for

Gaussian ensembles but whether or not the scaling relation holds, is inconclusive

from the results obtained. For the Wishart case, the leading behavior for higher-

order spacings may be extracted from the form of the full distribution and related

analytical results have been shown below in 3.6.

Remarkably, the functional form of P k(r, β) is identical to P (r, β′) with order

of the spacing ratio k and Dyson index β dependence entering through the modified

parameter β′.
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3.2 Gaussian Ensembles

First, Eqs. 3.5-3.6 are verified for the spectra computed from Gaussian random ma-

trix ensembles. The eigenvalues of random matrices (drawn from Gaussian ensem-

bles) of order N = 105 are computed for β = 1, 2 and 4. The resulting histograms

of higher-order spacing ratios shown in Fig. 3.1 are averaged over 1000 realizations.

The solid curves in this figure represent P (r, β′) and its excellent agreement with

the histograms points to the validity of Eq. 3.5. Corresponding averages 〈r〉theory,

as calculated from Eq. 3.5, and determined from numerics 〈r〉num are tabulated in

Table 3.1.

Further, to quantitatively check that the value of β′ predicted by Eq. 3.6 is

precisely the one that best fits the histogram P k(r, β) obtained from random ma-

trix simulations, we compute the difference between the cumulative distributions

defined as,

D(β′) =
∑
i

∣∣Ik(r, β)− I(ri, β
′)
∣∣ , (3.7)

where I(r, β′) and Ik(r, β) are the cumulative distributions corresponding, respec-

tively, to P (r, β′) and P k(r, β). Then, the value of β′ for which D(β′) is minimum

is the one that best fits the observed histogram. The insets in Fig. 3.1 display the

quantitative verification of scaling in Eqs. 3.5-3.6. As seen in the insets, the min-

ima of D(β′) remarkably coincides with the value of β′ predicted by Eq. 3.6. As an

additional verification, the Kolmogorov-Smirnov test has also been performed for

this data, and the p-values obtained indicate that the histograms correspond to the

predicted distribution in Eq. 3.5 with a very high probability.
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Figure 3.1: Distribution of k-th order spacing ratios (histograms) for the spectra

of random matrices drawn from GOE, GUE and GSE and the distribution P (r, β′)

(solid line) with β′ given by Eq. 3.6. (Inset) shows D as a function of β′.

3.2.1 Gaussian Orthogonal Ensemble (β = 1)

The validity of this scaling relation is now shown for two examples of many-body

systems whose nearest-neighbor spectral statistics had been well-established as co-

inciding with that of GOE.

One-dimensional disordered spin-1/2 chain

The Hamiltonian for the spin chain, studied in [41] with a defect placed at one of

the sites, is given by

H =
L∑
i=1

ωSz
i + εdS

z
d +

L−1∑
i=1

[Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1) + JzS

z
i S

z
i+1]. (3.8)
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Here, L is the length of the chain and Sx,y,z
i are the spin operators in three

directions, acting on site i. The first term of the Hamiltonian represents a static

magnetic field in the z-direction, accounting for a Zeeman splitting of strength ω at

all sites, except the defect site d where it is εd + ω. The second term, by itself is the

well-known XXZ Hamiltonian, and couples nearest-neighbor spins in all directions,

with Jxy (taken here to be 1) being coupling strength along x and y directions, and

Jz (taken as 0.5) that along the z direction.

For the spectra from the Hamiltonian in Eq. 4.9, the upper panel of Fig. 3.2

displays a good agreement between the computed k-th spacing ratio distribution

and P (r, β′) given by Eqs. 3.5-3.6. Finite size effects have been discussed for this

system in Fig. 3.9(c), by varyingL, which changes the Hilbert space dimension. For

the distributions shown in Figs. 3.2(a-d), the length of the spin chain was considered

to be L = 14, the site of the disorder was taken to be at L/2, and the magnitude of

the disorder was εd = 0.5.

Measured resonances of Erbium atom

A similar excellent agreement can be inferred from the lower panel of Fig. 3.2

for the experimentally measured data for neutron resonances of the Erbium atom

[130]. Even with only about 200 measured resonances, a good agreement with the

theoretical form of P k(r, β′) is observed for k = 1 to 4.
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Figure 3.2: Distribution of k-th spacing ratio for many-body systems of the GOE

class (β = 1). The histograms are for the computed spectra from a disordered spin

chain (upper panel) and nuclear resonance of 167Er atom (lower panel). The solid

line corresponds to P (r, β′) predicted by Eqs. 3.5-3.6, with β′=1, 4, 8 and 13 for

k=1 to 4.

3.2.2 Gaussian Unitary Ensemble (β = 2)

The validity of Eqs. 3.5-3.6 for two physical systems belonging to GUE symmetry

class is discussed.

One-dimensional disordered spin-1/2 system

The Hamiltonian for the disordered spin chain, discussed in Ref. [131] is

H =
L∑
i=1

[J1(Si · Si+1) + hiS
z
i + J2Si · (Si+1 × Si+2)],

in which J1 and J2 represent strength of coupling between sites. The first term (by

itself, the Heisenberg spin chain) corresponds to nearest neighbor couplings in all

directions, with J1 giving the strength of the coupling. The second term introduces
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a Gaussian distributed, random magnetic field of mean 0 and strength hi in the

z-direction. The third term breaks time reversal symmetry by introducing a three-

spin interaction with the nearest as well as the next-nearest neighbor couplings with

strength J2. The parameters used to obtain data for Figs. 3.3(a-d) are L = 12,

h/J1 = 1 and J2/J1 = 1, with open boundary conditions. The computed spacing

ratio distribution P k(ri, β = 2) shown in the upper panel of Fig. 3.3 for k = 2, 3, 4

is consistent with P (r, β′).

Quantum billiards without time reversal symmetry

This system has been discussed previously in Chapter 2. However, in this case, even

the shape of the billiard is exactly as that described in Ref. [40], to ensure that the

system is completely chaotic. As seen in lower panel of Fig. 3.3, the distribution of

k-th spacing ratios provides another instance of the validity of the scaling relation

in Eqs. 3.5-3.6 for GUE systems with β=2.
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Figure 3.3: Distribution of k-th spacing ratio for physical systems of the GUE class

(β = 2). Histogram is for a spin chain with a three-spin interaction (upper panel),

and chaotic billiards with a magnetized ferrite strip (lower panel). The solid line

represents the predicted P (r, β′), with β′ =2, 7, 14 and 23 for k=1 to 4.
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3.3 Circular Ensembles
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Figure 3.4: Distribution of k-th order spacing ratios (histograms) for the spectra

of random matrices of dimension ∼ 7000 drawn from COE, CUE and CSE and

the distribution P (r, β′) (solid line) with β′ given by Eq. 4. (Inset) shows D as a

function of β′.

3.3.1 Circular Orthogonal Ensemble (β = 1)

The quantum kicked top is a popular model of quantum chaos whose classical limit

is chaotic [132]. Its level statistics is well-modeled by that of COE matrices. As

this system is periodically kicked, the quantum version can be studied in terms of

the unitary time evolution operator

Û = exp
(
−iqJ2

z /2
)
exp(−ipJy), (3.9)

where the parameter q=10 is the kick strength that acts as chaos parameter and

p = 1.7. The action of this operator on a particle of angular momentum J, taken
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to be 200 here, is a precession about the y-axis, followed by state-dependent rota-

tion about the z-axis as a consequence of periodic kicking. The eigenvalues of Û

are computed by diagonalizing this operator and its fluctuations are known to be

consistent with COE statistics [132]. Figure 3.5 (upper panel) shows the k-th spac-

ing ratio distribution for this system which, as anticipated by Eqs. 3.5-3.6, follows

P (r, β′) with β=1.

3.3.2 Circular Unitary Ensemble (β = 2)

As another instance of CUE class (β = 2), a unitary operator corresponding to the

so-called intermediate map is considered. The quantum version of this map has been

investigated previously in the context of multifractal eigenstates, and in a specified

range, has spectral fluctuations similar to CUE matrices [133]. The unitary operator

can be written in terms of an N ×N matrix as

Uab =
exp(−iφa)

N

1− exp[i2πγN ]

1− exp[i2π(a− b+ γN)/N ]
, (3.10)

with Hilbert space dimension N = 12000. Here, φa is a random variable uniformly

distributed between [0, 2π], and for any irrational γ the spectral statistics is of the

CUE type. The computed distribution of k-th spacing ratios for this system, shown

in Fig. 3.5 (lower panel), agrees well with Eqs. 3.5-3.6.
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Figure 3.5: The distribution of the k-th spacing ratios, for k=1, 2, 3, 4 is shown

for Floquet systems; (upper panel) the kicked top, belonging to the COE class, and

(lower panel) the intermediate map, belonging to the CUE class. The histograms are

obtained from computed eigenvalues of these systems, and the solid line represents

P (r, β′), with β′ =1, 4, 8, 13 for COE and β′ =2, 7, 14, 23 for CUE.

3.4 Wishart-Laguerre ensemble

The eigenvalues Ei, i = 1, 2..N of the empirical correlation matrix of order N

are positive definite, i.e., Ei ≥ 0. Typically, the corresponding eigenmodes fall

in two broad groups: (i) eigenmodes of the top and bottom few eigenvalues (in

magnitude) that carry most of the information embedded in the original dataset (ii)

the bulk of rest represents random correlations. It is the latter group that displays a

broad agreement with random matrix based results. The nearest neighbor spacing

distribution continues to be a popular test for RMT-like behavior, especially for the

claim that spectral fluctuations of empirical correlation matrices display universal

characteristics irrespective of the dataset or system considered for analysis.

The elements of the empirical correlation matrix represent the pair-wise Pear-
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son correlation among the N variables, each one being a time series of length T .

From the point of view of random matrix theory, correlation matrices fall within

the class of Laguerre-Wishart ensemble of random matrix theory represented by

W = DRD
S
R, where DR represents the standardized data matrix of order N

by T with real, complex or quaternion elements depending on the Dyson index

β = 1, 2, 4 of the ensemble and XS represents self-dual operation on matrix X .

For the Laguerre-Wishart ensemble indexed by β the random matrix average for the

spacing ratios is not yet known, though in the limit of matrix size N → ∞, it is

well-approximated by that for the Gaussian ensembles.

3.4.1 RMT Results

First, we consider the spectra obtained from an ensemble of Wishart matrices with

β = 1 and compute higher-order spacing ratio. In Fig. 3.6, the k-th order spacing

ratio distributions are shown as histograms for two cases, namely, N = T and

N 6= T . It must be noted that the form of the distribution remains the same for

both these cases. The validity of the scaling in Eq. 3.5 can be clearly inferred from

the excellent agreement of the histogram with a solid curve representing P (r, β′),

where β′ given by Eq. 3.6.
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Figure 3.6: The histograms are the k-th spacing ratio distribution for the spectra of

random Wishart matrix for β = 1 with (top panel) N = T = 40000, and (bottom

panel) N = 20000, T = 30000. The computed histograms display a good agree-

ment with P (r, β′) shown as solid line. In this, β′ is given by Eq. 3.6. Inset shows

that the minima in D(β′) corresponds to the value of β′ predicted by Eq. 3.6.

The results displayed in Fig. 3.7 show that the higher-order spacing ratio distri-

butions computed from the spectra from Wishart matrices with β = 2 and 4 are con-

sistent with the scaling relation postulated in Eq. 3.5-3.6. The elements of Wishart

matrices with β = 2 and 4 are, respectively, complex numbers and quaternions and

empirical correlations with such elements are rarely encountered in practice. The

symbols in this figure represent the histograms and solid curves represent P (r, β′).

The results are shown for both N = T and N 6= T and, as anticipated, the agree-

ment with Eqs. 3.5-3.6 is good irrespective of the relative values of N and T .

Another form of evidence in Table 3.1 for the mean ratio 〈r〉 shows a good

agreement between the theoretically expected value based on Eqs. 3.5-3.6 and that
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Figure 3.7: The histograms are the k-th spacing ratio distribution for the spectra of
random Wishart matrix with (a-c) β = 2 and (d-f) β = 4. For the N = T case,
N = T = 20000; and for N 6= T case, N = 10000 and T = 20000. The computed
histograms display a good agreement with P (r, β′) shown as solid line (β′ given by
Eq. 3.6).
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obtained from computed Wishart spectra.

3.4.2 Results for empirical correlation matrices

Next, we demonstrate the validity of the scaling relation Eq. 3.5-3.6 for the spectra

of empirical correlation matrices drawn from two different domains, namely, the

stock market and atmospheric data set.

Stock market data

the data of the time series of stocks that are part of the S&P500 index for the years

1996-2009 is considered [134]. This dataset continues to be extensively used to

understand the ramifications of how an RMT-based approach might work in the

context of empirical correlation matrices. The data consists of daily (log) returns

for T = 3400 days for N = 396 assets. The elements of the correlation matrix

denote the Pearson correlation between pairs of stocks averaged over time. Note

that T ≥ N implying that the correlations can be assumed to have converged. The

statistical properties of its spectra have been reported in [135–138].

In Fig. 3.8(a-c), we display the spacing ratio distribution for various orders. Fig.

3.8(a) shows the nearest neighbor spacing ratio distribution and it agrees with the

analytical result in Eq. 3.4 obtained for the case of Gaussian Orthogonal Ensemble

[81]. The higher-order spacing ratio distributions are displayed in Fig. 3.8(b,c) and

we notice a good agreement with the postulated theoretical distribution P (r, β′),

with β′ as given by Eq. 3.6.

Atmospheric data

The time series of monthly mean sea level pressure over the north Atlantic ocean

is considered. The monthly data is drawn from NCEP reanalysis archives and is

available over equally spaced latitude/longitude grids for the North Atlantic region

bounded by (0 – 90o N, 120o W – 30o E) for the years 1948 to 2017. Thus, in

this case, N = 434 grid points and T = 840 months, satisfying the condition
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T/N > 1. An analysis of the climate phenomenon of north Atlantic oscillation

was performed by constructing an empirical correlation matrix from this data and

using RMT statistics such as the spacing and eigenvector distributions [139]. In Fig.

3.8(d), the spacing ratio distributions for the nearest neighbor spacings obtained

from the spectra of this correlation matrix is shown. The computed histogram is

seen to be well-described by the theoretical distribution in Eq. 3.4 obtained for

Gaussian ensembles. The higher-order spacing ratio distributions shown in Fig.

3.8(e-f) display a good agreement with P (r, β′), as anticipated by Eq. 3.6.

Both these empirical correlation matrix spectra are computed from a relatively

short sequence of time series compared to the length of time series used in com-

puting Wishart spectra for Fig. 3.6. Hence, the noise level for the correlations

are higher than for the Wishart case, and it is evident in the higher-order spectral

statistics shown in Fig. 3.8.
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Figure 3.8: The histograms are the k-th order spacing ratio distribution for the spec-

tra of correlation matrix (a-c) from S&P500 stock market data and (d-f) from mean

sea level pressure data. The computed histograms display a good agreement with

P (r, β′) shown as solid line. In this, β′ is given by Eq. 3.6.

3.5 Convergence or finite size effects

The scaling relation in Eqs. 3.5-3.6 suffers from finite size effects with different

systems converging to the scaling relation at different rates, especially if k >>

1. In the spectra of physical systems as well as in the random matrices of the

Gaussian and circular ensembles, it was observed in practice that for higher order

spacing ratios, say k >5, the value of β′ obtained by fitting P (r, β′) to the empirical

distribution did not quite agree with that predicted by Eq. 3.6. It is seen that the

convergence to the predicted β′ is strongly pronounced as the orderN of the random

matrix increases. This is illustrated in Fig 3.9 for two distinct values of k. In one
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β k β′ 〈r〉theory 〈r〉G 〈r〉C 〈r〉W(N=T )
〈r〉W(N 6=T )

1

2 4 1.1747 1.1757 1.1767 1.1777 1.1761

3 8 1.0855 1.0847 1.0860 1.0868 1.0856

4 13 1.0521 1.0518 1.0524 1.0533 1.0525

2

2 7 1.0980 1.0976 1.0969 1.0995 1.0975

3 14 1.0483 1.0478 1.0478 1.0502 1.0489

4 23 1.0293 1.0289 1.0291 1.0319 1.0303

4

2 13 1.0521 1.0522 1.0525 1.0542 1.0524

3 26 1.0259 1.0258 1.0262 1.0294 1.0266

4 43 1.0156 1.0156 1.0158 1.0203 1.0167

Table 3.1: The average value of r, as calculated from Eq. 3.5 (〈r〉theory) and as
determined numerically from data for Gaussian (〈r〉G), Circular (〈r〉C) and two
cases of Wishart ensembles (〈r〉W(N=T )

and 〈r〉W(N 6=T )
) is shown for different values

of k and β′.

case, for k = 9 and based on Eq. 3.6, the expected value of β′ = 53. Fig. 3.9(a)

shows a clear convergence to this predicted value as the order N of the random

matrix increases. For k = 20, Eq. 3.6 predicts β′ to be 229. However, as seen in

Fig. 3.9(b), the convergence to the predicted value of β′ is rather slow, and up to

N=40000 for which spectra was computed it had not converged at all. Fig. 3.9(c)

shows the same effect for the GOE spin chain (Eq. 4.9) for k = 4 as a function

of the size of Hilbert space for the system. In this case, the dimension N of the

Hamiltonian matrix increases upon increasing the length L of the spin chain. As

Fig. 3.9(c) reveals convergence is achieved for N ≈ 40000.

A similar effect is observed (not shown here) in the RMT simulations for Cir-

cular and Wishart ensembles, where for higher-order ratios, or for larger values of

k, convergence to the predicted values is better for larger matrix dimensions. A

possible explanation for this is that as k increases, i.e. the order of level spacing

increases, the variation in the local density of states may lead to deviations from the

predicted value of β′. However, this can be overcome by increasing the dimensions
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Figure 3.9: Variation of β′ as a function of matrix dimension N , for random ma-
trices of the GOE class, for (a) k =9 and (b) k =20. For k = 9, β′ converges to
the predicted value (β′ = 53) as N increases, while for k =20, a steady increase
of β′ towards the predicted value of β′ =229 is observed. (c) Variation of β′ as a
function of matrix dimension N for the GOE spin chain (Eq. 4.9). In this case, as
N increases, β′ converges to 19, the predicted value.

of the random matrix, as illustrated in Fig. 3.9(a), where convergence is restored

to the appropriate value of β′ as matrix dimension is increased. For a given value

of k then, there exists a suitable N , such that convergence to the scaling relation is

achieved.

The finite-size effect are a manifestation of the fact that since the energy levels

are not unfolded, as longer energy ranges are considered for ratios, the local density

of states comes into the picture, causing deviations from the predicted formula. The

deviations begin to occur once the local density of states does not remain a constant

in a given energy range. Thus, increasing the dimensionality of the random matrix

considered, amounts to finding a region within which the local density of states

remains approximately constant.

3.6 Spacing distributions

The level spacing distribution, owing to its long history of usage since the incep-

tion of RMT, continues to be a popular measure of spectral fluctuations. The first

indications of the scaling relation, Eq. 3.6 were in terms of level spacings, although

no numerical verification of the same was given. Here, the validity of this scaling
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relation is examined for the spacings between k-th nearest neighbors, defined as

s(k) =
si+k − si

〈s〉
, i = 1, 2, . . . . (3.11)

where 〈s〉 is the mean spacing. The eigenspectrum is first unfolded and the k-th

order spacings are calculated, giving 〈s〉 ≈ k. Division by the mean spacing is

necessary for comparing the obtained distribution of spacings, F k(s, β) with the

relation Eq. 3.5-3.6, as the following normalization conditions are implicitly re-

quired: ∫ ∞

0

F k(s, β) = 1,

∫ ∞

0

sF k(s, β) = 1. (3.12)

It must be noted that the second condition is not necessary for the distribution of

spacing ratios.

The corresponding scaling relation for the distribution of higher-order spacings

is then given by

F k(s, β) = F (s, β′), β = 1, 2, 4, (3.13)

β′ =
k(k + 1)

2
β + (k − 1), k ≥ 1. (3.14)

The validity of the relation is shown for k = 2 and k = 3 for GOE, COE and

real Wishart matrices (all corresponding to β = 1) in Fig. 3.10, and is observed to

hold good for all the cases.

However, beyond this limit, the validity of this relation is unclear. This could

again be due to the finite size effects discussed earlier, causing deviations from the

scaling at a much earlier point than for the ratios. This required further exploration

and constitutes a separate study, as analytical relations are not discussed here for all

cases.

For the case of the Wishart ensemble, however, it is possible to analytically

obtain a form for the higher-order spacing distributions for k = 2 and 3, as follows:

A random Wishart matrix W of order N is constructed as W = AAT , where A

is a random matrix of order N by T . The elements of A are Gaussian-distributed
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random numbers with zero mean and unit variance. It is possible to specialize to

the case of the next-nearest neighbor (k = 2) spacing distribution by considering

Wishart matrix of order T = 3 with three eigenvalues, {E1, E2, E3}. Then, the joint

probability distribution function (jpdf) of the eigenvalues El ≥ 0, l = 1, 2, 3 for the

Wishart ensemble is [68]

f({El}) =
1

WaβT

T∏
i=1

E
βa/2
i e−βEi/2

∏
1≤j<p≤T

|Ep − Ej|β,

where a = N −T +1−2/β and WaβT is a constant. Further, with T = 3, choosing

N and β such that a = 0. Then, the jpdf can be obtained as,

f(E1, E2, E3) =
3!

W0β3

3∏
i=1

e−βEi/2
∏

1≤j<p≤3

|Ep − Ej|β. (3.15)

Then, E2 = E1 + x and E3 = E1 + x + y is obtained using the transformation

x = E2 − E1, y = E3 − E2, giving

f(E1, x, y) =
3!

W0β3

xβ yβ (x+ y)β e−cβ(3E1+2x+y)/2 (3.16)

Let K1 = 3!/W0β3 and by integrating over E1,

f(x, y) =
2K1

3βc
xβ yβ (x+ y)βe−cβ(2x+y)/2. (3.17)

It can be seen that 0 ≤ x + y = E3 − E1 = s and y = s − x. After some algebra,

the next-nearest-neighbor (k = 2) spacing distribution F̃ 2(s) can be obtained as,

F̃ 2(s) =
s3β+1e−cβs/2

2−1K−1
1 3βc

β∑
q=0

∞∑
n=0

(
β

q

)
sn(−1)β−q(−cβ/2)n

n!(2β − q + n+ 1)
(3.18)

In the limit of s→ 0, the leading behavior is proportional to sβ′ , where β′ = 3β+1.

The result derived above can be extended for the case of k = 3 as well, resulting

in β′ = 6β + 2. Thus, based on these analytical results and in the spirit of the
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scaling relation Eqs. 3.5-3.6, it is postulated that the second (third) order spacing

distribution is F (s, β′) = Aβ′sβ
′
e−Bβ′s

2

, a form that is reminiscent of the Wigner

surmise, where β′ = 3β + 1 (β′ = 6β + 2). The constants Aβ′ and Bβ′ (given in

Chapter 1) depend on β′ (Eq. 3.6).

This is also verified in Fig. 3.10, and in both these cases, a good agreement with

the anticipated F (s, β′) is evident. For k > 3, it does not appear straightforward

to extend these results due to pronounced finite size effects and the limitations of

pushing the spacing distributions postulated based on s→ 0 results well beyond its

regime of validity.

3.7 Conclusion

In summary, we have proposed a scaling relation for the higher-order spacing ra-

tios of random matrices of different classes (Circular, Gaussian and Wishart), and

provided numerical evidence for both random matrices and physical systems corre-

sponding to each of these classes. Further, the Dyson index β has been generalized

to all positive integers, though it presently lacks a matrix representation. Finally,

deviations from the scaling relation were observed on varying the dimensionality of

the matrices.

In physical systems, the deviations from scaling could arise due to the finite

size effects discussed here, or due to purely quantum effects such as tunneling and

localization that are not accounted for by RMT-type universality.By studying these

deviations in physical systems from expectations based on Eqs. 3.5-3.6 and com-

paring it with random matrices of identical dimensions in which the deviations are

purely due to finite size effects, it might be possible to distinguish whether the devi-

ations occur due to finite size effects or system-dependent causes. The distribution

of higher-order ratios may then be useful to differentiate between and understand

the effects of random and system-dependent fluctuations in any physical system,

and also determine the timescales over which RMT-like fluctuations hold good for

empirical correlation matrices. Further, systems having β′ beyond 4 may be found
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in the study of log gases, and many other phenomena including fractional quantum

Hall effect. Thus the ability to generate the distribution of ratios for an arbitrary β′

could prove useful in such cases and could also find other uses. One such applica-

tion of higher-order ratios is discussed in the next chapter.



CHAPTER 4

Symmetry deduction from spectral fluctuations
in complex quantum systems

The discussion on random matrices in this thesis has so far been focused on spectral

fluctuations occurring in individual spectra. That is, the spectral statistics have been

obtained by diagonalizing the random matrices independently, and then compared

with the corresponding spectra of Hamiltonian matrices of real physical systems.

However, in the presence of discrete symmetries like invariance of the potential

under parity, reflection, rotations etc., the Hilbert space of the system splits into

invariant subspaces, or the Hamiltonian matrix H becomes block diagonal, i.e.,

H = H1 ⊕ H2 ⊕ . . . Hm. Each block Hi, i = 1, 2...m is characterized by good

quantum numbers corresponding to the respective symmetries, which, in turn, la-

bel the eigenstates of the Hamiltonian. For integrable systems, each state can be

identified by a unique set of quantum numbers, and hence its Hamiltonian matrix

has a diagonal structure, leading to degeneracies in the eigenvalues, as they are all

uncorrelated.

In complex quantum systems, if symmetries are not taken into account, and

the full Hamiltonian matrix is diagonalized, mixing of uncorrelated eigenvalues

62
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Figure 4.1: Distribution P (r) of the nearest neighbor spacing ratios (histograms)
for the (a)circular, (b)stadium and (c)desymmetrized stadium billiards. The broken
(red) line represents PP (r) and the solid (blue) curve represents the Wigner sur-
mise for ratios. The inset shows the shape of billiards and its typical eigenfunction
superposed on it to emphasize its symmetry structure.

of different symmetry sectors takes place, and a misleading spectral signature is

obtained, as the true spectral correlations in the system are masked by the erroneous

mixing.

This is demonstrated in Fig. 4.1 where the numerically computed distribution

of nearest neighbor spacing ratios P (r) is shown for circular (integrable) [140] and

stadium (chaotic) [31] billiards. The integrable billiards expectedly agrees with

PP (r) = 1/(1 + r)2. Note that stadium billiard has C2v point group symmetry with

four irreducible representations (irreps). If the spectra from each irrep is analyzed

separately, by BGS conjecture, an agreement with P (r, 1) of GOE is observed (Fig.

4.1(c)). However, in Fig. 4.1(b), the spectra from all the irreps are superposed,

and hence the ratio distribution is closer to PP (r) with pronounced deviation from

P (r, 1). Thus, if symmetries are ignored and the levels from different blocks are

superposed, the genuine correlation between levels (that might have produced level

repulsion) is masked by the near-degeneracies resulting in level clustering.

From the random matrix perspective, mixing of m individually chaotic sub-

spaces or superposition of m independent spectra, may be modeled by considering

the direct sum of m random matrices. That is, if Gi, i = 1, 2..m is a random matrix

belonging to Gaussian ensemble, G = G1 ⊕ G2 ⊕ . . . Gm is a superposition of m
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blocks each of which is a Gaussian random matrix. The eigenspectrum of G may

be obtained by individually diagonalizing each of the blocks. As has been demon-

strated in Ref. [65], for a superposition ofm uncorrelated sequences, the probability

of two neighboring eigenvalues coming from the same sequence is very small for

large m, and the distribution of nearest neighbor spacings is close to Poissonian.

Then, given a sequence of eigenvalues whose nearest neighbor distribution tends

to the Poissonian limit, is it possible to determine whether it consists of eigenval-

ues that are truly uncorrelated (like in integrable systems), or whether it appears so,

due to the presence of symmetries? This question has been previously considered

in experiments [141, 142], and even in RMT and semiclassical theory (involving

cumbersome calculations of two-point correlation functions) [74, 143, 144]. In this

chapter, we propose a straightforward and definitive method presented along with

rigorous numerical evidence to show that higher order fluctuation measures, namely

the k-th order spacing ratio not only identify the true fluctuation characteristics but

also allow a quantitative inference about the block structure present in the Hamilto-

nian matrix H .

4.1 Distribution of higher order spacing ratios for in-

tegrable systems

For an integrable system, higher order spacing ratios must also reflect the fact that

all the eigenvalues are uncorrelated with each other. To obtain a form for the dis-

tribution of higher order spacing ratios, r(k), the higher order spacings may be ex-

pressed in terms of nearest neighbor spacings as

s
(k)
i = Ei+k − Ei (4.1)

= Ei+k − Ei+k−1 + Ei+k−1 − Ei+k−2 + · · ·+ Ei

= sk + · · ·+ si+1 + si.

Then the distribution of s(k)i may be calculated as the distribution of a sum of k
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random variables si, each of which is distributed as P (s) = e−s. For simplicity, s(k)i

is denoted as z below. The distribution of z is given by

P (z) =
e−zzk−1

(k − 1)!
(4.2)

Then the distribution of higher order spacing ratios is simply the distribution of

the quotient of two random variables, each of which is distributed as Eq. 4.2. This

distribution may be calculated as

P
(k)
P (r) =

∫
|z|P (rz)P (z)dz

Substituting for P (z) and P (rz) from Eq. 4.2,

P
(k)
P (r) =

∫ ∞

0

|z|e
−rz(rz)k−1

(k − 1)!

e−zzk−1

(k − 1)!
dz

=
rk−1

(k − 1)!2

∫ ∞

0

z2k−1e−z(r+1)dz.

In terms of the incomplete gamma function Γ(x), this gives

P
(k)
P (r) =

Γ(2k)

(k − 1)!2
rk−1

(1 + r)2k

Thus, the k-th order ratio distribution takes the form

P k
P (r) =

(2k − 1)!

[(k − 1)!]2
rk−1

(1 + r)2k
. (4.3)

For k = 1, it reduces to the familiar form

1

(1 + r)2
.

For k = 2,

P 2
P (r) =

6r

(1 + r)4
, (4.4)
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for k = 3,

P 3
P (r) =

30r2

(1 + r)6
, (4.5)

and for k = 4,

P 4
P (r) =

140r3

(1 + r)8
. (4.6)

If a given spectrum has higher order ratio distributions of the form given by Eq.

4.3, the system can be concluded to be integrable. This is illustrated in Fig. 4.2,

showing the distribution of k-th order spacing ratios for two integrable systems,

the circular billiards and Heisenberg spin chain, both of which have been discussed

earlier. Also shown is the form of the corresponding analytical expressions for

k = 2 to 4 given by Eq. 4.3, and they are seen to be in good agreement.
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Figure 4.2: Higher order spacing ratio distributions for k = 2 to 4, for circular bil-

liards (black) and integrable spin chain (blue). The corresponding analytical result

(Eq. 4 in the main paper) is also shown (red curve).

4.2 Distribution of higher order spacing ratios for a

superposition of GOE spectra

Next, the higher order ratios for a superposition of m spectra is considered. That

is, the spectra from m independent blocks are superposed, and the distribution of
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k-th order spacing ratios for the full spectrum is denoted by P k(r, β,m). In this

chapter, only TRI systems are considered, and hence β is considered to be equal

to 1 throughout. For the special case involving nearest neighbor ratios, we denote

P 1(r, β, 1) = P (r, β).

The motivation for considering higher order fluctuation statistics arises from a

seminal result conjectured in Ref. [145] and proved by Gunson [146] for the case of

circular ensembles of RMT. If two independent spectra from the circular orthogonal

ensemble (COE) are superposed, and upon integrating out every alternate eigen-

value, the joint probability distribution of the remaining eigenvalues follow circular

unitary ensemble (CUE) statistics. In terms of higher order measures, this result

states that the second order statistics of two superposed COE spectra converges to

nearest neighbor statistics of CUE. This is reflected in the distribution of spacings

and spacing ratios as well. In the limit of large matrix dimensions, this result holds

for Gaussian ensembles too yielding P 2(r, 1, 2) = P (r, 2) for two superposed spec-

tra.

This may be generalized for the superposition of m GOE spectra as

P k(r, 1,m) = P (r, β′), where β′ = m = k, (4.7)

implying that its k-th order spacing ratio distribution converges to nearest neighbor

statistics P (r, β′) with β′ = k.

It must be noted that using this method of superposing k independent spectra,

and computing the distribution of the k-th order ratios, it is possible to obtain the

distribution P (r, β′ = k) for any β′ > 0. This can then be considered an exten-

sion (beyond the orthogonal, unitary and symplectic ensembles) of the statement

in [129], that `̀ ... the statistical properties of all three types of ensemble are re-

ducible to properties of the orthogonal ensemble alone.´́

For the superposition of k = 2 to 5 independent GOE spectra Eq. 4.7 is numeri-

cally verified in Fig. 4.3 . In this figure, an excellent agreement is seen between the

histograms obtained from the computed eigenvalues of GOE matrices and the solid
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line representing P (r, β′ = k).
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Figure 4.3: Distribution of k-th order spacing ratios (histograms) for a superposition

of k GOE spectra, each obtained by diagonalizing matrices of dimension N =

40000, shown for k = 2 to 5. The solid curve corresponds to P (r, β′), with β′ = k.

As seen in the insets of Fig. 4.3, the minima in D(β) coincides with the value

of m, the number of superposed spectra. A fuller picture is revealed in Fig. 4.4 for

a superposition of four independent GOE spectra, where the computed histogram

for the k-th order ratio is shown for k = 2 to 7. Based on Eq. 4.7, we expect

it to be consistent with P (r, β′ = 4). For each k, P k(r, 1, 4) is matched against

the corresponding P (r, β′) and the function D(β′) is calculated. Both visually and

quantitatively (the minima of D(β′) in Fig. 4.4(e)), best agreement is observed for

k = 4, verifying the main result in Eq. 4.7.
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Figure 4.4: (a-f) Computed k-th order spacing ratio distribution for superposed

spectra from four GOE matrices of order N = 40000. Note that the best agreement

is obtained only for β′ = k = 4. (g) A plot of D(β′) vs. β′ displays a clear minima

for β′ = 4 supporting the claim in Eq. 4.7.

An intuitive understanding for the reason that higher order ratios pick up cor-

relations that are masked by superposition is as follows: As discussed earlier, for

a given sequence of levels consisting of superposition of several independent spec-

tra, there is a very small probability that two neighboring eigenvalues would come

from the same spectrum. However, on calculating higher order spacings or ratios,

the probability of sampling spacings where both eigenvalues come from the same

sequence is greater, and there is a true level repulsion, leading to the result given by

Eq. 4.7.

Thus, for the superposed spectra, Eqs. 4.3 and 4.7 can be used to infer the correct

nature of spectral fluctuations (level repulsion or clustering) and also to determine
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the number of superposed independent blocks for a random matrix or the number of

diagonal blocks (irreducible representations) in the Hamiltonian matrix of complex

quantum system.

The validity of this result is verified using chaotic systems, notably billiards,

and spin chains, possessing different symmetries and, most importantly, the experi-

mentally observed data of nuclear resonances.

4.3 Symmetry deduction in chaotic spectra using

higher order ratios

4.3.1 Quantum billiards

First, a family of quantum billiards is considered, whose boundary is parametrized

by the equation

r(φ) = r0(1 + ε0 cos(ε1φ)) (4.8)

Fixing ε1 = 1, as ε0 varies from 0 to 1, the system transitions from integrable

to chaotic dynamics. For ε = 0, a circular billiard shown in Fig. 4.1(a) is obtained.

This is an integrable system and its higher order spacings are in agreement with Eq.

4.3, as shown in Fig. 4.2. For ε = 1, the so-called cardioid billiard is obtained [147],

with reflection symmetry about the x-axis. Therefore, it has two irreps, and its

eigenlevels obtained disregarding symmetry would correspond to a superposition of

two GOE spectra. As anticipated by Eq. 4.7, its second order spacing ratio distribu-

tion P 2(r, 1, 2) is consistent with P (r, 2) (Fig. 4.5(a)). A billiard with three irreps,

similar in shape to one that has been experimentally realized previously [142], is ob-

tained by considering ε0 = 0.3 and ε1 = 3, that is, r(φ) = r0(1+0.3 cos(3φ)). This

billiard has C3v symmetry with three irreps, one of them being two-dimensional,

which gives rise to degeneracies. On ignoring the symmetries and after removing

degeneracies arising from the two-dimensional irreps, the eigenlevels of this model

correspond to a superposition of three chaotic spectra and the best fit for P 3(r, 1, 3)
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is provided by P (r, 3) (Fig. 4.5(b)). A chaotic billiard with four irreps is the well-

studied Bunimovich stadium billiard [148] (shown in Fig. 4.5(c)). This has reflec-

tion symmetry about both x and y axes and, in accordance with Eq. 4.7, displays

the best correspondence for P k(r, 1, 4) with P (r, β′) for k = β′ = 4 (Fig. 4.5(c)).

For all of these cases, insets in Fig. 4.5 show that the minima of D(β′) corresponds

to β′ = k, where k is the number of irreps. Thus, information about the fluctuation

property and irreps can be obtained from higher order fluctuation statistics.
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Figure 4.5: Higher order spacing ratio distribution (histogram) for the billiards fam-

ily computed by ignoring their symmetries. This corresponds to superposition of

spectra from (a) k = 2, (b) k = 3 and (c) k = 4 irreps. The higher order distri-

butions are best described by P (r, β′) with β′ = k as dictated by Eq. 4.7. The

insets display D(β′) and its minima corresponds to the correct number of irreps in

the system. Also shown as inset is the shape of billiards with an arbitrarily chosen

chaotic eigenstate to highlight its symmetry.

4.3.2 Chaotic spin chains

Next, a spin-1/2 chain with the Hamiltonian [41]

H =
L−1∑
i=1

[Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1) + JzS

z
i S

z
i+1]

+ η

L−2∑
i=1

[J ′
xy(S

x
i S

x
i+2 + Sy

i S
y
i+2) + J ′

zS
z
i S

z
i+2] (4.9)
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is considered, whereL is the number of sites, Jxy and Jz are the nearest neighbor

coupling strengths in three directions (coupling along x and y being the same), and

J ′
xy and J ′

z are the coupling strengths between an i-th spin and its next nearest

neighbor. This system is integrable for η = 0 (as shown in Fig. 4.2), and chaotic

for η & 0.2. The total spin in the z-direction, Sz, is a conserved and in the Sz basis,

the Hamiltonian is block diagonal, each block corresponds to a given value of Sz.

However, there still exist other symmetries, which would lead to nearest neighbor

P (r) appearing to be integrable in this subspace (not shown here). For odd number

of sites (Lodd), on computing the higher order spacing ratios and comparing with

corresponding P (r, β′), k = β′ = 2 has the best fit (Fig. 4.6(a)). For even number of

sites(Leven), however, the best correspondence is for k = β′ = 4 (Fig. 4.6(b)). This

is because for Lodd or Leven, the parity operator (with eigenvalues ±1) commutes

with H , leading to two invariant subspaces in a given Sz block. For Leven, an

additional rotational symmetry exists (with eigenvalues ±1) for the corresponding

operator giving rise to four irreps. The parameters used to obtain Figs. 4.6(a)-(b)

are Jxy = J ′
xy = 1.0, Jz = J ′

z = 0.5, with Leven = 14 and Lodd = 15.
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Figure 4.6: Higher order spacing ratio distribution computed for the spin-1/2 chain

Hamiltonian in Eq. 4.9, with (a) odd number of sites with two irreps and (b) even

number of sites with four irreps. The insets show D(r, β′) and its minima identifies

the number of irreps.
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4.3.3 Experimentally measured nuclear resonances for Ta181

Even for systems whose Hamiltonian is not well-defined or not known as in the case

of complex nuclei, experimentally observed nuclear resonance data can be analyzed

to characterize its fluctuation statistics and find its number of irreps. A sequence of

experimentally observed neutron resonances for Ta181 (Tantalum) nucleus [149] is

considered, whose nearest neighbor spacing distribution is discussed in Ref. [150],

and it does not match the Wigner surmise. On calculating higher order ratio distri-

butions, remarkably, Eq. 4.7 holds good for k = 2, and this is further confirmed

by the minima of D(β′) for β′ = 2 in Fig. 4.7. This indicates that two inde-

pendent symmetry sectors might be present, and the resonances drawn from each

symmetry sector displays level repulsion. This is indeed the case, as confirmed in

Refs. [149, 150], that this measured sequence consists of a superposition of levels

having angular momentum J = 3 and 4 and, when symmetry decomposed, they

are in broad agreement with Wigner surmise. Clearly, for an arbitrary sequence of

measured levels, higher order spacing ratios based on Eq. 4.7 can unambiguously

identify the true fluctuation character and the number of symmetry sectors.
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Figure 4.7: (a-d) The k-th order spacing ratio distribution (histogram) for the exper-

imentally observed nuclear resonances for Tantalum (Ta181) atom. The solid line is

P (r, β′ = k). Note that the best fit is observed for k = 2. (e) D(β′) shows minima

at β′ = 2, reinforcing the validity of Eq. 4.7.

4.4 Conclusion

To summarize, quantum systems must be symmetry decomposed in order to reveal

its spectral fluctuation characteristics, level clustering or repulsion, without ambi-

guity. This implies that the fluctuations carry symmetry information though it was

not possible to extract it from nearest neighbor fluctuation statistics.

In this chapter, we have demonstrated that the higher order spacing ratio dis-
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tributions can reveal, apart from the fluctuation characteristics, quantitative infor-

mation about symmetry structure of the quantum system being analyzed. For a su-

perposition of k independent spectra, the central result is given by Eq. 4.7 relating

k-th order spacing ratio distribution with Dyson index β = 1 to the corresponding

nearest neighbor statistics with β′ = k. This relation can be used to determine the

number of irreducible representations (or the diagonal blocks) present in a Hamil-

tonian matrix. This powerful relation can be exploited to analyze any arbitrary se-

quence of experimentally measured or computed level spectra, even if the system’s

Hamiltonian and symmetry structure are unknown. Further, we have derived the

higher order ratio distribution for uncorrelated eigenvalues, which might be used as

a test of integrability. These results have been demonstrated using physical systems

like billiards and spin chains in their integrable and chaotic limits, and also for the

experimentally measured nuclear resonances.



CHAPTER 5

Outlook

This thesis deals with eigenvalue statistics of random matrices and quantum chaotic

systems, particularly the statistics of ratios of spacings, applied to various scenarios.

Interestingly, the two subjects (random matrices and complex quantum systems)

are so deeply connected, that problems motivated from one of these topics lead to

interesting results in the other.

• For instance, in Chapter 2, the knowledge that the presence of localized states

in a chaotic spectrum causes deviations from random matrix predictions, led

to the development of a 3× 3 model that took into account the fact that local-

ized states interact differently with their nearest neighbors than generic states.

An analytical form for spacing ratios coming from the localized-generic inter-

actions could then be derived for the time reversal invariant and non invariant

scenarios, which was then tested on physical systems. Thus, a problem mo-

tivated completely by the physical effects seen in chaotic systems, led to the

development of a numerical and then analytical model that could bring the

said effect (localization) into the purview of RMT itself.

However, it still deals with a particular kind of localization, and the broader

76
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question of how effects like dynamical localization and localization in mo-

mentum space could be modeled using a minimal model like the one de-

scribed in Chapter 2 is a problem worth investigating. Also, this model does

not differentiate between different kinds of localized states like bouncing ball

modes, whispering gallery modes etc., and could be further refined to not only

identify localized states but also distinguish between them. It would also be

interesting to study the variation of the coupling strength k with the chaos pa-

rameter in a given system and determine the relation (if any) between the two.

This could provide greater insight into the nature of quantum localization and

also possibly, the quantum-classical correspondence.

• Further, an attempt to understand whether the correspondence between RMT

and quantum chaotic systems extends beyond the nearest neighbor statistics,

led to the discovery of a scaling relation involving the Dyson index β, that,

in a certain sense generalized the concept of the level repulsion parameter

beyond the idea of each β corresponding to a matrix representation.

The scaling in β with higher order ratios also possesses a universality, in that

it applies to Gaussian, Circular and Wishart matrices (and physical systems

corresponding to each of these classes) as demonstrated in Chapter 3, though

it is not yet completely clear why this should be true. The result proved by

Dyson in Ref. [145] relates the orthogonal and symplectic ensembles at the

level of the joint probability distribution function. Whether a similar result

can be proved for any general β is an open question. In fact, a rigorous expla-

nation or derivation for the form taken by the higher order ratio distributions

is necessary not only to understand the universality that it seems to show,

but it could also provide insight into the finite size effects seen in higher or-

der spacing ratio distributions. Obtaining specific limits for this effect would

be useful, as it would then be possible to systematically compare higher or-

der ratios coming from physical systems and random matrices and discern

system-specific features based on conformity or deviations in the respective
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distributions of higher order ratios.

• Finally, a direct application for the higher order spacing ratios was presented

in Chapter 4, as a method of deducing the number of symmetries, or the num-

ber of independent spectra superposed in a given sequence of eigenvalues.

The starting point was a conjecture of Dyson, later proved by Gunson, relat-

ing the orthogonal and unitary ensembles this time. Computing the higher

order spacing ratios for a superposition of spectra led to another scaling result

for the orthogonal ensembles in random matrices, relating the higher order

spacing ratios and the number of superposed spectra with the modified Dyson

index. This result turned out to be a straightforward method of symmetry de-

duction in a given system, making the process of Hamiltonian diagonalization

easier. The derivation of the distribution of higher order spacing ratios for a

sequence of uncorrelated levels could immediately be related with the eigen-

values of integrable systems as well, and, put together, is an important result

in the context of complex quantum systems.

From the RMT perspective, the question remains about whether a similar

scaling result exists superpositions of unitary and symplectic ensembles, and

whether such a result may be analytically derived. This would certainly an-

swer pertinent questions existing from the time of inception of RMT, regard-

ing the special nature of the orthogonal ensembles in the hierarchy of random

matrices. Further, the existing analytical results regarding superpositions of

random matrices, implicitly assume that the dimensions of the matrices in-

volved are the same. Would there be a similar scaling relation for matrices

of unequal dimensions? There are no results of this kind for β > 4. This

would be useful in dealing with cases where different kinds of symmetries

divide the subspace into different dimensions (this is seen, for example, in

spin chains where conservation of Sz implies that the dimensionality of each

of the subspaces depend on the number of upspins or downspins in a given

configuration). Also, there are indications of a new scaling relationship on
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considering higher order spacing ratios for superpositions of random matri-

ces in general, that has not been discussed in this thesis, and may be probed

further to provide a larger, unifying picture of the interrelationships between

random matrix ensembles corresponding to different values of β.

In summary, this thesis contains a body of work that straddles the fields of ran-

dom matrix theory and quantum chaos, with results from both subjects aiding, sup-

porting as well as influencing one another. In particular, eigenvalue statistics, in

the form of distribution of spacing ratios, is the main object of interest here. In

RMT, eigenvalue statistics are one of the easiest quantities to compute (especially

after the introduction of spacing ratios). However, other quantities like the eigen-

vector statistics or N-point correlation functions are perceived more favorably, as

they are purported to carry more information, or provide answers to more specific

questions. This thesis shows (hopefully convincingly) that if adapted and applied

suitably, spectral fluctuations like spacing ratios provide systematic and conclusive

information about the object of study, be it different classes of random matrices, or

quantum systems of varying degrees of complexity.



APPENDIX A

Appendix

A.1 Generalized Gaussian ensemble and ratio of con-

secutive level spacings

In order to derive the distribution of ratio of consecutive eigenvalue spacings, we

need the joint probability density of the eigenvalues of the matrix model defined by

Eq. (2.3). The cases of β = 1 and β = 2 are dealt with separately below.

A.1.1 β = 1 (2× 2 GOE ⊕ Localized → 3× 3 GOE)

The joint probability density of eigenvalues in this case follows as

P (k;λ1, λ2, λ3) ∝ |∆({λ})|
∫
O3

dO exp

(
−1

2
Σ−2OΛ2OT

)
, (A.1)

where the integral is over the group of 3 × 3 orthogonal matrices with dO rep-

resenting the corresponding Haar measure. Also, ∆({z}) =
∏

j>k(zj − zk) =

det
[
zj−1
k

]
j,k=1,...,N

is the Vandermonde determinant. For the unitary group, the cel-

ebrated Harischandra-Itzykson-Zuber formula [113, 114] gives the result for this
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integral. Here we do not have such a result because Σ−2 and Λ2 do not lie in the

Cartan subalgebra corresponding to the orthogonal group. Nevertheless, for the

3-dimensional case, it is possible to make progress using the recursive approach

suggested by Guhr and Kohler [151]. Then, we have

∫
O3

dO exp
(
−s trXOY OT

)
=

1

2π
exp(−s(x1 + x2 + x3)y3)

×
∫ x2

x1

dx′1

∫ x3

x2

dx′2
(x′2 − x′1)(

−
∏

j=1,2,3
k=1,2

(xj − x′k)

)1/2

× exp

(
−s(x′1 + x′2)

(
y1 + y2

2
− y3

))
×I0

(
s (x′1 − x′2)(y1 − y2)

2

)
, (A.2)

where I0(z) is the modified Bessel function of the first kind and zeroth order [152].

This result cannot be used directly for Eq. (A.1) since Σ−2 has two identical entries.

We need to consider the limit x1, x2 → 1. For this let us set x1 = 1− ε and x2 = 1

and take the limit ε→ 0. The crucial part in the above expression is

lim
ε→0

∫ 1

1−ε

dx′1
1[

− (1− ε− x′1)(1− x′1)
]1/2

= lim
ε→0

∫ 1

1−ε

dx′1
1[

− (1− ε− x′1)(1− x′1)
]1/2

= 2 lim
ε→0

∫ π/2

0

dθ , where ε sin2 θ = 1− x′1

= π.

The other occurrences of x′1 can be taken as 1. Now, using Eq. (A.1), substituting

s = 1/2, x3 = (2 − k2)/k2, y1 = λ21, y2 = λ22, y3 = λ23, calling x′2 = u, and fixing
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the normalization the joint probability density of eigenvalues is obtained as:

P (k;λ1, λ2, λ3) =

√
2− k2

24πk2
√
1− k2

|(λ2 − λ1)(λ3 − λ1)(λ3 − λ1)|e−
(

2+k2

2k2

)
λ2
3

×
∫ 2/k2−1

1

du
1√

2/k2 − 1− u
e−

(u+1)
4

(λ2
1+λ2

2−2λ2
3)I0

(
(u− 1)

4
(λ21 − λ22)

)
.

(A.3)

For calculating the ratio, the eigenvalues are restricted to the region defined by

−∞ < λ1 ≤ λ3, −∞ < λ3 < ∞, λ3 ≤ λ2 < ∞. The joint probability density of

these ordered eigenvalues is then given by

P̃ (k;λ1, λ2, λ3) = 3!P (k;λ1, λ2, λ3). (A.4)

The probability density function of the ratio of consecutive spacings r = (λ2 −

λ3)/(λ3 − λ1) can then be found as

p(k; r) =

∫ ∞

−∞
dλ3

∫ λ3

−∞
dλ1

∫ ∞

λ3

dλ2 δ

(
r − λ2 − λ3

λ3 − λ1

)
× P̃ (k;λ1, λ2, λ3). (A.5)

Let us call λ3 = λ and define x = λ− λ1 and y = λ2 − λ, then the above integral,

in terms of these new variables, becomes

p(k; r) =

∫ ∞

−∞
dλ

∫ ∞

0

dx

∫ ∞

0

dy δ
(
r − y

x

)
× P̃ (k;λ− x, λ+ y, λ). (A.6)

The delta function integral over y can be trivially done to yield

p(k; r) =

∫ ∞

−∞
dλ

∫ ∞

0

dx xP̃ (k;λ− x, λ+ rx, λ). (A.7)
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Using Eq. (A.3) in this, we obtain

p(k; r) =

√
2− k2r(r + 1)

4πk2
√
1− k2

∫ ∞

−∞
dλ

∫ ∞

0

dx

∫ 2/k2−1

1

du e−
(2+k2)λ2

2k2
+

(u+1)
4

[2λ2−(λ−x)2−(λ+rx)2]

× x4
(2− k2

k2
− u

)−1/2

I0

(1
4
x(u− 1)(r + 1)[2λ+ (r − 1)x]

)
. (A.8)

It is found that the substitution u = 1+2(1/k2−1) cos 2φ leads to an expression

which is comparatively more stable for numerical computation purposes :

p(k; r) =

√
2− k2

πk3
r(r + 1)

∫ ∞

−∞
dλ

∫ ∞

0

dx

∫ π/4

0

dφ x4 cosφ e−
(2+k2)

2k2
λ2

× e
1
2

[
( 1
k2

−1) cos 2φ+1
][

2λ2−(λ−x)2−(λ+rx)2
]
I0

(
x

2

( 1

k2
− 1

)
(r + 1)[2λ+ (r − 1)x] cos 2φ

)
.

(A.9)

A.1.2 β = 2 (2× 2 GUE ⊕ Localized → 3× 3 GUE)

The joint probability density of (unordered) eigenvalue in this case follows as

P (k;λ1, λ2, λ3) ∝ ∆2({λ})
∫
U3

dU exp
(
−Σ−2UΛ2U †) . (A.10)

In this case, the unitary group integral can be performed using the Harish-Chandra-

Itzykson-Zuber formula [113, 114],

∫
UN

dU exp
(
−s trXUY U †) = N−1∏

m=1

m! ·
(
− s

)−N(N−1)/2

×
det

[
exp(−s xjyk)

]
j,k=1,...,N

∆({x})∆({y})
. (A.11)

Here, dU is the Haar measure on unitary group UN , and X = diag(x1, ..., xN),

Y = diag(y1, ..., yN). If there is some multiplicity in the entries of X or Y , then we

must use the above formula using proper limits. This is the case here, as Σ−2 has

two identical entries, viz. 1. We find
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P (k;λ1, λ2, λ3) ∝ (λ2 − λ1)
2(λ3 − λ1)

2(λ3 − λ2)
2

×

det


e−λ2

1 −λ21e−λ2
1 e−( 2−k2

k2
)λ2

1

e−λ2
2 −λ22e−λ2

2 e−( 2−k2

k2
)λ2

2

e−λ2
3 −λ23e−λ2

3 e−( 2−k2

k2
)λ2

3



(λ22 − λ21)(λ
2
3 − λ21)(λ

2
3 − λ22) det


1 0 1

1 1 (2−k2

k2
)

1 2 (2−k2

k2
)2


(A.12)

∝ (λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

(λ1 + λ2)(λ2 + λ3)(λ3 + λ1)
det


e−λ2

1 λ21e
−λ2

1 e−( 2−k2

k2
)λ2

1

e−λ2
2 λ22e

−λ2
2 e−( 2−k2

k2
)λ2

2

e−λ2
3 λ23e

−λ2
3 e−( 2−k2

k2
)λ2

3

 .
(A.13)

On expanding the determinant and fixing the normalization factor, we get

P (k;λ1, λ2, λ3) = −
√
2− k2

3π3/2k(1− k2)2
(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

(λ1 + λ2)(λ2 + λ3)(λ3 + λ1)
e−λ2

1−λ2
2−λ2

3

×
[
e−2

(
1
k2

−1
)
λ2
1(λ22 − λ23) + e−2

(
1
k2

−1
)
λ2
2(λ23 − λ21) + e−2

(
1
k2

−1
)
λ2
3(λ21 − λ22)

]
.

(A.14)

Proceeding similar to β = 1 case, we have Eq. (A.7), but with P̃ (k;λ1, λ2, λ3)

obtained from Eq. (A.14). We find that

p(k; r) =
2
√
2− k2

π3/2k(1− k2)2
r(r + 1)

∫ ∞

−∞
dλ3

×
∫ ∞

0

dx [t1(λ, x) + t2(λ, x) + t3(λ, x)], (A.15)

where

t1(λ, x) =
x5e−(1−r2+ 2r2

k2
)x2+2(1+r− 2r

k2
)xλ−(1+ 2

k2
)λ2

[(r − 1)x+ 2λ](rx+ 2λ)
,
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t2(λ, x) = −(r + 1) x5e−(1+r2)x2+2(1−r)xλ−(1+ 2
k2

)λ2

(−x+ 2λ)(rx+ 2λ)
,

t3(λ, x) =
r x5e−(r2+ 2

k2
−1)x2+2( 2

k2
−r−1)xλ−(1+ 2

k2
)λ2

(−x+ 2λ)[(r − 1)x+ 2λ]
.

We notice that integrals involving t1, t2, t3 are of a similar form, as given below:

∫ ∞

−∞
dλ

∫ ∞

0

dx
x5e−α2x2+2ηxλ−γ2λ2

(ux+ 2λ)(vx+ 2λ)
=

√
π

8(v − u)

[
b (5a2 + 2b2)

a4 (a2 + b2)2
+

3 sinh−1
(
b
a

)
(a2 + b2)5/2

− c (5a2 + 2c2)

a4 (a2 + c2)2
−

3 sinh−1
(
c
a

)
(a2 + c2)5/2

]
.

(A.16)

Here a2 = α2 − η2

γ2 , b = γ
2

(
u+ 2η

γ2

)
, c = γ

2

(
v + 2η

γ2

)
. The integral converges

for α2 > 0, γ2 > 0, α2γ2 − η2 > 0. Hence, we can write down a closed form result

for p(k; r) based on this integral. Define

a1 =

√
2[1 + r(r + 1)(2− k2)]√

2 + k2
, a2 =

√
2
[
1 + r(r + k2)

]
√
2 + k2

,

b1 =
k2(3r + 1)− 2(r + 1)

2k
√
2 + k2

, b2 =
2 + k2(2r − 1)

2k
√
2 + k2

, b3 =
2− k2(2r + 3)

2k
√
2 + k2

,

c1 =
k2(3r + 2)− 2r

2k
√
2 + k2

, c2 =
k2(r − 2)− 2r

2k
√
2 + k2

, c3 =
2(r + 1)− k2(r + 3)

2k
√
2 + k2

.

(A.17)

Then the PDF for ratio of spacings is given by

p(k; r) =

√
2− k2

4πk(1− k2)2
r(r + 1)

3∑
j=1

[
bj(5a

2
j + 2b2j)

a4j(a
2
j + b2j)

2
+

3

(a2j + b2j)
5/2

sinh−1
( bj
aj

)
−
cj(5a

2
j + 2c2j)

a4j(a
2
j + c2j)

2
− 3

(a2j + c2j)
5/2

sinh−1
( cj
aj

)]
.

(A.18)

It should be noted that the factor (v − u) in the denominator of Eq. (A.16) is 1,
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r + 1, and r, respectively, for the integrals involving t1, t2, and t3. The third one

cancels the r factor in the numerator of Eq. (A.1.2), while the second one, when

combined with r + 1 in the numerator of Eq. (A.1.2), leaves an overall negative

sign. This sign has been absorbed in the definitions for b2 and c2 in Eq. (A.17),

noting that sinh−1 z in an odd function of z.
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