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Abstract

On Bezout’s Theorem

by Anuj Kumar More

The aim of the project is to understand Bezout’s Theorem for curves from algebraic

and geometric point of view. The Theorem states that in complex projective plane,

the number of points in which any two curves (with no common factors) intersect,

counting with multiplicity, is the product of the degrees of the curves. We follow

the proof given in the book “Algebraic Curves” by William Fulton. In the appendix,

we have included solutions of few problems from the book. Basics of commutative

algebra are learnt along with for understanding the subject.
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Chapter 1

Introduction

Algebraic geometry originated with the study of solutions of system of polynomial

equations. It was observed long back that conic sections can be described as the set

of solution of a particular polynomial in two variables. In this thesis I have studied

one of the most fundamental theorem of algebraic geometry viz. Bezout’s Theorem,

which has enormous applications in algebraic geometry.

To give some motivation let us consider the affine plane A2. A curve in R2 is the

graph of a polynomial equation in two variables x and y. It is finite sum of terms of

the form exiyj, where the coefficient e is a real number and the exponents i and j

are nonnegative integers. We will look at the points where a curve intersect another

curve. Point to note is that it can intersect the curve multiple times. For example,

we consider the equation

(x2 + y2)2 − 2xy = 0

(as in figure 1.1). It intersects the curve y = 0 and x = 0 (x and y axis) twice at the

origin.

Geometrically, it is not always possible to look at the graphs of f and g and find the

Figure 1.1:

1



2 CHAPTER 1. INTRODUCTION

number of times they intersect at some point. To overcome this problem we study so

called projective space over complex plane C2. We consider the curve in P2 instead

of A2. In affine plane we have the concept of parallel lines. So, they never intersect

each other. For example, we have two parallel lines X +Y = 0 and X +Y − 1 = 0 in

A2. On the other hand in P2, there are no parallel lines, since any two distinct lines

aX+bY +cZ = 0 and αX+βY +γZ = 0 meet at the point (bγ−cβ, cα−aγ, aβ−bα).
Infact, any two curves in P2 intersect each other.

Statement of Bezout’s Theorem:

Any two distinct curves, f and g, on the projective plane, of degree m and n re-

spectively, will meet in exactly mn points, counting multiplicities.

Etienne Bezout proved this result in his Ph.D. thesis in 1779 in Paris. According to

historical notes, the earlier version of the result originated in the remarks of Newton

and MacLaurin and was already proved by Euler in 1748 and Cramer in 1750.

In this thesis we give a proof of the result following the book “Algebraic Curves”

by William Fulton. We use the concept of “Intersection Theory”. At the beginning

we provide some basic concepts of commutative algebra and algebraic geometry to

keep it self content. Then in the consecutive sections we study Lemmas and Propo-

sitions which are ingredients for the proof of the Theorem. At the end of the thesis

we include some solutions of problems in Fulton’s book.



Chapter 2

Preliminary

2.1 Basic Commutative Algebra

Definition 1. A ring R is a set with two binary operations (addition + and multipli-

cation .) such that R is an abelian group with respect to addition and multiplication

is associative and distributive over addition.

Through out this thesis we will be considering R to be commutative ring (xy = yx

for all x, y ∈ R) with identity (∃! 1 ∈ R such that x1 = 1x = x ∀x ∈ R). A ring R is

called integral domain if ab = 0 ⇒ a = 0 or b = 0 a, b ∈ R. The characteristic of

R, denoted by char(R), is the smallest integer p such that 1 + · · ·+ 1 (p times) = 0,

If such a p exists we say R has characteristic p; otherwise char(R) = 0. Char(R) is

a prime number or 0.

Just like the concept of vector spaces over field, we have analogue concept of

modules over rings. A left R-Module M is an abelian group together with a map

f : R ×M → M given by (a, x) → a · x, satisfying (1) a · (x + y) = a · x + a · y, (2)
(a + b) · x = a · x + b · x, (3) a(b · x) = (ab) · x and (4) 1 · x = x for all a, b ∈ R and

x, y ∈M .

Any vector space V over a field k can be considered as k-module V . Any abelian

group G is a Z-module.

Definition 2. An ideal I of a ring R is an additive subgroup of R such that RI ⊆ I.

Definition 3. A mapping φ : R → S is called ring homomorphism from a ring R

to a ring S if and only if φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) (a, b ∈ R). If

3



4 CHAPTER 2. PRELIMINARY

φ is 1− 1 and onto, then it is called ring isomorphism.

The set of elements mapped to 0 ∈ S is called kernel of φ denoted as Ker(φ) and

it is an ideal of R.

Definition 4. Quotient Ring: If I is an ideal of ring R, then the collection of cosets

{x+I | x ∈ A} form a ring under the induced operation from A, i.e. ((x+I)+(y+I) =

(x + y) + I and (x + I).(y + I) = (x.y + I)). This ring is quotient ring (also called

factor ring or residue class ring) denoted by R/I and element (x + I) (called

I-residue of x) is denoted as x̄.

The classes R/I forms a ring in such a way that the mapping π : R → R/I taking

x to I-residue of x is ring homomorphism.

R/I is characterized by the following property: If φ : R → S is a ring homomorphism

to a ring S and φ(I) = 0, then there is a unique ring homomorphism φ̄ : R/I → S

such that φ = φ̄ ◦ π.

Definition 5. An ideal I in A is prime if and only if I 6= (1) and xy ∈ I =⇒ x ∈
I or y ∈ I.

I is a prime ideal of A if and only if A/I is an integral domain. The set of all

prime ideals of A is denoted by Spec(A).

Definition 6. An ideal I in A is maximal if and only if I 6= A and there is no ideal

J such that I ⊂ J ⊂ A.

I is a maximal ideal of A if and only if A/I is a field. The set of all maximal

ideals of A is denoted by Max(A) and it is a subset of Spec(A).

Two ideal I and J are said to be comaximal if I + J = R

Definition 7. A ring is said to be local if it has a unique maximal ideal and semilo-

cal if it has finitely many maximal ideals.

Definition 8. I be an ideal of A. The set I = {x ∈ A | ∃n ∈ N s.t. xn ∈ I} is an

ideal of A and is called as radical of I denoted by
√
I.

The ideal
√
0 is called the nilradical of A.

Proposition 2.1.1. The nilradical of A is the intersection of all prime ideals of A.
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Definition 9. The jacobson radical of A is the intersection of all the maximal

ideals of A denoted by Jac(A).

Lemma 2.1.2. Prime Avoidance Lemma : Let A be a ring and I ⊂ A an ideal.

Suppose I ⊂ ∪ni=1Pi, where Pi ∈ Spec(A). Then I ⊂ Pi for some i, 1 ≤ i ≤ n.

Proof. Use induction on n. Trivially true for n = 1. We assume the statement to be

true for n − 1, i.e. I ⊂ ∪n−1
i=1 Pi ⇒ I ⊂ Pi for some i (1 ≤ i ≤ n − 1). We assume

I ⊂ ∪ni=1Pi. If I is contained in union of any (n−1) prime ideals, we can use induction

hypothesis. If not, I * ∪j 6=iPj for all i, i.e. ∃ ai ∈ I such that ai /∈ ∪j 6=iPj for all i
(1 ≤ i ≤ n). If for some i, ai /∈ Pi,then I * ∪ni=1Pi. So we assume that ai ∈ Pi for all

i. Then the element

a =
n∑

i=1

a1 . . . ai−1 · ai+1 . . . an

is an element of I not in ∪ni=1Pi. Contradiction.

Lemma 2.1.3. Nakayama Lemma : A ring, M a finitely generated A-module and

I be an ideal of A. Then IM =M =⇒ ∃ a ∈ I such that (1 + a)M = 0.

Proof. Let M be generated by {x1, . . . , xn}. IM = M ⇒ xi =
n∑
j=1

aijxj, aij ∈ I ⇒
n∑
j=1

(δij − aij)xj = 0, where δij = 1 if i = j and 0 if i 6= j. This implies that




1− a11 −a12 −a1n
−a21 1− a22 −a2n
−an1 · · · 1− ann







x1
...

xn


 =




0
...

0




If ∆ is the determinant of the matrix (δij − aij), then by multiplying by its adjoint

on the left, we get ∆xi = 0, 1 ≤ i ≤ n. Thus, ∆M = 0. Also ∆ = 1 + a, for some

a ∈ I. Thus, (1 + a)M = 0.

If I is a maximal ideal of A then IM =M =⇒ M = 0.

Definition 10. Polynomial rings : Let A be a ring. The ring A[X1, . . . , Xn] de-

notes the polynomial ring in n variables X1, . . . , Xn over R and consists of elements

of the type

f =
n∑

i=1

λi1...inX
i1
1 . . . X

in
n
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where λi1...in ∈ A and {i1, . . . , in} ∈ Zn+.

Element f of the polynomial ring is called a polynomial, which is finite A−linear

combination of X i1
1 . . . X

in
n (called monomials). Degree of a monomial is the sum of

powers of each Xi’s, i.e. i1 + · · · + in. A polynomial which is A-linear combination

of monomials of degree d is called homogeneous polynomial of degree d. Any

polynomial can be written as sum of finitely many homogeneous polynomials. The

degree of a polynomial is define to be the maximum of the degree of its homogeneous

components.

Definition 11. Let A be a ring. An A-module M is called Noetherian if it satisfies

one of the following conditions (all are equivalent):

1. Any non empty collection of submodules of M has a maximal element.

2. Any ascending chain of submodules of M has a maximal element.

3. Every submodule of M is finitely generated.

A ring A is said to be Noetherian if A is Noetherian as an A-module. Fields and

PIDs are Noetherian.

Proposition 2.1.4. A ring, M an A-module, and N an A-submodule of M . Then

M is Noetherian if and only if N and M/N are Noetherian.

Definition 12. A nonzero element a of an integral domain R with unity is called

an irreducible element if (1) it is not a unit, and (2) for any factorization a = bc,

b, c ∈ R, either b or c is a unit.

Definition 13. A nonzero element p of an integral domain R is called a prime element

if (1) it is not a unit and (2) if p|ab, then p|a or p|b. (a, b ∈ R).

A set S of elements of a ring R generates an ideal I = {∑ aisi | si ∈ S, ai ∈ R}.
I is said to be finitely generated if S is a finite set and is said to be principal if S

is singleton set.

Definition 14. A domain in which every ideal is principal is called Principal Ideal

Domain.

Example of PIDs are Z and k[X], where k is a field.
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Definition 15. A commutative integral domain R with unity is called unique fac-

torization domain (UFD) if every nonzero element in R can be factored uniquely,

up to units and the ordering of the factors, into irreducible factors.

Example of UFDs are Z, polynomial ring R[X1, . . . , Xn], where R itself is a UFD.

Every PID is a UFD but converse is not true (k[X, Y ] is not a PID as I = (x, y) is

not generated by single element).

Definition 16. Let R be a ring. The quotient field (or Field of fractions) K of the

ring R is the field consisting of all elements of the form a/b, where a, b ∈ R and b 6= 0.

The quotient field of polynomial ring k[X1, . . . , Xn] is written as k(x1, . . . , xn) and

is called field of rational functions in n variables over the field k.

Lemma 2.1.5. Gauss’s Lemma: Let R be a UFD with field of fractions F , then

any irreducible element F ∈ R[X] remains irreducible when considered in K[X].

Proof. Let F ∈ K[X] be reducible element, i.e. F = GH, where G,H are in k[X].

Multiplying by a common denominator we can obtain dF = G′H ′, where G′, H ′ are

elements in R[X] and d is a nonzero element in R. If d is unit, then F = (d−1G′)(H ′)

is reducible. If d is not a unit, then d = p1 . . . pn (product of irreducibles). Now, p1

is irreducible, then ideal (p1) is prime (true for PIDs). Thus, (R/p1R)[X] is integral

domain. Taking modulo p1, we get dF = G′H ′ modulo p1 ⇒ 0̄ = H̄ ′Ḡ′ ⇒ H̄ ′ = 0̄ or

Ḡ′ = 0̄. This means all the coefficients of H ′ or G′ are divisible by p1. So, we can

cancel p1 from both sides of dF = G′H ′. But now the factor d has fewer irreducible

factors. Preceding in the same fashion with each of the remaining factors of d, we

can cancel all of the factors of d into two polynomials on the right hand side, leaving

the equation F = G′H ′ with G′, H ′ ∈ R[X] ⇒ F is reducible.

If R is a ring, a ∈ R, F ∈ R[X]. Then a is called root of F if F = (x− a)G for a

unique G ∈ R[X].

Definition 17. A field k is algebraically closed field if any non constant F ∈ k[X]

has a root.

C is an algebraically closed field. Any polynomial of degree d in algebraically

closed field k has d roots in k, counting multiplicities.
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Definition 18. The derivative of a polynomial F =
∑
aiX

i ∈ R[X] is defined to

be
∑
iaiX

i−1 and is denoted by ∂F
∂X

or FX .

If F ∈ R[X1, . . . , Xn],
∂F
∂Xi

= FXi
is defined by considering F as a polynomial in

Xi with coefficients in R[X1, . . . , Xi−1, Xi+1, . . . , Xn].

2.2 Chinese Remainder Theorem

Theorem 2.2.1. Let I1, . . . , Ik be pairwise comaximal ideals in ring R. The map

R → R/I1 ×R/I2 × · · · ×R/In

r → (r + I1, r + I2, . . . , r + Ak)

is a surjective ring homomorphism with kernel
⋂n
k=1 Ik = I1I2 . . . In.

Proof. We first prove for n = 2. We consider the natural projection map φ : R →
R/I1 ×R/I2 defined by φ(r) = (r+ I1, r+ I2). This is a ring homomorphism. Kernel

of φ consists of all elements of R that are in I1 ∩ I2. Since I1 + I2 = R, there exist

elements x ∈ I1 and y ∈ I2 such that x+y = 1. This equation shows that φ(x) = (0, 1)

and φ(y) = (1, 0) (0 and 1 are elements of R/I1 and R/I2). Now, if (r1 + I1, r2 + I2)

is an arbitrary element in R/I1 ×R/I2, then element r2x+ r1y maps to this element

as

φ(r2x+ r1y) = φ(r2)φ(x) + φ(r1)φ(y)

= (r2 + A, r2 + B)(0, 1) + (r1 + A, r1 +B)(1, 0)

= (0, r2 +B) + (r1 + A, 0)

= (r1 + A, r2 + B)

Thus φ is surjective.

We claim that I1I2 = I1 ∩ I2. I1I2 ⊂ I1 ∩ I2. Also, for any c ∈ I1 ∩ I2, c = c · 1 =

cx + cy ∈ I1I2 (x and y are as above). Thus, I1 ∩ I2 ⊂ I1I2 implying I1 ∩ I2 = I1I2.

The general case follows by induction. We assume the statement to be true up to

(k − 1) ideals. Take ideal A = I1 and B = I2I3 . . . Ik. Claim is that A and B are

comaximal. Given that ∀ i ∈ {2, 3, . . . , k}, there are elements xi ∈ I1 and yi ∈ Ii

such that xi + yi = 1. Now, 1 = (x2 + y2) . . . (xk + yk) ∈ A+ B. Thus, A and B are
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comaximal. Now, we can apply the case for n = 2, i.e. A ∩ B = AB =
n∏
i

Ii to get

the result.

2.3 Hilbert Basis Theorem

Theorem 2.3.1. Hilbert Basis Theorem : Let R be a Noetherian ring. Then

R[X1, . . . , Xn] is Noetherian.

Proof. Since R[X1, . . . , Xn] is isomorphic to R[X1, . . . , Xn−1][Xn], we can use math-

ematical induction. So problem suffices to: If R is Noetherian then R[X] is Noethe-

rian.

Let I ⊂ R[X] be an ideal. To show that I is finitely generated. Let us choose

f1(X) ∈ I of smallest degree. If I = 〈f1(X)〉, then done. If not, choose f2(X) ∈ I

such that f2(X) is not in 〈f1(X)〉 and is of smallest degree w.r.t. that property.

Proceeding this way, we can choose fi(X) for i > 0. Let ai be leading coefficient of

fi(X). Since R is Noetherian, the chain

〈a1〉 ⊂ 〈a1, a2〉 ⊂ . . . ⊂ 〈a1, . . . , ar〉 ⊂ . . .

terminate for some n ∈ N.
We claim I = 〈f1, . . . , fn〉. If not, then fn+1 /∈ (f1, . . . , fn). Let an+1 =

∑n
i=1 λiai.

We consider g(X) = fn+1(X) −∑n
i+1 λifi(X)Xdeg(fn+1)−deg(fi). g(X) has degree less

than degree of fn+1(X) and is not generated by f1, . . . , fn. Thus contradiction.

2.4 Discrete Valuation Ring

Definition 19. Let ∆ be an ordered group. A valuation ν on k (field) with values

in ∆ is a mapping ν : k∗ → ∆ satisfying the conditions:

1. ν(ab) = ν(a) + ν(b)

2. ν(a+ b) ≥ min{ν(a), ν(b)}

It is sometimes convenient to adjoin an element∞ to ∆ and extend the operations.

Example 1. Let K = k(X) be the field of rational functions in X over k and p(X)

an irreducible polynomial in k[X]. Any non-zero element of K can be uniquely written
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as

θ(X) = p(X)r
f(X)

g(X)

r ∈ Z and p(X) does not divide f(X) or g(X). Then the map ν : K → Z given by

ν(θ(X)) = r is a valuation on k(X). This valuation is called p(X)-adic valuation.

More generally, R be a PID with quotient field k and p ∈ R an irreducible element.

If α ∈ k, write α = prb/c, (p, b) = 1, (p, c) = 1, r ∈ Z. ν : k → Z defined by ν(α) = r

is a valuation on k called p-adic valuation on k.

The valuation ring corresponding to the valuation ν is given by

ν = {a ∈ k | ν(a) ≥ 0}

Definition 20. A discrete valuation is a surjective valuation ν : k∗ → Z. The

corresponding valuation ring is called discrete valuation ring (DVR).

Both the examples given above of the valuation are discrete valuation.

Theorem 2.4.1. Let R be a domain that is not a field. Then the following are

equivalent:

1. R is Noetherian and local, and the maximal ideal is principal.

2. R is a DVR.

Proof. (⇒) We will show that every nonzero element z ∈ R can be written uniquely

as z = utn, u unit in R, n a non negative integer and t ∈ R is an irreducible element.

Then we can define the valuation as ν(z) = n.

Let m = (t) be the maximal ideal. Suppose t is generator of m. Suppose utn = vtm,

u, v units, n ≥ m. Then utn−m = v is a unit. So n = m and u = v. Thus,

the expression z = utn is unique. Now, let z not a unit (if it is, then we can take

z = ut0), so z ∈ m, i.e. z = z1t, z1 ∈ R. If z1 is a unit we are done, if not ∃
z2 ∈ R such that z1 = z2t. Continuing, we can find an infinite sequence z1, z2, . . . ,

with zi = zi+1t. Since R is Noetherian, the chain of ideals (z1) ⊂ (z2) · · · must have

a maximal member. So (zn) = (zn+1) for some n. Then zn+1 = vzn for some v ∈ R,

so zn = tvzn ⇒ vt = 1 ⇒ t is a unit. Contradiction. So, there exists some zi which

can be written as ut, where u is unit, thus expressing z = uti, i unit.

(⇐) R is a DVR. Claim is that every nonzero ideal is unique of the type m
n(n ≥ 1).
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Let I be a nonzero ideal in R. Since, discrete valuation is surjective map, ∃ t ∈ R

such that ν(t) = 1. Choose a ∈ I such that ν(a) = n, n least non negative integer.

Then ν(at−n) = 0, so that at−n is a unit, i.e. a = utn. Hence (tn) ⊂ I. If b ∈ I,

with ν(b) = k ≥ n, then ν(bt−k) = 0, i.e. b = vtk, v unit and b ∈ (tn). Hence,

I = (tn) = m
n and n is unique.

The maximal ideal corresponding to a valuation ring R is given by

m = {a ∈ k | ν(a) > 0}

An element with t ∈ k is called a uniformizing parameter for ν if ν(t) = 1. This is

the generator of the maximal ideal.
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Chapter 3

Affine Geometry

3.1 Algebraic sets and Ideals of Set of Points

Notation 1. We assume k to be any algebraically closed field through out this thesis

if otherwise mentioned.

1. An(k) or simply An (if k is understood) is the set of n-tuples of elements of k

and is called Affine n-space over k. Its element are called points. A1(k) is the

Affine line and A2(k) is the Affine space.

2. If F ∈ k[X1, . . . , Xn], a point P = (a1, . . . , an) in An(k) is called a zero of F if

F (P ) = F (a1, . . . , an) = 0.

3. If F is not a constant polynomial, the set of zeroes of F is called hypersurface

defined by F , and is denoted by V (F ). An hypersurface in A2(k) is called an

Affine plane curve. If F is a polynomial of degree 1, V (F ) is called hyperplane

in An(k). For n = 2, we call it a line.

4. If S is any set of polynomials in k[X1, . . . , Xn], we have V (S) = {P ∈ An(k) |
F (P ) = 0 for all F ∈ S}, V (S) = ∩F∈SV (F ). A subset X ⊂ An(k) is an Affine

algebraic set or simply algebraic set, if X = V (S) for some S.

5. For any subset X of An(k), the Ideal of X is defined as those polynomials in

k[X1, . . . , Xn] that vanish on X, i.e. I(X) = {F ∈ k[X1, . . . , Xn] | F (a1, . . . , an) =
0 for all (a1, . . . , an) ∈ X}. It is an ideal in k[X1, . . . , Xn].

13
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Example 2. A = {(t, t2, t3) ∈ A3(k) | t ∈ k} is an algebraic set as A = V (X −
Y 2, Y 2 − Z3). Similarly, the circle C = {(cos(t), sin(t)) ∈ A2(R) | t ∈ R} is also an

algebraic set as C = V (X2 + Y 2 − 1).

However, {(cos(t), sin(t), t) ∈ A3(R) | t ∈ R} is not an algebraic set. (cf. appendix

problem 7.1.11 and problem 7.1.13)

Facts on Algebraic sets

1. If I is an ideal in k[X1, . . . , Xn] generated by S, then V (S) = V (I). So, every

algebraic set is equal to V (I) for some ideal I.

2. If {Iα} is any collection of ideals in k[X1, . . . , Xn], then V (∪αIα) = ∩αV (Iα).

So, intersection of algebraic sets is an algebraic set.

3. If I ⊂ J , then V (I) ⊃ V (J) (I, J are ideals in k[X1, . . . , Xn]); If X ⊂ Y , then

I(X) ⊃ I(Y ).

4. V (FG) = V (F )∪V (G) for any polynomial F,G. So, any finite union of algebraic

sets is an algebraic set.

5. (i) V (0) = An(k)

(ii) V (k[X1, X2, . . . , Xn]) = V (1) = Φ

(iii) V (X1 − a1, . . . , Xn − an) = {(a1, . . . , an)}

for ai ∈ k. So, any finite subset of An(k) is an algebraic set.

6. (i) I(Φ) = k[X1, . . . , Xn]

(ii) I(An(k)) = (0) if k is an infinite field

(iii) I({(a1, . . . , an)}) = (X1 − a1, . . . , Xn − an) for a1, . . . , an ∈ k.

7. I(V (S)) ⊃ S for any set S of polynomials and if S is an algebraic set, then

equality holds true; V (I(X)) ⊃ X for any set X of points and if I is an an ideal

of algebraic set then equality holds true. In general, V (I(V (S))) = V (S) and

I(V (I(X))) = I(X).

8. I(X) is a radical ideal for any X ⊂ An(k) (Radical of I, written
√
I, is {a ∈

R | an ∈ I for some integer n > 0}.
√
I is itself an ideal and an ideal I is called

a radical ideal if I =
√
I).
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Definition 21. An algebraic set V is reducible if V = V1 ∪ V2, where V1, V2 are

algebraic sets in An, and Vi 6= V , i = 1, 2. Otherwise we say V is irreducible. An

irreducible affine algebraic set is called an affine variety.

Theorem 3.1.1. An algebraic set V is irreducible if and only if I(V ) is prime.

Proof. (⇒:) If I(V ) is not prime, suppose F1F2 ∈ I(V ), Fi /∈ I(V ). Then V ⊂
V (F1F2) = V (F1) ∪ V (F2) ⇒ V = (V ∩ V (F1)) ∪ (V ∩ V (F2)), and V ∩ V (Fi) 6= V ,

so V is irreducible.

(⇐:) If V = V1 ∪ V2, Vi ( V , then I(Vi) ) I(V ); Let Fi ∈ I(Vi), Fi /∈ I(V ). Then

F1F2 ∈ I(V ), so I(V ) is not prime.

In particular, An is irreducible.

Theorem 3.1.2. Every algebraic set is the intersection of a finite number of hyper-

surfaces

Proof. Let the algebraic set be V (I) for some ideal I ⊂ k[X1, . . . , Xn]. Since,

k[X1, . . . , Xn] is a Noetherian ring, I = (F1, . . . , Fr) (by Hilbert Basis Theorem),

then V (I) = V (F1) ∩ · · · ∩ V (Fr), where Fi’s are irreducible.

Lemma 3.1.3. Let ζ be any nonempty collection of ideals in a Noetherian ring R.

Then ζ has a maximal member, i.e. there exists an ideal I in ζ that is not contained

in any other ideal of ζ.

Proof. Choose an ideal from each subset of ζ. let I0 be the chosen ideal for ζ itself. Let

ζ1 = {I ∈ ζ | I ) I0}, and let I1 be the chosen ideal of ζ1. Let ζ2 = {I ∈ ζ | I ) I1},
and so on.

Claim: ζn is empty. If not, let I =
∞⋃
n=0

In. Let F1, . . . , Fr generate I (as I is an ideal

of Noetherian ring R), each Fi ∈ In if n is chosen sufficiently large. But then In = I,

so In+1 = In, a contradiction.

Lemma 3.1.4. Any collection of algebraic sets in An(k) has a minimal member.

Proof. If {Vα} is such a collection, take a maximal member I(Vα0
) from {I(Vα)} (by

above Lemma it exists). Then Vα0
is the minimal in the collection.

Theorem 3.1.5. Let V be an algebraic set in An(k). Then there are unique irreducible

algebraic sets V1, . . . , Vm such that V = V1 ∪ · · · ∪ Vm and Vi * Vj for all i 6= j.
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Proof. Let ζ = {algebraic sets V ⊂ An(k) | V is not the union of a finite number of

irreducible algebraic sets }.
Claim: ζ is empty. If not, let V be a minimal member of ζ (by above Lemma it

exists). Since V ∈ ζ, V is not irreducible, so V = V1 ∪ V2, Vi ( V . Then Vi /∈ ζ, so

Vi = Vi1∪· · ·∪Vimi
, Vij irreducible. But then V = ∪i,jVij, a contradiction. Thus, any

algebraic set can be written as V = V1, . . . , Vm, Vi irreducible. If Vi ⊂ Vj for some

i, j, remove Vi to get the condition Vi * Vj for all i 6= j.

(Uniqueness :) Let V = W1 ∪ · · · ∪Wl be another such decomposition. Then Vi =⋃
j

(Wj ∩Vi). Since, Vi’s are irreducible, Vi ⊂ Wj(i) for some j(i). Similarly, Wj(i) ⊂ Vk

for some k. This imply that Vi ⊂ Vk ⇒ i = k. So, Vi = Wj(i) and Wj = Vi(j).

The irreducible algebraic sets in the Theorem are called as irreducible compo-

nents of V and ∪mi=1Vi is called the decomposition of V into irreducible components.

3.2 Zariski Topology

Definition 22. Let R be a ring. For an ideal I of R

V (I) = {P | P ∈ Spec(R) I ⊂ P}

is called algebraic subset of ring R.

It satisfies the following properties:

1. V (R) = Φ

2. V (0) = Spec(R)

3. V (I) = V (
√
I)

4. V (I1) ∪ V (I2) = V (I1 ∩ I2) (can be extended to finite union)

5.
⋂
α∈∆

V (Iα) = V (
∑
α∈∆

Iα) (∆ is indexing set)

6. I ⊂ J ⇒ V (J) ⊂ V (I)

Definition 23. A subset C of Spec(R) is said to be closed if C = V (I) for some ideal

I of R.
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Definition 24. Zariski topology is defined by the closed sets satisfying above prop-

erties (1), (2), (4) and (5).

Let U =
⋃
α∈∆

V (Iα), then Ū = V (
⋂
α∈∆

Iα), i.e. Ū is smallest closed set containing

U .

Definition 25. For f ∈ R, D(f) = Spec(R)− V (f), D(f) are the basic open sets of

the Zariski Topology.

One can identify D(f) with Spec(R[ 1
f
]).

If U is open in Spec(R), then there exists an ideal J ∈ R such that U = Spec(R)−V (J)

and U =
⋃
f∈J

D(F ).

3.3 Affine Varieties

Let V ⊂ An be a nonempty variety.

Definition 26. A function f : V → k is called a polynomial function on V if f is

the restriction to V of a polynomial function on An, i.e. F ∈ k[X1, . . . , Xn] such that

f(x) = F (x), ∀x ∈ V .

The map that associates to each F ∈ k[X1, . . . , Xn] a polynomial function on V

is a ring homomorphism whose kernel is I(V ) (cf. appendix problem 7.2.1).

Definition 27. The set of all polynomial functions on V is a k-algebra (for point

wise addition and multiplication of functions), called coordinate ring of V and is

denoted by Γ(V ).

Proposition 3.3.1. The coordinate ring Γ(V ) of V is naturally isomorphic to the

quotient ring k[X1, . . . , Xn]/I(V ).

Proof. We consider the natural map k[X1, . . . , Xn] → k[V ], F 7→ f = F |V which is

surjective homomorphism of rings. Its kernel is I(V ).

V is irreducible, implies I(V ) is a prime ideal in k[X1, . . . , Xn]. So Γ(V ) is a domain.

Definition 28. The quotient field of Γ(V ) is called the field of rational functions

on V and is denoted by k(V ). An element of k(V ) is the rational function on V .
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Let Γ(V ) be a UFD. If f is a rational function on V and P ∈ V , we say that f is

defined at P if and only if for some a, b ∈ Γ(V ), f = a/b, and b(P ) 6= 0. The set of

rational functions on V that are defined at P is represented by OP (V ). OP (V ) forms

a subring of k(V ) containing Γ(V ) and is called local ring of V at P . The ideal

mP (V ) = {f ∈ OP (V )|f(P ) = 0} is the maximal ideal of V at P as it is the kernel

of the evaluation homomorphism f → f(P ) of OP (V ) onto k, so OP (V )/mP (V ) is

isomorphic to k.

Proposition 3.3.2. OP (V ) is a Noetherian local domain.

Proof. Since k[X1, . . . , Xn] is Noetherian ring, Γ(V ) is Noetherian. Choose generators

f1, . . . , fr for the ideal I ∩ Γ(V ) of Γ(V ). Let f ∈ I ⊂ OP (V ) , then there exists

b ∈ Γ(V ) with b(P ) 6= 0 such that

bf ∈ Γ(V ) ⇒ bf ∈ Γ(V ) ∩ I ⇒ bf =
∑

aifi ai ∈ Γ(V )

3.4 Hilbert’s Nullstellensatz Theorem

Lemma 3.4.1. Let A be a commutative ring and I = (a1, a2, . . . , an) be an ideal of

A. Suppose that P1, P2, . . . , Pr are prime ideals of A and I * Pi, 1 ≤ i ≤ r. Then we

can find b2, . . . , bn ∈ A such that a1 + b2a2 + · · ·+ bnan /∈
r⋃
i=1

Pi.

Proof. Without loss of generality, we can assume that Pi * Pj for i 6= j. Applying

induction on r. Trivially true for r = 1 case. Suppose by induction we have chosen

c2, . . . , cn ∈ A such that d1 = a1 + c2a2 + · · ·+ cnan /∈ ∪r−1
i=1Pi. If d1 /∈ Pr, then we are

done by taking bi = ci, 2 ≤ i ≤ n. So, we assume d1 ∈ Pr. If a2, . . . , an all belong to

Pr, then d1 −
∑n

i=2 aici = a1 ∈ Pr. But, this will imply that I ⊂ Pr. Thus, at least

one of the ai /∈ Pr, 2 ≤ i ≤ n. Let it be a2 /∈ Pr. Since Pi * Pj for i 6= j, we can

choose x ∈
r−1⋂
i=1

Pi such that x /∈ Pr. Then c = d1+xa2 = a1+a2b2+. . .+anbn /∈
r⋃
i=1

P1.

(This Lemma can also be proved using Prime Avoidance Lemma)

Lemma 3.4.2. Change of variables: Let k be any field (not necessarily alge-

braically closed), f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] be a non constant polynomial. Then

there exist c1, . . . , cn−1 ∈ N such that if φ is the ring automorphism of k[X1, . . . , Xn],
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given by φ |k= Id, φ(Xi) = Xi + Xci
n for 1 ≤ i ≤ n − 1 and φ(Xn) = Xn, then

φ(f(X1, . . . , Xn)) is monic in Xn (after multiplying an element of k∗).

Proof. We have

φ(Xα1

1 . . . Xαn

n ) = (X1 +Xc1
n )α1(X2 +Xc2

n )α2 . . . (Xn−1 +Xcn−1

n )αn−1(Xn)
αn

= Xc1α1+···+cn−1αn−1+αn

n + terms involving a lower power of Xn

Let Xγ1
1 . . . Xγn

n and Xβ1
1 . . . Xβn

n be any two distinct monomials in the polynomial

f(X1, . . . , Xn). We want to choose integers c1, . . . , cn−1 such that

c1β1 + · · ·+ cn−1βn−1 + βn 6= c1γ1 + · · ·+ cn−1γn−1 + γn

Let t > max(γi, βj) for all 1 ≤ i, j ≤ n. Let c1 = tn−1, c2 = tn−2, . . . , cn−1 = t.

These ci’s works by considering t-adic expansions. Thus, by suitably choosing t,

φ(f(X1, . . . , Xn)) is monic.

Lemma 3.4.3. Extension Lemma: Let A be Noetherian ring and I ⊂ A[X] be an

ideal containing a monic polynomial. Let J be an ideal of A satisfying I + JA[X] =

A[X]. Then I ∩ A+ J = A.

Proof. Let I ∩A+J 6= A, then I ∩A+J ⊂ m for some maximal ideal m of A. Then,

I + mA[X] = A[X] and I ∩ A + m = m. Hence, if we show that the Lemma is valid

when J is a maximal ideal, we are through.

Lemma 3.4.4. Let A be Noetherian ring and m ⊂ A be a maximal ideal. Suppose I ⊂
A[X] is an ideal containing a polynomial f(x) of the form cnX

n+cn−1X
n−1+ · · ·+c0,

with cn /∈ m. Suppose I + A[X] = A[X]. Then I ∩ A+m = A.

Proof. Suppose to the contrary that I ∩ A + m 6= A, then I ∩ A ⊂ m. We consider

the set S of polynomials in I which have the property that their leading coefficients

do not belong to m. Since f(X) ∈ S, S is not empty. We prove that there is a

polynomial of degree 0 in S thus contradicting the fact that I ∩ A ⊂ m.

Let f1(X) be the polynomial of least degree in S. If deg f1(X) = 0, we are through.

We assume degf1(X) > 0.

SinceA is Noetherian, we can choose f1(X), . . . , fr(X) ∈ I s.t. I = (f1(X), . . . , fr(X)).

Take reduction modulo m[X] (representing the elements by bar). Since A+mA[X] =

A[X], we have I = (f1(X), . . . , fr(X)) = A[X]. Let Q1, . . . , Qs be the maximal ideals
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of A/m[X] containing f1(X). Since I = A[X], it follows that (f2(X), . . . , fr(X)) * Qi

for every i, 1 ≤ i ≤ s. Then by Lemma 3.4.1, we can find λ3(X), λ4(X), . . . , λr(X) ∈
A[X] such that the polynomial

g1(X) = f2(X) + λ3(X)f3(X) + · · ·+ λr(X)fr(X) /∈ Qi ∀1 ≤ i ≤ s

This implies that (g1(X), f1(X)) = A[X]. Thus,

(f1(X), g1(X)) +mA[X] = A[X]

Let f1(X) = atX
t+at−1X

t−1+· · ·+a0 (at /∈ m) and g1(X) = blX
l+bl−1X

l−1+· · ·+b0
Let deg(g1(X)) ≥ deg(f1(X))

Since (f1(X), g1(X)) + mA[X] = A[X] and at /∈ m, any prime ideal containing

(f1(X), atg1(X)) +mA[X] has to be equal to A[X]. Hence

(f1(X), atg1(X)) +mA[X] = A[X]

Now, if h1(X) = atg1(X)−blXdeg(g1)−deg(f1)f1(X), then (f1(X), h1(X))+mA[X] =

A[X] and deg(h1) < deg(g1). Proceeding like this, we can reduce the case where

deg(g1) < deg(f1).

Let f1(X) = atX
t+at−1X

t−1+· · ·+a0 (at /∈ m) and g1(X) = blX
l+bl−1X

l−1+· · ·+b0
as before and (f1(X), g1(X))+mA[X] = A[X] and deg(g1) < deg(f1). Since, f1(X) =

atX
t+ at−1X

t−1 + · · ·+ a0 and at /∈ m, we see that g1(X) /∈ mA[X] and hence bi /∈ m

for some i ≤ l. If bl /∈ m ⇒ g1(X) ∈ S. Since deg(g1) < deg(f1) and f1(X) is the

element of least degree in S, we get a contradiction. Hence bl ∈ m.

It follows that bi /∈ m for some i < l. We assume for simplicity bl−1 /∈ m. Then the

polynomial atX
deg(f1)−deg(g1)g1(X)− blf1(X) has leading coefficients atbl−1 modulo m

and has lesser degree than f1. Since at ∈ m and bl−1 /∈ m, atbl−1 /∈ m and this

contradicts the choice of f1. Thus bl−1 ∈ m and bi /∈ m for some i < l − 1, we can

proceed in a similar manner to get the contradiction for any l. Thus deg(f1) = 0.

Theorem 3.4.5. Weak Hilbert’s Nullstellensatz Theorem: Let I be a proper

ideal in k[X1, . . . , Xn]. Then V (I) 6= Φ.

Proof. Let A = k[X1, X2, . . . , Xn−1]. By Lemma 3.4.2, change of variables, I contains

a monic polynomial in Xn, that is a polynomial of the form X t
n+ bn−1X

t−1
n + · · ·+ b0,
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with bi ∈ A. By induction, we choose a1, a2, . . . , an−1 ∈ k such that

g(a1, a2, . . . , an−1) = 0, ∀g ∈ I ∩ A

Let I = (f1(X1, . . . , Xn), . . . , fm(X1, . . . , Xn)) (As k[X1, X2, . . . , Xn] is Noetherian

ring).

Claim: Ideal (f1(a1, . . . , an−1, Xn), . . . , fm(a1, . . . , an−1, Xn)) of k[Xn] is a proper

ideal. As, if this is the case, since k is algebraically closed, choose an ∈ k such

that fi(a1, . . . , an) = 0, 1 ≤ i ≤ m. Thus (a1, . . . , an) is the common zero of every

polynomial in I ⇒ V (I) 6= Φ.

If claim is false, then

(f1(a1, . . . , an−1, Xn), . . . , fm(a1, . . . , an−1, Xn)) = k[Xn]

It follows that I + JA[Xn] = A[Xn], where J is the ideal (X1 − a1, . . . , Xn−1 − an−1)

of A. It follows from the extension Lemma

I ∩ A+ J = A

Therefore, 1 = h + j, where h ∈ I ∩ A and j ∈ J . Setting X1 = a1, X2 =

a2, . . . , Xn−1 = an−1, we obtain 0 = 1 contradiction.

Lemma 3.4.6. For any ideal I in k[X1, . . . , Xn], V (I) = V (
√
I) and

√
I ⊂ I(V (I)).

Proof. Since I ⊂
√
I ⇒ V (

√
I) ⊂ V (I).

Let P ∈ V (I) and g∈
√
I. Then there exists m ∈ N such that gm ∈ I. Thus,

gm(P ) = 0 ⇒ g(P ) = 0 ⇒ P ∈
√
I ⇒ V (I) ⊂ V (

√
I)

Thus, V (I) = V (
√
I). Since,

√
I ⊂ I(V (

√
I)) (true for any subset of k[X1, . . . , Xn] ⇒√

I ⊂ I(V (I)))

Theorem 3.4.7. Hilbert’s Nullstellensatz Theorem: Let I be a proper ideal in

k[X1, . . . , Xn]. Then I(V (I)) =
√
I

Proof.
√
I ⊂ I(V (I)) follows from the above Lemma.

Suppose that I = (f1, f2, . . . , fr), fi ∈ k[X1, . . . , Xn]. Suppose g is in the ideal

I(V (I)). Let J = (f1, . . . , fr, Xn+1g − 1) ⊂ k[X1, . . . , Xn, Xn+1]. g vanishes where
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ever fi’s are zero. This implies that V (J) is empty. Applying Weak Hilbert’s Null-

stellensatz Theorem, J = k[X1, . . . , Xn, Xn+1]. So, 1 ∈ J . So there is an equa-

tion 1 =
∑
Ai(Xi, . . . , Xn+1)fi + B(X1, . . . , Xn+1)(Xn+1g − 1). Let Y = 1/Xn+1,

and multiply the equation by a higher power of Y , so that an equation Y N =∑
Ci(X1, . . . , Xn, Y )fi+D(X1, . . . , Xn, Y )(g−Y ) in k[X1, . . . , Xn, Y ] results. Taking

Y = g, we get gN as linear combination of f ′
is in k[X1, . . . , Xn]. Thus, g ∈

√
I ⇒

I(V (I)) ⊂
√
I.

Corollary 3.4.8. There is one to one correspondence between the following:

1. Algebraic subsets of An and radical ideals of k[X1, . . . , Xn].

2. Non empty irreducible algebraic subsets of An and prime ideals of k[X1, . . . , Xn].

3. Points in An and maximal ideals in k[X1, . . . , Xn].

Corollary 3.4.9. Let I be an ideal in k[X1, . . . , Xn]. Then V (I) is a finite set if and

only if k[X1, . . . , Xn]/I is a finite dimensional vector space over k. If this occurs, the

number of points in V (I) is at most dimk(k[X1, . . . , Xn]/I).

Corollary 3.4.10. Let F (/∈ k) be a polynomial in k[X1, . . . , Xn], F = F n1

1 . . . F nr
r

the decomposition of F into irreducible factors. Then V (F ) = V (F1)∪ · · · ∪ V (Fr) is

the decomposition of V (F ) into irreducible components, and I(V (F )) = (F1, . . . , Fr)

Proof. By property 4, V (F ) = V (F1) ∪ · · · ∪ V (Fr) and irreducibility follows as Fi’s

are distinct irreducible factors. Now,

I(∪iV (Fi)) = ∩iI(V (Fi)) = ∩i(Fi)

as I(V (Fi)) =
√
Fi = (Fi) by Hilbert’s Nullstellensatz Theorem and (Fi) is a prime

(implies radical) ideal as (Fi) is irreducible.
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Multiplicity and Intersection

Numbers in Plane Curves

Affine plane curve is a non constant polynomial F ∈ k[X, Y ], where F is determined

up to multiplication by a non zero λ ∈ k (i.e. F , G in K[X, Y ] represent the same

curve or we say they are equivalent if F = λG).

Definition 29. The point P = (a, b) in V (F ) is called a simple point of F if either

derivative FX(P ) 6= 0 or FY (P ) 6= 0 and the line

FX(P )(X − a) + FY (P )(Y − b) = 0

is called a tangent line to F at P .

A point that is not simple is called multiple or singular. A curve with only non-

singular points is called a non-singular curve.

Definition 30. Let F be any curve of degree n and P = (0, 0). Let F = Fm+Fm+1+

· · ·+Fn, where Fi’s are form of degree i and Fm 6= 0 (m ≤ i ≤ n). Then, Fm is called

initial form of F and m as multiplicity of F at P (denoted by mp(F )).

Since Fm is a form in two variables, we can write Fm =
∏
Lrii , where Li’s are distinct

lines called as tangent lines to F at P and ri as multiplicity of the tangent. If F

has m distinct tangents then P is an ordinary multiple point of F .

For any arbitrary point P = (a, b), let T (x, y) = (x + a, y + b) be a translation.

Then

F T = F (X + a,X + b) = Gm +Gm+1 + · · ·+Gn

23
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Gi’s are forms and Gm 6= 0. Therefore, mp(F ) = m0(F
T ) and if Gm =

∏
Lrii ,

Li = αiX + βiY , the lines αi(X − a) + βi(Y − b) are the tangent lines to F at P .

If F =
∏
F ei
i be the decomposition of F into irreducible components, then

mP (F ) =
∑
eimP (Fi) and if L is the tangent line to Fi with multiplicity ri, then

L is the tangent to F with multiplicity
∑
eiri as the lowest degree terms of F is the

product of lowest degree terms of its factors.

From now on, Γ(V (F )), k(V (F )) and OP (V (F )) are represented as Γ(F ), k(F ) and

OP (F ).

Definition 31. A mapping T : V → W is called a polynomial map if there are

polynomials T1, . . . , Tm ∈ k[X1, . . . , Xn] such that

T (a1, . . . , an) = (T1(a1, . . . , an), . . . , Tm(a1, . . . , an)) ∀ (a1, . . . , an) ∈ V

Any polynomial map T : V → W induces a homomorphism between T̃ : Γ(W ) →
Γ(V ) by setting T̃ (f) = f ◦ T .

Definition 32. An affine change of coordinates on An is a polynomial map

T = (T1, . . . , Tn) : An → An such that each Ti is a polynomial of degree 1, and such

that T is one-to-one and onto.

Any such map T has the form Ti =
∑n

j=1 aijXj + ai0, then T = T ′′ ◦ T ′, where

T ′ is a linear map (T ′ =
∑
aijXj) and T

′′ is translation (T ′′ = Xi + ai0). Since any

translation has a inverse, it follows that T is one-to-one and onto if and only if T ′ is

invertible. Thus, T is an isomorphism of the variety An with itself. If T and U are

affine change of coordinates on An, then so are T ◦ U and T−1.

Notation 2. Let F be a polynomial in k[X1, . . . , Xn]. We define F T = T̃ (F ) =

F (T1, . . . , Tm). For ideals I and algebraic set V in Am, IT will denote the ideal in

k[X1, . . . , Xn] generated by {F T |F ∈ I} and V T will denote algebraic set T−1(V ) =

V (IT ), where I = I(V ).

Lemma 4.0.11. Let φ : V → W be a polynomial map of affine varieties, φ̃ : Γ(W ) →
Γ(V ) the induced map on coordinate rings. Suppose P ∈ V, φ(P ) = Q. Show that φ̃

extends to a ring homomorphism (also written φ̃) from OQ(W ) to OP (V ). Show that

φ̃(mQ(W )) ⊂ mP (V ).



25

Proof. We consider

φ̃ : OQ(W ) → OP (V )

f/g → φ̃(f)/φ̃(g) = (f ◦ φ)/(g ◦ φ)

As g is defined at Q, g ◦ φ is defined at P . Thus, the ring homomorphism is well

defined.

Since f/g ∈ mQ(W ), f(Q) = 0 ⇒ φ̃(f)(P ) = f(φ(P )) = f(Q) = 0 ⇒ φ̃(f/g) ∈
mP (V ) ⇒ φ̃(mQ(W )) ⊂ mP (V ).

Proposition 4.0.12. Let F,G be non-constant polynomials in k[X, Y ] such that F

and G have no common component. Then V (F,G) = V (F ) ∩ V (G) is a finite set of

points.

Proof. By assumption, F and G have no common factors in k[X, Y ]. By Gauss’s

lemma, they have no common factor in k(X)[Y ] (ring of polynomials in one variable

over field k(X)). It is a PID. Hence, we can find H,K ∈ k(X)[Y ] satisfying HF +

KG = 1. Now, we have H = H1

H2
and K = K1

K2
for some H1, K1 ∈ k[X, Y ] and

H2, K2 ∈ k[X], H2 6= 0, K2 6= 0. Therefore, H1K2F + H2K1G = H2K2 ∈ k[X].

Since, H2K2 6= 0, H2K2 has finitely many zeroes in k. Let S1 = {a1, . . . , ar} be all

the zeroes of H2K2. Now, H2K2 vanishes whenever F and G vanishes together. So

if (a, b) ∈ V (F,G) then a ∈ S1. Similarly, we can find S2 = {b1, . . . , bt} so that if

(a, b) ∈ V (F,G) then b ∈ S2. Thus, V (F,G) ⊂ S1 × S2. Hence, V (F ) ∩ V (G) is a

finite set.

Proposition 4.0.13. Let I be an ideal in k[X1, . . . , Xn]. If V (I) = {P1, . . . , Ps} is

a finite set. Let OPi
(An) = Oi. Then there exists a k-algebra isomorphism between

k[X1, . . . , Xn]/I and
∏s

i=1 Oi/IOi. Moreover,

dimk(k[X1, . . . , Xn]/I) =
m∑

i=1

dimk Oi/IOi

Proof. Let Ii = I({Pi}) be the maximal ideal in k[X1, . . . , Xn] corresponding to the

point Pi in V (I). Let mi be the maximal ideal in k[X1, . . . , Xn]/I, corresponding

to the point Pi, which is of the form Ii/I for every i = 1, 2, . . . , s. By Hilbert’s

Nullstellensatz Theorem, we have
√
I = I(V (I)) = I1 ∩ I2 . . . ∩ Is in k[X1, . . . , Xn].

So, in k[X1, . . . , Xn]/I,
√
0 = I1/I ∩ · · · ∩ Is/I = m1 ∩ · · · ∩ ms. Therefore, there

exists some N ∈ N such that (∩si=1mi)
N = 0. Moreover, (∩si=1mi)

N = m
N
1 . . .m

N
s
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(as m1, . . . ,ms are comaximal and so m
N
1 , . . . ,m

N
s are comaximal). Let Ji = m

N
i for

i = 1, . . . , s and R = k[X1, . . . , Xn]/I. Applying Chinese Remainder Theorem, we

get a surjective homomorphism

φ : R/I → R/J1 × · · · ×R/Js

with kernel ∩si=1Ji = ∩sk=1m
N
k = 0. Hence φ is an isomorphism.

Claim 1: Oi/IOi = Rmi
.

Rmi
= (k[X1, . . . , Xn]/I)Ii/I = k[X1, . . . , Xn]Ii/Ik[X1, . . . , Xn]Ii

Also, Oi = k[X1, . . . , Xn]Ii . Hence the claim.

Claim 2: Rm1
= R/mN

1 . We have, Rm1
= Rm1

/(mN
1 . . .m

N
s )Rm1

. For j ≥ 2, mj

is not contained in m1 and hence m
N
j Rm1

= Rm1
. Therefore, Rm1

= Rm1
/mN

1 Rm1
=

(R/mN
1 )m1

= (R/mN
1 ). This proves the claim. Similarly for all i = 2, . . . , s. We get,

R/Ji = R/mN
i = Rmi

= Oi/IOi

Hence, follows the Theorem.

Corollary 4.0.14. If V (I) = {P}, then k[X, Y ]/I ∼= OP (A2)/IOP (A2).

Lemma 4.0.15. Let V be a variety in An, I = I(V ) ⊂ k[X1, . . . , Xn], P ∈ V , and

let J be an ideal of k[X1, . . . , Xn] that contains I. Let J ′ be the image of J in Γ(V ).

Then there is a natural isomorphism ϕ from OP (An)/JOP (An) to OP (V )/IOP (V ).

In particular, OP (An)/IOP (An) is isomorphic to OP (V ).

Proof. We consider the map

φ : OP (An)/JOP (An) → OP (V )/J ′
OP (An)

f/g + JOP (An) → (f + I)(g + I) + J ′
OP (V )

where f, g ∈ k[X1, . . . , Xn]

Well defineness: We consider a/b ∈ JOP (An). Then a/b has the form

a

b
=
∑

i

fi(
gi
hi
) =

∑n
i=1 (aigi

∏
j 6=i hj)∏

i hi
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where fi ∈ J and gi, hi ∈ k[X1, . . . , Xn]. Since hi(P ) 6= 0 ∀i ⇒
∏

i hi(P ) 6= 0 and∑n
i=1 (aigi

∏
j 6=i hj) ∈ J . Thus, every element a/b ∈ OP (An) has the form g/h, where

g ∈ J and h ∈ k[X1, . . . , Xn]. It is easy to check that φ is ring homomorphism

and surjective. For injectivity: Let (f + I)(g + I) ∈ J ′OP (V ). We can assume

that (f + I) ∈ J ′ and 1/(g + I) ∈ OP (V ) ⇒ f ∈ J and 1/g ∈ OP (An). Thus

f/g ∈ JOP (An). Thus, φ is isomorphic. In particular, OP (An)/IOP (An) is isomorphic

to OP (V ).

Theorem 4.0.16. Let P be a point on an irreducible curve F . Then there exists n0

such that

mP (F ) = dimk(mP (F )
n/mP (F )

n+1) ∀n ≥ n0

Dimension above means the dimension as a vector space over field k.

Proof. We consider the exact sequence:

0 −→ mP (F )
n/mP (F )

n+1 −→ OP (F )/mP (F )
n+1 −→ OP (F )/mP (F )

n −→ 0

By rank nullity theorem (first isomorphism theorem for vector spaces), we have

dimk(OP (F )/mP (F )
n+1) = dimk(mP (F )

n/mP (F )
n+1) + dimk(OP (F )/mP (F )

n)

Thus, it is enough to show that dimk(OP (F )/mP (F )
n) = nmP (F ) + s, for some

constant s, and for all n ≥ mP (F ).

We assume P = (0, 0). So, mP (F ) = IOP (F ) ⇒ mP (F )
n = InOP (F ), where I =

(X, Y ) ⊂ k[X, Y ]. Since V (In) = {P} and F (P ) = 0, we have V (In, F ) = {P}. By

Corollary 4.0.14, k[X, Y ]/(In, F ) ∼= OP (A2)/(In, F )OP (A2). And by lemma 4.0.15,

OP (A2)/(In, F )OP (A2) ∼= OP (F )/I
nOP (F ). Thus, we have

k[X, Y ]/(In, F ) ∼= OP (F )/I
n
OP (F ) = OP (F )/mP (F )

n

Now we have to calculate the dimension of k[X, Y ]/(In, F ). Let m = mP (F ). Then

FG ∈ In whenever G ∈ In−m. There exists a natural homomorphism

φ : k[X, Y ]/In → k[X, Y ]/(In, F )

φ(h+ In) = h+ (In, F )
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Also, there exists a k-linear map ψ from k[X, Y ]/In−m to k[X, Y ]/In given by ψ(G) =

FG. We consider the sequence

0 → k[X, Y ]/In−m → k[X, Y ]/In → k[X, Y ]/(In, F ) → 0

This is an exact sequence. Also, k[X, Y ]/In consists of all monomials of degree less

than n. Therefore,

dimk(k[X, Y ]/In) = 1 + 2 + · · ·+ n =
n(n+ 1)

2

Hence,

dimk(k[X, Y ]/(In, F )) = nm− m(m− 1)

2
= nmp(F ) + s

for all n ≥ m and s = −m(m−1
2

is fixed constant as m = mP (F ) is fixed.

Theorem 4.0.17. P is a simple point of F if and only if OP (F ) is a discrete valuation

ring (i.e. OP (F ) is Noetherian local domain and the maximal ideal is principal).

Proof. Suppose P is a simple point on F and L is the line through P , not tangent

to F at P . By making affine change of coordinates (cf. appendix problem 7.2.2), we

may assume that P = (0, 0), L = X and Y = 0 is the tangent line.

By Proposition 3.3.2, OP (F ) is Noetherian local domain. We have to only show that

its maximal ideal is principal.

Since, mP (F ) consist of all rational functions that vanish at P = (0, 0), mP (F ) =

(X, Y ). Also F = Y + higher degree terms, as Y is assumed to be the tangent

line of F . Taking terms of Y together, we have F = Y G − X2H, where G =

1 + higher degree terms and H ∈ k[X]. Then Y G = X2H ∈ Γ(F ). So, Y =

X2HG−1 ∈ (X) (as G(P ) 6= 0). Thus, mP (F ) = (X).

If OP (F ) is Discrete Valuation Ring, then mP (F ) is principal. Therefore by previous

Theorem, mP (F ) = 1. Thus P is a simple point of F .

Definition 33. Let P ∈ A2 and F,G be plane curves. F and G intersect properly

at P if F and G have no common components that passes through P .

To define the intersection number denoted by I(P, F ∩G), we require following con-

ditions to hold:

1. If F and G intersect properly at P , then I(P, F ∩G) is a non negative integer,

else I(P, F ∩G) = ∞.
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2. I(P, F ∩G) = 0 if and only if P /∈ V (F ) ∩ V (G).

3. If T is the change of coordinates on A2 and T (Q) = P , then I(P, F ∩ G) =

I(Q,F T ∩GT ).

4. I(P, F ∩G) = I(P,G ∩ F ).

5. I(P, F ∩ G) ≥ mp(F )mP (G), with equality occurring if and only if F and G

have no tangent lines in common at P .

6. If F =
∏
F ri
i and G =

∏
G
sj
j , then I(P, F ∩G) =∑i,j risjI(P, F ∩G).

7. I(P, F ∩G) = I(P, F ∩ (G+ AF )) for any A ∈ k[X, Y ].

Now, we will show that this intersection number exists and is unique. We will first

prove few lemmas needed to proof the existence part of intersection multiplicity.

Lemma 4.0.18. Let I = (X, Y ) and F,G ∈ k[X, Y ] containing P = (0, 0). We

assume that F and G have no common components. Let m and n be multiplicities of

f and g respectively. Let

ψ : k[X, Y ]/In × k[X, Y ]/Im −→ k[X, Y ]/Im+n

ψ(A,B) = AF + BG

Then

1. If F and G have no common tangents at P , then I t ⊂ (F,G)OP (A2) for t ≥
m+ n− 1.

2. ψ is one-to-one if and only if F and G have distinct tangents at P .

Proof. (1): Let L1, . . . , Lm be the tangents to F at P , M1, . . . ,Mn be the tangents

to G at P . Take L1 = Lm for i > m, Mj =Mn if j > n and Aij = L1 . . . Li,M1 . . .Mj

for all i, j ≥ 0 (A00 = 1). Let Vt denote the vector space consisting of all forms

of degree t in k[X, Y ]. Bt = {Aij | i + j = t} forms a basis for Vt (as the set is

linearly independent and the cardinality is t + 1). So, I t =< Bt >. So it is enough

to show that Bt ⊂ (F,G)OP (A2) for t ≥ m + n− 1. Now, if i + j ≥ m + n− 1 then

either i ≥ m or j ≥ n. We assume, without loss of generality, that i ≥ m. So, we

have Aij = Am0B, where B is a form of degree of degree i + j − m. We can write
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F = Am0 + F ′, where all terms of F ′ are of degree ≥ m+ 1. Then Aij = BF −BF ′,

where each term of BF ′ has degree ≥ i+ j + 1. Since, BF ∈ (F,G)OP (A2), we need

to show that BF ′ ∈ (F,G)OP (A2) (As then repeating the process finitely many times

we get the forms of higher and higher degree that should belong to (F,G)OP (A2)).

Also, BF ′ ∈ (Bt+1). Therefore, it is enough to show that Bt+1 ⊂ (F,G)OP (A2), i.e.

there exists some N such that IN ⊂ (F,G)OP (A2).

Let V (F,G) = {P, P1, . . . , Ps}. Let Pi = (Pi1, Pi2) with Pij ∈ k for every i = 1, . . . , s

and j = 1, 2. We consider the polynomials:

H =
s∏

i=1

[(X − Pi1) + (Y − Pi2)]

H(Pi) = 0, ∀i = 1, . . . , s and H(P ) 6= 0. We have HX,HY ∈ I(V (F,G)). Therefore,

by Hilbert’s Nullstellensatz, there exists N such that (HX)N , (HY )N ∈ (F,G) ⊂
k[X, Y ]. Since, H(P ) 6= 0 ⇒ HN(P ) 6= 0, HN is a unit in OP (A2). Thus, XN and

Y N are in (F,G)OP (A2). Thus, I2N ⊂ (F,G)OP (A2) proving our claim.

Proof of (2): Suppose the tangents are distinct and ψ(A,B) = AF + BG = 0.

Then Af + BG consists entirely of terms of degree ≥ m + n. Let A = Ar+ higher

terms (r < m), B = Bs+ higher terms (s < n). So, AF + BG = ArFm + BsGn+

higher terms. Then we must have r +m = s+ n and ArFm = −BsGn. Since, F and

G have no common tangents at P , we can say that Fm divides Bs and Gn divides Ar.

Therefore, s ≥ m, r ≥ n, so (A,B) = (0, 0).

Conversely, if L is a common tangent to F and G at P , we can write Fm = LF ′
m−1

and Gn = LG′
n−1, where F

′
m−1, G

′
n−1 are forms of degree m − 1 and n − 1. Then

ψ(G′
n−1,−F ′

m−1) = 0, so ψ is not one-to-one.

Theorem 4.0.19. There exists a unique intersection number I(P, F ∩G) defined for

all plane curves F and G and all points P ∈ A2, satisfying properties (1) to (7) stated

above. It is given by the formula

I(P, F ∩G) = dimk(OP (A)2)/(F,G)

Proof. (Uniqueness :) Without loss of generality we can assume P = (0, 0). Let F and

G intersect properly at P so that the intersection number is unique. By property 2, the

intersection number is 0 if the two curves do not intersect at P , i.e. P /∈ V (F )∩V (G).

So in both the cases, the intersection number is unique. We assume I(P, F ∩G) = n
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and by induction hypothesis, we have already verified it for the < n case (for n = 0,

it is trivially true by property 2).

Suppose F (X, 0) = 0. Then Y divides F . Hence, F = Y H for some H ∈ k[X, Y ].

By property 6, I(P, F ∩ G) = I(P, Y ∩ G) + I(P,H ∩ G). Note that G(X, 0) 6= 0 as

otherwise Y will be a common component of F and G contradicting the assumption.

We have I(P, Y ∩ G) = I(P, Y ∩ (G + AY )) for any A ∈ k[X, Y ]. By property 7,

taking a = G(X,0)−G
Y

we get I(P, Y ∩G) = I(P, Y ∩G(X, 0)). Therefore, if G(X, 0) =
Xm(a0 + a1X + · · ·+ atX

t), a0 6= 0 and t > 0, then

I(P, Y ∩G) = I(P, Y ∩G(X, 0)) = I(P, Y ∩Xm(a0+a1X+· · ·+atX t)) = I(P, Y ∩Xm)

Last equality is due to property 2. Since, I(P, Y ∩ G) 6= 0, I(P,H ∩ G) < n. By

induction hypothesis, it is unique.

If F (X, 0) 6= 0 and G(X, 0) 6= 0. Let r and s be degrees of F and G respectively

and without loss of generality we assume that r ≤ s. By multiplying F and G by

suitable constants, we can assume that F (X, 0) and G(X, 0) are monic. We consider

H = G − Xs−rF . Then, we have I(P, F ∩ G) = I(P, F ∩ H) by property 7, and

deg(H(X, 0)) < s. Repeating the process finite number of times, we get a pair

of curves A and B such that I(P, F ∩ G) = I(P,A ∩ B), and either A(X, 0) = 0

or B(X, 0) = 0. Thus, repeating the previous paragraph steps, we can say that

I(P, F ∩G) is unique in this case also.

Existence: We have to show that

I(P, F ∩G) = dimk(OP (k
2)/(F,G))

satisfy all seven properties defined above for intersection number.

By Proposition 4.0.12, V (F,G) is finite if they do not have any common component.

And by Proposition 4.0.13, dimk(OP (k
2)/(F,G)) is finite. In case F and G have

common component say H, then (F,G) ⊂ (H), there exists a homomorphism from

OP (k
2)/(F,G) to OP (k

2)/(H). So, I(P, F ∩G) ≥ dimk(OP (k
2)/(H)). But by Lemma

4.0.15, OP (k
2)/(H) is isomorphic to OP (H). Since, Γ(H) ⊂ OP (H) and Γ(H) is

infinite dimensional, by Corollary 3.4.9, property 1 follows. Property 4 and 7 are

easily satisfied as intersection number depends only on the ideal generated by F and

G. Property 3 follows from Lemma 4.0.11 (As, affine change of coordinates give an

isomorphism of local rings).is just the affine change of coordinates (cf. Appendix
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problem 7.2.2).

To prove property 2, Suppose I(P, F ∩ G) = 0, i.e. OP (k
2) = (F,G). Now, if

P ∈ F ∩ G then (F,G) is contained in mP (k
2) which is a contradiction. Hence,

P /∈ F ∩ G. Conversely, if P ∈ F ∩ G then (F,G) is contained in the mP (k
2). So,

(F,G) 6= OP (k
2), hence, I(P, F ∩G) 6= 0 satisfying property 2.

To prove property 6, it is enough to show that

I(P, F ∩GH) = I(P, F ∩G) + I(P, F ∩H)

(By induction on the number of components, property 6 follows). We may assume

that F and GH have no common components, else it is obvious. Let

φ : OP (k
2)/(F,GH) → OP (k

2)/(F,G)

be the natural homomorphism. It is surjective map. Define a k-linear map

ψ : OP (k
2)/(F,H) → OP (k

2)/(F,GH)

ψ(Z) = GZ

where Z ∈ OP (k
2). We are done if we show that the following sequence is exact.

0 → OP (k
2)/(F,H)

ψ→ OP (k
2)/(F,GH)

φ→ OP (k
2)/(F,G)

Let ψ(Z) = 0, i.e. GZ = UF + V GH, where U, V ∈ OP (k
2). Choose S ∈ k[X, Y ]

with S(P ) 6= 0 and SU = A, SV = B and SZ = C, where A,B,C ∈ k[X, Y ].

Then G(C − BH) = AF . Since F and G have no common factor, F must divide

C−BH, so that C−BH = DF . Then Z = (B/S)H +(D/S)F , hence Z = 0, which

implies ψ is injective. Let Z ∈ ker(φ), i.e. φ(Z) = 0. Hence, φ(Z + (F,GH)) =

Z + (F,G) = (F,G). So there exist A,B ∈ OP (k
2) such that Z = FA+GB. Hence

Z = GB + (F,GH) = ψ(B + (F,H)). Thus Z ∈ image(ψ). Conversely, let Z ∈
image(ψ), then there exists b ∈ OP (k

2) such that ψ(B+(F,H)) = GB+(F,GH) = Z.

We consider, φ(GB+(F,GH)) = GB+(F,G) = 0+(F,G). Thus, ker(φ) = image(ψ).

Hence, the sequence is exact.

To prove property 5, Let m = mP (F ), n = mP (G) and I = (X, Y ). We consider the
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sequence

k[X, Y ]/In × k[X, Y ]/Im
ψ→ k[X, Y ]/Im+n φ→ k[X, Y ]/(Im+n, F,G) → 0

where ψ(A,B) = AF + BG and φ(A) = A. We will show that this sequence is exact.

Let H ∈ ker(φ), then H = A+CF +DG, for some A ∈ Im+n, C,D ∈ k[X, Y ]. Thus,

in k[X, Y ]/Im+n, H = ψ(C,D) ∈ image(ψ). Conversely, let H ∈ image(ψ). Then,

there exist C,D ∈ k[X, Y ] such that ψ(C,D) = H, i.e. H = FC +DG. Hence,

H ∈ ker(φ). Also, φ is surjective. Thus, the sequence is exact. Now we consider,

k[X, Y ]/(Im+n, F,G)
α→ OP (k

2)/(Im+n, F,G)

where α(a) = a/1. We have V ((Im+n, F,G)) = {P}. Therefore, by Proposition

4.0.13, α is an isomorphism. We consider the natural surjective map π,

OP (k
2)/(F,G)

π→ OP (k
2)/(Im+n, F,G) → 0

where π(α(a)) = a. π is onto map. From the above exact sequence, we have

dim(k[X, Y ]/In) + dim(k[X, Y ]/Im) ≥ dim(ker(α)) = dim(image(α))

Equality holds if ψ is one-one. Putting all these together, we get

I(P, F ∩G) = dim(OP (k
2)/(F,G))

≥ dim(OP (k
2)/(Im+n, F,G))

= dim(k[X, Y ]/(Im+n, F,G))

≥ dim(k[X, Y ]/Im+n)− dim(k[X, Y ]/In)− dim(k[X, Y ]/Im)

= mn

This shows that I(P, F ∩ G) ≥ mn, and that I(P, F ∩ G) = mn if and only if both

inequalities are equality, i.e. if and only if π is an isomorphism (Im+n ⊂ (F,G)OP (k
2))

and ψ is one-one. Now, property 5 follows directly from Lemma 4.0.18.
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Corollary 4.0.20. If F and G have no common components, then

∑

P

I(P, F ∩G) = dimk(k[X, Y ]/(F,G))

Proof. This follows from Proposition 4.0.13



Chapter 5

Projective Geometry

Suppose we want to study all points of intersection of two curves. In R2, it may

not be always true that two curves intersect. For example, two parallel lines do not

intersect in real plane. So, we want to extend our plane so as to include the points

where any two curves intersect. This can be done by including the points at infinity

in real plane. One way to achieve this is: We consider all lines in R3 passing through

origin. Each point (x, y) ∈ R2 can be identified with the line passing through (0, 0, 0)

and (x, y, 1) in R3. These includes all lines through origin except those lying in the

plane z = 0 which can be thought of as “points at infinity”. Following section will

give the formal definition of projective geometry and projective varieties.

5.1 Introduction

Definition 34. The set of all one dimensional subspaces of the vector space kn+1

(set of all lines through origin in kn+1) over a field k is called projective n-space.

It is denoted by Pn. Equivalently, Pn is the quotient of kn+1 − (0, 0, 0) by the action:

(a1, . . . , an+1) ∼ (b1, . . . , bn+1) ∈ Pn if and only if there exists some λ ∈ k, λ 6= 0 such

that (a1, . . . , an+1) = λ(b1, . . . , bn+1). The equivalence class [a1 : a2 : . . . : an+1] ∈ Pn

denotes the set containing (a1, a2, . . . , an+1).

If a point P ∈ Pn is determined as above by some (x1, . . . , xn) ∈ An+1, we say

that (x1, . . . , xn+1) are homogeneous coordinates for P . We let

Ui = {[x1 : . . . : xn+1] ∈ Pn|xi 6= 0}

35
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Each P ∈ Ui can be uniquely written in the form

P = [x1 : . . . : xi−1 : 1 : xi+1 : . . . : xn+1]

The coordinates (x1, . . . , xi−1, 1, xi+1, . . . , xn+1) are called non-homogeneous coor-

dinates for P with respect to Ui. If we define φi : An → Ui by

φi(a1, . . . , an) = [x1 : . . . : xi−1 : 1 : xi+1 : . . . : xn+1]

then φi sets up one-to-one correspondence between the points of An and the points

of Ui. Thus, Pn =
n+1⋃
i=1

Ui. Let

H∞ = Pn − Un+1 = {[x1 : . . . : xn+1]|xn+1 = 0}

H∞ is called hyperplane at infinity. The correspondence

[x1 : . . . : xn : 0] ↔ [x1 : . . . : xn]

shows that H∞ can be identified with P n−1. Thus projective n-space can be

identified as

Pn = Un+1 ∪H∞

the union of an affine n-space and a set that gives all directions in affine

n-space. For convenience we usually concentrate on Un+1.

In general F ∈ k[X1, . . . , Xn+1] is not a well defined function on Pn, as, if [x1 : . . . :

xn+1] are homogeneous coordinates of P and F (x1, . . . , xn+1) = 0, it may not be true

that F (λx1, . . . , λxn+1) = 0 for every λ ∈ k − {0}. To satisfy this, F must be a

homogeneous function (i.e. each term in F must have same degree say d). Then, a

point P ∈ Pn is said to be a zero of a homogeneous polynomial F ∈ k[X1, . . . , Xn+1]

if F (x1, . . . , xn+1) = 0 for every choice of homogeneous coordinates (x1, . . . , xn+1) for

P , i.e. F (P ) = 0.

For any set S of polynomials in k[X1, . . . , Xn+1], we let

V (S) = {P ∈ Pn|P is a zero of each F ∈ S}

If I is the ideal generated by S, V (I) = V (S). If I = (F (1), . . . , F (r)), where F (i) =
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∑
F

(i)
j , then V (S) = V ({F (i)

j }) is the set of forms of a finite number of forms. Such

a set is called an algebraic set in Pn or projective algebraic set. An ideal I is

called homogeneous if for every F =
m∑
i=0

Fi ∈ I, Fi a form of degree i and Fi ∈ I.

Proposition 5.1.1. An ideal I ⊂ k[X1, . . . , Xn+1] is homogeneous if and only if it is

generated by a finite set of forms.

Proof. If I = (F (1), . . . , F (r)) is homogeneous, then I is generated by {F (i)
j }. Con-

versely, let S = {F (α)} be a set of forms generating an ideal I, with deg(F (α)) = dα,

and suppose F = Fm + · · ·+ Fr ∈ I, deg(Fi) = i. It suffices to show that Fm ∈ I, for

then F−Fm ∈ I and an inductive argument finishes the proof. Write F =
∑
A(α)F (α).

Comparing terms of the same degree, we can conclude that Fm =
∑
A(α)F (α), so

Fm ∈ I.

Note. The concepts and idea are almost similar in case of projective

algebraic sets to those of affine algebraic sets.

Notation 3. To avoid the confusion of notation in projective case and affine case,

we will write VP , IP for the projective operations , Va, Ia for the affine case

An algebraic set V ⊂ Pn is irreducible if it is not the union of two algebraic sets.

As in the affine case, V is irreducible if and only if I(V ) is prime. An irreducible

algebraic set in Pn is called a projective variety. Any algebraic set can be uniquely

written as a union of projective varieties.

Notation 4. To avoid the confusion of notation in projective case and affine case,

we will write VP , IP for the projective operations , Va, Ia for the affine case

If V is an algebraic set in Pn, we define

C(V ) = {(x1, . . . , xn+1) ∈ An+1|[x1 : . . . : xn+1] ∈ V or (x1, . . . , xn+1) = (0, . . . , 0)}

to be the cone over V. If V 6= φ, then Ia(C(V )) = IP (V ) and if I is a homogeneous

ideal in k[X1, . . . , Xn+1] such that VP (I) 6= φ, then C(VP (I)) = Va(I). Now, we will

see the projective analogue of Hilbert’s Nullstellensatz Theorem.

Theorem 5.1.2. Projective Nullstellensatz: Let I be a homogeneous ideal in

k[X1, . . . , Xn+1]. Then
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1. VP (I) = Φ if and only if there is an integer N such that I contains all forms of

degree ≥ N .

2. If VP (I) 6= Φ, then IP (VP (I)) =
√
I.

Proof. Let π : kn+1 − {0} → Pn be the map defining Pn. For a homogeneous ideal

I ⊂ k[X1, . . . , Xn+1], we consider Va(I) ⊂ kn+1 and VP (I) = (Va(I)− {0})/ ∼ ⊂ Pn.
Then, VP (I) = Φ if and only if V (I) ⊂ {0} if and only if (X1, . . . , Xn+1) ⊂

√
I

(By Hilbert’s Nullstellensatz Theorem in affine case). Thus, there exists N such

that I contains all forms of degree ≥ N . Also, if VP (I) 6= Φ, then IP (VP (I)) =

Ia(C(VP (I))) = Ia(Va(I)) =
√
I.

The usual corollaries of Hilbert’s Nullstellensatz Theorem go through except that

we must always make an exception with the ideal (X1, . . . , Xn). In particular, there is

one-to-one correspondence between projective hypersurfaces V = V (F ) and the

forms F that define V , provided F has no multiple factors. A hyperplane is a hy-

persurface defined by a form of degree one. The hyperplanes V (Xi), i = 1, . . . , n+1,

are called hyperplanes at infinity with respect to Ui.

Let V be a nonempty projective variety in Pn. Then Γh(V ) = k[X1, . . . , Xn+1]/I(V )

is called homogeneous coordinate ring of V . Let I be any homogeneous ideal in

k[X1, . . . , Xn+1] and Γ = k[X1, . . . , Xn+1]/I. An element f ∈ Γ is called a form of

degree d if there is a form F of degree d in k[X1, . . . , Xn+1] whose residue is f .

Let VP ⊂ Pn be an irreducible algebraic subset. An element F ⊂ k[X1, . . . , Xn+1]

gives a function on C(V ), but this will be a function on VP only if F is homogeneous

of degree 0 (the equivalence condition will create problem). However, if f , g are

both forms in Γh(V ) of the same degree, then f/g does define a function, when g is

not zero (as then f(λx)/g(λx) = λdf(x)/λdg(x) = f(x)/g(x), so the value of f/g is

independent of the choice of homogeneous coordinates). The function field of V ,

written k(V ), is defined as

k(V ) = {z ∈ kh(V )| for some forms f, g of the same degree, z = f/g}

Elements of k(V ) are called rational function on V. Let P ∈ V , z ∈ k(V ). We say

z is defined at P if z can be written as z = f/g, f ,g forms of same degree, g(P ) 6= 0.



5.2. PROPERTIES OF PROJECTIVE VARIETIES 39

We define

OP (V ) = {z ∈ k(V )|z is defined at P}

OP (V ) is a local ring (called Local ring of V at P ) with maximal ideal

mP (V ) = {z|z = f/g, g(P ) 6= 0, f(P ) = 0}

If T : An+1 → An+1 is a linear change of coordinates, then T takes lines through the

origin into lines through the origin. So, T determines a map from Pn → Pn, called as

projective change of coordinates. V is a variety if and only if T−1(V ) (denoted

by V T ) is a algebraic set in Pn. If V = V (F1, . . . , Fr) and T = (T1, . . . , Tn+1), Ti

forms of degree 1, then V T = V (F T
1 , . . . , F

T
r ), where F

T
i = Fi(T1, . . . , Tn+1). If V is a

variety, T induces an isomorphism from Γh(V ) to Γh(V
T ), k(V ) to k(V T ) and OP (V )

to OQ(V
T ), where T (P ) = Q.

5.2 Properties of Projective Varieties

If F ∈ k[X1, . . . , Xn+1] is a form, we define F∗ ∈ k[X1, . . . , Xn] be setting F∗ =

F (X1, . . . , Xn, 1). Conversely, for any polynomial f ∈ k[X1, . . . , Xn] of degree d, write

f = f0 + f1 + · · ·+ fd, where fi is a form of degree i, and define f ∗ ∈ k[X1, . . . , Xn+1]

by

f ∗ = Xd
n+1f0 +Xd−1

n+1f1 + · · ·+ fd = Xd
n+1f(X1/Xn+1, . . . , Xn/Xn+1)

Let V be an algebraic set in An, I = I(V ). Let I∗ be the ideal in k[X1, . . . , Xn+1]

generated by {F∗ | F ∈ I}. V (I∗) ⊂ Pn. I∗ is a homogeneous ideal. Conversely, let

V be an algebraic set in Pn, I = I(V ). let I∗ be the ideal in k[X1, . . . , Xn] generated

by {F∗ | F ∈ I}. V∗ = V (I∗).

We consider An as a subset of Pn by means of the map φn+1 : An → Un+1 ⊂ Pn.

Proposition 5.2.1. 1. If V ⊂ An, then φn+1(V ) = V ∗ ∩ Un+1, and (V ∗)∗ = V .

2. If V ⊂ W ⊂ An, then V ∗ ⊂ W ∗ ⊂ Pn. If V ⊂ W ⊂ Pn, then V∗ ⊂ W∗ ⊂ An

3. If V is irreducible in An, then V ∗ is irreducible in Pn.

4. If V = ∪iVi is the irreducible decomposition of V in An, then V ∗ = ∪iV ∗
i is the

irreducible decomposition of V ∗ in Pn.
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5. If V ⊂ An, then V ∗ is the smallest algebraic set in Pn that contains φn+1(V ).

6. If V ⊂ An (proper and nonempty), and no component of V ∗ lies in or contain

H∞, then V∗ ⊂ An (proper) and (V∗)
∗ = V .

7. If V ⊂ Pn, and no component of V lies in or contain H∞, then V∗ ( An and

(V∗)
∗ = V .

Proof. Let I(V ) = V . Since (f ∗)∗ = f , (I∗)∗ = I. (V ∗)∗ = V can be easily checked.

Let P be the image of (a1, . . . , an) ∈ V . To show that P ∈ V ∗, i.e. f ∗(P ) = 0 for every

f ∗ ∈ I∗. We have f ∗ = Xd
n+1f(X1/Xn+1, . . . , Xn/Xn+1). f

∗(P ) = 1df(a1, . . . , an) =

0. Thus, f ∗(P ) = 0. Conversely, if [a1 : . . . : an+1] ∈ V ∗, then (a1, . . . , an) ∈ (V ∗)∗ =

V . Thus, (1) follows. (2) can be easily checked. Let I = I(V ) is prime. Let FG ∈ I∗.

Then it can be easily checked that (FG)∗ = F∗G∗ ∈ I ⇒ F∗ ∈ I or G∗ ∈ I. Thus,

(F∗)
∗ = F ∈ I∗ or (G∗)

∗ = G ∈ I∗.Thus, follows (3). Suppose W is an algebraic set

in Pn that contains φn+1(V ). So, W ⊂ V ∗ ⇒ I(V ∗) ⊂ I(W ). If F ∈ I(W ), then

F∗ ∈ I(V ), so F = Xr
n+1(F∗)

∗ ∈ I(V )∗. Therefore, I(W ) ⊂ I(V )∗, so W ⊃ V ∗. Thus

follows (5). (4) follows from (2),(3) and (5).

To prove (6), we can assume that V is irreducible. If V ∗ ⊂ H∞ = Pn − Un+1, then

by (1), φn+1(V ) is empty, which is a contradiction. So, V ∗ * H∞. If V ∗ ⊃ H∞,

then I(V )∗ ⊂ I(V ∗) ⊂ I(V ∗) ⊂ I(H∞) = (Xn+1). But, if F ∈ I(V ) (F 6= 0), then

F ∗ /∈ (Xn+1) and F
∗ ∈ I(V )∗. So, V ∗ + H∞ proving (6).

To prove (7), we assume V ⊂ Pn is irreducible. Since, φn+1(V∗) ⊂ V , it suffices to

show that V ⊂ (V∗)
∗, i.e. I(V∗)

∗ ⊂ I(V ). Let F ∈ I(V∗), then F
N ∈ I(V )∗ for some

N (Hilbert’s Nullstellensatz Theorem), so X t
n+1(F

N)∗ ∈ I(V ) for some t. But I(V )

is prime, and Xn+1 /∈ I(V ) since V * I(V ), F ∗ ∈ I(V ), thus proving (7).

If V is an algebraic set in An, V ∗ ⊂ Pn is called the projective closure of V .



Chapter 6

Bezout’s Theorem for Projective

Plane Curves

A projective plane curve is a hypersurface in P2. In fact, a projective plane curve is an

equivalence class where any two non-constant forms F,G ∈ k[X, Y, Z] are equivalent

if there is a non-zero λ ∈ k such that G = λF . Notations and conventions are as

described for affine curves in section 4.

Lemma 6.0.2. Show that for any finite set of points {P1, . . . , Pn} in P2, there is a

line not passing through any of them.

Proof. Since, P2 can be identified with points of A2 ({(a, b, 1) | (a, b) ∈ A2}) and

points of infinity ({(a, b, 0) | (a, b) ∈ P1}). Let {P1, . . . , Pr} be points of the type

(ai, bi, 1) and {Pr+1, . . . , Pn} be points of the type (ci, di, 0). We assume L : αX +

βY +γZ = 0 be a line such that it does not pass through Pi’s for all 1 ≤ i ≤ n. There

exists a point P = (a, b, 0) ∈ P2 such that P ∈ L and P 6= Pj for all (r + 1) ≤ j ≤ n

(such a point is possible, because there are infinite points of the form (a, b, 0) in P2).

So αa + βb = 0 and (a, b) 6= (ci, di) for all (r + 1) ≤ i ≤ n. So, Pi does not lie on L

for all (r + 1) ≤ i ≤ n. Also, α = λb and β = −λa for some λ 6= 0. If Pi ∈ L for

some i ∈ {1, . . . , r}, we have λbai − λabi + γ = 0. Taking γ 6= −λbai + λabi ∈ k for

all 1 ≤ i ≤ r (such a λ exists because k is infinite). Thus, Pi /∈ L for all i.

By projective change of coordinates, we can take L to line of infinity Z.

Let F be a curve of degree d, let F∗ =
F
Ld ∈ k(P2). This F∗ depends on L. Suppose we

have another line L′ not passing through any of the points above, then F
(L′)d

= ( L
L′
)dF∗

41



42 CHAPTER 6. BEZOUT’S THEOREM FOR PROJECTIVE PLANE CURVES

and L
L′

is a unit in each of OPi
(P2). We will use notation F∗ for suitable L. If L is the

line at infinity, then F∗ =
F
Zd = F (X

Z
, Y
Z
, 1). Thus, under the natural identification of

k(A2) with k(P2), F∗ is same as we defined in previous section.

Let P = (a, b, 1) be a point on a curve F . Now,

OP (F ) =

{
H

G
: G,H ∈ Γh(F ), G,H homogeneous of same degree, G(P ) 6= 0

}

O(a,b)(F∗) =
{H
G

: G,H ∈ Γ(V (F∗)), G(P ) 6= 0
}

Let φ : OP (F ) → O(a,b)(F∗), φ(
H
G
) = H∗

G∗

. This is an isomorphism. Thus, OP (F ) is

isomorphic to O(a,b)(F∗).

By Theorem 4.0.16, multiplicity of a curve mP (F ) depends only on the local ring of

the curve at that point. So, if F is a projective plane curve, P ∈ Ui (i = 1, 2, 3),

we can dehomogenize F with respect to Xi and define the multiplicity of F at P ,

mP (F ) = mp(F∗). The multiplicity is independent of the choice of Ui, and is invariant

under projective change of coordinates.

Let F,G be projective plane curves, P ∈ P2. We define the intersection number as

I(P, F ∩G) = dimk(OP (P2)/(F∗, G∗))

This satisfies all the properties of intersection multiplicity defined in section 4 (T

should be projective change of coordinates and A should be a form with deg(A) =

deg(G) − deg(F)). As defined in the affine case, in projective case also, a line L is

tangent to F at P if and only if I(P, F ∩ L) > mP (F ) and a point P is an ordinary

multiple point of F if and only if F has mP (F ) distinct tangents at P .

Theorem 6.0.3. Bezout’s Theorem: Let F and G be projective plane curves of

degree m and n respectively. We assume that F and G have no common component.

Then ∑

P∈P2

I(P, F ∩G) = mn

Proof. We have already shown that F ∩ G is finite if F and G having no common

component. Also, we can assume that none of the points in F ∩ G lie on the line

Z = 0 at infinity (by Lemma 6.0.2).
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By Corollary 4.0.20, we have

∑

P

I(P, F ∩G) =
∑

P

(I, F∗ ∩G∗) = dimk(k[X, Y ]/(F∗, G∗))

Let Γ∗ = k[X, Y ]/(F∗, G∗), Γ = k[X, Y, Z]/(F,G) and R = k[X, Y, Z]. Let Γd and Rd

be the vector space of forms of degree d in Γ and R respectively. The Theorem will

be proved if we show that dimΓ∗ = dimΓd = mn for some d≫ 0.

Let π : R → Γ be the natural map H 7→ H + (F,G). Let π : R × R → R be defined

by φ(A,B) = AF +BG, and ψ : R → R×R be defined by ψ(C) = (GC,−FC). We

consider the sequence:

0 → R
ψ→ R×R

φ→ R
π→ Γ → 0

Claim: This sequence is exact. Let C ∈ R. ψ(C) = (GC,−FC) = (0, 0). Since,

any one of the two curve is non zero, C = 0. Hence, ψ is one-one. Let (A,B) ∈
image(ψ), i.e. there exists C ∈ R such that (A,B) = (GC,−FC). Hence, ψ(A,B) =

φ(GC,−FC) = 0. Thus, image(ψ) ⊂ ker(φ). Conversely, let (A,B) ∈ ker(φ),

i.e. φ(A,B) = AF + BG = 0 ⇒ AF = −BG. Since F and G have no common

component, F divides B and G divides A. Suppose B = FC1 and A = GC2. Thus,

GC2F = −FC1G ⇒ C1 = −C2. Taking C = C2, ψ(C) = (A,B). Thus, image(ψ) =

ker(φ). Also, π, as defined, is a onto map. Thus, the sequence is exact. If we restrict

these maps to the forms of various degrees, we get the following exact sequences:

0 → Rd−m−n
ψ→ Rd−m ×Rd−n

φ→ Rd
π→ Γd → 0

as dimRd =
(d+1)(d+2)

2
(as set of all monomials of degree d in R form a basis for Rd).

Hence,

dim(Γd) = dim(Rd)− dim(Rd−m ×Rd−n) + dim(Rd−m−n) = mn

Thus, for all d ≥ m+ n, dim(Γd) = mn.

We consider the map α : Γ → Γ defined by α(H) = ZH (where bar denotes residue

modulo (F,G)).

Claim: α is one-one. Let α(H) = 0, i.e. there exist A,B ∈ R such that ZH = AF +

BG. For J ∈ R, denote J(X, Y, 0) = J0. Thus, ZH = AF + BG ⇒ A0F0 = −B0G0.
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Since, F and G have no common zeroes, F0 and G0 are relatively prime forms in

k[X, Y ]. So, B0 = F0C and A0 = −G0C for some C ∈ k[X, Y ]. Let A1 = A + CG

and B1 = B − CF . Since (A1)0 = (B1)0 = 0, we have A1 = ZA′ and B1 = ZB′ for

some A′, B′. Thus,

ZH = AF + BG = (A1 − CG)F + (B1 + CF )G = A1F +B1G = ZA′F + ZB′G

Therefore, H = A′F + B′G⇒ H = 0. Hence, α is one-one.

We can restrict the map α from Γd → Γd+1. This restricted map αd (say) is an iso-

morphism if d ≥ m+n (Since, one-one linear map of vector spaces of same dimension

is a vector space). Choose A1, . . . , Amn ∈ Rd whose residues in Γd form a basis for

Γd. Let Ai∗ = Ai(X, Y, 1) ∈ k[X, Y ], and let ai be the residue of Ai∗ in Γ∗. Since, αd

is an isomorphism, the residues ZrA1, . . . , Z
rAmn form a basis for Γd+r for all r ≥ 0.

Claim: a1, . . . , amn generate Γ∗. If h = H ∈ Γ∗, H ∈ k[X, Y ], there exists some N

such that ZNH∗ is a form of degree d+ r. So, ZNH∗ =
∑mn

i=1 λiZ
rAi+BF +CG for

some λi ∈ k, B,C ∈ k[X, Y, Z]. Then H = (ZNH∗)∗ =
∑mn

i=1 λiAi∗ + B∗F∗ + C∗G∗

and hence h =
∑mn

i=1 λiai. Thus, a1, . . . , amn generate Γ∗.

Claim: ai’s are linearly independent. Suppose λi, . . . , λmn ∈ k such that
∑mn

i=1 λiAi∗ =

BF∗+CG∗. Thus, there exist r, s, t such that Zr
∑mn

i=1 λiZ
rAi = ZsB∗F +ZtC∗G⇒∑mn

i=1 λiZ
rAi = 0 in Γd+r. But as we have proved earlier, ZrAi forms a basis for

Γd+r. Thus, λi = 0 for all i = 1, . . . ,mn. Therefore, a1, . . . , amn forms a basis for Γ∗;

whence, dimk Γ∗ = mn. This proves

∑

P

I(P, F ∩G) = dimk(k[X, Y ]/(F∗, G∗)) = dim(Γ∗) = mn

The following Corollary follows from property (5) of intersection multiplicity and

Bezout’s Theorem.

Corollary 6.0.4. If F and G have no common component, then

∑

P

mP (F )mP (G) ≤ deg(F ) · deg(G)

Corollary 6.0.5. If F and G meet in mn distinct points, m = deg(F ), n = deg(G),

then these points are all simple points on F and on G.
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Proof. Let F ∩G = {P1, . . . , Pmn}. By previous Corollary

mn = deg(F ) · deg(G) ≥
mn∑

i=1

mPi
(F )mPi

(G)

Last inequality is due to the fact that F and G meet at mn distinct points. Hence,

mPi
(F ) = 1 and mPi

(G) = 1 for all i = 1, . . . ,mn.

The following Corollary directly follows from Bezout’s Theorem.

Corollary 6.0.6. If two curves of degrees m and n have more than mn points in

common, then they have a common component.
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Chapter 7

Appendix

7.1 Affine Algebraic Sets

Problem 7.1.1. Let R be a domain. (a) If F , G are forms of degree r, s respectively

in R[X1, . . . , Xn], show that FG is a form of degree r + s. (b) Show that any factor

of a form in R[X1, . . . , Xn] is a form.

Solution. (a) F has all coefficients a(i) = 0 except those having degree r. So F is of

the form

F =
∑

i1+i2+...+in=r

ai1i2...inX
i1
1 X

i2
2 . . . X

in
n

where each ik is a nonnegative integer. Similarly for G

F =
∑

j1+j2+...+jn=s

aj1j2...jnX
j1
1 X

j2
2 . . . Xjn

n

In FG each term will be ai1i2...inbj1j2...jnX
i1+j1
1 X i2+j2

2 . . . X in+jn
n . So, the degree of each

term will be

(i1 + j1) + (i2 + j2) + . . .+ (in+ jn) = (i1 + i2 + . . .+ in) + (j1 + j2 + . . .+ jn) = r+ s

So, each term of FG has degree r + s. FG is a form of degree r + s.

(b) Let F be a form of degree d and F = GH. If G is not a form, it has mono-

mial of degree r1 and r2 (r1 6= r2). If H is a form of degree s, then F has monomials

of degree r1 + s and r2 + s which are equal as F is a form ⇒ r1 = r2. If H is not a

47
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form, say, it has monomials of degree s1 and s2 (s1 6= s2). So, F has monomials of

degree r1 + s1, r1 + s2, r2 + s1 and r2 + s2. Since, F is a form

r1 + s1 = r1 + s2 = r2 + s1 = r2 + s2 = d⇒ s1 = s2 and r1 = r2 ⇒⇐

Thus both F and G are forms.

Problem 7.1.2. Let R be a UFD, K the quotient field of R. Show that every ele-

ment z of K may be written z = a/b, where a, b ∈ R have no common factors; this

representative is unique up to units in R.

Solution. Every element z of K is of the form a/b, a, b ∈ R. Since, R is a UFD,

a = αpr11 . . . p
rn
n and b = βqs11 . . . qsmn (pi’s, qi’s are irreducible elements and α, β

units). We can cancel out the common primes and get z = a′/b′, where a′ and b′ have

no common factors.

(Uniqueness :) Let z = a/b = c/d, where a, b have no common factors and c, d

have no common factors. Let a = αp1 . . . pn, b = βq1 . . . qm, c = γp′1 . . . p
′
n1
, d =

δq′1 . . . q
′
m1

, where α, β, γ, δ are units and pi, qi, p
′
i, q

′
i’s are irreducible elements (may

not be distinct).
a

b
=
c

d
⇒ ad = bc

⇒ αδp1 . . . pnq
′
1 . . . q

′
m1

= γβq1 . . . qmp
′
1 . . . p

′
n1

In UFD, prime factorization is unique up to units. Thus, p1 equals some qi or p
′
j.

But, a and b have no common factors ⇒ p1 = p′i for some i up to units. Thus, for

every j, there exists i such that pj = p′i up to units. Conversely, for every prime p′i,

there exists pj such that p′i = pj up to units. So, a = c and d = b up to units ⇒ a/b

is unique up to some units in R.

Problem 7.1.3. Let R be a PID, Let P be a nonzero, proper, prime ideal in R. (a)

Show that P is generated by an irreducible element. (b) Show that P is maximal.

Solution. (a) Let P = (a) for some 0 6= a ∈ R (a non-unit). If a is reducible element,

say, a = bc (b and c both non-units) ⇒ b ∈ P or c ∈ P ⇒ b = ar or c = as r, s ∈ R.

Say b ∈ P , i.e. b = ar = bcr ⇒ cr = 1. Thus, c is a unit ⇒⇐. So, P is generated by

irreducible element.



7.1. AFFINE ALGEBRAIC SETS 49

(b) Let M is an ideal containing P

M = (m) ⊃ (a) = P ⇒ a = rm (r ∈ R)

But a is irreducible ⇒ r or m is a unit ⇒ M = P or M = R ⇒ P is maximal ideal.

Problem 7.1.4. Let k be an infinite field, F ∈ k[X1, . . . , Xn]. Suppose F (a1, . . . , an) =

0 for all a1 . . . , an ∈ k. Show that F = 0.

Solution. Let n = 1. F ∈ k[X1]. let F (a1) = 0 for all a1 ∈ k. Since, F has infinite

number of roots (k is infinite) ⇒ F = 0.

We assume induction hypothesis,

F (a1, . . . , an−1) = 0 (∀a1, . . . , an−1 ∈ k) ⇒ F = 0

F (a1, . . . , an) = 0 for all a1, . . . , an ∈ k (given). F can be written as a polynomial in

Xn over k[X1, . . . , Xn−1], i.e. F =
∑

i FiX
i
n. So,

∑

i

FiX
i
n = 0 ∀an ∈ k and Fi(a1, . . . , an−1) = 0 ∀a1, . . . , an−1 ∈ k

By induction hypothesis, Fi = 0 (∀i) ⇒ F = 0.

Problem 7.1.5. Let k be any field. Show that there are infinite number of irreducible

monic polynomials in k[X]

Solution. Let F1, . . . , Fn are all irreducible monic polynomials in k[X]. We consider

the polynomial F = (F1 . . . Fn+1) + 1. F is not irreducible (as F 6= Fi ∀i). So, there
exists Fi such that F1 | F . Also, F1 | F1 . . . Fn. F1 | 1 ⇒⇐. There are infinite number

of irreducible monic polynomials in k[X].

Problem 7.1.6. Show that any algebraically closed field is infinite

Solution. Let algebraically closed field k is finite. a1 . . . an ∈ k are all elements of k.

We consider the irreducible monic polynomials (X − ai) (∀i). By previous problem,

F = (X−a1)(X−a2) . . . (X−an)+1 is irreducible. As k is algebraically closed, every

polynomial with coefficients in k has a root in k. F has a root in k. But a1, a2, . . . , an

are not roots of F . ⇒⇐ k is infinite.
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Problem 7.1.7. We will use induction hypothesis. Let k be a field. F ∈ k[X1 . . . , Xn],

a1, . . . , an ∈ k. (a) Show that

F =
∑

λ(i)(X1 − a1)
i1 . . . (Xn − an)

in , λ(i) ∈ k

(b) If F (a1, . . . , an) = 0, Show that F =
∑n

i=1 (Xi − ai)Gi for some (not unique) Gi

in k[X1 . . . Xn].

Solution. (a) We consider for n = 1. k is a field ⇒ k[X] is a Euclidean domain.

Considering F =
∑d

i=0 biX
i ∈ k[X], deg(F ) = d.

By Euclidean domain property, F = (X − a)q(X) + λ0 (where a ∈ k and λ0 ∈ k)

Since, F has degree d, q(X) has degree < d say (d− 1). Applying Euclidean domain

property on q(X) and continuing, we get

F = λd(X − a)d + λd−1(X − a)d−1 + . . .+ λ1(X − a) + λ0 (∀λi ∈ k)

We assume the statement to be true for n − 1 by induction hypothesis. Now,

let F ∈ k[X1, . . . , Xn] and a1, . . . , an ∈ k. F can be considered a polynomial in

k[X1, . . . , Xn−1][Xn], i.e. F =
∑
FiX

i
n, where Fi ∈ k[X1, . . . , Xn−1]. Using Euclidean

property for k[X1, . . . , Xn−1][Xn] and for n = 1 case, we have

F = fd(Xn− an)
d+ fd−1(Xn− an)

d−1 + . . .+ f1(Xn− an) + f0 (fi ∈ k[X1, . . . , Xn−1])

Using induction hypothesis,

fj =
∑

λ(i)(X1 − a1)
i1 . . . (Xn−1 − an−1)

in−1 (λ(i) ∈ k)

F =
d∑

l=1

[∑
λi(X1 − a1)

i1 . . . (Xn−1 − an−1)
in−1

]
(Xn − an)

l

F =
∑

λ(i)(X1 − a1)
i1 . . . (Xn − an)

in , λ(i) ∈ k

(b) F (a1, . . . , an) = 0 ⇒ λi = 0 when i1 = . . . = in = 0. For a nontrivial term

F(i) = λ(i)(X1 − a1)
i1 . . . (Xn − an)

in , some ik 6= 0. So,

F(i) = (Xk − ak)[λ(i)(X1 − a1)
i1 . . . (Xk − ak)

ik−1 . . . (Xn − an)
in ]
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Thus, F =
∑k

i=1 (Xi − ai)Gi, (Gi = k[X1, . . . , Xn]).

Problem 7.1.8. Show that the algebraic subsets of A1(k) are just the finite subsets,

together with A1(k) itself.

Solution. We consider X ⊂ A1(k). If X is algebraic ⇒ there exists a set of polyno-

mials S ∈ k[X] such that X = V (S), i.e. F (X) = 0 ∀x ∈ X and F ∈ S. Since, F has

finite number of roots (if F 6= 0) ⇒ X is a finite set (as X = ∩F∈SV (F )). If F = 0,

we have V (F ) = A1(k).

Problem 7.1.9. If k is a finite field, show that every subset of An(k) is algebraic

Solution. Since k is a finite field say |k| = l, then |An(k)| = ln and every subset X

of An(k) is finite. Thus, by above Problem 7.1.8, X is algebraic.

Problem 7.1.10. Give an example of countable collection of algebraic sets whose

union is not algebraic.

Solution. We consider A1(R) and algebraic sets Xi = {i} = V (X − i) (i ∈ Z). Each
Xi is finite ⇒ Xi is algebraic set. We consider X = ∪i∈ZXi = Z. X is not finite ⇒
X is not algebraic (Problem 7.1.8).

Problem 7.1.11. Show that the following are algebraic sets:

1. {(t, t2, t3) ∈ A3(k) | t ∈ k}

2. {(cos(t), sin(t)) ∈ A2(R) | t ∈ R}

3. The set of points in A2(R) whose polar coordinates (r, θ) satisfy the equation

r = sin(θ)

Solution. Let V = {(t, t2, t3) ∈ A3(k) | t ∈ k}.
Claim: V = V (F ) ∩ V (G), where F = X2 − Y and G = X3 − Z. P ∈ V satisfies F

and G. So, V ⊂ V (F ) ∩ V (G). Now, let P = (x, y, z) ∈ V (F ) ∩ V (G) ⇒ x2 − y = 0

and x3 − z = 0 ⇒ P = (x, x2, x3) for x ∈ k ⇒ P ∈ V ⇒ V (F ) ∩ V (G) ⊂ V , i.e.

V (F ) ∩ V (G) = V .

Let V = {(cos(t), sin(t)) ∈ A2(R) | t ∈ R}. Claim V = V (F ), where F = X2+Y 2−1.

P ∈ V satisfies F . So, V ⊂ V (F ). Let P = (x, y) ∈ V (F ) ⇒ x2 + y2 − 1 = 0 ⇒
x = ±

√
(1− y2). Take t = sin−1 x = cos−1y, we have P ∈ V . So, V (F ) ⊂ V , i.e.

V (F ) = V .

Similarly, for (3), we have V = V (F ), where F = X2 + Y 2 −X.
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Problem 7.1.12. Suppose C is an affine plane curve, and L is a line in A2(k),

L * C. Suppose C = V (F ), F ∈ k[X, Y ] a polynomial of degree n. Show that L ∩ C
is a finite set of no more than n points.

Solution. Let L = V (Y − (aX + b)) (L can be V(X-a), and proof will be similar)

in A2(k). L ∩ C = V (F ∪ {Y − aX + b}). F is a polynomial of degree n. If

P = (x, y) ∈ A2(k) satisfies F and Y − a(aX + b), then F (x, ax + b) = 0. If there

exists x s.t. F (x, ax + b) = 0 ⇒ F (x, y) = 0, where y = ax + b ⇒ (x, y) ∈ L.

Therefore,

L ∩ C = {(x, ax+ b) ∈ A2 | F (x, ax+ b) = 0}

F is of degree n⇒ F (x, ax+ b) is of degree atmost n ⇒ Has atmost n roots ⇒ L∩C
is a finite set of no more than n points.

Problem 7.1.13. Show that each of the following is not algebraic:

1. {(x, y) ∈ A2(R) | y = sin x}

2. {(z, w) ∈ A2(C) | |z|2 + |w|2 = 1}

3. {(cos (t), sin (t), t) ∈ A3(R) | t ∈ R}

Solution. Let V = {(x, y) ∈ A2(R) | y = sin x} be algebraic set, i.e. X = ∩F∈SV (F )

for some subset S of polynomials in R[X, Y ]. Let L = {(x, y) ∈ A2(R) | y = 0} a

line. L is not contained in X. Take one polynomial F ∈ S. V (F ) is contains X,

and L is not contained in V (F ). So, L ∩ V (F ) ⊂ L ∩ X. Also, by Problem 7.1.12,

L ∩X = {(mπ, 0) | m ∈ Z} is a finite set ⇒⇐. So, V is not algebraic.

Similarly, for (2), we can take L = {z = 0} line in A2(C) and applying Problem 7.1.12,

we get L ∩X = {(0, w) | |w|2 = 1} is a finite set which is again a contradiction.

For (3), take L = {(1, 0, t) ∈ A3(R) | t ∈ R} and apply Problem 7.1.12

Problem 7.1.14. Let F be a non constant polynomial in k[X1, . . . , Xn], k alge-

braically closed. Show that An(k)/V (F ) is infinite if n ≥ 1, and V (F ) is infinite

if n ≥ 2. Conclude that the complement of any proper algebraic set is infinite.

Solution. Let An(k)/V (F ) = {P1, . . . , Pm} be finite, where Pi = (ai1, . . . , ain) for all

1 ≤ i ≤ m. Consider the polynomial

G = F (X1 − a11)(X1 . . . a21) . . . (X1 . . . am1)
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Take P ∈ An(k). If P ∈ V (F ), then F (P ) = 0 ⇒ G(P ) = 0. If P ∈ V (F ) i.e.

F (P ) 6= 0, then P ∈ An(k)/V (F ) ⇒ P = Pi for some i ⇒ (X1 − ai1) = 0 ⇒
G(P ) = 0. Thus, P ∈ A(k). By, Problem 1.4, G = 0. A contradiction. Thus,

An(k)/V (F ) is infinite if n ≥ 1.

Write F =
∑
FiX

i
n, where Fi ∈ k[X1, . . . , Xn−1]. If all Fi is constant, F ∈ k[Xn].

Since, k is algebraically closed, there exist a ∈ k such that F (a) = 0 in k[Xn]. Taking

the elements of the set B = {(a1, . . . , an−1, a) | ai ∈ k}. Then, B ⊂ V (F ). Since, B

is infinite set, as k is algebraically closed, we have V (F ) as infinite set.

Suppose Fi is not constant for all i. Hence, by part (a), An−1(k)/V (Fi) is infinite

(where Fi is non-constant polynomial), i.e. there exist infinite points (a1, . . . , an−1)

such that Fi(a1, . . . , an−1) 6= 0. Thus, we can choose an ∈ k s.t. F (a1, . . . , an−1, an)

= 0 (as k is algebraically closed, such an exists). Thus, V (F ) is infinite set.

If V = V (S) is a proper algebraic set of An(k). Take F ∈ S. Now, V ⊂ V (F )

⇒ An(k)/V (F ) ⊂ An(k)/V . By part (b), An(k)/V (F ) is infinite, thus An(k)/V is

infinite.

Problem 7.1.15. Let V ⊂ An(k) be algebraic sets. Show that:

V ×W = {(a1, . . . , an, b1, . . . , bm) | (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈ W}

is an algebraic set in An+m(k). It is called the product of V and W .

Solution. Let V = V (S1) andW = V (S2), where S1 and S2 are subsets of polynomials

in k[X1, . . . Xn] and k[X1, . . . , Xm] respectively. Let S = {F (X1, . . . , Xn) | F ∈
S1} ∪ {G(Xn+1, . . . , Xn+m) | G ∈ S2} ⊂ k[X1, . . . , Xn+m]. Since,

V ×W = {(a1, . . . , an, b1, . . . , bm) | (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈ W}

we have, V ×W = V (S).

Problem 7.1.16. Let V , W be algebraic sets in An(k). Show that V = W if and

only if I(V ) = I(W ).

Solution. Claim: For any two algebraic sets V and W , V ⊂ W if and only if

I(V ) ⊃ I(W ). (⇒) is true by property 6. (⇐) We assume I(W ) ⊂ I(V ). Let

(a1, . . . , an) ∈ V . Then, ∀F ∈ I(V ), F (a1, . . . , an) = 0 ⇒ ∀F ∈ I(W ), F (a1, . . . an) =

0 ⇒ (a1, . . . , an) ∈ V (I(V )) ⇒ (a1, . . . , an) ∈ V as for algebraic sets V (I(V )) = V .

So, W ⊂ V .
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Problem 7.1.17. 1. Let V be an algebraic set in An(k), P ∈ An(k) a point not

in V . Show that there is a polynomial F ∈ k[X1, . . . , Xn] such that F (Q) = 0

for all Q ∈ V but F (P ) = 1.

2. Let P1, . . . , Pr be distinct points in An(k), not in an algebraic set V . Show that

there are polynomials F1, . . . , Fr ∈ I(V ) such that Fi(Pj) = 0 for i 6= j and

Fi(Pi) = 1.

3. With P1, . . . , Pr and V as above and aij ∈ k for 1 ≤ i, j ≤ r, show that there

are Gi ∈ I(V ) with Gi(Pj) = aij for all i and j.

Solution. (1) Let I(V ) = I(V ∪ {P}) ⇒ P ∈ V (I(V )) ⇒ P ∈ V (as V is algebraic)

⇒⇐ as P does not belong to V ⇒ I(V ) 6= I(V ∪ {P}).
So, there exits F ∈ I(V ) s.t. F (P ) 6= 0. Let F (P ) = a 6= 0. We consider G = f

a
(k is

a field). G(Q) = 0 ∀Q ∈ V and g(P ) = 1

(2) Let W = V ∪ {P1, . . . , Pi, . . . , Pr}/{Pi}. Using (1), there exists a function

Fi ∈ I(W ) s.t. Fi(Q) = 0 for all Q ∈ W and Fi(Pi) = 1. Repeating this, we

get F1, . . . , Fr ∈ I(V ) s.t. Fi(Pj) = 0 if i 6= j and Fi(Pi) = 0.

(3) Let Gi =
∑

j aijFj. Then Gi(Pk) =
∑

j aijFj(Pk) = aik ∀i, k.

Problem 7.1.18. Let I be an ideal in a ring R. IF an ∈ I, bm ∈ I, show that

(a + b)n+m ∈ I. Show that Rad(I) is an ideal, infact a radical ideal. Show that any

prime ideal is radical.

Solution. (a + b)n+m =
∑n+m

i=0

(
m

i

)
aibm+n−i. If i ≤ n, then m + n − i ≥ m ⇒

mm+n−i ∈ I (as bm ∈ I). If i ≥ n then ai ∈ I ⇒ aibmn−i ∈ I ∀i ∈ {0, . . . , n +m} ⇒
(a+ b)n+m ∈ I.

Thus, Rad(I) is closed under addition. If a ∈ Rad(I) ⇒ an ∈ I ⇒ (−a)n ∈ I ⇒
−a ∈ Rad(I). 0 ∈ Rad(I) as 0n ∈ I ⇒ Rad(I) is a group. If a, b ∈ Rad(I) ⇒ an ∈ I

and bm ∈ I for some n and m ⇒ (ab)m+n ∈ I ⇒ Rad(I) is a subring. Now, if

a ∈ Rad(I) ⇒ an ∈ I for some n. If r ∈ R, rnan ∈ I ⇒ (ra)n ∈ I ⇒ ra ∈ Rad(I) ⇒
Rad(I) is an ideal.

If a ∈ Rad(I) ⇒ an ∈ Rad(I) for some n⇒ anm ∈ I for some m and n⇒ a ∈ Rad(I)

⇒ Rad(Rad(I)) ⊂ Rad(I) ⇒ Rad(Rad(I)) = Rad(I).

Let P be a prime ideal. a ∈ Rad(P ) ⇒ an ∈ P for some n. Since, P is prime ⇒
either a ∈ P or an−1 ∈ P . If a ∈ P ⇒ Rad(P ) = P . If an−1 ∈ P , repeat the process

to get a ∈ P ⇒ Rad(P ) = P .
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Problem 7.1.19. Show that I = (X2 + 1) ⊂ R[X] is a radical (even a prime) ideal,

but I is not the ideal of any set in A1(R).

Solution. Since, (X2 + 1) ∈ R[X] is irreducible over R ⇒ (X2 + 1) is a prime ideal

⇒ (X2 + 1) is a radical ideal (by previous problem). Also, for any x ∈ A1(R),
(X2 + 1) 6= 0 ⇒ ∄ set X ⊂ A1(R) s.t. x2 + 1 = 0 ∀x ∈ X.

Problem 7.1.20. Show that for any ideal I in k[X1, . . . , Xn], V (I) = V (Rad(I)) and

Rad(I) ⊂ I(V (I))

Solution. Let P = (a1, . . . , an) ∈ V (I) ⇒ f(a1, . . . , an) = 0 ∀f ∈ I. Let g ∈
Rad(I) ⇒ there exists m s.t gm ∈ I ⇒ gm(P ) = 0 ⇒ g(P ) = 0 ⇒ P ∈ Rad(I) ⇒
V (I) ⊂ V (Rad(I)). Since, I ⊂ Rad(I) ⇒ V (Rad(I)) ⊂ V (I). So, V (Rad(I)) =

V (I). Let F ∈ Rad(I) ⇒ ∃ n s.t. F n ∈ I. Let P ∈ V (Rad(I)) ⇒ F (P ) = 0

∀F ∈ Rad(I) ⇒ For any P ∈ V (I), F (P ) = 0 ∀F ∈ Rad(I) ⇒ Rad(I) ⊂ I(V (I)).

Problem 7.1.21. Show that I = (X1 − a1, . . . , Xn − an) ⊂ k[X1, . . . , Xn] is a max-

imal ideal, and that the natural homomorphism from k top k[X1, . . . , Xn]/I is an

isomorphism.

Solution. We consider the homomorphism

φ : k[X1, . . . , Xn] → k

f(X1, . . . , Xn) → f mod (X1 − a1, X2 − a2, . . . , Xn − an) = f mod I

Map is onto.

Ker(φ) = {f ∈ k[X1, . . . , Xn] | f mod (X1 − a1, . . . , Xn − an) = 0}

So, (X1 − a1, . . . , Xn − an) | f ⇒ f ∈ (X1 − a1, . . . , Xn − an). Thus, ker(φ) = I ⇒
k[X1, . . . , Xn]/I ∼= k(field) ⇒ I is maximal ideal.

Problem 7.1.22. Let I be an ideal in a ring R, π : R → R/I the natural homomor-

phism.

1. Show that for every ideal J ′ of R/I, π−1(J ′) = J is ideal of R containing I, and

for every ideal J of R containing I, π(J) = J ′ is an ideal of R/I. This sets up

a natural one-to-one correspondence between {ideals of R/I} and {ideals of R

that contain I}.
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2. Show that J ′ is a radical ideal if and only if J is radical. Similarly for prime

and maximal ideals.

3. Show that J ′ is finitely generated if J is. Conclude that R/I is Noetherian if R

is Noetherian. Any ring of the form k[X1, . . . , Xn]/I is Noetherian.

Solution. (1) If a, b ∈ J , a+I, b+I ∈ J ′ s.t. π−1(a+I) = a and π−1(b+I) = b. Since,

J ′ is an ideal ⇒ a+ b+ I ∈ J ′ and ab+ I ∈ J ′ ⇒ (a+ b) ∈ π−1(J ′) and ab ∈ π−1(J ′)

⇒ (a+ b), ab ∈ J ⇒ J is an ideal of R. ∵ 0 ∈ J ′ ⇒ π−1(0) ∈ J ⇒ I ⊂ J .

Now, J is an ideal containing I, π(I) = 0 ⇒ 0 ∈ J ′. Let a, b ∈ J ⇒ ab ∈ J and

a+ b ∈ J ⇒ ab mod I ∈ J ′ and a+ b mod I ∈ J ′ ⇒ J ′ is an ideal. Thus, there exists

a natural one-one correspondence between ideals of R/I and ideals of R containing

I.

(2) If Rad(J ′) = J ′, then a mod I ∈ Rad(J ′) ⇒ ∃ m s.t. am mod I ∈ J ′. Let

a ∈ Rad(J) ⇒ ∃ n s.t. an ∈ J ⇒ an mod I ∈ J ′ (as π(J) = J ′) ⇒ a mod I ∈ Rad(J ′)

⇒ a mod I ∈ J ′ (as Rad(J ′) = J ′) ⇒ a ∈ J ⇒ Rad(J) ⊂ J ⇒ Rad(J) = J .

Reversing the argument, we get if J is radical ideal, then J ′ is radical ideal.

If J ′ is maximal ideal ⇒ there exists any ideal J ′′ between J ′ and R/I. ∵ There is

one-to-one correspondence between ideals of R/I and ideals of R containing I, ∄ any

ideal J1 between J and R ⇒ J is maximal ideal. Since, the correspondence is 1− 1,

we can prove the other way round.

If J ′ is prime ideal, i.e. ab mod I ∈ J ′ ⇒ a mod I ∈ J ′ or b mod I ∈ J ′. If

ab ∈ J ⇒ ab mod I ∈ J ′ ⇒ a mod I ∈ J ′ or b mod I ∈ J ′ ⇒ a ∈ J or b ∈ J ⇒ J is

prime ideal. Similarly, other way round.

(3) Let J = (a1, . . . , an) ai’s ∈ R. J ′ = π(J) ⇒ J ′ contains a1 mod I, . . . , an mod I.

Let ∃ a mod I ∈ J ′ s.t. a mod I is not generated by a1 mod I, . . . , an mod I. ∵

a mod I ∈ J ′ ∈ a ∈ J ⇒ a =
∑n

i=1 riai (ri ∈ R) ⇒ a mod I =
∑n

i=1 aiai mod R ⇒ a

is generated by a1 mod I, a2 mod I, . . . , an mod I ⇒⇐. ⇒ J ′ is finitely generated.

So, If R is Noetherian ⇒ R/I is Noetherian. Hence, k[X1, . . . , Xn] is Noetherian (by

Hilbert Basis Theorem) ⇒ k[X1, . . . , Xn]/I is Noetherian.

Problem 7.1.23. Give an example of collection τ of ideals in Noetherian ring such

that no maximal member of τ is a maximal ideal.

Solution. In Z, we consider the collection τ = {(4), (8), (16), . . .}. (4) is the maximal

member of τ but not a maximal ideal.
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Problem 7.1.24. Show that every proper ideal I in Noetherian ring is contained in

a maximal ideal.

Solution. We consider the collection τ = {proper ideals that contain I}. It has a

maximal member say M . If M is a maximal ideal, then we are done. If there exists

a proper ideal M ′ containing M , I ⊂ M ⊂ M ′ ⇒ M ′ ∈ τ . Thus, M is not maximal

member of τ ⇒⇐. So, no such M ′ exists and M is maximal ideal.

Problem 7.1.25. 1. Show that V (Y −X2) = A2(C) is irreducible and I(V (Y −
X2)) = (Y −X2)

2. Decompose V (Y −X2, Y 4 −X2Y 2 +XY 2 −X3) ⊂ A3(C) into irreducible com-

ponents.

Solution. (1) If is sufficient to show that I = I(V (Y − X2)) is prime ideal. As

I(V (I)) = I if I is an ideal of algebraic set. So, I = (Y − X2). Since, (Y − X2)

is irreducible in C[X, Y ], (Y − X2) is prime in C[X, Y ]. (2) F = Y 4 − X2 = (Y 2 +

X)(Y 2 −X) and G = Y 4 −X2Y 2 +XY 2 −X3 = (Y 2 +X)(Y 2 −X2).

V (F,G) = V ((Y 2 −X)(Y 2 +X))
⋂

V ((Y 2 +X), Y 2 −X2)

=
[
V (Y 2 +X) ∪ V (Y 2 −X)

]⋂[
V (Y 2 +X) ∪ V (Y 2 −X2)

]

= V (Y 2 +X) ∪ V (Y 2 +X, Y 2 −X2) ∪ V (Y 2 −X, Y 2 −X2)

V (Y 2−X, Y 2−X2) = {(0, 0), (1,±1)} = V (X, Y )∪V (X−1, Y +1)∪V (X−1, Y +1)

V (Y 2+X, Y 2−X2) = {(0, 0), (−1,±1)} = V (X, Y )∪V (X+1, Y +1)∪V (X+1, Y +1)

V (Y 2−X, Y 2+X) = {(0, 0)} = V (X, Y ) and by (1), V (Y 2+X) is irreducible. Hence,

the irreducible components are V (Y 2+X), V (X, Y ), V (X+1, Y +1), V (X+1, Y −1),

V (X − 1, Y + 1) and V (X − 1, Y − 1).

Problem 7.1.26. Show that F = Y 2 + X2(X − 1)2 ∈ R[X, Y ] is an irreducible

polynomial but that V (F ) is reducible.

Solution. V (F ) = {(0, 0), (1, 0)} = V (X, Y ) ∪ V (X − 1, Y ). So, V (F ) is reducible.

Suppose F is reducible, then F = (Y + F1)(Y + F2) for some F1, F2 ∈ R[X, Y ].

Equating terms of Y , we get F2 = −F1 and F
2
1 = −X2(X − 1)2. No such F1 exists in

R[X, Y ]. Thus, F is irreducible.
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Problem 7.1.27. Let V,W be algebraic sets in An(k) with V ⊂ W . Show that each

irreducible component of V is contained in some irreducible component of W .

Solution. Let V1, . . . , Vm and W1, . . . ,Wr are irreducible algebraic sets of V and W

respectively such that V = V1∪ . . .∪Vm (Vi * Vj for all i 6= j) andW = W1∪ . . .∪Wr

(Wi * Vj for all i 6= j). ∵ V ⊂ W ⇒ V1 ∪ . . . ∪ Vm ⊂ W1 ∪ . . . supWr ⇒ Vi =

∪j(Wj ∩ Vi) ⇒ Vi ⊂ Wj(i) ∀i (as Vi’s and Wj’s are irreducible). So, each irreducible

component of V is contained in some irreducible component of W .

Problem 7.1.28. If V = V1 ∪ . . . Vr is the decomposition of an algebraic set into

irreducible components. Show that Vi * ∪j 6=iVj.

Solution. Let Vi ⊂ ∪j 6=iVj (i fixed) ⇒ Vi =
⋃
j 6=i (Vi ∩ Vj). But Vi is irreducible

⇒ ∃ j(i) ( 6= i) s.t. Vi ⊂ Vj(i) ⇒⇐ (as Vi * Vj ∀i 6= j). Thus, Vi * ∪j 6=iVj.

Problem 7.1.29. Show that An(k) is irreducible if k is infinite.

Solution. ∵ k is infinite ⇒ I(An(k)) = zero polynomial (by Problem 7.1.14) which is

prime ⇒ An(k) is irreducible.

Problem 7.1.30. Let k = R.

1. Show that I(V (X2 + Y 2 − 1)) = (1).

2. Show that every algebraic subset of A2(R) is equal to V (F ) for some F ∈
R[X, Y ].

Solution. (a) X2 + Y 2 + 1 = 0 has no solutions in A2(R) ⇒ V (X2 + Y 2 + 1) = Φ.

So, I(V (X2 + Y 2 + 1)) = I(Φ) = (1).

(b) Let V be an algebraic subset of A2(R), then by Theorem 3.1.5, there are unique

irreducible algebraic sets V1, . . . , Vm such that V = V1 ∪ . . . Vm and Vi ⊂ Vj for all

i 6= j.

Claim: Every irreducible algebraic subsets Vi of A2(R) are : A2(R), Φ, points, and
irreducible plane curves V (F ). If Vi is finite or I(Vi) = 0, then the claim. If I(Vi)

contains a non constant polynomial F . We can consider F to be irreducible as I(Vi)

is prime. Now, if G ∈ I(Vi) and G /∈ (F ), we have Vi ⊂ V (F,G) which is finite (by

Theorem 4.0.12). Thus, I(Vi) = (F ) which is irreducible plane curves.

So, If Vi’s are A2(R) or Φ, there is nothing to prove. If Vi is point (a1, bi), we have
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Vi = V ((X−ai)2+(Y − bi)2), or Vi is irreducible plane curve given by V (Fi) for some

irreducible polynomial in Fi ∈ R[X, Y ]. We consider

F = ((X − a1)
2 + (Y − b1)

2) . . . ((X − ar)
2 + (Y − br)

2)Fr+1 . . . Fm

V = V1 ∩ . . . ∩ Vm = V (F ). Thus, V = V (F ) for some F ∈ R[X, Y ].

Problem 7.1.31. 1. Find the irreducible components of V (Y 2−XY −X2Y +X3)

in A2(R), and also in A2(C).

2. Do the same for V (Y 2 −X(X2 − 1)) and for V (X3 +X −X2 − Y ).

Solution. (a) Y 2 −XY −X2Y +X3 = (Y −X)(Y −X2). (Y −X) is of degree 1,

so is irreducible and (Y − X2) is irreducible both in A2(R) and A2(C)(by Problem

7.1.25). Thus, irreducible components are V (Y −X) and V (Y −X2).

(b) V (Y 2 − X(X2 − 1)) is irreducible in C[X, Y ] (can be checked by assuming that

it is reducible and thus will have the form (Y + f(X))(Y + g(X)) and getting a

contradiction thatX(X2−1) is square of some polynomial). Thus, V (Y 2−X(X2−1))

is itself irreducible component in A2(R) and A2(C).
V (X3 +X −X2 − Y ) = V (X2 + 1) ∪ V (X − Y ) in A2(R) as irreducible components

and V (X3+X−X2−Y ) = V (X + i)∪V (X− i)∪V (X−Y ) in A2(C) as irreducible
components.

Problem 7.1.32. Show that Weak Hilbert’s Nullstellensatz Theorem (Theorem 3.4.5),

Nullstellensatz Theorem (Theorem 3.4.7) and all of its corollaries (Corollaries 3.4.8,

3.4.9 and 3.4.10) are false if k is not algebraically closed.

Solution. For weak Nullstellensatz Theorem: Let I = (X2 + Y 2 +1 = 0) be a proper

ideal in R[X, Y ]. V (X2+Y 2+1) = Φ as for no real values x2+y2+1 = 0. V (I) = Φ.

For Nullstellensatz Theorem: For the same ideal above, I is irreducible in R[X, Y ] ⇒
I is prime ideal ⇒

√
I = I. Also (by Problem 7.1.30) I(V (I)) = (1) 6=

√
I(= I).

Problem 7.1.33. 1. Decompose V (X2 + Y 2 − 1, X2 −Z2 − 1) ⊂ A3(C) into irre-

ducible components.

2. Let V = {(t, t2, t3) ∈ A3(C) | t ∈ C}. Find I(V ), and show that V is irreducible.

Solution. V (X2+Y 2−1, X2−Z2−1) = V (X2+Y 2−1, Y 2+Z2). In C, X2+Y 2−1

is irreducible (can be checked by taking X2 + Y 2 − 1 = (aX + bY + c)(dX + eY + f),
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where a, b, . . . , f ∈ C and getting a contradiction). Y 2 + Z2 = (Z + Y ι)(Z − Y ι),

where ι =
√
1. So,

V (X2+Y 2−1, X2−Z2−1) = V (X2+Y 2−1, Z+ιY )∪V (X2+Y 2−1, Z−ιY ) = V1∪V2

where V1 = V (X2 + Y 2 − 1, Z + ιY ) and V2 = V (X2 + Y 2 − 1, Z − ιY ). Also,

k[X, Y, Z]/I(V1) = k[X, Y ]/(X2 + Y 2 − 1), which is a domain (as X2 + Y 2 − 1 is

irreducible). Thus, I(V1) is prime and V1 is irreducible Similarly for V2. Thus V1 and

V2 are irreducible components of V .

By Problem 7.1.11, V = V (X2 − Y,X3 −Z). Also, (X2 − Y,X3 −Z) is radical ideal.

Thus, by Hilbert’s Nullstellensatz Theorem, I(V ) = V . So,

k[X, Y, Z]/I(V ) = k[X, Y, Z]/V = k[X]

which is a domain. Thus, I(V ) is prime and V is irreducible.

Problem 7.1.34. Let R be a UFD.

1. Show that a monic polynomial of degree two or three in R[X] is irreducible if

and only if it has no roots in R.

2. The polynomial X2 − a ∈ R[X]is irreducible if and only if a is not a square in

R

Solution. If f(x) is irreducible if and only if it doesn’t have any factor of degree 1

⇔ has no roots in R. R is UFD is needed as in UFD sum of degree of each factor

polynomial of f(X) is equal to the degree of f(X). Thus for n = 2, (1,1) is the only

possibility and for n = 3, (1, 1, 1) or (1, 2) are the only possibility for the degree of the

factors. In each case there is a factor polynomial of degree 1. This factor of degree 1

can be made monic as f(X) is monic.

Using above part, X2 − a is irreducible if and only if it has no roots in R if and

only if it doesn’t have a factor of degree 1 if and only if a is not a square in R (as

(X2 − a) = (X −√
a)(X +

√
a)).

Problem 7.1.35. Show that V (Y 2 − X(X − 1)(X − λ)) ⊂ A2(k) is an irreducible

curve for any algebraically closed field k, and any λ ∈ k

Solution. If f(X) = Y 2 − X(X − 1)(X − λ) is reducible in k[X, Y ], using Gauss’s

Lemma, Y 2 − X(X − 1)(X − λ) is reducible in k(X)[Y ]. By previous problem,
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X(X−1)(X−λ) must be a square in k(X) which is not possible as X(X−1)(X−λ)
has degree odd. Thus f(X) is irreducible.

Problem 7.1.36. Let I = (Y 2 − X2, Y 2 + X2) ⊂ C[X, Y ]. Find dimC(C[X, Y ]/I)

and V (I).

Solution. V (I) = {(0, 0)}. X2 and Y 2 are both zero in C[X, Y ]. Thus, C[X, Y ]/I

is the residue of an element a + bX + cY + dXY for some a, b, c, d ∈ C. Hence,

dimC(C[X, Y ]/I) = 4

Problem 7.1.37. Let K be any field. F ∈ K[X] a polynomial of degree n > 0. Show

that the residues 1, X, . . . , X
n−1

form a basis of K[X]/(F ) over K.

Solution. Since, K[X] is a UFD, Any polynomial g(X) ∈ K[X] can be written as

g(X) = p(X)F (X) + r(X)

where r(X) has degree less than n. Taking modulo F (X), we have g(X) = r(X),

where r(X) has degree less than n. Thus, r(X) can be written as linear combination

of 1, X, . . . , X
n−1 ⇒ {1, X, . . . , Xn−1} ia spanning set of K[X]/(F ). If

∑
λiX

i
= 0

(λi ∈ K) ⇒ ∑
λiXi ∈ (F ). But F has degree at least n or 0. Thus, λi = 0 ∀i ⇒

1, X, . . . , X
n−1

form a basis of K[X]/(F ) over K.

Problem 7.1.38. Let R = k[X1, . . . , Xn], k algebraically closed. V = V (I). Show

that there is a natural one-to-one correspondence between algebraic subsets of V and

radical ideals in k[X1, . . . , Xn]/I and that irreducible algebraic set (resp. points) cor-

respond to prime ideals (resp. maximal ideals).

Solution. By Problem 7.1.22, there exists 1−1 correspondence between radical ideals

of R/I and radical ideals of R containing I. By Corollary 3.4.8(1), there exists 1-1

correspondence between algebraic sets of An(k) and radical ideals of k[X1, . . . , Xn].

Let V ′ be an algebraic subset of V , i.e. there exists ideal I ′ ⊂ kn such that V ′ =

V (I ′) ⊂ V = V (I) ⇒ I(V (I ′)) ⊃ I(V (I)) ⇒
√
I ′ ⊃

√
I = J (say).

√
I ′ is a

radical ideal in k[X1, . . . , Xn]. Corresponding to
√
I ′, there exists a radical ideal

J ′′ in k[X1, . . . , Xn]/I such that π(J ′′) = J ′ (where π : R → R/I is projection

map).Thus, there exists 1− 1 correspondence between algebraic set of I and radical

ideals of k[X1, . . . , Xn]/I. Similarly using Corollary 3.4.8(2) (resp. 3.4.9(3)), we can

show 1−1 correspondence between irreducible algebraic sets (resp. points) and prime

ideals (resp. maximal ideals).
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Problem 7.1.39. 1. Let R be a UFD and let P = (t) be principal, proper prime

ideal. Show that there is no prime ideal Q such that 0 ⊂ Q ⊂ P (Q 6= 0,

Q 6= P ).

2. Let V = V (F ) be an irreducible hypersurface in An. Show that there is no

irreducible algebraic set W such that V ⊂ W ⊂ An, W 6= V , W 6= An.

Solution. (1) Let ∃ Q s.t. Q ⊂ P and Q prime (Q 6= 0, Q 6= P ). Then ∃ q ∈ Q s.t.

q = ta for some a ∈ R. Since R is a UFD, q = tαb, where t ∤ b. Q is prime ⇒ tα ∈ Q

or b ∈ Q ⇒ t ∈ Q or b ∈ Q. t ∈ Q ⇒ Q = P ⇒⇐. If b ∈ Q ⇒ b = tc for some c ∈ R

but t ∤ b. Thus, contradiction. So, no such prime ideal Q exists.

(2) V = V (F ) is irreducible algebraic subset in An. By Hilbert’s Nullstellensatz

Theorem, (F ) is prime ideal in k[X1, . . . , Xn] ⇒ ∄ Q prime s.t. Q ⊆ (F ) (Q 6= 0) ⇒
∄ any prime ideal Q s.t. V = V (F ) ⊆ V (Q) = W ⇒ ∄ any algebraic subset W s.t.

V ⊂ W (V 6= W ) (by Hilbert’s Nullstellensatz Theorem).

Problem 7.1.40. Let I = (X2 − Y 3, Y 2 −Z3) ⊂ k[X, Y, Z]. Define α : k[X, Y, Z] →
k[T ] by α(X) = T 9, α(Y ) = T 6, α(Z) = T 4.

1. Show that every element of k[X, Y, Z]/I is the residue of an element A+XB+

Y C +XYD, for some A,B,C,D ∈ k[Z].

2. If F = A+XB + Y C +XYD, A,B,C,D ∈ k[Z], and α(F ) = 0, compare like

powers of T to conclude that F = 0

3. Show that Ker(α) = I, so I is prime, V (I) is irreducible, and I(V (I)) = I.

Solution. We consider any term X iY jZk in an element of k[X, Y, Z], where i, j ≥ 2.

If i 6= 2 then taking out the factor of X2 − Y 2 will leave power of X as 1. If j ≥ 3

then taking out factor Y 2 − Z3 will leave power of Y as 1. Thus, k[X, Y, Z]/I has

element of the form A+XB + Y C +XYD for some A,B,C,D ∈ k[Z].

α(F ) = 0 ⇒ α(F ) = A′ + B′T 9 + C ′T 6 +D′T 15 = 0

deg(A′) = deg(B′T 9 + C ′T 6 +D′T 15). If any of B,C,D is non zero, B′, C ′, D′ have

power as multiple of 4 ⇒ deg(B′T 9+C ′T 6+D′T 15) is not multiple of 4 ⇒ deg(A′) is

not multiple of 4. Contradiction. So, A = 0. Also, deg(C ′T 6) is even and deg(B′T 9)

and deg(D′T 15) are odd ⇒ C = 0. So, α(F ) = B′T 9 + D′T 15 = 0 ⇒ deg(B′T 9) =
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deg(D′T 15) which is not possible for any natural number. Thus F = 0.

α(I) = 0 = Ker(α) by previous part. Thus, k[X, Y, Z]/Ker(α) = k[T ], which is

integral domain. Thus, ker(α) = I is prime ⇒ V (I) is irreducible ⇒ I(V (I)) = I.

7.2 Affine Varieties

Problem 7.2.1. Let φ : V → W be a polynomial map of affine varieties, φ̃ : Γ(W ) →
Γ(V ) the induced map on coordinate rings. Suppose P ∈ V, φ(P ) = Q. Show that φ̃

extends to a ring homomorphism (also written φ̃) from OQ(W ) to OP (V ). Show that

φ̃(mQ(W )) ⊂ mP (V ).

Solution. See Lemma 4.0.11

Problem 7.2.2. Let T : An → An be an affine change of coordinates, T (P ) = Q.

Then T̃ : OQ(An) → OP (An) is an isomorphism. Also, T̃ induces an isomorphism

from OQ(V ) to OP (V
T ) if P ∈ V T , for V a subvariety of An.

Solution. By previous problem T̃ is a ring homomorphism. Since, T is affine change

of coordinates, (Ti are polynomials of degree 1), T is invertible. Thus, T−1 is also

affine change of coordinates. By previous problem, T̃−1 : OP (An) → OQ(An) is well

defined. Also, by composition of polynomial maps, we have

T̃−1 ◦ T̃ = ˜T ◦ T−1 = 1̃ = IdOQ(An)

Similarly, T̃ ◦T̃−1 is identity. Thus T̃ induces an isomorphism from OQ(An) to OP (An).

Restricting T̃ to OQ(V ) we get an isomorphism from OQ(V ) to (O)P (V
T ).

Problem 7.2.3. Let V be a variety in An, I = I(V ) ⊂ k[X1, . . . , Xn], P ∈ V , and

let J be an ideal of k[X1, . . . , Xn] that contains I. Let J ′ be the image of J in Γ(V ).

Then there is a natural isomorphism ϕ from OP (An)/JOP (An) to OP (V )/IOP (V ).

In particular, OP (An)/IOP (An) is isomorphic to OP (V ).

Solution. See Lemma 4.0.15

Problem 7.2.4. Let V be a non empty variety. Show that the map that associates

to each F ∈ k[X1, . . . , Xn] a polynomial function in F ∈ k[X1, . . . , Xn] a polynomial

function in F (V, k) (the set of all function from V to k) is a ring homomorphism

whose kernel is I(V).
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Solution.

φ : k[X1, . . . , Xn] → (V, k)

F → f

where f : V → k, f(a1, . . . , an) = F (a1, . . . , an) (the restriction map). The set of all

polynomial function forms a ring homomorphism, thus φ is a ring homomorphism. If

F ∈ ker(φ) ⇔ F (a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V ⇔ F ∈ I(V ).

Problem 7.2.5. Let V ⊂ An be a variety. A subvariety of V is a variety W ⊂ An

that is contained in V . Shoe that there is a natural one-to-one correspondence between

algebraic subsets (resp. subvarieties, resp. points) of V and radical ideals (resp. prime

ideals, resp. maximal ideals) of Γ(V ).

Solution. Γ(V ) = k[X1, . . . , Xn]/I(V ). The statement follows from Problem 7.1.38.

Problem 7.2.6. Let V ⊂ An be a nonempty variety. Show that the following are

equivalent: (1) V is a point, (2) Γ(V ) = k, (3) dimk Γ(V ) <∞.

Solution. (1) ⇒ (2): By Corollary 3.4.8, I(V ) = (X1−a1, . . . , Xn−an) is a maximal

ideal. Thus, Γ(V ) = k[X1, . . . , Xn]/I(V ) = k. (2) ⇒ (3): dimk Γ(V ) = dimk k = 1.

(3) ⇒ (1): By Corollary 3.4.9, number of points in V (I(V )) is atmost 1. Thus, V is

a point (as V is nonempty).

Problem 7.2.7. Let F be an irreducible polynomial in k[X, Y ], and suppose F i

monic in Y : F = Y n + a1(X)Y n−1 + · · ·+ an(X), with n > 0. Let V = V (F ) ⊂ A2.

Show that the natural homomorphism from k[X] to Γ(V ) = k[X, Y ]/(F ) is one-to-

one, so that k[X] may be regarded as a subring of Γ(V ).

Solution. φ: k[X] 7→ k[X, Y ]/(F ), taking g → g mod (F ). If g1, g2 ∈ k[X] (g1 6= g2)

such that g1 mod (F ) = g2 mod (F ) ⇒ (g1 − g2) ∈ (F ) ⇒ F | (g1 − g2). But F is a

function of X and Y (deg(Y ) > 0) and (g1− g2) is function of X. Thus, F ∤ (g1− g2).

So, φ is one-one. k[X] can be considered a subring of Γ(V ).

Problem 7.2.8. Let φ : V → W is a polynomial map, and X is an algebraic subset

of W , Show that φ−1(X) is an algebraic subset of V . If φ−1(X) is irreducible, and X

is contained in the image of φ, Show that X is irreducible.

Solution. X = V (F1, . . . , Fr), where S = {F1, . . . , Fr} ∈ k[X1, . . . , Xn]. φ−1(X)

= φ−1(V (F1, . . . , Fr)) = V (F1 ◦ φ, . . . , Fr ◦ φ). Since, φ is onto, φ−1(X) ⊂ V . Hence,
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φ−1(X) is irreducible.

Let X = X1 ∪ X2, then φ
−1(X) = φ−1(X1) ∪ φ−1(X2). But, both are algebraic, by

part (a). Thus, φ−1(X) = φ−1(X1) or φ
−1(X) = φ−1(X2). Since, X is contained in

image of φ, we have X = X1 or X = X2. Thus, X is irreducible.

Problem 7.2.9. (a) Show that X = {(t, t2, t3) ∈ A(k) | t ∈ k} is affine variety. (b)

Show that V (XZ − Y 2, Y Z −X3, Z2 −X2Y ) ⊂ A3(C) is a variety.

Solution. X is algebraic set (By Problem 1.11(a)). Let φ : C → C3 mapping t 7→
(t, t2, t3). Taking T1 = X, T2 = X2 and T3 = X3, φ is a polynomial map. X is

algebraic subset of W . φ−1(X) = C is irreducible and X is contained in image of φ

⇒ X is irreducible (by above problem). Thus, X is affine variety.

Note that Y 3 − X4 = −Y (XZ − Y 2) + X(Y Z − X3), Z3 − X5 = Z(Z2 − X2Y ) +

X2(Y Z − X3) and Z40Y 5 = Z2(Z2 − X2Y ) + (XY Z + Y 3)(ZX − Y 2). Consider

the polynomial map φ : C → C3 taking t 7→ (t3, t4, t5). By above problem, it only

remains to show that V is contained in image of φ. Consider (x, y, z) ∈ V not all

x, y, z = 0. Since, C is algebraically closed, there exists t ∈ C such that x = t3. Then

y3 = t12 and z3 = t15. So y = t4ωi and z = t5ωj where ω is primitive third root of

unity (with i, j = 0, 1, 2). By the relation Y Z = X3, t9ωi+j = t9 or ωj = ω−i. Hence,

(x, y, z) = (t3, t4ωi, t5ωj) = (s3, s4, s5) ∈ V where s = tωi.

7.3 Multiple Points and Tangent Lines

Problem 7.3.1. Prove that in the curves C = X2 − Y 3, D = Y 2 − X3 − X2,

E = (X2 + Y 62)2 +3X2Y − Y 3 and F = (X2 + Y 2)3 − 4X2Y 2, P = (0, 0) is the only

multiple point on the curve.

Solution. ∂C
∂X

= −3X2 and ∂C
∂Y

= 2Y . By letting ∂C
∂X

= ∂C
∂Y

= 0, we get (X, Y ) =

(0, 0) ∈ C. Thus, C is the only multiple point on C. Similarly for all other curves.

Problem 7.3.2. If a curve F of degree n has a point P of multiplicity n, show that

F consists of n lines through P (not necessarily distinct).

Solution. F = Fm + Fm+1 + · · · + Fn where Fi’s are forms. mP (F ) = n. Let P be

(0, 0). Since P is of multiplicity n, m = n. Therefore, F is a form in k[X, Y ] of degree

n. So, we can write F =
∏
Lrii , where Li are distinct lines passing through P (not

distinct).
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If P = (a, b) 6= (0, 0) then by using translation F T = F (X + a,X + b), degree of F T

remains same as degree of F and we can get the result.

Problem 7.3.3. Let P be double point on curve F . Show that P is a node if and

only if FXY (P )
2 6= FXX(P )FY Y (P ).

Solution. Note: An ordinary double point is called node i.e. F has only 2 distinct

simple tangents at P (simple tangent Li means ri = 1). A double point on curve F

has mP (F ) = 2.

Let P = (0, 0). Let P is ordinary double point on F i.e. FmL1L2.

Fm = L1L2 = (α1X + β1Y )(α2X + β2Y )

where α1

β1
6= α2

β2
(as L1 L2 are distinct lines). F = Fm + (higher degree terms). Then,

(FXX(P )) = 2α1α2, (FY Y (P )) = 2β1β2 and (FXY (P ))
2= (α1β2 + β1α2)

2 6= α1α2β1β2

(as α1

β1
6= α2

β2
).

If P is not a node i.e. Fm = (α1X + β1Y )2, then FXX(P ) = 2α2
1, FY Y (P ) = 2β2

1

and (FXY (P ))
2 = (2α1β1)

2 = FXX(P )FY Y (P ). Using translation, we can prove the

statement for any general point P = (a, b).

Problem 7.3.4. (char(k) = 0). Show that mP (F ) is the smallest degree m such that

for some i+ j = m, ∂mF
∂Xi∂Y j (P ) 6= 0. Find an explicit description for the leading form

for F at P in terms of the derivatives.

Solution. Consider P = (0, 0). Leading form for F at P in terms of these derivatives

is

Fm =
∑

i+j=m

∂nF

∂X i∂yj
· X

iY j

i!j!

mP (F ) is leading form for F at P i.e. Fm. Now if F = Fm + Fm+1 + · · · + Fn, then

differentiating w.r.t. X reduces power of X by 1 and differentiating w.r.t. Y reduces

power of Y by 1. Fm =
∏
Lri1 . Differentiating Fm, m times w.r.t. X, gives coefficient

of Xm in Fm and differentiating Fm, i times w.r.t. X and j times w.r.t. Y , gives

coefficient of X iY j in Fm. Since, Fm 6= 0 ⇒ there exists i, j (i + j = m) such that

X iY j has coefficient non zero. Since, Fm′ = 0 for all m′ < m ⇒ X iY j (i + j < m)

has coefficient zero. So, ∂mF
∂Xi∂Y j (P ) 6= 0 for some i+ j = m.
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