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Abstract

Bandwidth Problem in Graphs

by R. Vinay Yadav

KEYWORDS: Computational Complexity, NP completeness, bandwidth problem, bi-

convex bipartite graph, multiple processor scheduling problem.

Bandwidth is a graph layout problem that is known for its difficulty even on

small graph classes. The bandwidth problem of an arbitrary graph is known to be

NP-complete. It is NP-complete even for a tree of maximum degree 3. Bandwidth

problem is amongst the most studied graph layout problems and intuitively, it seems

to be harder to solve than various other graph layout problems like pathwidth and

vertex separation. Bandwidth is a benchmark problem known for its difficulty among

the often studied NP-hard graph problems.

Surprisingly, to our knowledge, few polynomial time algorithms for exact compu-

tation of bandwidth are known only for caterpillars of hair length at most 2, chain

graphs, cographs, interval graphs and bipartite permutation graphs. The following

relationship between these classes of graphs is known : Bipartite Permutation Graphs

⊂ Biconvex Bipartite Graphs ⊂ Convex Bipartite Graphs ⊂ 2-directional Orthogonal

Ray Graphs ⊂ Chordal Bipartite Graphs. In the above mentioned family, bandwidth

problem is NP-complete for convex bipartite graphs and all its super classes. Poly-

nomial time algorithm have been given for bipartite permutation graphs. But for

Biconvex Bipartite graph, no standard result has been proposed.

The NP-completeness of bandwidth problem in graphs has been traditionally

proved using multiple processor scheduling problem. The multiple processor schedul-

ing problem is known to be strongly NP-complete and is reduced to the bandwidth

problem in certain graph classes and hence the latter is also proved to be NP-complete.

In this thesis, we propose that bandwidth problem is not NP-complete for biconvex

bipartite graphs. This result, though, cannot be accepted as a formal proof as we

only prove that NP-Completeness cannot be proved by using the traditional method

of multiple processor scheduling problem reduction to bandwidth problem in case of

biconvex bipartite graphs. We see that polynomial time algorithms have been given
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for Bipartite Permutation graph which is the nearest established subset of biconvex

bipartite graphs. We try to extend a similar approach for biconvex bipartite graphs.

We expect to obtain a polynomial time algorithm though it is still under development.
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Chapter 1

Introduction

A linear layout of a graph G with vertex set V (G) is a bijection π : V (G) →{1, 2, . .
. , |V (G)|}. When we are given a graph G and integer k, bandwidth problem checks

whether there exists a linear layout of the vertices of G such that no edge of G has its

endpoints mapped to positions at distance more than k. The bandwidth of a graph is

the maximum bandwidth of a connected component. So, we consider only connected

graphs. Papadimitriou [1] showed that the bandwidth problem is NP-Complete for

general graphs. Monien [2] showed that it is NP-complete even for caterpillars of hair

length at most 3, which is a very special tree. This proves that bandwidth problem

is NP-Complete for chordal bipartite graphs.

The following relationship of the graph classes is known: Bipartite Permutation

Graphs ⊂ Biconvex Bipartite Graphs ⊂ Convex Bipartite Graphs ⊂ 2-directional

Orthogonal Ray Graphs ⊂ Chordal Bipartite Graphs. But for the above family,

Heggernes et al [5] recently proposed a polynomial time algorithm that computes

bandwidth of bipartite permutation graphs in O(n4 logn) time. They have used a

new approach to solve the bandwidth problem. They do not use the previously known

algorithms or techniques. They characterize bipartite permutation graphs based on

vertex ordering called strong ordering. But in our survey, this proved to be a compli-

cated approach. But, Uehara [8] proposed a faster algorithm for the same problem

shortly afterwards by extending known results for interval graphs and chain graphs

making use of a new characterization of bipartite permutation graph based on graph

decomposition. Uehara’s algorithm solves the bandwidth problem in O(n2 logn) time.
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2 CHAPTER 1. INTRODUCTION

1.1 Some Applications of Bandwidth Problem

Bandwidth problem is extensively used in the sparse matrix computations. Sparse

matrix computation has significant importance mainly in engineering applications as

practically used matrices arising in those fields are usually sparse. The problem is

to decide if there is a permutation matrix P such that PAP T is a matrix with all

non-zero entries on the central diagonal or on the k diagonals on either side of the

central diagonal. Standard matrix operations like inversion and multiplication and

also Gaussian elimination can be sped up considerably if the input matrix A is trans-

formed into a matrix PAPT of small bandwidth. The graph version and the matrix

version of the bandwidth problem are equivalent, and both of them are being stud-

ied extensively. In this thesis, we study the graph version only of certain graph classes.

Also, some hard problems become efficiently solvable when restricted to particular

graph classes. This is a very common approach to solve hard problems; for example,

the class of interval graphs was first studied by molecular biologists, and it was found

that many hard problems could be solved efficiently on these graph classes. On the

other hand, these algorithms reveal and make use of graph theoretical properties of

the graph classes.



Chapter 2

Preliminaries

In this chapter we discuss the basic definitions and theorems in graph theory and

computational complexity. In section 2.1, we discuss the basic definitions in graph

theory. In section 2.2 we discuss about the computational complexity classes P and

NP. In Section 2.3, we introduce and define the bandwidth problem.

2.1 Graph Theoretic Preliminaries

Definition 1. A graph G = (V, E) consists of a finite set of vertices V(G) and a col-

lection E(G) of edges. An undirected edge is a pair of distinct vertices (u, v) ∈ V (G),

and is denoted by uv. We say that the vertex u is adjacent to the vertex v if there is

an edge uv ∈ E(G).

Let S be a set of vertices of a graph G. Then, the cardinality of the set S is de-

noted by |S| and the subgraph of G induced by S is denoted by G[S]. The set N(v) =

{u ∈ V (G): uv ∈ E(G)} is called the neighbourhood of the vertex v ∈ V in G, the set

N[v ] = N(v) ∪{v} is called the closed neighbourhood of the vertex v ∈ V(G). Given

a graph G(V,E), its compliment G = (V,E) is defined by E = {{uv}|{u, v} ̸∈ E}. A
vertex set I is called independent if G[I] does not contain edges.

Clique is a set of vertices such that any pair of vertices in that set is connected

by an edge. For a graph G = (V,E), a sequence of distinct vertices {v0, v1, . . . , vl} is
a path, denoted by (v0, v1, . . . , vl), if {vj, vj+1} ∈ E for each 0 ≤ j < l. The length of

3
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a path is the number of edges on the path. For two vertices u and v, the distance of

the vertices which is denoted by dist(u, v), is the minimum length among the paths

joining u and v.

Definition 2. A caterpillar is a tree in which all the vertices of degree greater than

one are contained in a single path called a body. An edge incident to a vertex of degree

one is called a hair. A generalized caterpillar is a tree obtained from a caterpillar by

replacing each hair by a path. A path replacing a hair is also called a hair.

Definition 3. A graph G = (V, E) is bipartite iff V can be partitioned into two sets

X and Y such that every edge joins a vertex in X and the other vertex in Y. Now let

G(V, E) be a bipartite graph with bipartition X and Y. An ordering ≺ of X is said to

fulfil the adjacency property if for each y ∈ Y , the set of neighbours of y consists of

vertices that are consecutive in the ordering ≺ of X.

A bipartite graph G is considered to be chordal if G does not contain induced

cycles of length greater than 4 i.e, a graph is chordal if each of its cycles with four

or more nodes has a chord (an edge joining two nodes that are not adjacent in the

cycle). We see that trees are chordal bipartite graphs by definition.

Definition 4. G is said to be convex if there exists an ordering of X that fulfils the

adjacency property. G is said to be biconvex if there exists an ordering of X and an

ordering of Y as well that fulfil the adjacency property.

Definition 5. A biconvex graph is called a chain graph if and only if it has a vertex

ordering of X such that N(xn) ⊆ N(xn−1) ⊆ . . . ⊆ N(x1). We can also sort vertices

of Y as N(y1) ⊆ N(y2) ⊆ . . . ⊆ N(y′n) by this property.

Definition 6. A graph G with vertex set V(G)= {v0, v1, ..., vn} is said to be a permuta-

tion graph if there exists a pair of permutations π1 and π2 on N = {1, 2, ..., n} such that

for all i, j ∈ N , (vi, vj) ∈ E(G) if and only if (π−1
1 (i)−(π−1

2 (j))·(π−1
2 (i)−π−1

1 (j)) < 0.
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Bipartite permutation graphs are those which are both bipartite and permutation graph.

Intuitively, we see that each vertex v in a permutation graph corresponds to a line

lv joining two points on a pair of parallel lines L1 and L2, which is called line repre-

sentation. Then, two vertices v and u are adjacent if and only if the corresponding

lines lv and lu are crossing. Vertex indices give the ordering of the points on L1, and

the permutation of the indices gives the ordering of the points on L2.

Definition 7. A graph G = (V, E) with V(G)= {v0, v1, ..., vn} is called an interval

graph if there is a finite set of intervals I = {Iv1 , Iv2 , ..., Ivn} on the real line such that

{vi, vj} ∈ E if and only if Ivi ∩ Ivj ̸= ϕ for each i and j with 0 < i, j ≤ n.

We call the set I of intervals an interval representation of the graph. For each

interval I, we denote the left and right endpoints by L(I) and R(I) respectively i.e, I

= [L(I), R(I)]. For any interval representation I and a point p, N[p] denotes the set

of intervals which contain the point p. An interval representation is called proper iff

L(I) ≤ L(J) and R(I) ≤ R(J) for every pair of intervals I and J or vice versa. An

interval graph is proper if and only if it has a proper interval representation. That is

any proper interval graph will have a proper interval representation which consists of

intervals of one unit length.

Definition 8. A graph G = (V, E) is called a threshold graph if there exists non

negative weights w(v) for v ∈ V and t such that {u, v} ∈ E iff w(u) + w(v) ≥ t.

Definition 9. A Helly family of order k is a family of sets such that any minimal

subfamily with an empty intersection has k or fewer sets in it. The k- Helly property

is the property of being a Helly family of order k.

2.2 Computational Complexity

Computational complexity theory classifies computational problems according to their

difficulty, and relates those classes to each other. The complexity class P is seen as
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mathematical abstraction modelling of those computational problems that admit an

efficient algorithm. This hypothesis is called the CobhamEdmonds thesis. The com-

plexity class NP, on the other hand, contains many problems that needs to be solved

efficiently, but for which no efficient algorithm has been found.

The theory of NP-Completeness is designed to be applied to decision problems

only. Before formally introducing the notion of NP-Completeness, let us briefly dis-

cuss about decision and optimization version of a problem. Decision problems have

only two possible solutions, either the answer is yes or the answer is no. If the opti-

mization problem asks for a structure of certain type that has minimum cost among

all such structures, we can associate with that problem,the decision problem that in-

cludes a numerical bound k as an additional parameter and asks whether there exists

a structure of the required type having cost no more than k. Let us illustrate with

an example. Vertex Cover is a well known graph theoretic problem. The problem is

the following:

Definition: A vertex-cover of an undirected graph G = (V,E) is a subset of V ′

of V such that ∀(u, v) ∈ E either u or v (or both) belongs to V ′ .

Problem: Finding minimum size vertex cover in a given undirected graph.

Figure 2.1: The vertices shown in dark shade constitute the minimum vertex cover

The optimization version of this problem is: What is the size of minimum vertex

cover for a given graph G?

The decision version of this problem is: Does there exist a vertex cover of size k

for a given graph G, where k is a fixed integer?

Decision problems can be derived from maximization problems in an analogous
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way, simply by replacing “no more than” by “at least”.

2.2.1 NP-Hardness and NP-Completeness

The question of whether P equals NP is one of the most important open questions in

theoretical computer science because of the wide implications of a solution. If the an-

swer is yes, many important problems can be shown to have more efficient solutions.

These include various types of integer programming problems in operations research,

many problems in logistics, protein structure prediction in biology, and the ability to

find formal proofs of pure mathematics theorems. The P versus NP problem is one of

the Millennium Prize Problems proposed by the Clay Mathematics Institute. There

is a US$1,000,000 prize for resolving the problem.

Figure 2.2: P, NP-complete, NP-hard for different set of problems

2.2.2 Approximation Algorithms

In this section, we look at some basic definitions related to approximation algorithms.

Approximation algorithms are algorithms used to find approximate solutions to op-

timization problems. It is usually associated with NP-hard problems as it is unlikely

that there can be efficient polynomial time exact algorithms for NP-hard problems. If

we know that a problem is NP-hard then we can work on the problem in the following

ways:

1. Restricted class of Inputs: Here the input is restricted to a subset of the

original class. Sometimes a problem can be solved in polynomial time if we restrict
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the input to subset of the original class. For example minimum vertex cover problem

is NP-complete on general graphs. If we restrict our input to bipartite graphs this

can be solved in polynomial time.

2. Approximation Algorithms: Here we design an algorithm which finds an

approximate solution with a small error bound instead of finding the exact solution.

In this method, we compromise on the exactness of the solution to reduce the com-

plexity.

2.3 Bandwidth of a graph

For a graph G, a layout (or vertex ordering) β is a bijective function β : V (G){1, ..., n}
to V . We also write β as ⟨β(1), ..., β(n)⟩. For a vertex pair u, v of G, the distance be-

tween u and v in β is dβ(u, v) = |β−1(u)−β−1(v)|. We write u ≼β v if β−1(u) ≤ β−1(v)

and u ≺β v if βu < βv. The leftmost and rightmost vertex in β are respectively β(1)

and β(n). For an integer k ≥ 1, we call β a k-layout for G if for every edge uv of G,

dβ(u, v) ≤ k.

Definition 10. A layout of a graph G = (V, E) is a bijection π between the vertices

in V and the set {1, 2, ..., |V |}.
The bandwidth of π is defined as bπ(G) = max|π(u)− π(v)||(u, v) ∈ E(G).

The bandwidth of G is defined as b(G) = min bπ(G) where π ranges over all linear

layouts of G.

A linear layout π of G is said to be optimal if bπ(G) = b(G). Given a graph G and

an integer k, the bandwidth problem asks whether the bandwidth of G is at most k.

Also, the layout which achieves b(G) is called as optimal layout. Since the bandwidth

of a graph is the maximum bandwidth over all its connected components, we shall

consider only connected graphs.

2.3.1 Multiple Processor Scheduling Problem

The problem statement is: “Given a set J of jobs where job ji has length li and a

number of processors mi, what is the minimum possible time required to schedule all
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jobs in J on m processors such that none overlap?”

The multiprocessor scheduling problem is a well known strong NP-Complete prob-

lem. We have discussed that the bandwidth problem is NP-complete for general

graphs and even for very specialized graphs like caterpillar of hairlength at most

3. The NP-completeness of bandwidth problem is proved by reducing a multiple

processor scheduling problem to the bandwidth problem. Monien [2] reduced the

bandwidth problem for caterpillars with hairs of length at most 3 and then Anish et

al., [3] developed this for convex trees and then for convex bipartite graphs.
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Chapter 3

The NP-Complete Family

In this chapter, we study about the bandwidth problem in some of the graph classes

for which it is NP-Complete. In Section 3.1, we discuss about caterpillars with hairs

of length at most 3. In section 3.2 and 3.3, we study about convex trees and convex

graphs respectively.

3.1 Bandwidth problem of caterpillars with hairs

of length at most 3

Theorem 1. The bandwidth minimization problem for caterpillars with hairs of length

at most 3 is NP-complete.

We will discuss the bandwidth problem for caterpillars of hairlength at most 3

in detail though we are not going to give the entire proof. Monien [2] reduced

the bandwidth problem for caterpillars with hairs of length at most 3. Given a

set T = {t1, t2, ..., tn} of tasks (the ith task in T has execution time ti), a deadline

D, and a number m of processors, we construct the required graph and an integer k

such that C has bandwidth k if and only if the tasks in T can be scheduled on the m

processors to satisfy the deadline D. Here we can assume that all the ti are polynomi-

ally bounded in n as the multiple processor scheduling problem is strong NP-complete.

We construct two portions of the caterpillar called “barrier” and “turning point”

as shown in Figure 3.1. Here, the barrier of height p and the turning point of height

11
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p both have bandwidth p. Note that, in every optimal layout of the turning point

both nodes a and g either belong to the first half of the layout or the second half of

the layout, i.e., in every optimal layout of the turning point the backbone has to be

folded. Let Tp denote the turning point of height p. Tp has exactly 6p+1 nodes.

(a) Ti corresponding to task ti (b) p-barrier (c) Turning point of height p

Figure 3.1: [3] Components of the caterpillar

Lemma 1. Let Tp = (V, E), let σ : V → {1, ..., 6p+1} be a layout with |σ(i)−σ(j)| ≤
p for all i, j ∈ E and let p ≥ 4. Then either σ(a), σ(g) < 3p+1 or σ(a), σ(g) >3p+1

.

The instance Y = (t1, t2, ..., tn, D,m) of the multiple processor scheduling problem

is associated with caterpillar C as shown in the Figure 3.2. We only consider instances

Y with Σn
i=1ti = D.m. The multiple processor scheduling problem is NP-complete

when restricted to instances of this class also.(Monien [2])

Each task ti is represented by a caterpillar Ti. Each processor i is represented by a

chain Pi of length D−1. C is constructed from these components as shown in Figure

3.2. Task caterpillars Ti and Ti+1 are separated by a chain Li of length ∆. Processor

chains Pi and Pi+1 are separated by a (p+1)-barrier Bi. A turning point of height

p+2n+1 separates the upper task portion and the lower processor portion. A (p +

2n + 1)-barrier B0 is attached to the left of P1. The behaviour of the turning point
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Figure 3.2: [3] The reduction from Multiple Processor Scheduling Problem

will force every layout with bandwidth p+2n+1 to place the two parts one upon the

other. A layout with bandwidth p+2n+1 exists if and only if each of the holes can

be filled by using all the nodes of the blocks encoding certain execution times which

is equivalent to the instance of Y having a solution. Each task consists of the chain

of length ti and the ‘ground line’ consists of λ = m(D+2)+1 nodes

If there exists a scheduling of the tasks in T such that tasks ti1 , ti2 , ..., tij are

assigned to processor i, then C has bandwidth k and an optimal layout can be achieved

by:

(a) laying out the vertices of the body of Ti1 , Ti2 , ..., Tij between barriers Bi−1 and

Bi (between Bm−1 and turning point, for i = m) and

(b) laying out the vertices of B0 at the extreme left and those of the turning point

at the extreme right.

Conversely, if C has bandwidth k, then in any optimal layout of C,

(a) the turning point must be laid out at one of the extreme ends, and barrier B0

must be laid out at the other,
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(b) all the vertices of the body of each Tj must be laid out between two barriers Bi

and Bi+1 for some i (or Bm−1 and the turning point for i = m- 1 ), and

(c) for each i, if between Bi and Bi+1 (or between Bm−1 and turning point for i =

m-1 ), bodies of Ti1 , Ti2 , ..., Tij are laid out, then ti1 + ti2 + + tij < D.

This gives us a scheduling of the tasks in T .

Lemma 2. If Y has a solution then C has bandwidth p+2n+1.

Lemma 3. If p > 2n·(d+4) and if C has bandwidth p+2n+1, then Y has a solution.

For the proof of the above lemmas, please refer to Monien’s paper. The proof of

Theorem 1 follows from the above lemmas.

3.2 Bandwidth of Convex trees

Theorem 2. The bandwidth problem is NP-complete for convex trees.

The proof is almost same as that of Theorem 1 with a slight modification.

We will use the same construction of C as discussed in the previous section of cater-

pillar with hairs of length at most 3. If we remove from C the degree-1 vertices of the

turning point, the remaining tree is a caterpillar. It is easy to see that a caterpillar

is biconvex, and therefore both partitions of C have an ordering satisfying the adja-

cency property. If we restore the degree-1 vertices, irrespective of their positions in

the ordering of the partition to which they belong, they do not disturb the adjacency

property of the ordering of the other partition. Thus C is a convex tree. If we set

the values of ∆ and p such that ∆ = 2·(m(D + 2) − 2) and p > 2n(D + 4), C can

be constructed in time polynomial in n, m, and D ; and it can be shown that the

tasks in T can be scheduled on the m processors if and only if C has a bandwidth of

k = p + 2n + 1. In fact, this proof is exactly the same as the proof of Theorem 1,

except only for a slight difference in the structure of the turning point.
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3.3 Bandwidth of Convex Bipartite Graphs

Theorem 3. The bandwidth problem is NP-complete for Convex bipartite graphs.

We have seen that the bandwidth problem is NP-complete for caterpillars with

hairs of length at most 3, which are very special trees. This implies that it is NP-

complete for chordal bipartite graphs. In this section, we see that it is NP-complete

for convex bipartite graphs as well which is a subclass of chordal bipartite graphs.

We also discuss an O(n)-time, 4-approximation algorithm. In the previous section,

the bandwidth problem has been proved to be NP-complete for convex trees which is

a subclass of Convex bipartite graphs. We will discuss the algorithm in detail in this

section.

Let G be a convex bipartite graph with bipartition (X, Y ) and an ordering ≺ of

X satisfying the adjacency property with X = {x1, x2, ..., x|X|} and x1 ≺ ... ≺ x|X|.

Assume Y = {1, 2, . . . , |Y |}. Define mappings s : Y → {1, 2, ..., n} and l : Y →
{1, 2, ..., n} such that for y ∈ Y , xs(y) and xl(y) are, respectively, the smallest and

largest vertices in≺ adjacent to y. For each vertex y ∈ Y , let m(y) = ⌈(s(y)+l(y))/2⌉.

Algorithm

The algorithm takes G as input along with the mappings s and l and outputs a lin-

ear layout π of G. The general idea of the working of the algorithm is that it takes

the vertices of X in the same order as they appear in ≺ and insert vertices of Y

in between them. While inserting the vertices of Y between the vertices of X, the

algorithm follows the property that for each y ∈ Y, ⌊|N(y)|/2⌋ vertices of the set N(y)
of its neighbours are onto its left and the remaining to its right.

Algorithm starts by computing m(y) for each vertex of Y and sorting the vertices

according to their m(i) values (Lines 1 and 2). It incrementally assigns labels to the

vertices of X in the order in which they appear in ≺ ; stopping at each xj to check

whether there is a vertex in y with m(y) value equal to j, in which case it assigns the

current label to y. The process is repeated until all vertices have been labelled (Lines

3 through 8).

We shall now analyse the performance of the algorithm. Consider a layout π output
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by the algorithm.

Algorithm 1 Algorithm to compute bandwidth of convex graph [3]

1. Compute m(i) for each vertex i ∈ Y . Add a dummy vertex |Y | + 1 to Y with
m(|Y | + 1) = |X| +1.

2. Let σ(1), . . . , σ(|Y + 1|) be the vertices of Y sorted in the non-decreasing order
of m(i) value, where σ is a permutation on {1, . . . , |Y |+ 1}.

3. Initialize i← 1, j ← 1, k ← 1.

4. while (j ≤ |X|)

5. if j < m(σ(i))

6. π(xj) = k; j ← j + 1; k ← k + 1.

7. else if j = m(σ(i))

8. π(σ(i)) = k; i← i+ 1; k ← k + 1.

9. return π

Lemma 4. Algorithm 1 preserves the ordering ≺ of X, i.e,

π(x1) < π(x2) < · · · < π(x|X|)

Proof: This is easy to see as the vertices of Y are just inserted in between vertices

of X and the order of x is not changed.

For y ∈ Y , we define Gy as the subgraph of G induced by the vertices in

Vy = {v|π(xs(y)) ≤ π(v) ≤ π(y)} ∪ {v|π(y) ≤ π(v) ≤ π(xl(y))}.

The diameter of a graph is the least integer k such that the shortest path between

any pair of vertices is at most k.

Lemma 5. For any y ∈ Y, the diameter of Gy is at most 4.
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Proof. Consider Gy corresponding to some y ∈ Y . Let u, v be a pair of vertices

of Vy. Now we will divide the proof for 3 cases.

Case 1 : Both u, v ∈ Vy ∩X.

By the construction of Vy and Lemma 1, for some s(y) ≤ i, j ≤ l(y), u must be xi and

v must be xj. This implies that both u and v are adjacent to y. Hence the distance

between u and v is 2. The 2-distance path is u→ y → v.

Case 2 : u ∈ Vy ∩X and v ∈ Vy ∩ Y .

Here, vertex v should be adjacent to at least one vertex u′ in Vy ∩ X. If not , then

it contradicts the assumption that the algorithm placed v between xs(y) and y or

between y and xl(y) (by the construction of Vy). So v is adjacent to u′. Now, if u′ is

u, then the distance between them is 1. Else, both u and u’ will be at a distance of 2

as they both lie in X (proved in the previous case). This makes the distance between

u and v to be 3.

Case 3 : Both u, v ∈ Vy ∩ Y .

From case 2 we can see that u must be adjacent to u′ and v must be adjacent to v′,

where u′, v′ ∈ Vy ∩ X. And according to the construction of Vy, both u and v are

adjacent to y. And from case 2, the shortest path is u → u′ → y → v′ → v. So the

distance between u and v is at most 4.

Any pair of vertices u and v will fall in one of the above cases and hence the lemma

is proved.

Assmann et. al [7] have proved the following.

Lemma 6. For a graph G, b(G) ≥ max⌈(N ′ − 1)/D′⌉, where the maximum is taken

over all connected subgraphs G′ of G, N ′ is the number of vertices of G′, and D′ is

the diameter of G′.

We will now show the approximation ratio of the algorithm.

Lemma 7. For layout π returned by the Algorithm, bπ(G) ≤ 4× b(G).

Proof. Here π is the layout given as output by the algorithm. Let (x, y), x ∈
X, y ∈ Y be an edge of G so that |π(x) − π(y)| = bπ(G). Now consider V ′ be

the set of vertices v such that v lies between x and y in π. It is easy to see that

bπ(G) = |V ′| − 1. But from Lemma 5 and Lemma 6, we get b(G) ≥ ⌈(|Vy| − 1)/4⌉. So
we have:

bπ(G)

b(G)
≤ |V ′| − 1

(|Vy| − 1)/4
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. Also we can see that, x must be xs(y) or xl(y) from the way we have constructed V ′,

and therefore V ′ ⊆ Vy. This completes the proof and we get:

bπ(G)

b(G)
≤ 4.

Now it is left to discuss the computational complexity of the approximation algorithm

which we have discussed. We can see that step 1 in the algorithm runs in O(|Y |) time

and the while loop in the step 4 runs in O(|X|) time while the other steps are constant.

So we can conclude that the above algorithm runs in O(|X|+ |Y |) time. So, the above

statement and Lemma 7 implies that:

Theorem 4. Algorithm 1 computes a linear layout of a convex bipartite graph G

whose partitions are X and Y in O(|X|+ |Y |) time such that bπ(G) ≤ 4× b(G).



Chapter 4

The polynomial time family

The bandwidth problem can be solved in polynomial time for a very few graph classes.

In this chapter we study 4 such graph classes. In section 4.2 and 4.3, linear time al-

gorithms are discussed for threshold graphs and chain graphs respectively. In section

4.4, O(n2) time algorithm is given for solving bandwidth problem in bipartite per-

mutation graph. In section 4.5, we discuss the recent result given by Anish et al.,

[3] regarding biconvex trees. The algorithms used in threshold and chain graphs help

us in the development of the algorithm for bipartite permutation graph. This has

been done by Uehara[8] which is an improvement of the result given by Heggernes,

Kratsch, and Meister[5]. The latter used a complicated yet new approach to solve the

bandwidth problem of graphs. Uehara, on the other hand, extended known results

for interval graphs and chain graphs and applied it to bipartite permutation graphs

based on a particular graph decomposition which we will discuss later in the chapter.

4.1 Some results on Interval Graphs

The following is a known proper inclusion:

Lemma 8. [4] (1) Threshold graphs ⊂ interval graphs ⊂, (2) Chain Graphs ⊂ bipar-

tite permutation graphs.

For a graph G = (V,E), a proper interval completion is a subset E ′ of E such

that G′ = (V,E ′) is a proper interval graph. We will deal with only proper interval

completions. So, we say a completion E ′ is minimum if and only if |C ′| ≤ |C ′′| where

19
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C’ and C” are maximal cliques in G′ = (V,E ′) and G′′ = (V,E ′′) respectively where

E ′′ is another completion.

We have seen that every proper interval graph has a proper interval representation

that consists of unit interval length. We can also say that the ordering is unique and

hence the following proposition:

Proposition 1. For a proper interval graph G = (V, E) there is a unique ordering

(up to reversal) v1, v2, . . . , vn of n vertices such that G has a unique proper interval

representation I such that L(Iv1) < L(Iv2) < . . . < L(Ivn).

Kaplan and Shamir [10] have shown that for a graph G and its minimum com-

pletion E ′, b(G) = |C ′| − 1. Here C ′ is the maximal clique in G′ = (V,E ′). For an

interval graph G = (V,E) with interval representation I = {Iv1 , Iv2 , . . . , Ivn}. For

each maximal clique C, there exists a point p such that N[p] induces clique C by

Helly property. Thus, we can compute b(G) by the following algorithm for a given

graph G;

Input : Graph G = (V,E)
Output: b(G)
1. generate a proper interval graph G′ = (V,E ′) that gives a minimum completion

of G.

2. make a unique interval representation I of G′;

3. find a point p such that |N [p]| ≥ |N [p′]| for any point p′ on I(G′);

4. return (|N [p]| − 1).

The following has been observed by Kaplan and Shamir [10]:

Observation 1. If G′ = (V,E ′) is a minimum completion of G = (V, E), let

I(G′) = (Iv1 , Iv2 , . . . , Ivn) be the unique proper interval representation of G′ as seen in

Proposition 1, then the ordering v1, v2, . . . , vn an optimal layout of G, and vice versa.

The following lemma on proper interval subgraphs of an interval graph will play an

important role in our results:

Lemma 9. Let G = (V, E) be an interval graph with V = {v1, v2, . . . , vn}, and

I = {Iv1 , Iv2 , . . . , Ivn} as an interval representation. Let J = {Ju1 , Ju2 , . . . , Juk
}

be a subset of I such that J forms a proper interval representation. Let ρ be the
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injection from J to I with Jvi = Ivρ(i) for each 1 ≤ i ≤ k ≤ n. Then G has an

optimal layout π such that each interval Jui
appears according to the ordering in J

i.e, π(Ivρ(i)) < π(Ivρ(i+1)
).

Proof. The idea of the proof is based on algorithm proposed by Kleitman and

Vohra [10]. We will assume that the algorithm given by Kleitman and Vohra receives

as inputs the interval representation I and b(G) and outputs the optimal layout π

that achieves b(G).

4.2 Bandwidth of Threshold Graphs

In this section, we study, in detail, the linear time algorithm which computes b(G) of a

threshold graph G. We have seen that, in a threshold graph there exists non-negative

weights w(v) for each v ∈ V and t so that {u, v} ∈ E iff w(u) + w(v) ≥ t. Here,

we assume that G is a connected graph and V is ordered as {v1, v2, . . . , vn} with

w(vi) ≤ w(vi+1) for 1 ≤ i < n. Note that this sorting can be done in O(n) time by

bucket sort using degrees of the vertices. We can find l such that w(vl−1) +w(vl) < t

and w(vl) +w(vl+1) ≥ t in O(n) time. Based on this construction, we can see that G

has the following interval representation I(G):

• vi corresponds to the point i for 1 ≤ i ≤ l. Here, Ivi = [i, i].

• vi corresponds to the interval [j, l] for l < i ≤ n. Here j is the minimum index

with w(vi) + w(vj) ≥ t.

Figure 4.1: [8](a)Threshold graph and (b) the interval representation
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Figure 4.2: [8] Minimum completion construction

An example is given to have a better understanding of a threshold graph and

its interval representation. In the example given in Figure 4.1(a), the threshold is

assigned as 5 and the weight is the number given the circle. We give the interval

representation in Figure 4.1(b).

Theorem 5. When an interval representation I(G) is given as discussed above for

a graph G = (V, E), the bandwidth b(G) can be computed in O(n) time.

Proof. Note that L(Ivi) < L(Ivi+1
) and R(Ivi) < R(Ivi+1

) for each i such that

1 ≤ i < l, and L(Ivi) ≥ L(Ivi+1
) and R(Ivi) = R(Ivi+1

) = l for each i with l <

i < n. Basically, G consists of two proper interval graphs induced by {v1, v2, . . . , vl}
and {vl, vl+1, . . . , vn}. The proper interval representations appear in I(G) as well.

Therefore using lemma 9, an optimal layout π of V = {v1, . . . , vn} exists such that

π(v1) < π(v2) < . . . < π(vl) and π(vl) > π(vl+1) > . . . > π(vn). So, an optimal layout

is obtained by merging the two sequences of vertices.

We now use Observation 1 to obtain an optimal layout by constructing a mini-

mum completion of G from the two sequences. [L(Ivn), R(Ivn)] = [1, l] is the longest

interval as G is connected. So we extend all the intervals, except Ivn , to length l -

1 and construct a minimum completion. We denote each extended interval Ivi by

I ′vi . The extension of intervals for i > l is straightforward from Figure 4.2. We just

extend them to right. Here, the maximum clique size is not increased. So, we now

concentrate on the points Ivi = [i, i] with i ≤ l. They are also extended to I ′vi with

length l - 1. We see that I ′vi contains either 1 or l. If it contains 1, set R(I ′vi) = 1
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whereas if it contains l we set L(I ′vi).

Algorithm 2 Algorithm for computing bandwidth of threshold graph [8]

Input:Threshold graph G = (V,E) with w(v1) ≤ w(v2) ≤ . . . ≤ w(vn) and t
Output:b(G)

1. let l be the minimum index with w(vl) + w(vl+1) ≥ t;

2. set b(G) :=∞.

3. for m = 1, 2, . . . , l − 1 do

4. set lc := 0;

5. for i = 1, 2, . . . ,m do

6. let j be the minimum index with w(vl) + w(vl+1) ≥ t;

7. if lc < (m− i+ 1) + (n− j + 1) then set lc := (m− i+ 1) + (n− j + 1);

8. end

9. if max{lc, n−m} < b(G) then b(G) := max{lc, n−m};

10. end

11. return (b(G) - 1).

Thus, the following proper interval representation (Fig. 4.2) gives a minimum

completion of n intervals of length l - 1 for some m such that 1 ≤ m < l:

L[Ivi ] = j if i > l. Here j is the minimum index with w(vi) + w(vj) ≥ t;

R[Ivi ] = i, if 1 ≤ i ≤ m, and

L[Ivi ] = i if m < i ≤ l.

Basically for the construction of of a minimum completion, we look for the index m

that minimizes a maximum clique in the proper interval graph represented by above

proper interval representation determined by m.

On the minimum completion, at each point i with 1 ≤ i ≤ l, l distinct cliques Ci are

induced. Now we consider the maximum clique of the corresponding proper interval

graph for a fixed m ∈ [1..l].

We see that N [m+ 1] ⊆ . . . ⊆ N [l] and hence N [l] induces a maximum clique of size

n - m at points in [m + 1, l] whereas at each point i in [1,m], N [i] induces a clique
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that consists of {vi, vi+1, . . . , vm} and {vj, vj+1, . . . , vn}. Hence, we have a clique of

size (m− i+ 1) + (n− j + 1) for each point i in [1,m].

Thus, for a fixed m, we compute [1..m] and [m+1..l], compare them, and obtain the

maximum. We then compute the minimum size of the maximum cliques for all m,

which gives b(G) + 1. Hence, we can compute b(G) by Algorithm 2. The correctness

of Algorithm 2 follows from Observation 1, Lemma 9 and the above discussions.

4.3 Bandwidth of Chain Graphs

Chain graphs are biconvex graphs that follow certain rules. We will discuss a lin-

ear time algorithm to solve the bandwidth problem in chain graphs. We are given

a chain graph with vertex ordering X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′}
according to the neighbour inclusion N(xn) ⊆ N(xn−1) ⊆ . . . ⊆ N(x1) = Y and

N(y1) ⊆ N(y2) ⊆ . . . ⊆ N(yn′) = X. Every vertex y ∈ Y stores two endpoints 1 and

d(y) such that N(y) = {x1, x2, . . . , xd(y)}, and each x ∈ X stores two endpoints n′

and n′ − d(x) + 1 such that N(x) = {yn′ , yn′−1, . . . , yn′−d(x)+1}.

(a) Chain Graph (b) Line representation

Figure 4.3: [8] A chain graph and its line representation

Figure 4.3 shows the intersection model of a chain graph; all x ∈ X are the hori-

zontal line segments with all left endpoints having the same coordinates, and all y ∈ Y

are the vertical line segments with all the top endpoints having the same coordinates.

It also can be transformed to the line representation of a bipartite permutation graph

in a natural way with the endpoints sorted as shown in the above figure.
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Definition 11. In a chain graph G = (X, Y, E), we define a supergraph Hi =

(X ∪ Y,Ei) as follows: For 1 ≤ i ≤ n− 1, we take the set {x1, x2, . . . , xi} ∪N(xi+1).

We make a clique Ci using the above set. This clique is the supergraph.

Lemma 10. (1) Hi is an interval graph for each i.

(2) b(G) = mini b(Hi).

Figure 4.4: [8] Interval representation of a chain graph

We can see that Hi is a threshold graph that has an interval representation as

shown in Figure 4.4 with x’s as intervals and y’s as points. Thus by Theorem 5 b(Hi)

can be computed in O(n+ n′) time. We can hence also construct the minimum com-

pletions of Hi as discussed in the previous section.

We now introduce a new notation called wiper(xi). A wiper is a line segment joining

two points p1 on L1 and p2 on L2 of the line representation as shown in Figure 4.3b.

We choose p1 and p2 as follows: p1 lies between x1 and y′n on L1 and p2 lies on L2

between xi+1 and q. Here q is the lowest indexed neighbour among all y ∈ Y . In a

way, the wiper(xi) cuts through the vertices of Hi if N(xi)\N(xi+1) ̸= ϕ.

We see that the interval representation of Hi is a combination of the two interval

representations of two threshold graphs because of which we can run the algorithm

to find bandwidth of threshold graphs discussed in the previous section. We give the

formal construction of Hi as given by Uehara [8]:
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Figure 4.5: [8] Symmetric interval representation of chain graph

By Helly property, the intervals in the clique Ci share a common point 0, correspond-

ing to wiper(xi). For the point, we can construct a symmetric interval representation

as in Figure 4.5 below:

(1) each x′
i ∈ X with i′ ≤ i corresponds to an interval [0, (d(x′

i)− d(xi))],

(2) each x′
i ∈ X with i′ > i corresponds to the point i− i′(< 0),

(3) each yj ∈ Y with j > n′−d(xi+1) corresponds to an interval [(i−d(yj)), 0], and

(4) each yj ∈ Y with j ≤ n′ − d(xi+1) corresponds to the point i - j + 1.

Let XR
i = {x′

i ∈ X|i′ ≤ i}, XL
i = {x′

i ∈ X|i′ > i}, Y L
i = {yj ∈ Y |j > n′ − d(xi+1)},

and Y R
i = {yj ∈ Y |j ≤ n′ − d(xi+1)}. Hi[X

L
i ∪ Y L

i ] and Hi[X
R
i ∪ Y R

i ] are the two

induced subgraphs of Hi and are threshold graphs.

Theorem 6. Given a chain graph G = (X, Y, E), we can compute b(G) in O(n +

n’) time.

Proof. The outline of proof is fairly simple. From Lemma 10, we can compute

b(G) by computing the minimum b(Hi) for i = 0, 1, . . . , n− 1. We can compute b(Hi)

as the lemma also states that each Hi is a threshold graph and by Theorem 5, we can

compute b(Hi) in linear time.
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Algorithm 3 Algorithm for computing bandwidth of Chain graph [8]

Input :Chain graph G = (X, Y,E) with N(xn) ⊆ N(xn−1) ⊆ . . . ⊆ N(x1). and
N(y1) ⊆ N(y2) ⊆ . . . ⊆ N(y′n).
Output:b(G)

1. b := b(Hi) // by Algorithm 2;

2. for i = 1, 2, . . . , n− 1 do

3. construct the interval representation I(Hi) of the graph Hi with wiper(xi);

4. for l = n, n− 1, . . . , i+ 1 do

5. for r = 1, 2, . . . , n′ − d(xi+ 1) do

6. if max{|RCi(l, r)|, |CCi(l, r)|, |LCi(l, r)|} < b then

7. b = max{|RCi(l, r)|, |CCi(l, r)|, |LCi(l, r)|};

8. end

9. end

10. end

11. return (b(G) - 1).

Figure 4.6: Example used in Theorem 6

The catch here is to combine the algorithm for the threshold graphs Hi. In thresh-

old graphs, we have seen that we put point m during the construction of minimum

completion. Here we have seen that Hi[X
L
i ∪ Y L

i ] and Hi[X
R
i ∪ Y R

i ] are the two in-
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duced subgraphs of Hi are threshold graphs. So, we put two points l in Hi[X
L
i ∪ Y L

i ]

and r in Hi[X
R
i ∪ Y R

i ]. And now we make the proper interval representation using l

and r as constructed by Uehara in [8].

(1) for each x′
i ∈ XL

i with i′ ≥ l, I ′xi′
= [i− n, i− i′]

(2) for each x′
i ∈ XL

i withl < i′, I ′xi′
= [i− i′, 0]

(3) for each yj ∈ Y R
i with r < j(≤ n′ − d(xi+1)), I

′y
j = [0, i− j + 1]

(4) for each yj ∈ Y R
i with j − r, I ′yj = [i− j + 1, i]

Figure 4.6 gives an example with l = 5 and r = 1. For every possible pair of (l, r)

with i+ 2 ≤ l ≤ n and 1 ≤ r ≤ n′ − d(xi+1)− 1, we compute the size of a maximum

clique in the proper interval representation. We have three possible maximum cliques

at the left, center, and right parts of the proper interval representation. For fixed i,

l, and r, we define three maximum cliques RCi(l, r), CCi(l, r), and LC
i (l, r) in three

proper interval graphs induced by {xl, xl+1, . . . , xn}∪{yj, yj+1, . . . , y
′
n} where yj is the

minimum vertex inN(xl), {x1, x2, . . . , xl−1}∪{yr+1, yr+2, . . . , y
′
n}, and {x1, x2, . . . , x

′
i}∪

{y1, y2, . . . , yr} where x′
i is the maximum vertex in N(yr), respectively. For each pair

(l, r), max{|RC
i (l, r)|, |CC

i (l, r)|, |LC
i (l, r)|} is computed, and we take the minimum

value of max{|RC
i (l, r)|, |CC

i (l, r)|, |LC
i (l, r)|} for all pairs, which equals b(Hi) + 1 for

the fixed i. Then we compute the minimum over i which gives us b(G) + 1.

4.4 Polynomial time Algorithm for Bipartite Per-

mutation Graphs

As we have discussed earlier, Heggernes et al., [5] first gave a polynomial time algo-

rithm for bipartite permutation graphs. They have used a new approach to solve the

bandwidth problem. They have made use of a property called strong ordering. But

Uehara [8] gave a faster algorithm to solve the bandwidth problem making use of a

charecterization based on graph decomposition. In our study, we go through Uehara’s

work in detail.

The following lemma has been observed by Heggernes et al., [5]:
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Lemma 11. For a bipartite permutation graph G = (V, X, Y) given in line represen-

tation with X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , y′n} ordered from left to right

in this represetation, we have an optimal layout π such that π(xi) < π(xi+1) for each

1 ≤ i < n and π(y′i) < π(yi′+1) for each 1 ≤ i′ < n′.

So we have to merge these to sequences to get an optimal layout. We will now de-

fine a new partition of vertex sets X and Y by V0 = {x1} and Vj = {v|dist(x1, v) = j}.
That is V1 corresponds to all the vertices that are adjacent to x1 and V2 corresponds

to all the vertices adjacent to the vertices of v1 and so on. In this construction, we

can also see that there is no edge between Vj and V ′
j if |j − j′| > 1. So we can also

write V0 ∪ V2 ∪ V4 ∪ . . . = X and V1 ∪ V3 ∪ V5 ∪ · · · = Y . Let m denote the index

with Vm ̸= ϕ and Vm+1 = ϕ. The partitions can be found in O(n+n′) time as it runs

once over each vertex. We will denote the induced subgraph G[Vj ∪ Vj+1] for each

j = 0, 1, . . . ,m − 1 by Gj = (Vj ∪ Vj+1, Ej). The following lemma follows from the

the construction of Gj and the definition of chain graphs:

Lemma 12. For a bipartite permutation graph G = (X,Y,E) with partitioning

V0, V1, V2, . . . , Vm of X ∪ Y , every induced subgraph Gj = (Vj ∪ Vj+1, Ej) is a con-

nected chain graph with 0 ≤ j < m.

So we have a sequence of chain graphs. For each j = 0, 1, . . . ,m− 1, we compute

an optimal layout of G0 ∪ G1 ∪ . . . ∪ Gj with constraint b(G0 ∪ . . . . . . Gj) ≤ k. We

will use Algorithm 3 for each Gj as they are chain graphs. In each Gj we have we

have several Hj
i , each of them being a combination of two threshold graphs. We then

consider two midpoints lj and rj for Hj
i , and obtain three candidates of maximum

cliques LCj
i (lj, rj), CCj

i (lj, rj), and RCj
i (lj, rj). The place at which we face diffi-

culty is when we switch to Gj+1 = (Vj+1, Vj+2, Ej+1). We observe that the vertices

in Vj+1 have already been used in the graph Gj = (Vj, Vj+1, Ej), and some vertices

in Vj are placed among them on the current layout. That is, when we deal with

Gj+1 = (Vj+1, Vj+2, Ej+1) some vertices of Vj occur in this through Vj+1. So we define

a carry set Sj
i to tackle the vertices of the carried over vertices of Vj in Gj+1. We

now observe the following regarding the carry set:

Observation 2. The carry set Sj
i is equal to CCj

i ∩ Vj.
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Using Lemma 12, we compute V0, V − 1, . . . , Vm in O(n + n′) time. We compute

a layout up to b(G0 ∪ . . . ∪ Gj) ≤ k in that order. We modify Algorithm 3 to deal

with the carry set. The modification is not discussed here as it is very tedious. We

are ready to prove the following theorem:

Algorithm 4 Algorithm to compute bandwidth of bipartite permutation graph [8]

Input :Bipartite permutation graph G = (X, Y, E) in a line representation with
X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , y′n}, and positive integer k
Output: Layout with b(G) ≤ k if it exists, or otherwise “No”

1. compute the partition V0 = {x1}, V1, V2, . . . , Vm of X ∪ Y ;

2. let S−1
i = ϕ for each i

3. for j = 0, 1, . . . ,m− 1 do

4. construct chain graph Gj = (Vj, Vj+1, Ej);

5. for i = 0, 1, . . . , |Vj| do

6. construct an interval graph Hj
i ;

7. compute a layout of Hj
i with carry Sj−1

i satisfying b(Hj
i ) ≤ k by a

modified algorithm of Algorithm 3;

8. end

9. if there is no layout that achieves b(Hj
i ) ≤ k then

10. return (“No”)

11. end

12. end

13. return (layout obtained).

Theorem 7. Let G = (X,Y,E) be a bipartite permutation graph and let k be a

positive integer. Then we can find a layout that attains b(G) ≤ k, if it exists, in

O((|X|+ |Y |)2) time.

Proof. If Algorithm 4 gives an output, then it achieves b(G) ≤ k. So, we will

assume that b(G) ≤ k and then show that the algorithm gives an output. By Lemma
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11, it is sufficient to consider the orderings that satisfy π(x1) < π(x2) < . . . < π(xn)

and π(y1) < π(y2) < . . . < π(y′n). Each chain graph Gi is a subgraph of G. Hence

we have b(Gi) ≤ b(G). When all carry sets are empty, the correctness follows from

the proof of Theorem 6. So, from now we assume that there exists a nonempty carry

set Sj
i . During the computation, each carry set Sj

i achieves the best possible layout

for each pair of i and j ; LCj
i and CCj

i are saturated for given k in general, and

the vertices in Sj
i = CCj

i ∩ Vj (by Observation 2) are put at as left-side as possible.

Intuitively, the “margin” in RCj
i is maximized for each i and j, and we can move

no vertex in Sj
i to left any more. Therefore, there exists no better layout than the

output of Algorithm 4 under the constraint of k. We note that for each i, the time

complexity to perform the modified Algorithm 3 is linear. In Algorithm 4, in steps 6

and 7, when Hj
i is constructed, we deal with the table for Vj which is fixed in Hj−1

i .

This step consumes only O(|V j − 1||Vj|). So, the total running time can be bounded

by O(Σm−1
j=0 |V j − 1||Vj|) = O((|X|+ |Y |)2). So, we are ready to give the final theorem

regarding bandwidth of bipartite permutation graphs whose proof follows from the

above discussions.

Theorem 8. The bandwidth b(G) and an optimal layout of a bipartite permutation

graph G = (X, Y, E) can be computed in O((|X|+ |Y |)2logb(G)) time.

4.5 Biconvex Trees

Definition 12. The 2-claw is a graph obtained from complete bipartite graph K1,3 by

replacing each edge by a path of length 2.

Lemma 13. 2-claw is not a biconvex tree.

The proof of the above lemma can be verified easily.

Lemma 14. A tree is biconvex iff it is a caterpillar.

Proof. Suppose we have a caterpillar T , we will first show that it is a biconvex

tree. Suppose v1, v2, v3 and v4 is the body of the caterpillar and u1 and u2 are hairs of

v2 and v3 respectively. We first put v1 and v3 in X and v2 and v4 in Y. Now we insert

hair of vi in the set other than where vi is, and in between vi−1 and vi+1. We can see
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that it is biconvex tree. Now we have to prove necessity. Say T is a biconvex tree.

Let P be a longest path in T . We prove by contradiction. Suppose there exists a

vertex not in P having degree greater than 1. This implies that T contains the 2-claw

as a subtree (which is not biconvex by the Lemma 13), contradicting the assumption

that T is biconvex graph. Hence T is a caterpillar.

Assmann et. al., [7] proved the following:

Lemma 15. The bandwidth of an n-vertex generalized caterpillars of hair length at

most two can be computed in O(n log n) time.

From Lemma 14 and Lemma 15 we can see that bandwidth of a n-vertex biconvex

tree can be computed in O(n log n) time.



Chapter 5

Bandwidth of Biconvex Graphs

In this chapter, we hypothesize that bandwidth problem cannot be NP-Complete in

biconvex bipartite graphs. Though we dont have a complete proof of the hypothesis,

we will discuss the irreducibilty of the multiple processor scheduling problem to the

bandwidth problem in this particular graph class.

In case of convex trees (Section 3.1), we have seen that removing the degree-1 ver-

tices from the turning point makes it a C a caterpillar and that all catrepillars are

biconvex. Therefore, both partitions of C has an ordering satisfying the adjacency

property. Now, when we restore the degree-1 vertices, they do not disturb the adja-

cency property of the other partition (Anish et al., [3]). We can clearly see that it

disturbs the adjacency property of partition where it is inserted. We illustrate this

with an example shown in Figure 5.1.

In the graph shown in figure, X = {1, 8, 3, 10, 5} and Y = {2, 9, 11, 12, 4, 6, 7}
following the adjacency property. Once we remove the vertices of degree greater than

2 from the turning point (turning point here is GT = ({4, 10, 11, 12}, E)) then Y be-

comes Y ′ = {2, 9, 4, 6, 7}. Here G = (X, Y ′, E ′) is the caterpillar. So we can see that

introducing vertices 11 and 12 will disturb the adjacency property of the original Y

in G.

This shows that we cannot reduce the multiple processor scheduling problem to the

bandwidth problem in case of biconvex bipartite graphs. Since, most of the graph

classes use reduction multiple scheduling problem to bandwidth problem to prove

NP-Completeness, we can also safely assume that bandwidth problem in biconvex

bipartite cannot be NP-Complete.

33
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Figure 5.1: Example of biconvex graph

Also, Anish et al., [3] have proved that bandwidth problem can be solved in poly-

nomial time for biconvex trees (Refer Section 4.5). Biconvex trees are very closely

related to biconvex graphs. So we expect to get a polynomial time algorithm to solve

bandwidth problem in biconvex bipartite graphs.
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