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Abstract

Bose-Einstein Condensates (BECs) are treated theoretically using the mean field Gross-

Pitaevskii (GP) equation. Instead of using the local (δ-function) psueudopotential to

account for the symmetric s-wave scattering between bosons, we take an extended pseu-

dopotential to account for the finite range of inter-boson interactions. Such a pseudopo-

tential would give corrections on top of the GP equation with local interactions. We first

propose the energy functional for such correction terms added to the local GP equation.

We then study the effect of finite range of interactions on the vortex solution, soliton

solution and the excitation spectrum in a BEC. We see that the additional length scale

emerging from the range of the inter-Boson interactions plays a significant role in the

aforementioned excitations.
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Chapter 1

Introduction

The quantum revolution in 1920s brought about a change in understanding of the micro-

scopic world. One of the major influences of quantum theory was in the field of particle

statistics in that it convinced S. N. Bose at the University of Dhaka that Maxwell-

Boltzmann statistics could not describe quantum particles due to Heisenberg’s Uncer-

tainity principle [1]. This led him to propose a new statistics for photons for predicting

the coefficient in Planck’s law [2]. Extending this idea to non-interacting particles, Ein-

stein showed that such a statistical description predicted a macroscopic occupation of the

ground state for an ideal Bose gas (gas of non-interacting particles obeying Bose statis-

tics) below a critical temperature, a phenomenon called as Bose-Einstein Condensation

(BEC) [3].

With the theoretical prediction of existence of BEC, there began search for such a

phenomenon experimentally. In 1938 Fritz London proposed that BEC was the reason for

superfluidity in helium-4 and also for the phenomenon of superconductivity [4]. However,

as these systems were strongly interacting and as BEC was proposed in a non-interacting

gas, there was much debate about the proposal by London. Hence, there was a search for

a weakly interacting gas which can be cooled below the critical temperature required to

achieve BEC. Due to its low interaction strength and high critical temperature, hydrogen

was thought to be the most probable candidate [5]. However, even for hydrogen the

critical temperature was of the order of a few hundred nanokelvin and due to limitation

of cooling mechanisms at the time, this temperature was not achievable. A major step

forward in the process of cooling was in the form of laser cooling in the 1970s [6–8]. From

here, cooling to progressively lower temperatures was realized in atomic gases. With the

final step in the form of discovery of evaporative cooling, a BEC was finally achieved in

1995 in a gas of rubidium-87 atoms [9]. The reason of it not being achieved in hydrogen

1
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earlier will be explained in the next chapter. However, a BEC of hydrogen atoms was

achieved later in 1998 [10].

While on the one hand there was technological advance in achieving BEC in a weakly

interacting Bose gas, there were also major advancements in theoretical description

of BEC. The most important development was the discovery of the mean-field Gross-

Pitaevskii (GP) theory describing the ground state of a gas of weakly interacting bosons

[11]. One of the major proposition of the GP theory was that there existed quantum

coherence in the aggregate of atoms in the BEC phase and that such an aggregate may

be described by a macroscopic wave-function. The GP equation that was derived is

the Schrodinger equation with an added non-linear term, with the modulus squared of

the wave-function describing the condensate density. This gave BECs the contemporary

fame of being a macroscopic quantum phenomenon.

BEC being a superfluid, one of the most important excited state which can be achieved

is the vortex state with quantized angular momentum [12, 13]. In superfluid helium,

the quantized vortices have a very small core to be able to probe. However, the vortex

core in a BEC is comparatively larger and hence can be probed. With the tunability

of interactions, this core width can be further adjusted. Further, due to the non-linear

nature of the GP equation, solitons may be excited in it [14, 15]. In the case of solitons

too, the room for tuning the interactions and trapping is a huge plus point which allows

to probe solitons under various conditions.

Due to the wide-tunability of interactions in a BEC, it has become a tool to test the

quantum theory. With the advent of trapping techniques like optical lattices, BECs came

to be used as analogs to condensed matter systems [16–18]. Here too, the tunability

of interactions and the variety of traps that may be engineered are assets. Another

important variation that may be obtained is the realization of BEC with many distinct

components [19]. These multi-component BEC may be obtained in miscible or phase-

segregated states [20]. The strength of interactions may be tuned to go from one state to

another. Further, BECs are also being used as analog gravity systems [21–24]. They have

also been used in atom lasers [25–28], atomic clocks [29], atom interferometer [30, 31],

slowing light speed [32], atom holography [33], etc.

An important parameter in BEC is the gas parameter ‘a3n,’ also called the diluteness

parameter. The mean-field GP theory using contact interactions has had a huge success

in describing many phenomenon in BEC for an extremely dilute gas with a3n ≪ 1 and

weak trapping. In this case, the finite range effects of the BEC do not show up [34].

However, when a3n → 1 and/or in the presence of strong trapping, the assumption of

contact interactions fail and we have to consider finite range of interactions [35, 36]. This

may be accounted for as a perturbation on top of the theory with contact interactions. It
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is then important to study the effect of these finite range corrections on the excitations

in a BEC like vortices, solitons and small amplitude oscillation modes. It is these effects

that will be addressed in this thesis.

Figure 1.1: Figure shows the December 1995 cover of ‘Science’ magazine which bestows
the honour of ‘Molecule of the year ’ upon the discovery of Bose-Einstein Condensate (BEC)
in rubidium-87 atoms in the same year. The cover shows an artist’s conception of a BEC,
where atoms in a condensate march as a group, while atoms out of the condensate move
with various speeds in various directions. From Science, Vol 270, Issue 5244, 22 December
1995. Reprinted with permission from AAAS.

1.1 The gas parameter and the diluteness limit

The GP theory describing the dynamics of a BEC is based on certain assumptions. The

most important assumption is that of the diluteness of the gas which means that the

average inter-particle distance is very large as compared to the range of inter-particle

interactions. In this limit, the probability of two body interactions is very high as

compared to three body or higher interactions [37]. As such, the dominant interaction

between the particles in a BEC is that of two-body scattering.

As BEC is the macroscopic occupation of zero-momentum ground state with very low

spread in the momentum space, the average speed of the atoms in the BEC is very low.

As such, an additional assumption can be made to the two body scattering mechanism.
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This assumption is that the dominant scattering amplitude is the s-wave scattering am-

plitude [38]. This is equivalent to assuming the energy independence of the scattering

process. Given a range r0 for inter-particle interactions in a BEC with average density

n, the diluteness criterion r0 ≪ n−1/3 translates to a ≪ n−1/3 for energy independent

scattering [39]. This defines the diluteness limit a3n ≪ 1 for a BEC. Due to the di-

luteness criterion and s-wave scattering, the actual interaction potential is replaced by a

δ-function pseudopotential, such that the pseudopotential preserves the strength of in-

teractions [40]. This is because for a dilute gas the details of the inter-atomic interaction

potential are not seen by the interacting particles as most of the time they are far away

from each other. However, for larger values of gas parameter and/or strong trapping of

BEC, we must go beyond the contact interaction pseudopotential [35, 36]. Such condi-

tions are not artificial and BECs with high values of gas parameter have been realized

experimentally [41, 42]. There have been various studies to account for the finite range

effects of the interaction between particles in a BEC and they have proposed finite range

corrections to the GP equation with contact interactions [35, 36]. These corrections are

different from the LHY correction [43]. The effect of such corrections on the excitations

in a BEC has only partially been studied to the best of our knowledge.

1.2 Energy functional of the GP theory

The GP equation may also be derived from the principle of least action. As the system

is conservative, the least action principle gives a well-defined energy functional. This

energy functional describes the energy cost for the BEC to be in a particular state

described by a wave-function. The ground state for the BEC can then be described

by minimizing this energy functional. Therefore, this energy functional is important in

determining the ground state of the system. The energy functional for the GP equation

with local interaction pseudopotential is well-known [44]. However, when there occur

finite range corrections to the GP equation, it is essential to determine the energy

functional of the GP equation with corrections. There have been studies which propose

the change to the energy of the ground state of the BEC for corrections to the local GP

equation up to the first order [43]. However, depending upon the system parameters,

there may arise a necessity to include corrections to the local GP equations up to an

arbitrary order. As such it is helpful to find corrections to the GP energy functional,

given corrections to the local GP equation up to an arbitrary order. We have studied

this problem and given the energy functional for corrections to the local GP equation

up to an arbitrary order. In this thesis we show a term by term correspondence between

the corrections to the local GP equation and the energy functional. This we have shown

using simple combinatorics [45]. While this proof may seem straightforward, it is worth
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noting that such a correspondence does not exist for corrections with odd symmetry

and we have proved this as well. With the energy functional proposed, we have the

requisite toolkit for probing the effect of correction terms to the excitations in a BEC.

We particularly probe the effect of these corrections on the vortex state, solitons and

excitation spectrum of a BEC.

1.3 The analogous Quantum hall effect

BECs are very popular as analogue systems to simulate phenomenon in other areas of

physics with a large degree of control. One such phenomenon that may be simulated is

the quantum hall effect in two dimensional electron systems subject to low temperatures

and strong magnetic field [46]. This effect essentially lies in the formation of vortices in

electron systems with integer or fractional filling fractions. To simulate such a system in

BEC requires generation of vortices with low filling fraction. As the number of vortices

increases, the length scale of fluctuations becomes of the order of distance between two

vortex cores. This results in a melting transition to a vortex liquid [47]. An elementary

estimate of the filling fraction where such a transition occurs can be obtained using

the Lindemann criterion which historically gave a crude model for melting transition in

solids [48]. Such an estimate puts the filling fraction required for melting transition at

ν ∼ 10, where ν is the vortex filling fraction [49]. An exact diagonalization study using

periodic boundary conditions estimated the filling fraction to lattice melting transition

to occur at ν ∼ 6 [50]. As angular velocity for vortex generation is provided by rotating a

BEC, such requirement of low filling fractions would take us into the regime of ultra-fast

rotation. In this regime, a lot of interesting states have been proposed [51–54]. Despite

this theoretical work, the goal of achieving such high rotation frequencies in trapped

BEC has remained a challenge. This is mainly because of the high rotation frequencies

required to achieve such states. When the frequency of rotation approaches the trap

frequency, there occurs an instability due to which the condensate flies off the trap [55].

An attempt to surmount this problem has been made using a steeper trapping potential,

which has helped push the angular frequency of rotation a bit above what is done using

the harmonic potential [56]. In spite of this the filling fraction achievable remains around

ν ∼ 500 [57, 58]. The low filling fractions required are still elusive.

Another method of obtaining low filling fraction in a vortex lattice may be to obtain

thinner vortices. Obtaining thinner vortices will help fit more vortices in a given two

dimensional area, thus achieving lower filling fractions. However, this angle has only

being partially looked upon due to the dependence of the size of the vortex on the system

parameters. The size of the vortex core is of the order of healing length ξ0 = 1/
√

8πan
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for a BEC with contact interactions, where a is the s-wave scattering length and n is

the density of the condensate. Thus decreasing the size of the vortex means increasing

the scattering length or the density of the condensate, or both. This would lead to three

body losses which is not desirable. Had the dependence of the vortex width on the

system parameters been the opposite, this angle of reducing the vortex width to obtain

lower filling fractions would have definitely been explored. In this thesis, it is shown that

in the presence of finite range corrections to the GP equation with contact interactions, a

new class of vortex solution may be obtained whose width is directly proportional to the

s-wave scattering length. Thus, by decreasing the scattering length we may decrease the

width of such a vortex solution. This raises the possibility of obtaining thinner vortices

and obtaining smaller filling fractions. We shall also propose an experimental setup to

obtain such a thin vortex.

1.4 Solitons as a non-locality probe

Non-linear equations have certain characteristic excitations, one of them being the 1

dimensional soliton solutions. In the nonlinear GP equation, solitons result from the

balance between the dispersive kinetic term and the focusing non-linear term [15]. Dark

solitons may be obtained in a BEC with repulsive interactions, while bright solitons

may be obtained in a BEC with attractive interactions. The method to generate these

solitons in a BEC is by strong confinement along the radial direction in a 3 dimensional

BEC, thus effectively confining it to 1D [59–61]. This is because in two and higher

dimensions, there occur instabilities which lead to soliton decay. A characteristic of the

soliton solution is that its length scale is of the order of the healing length ξ0 for a BEC

with contact interactions. Therefore, it is but natural to expect a change in the length

scale of soliton solution upon introduction of corrections to the GP equation. It is also

important to look at the effect of the correction terms on the stability of soliton solution.

An important question for the GP equation with correction is the determination of the

effective range of interactions which occurs in the coefficient of correction. It is known

that upon the introduction of correction to the GP equation, the healing length of the

BEC gets modified [62]. This modified length captures the effect of finite range of

interactions. Therefore, it is important to probe if the modified healing length shows up

as the width of soliton. If it does, then by measuring the change in width of the soliton,

one may measure the effective range parameter. Thus, solitons can be used as a probe

to measure the effect of finite range of interactions in a BEC. In this thesis, we address

the question of change in the width of the soliton solution and its stability and propose

the use of soliton as a length scale probe.
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1.5 The roton minimum in BEC

The elementary excitation spectrum of a superfluid gives us important information like

the coherence length, and the critical velocity above which superfluidity is destroyed.

BEC being a superfluid, it is important to derive its elementary excitation spectrum.

BEC with contact interactions gives a phonon like dispersion relation for large wave-

lengths and particle like excitation spectrum for smaller wavelengths [34, 63–65]. Fur-

ther, long range interactions have been known to introduce a roton minimum in the

excitation spectrum [66–68]. These long range interactions in a BEC are introduced in

the form of dipolar interactions [69, 70], rydberg interactions [71], spin-orbit coupling

[72–74], etc. However, even in the absence of such additional long range interactions,

roton minimum may be obtained using the finite range of inter-atomic interactions in

a BEC. Such kind of appearance of roton minimum was first shown by Pomeau et al.

[66]. The appearance of roton minimum in the presence of soft-core interactions has

also been shown [67, 68]. The appearance of roton minimum is essential mainly for

the purpose of obtaining zero energy excitations, meaning obtaining a solid order in a

superfluid. This phase is also called the supersolid phase. Such a supersolid phase may

be obtained by lowering the roton minimum [75, 76]. It is proposed that this be done

either by increasing the range of interactions, or their strength, or both.

A multi-component BEC implies the presence of BEC with multiple species [19]. The

dynamics of a component in this multi-component BEC is described by the GP equa-

tion by introducing additional terms [77]. As such, the presence of multiple components

generate additional interactions. While the effect of finite range interactions on the

generation and lowering of roton minimum has been studied, the effect of multiple com-

ponents on the roton minimum has only partially being studied. The main issue of

lowering roton minimum using the finite range of inter-boson interactions is that one

needs to venture into strongly interacting BECs to lower the roton minimum [66]. This

creates three body losses and hence it is important to reduce these three body losses

for experimentally achieving roton lowering using just the s-wave interactions. This is

where presence of multiple components in a BEC may come in handy. As the presence

of multiple components generate additional interactions, the addition of multiple com-

ponents may result in lowering of roton minimum at a lower value of gas parameter. We

probe this angle and show that indeed this is the case.

We have thus discussed in brief the motives of the thesis and the importance of the

works undertaken in the thesis. In the next chapter, we give an overview of the technical

concepts that will be required to understand our works. After this technical overview,

we present four chapters which will explain the works done by us. We start by rigorously

deriving the energy functional for corrections to the local GP equation. We then see
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effect of non-local interactions on the vortex solution in a BEC. Afterwards, we probe

the effect of non-local interactions on the soliton solution in a BEC. Lastly we study the

effect of finite range of interactions on the elementary excitation spectrum in a BEC for

single as well as multi-component BEC. We end by presenting a conclusion and possible

future works that may be undertaken based on the works presented in this thesis.



Chapter 2

General theory of Bose-Einstein

Condensates

With the introduction presented in the previous chapter, let us review the general theory

of Bose-Einstein Condensates (BECs) along with its experimental realization in this

chapter. BEC being a statistical phenomenon characterized by macroscopic occupation

of the zero momentum ground state, its theory has to be formulated using statistical

methods. As we are dealing with bosons which are quantum particles, one uses Bose

statistics which describes the statistical behaviour of bosons. An elementary description

of a Bose gas considers a system of non-interacting bosons. This system serves two

purposes; firstly it is simpler to treat than a gas of interacting bosons and second that

it shows the existence of the phenomenon of BEC. From this we can build up on the

theory of weakly interacting bosons, which is the condition in BECs of dilute atomic

gases.

In what follows, we shall start by having a brief overview of particle statistics which will

show qualitatively how the phenomenon of macroscopic occupation of ground state is

unique to Bose-Einstein statistics. We shall then describe in some detail the phenomenon

of BEC in a system of non-interacting bosons. Next, we will have a quick look at the

density matrix representation, the concept of off-diagonal long range order (ODLRO)

and the basics of scattering theory, which are essential to study a weakly interacting

gas of bosons. Having set the stage with all the requisite mathematical toolkit, we

shall describe in some detail the mean-field theory of weakly interacting gas of bosons.

This study of BEC with weakly interacting particles will include a study of BEC with

multiple components as well. After this, we shall present an analysis of BEC in traps.

This is of immense importance since trapping atoms is a crucial step in obtaining a BEC.

Finally, we shall present a brief overview of the most important part of the field of BEC,

9
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the experiments. BECs were theoretically proposed way back in 1925, but the boom

in study of BEC resulted from the experimental realization of BEC in atomic gases in

1995 [9, 78]. Hence, it is extremely important to study this monumental achievement

and it would only be appropriate to end a chapter on the overview of BECs with the

description of the experimental methods required to achieve it.

2.1 Review of particle statistics

Statistical mechanics uses tools of probability theory for the microscopic constituents of

a system to predict its average macroscopic observables. Since we wish to look at the

phenomenon of BEC, we shall concentrate on only one macroscopic observable, which

is the average number of particles in a particular energy state. We shall see what does

this average occupancy depend upon. An important point to specify here is that we will

be dealing with non-interacting particles in this section. Our main aim in this section

is to show how the phenomenon of macroscopic occupation of ground state is unique to

Bose statistics in a system of non-interacting particles.

The particle statistics are divided into two main categories, viz., the classical statis-

tics (for classical systems) and quantum statistics (for quantum systems). The major

difference between the two being that classical particles are distinguishable and quan-

tum particles are not. Classical systems are described by the Maxwell-Boltzmann (MB)

statistics which considers an aggregate of distinguishable particles. Therefore, MB statis-

tics doesn’t apply to an aggregate of quantum particles, except in cases where the quan-

tum nature of particles is suppressed due to thermal or other effects. However, when

the condition of high temperature and/or very low density is absent, we need to con-

sider the quantum nature of the particles. Such aggregates are described by quantum

statistics. Quantum statistics are further divided into two categories as a result of the

spin-statistics theorem, which states that quantum particles can either have half-integer

spin or integer spin. Particles with half integer spin, the fermions, are described by the

Fermi-Dirac (FD) statistics and particles with integer spin, the bosons, are described by

the Bose-Einstein (BE) statistics.

In what follows, we describe these three particle statistics in short, the MB statistics,

the FD statistics and the BE statistics with regards the average number of particles in

each energy state.
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2.1.1 Formulation of the problem

An aggregate of non-interacting particles is easy to treat statistically since the partition

function for such a systems factors out. Let us start by considering an ideal gas with a

discrete set of energy levels. Let the discrete energy levels be labeled by ǫ1, ǫ2, ǫ3, ......,

with particle occupancy N1, N2, N3, ....., respectively. Therefore, the energy of the sys-

tem in a configuration ‘R’ with particular values of N1, N2, N3, ....., the total energy of

the system is ER =
∑

rNrǫr. If the system obeys particle conservation, we have an

additional constraint
∑

rNr = N . As mentioned before, we assume that the particles

are non-interacting. The partition function of such a system can be written as

Z =
∑

R

e−βER =
∑

R

e−β(N1ǫ1+N2ǫ2+....) ,

where the sum over ‘R’ implies sum over all the possible distribution of particles in

different energy states. This partition function would determine the thermodynamic

characteristics of the system. We are interested in the mean occupation number of an

energy level ǫs. We shall answer this question by considering a grand-canonical ensemble

to derive mean occupation number N̂s for an energy state with energy ǫs. This result

would also hold for a canonical ensemble in the thermodynamic limit.

2.1.2 Comparison of MB, FD and BE statistics

With the description of various quantities in the system in the previous section, we now

look at the behaviour of the mean occupation number N̂s for an energy level ǫs. It is

given by the expression [79]

N̂s =
1

e(ǫs−µ)/kT + a
.

In the above expression µ is the chemical potential and ‘a’ is the factor which distin-

guishes the particle statistics and can take values +1 (FD), 0 (MB) and −1 (BE). The

different values of a are described as follows

(A) The case a = 0 describes the MB statistics. It is worth noting here that in the

limit e(ǫs−µ)/kT ≫ 1, FD and BE statistics merge to MB statistics. This is the limit

where quantum effects are insignificant and the aggregate of particles can be treated

classically in which case N̂s = e(µ−ǫs)/kT . From this expression, it can be seen that for

higher temperatures, all the energy states ǫi are almost equally filled.
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(B) The case a = +1 describes FD statistics. In this case it is worthy to note that since

e(ǫs−µ)/kT is always positive, the mean occupation number 0 < N̂s < 1. This reflects

Pauli’s exclusion principle, which states that no two fermions can occupy the same

energy state. The value of N̂s tends to its maximum value for ǫs < µ and |ǫs−µ| ≫ kT .

For this limit N̂s → 1.

(C) The case a = −1 corresponds to BE statistics. This case is of interest since for

e(ǫs−µ)/kT → 1, the mean occupation number diverges. Looking at the expression for

the mean occupation number, for N̂s to remain positive, we should have e(ǫs−µ)/kT ≥ 1

and consequently µ < ǫi for any i. Here, an interesting phenomenon happens when µ

comes very close to the lowest energy level ǫ0 (say). In this case e(ǫs−µ)/kT → 1 and the

probability of occupation of the energy level ǫ0 diverges. Thus, there occurs a macro-

scopic occupation of this lowest energy level of the system, which is the phenomenon of

Bose-Einstein Condensation.

Fig.(2.1) shows the mean occupation number for the three statistics. As was described

earlier, for high values of (ǫs−µ)/kT , the quantum statistics converge to the classical MB

statistics. Also to note is the interesting phenomenon of divergence of mean occupation

number for BE statistics.
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Figure 2.1: Figure shows the mean occupation number for Maxwell-Boltzmann (MB),
Fermi-Dirac (FD) and Bose-Einstein (BE) statistics as a function of (ǫs − µ)/kT . BE
statistics are distinguished by their divergence at small values of (ǫs − µ)/kT .

Having seen the origin of the phenomenon of Bose-Einstein Condensation qualitatively,

let us have a rigorous look at this phenomenon in the next section. In the process, we

would also obtain an expression for the critical temperature of BEC. Since we have seen

in this section that the phenomenon of divergence of mean occupation number is unique

to Bose-Einstein statistics, we shall explore in detail only the BE statistics and not MB

and FD statistics.
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2.2 Bose-Einstein Condensation in non-interacting gas

In the previous section we saw that the phenomenon of condensation into the ground

state may be observed in a gas of non-interacting bosons. The mean occupation number

was used to demonstrate the existence of this phenomenon in principal. In this section,

we demonstrate the existence of BEC by a more rigorous mathematical analysis. We

do this since there is an extra piece of information which we obtain by doing such an

analysis. This information is the existence of a critical temperature for condensation.

The onset of BEC may be viewed crudely as being the point where the quantum wave-

function of individual bosons begin to overlap. The de Broglie wavelength of a particle

with momentum ‘p’ is given by λ = h/p, where h is the Planck’s constant and λ is the de

Broglie wavelength. Let these bosons occupy a volume V and be N in number in which

case their density is given by n = N/V . The average distance between bosons in such

a gas in 3 dimensions is n−1/3. With this information, the onset of BEC can roughly

be written as the point where λ ∼ n−1/3. Further, p can be estimated by assuming

that the equipartition theorem holds and the average kinetic energy per boson at a

temperature ‘T ’ is given by p2

2m = 3
2kT , where ‘k’ is Boltzmann’s constant. Using this,

the aforementioned condition for onset of condensation can be written as h√
3mkT

∼ n−1/3.

Assuming that the density is held constant, there exists then a critical temperature for

condensation given roughly by Tc ∼ h2n2/3

3mk .

In the derivation above for Tc, the point to note is that the regime where BEC begins

to manifest depends on the de Broglie wavelength λ. For λ ≪ n−1/3, the Bose gas

may be treated classically since the wave-function overlap is practically non-existent.

This condition may also be written as λ3n ≪ 1. Thus, we may use the parameter

λ3n to quantify crudely the quantum behaviour of the Bose gas. For λ3n ∼ 1, the

quantum behaviour of the Bose gas becomes significant and subsequent overlap of the

wave-function may produce condensation in the ground state.

With the qualitative discussion above, let us now look at the existence of condensation

temperature using quantum statistics. For a gas of bosons, the average occupation

number of an energy level with energy ǫs is given by N̂s = 1
e(βǫs−βµ)−1

, where β = 1/kT

[80]. Therefore, the total number of particles in the boson gas is given by

N =
∑

ǫi

N̂i =
∑

ǫi

1

z−1eβǫi − 1
, (2.1)

where we have written eβµ = z. This new parameter ‘z’ introduced in the above formula

is called the fugacity of the gas in literature [81]. For a Bose gas occupying a large
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volume ‘V ’, the energy spectrum would be closely spaced and the summation in the

above formula for N may be replaced by an integration. This small spacing between the

energy levels may be viewed in an elementary fashion by considering the problem of a

quantum particle in a three-dimensional infinite square well potential. As the volume

of the well is increased, the spacing between the energy levels decreases. However, for

doing an integral over the energy states, we need to assign a weight to each energy level

using the density of states. For a non-interacting gas in 3 dimensions, the density of

states is given by

a(ǫ) dǫ = (2πV/h3) (2m)3/2 ǫ1/2 dǫ.

Note here that the subscript on ǫ is dropped since now the variation of energy levels is

continuous. The above expression gives the number of states between an energy level ǫ

and ǫ + dǫ. Using a(ǫ) as the weight, we may evaluate the expression for total number

of particles in a Bose gas. However, there is a problem with this approach which has to

be taken into account. The expression above for the density of states attributes a zero

weight to the ground state ǫ = 0. Therefore, before converting the sum into an integral,

we single out the ǫ = 0 energy state. Thus, we have the expression for total number of

particles in a Bose gas as

N =
2πV

h3
(2m)3/2

∫ ∞

0

ǫ1/2dǫ

z−1eβǫ − 1
+

z

1 − z
. (2.2)

The lower limit of the ǫ integral is kept as ǫ = 0 since this won’t contribute to the

integral as it attributes zero weight to the level ǫ = 0, as mentioned above. Before

proceeding, a point to note is that the fugacity is bounded as 0 < z < 1. The reason

for the boundedness is that the chemical potential for a Bose gas is negative. This can

be understood by viewing the chemical potential as the change in energy of the system

due to addition of an extra particle in the system. Since there is no restriction on the

occupancy of an energy level for a Bose gas, if the chemical potential is greater than or

equal to 0, the entire reservoir can be emptied into the energy levels ǫ ≤ µ. Therefore,

for the Bose gas to be in equilibrium, µ < 0. Thus, z is always between 0 and 1.

For high values of T , z ≪ 1 and the weight of the second term in Eq.(2.2) is negligible as

compared to the first term. However, as z becomes close to 1, the weight of the second

term dominates and we have a divergence as seen in the previous section. Let us call

the occupation number of the ground state as N0 = z/(1 − z). Therefore, the number

of particles in the energy state ǫ > 0 , Nǫ say, can be written as
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Nǫ = N −N0 =
2πV (2mkT )3/2

h3

∫ ∞

0

u1/2du

z−1eu − 1
=
V

λ3
g3/2(z),

where u = βǫ, λ = h/(2πmkT )1/2 and gν(z) are Bose-Einstein functions defined by [81]

gν(z) =
1

Γ(ν)

∫ ∞

0

uν−1du

z−1eu − 1
= z +

z2

2ν
+
z3

3ν
+ ......

As z is bounded by 1 from above and as gν(z) is a monotonically increasing function of

z, the highest possible value of Nǫ is given by Nǫ = V
λ3
g3/2(1). Using the definition of

Bose-Einstein functions, g3/2(1) can be computed and its value is approximately equal

to 2.612 and we shall use this value henceforth. Nǫ is the total number of particles in all

the excited state for a given volume V and temperature T at equilibrium. For a given

Bose gas in equilibrium as long as the total particle number is less than this limiting

value of Nǫ, the bosons are distributed over all the excited states. However, if the total

number of particles in a Bose gas exceeds this limiting value, the excess particles will

be pushed into the ground state ǫ = 0. Thus there occurs a macroscopic occupation of

the ground state and we achieve what is called as a BEC. Therefore, the condition to

achieve a BEC is given by N > Nǫ which gives us the condition

N > V T 3/2 (2πmk)3/2

h3
(2.612).

For a Bose gas with constant density n = N/V and varying temperature, we get a

critical temperature for achieving BEC from the above equation as

Tc =
h2

2πmk
(n/2.612)2/3. (2.3)

A point to note here is that the qualitative expression for Tc obtained previously using

the de Broglie hypothesis has the exact same variation with respect to n and m as the

above expression obtained rigorously. The equations differ in numerical factors. Thus

we have obtained an expression for critical temperature below which we achieve BEC.

The fraction of condensed particles N0/N , and fraction of particles in higher excited

states Nǫ/N , as a function of T/Tc can be seen in Fig.(2.2).

Having shown the existence of BEC, let us now look at a mathematical indicator of the

phenomenon, called the off-diagonal long range order.
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Figure 2.2: Figure shows the fraction of atoms in the BEC phase and those out of the
BEC phase as a function of T/Tc.

2.3 Density matrix and Off-diagonal long range order

The phenomenon of Bose-Einstein condensation may be quantified using the density

matrix. The one body density matrix for a system with wave-function ψ(r) is defined

as

n(r, r′) =
〈
ψ∗(r)ψ(r′)

〉
.

By setting r = r′, we get the diagonal density of the system n(r) = n(r, r). This diagonal

density gives the total number of particles in the system via the relation N =
∫
dr n(r),

which reciprocally defines the normalization of the one-body density matrix.

Consider a system consisting ofN bosons whose pure states are given by ψl(r1, r2, ...., rN)

with energy El, where l is an index label on the pure state number. Then the one body

density matrix for the system in a pure state is given by

nl(r, r
′) = N

∫
dr2....drN ψ∗

l (r, r2, ...., rN ) ψl(r
′, r2, ...., rN ).

However, a general system is in a statistical mixture of the pure states and not in a

single pure state. In thermodynamic equilibrium, the one body density matrix for a

general system may be written as [37]

n(r, r′) =
1

Z

∑

l

e−El/kT nl(r, r
′),
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where Z is the partition function defined as Z =
∑

l e
−El/kT . Considering the particle

density fixed in the thermodynamic limit, let us assume that the one body density

matrix depends only on |r− r′|; let us say |r− r′| = s. With this definition, we have

n(r, r′) =: n(s). This one body density matrix may be written as a Fourier transform of

the one body density matrix in the momentum space as

n(s) =
1

V

∫
dp n(p) e−ip.s/~.

For a usual system, the variation n(p) is smooth with respect to |p| for small momenta.

Therefore, for s→ ∞, the phase oscillation would be very rapid and the integral would

vanish. However, there is an interesting case when the momentum distribution exhibits

a singular behaviour for zero-momentum states. This can be demonstrated by writing

n(p) = N0δ(p) + n̂(p), where n̂(p) gives the density matrix for particles with non-

zero momentum. Considering that the density for non-zero momentum given by n̂(p)

varies smoothly, the contribution of these states to the one body density vanishes for

s → ∞. However, due to the singular behaviour of the momentum density distribution

for zero momentum states, there exists a residual density n0 = N0/V even for s → ∞.

This behaviour of the one body density matrix is called the off-diagonal long range

order (ODLRO), since it consists of elements of the density matrix with r 6= r′. The

occupation number N0 follows the condition N0/N < 1 and the fraction of the total

number of particles in the condensate depends on the temperature of the condensate.

Above the critical temperature of condensation Tc, the condensate fraction vanishes.

Note that, here we have not considered interacting bosons. However, it may be guessed

that weak interactions would only shift the critical temperature and occupation number;

the qualitative effect of off-diagonal long range order would remain intact [82].

The one body density matrix thus serves as an important mathematical quantifier

of Bose-Einstein Condensation. Note that the macroscopic occupation of the zero-

momentum state was an essential ingredient in proving the existence of ODLRO.

Having reviewed the phenomenon of BEC in a gas of non-interacting bosons, we now

wish to study the effects of interactions between bosons. This is because in practice,

even a dilute gas has interactions between its constituent particles. However, we will use

simplifying assumptions while studying interactions. The assumption would be based on

the fact that the temperature required to achieve BEC is extremely low. At such a low

temperature, the bosons have extremely low energy and hence the dominant interaction

mechanism would be that of s-wave scattering. Further, we will consider a dilute Bose

gas which shall introduce one more simplification. It is that to the first order we may

only consider pair-wise scattering between bosons since the distance between them is so
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large that the probability of two body interactions is much higher than that of three

and higher body interactions. However, before we implement these assumptions, let us

look at two essential tools required to study a gas of interacting bosons. These tools are

basic scattering theory and the representation of a Bose gas using second quantization.

With this toolkit, we shall finally converge upon the protagonist of this thesis, which is

the mean-field Gross-Pitaevskii theory.

2.4 Some elements of basic scattering theory

The quantum scattering problem is one of the most important problems in modern

physics. In this problem one studies the effect of a potential in a certain region of space

on a travelling matter wave. It is important to study this problem to understand BEC

since the interaction between bosons which constitute the condensate is nothing but a

scattering interaction. How to scale up the problem to study scattering between many

bodies is something we would look at in the next section. But let us first have an

overview of scattering between two bosons. To do this, we first formulate the problem

and introduce the notations.

2.4.1 The scattering problem

Let us start by assuming that the inter-boson interaction is symmetric, i.e. depen-

dent only on the distance between them. This interaction potential is represented in

Schrodinger’s equation by V (r), where the scalar r denotes distance between the bosons.

The Schrodinger’s equation is written as

− ~
2

2µ
∇2 ψ(r, θ, φ) + V (r) ψ(r, θ, φ) = E ψ(r, θ, φ),

where µ is the reduced mass and ψ denotes the wave-function of the system. Given a

particular form of V (r), our aim is to solve the eigenvalue equation above. For simplic-

ity, let us consider a plane wave travelling in the z− direction which comes under the

influence of V (r) which scatters it. A part of the wave would scatter spherically and the

remaining part would continue to travel in the z− direction. Mathematically, therefore,

the solution to this problem for large r may be written as [38]

ψ(r, θ) ∼ A

{
eikz + f(θ)

eikr

r

}
, (2.4)



General theory 19

where k is the wave number of the incoming particle wave and f(θ) is called the scat-

tering amplitude. The wave number is related to the energy of the incident particles as

k =
√

2mE/~. The point to note here is that in the asymptotic limit, the scattering

amplitude is very important as practically all other factors are determined by the con-

ditions before the scattering. Therefore, in effect the scattering problem is to determine

f(θ) for a given V (r). The asymptotic form of ψ above shall be used to determine f(θ).

The quantum scattering problem usually cannot be solved exactly for a given interaction

potential. However, we can extract useful information from it. Since in BEC the scat-

tering between bosons occurs at low temperature, we will consider low energy scattering.

We shall apply perturbation techniques to calculate the forward scattering amplitude.

There are two techniques which may be used, the partial wave analysis and the Born

approximation. Imposing condition of consistency on expressions for forward scattering

amplitude obtained using these two techniques introduces a condition on the integral of

interaction potential. This expression will be useful in formulating the mean field theory

of BEC [37].

2.4.2 Partial wave analysis

For a spherically symmetric potential, the solution to Schrodinger’s equation is separable

as ψ(r, θ, φ) = R(r)Y l
m(θ, φ), where Y l

m(θ, φ) is called the spherical harmonic function.

The form of R(r) is determined by the radial equation using u(r) = rR(r) as [38]

− ~
2

2m

d2u(r)

dr2
+

[
V (r) +

~
2

2m

l(l + 1)

r2

]
u(r) = Eu(r).

The solution to this equation far from the scattering region is given by [83]

ψ(r, θ) = A

[
eikz + k

∞∑

l=0

il+1(2l + 1)alh
(1)
l (kr)Pl(cos (θ))

]
, (2.5)

where h
(1)
l is the first spherical Hankel function, Pl is the ‘l’th Legendre polynomial and

al is called the ‘l’th partial wave amplitude. Comparing it with Eq.(2.4), the scattering

amplitude may be read off as

f(θ) =
∞∑

l=0

(2l + 1)alPl(cos (θ)), (2.6)
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where the large r limit for the Hankel function is taken. Thus we have obtained a series

solution for scattering amplitude by breaking up the solution to the scattering problem

into partial waves with different angular momentum number l.

This problem can also be viewed in term of phase shifts, meaning we may assume that

scattering of a free wave from a potential only brings about change in phase of the wave.

Here too, we consider the partial wave analysis in a way, meaning we assume that during

scattering the angular momentum ‘l’ is conserved for each partial wave. The phase shift

for each partial wave can then be calculated. Using this approach one gets, after solving

the Schrodinger equation for an incoming wave of the form ψ = Aeikz, the expression

[84]

ψl(r, θ) ∼ A
(2l + 1)

2ikr

[
ei(kr+2δl) − (−1)le−ikr

]
Pl(cos (θ)),

for a specific ‘l’ where δl is the phase shift. One can compare the equation above with

the expression for a particular ‘l’ in Eq.(2.5) to get the expression for al as

al =
1

2ik

(
e2iδl − 1

)
.

For low energy scattering, the most dominant partial wave is the one with l = 0, called

the s-wave . Scattering considering only the l = 0 partial wave is called the s-wave

scattering. From Eq.(2.6), one can see that for s-wave scattering, f = a0. The value of

a0 can be obtained from the equation above connecting al with the phase shift δl. For

low energy scattering and small phase shifts, we have a0 ∼ δ0
k . The final piece of puzzle

is taking the limit k → 0, which gives us f = −a, where ‘a’ is the s-wave scattering

length, defined as

lim
k→0

k cot [δ0(k)] = −1

a
.

The scattering amplitude being equal to −a is an important result we have obtained here

and shall be used for justifying the pseudopotential approach in subsequent sections. We

shall now look at the first Born approximation which shall also be used in justifying the

pseudopotential approach.

2.4.3 First Born approximation

Another method to solve the scattering problem is using the Green’s function approach.

We start by writing the Schrodinger’s equation as
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[∇2 + k2]ψ(r) = Q,

where k =
√

2mE/~ and Q = 2µV (r)ψ(r). Note here that we have used r to denote the

3D dependence of ψ. For a given Green’s function G(r), the solution of this equation

would be ψ(r) =
∫
G(r− r′)Q(r′)d3r′. By using the usual Green’s function analysis, the

general solution in terms of the potential V (r) may be written as [84]

ψ(r) = ψ0(r) − µ

2π~2

∫
eik|r−r′|

|r− r′| V (r′)ψ(r′)d3r′, (2.7)

where ψ0(r) satisfies the free-particle Schrodinger equation

[∇2 + k2]ψ0(r) = 0.

As we will be dealing with BEC in dilute gases, we may assume that for the majority of

time, the bosons are far away from each other. Therefore, we calculate ψ(r) at points

far away from the scattering centre. Let us assume that the scattering potential is

localized about r0 = 0̄, meaning it drops to zero beyond some finite range. This is a

good approximation for a realistic interaction potential between bosons. So for the term

in the integral in Eq.(2.7), |r| ≫ |r′| and therefore |r− r′| ∼ r − r̂.r′. Further taking

k = kr̂ we get eik|(r−r′)| ∼ eikre−i(k.r
′), which in turn gives eik|(r−r′)|

|(r−r′)| ∼ eikr

r e−i(k.r
′) .

With this Eq.(2.7) becomes

ψ(r) = Aeikz − µ

2π~2
eikr

r

∫
e−ik.r

′
V (r′)ψ(r′) d3r′, (2.8)

where we have taken ψ0(r) = Aeikz. Now comes the Born approximation, which states

that the incoming wave is not substantially altered by the interacting potential. Math-

ematically stating, the Born approximation states ψ(r′) ∼ ψ0(r
′) = Aeik

′z′ = Aeik
′.r′ ,

where k′ = k′ẑ. By comparing with Eq.(2.4), the scattering amplitude may be read from

Eq.(2.8). Using the Born approximation, the scattering amplitude may be written as

f(θ, φ) ∼ − µ

2π~2

∫
ei(k

′−k).r′V (r′) d3r′ (2.9)

Lastly, for low energy scattering, the exponential factor above is essentially constant

over the scattering region and the above expression simplifies to
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f(θ, φ) ∼ − m

4π~2

∫
V (r′)d3r′, (2.10)

where we have replaced the effective mass µ = m/2, where m is the mass of the con-

stituent boson.

2.4.4 The pseudopotential

From the partial wave analysis, we obtained the expression for scattering amplitude as

f = −a. Using Born approximation, we obtained f = − m
4π~2

∫
V (r′)d3r′. For these two

approaches to be consistent, since they represent the same phenomenon, we must have

∫
V (r′)d3r′ =

4π~2a

m
. (2.11)

Therefore, we have a restriction on the interaction potential which is that its integral

should be equal to 4π~2a/m. We shall denote this value by g and call it the strength of

interaction. This does not however give us the exact form of the interaction potential,

but gives us a measure of its strength [84]. The exact form of the potential may be

complicated for actual interaction potentials, but now we have a measure of its strength.

For low energy s-wave scattering, the details of the interaction potential may not be

seen by the interacting bosons. Therefore, to reproduce the essential characteristics of

the interaction, we may replace the exact interaction potential by a soft pseudopotential

[37]. The choice of the pseudopotential must satisfy the condition given by Eq.(2.11).

The choice of a particular pseudopotential may give various detailed characteristics, but

the argument is that the long wavelength characteristics of the interaction would be

the same. This is a very important concept and will be an important ingredient of the

mean-field Gross-Pitaevskii theory.

2.4.5 Feshbach resonance

From the pseudopotential approach, it is clear that the strength of the potential g =

4π~2a/m is an important parameter for s-wave scattering. Therefore, it is useful to

have control over this parameter. Feshbach resonance is a technique to tune the s-wave

scattering length, in principle between the range (−∞,∞). This is done by using the

magnetic field to lift the degeneracy of the hyperfine states [34]. Since BEC is obtained

in a laboratory using gas of alkali atoms, let us look at this phenomenon for alkali atoms.

Alkali atoms also present a simplified picture of Feshbach resonance [85].
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Figure 2.3: Figure shows Feshbach resonance in alkali atoms in the language of open
and closed channels. A Feshbach resonance occurs when the collision energy in the
open channel resonantly couples to a bound state in the closed channel [85] (https :
//doi.org/10.1103/RevModPhys.82.1225).

The scattering process which we have considered till now does not consider the internal

degrees of freedom of bosons. However, there exists interactions between the internal

degrees of freedom of alkali atoms. Since alkali atoms have just one unpaired electron

in the outermost shell, the interaction between its spin degree of freedom and that of

the nucleus gives rise to hyperfine states which are the singlet and triplet states [86].

The difference between the energy of these states can be controlled by application of

a magnetic field. Due to the hyperfine effects, the interaction potential seen by singlet

and triplet states is also different . If the triplet potential (closed channel) has a bound

state whose energy is equal to the asymptotic limit (in distance) for the singlet potential

(entrance channel or open channel), we call this condition as a Feshbach resonance.

In this case, there occurs a coupling between the singlet and triplet potential which

enables tuning of the scattering length. The separation between the singlet and triplet

interaction potential may be controlled by an external magnetic field. Fig.(2.3) shows

the basic idea of Feshbach resonance. The s-wave scattering length varies rapidly near

the point of Feshbach resonance. Thus by using an external magnetic field, the s-wave

scattering length may be tuned. Experimentally, the variation of scattering length with

the externally applied magnetic field is given by [37]

af = a

(
1 − ∆

B −B0

)
, (2.12)

where af is the tuned scattering length, B is the externally applied magnetic field, B0

is the value of magnetic field at which resonance occurs and ∆ is called the width of

the resonance. Fig.(2.4) shows the variation of the scattering length near the Feshbach

resonance. Feshbach resonance has become a very important tool to tune interactions
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in atomic BEC which has been an important asset for applicability of BEC as analog

systems [21].
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Figure 2.4: Figure shows the variation of af/a as a function of the difference between the
externally applied magnetic field and the resonant magnetic field, given by B0.

2.5 Bose gas using second quantization

A gas of interacting bosons may be considered using field operators in what is called

the second quantized picture. The first quantization in quantum mechanics consists of

replacing the Poisson brackets in classical mechanics by the quantum commutation rela-

tions. The second quantization involves replacing scalar wave-function by field operators

introducing distinct commutation relations for field operators of bosons and fermions.

For quantum particles (bosons or fermions), ψ̂†(r, t) and ψ̂(r, t) denote the creation and

annihilation field operators respectively. In classical mechanics, the Hamiltonian for a

conservative system may be written as the sum of kinetic and potential energy compo-

nents, H =
∑

i p
2
i /2m+V (ri, rj). The second quantized Hamiltonian for field operators

is written as [37]

Ĥ =
~
2

2m

∫
dr ψ̂†(r)∇2ψ̂(r) +

∫
drdr′ ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r).

For a gas of bosons, the fields follow Bose commutation relations given by [37]

[ψ̂(r), ψ̂†(r′)] = δ(r− r′), [ψ̂(r), ψ̂(r′)] = 0.

In the Heisenberg’s representation, the field operator satisfies the equation i~∂ψ̂(r,t)∂t =

[ψ̂(r), Ĥ]. Using the Bose commutation relation and assuming that the potential V (r, r′)
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commutes with the field operators, we get the equation for evolution of the field operator

in the presence of an external potential Vext(r, t) as

i~
∂ψ̂(r, t)

∂t
=

[
−~

2∇2

2m
+ Vext(r, t) +

∫
dr′ ψ̂†(r′)V (r− r′)ψ̂(r′)

]
ψ̂(r). (2.13)

This equation is extremely important for developing the mean field picture of BEC,

giving us the Gross-Pitaevskii equation. In the next section, we will have a brief look at

how we develop the mean-field theory of BEC using the Bogoliubov approximation for

single and multi-component BEC. We will also have a brief look at the corrections to the

local Gross-Pitaevskii equation due to finite range effects of the inter-boson interaction

potential V (r− r′).

2.6 Mean field treatment of Bose-Einstein Condensates

The field operator for the many body system can be written in the diagonal form as a

sum over single particle states as ψ̂(r) =
∑

i φiâi, where ai and a†i are the annihilation

and creation operators respectively of a particle in state φi. These operators obey the

commutation relations

[âi, â
†
j ] = δij ; [âi, âj ] = 0.

Let us consider this as the starting point to build upon for the mean field theory.

2.6.1 Bogoliubov approximation and the Gross-Pitaevskii equation

For a macroscopic occupation of the ground state which is the BEC phase, we may

single out the zero momentum ground state i = 0 and write the field operator as ψ̂(r) =

φ0â0 +
∑

i 6=0 φiâi. The ‘Bogoliubov approximation’ consists of replacing the creation

(a†0) and annihilation (a0) operators by the classical number, or c-number
√
N0, where

the macroscopic occupation number of particles in the condensate is represented by

N0 . Thus, the Bogoliubov approximation is equivalent to treating the macroscopic

component (φ0â0) of the field operator ψ̂ as a classical field. With this approximation,

the field operator may be written as

ψ̂(r) = ψ0(r) + δψ̂(r),
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where ψ0(r) = φ0
√
N0 and δψ̂(r) =

∑
i 6=0 φiâi. For a macroscopic occupation of ground

state, the non-condensate part given by δψ̂(r) may be neglected and the field operator

ψ̂(r) may be written as a classical field [34]. This classical field given by ψ0(r) is called

the wave-function of the condensate.

With the Bogoliubov approximation, the evolution of the field operator in Eq.(2.13) may

be written as an equation for evolution of the wave-function of the condensate. This

gives us the mean-field Gross-Pitaevskii (GP) equation as

i~
∂ψ(r, t)

∂t
=

[
−~

2∇2

2m
+ Vext(r, t) +

∫
dr′ ψ∗(r′, t)V (r− r′ψ(r′, t)

]
ψ(r, t). (2.14)

Since ψ is a complex valued wave-function, its interpretation is that |ψ|2 gives the density

profile of the condensate. The chemical potential plays an important role in introducing

temporal phase oscillations. It can be briefly demonstrated as follows.

The Bogoliubov approximation is equivalent to saying that the expectation value of the

field operator
〈
ψ̂(r)

〉
is given by the wave-function of the condensate ψ0(r), considering

the expectation value of the part out of condensate
〈
δψ̂(r)

〉
is negligible. However,

since field operator consists of creation and annihilation operators, only the matrix

components of the form
〈
N |ψ̂(r)|N + 1

〉
give a non-zero value [34]. Further as the kets

evolve in time as |N
〉
∝

√
Ne−iEN t/~, the expectation value of the field operator evolve

in time as
〈
N |ψ̂(r)|N + 1

〉
∝ Ne−i(EN+1−EN )t/~. In the thermodynamic limit, i.e. for

large values of N , the chemical potential ‘µ’ may be approximated as µ ∼ EN+1 − EN

since the chemical potential is defined as µ = ∂E/∂N . Therefore we may write
〈
ψ̂(r)

〉
∝

Ne−iµt/~. As we replace
〈
ψ̂(r)

〉
by ψ0(r, t), we have

ψ0(r, t) = ψ0(r)e−iµt/~.

2.6.2 Interaction pseudopotential and the Local Gross-Pitaevskii Equa-

tion

Having obtained the mean-field GP equation in Eq.(2.14), there is one approximation

from the scattering theory which may be used to further simplify the equation. We had

seen in Sec.(2.4.4) that for low energy s-wave scattering between two bosons, the exact

interaction potential may be replaced by an effective potential. This approximation may

be used for a dilute BEC, which manifests at extremely low temperatures and hence

low energy scales. This is because the probability of two body collisions is very high
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as compared to three body or higher collisions. Therefore, we replace the interaction

potential ‘V (r− r′)’ in Eq.(2.14) by an effective potential which depends on the distance

between the bosons V (|r− r′|). This turns Eq.(2.14) into

i~
∂ψ(r, t)

∂t
=

[
−~

2∇2

2m
+ Vext(r, t) +

∫
dr′ ψ∗(r′, t)Veff (|r− r′|)ψ(r′, t)

]
ψ(r, t). (2.15)

The only constraint on the effective potential is that it should be symmetric and its

strength should be given by g = 4π~2a/m, where a is the s-wave scattering length. The

restriction on integral of the interaction potential actually gives us freedom of selecting

the exact shape of the pseudopotential, the only restriction being that
∫
dr Veff (|r− r′|) =

g. The discussion on shape in Sec.(2.4.4) applies.

Making use of the pseudopotential approach, the simplest function that can be taken

is one by neglecting the range of the interaction and taking the interaction potential

to be a Dirac delta function. Thus, we take in Eq.(2.15) Veff (|r− r′|) = g δ(|r− r′) .

We shall call the equation obtained by taking such a form of the pseudopotential as the

Local Gross-Pitaevskii Equation (LGPE), given by

i~
∂ψ(r, t)

∂t
=

[
−~

2∇2

2m
+ Vext(r, t) + g|ψ(r, t)|2

]
ψ(r, t). (2.16)

For a BEC with average density n, the diluteness parameter of the BEC is given by a3n,

which is also called as the gas parameter. The LGPE has been immensely successful in

describing properties of dilute BEC with a3n ≪ 1 in the presence of weak traps [83].

In such a situation, the finite range effects of the s-wave interaction may be neglected.

However, for small but finite values of gas parameter and/or tight trapping, finite range

effects of the inter-boson interaction potential come into play [35, 36]. In such a scenario,

assuming the finite range effects of the interaction potential as perturbation on top of

the LGPE gives corrections to the LGPE [45]. We shall consider such corrections to the

LGPE at the end of this section.

2.6.3 Multi-component BEC

The LGPE obtained in the previous section describes the dynamics of a BEC with a

single component. However, BEC with multiple components have also been realized

experimentally. BEC with multiple components may be obtained by using different ele-

ments [19], isotopes of an element [87] or a particular element in different spin states [88].
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The two body scattering interactions in a multi-component BEC consist of intra-species

scattering and inter-species scattering. Consequently, there exist intra-species scatter-

ing lengths and inter-species scattering lengths. The inter-species scattering length is

different for scattering between different species. To write a GP equation for BEC with

multiple components, these interactions have to be accounted for. Such an equation

may be arrived at using the same procedure as used for single component BEC in the

previous sub-sections. The Hamiltonian operator in this case may be written as a sum

of the intra-species and inter-species interaction as

Ĥ =
~
2

2m

∑

i

[∫
dr ψ̂†

i (r)∇2ψ̂i(r)

]
+

1

2

∑

i

∫
drdr′ ψ̂†

i (r)ψ̂†
i (r

′)V ii(r− r′)ψ̂i(r
′)ψ̂i(r)

+

i 6=j∑

i,j

∫
drdr′ ψ̂†

i (r)ψ̂†
j(r

′)V ij(r− r′)ψ̂i(r
′)ψ̂j(r).

Using the Heisenberg equation of motion and the Bogoliubov approximation for field

operators ψ̂(r, t), the mean-field equation for evolution of wave-function of a multi-

component BEC may be written as [77]

i~
∂ψi(r, t)

∂t
=
[
− ~

2∇2

2m
+ V i

ext(r, t) +

∫
dr′ψ∗

i (r
′, t)V ii

eff (|r− r′|)ψi(r′, t)

+
∑

j 6=i

∫
dr′ψ∗

j (r
′, t)V ij

eff (|r− r′|)ψj(r′, t)
]
ψi(r, t),

(2.17)

where the index ‘i’ labels each specie of the multi-component BEC, aii is the intra-sepcies

scattering length and aij is the inter-species scattering length. The multi-component

BEC may exist in a homogeneous ‘miscible’ state with different species mixed, or it may

exist in in a ‘phase segregated’ state with two or more species segregated. Whether the

multi-component BEC is in a miscible state or not depends on the relative energies of

the miscible phase and the segregated phase. Since the interaction energy in a BEC

depends mainly on the tunable s-wave scattering length, the miscibility is decided by

the intra-species and inter-species scattering length. Two components ‘i’ and ‘j’ are in

a miscible phase if aij <
√
aiaj .

By using the δ-function pseudopotential used earlier for a single component BEC, wave-

function evolution for a multi-component BEC can be obtained. The pseudopotential

used here is of the form V ij
eff = gijδ(r− r′). Using this pseudopotential gives us the

LGPE for multi-component BEC as
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i~
∂ψi(r, t)

∂t
=


−~

2∇2

2m
+ V i

ext(r, t) + gii|ψi(r, t)|2 +
∑

j 6=i
gij |ψj(r, t)|2


ψi(r, t). (2.18)

As for the case of single-component BEC, this equation describes BEC for low values of

gas parameter and/or weak trapping. In the absence of these conditions, the effective

range of the interaction potential has to be taken into account.

In the next sub-section we shall look at the effect of finite range of interactions in the

form of corrections to the LGPE.

2.6.4 Corrections to the LGPE: A Modified GP Equation

The local interaction pseudopotential gives us LGPE for single and multi-component

BEC. However, for non-negligible values of gas parameter, the δ-function approximation

for the pseudopotential is not good enough. This is because the interacting bosons

begin to ‘see’ the range of the interaction potential. Due to this, there arises a need to

introduce finite range effects in the system. This would introduce corrections on top of

the LGPE as we shall see shortly.

The finite range effects can be accounted for up to the first order by taking an extended

pseudopotential. In such a case, the simplified form of the non-linearity in LGPE will not

exist. However, we may assume that even after introducing an extended pseudopotential,

the variation of the wave-function in space is smooth. In such a case, we may take a

Taylor expansion of the wave-function under the integral. We take the pseudopotential

such that it commutes with ψ and lets us write ψ∗ Veffψ as Veff |ψ|2. We further take a

spherically symmetric pseudopotential. The Taylor expansion then turns Eq.(2.15) into

i~
∂ψ(r, t)

∂t
=
[
− ~

2∇2

2m
+ Vext(r, t)

+

∫
d(r− r′)Veff (|r− r′|)

(
1 + (r− r′).∇r

+
1

2
(r− r′).((r− r′).∇r(∇r)) + .....

)
|ψ(r, t)|2

]

× ψ(r, t).

(2.19)

Due to the symmetric nature of the effective potential, only the even order deriva-

tives survive after the integration. Note that we have not taken a specific form of

the pseudopotential. However, the pseudopotential used should satisfy the condition
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∫
Veff = g = 4π~2a/m. Performing the integrals for a specific form of pseudopotential

gives us the form of corrections on top of the corrections to the LGPE as

i~
∂ψ(r, t)

∂t
=

[
−~

2∇2

2m
+ Vext(r, t) + g

(
1 +

1

2
c1∇2 +

1

4!
c2∇4 + ...

)
|ψ(r, t)|2

]
ψ(r, t),

(2.20)

where the coefficients c1, c2, ... depend on the specific form of the effective potential.

However note that a particular choice of the effective potential would only alter the

coefficients of the correction terms; the form of the correction terms will be the same

for different effective potentials. Their structure comes from the spherically symmetric

nature of s-wave scattering.

The above analysis is for single component BEC. However, it can be extended to a

multi-component BEC. This turns Eq.(2.17) into

i~
∂ψi(r, t)

∂t
=
[
− ~

2∇2

2m
+ V i

ext(r, t) + gii

(
1 +

1

2
cii1∇2 +

1

4!
cii2∇4 + ...

)
|ψi(r, t)|2

+
∑

j 6=i
gij

(
1 +

1

2
cij1 ∇2 +

1

4!
cij2 ∇4 + ...

)
|ψj(r, t)|2

]
ψi(r, t).

(2.21)

An essential assumption that we have employed here is that the series of such corrections

to the LGPE has a natural truncation, meaning the subsequent terms in the series fall

off, either due to their coefficients decreasing or the higher order derivatives decreasing,

or both. If such a truncation does not exist, the series expansion becomes meaningless.

Such a case will manifest itself in Chapter(6) and we shall see that in such a case, rather

than doing a Taylor expansion, we do the entire integral without Taylor expanding

|ψ(r′)|2.

With this, we have the requisite mean field GP theory required to theoretically analyze a

BEC. Before we move on to the discussion on experimental realization of BEC in atomic

gases, let us briefly review BEC in the presence of an external potential.

2.7 Interacting BEC in a trap

As we shall see in the next section, obtaining a BEC requires trapping of bosons to

isolate them from the environment as interactions with the surrounding apparatus will

lead to thermalization of the bosons to room temperature. This is necessary because the
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transition temperature for obtaining a BEC in atomic gas is of the order of nano-Kelvin.

Therefore, BECs are always obtained in the presence of an external trapping potential.

The trapping is done using magnetic field to trap the atoms (bosons) based on their

internal quantum structure. The most common trapping potential is the harmonic trap

[89] in which the external potential is of the form Vext(r) = mω2r2/2, where ω is the

trapping frequency. Other trapping potentials are also engineered in laboratories [90],

including asymmetric potentials [91].

Consider a single component BEC in the presence of a harmonic potential. Let the

gas parameter be very small so that the BEC may be described by the LGPE. Since

the trapping potential depends only on the radial distance, the density variation would

also be radial. Let the wave-function of such a trapped BEC be given by ψ(r) =√
n(r)e−iµt/~. By neglecting the kinetic energy contribution, we obtain what is known

as the Thomas-Fermi (TF) density [37]. Using the LGPE given by Eq.(2.16), the TF

density profile of such a BEC is given by nTF (r) = 1
g (µ− mω2r2

2 ). A plot of the trapping

potential and the TF density profile is given in Fig.(2.5). As we shall see, for imaging a

condensate, it is released from the trap which results in an expansion of the condensate

[92]. The rate of expansion depends on the strength of the trapping; the tighter the

trapping, the faster the BEC expands.
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Figure 2.5: Figure shows the cross section of the TF density profile and the harmonic
trapping potential along the X-axis. The density is given in units of µ/g and the distance
from the centre of the trap is scaled by (1/ω)

√
2µ/m.

The very many applications that BECs find are a result of the variety of trapping

potentials that can be engineered. Apart from magnetic traps, one may also engineer

optical traps using counter-propagating laser beams [6]. The range of external potentials

which may be engineered range from double well traps [93] to an optical lattice [18]. On

top of these, BECs can be subject to several external potentials simultaneously to create

solitons, vortices, etc. [34]
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We thus conclude our discussion of the theoretical framework of BEC, starting from

quantum statistics of non-interacting bosons and arriving at the GP equation for weakly

interacting bosons and lastly looking at BEC in traps. While the theoretical framework

of BEC progressed comparatively rapidly, the progress on experimental realization of the

BEC took some time. Let us now look at some experimental details of BEC in atomic

gases which has been one of the greatest advance in recent times in experimental physics.

While the work presented in this thesis is theoretical, a description of experimental

methods is necessary to put things into perspective.

2.8 Experimental realization of BEC in atomic gases

The phenomenon of BEC was theoretically discovered in 1924-25 by Satyendranath Bose,

the proposer of the novel idea and Albert Einstein who worked further upon the idea

[2, 3]. The lag between the discovery and its experimental realization in 1995 [9] was

mainly due to technological limitations on cooling techniques for neutral atoms [28]. As

any physical theory is verified by experiments, it is important to study the journey of

experimental realization of BEC, along with the experimental methods used currently.

This gives a perspective on the reasons for the delay between theoretical prediction and

experimental realization of BEC. It also helps us understand the current limitations of

the experimental setup.

The transition temperature of a non-interacting Bose gas is given by Eq.(2.3) Tc =
h2

2πmk (n/2.612)2/3. For typical gases, this temperature is of the order of few hundred

nanokelvin [34]. Thus, obtaining a BEC in laboratory involves cooling gases to such low

temperatures. The journey of achieving low temperatures started with the liquefaction

of helium-4 in 1908 by Kamerlingh Onnes at ∼ 4K [94]. After this achievement, it took

a few decades for its superfluid behaviour to be detected by Kapitza in 1938 [95]. By

that time the idea of Bose-Einstein condensation was already around. Fritz London was

the first to propose that the superfluidity of liquid helium-4 may be a consequence of

Bose-Einstein condensation of liquid helium-4 below the λ-point [4]. The experimental

verification of this idea took a while [96]. However, since helium-4 is a liquid below

the λ-point, strong interactions involved need to be taken into account to relate its

superfluidity with BEC. Since the concept of BEC was proposed for non-interacting

gases, this theory couldn’t be carried over as it is to establish BEC in superfluid helium-

4. As a result the experimental verification of BEC demanded a non-interacting or

weakly interacting gas of particles which could be cooled below the critical temperature.

With the advent of lasers in 1960s [97], there was a renewed interest in the interaction

of coherent radiation with atoms. As a consequence, there was a breakthrough in the
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direction of cooling a collection of atoms using lasers in the 1970s [7]. This phenomenon

was termed as laser cooling and temperatures as low as 40 kelvin were achieved using

laser cooling in a gas of alkali atoms [8]. The use of alkali atoms was due to the restriction

of laser frequencies available. The temperature of 40K was much higher than that

of liquid helium, which could be cooled to about 1 K during the same time. The

temperature threshold of 40 K was further reduced due to the introduction of a technique

called the Zeeman slower which lowered the temperature threshold to a few hundred

micro-kelvin [6]. This temperature was still 2 − 3 orders of magnitude higher than the

critical temperature Tc. The evaporative cooling technique was the last missing piece of

the puzzle which was implemented to further cool the gas of laser cooled atoms and the

first evidence of BEC in a gas of rubidium-87 atoms was achieved in 1995. A point to

note here is that conventional techniques for cooling a gas of alkali atoms were not used

as the atoms would condense on the walls of the container.

A vapour of dilute atomic gases is desirable to achieve BEC due to the fact that the

interactions are very low and to a good approximation it could be treated as an ideal

gas. Further, in a dilute gas of alkali atoms, each constituent atom may be treated as a

boson due to the total atomic spin being an integer. Historically, amongst all elements,

hydrogen was thought to be the most probable candidate to obtain a BEC with till

the 1970s [5]. This was mainly due to two reasons. Firstly, due the inverse relation

of critical temperature of condensation with the mass of bosons, the highest transition

temperature for a gas of dilute atomic gases is that of hydrogen which has the lowest

mass. Second, due to the small size of the hydrogen atom, and the resulting small dipole

moment, hydrogen atoms react extremely weakly with each other as compared to a gas

of atoms of other elements. Therefore, there was great interest in cooling hydrogen

atoms to achieve BEC. Spin polarized hydrogen atoms were cooled to a temperature

of millikelvin range by trapping them. However, the temperatures achievable were well

above the transition temperature for achieving BEC in hydrogen.

The final stage of cooling to achieve a BEC known as ‘evaporative cooling’ was the final

ingredient. This final stage of cooling is often popularly compared with cooling a cup of

tea by blowing on its surface. By removing the energetic atoms, present as vapour on

the surface of the tea, one can cool it faster. In a similar manner, evaporative cooling

ejects bosons with higher energy from the trap over and over again. However, for this

to happen, the atoms need to thermalize quickly due to the limited lifetime of the trap

and this is where the problem with hydrogen was. Due to the low interactions between

hydrogen atoms the time taken for them to thermalize in a trap was very high, thus

preventing the temperature from dropping below the BEC transition temperature. Thus,

in a way the very reason why hydrogen was assumed to be the best BEC candidate was

the reason why hydrogen BEC could not be achieved, namely due to its low inter-atomic
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interaction strength. However, this evaporative technique was perfected for rubidium-87

in 1995 and the first evidence of BEC in dilute atomic gases was reported in 1995. This

was followed by observation of BEC in sodium [78], lithium [98], hydrogen [10], cesium

[99], potassium [100], chromium [101], etc. The problem of cooling hydrogen was solved

by using a technique called spin resonance and a hydrogen BEC was obtained in 1998.

Having given this historical perspective, we shall have a quick look at the experimental

aspects. We start by giving a brief discussion of laser cooling, evaporative cooling and

the trapping of neutral atoms. Then we shall see how to ascertain that the atomic gas

has reached the BEC phase. In this sub-section we shall also look at the ways to image

BECs and obtain their density profile. We end by briefly describing methods to excite

and detect vortices, solitons and small amplitude oscillation modes in a BEC.

2.8.1 Cooling and trapping

Historically, the technique of laser cooling was developed mainly to perform better spec-

troscopic measurements on atoms by eliminating the thermal effects [102]. However,

the importance of this technique as a step towards the critical temperature required to

achieve BEC was realized in 1970s [6]. There are three aspects which are important to

obtaining BEC. First is the laser cooling, second is the trapping and third is evaporative

cooling. As mentioned earlier, the problem with conventional methods of cooling by

using containers is that the gaseous atoms would condense on the surface of the vessel.

Therefore, it is necessary to trap these gases by methods which would avoid contact with

containers. The way out is trapping them in a region of space using electromagnetic ef-

fects. However, this trapping of neutral atoms in magnetic and optical traps is hindered

due to the fact that neutral atoms interact only weakly with the external magnetic or

electric fields. This means that the potential minimum created at the center of the trap

is very shallow. As such, the atoms need to be cooled to very low temperatures for them

to be contained by such traps.

Laser cooling relies on resonant absorption of photons by atoms, followed by spontaneous

emission. If a photon is incident upon an atom such that the energy of the photon is

exactly equal to the atomic excitation energy, the photon is absorbed by the atom and it

reaches an excited state. In the meanwhile, the atom acquires momentum in the direction

in which the photon was propagating. The excited atom then spontaneously emits

the absorbed photon in a random direction while obtaining a recoil velocity. Suppose

now that an atom is bombarded with a beam of photons with energy equal to atomic

excitation in a specific direction, then with subsequent absorption of photons the atom

will acquire speed in the direction of the beam. However with spontaneous emission of
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the photon the average recoil velocity acquired is zero because the direction of emission

is random. Thus, we can change the speed of atoms in a specific direction by making

photons of specific frequency incident on them. As temperature of a gas is a measure

of the average kinetic energy of its particles, slowing down the atoms in an atomic gas

reduces its temperature [8]. The frequency selection required for the process of resonant

absorption is provided by a laser. An important factor that has to be taken into account

is the Doppler effect due to the motion of atoms and its effect on the change in frequency

of incident laser which an atom sees. As our aim is to reduce the speed of atoms in all

the directions, a gas of atoms is bombarded with laser beams from 6 directions, with

one modification that the lasers are tuned such that the energy of photons is slightly

lower than atomic excitation energy to account for the Doppler shift. To see how this

setup works, imagine a coordinate system whose axes are aligned with the laser beams.

An atom travelling in a positive X-direction will see the frequency of photon travelling

towards it (in the negative X-direction) to be blue shifted. The detuning of the laser

frequency is such that the blue shift makes the energy of the photon exactly equal to

the atomic excitation energy. Note that this atom won’t absorb energy from a photon

travelling in the same direction (in this case, the positive X-direction) as the Doppler

shift of this photon is not resonant with the atomic excitation. Thus, with subsequent

absorption and spontaneous emission of laser photons, the speed of the atomic gas

reduces and so does the temperature. There are however practical problems involved

in this process, for example, after the atoms slow down and reach a certain speed, the

detuned lasers are no longer detuned for the new Doppler shift due to the change in speed

of atoms. A lucid explanation of such practical problems can be found in the excellent

review by Phillips et al. [6] and few other reviews on the subject [28, 103]. Methods to

overcome problems with laser cooling are also described in the review articles.

To obtain an aggregate of such laser cooled atoms, it is necessary to confine them

in a region of space in order to avoid thermalization with surroundings. For reasons

mentioned previously, containers cannot be used. As atoms are electrically neutral, their

trapping is done by utilizing their magnetic and electric dipole interactions. Magnetic

trapping is achieved by using spin polarized atoms. A radially symmetric magnetic field

potential is engineered with the minimum of magnetic field at the center of the trap

[6]. Due to the interaction of the spin polarized atoms with the magnetic field, they

experience a potential well. The atoms with least energy occupy the center of the trap,

with the energetic atoms being present away from the center, the distance from the

center based on their energy. A similar trapping may be obtained by interaction of an

electromagnetic wave with induced dipole moments in atoms. For this, a laser beam

with gaussian intensity profile is used [40]. This would also produce a minimum at the

centre and the atoms may be confined. However, the use of electric dipole moment has
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the disadvantage that laser causes heating of atoms. Therefore, the gaussian beam has

to be switched off periodically and the atoms have to be laser cooled again. This process

has to be repeated to prevent loss of atoms [6] .

As the interaction of electric and magnetic dipoles with electromagnetic fields is weak,

it can only confine laser cooled atoms. Furthermore, atoms in the trap have to be

isolated from the surroundings as this will cause heating. A longer lifetime is achieved

by trapping atoms in high vacuum. Note that due to the weak interactions of the atoms

with the electromagnetic fields, strong fields need to be applied for trapping atoms.

However, application of strong electromagnetic fields causes shifts in energy structure

of atoms. Due to this spectroscopic measurement of atoms in a trap is largely affected.

As such the trap is usually switched off before making spectroscopic measurements.

After the atoms are trapped successfully, the atoms can be further cooled by a process

known as evaporative cooling [104]. Through this process, the laser cooled atoms can

achieve a temperature lower than transition temperature to achieve BEC. Evaporative

cooling is inspired by cooling of surfaces upon evaporation of liquids from them. Evapo-

ration takes away energy from the system, thus cooling the system. In short, evaporative

cooling may be described as follows. As mentioned above, atoms occupy regions in a trap

based on their energies. The least energetic atoms occupy the trap centre with energetic

atoms populating regions away from the trap center based on their energies. This distri-

bution of atoms is crucial to perform evaporative cooling. In terms of distributions of the

system, evaporative cooling involves removal of high energy tail of the distribution, thus

reducing the temperature of the system. Higher energy atoms from the trap are ejected

so that they leave the remaining atoms at a lower temperature. For this to happen, the

atoms have to thermalize at time scales lower than the lifetime of atoms in the trap.

There are several methods employed in experiments to achieve evaporative cooling. A

simple method involves touching the atoms at the end of the trap with container walls,

maintained at a temperature of few millikelvin [6]. Another method reduces the height

of the trap, so that atoms with higher energy are ejected from the trap. However, the

most popular method is the rf-method which uses the electromagnetic waves to exploit

the atomic structure to selectively eject atoms from the trap [105]. The details of some

of the experiments may be found in reviews by Ketterle et al. [103] and Tino et al. [106]

to mention a few.

In the next section we address the question as to how does one confirm that a BEC has

been achieved experimentally and how to measure subsequently the density profile and

other properties of a BEC.
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2.8.2 Imaging BECs

Having cooled the atoms, we need to ascertain whether we have obtained a BEC and

then to measure its various properties. The most important property is the density

profile of a BEC which has been used as an experimental proof of condensation. BECs

are defined by the macroscopic occupation of zero energy ground state of a gas, which

is the zero momentum state. Therefore, to claim evidence of achievement of a BEC,

the velocity distribution of the gas has to be measured. Direct measurement of velocity

distribution at such low temperatures as the BEC transition temperature is a challenge.

Therefore an indirect measurement of the velocity distribution profile is done using

what is known as the time of flight measurement [9]. Further, there are three popular

methods of measuring the density distribution of a BEC. The most popular method is

the absorption imaging where a shadow of the condensate is cast on the CCD camera

[107]. The other two popular methods are phase measurement [108] and fluorescence

spectroscopy [109].

As mentioned earlier, due to the trapping potential used, the trap centre is populated

by atoms with lowest energy. The energy of the atoms gradually increases with distance

from the trap centre. Therefore, the trapping of atoms has an additional advantage

in that it converts the information regarding momentum distribution of the atoms into

spatial distribution. The relative population of atoms as a function of distance from the

trap centre then can ascertain the occurrence of condensation. As the atoms are released

from the trap, the atoms shall expand according to their initial energy. The atoms at

the centre of the trap being in their ground state would be localized even after being

released from the trap, whereas the atoms away from the trap would expand more and

spread out. Thus, if there is a macroscopic population of the zero momentum ground

state, which would be localized near the trap centre, we may observe a spike in density

of atoms even after being released from the trap. This density distribution of the atoms

is then measured by utilizing the interaction of light with these atoms.

The most prevalent technique of imaging is absorption imaging. This is also the sim-

plest technique. In this technique a resonant laser is shone upon a cloud of atoms. By

‘resonant’ it is meant that the laser frequency is adjusted so that it corresponds to a

frequency which the atoms can absorb. By shooting the laser directly at the atom cloud

and placing a CCD camera behind it, we can cast a shadow of the atomic cloud on the

CCD camera. There are many caveats on the use of this technique. Firstly, for absorp-

tion imaging of atom clouds, the atoms have to be released from the trap. The reason

for this is two-fold. Firstly, the magnetic field used for trapping significantly distorts the

atomic structure of atoms anisotropically. Secondly, for trapped atoms, the densities

are very high and as such the details of the density profile get lost while absorption
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imaging. Therefore, the atoms have to be released from the trap and allowed to expand

for the details of the density profile to be accessible for probing. These reasons prevent

in-situ imaging of the cloud using absorption imaging. Fig.(2.6) shows the absorption

images demonstrating the onset of BEC transition in the first observation of a BEC by

Anderson et al. [9]. This shows the onset of BEC as the temperature is varied from

just above the critical temperature of condensation, to the condensation temperature.

The temperature of the atomic cloud is measured using its absorption image. Since the

trap converts the information on momentum distribution of atoms into spatial distri-

bution, the profile of concentration of atoms gives the momentum distribution. From

this distribution, the temperature of the atomic cloud can be calculated. To note is the

fact that absorption imaging is destructive since resonant absorption by atoms leads to

momentum gain and consequent heating.

Figure 2.6: Figure shows three false colour absorption images of atomic cloud released from
a trap. The image on the left shows the atomic cloud above the BEC transition temperature,
the middle image is for the atomic cloud just below the transition temperature while the
image on the right shows the BEC after further evaporative cooling. As can be seen, the
rightmost image has the least number of atoms out of the condensate [9]. From Science,
Vol 269, Issue 5221, pp. 198-201, 14 July 1995. Reprinted with permission from AAAS.

Another mode of interaction of light with matter is that of change of phase of the light

on interaction with matter. When coherent radiation is incident upon cloud of atoms,

the phase of the radiation changes and this change is proportional to the density of the

atoms. However, this change of phase cannot be imaged and hence this information

has to be converted to a readable density profile. This method of imaging is called

‘Phase contrast imaging’ [110, 111]. The information regarding the change of phase

can be converted into the density profile by blocking the unscattered radiation [103].

Fig.(2.7) shows schematically the experimental setup for phase contrast imaging. Off-

resonant laser radiation is incident upon the atom cloud and the unscattered radiation

is blocked. The scattered radiation is then incident on a CCD camera. Due to the

blocking of unscattered radiation, the intensity of radiation incident on the CCD is

directly proportional to the phase shift of the laser, for small phase shifts [103]. This

information about the intensity is then converted into a density profile. The main

advantage of phase contrast imaging is that it allows for in-situ measurements. This

is because the technique doesn’t require resonant radiation to be incident on the atom

cloud. As a result, the technique is non-destructive. Consequently, multiple images of
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the same cloud can be taken. However, as this technique relies on the CCD camera,

it suffers from slow speed of imaging. This is more of a technological limitation of the

CCD. Due to the limited lifetime of a condensate in a trap, only limited number of

images may be taken.

Figure 2.7: Figure shows the idea of phase contrast imaging. Trapped atoms are illumi-
nated by coherent radiation. The interaction of coherent waves with atoms brings about a
change in the phase of the wave. This combination of scattered and unscattered radiation
is then passed through a lens where the unscattered radiation is focused in the focal plane.
By placing an object, called the phase spot (PS) in the focal plane of non-diffracted incident
radiation, the unscattered radiation is blocked. Then only the scattered radiation remains
which can be read by a CCD camera to give density profile. This figure has been taken from
paper by Meppelink et al. [111].

Lastly, fluorescence imaging is another technique to probe density of an atomic cloud.

A probe beam is incident on the sample and the fluorescent radiation is measured using

an imaging objective. Fig.(2.8) shows the fluorescence image of a BEC cloud [112]. In

the previous two techniques, the column density along 1 direction is usually integrated.

Thus, effectively 2D images of the atomic cloud are obtained. Fluorescence imaging

has been proposed to obtain 3D images of the atomic cloud. However, for dense clouds

only fluorescence radiation from the surface of the cloud reaches the imaging objective

unscattered. Therefore, to obtain accurate 3D profile, the cloud has to be released from

the trap.

Having given a brief introduction of cooling, trapping and imaging techniques, we now

describe the method to obtain and image the three main types of excitations in a BEC,

namely the vortices, solitons and small amplitude oscillation modes. This thesis deals

mainly with the study of these excitations and as such it is useful to know how these

are excited experimentally and imaged.

2.8.3 Exciting vortices in a BEC

Vortices are unique to superfluids in effectively 2D or 3D geometry. In 3D geometry,

vortices appear as filaments, with interactions between vortices depending on their ori-

entation [113]. This introduces a complex behaviour in a BEC with a bunch of vortex

filaments. However in a 2D geometry, the choice of axis of rotation is confined to a
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Figure 2.8: Figure shows scheme of fluorescence image of a condensed cloud. This figure
has been taken from Sherson et al. [112].

single axis. In 2D on generation of a large number of vortices in the system, we obtain

a lattice of vortices [114].

Vortices may be generated in BECs either in a deterministic manner or a stochastic

manner. The category under which a certain method of vortex generation in a BEC

falls is determined by the following question. Given a BEC in which we have obtained

a certain configuration of vortices by a certain method, can the method be repeated to

give the same configuration of vortices? If the answer is yes, then the method is called

deterministic, or else the method is called stochastic. The three major techniques of

exciting vortices are by stirring the condensate, phase imprinting and introducing defects

in a BEC which decay as vortices. The first two methods fall under the deterministic

category, while the third is a stochastic process. Further, the vortices can be imaged

in a destructive manner, or by using in-situ imaging. Let us first describe briefly the

methods of generation of vortices and then we will look at the imaging methods.

The first method of generating vortices consists of pumping angular momentum in the

atomic cloud by stirring it. This angular momentum may be imparted either before of

after the onset of condensation. A gas of BEC in a trap may be stirred by introducing

anisotropy in the trap [115, 116]. This anisotropy may be introduced using a laser

beam far detuned from atomic resonance. This detuning is necessary to avoid resonant

absorption and hence heating. This stirring was introduced in a 2D condensate, by

using two co-propagating laser beams. These lasers define a plane which contains the

axis of tight confinement. By rotating this plane about the axis of tight confinement, the
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condensate is stirred [57]. A variation of this technique consists of imparting angular

momentum to a trapped atomic cloud before the RF cooling process. This angular

momentum imparted to the thermal cloud helps nucleate vortices once it is cooled below

the condensation temperature by RF cooling [117].

Figure 2.9: Figure shows the increase in number of vortices upon increase in frequency
of rotation of the BEC and the subsequent formation of the vortex lattice. This figure has
been taken from Engels et al. [55].

The second method consists of imprinting a phase on the condensate. This phase may

be imprinted by changing the local energy of a trapped condensate [118]. The local

phase of the condensate is proportional to its local energy. This energy may be varied

by using a far detuned laser beam [58, 119]. Phase may also be imprinted in a BEC by

using an external bias magnetic field [120].

Lastly, vortices may be generated in a BEC by inducing defects [121]. For instance, soli-

tons are defects that are stable in 1D geometry. However, in higher dimensions, solitons

suffer from snaking instability and decay into vortices [122]. Therefore, vortices may be

generated in a BEC by generating 1D solitons in a 2 or 3 dimensional condensate and

then waiting for them to decay into vortices. Defects can also be created by creating

domains in a trapped BEC [58]. At the interface of these domains, there arises a singu-

larity of phase which can create a soliton which can decay into vortices. This may also

be done merging different condensates [123]. Further, a similar mechanism is used for

generating vortices and is called the Kibble-Zurek mechanism in which the atomic gas is

made to cross the BEC transition in a finite quench time [124]. This creates defects in

the BEC such that domains with different phases are nucleated, consequently generating

vortices.

Outlining the techniques for generating vortices in a BEC, the imaging of vortices is

important in measuring their characteristics. Vortices are imaged mainly by absorption

imaging. Since the length scale of the core of the vortex in a BEC is of the order

of healing length, in-situ imaging using laser probes is difficult. Therefore, absorption
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imaging is the most popular technique used. The condensate is released from the trap

and the density profile of the expanded condensate is measured. As absorption imaging

is destructive, it is mainly used for imaging deterministic vortices. However, for imaging

stochastic vortices, in-situ imaging is preferable [125]. An example of the in-situ imaging

technique used involves the use of a two-component BEC in which vortices are generated

in one of the components. The core of these vortices are filled with atoms from the

second component. The second component is then used to obtain the density profile of

the vortex like a stencil [126].

Having described the nucleation and detection of vortices in a BEC, let us next have a

look at the generation and imaging of solitons in an effectively 1D BEC.

2.8.4 Exciting solitons in a BEC

As discussed in the theory earlier, solitons are shape preserving waveforms which are

characteristic of non-linear systems. These are characterized by dip in the density for

dark solitons and a spike in the density for a bright solitons. Due to the structure

of the non-linear GP equation, dark solitons are observed in a BEC with repulsive

interactions, whereas bright solitons are observed in a BEC with attractive interactions.

A bright soliton is essentially a particle like excitation [37]. On the other hand, dark

solitons are characterized by a phase profile which changes with the depth of the central

density dip [34]. Bright and dark solitons are excited in a BEC using distinct techniques.

While there is one widely used technique to generate bright solitons, there are several

techniques to generate dark solitons. It is important to state that solitons are stable only

in 1D condensates [127]. In higher dimensions, solitons decay due to snaking instability.

Therefore, solitons are excited mainly in cigar shaped condensates, i.e. the trapping

along radial dimensions is extremely tight as compared to the axial direction [59].

Since attractive BECs are unstable, generating BEC in an atomic gas with attractive in-

teractions is not feasible. On the other hand, repulsive interactions cannot sustain bright

solitons. To solve these contradictory circumstances, Feshbach resonance is employed.

Feshbach resonance enables to tune the strength of interactions in a BEC by modifying

the s-wave scattering length, in principle from positive infinity to negative infinity. To

generate bright solitons in a BEC, a BEC with repulsive interactions is generated in a

magnetic trap. Feshbach resonance is then used to tune the scattering length to a weak

negative value. The interactions are kept weak so as to increase the lifetime of the BEC,

since attractive BECs are inherently unstable. In this way, multiple solitons may be

generated [128]. The BEC is then released from the trap and solitons are imaged using

absorptive or dispersive imaging [129].
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Figure 2.10: Figure shows the first absorption images of propagating solitons reported in
1999. This figure has been taken from Burger et al. [144].

Dark solitons are excited in a repulsive BEC using quite a few methods. After having

obtained a BEC in a magnetic trap, dark solitons may be generated by density en-

gineering method [130]. In this method, an external potential is super-imposed upon

the trapping potential to create an artificial dip in density for a finite amount of time.

After the external potential is turned off, a dark soliton appears in the trapped BEC.

Secondly, a dark soliton can be excited by what is called the phase-imprinting method.

In this method, a laser is shone upon one half of the BEC to imprint a phase which is

the characteristic of 1D dark solitons [131]. A hybrid of the density engineering method

and phase engineering method may also be used [59]. Next, solitons also appear due to

defects. This was also mentioned as a vortex generation method. For example, when

a BEC is generated in a double well, the condensate in each of the wells acquires a

different phase. When the double well potential is turned off, the condensates merge.

At their interface there is a discontinuity in the phase and solitons are generated as a

result [103]. Lastly, solitons may be generated when a BEC flows past an obstacle [132].

The solitons so generated are imaged using time of flight analysis using absorptive or

dispersive imaging.

2.8.5 Measuring the excitation spectrum in a BEC

The final kind of excitation which we shall be dealing in this thesis is the small amplitude

oscillation mode. These excitations give us the excitation spectrum of the BEC which

are important for getting knowledge about the superfluid properties of the BEC. In a

trapped BEC, small amplitude modes are excited mainly using two methods. First is by

perturbing the spring constant of the harmonic trapping potential [65]. After perturbing

the trapping potential for a finite time, the perturbing potential is turned off and only

the harmonic trapping remains. After a finite time, the harmonic trapping is turned

off and the condensate is allowed to expand. This splits the atomic gas into two parts.

The larger part is the condensed fraction and the smaller part are the small amplitude

excitations. The separation between the centres of these two gaussians determines the

wave vector. By using different frequencies to perturb the BEC, the excitation spectrum



General theory 44

of the BEC may be determined using this method [64]. The imaging is done either using

absorptive or dispersive methods. Fig.(2.11) gives the atomic gas released after exciting

small amplitude modes [63]. The condensed and the excited fractions can be clearly

seen to be separated.

Figure 2.11: Figure shows the atomic cloud in which excitations have been induced. Part
(a) shows the absorption image in which the condensed and excited part of the atomic cloud
can be seen to be separated. Part (b) is a cross section of the absorption image in which
the dashed line is the gaussian fit to the condensed cloud. This figure has been taken from
Steinhauer et al. [63].

The second method of exciting small amplitude modes in a BEC is by using Bragg

spectroscopy [133]. Two laser beams with almost parallel polarization and an angle

between them are shone on the condensate. The detuning between the two beams can

be varied using a frequency control. The angle between the lasers determines the wave

vector of the mode excited in the BEC. The detuning between the lasers is then varied

to obtain the Bragg resonance. The imaging here as well is done using absorptive or

dispersive imaging.

Having reviewed the general theory and experimental methods in a BEC, we shall now

proceed to the works done by us in what follows. We shall start with the corrections to

the local GP equation and the changes to the energy functional due to these corrections.

We present a proof of the exact correspondence between corrections to the GP dynamics

and those to the energy functional. This non-trivial correspondence is proved rigorously.

Secondly, we shall have a look at the new class of vortex solution with width of the order

of the microscopic length scale of interactions in a BEC. This is qualitatively different

from the vortex solution with width of the order of the healing length ξ0. Next, we shall

see the effect of the first order correction to the LGPE on the dark and bright soliton

solution. Lastly, we shall have a look at the effect of finite-range of interactions between

bosons on the elementary excitation spectrum in a BEC.



Chapter 3

Energy functional for the

modified Gross-Pitaevskii

equation

Bose-Einstein Condensates (BECs) are modeled theoretically at a mean field level using

the Gross-Pitaevskii (GP) equation [34]. Since the BEC exists at a low temperature,

the low energy s-wave scattering is the dominant interaction mechanism governing the

system. The mean field GP theory which takes into account only the two-particle s-wave

scattering as the interaction between particles captures the essential properties of a BEC.

It uses a pseudopotential approach to account for inter-particle interactions. The actual

inter-particle interaction potential is replaced by a soft potential. Due to the symmet-

ric nature of s-wave scattering, the inter-particle interaction potential in GP model is

replaced by a symmetric pseudopotential. The constraint is rather on the strength of

the pseudopotential. To make use of this freedom, a delta-function psuedopotential is

usually used which, not only simplifies calculations considerably, but also is quite effec-

tive for dilute BECs. We shall call such a model, where the pseudopotential used is a

delta-function, as the local GP equation (LGPE). However, using a delta-function as the

pseudopotential sacrifices the information that we might get from the finite range effects

of the s-wave interactions. We can expect the finite range of the s-wave interactions

to introduce corrections to the LGPE. These corrections can be obtained in two ways.

Firstly, we can obtain the finite momentum expansion of the phase shifts [35, 36]. An-

other way is to replace the delta-function by an extended pseudopotential, which would

have a finite width and then employing Taylor expansion [62]. We shall see that both

these methods give qualitatively similar correction terms to the LGPE.

45
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The energy functional of a system gives the total energy of a system for a certain

state. This is a very important quantity since employing energy minimization to find

the ground state is the central theme of variational methods. The LGPE has a well

defined energy functional [34]. In a similar way, it is desirable to obtain the energy

functional for the LGPE with correction terms. As we shall see, the correction terms

form a series. The physical parameters of the system would dictate the order to which

such a series is truncated. As such, it is desirable to obtain a general energy functional

corresponding to the series of correction terms up to an arbitrary order. In this direction,

it is advantageous if we can identify a pattern between each correction to the LGPE and

the corresponding correction to the energy functional. This is indeed what we shall show

using simple combinatorial techniques [45].

In this chapter, we start by showing how corrections to the LGPE are obtained. Then

we obtain an energy functional corresponding to such corrections to the LGPE. There

exists a term by term correspondence between corrections to the LGPE and corrections

to the Energy functional. This is established mathematically using simple combinatorics

[45].

3.1 Corrections to the local GP equation

3.1.1 The local GP equation

The mean field GP equation is of the form

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t)

+ ψ(r, t)

∫
ψ∗(r

′
, t)Veff (r− r

′
)ψ(r

′
, t) dr

′
,

(3.1)

where Vext(r, t) is the externally applied potential, |ψ(r, t)|2 gives the density of the BEC

and Veff (r− r
′
) is the pseudopotential which replaces the interaction potential between

the bosons in the mean field GP theory. The restriction on the pseudopotential is that
∫
Veff = g, where g = 4π~2a/m captures the interaction strength with ‘a’ being the

s-wave scattering length. This is because in the s-wave scattering, the exact shape of the

interaction potential cannot be resolved by the low energy particles. Taking advantage

of this condition, one replaces the effective potential with a δ-function, thus turning

Eq.(3.1) into
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i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t) + g ψ(r, t)|ψ(r, t)|2. (3.2)

We shall refer to Eq.(3.2) as the local GP equation (LGPE). The LGPE does not take into

account the energy dependence of the effective interactions. It thus neglects the finite

range effects of the interaction potential and the corrections to the LGPE arising thereby.

Even in the low energy regime of BEC, there would arise corrections to the GP equation.

These corrections can be accounted for in two ways. One, by considering a low k

expansion of the scattering amplitude and second by taking an extended pseudopotential.

Let us look at both these approaches and the kind of correction terms to the LGPE that

they generate.

3.1.2 Corrections due to finite momentum expansion

The real part of the scattering amplitude for s-wave scattering is given by [84]

− m

4π~2

∫
dr e−ik·r Veff e

ik·r = Re[f(k)], (3.3)

where k is the incoming wave-vector. The scattering amplitude has no angular depen-

dence due to symmetric nature of s-wave scattering. As mentioned before, in the case

of LGPE, the effective potential is taken to be a delta function. As we shall see, this is

the zero momentum approximation in context of scattering amplitude.

In terms of phase shifts, the scattering amplitude is given by fl(k) = 1
k(cot δl−i) , where

l is the angular momentum state in the partial wave expansion [84] and δl is the phase

shift corresponding to the value of l. Since we are dealing with s-wave scattering, we

shall deal with the case l = 0. For low values of k, we can obtain an expansion for

k cot δ0 [83] which can be written as

k cot δ0 = −1

a
+

1

2
rek

2 − Prek
4 +O(k6), (3.4)

where a is the s-wave scattering length, re is the effective range and P is a term dependent

on the shape of the interaction potential. Using the equation above, the real part of

scattering amplitude for l = 0, f0(k) = 1
k(cot δ0−i) can be written as Re[f0(k)] = −a +

a2(a− re
2 )k2+O(k4). We want the expression thus obtained for scattering amplitude to be

consistent with Eq.(3.3), as both represent the same quantity, the scattering amplitude.

For k = 0 in order for this expression to be consistent with Eq.(3.3), we write Veff =

g δ(r1 − r2), where g = 4π~2a
m and δ(r1 − r2) is the Dirac delta function.
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In order to incorporate finite values of k in the effective range expansion, the effective

potential needs to be modified. Looking at Eq.(3.3), one can estimate that there need

to be Laplacian and higher order derivative terms as corrections to bring in terms of

the form k2n in the scattering amplitude. Hence, there would arise corrections to the

effective potential on top of the δ-function. These corrections are of the form

Veff = gδ(r1 − r2) +
g2
2

[
δ(r1 − r2)∇2

r1−r2
+ ∇2

r1−r2
δ(r1 − r2)

]
+O(∇4

r1−r2
).

Plugging this form of the effective potential in Eq.(3.1), we get corrections to the LGPE

of the form [36]

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t) + g ψ(r, t)|ψ(r, t)|2

+ g2 g ψ(r, t) ∇2|ψ(r, t)|2 +O(ψ(r, t)∇4|ψ(r, t)|2),
(3.5)

where g2 captures the effective range of scattering re via the relation g2 =
(
a2

3 − are
2

)
.

Thus we can see that due to the effective range expansion, we get corrections to the

LGPE using the finite momentum expansion of scattering amplitude.

The name ‘effective range’ does not imply that re is the width of the interaction potential,

but that re is approximately determined by the width and the strength of the effective

potential. The limit re ≤ 2a/3 can be understood as follows. Consider the solution to

the s-wave scattering problem given by ψ(k, r), where k is the wave momentum and is

small since we are considering low energy scattering. Let the solution far away from

the scattering region be given by φ(k, r). In other words for large r, ψ(k, r) = φ(k, r).

Then the value of effective range is given by re = 2
∫
dr[φ2(0, r) − ψ2(0, r)] [134]. By

definition, in a region of space where the scattering potential vanishes, ψ(k, r) = φ(k, r).

Now, let the scattering potential have a range r0, such that the scattering potential is

zero for r > r0. In such a case, the contribution to re would come from the integral

from 0 to r0 since for r > r0 the integrand vanishes. Further for k = 0, we have

φ(0, r) = 1 − (r/a), where a is the s-wave scattering length [134]. Now, looking at the

expression of re, it may be easily inferred that the maximum value of the integrand is

when ψ(0, r) vanishes in the region r ≤ r0. This situation occurs when the scattering

potential is a hard sphere potential in which case the potential is infinite for r ≤ r0 and

zero for r > r0. A simple calculation with φ(0, r) = 1− (r/a) shows that for hard sphere

scattering re = 2a/3. For any other potential, the value of integrand is smaller than this

limiting value and hence re ≤ 2a/3. The details of this calculation may be found in the
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book by Newton [134]. There is also another way to obtain such an expression using an

extended pseudopotential, which we explain next.

3.1.3 Corrections using an extended psuedopotential

The corrections to the LGPE can also be obtained by considering an extended pseu-

dopotential instead of a δ-function pseudopotential. For the symmetric s-wave scatter-

ing considered, we can take any symmetric extended pseudopotential and do a Taylor

expansion of the wavefunction to obtain the series of correction terms as in Eq.(3.5).

The point to note here is that as long as we wish to look at the functional dependence

of the correction terms, the exact shape of the pseudopotential does not matter. Of

course the shape would decide the constant terms accompanying the correction terms.

However, the functional form of the correction terms doesn’t change. With this in mind,

let us introduce the simplest modification to the δ-function pseudopotential in the form

of a rectangular barrier potential. To abide by the requirement
∫
dr Veff = g, we take

Veff (r− r
′
) =

3g

4π(αa)3
for |r− r

′ | < αa

= 0 otherwise.

This form of the pseudopotential asserts that the range of the interaction is of the order

of a, with α being the proportionality factor. As we shall see, while obtaining corrections

to th LGPE using such a pseudopotential, the zeroth order term remains unaltered. This

means that to zeroth order such a pseudopotential gives the same term as that given

by a δ-function pseudopotential. We can use this pseudopotential in Eq.(3.1) to obtain

corrections to the LGPE. Note that as Veff and ψ commute, Eq.(3.1) can be written as

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t)

+ ψ(r, t)

∫
|ψ(r

′
, t)|2Veff (r− r

′
) dr

′
,

Further, we can Taylor expand |ψ(r
′
, t)|2 around r− r

′
= 0. Doing this gives us
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i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t) + g ψ(r, t) |ψ(r, t)|2

+
3α2a2

10
gψ(r, t)∇2|ψ(r, t)|2 +O(ψ(r, t)∇4|ψ(r, t)|2).

(3.6)

As can be seen, the equation above gives qualitatively similar terms as Eq.(3.5). Using a

different form of pseudopotential, say a gaussian, would give different numerical factors

accompanying the correction terms. However, the functional form of the correction

terms would remain the same. To emphasize upon this point, we can take a gaussian

pseudopotential and look at the correction terms arising due to such a choice. The take

the width of the pseudopotential to be of the order of s-wave scattering length, we take

the width of the gaussian to be ‘αa’ as before. Also, as for the previous pseudopotential

form, we have to abide by
∫
dr Veff = g. The form we take is

Veff (r− r
′
) =

g

π
√

2π(αa)
exp[− r2

2(αa)2
].

This form of the pseudopotential can again be plugged into Eq.(3.1) and the Taylor

expansion procedure can be performed as done for the barrier pseudopotential. Doing

this gives the equation

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t) + g ψ(r, t) |ψ(r, t)|2

+
3α2a2

2
gψ(r, t)∇2|ψ(r, t)|2 +O(ψ(r, t)∇4|ψ(r, t)|2).

(3.7)

This demonstrates that the form of the dynamics remains the same, apart from numerical

factors leading the corrections to LGPE. Taking another form of the pseudopotential

may give different numerical factors. However, the underlying phenomenon which come

out of this dynamics will qualitatively remain the same.

From the above it can be seen that, by incorporating the finite range factor in the

pseudopotential itself, we can understand qualitatively the origin of the correction terms

to the LGPE as arising from finite range of the actual interaction potential. Note

however that, even if the terms arising from both these arguments are similar in form,

the reasoning behind the origin of the terms is different. In the previous subsection,

the corrections arose due to consideration of finite momentum of the BEC particles.

However, the corrections presented in the current subsection arise due to consideration

of finite width of the interaction potential [45]. Notice here that in the limit α→ 0, the
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corrections to the LGPE above vanish. However, the limit re → 0 does not make the

correction terms vanish. The corrections vanish for re → 2a/3.

From Eq.(3.5) and Eq.(3.6), we get the functional form of the correction terms to the

LGPE. They are of the term ψ ∇2|ψ|2, ψ ∇4|ψ2| and so on. With the addition of

correction terms to the LGPE, one needs to obtain a modified energy functional to

reflect these correction terms. This is of utmost importance to study energetics of BEC

systems when these correction terms assume significance. With this motive, in the next

section we derive an expression of energy functional to account for such corrections to

the LGPE, up to any order.

3.2 Energy functional and proof of correspondence

The LGPE can be obtained from the least action principle δ
∫
Ldt = 0, where L =(

− i~
∫
ψ∗
0(r, t) ∂∂tψ0(r, t)dr

)
+ E. The condition of stationarity for action can then be

written as i~∂ψ0(r,t)
∂t = δE

δψ∗
0(r,t)

, where E is the energy functional. For the LGPE, the

energy functional can be written as [37]

E =

∫
dr

(
~
2

2m
|∇ψ0(r, t)|2 + Vext(r, t)|ψ0(r, t)|2 +

g

2
|ψ0(r, t)|4

)
.

As the energy functional may depend on derivatives of ψ∗
0(r, t) as well, the notation

δE
δψ∗

0(r,t)
implies taking derivatives of E with respect to all the derivatives of ψ∗

0(r, t) as

present in the energy functional. Thus,

δE

δψ∗
0(r, t)

=

[
∂

∂ψ∗
0(r, t)

−∇ · ∂

∂(∇ψ∗
0(r, t))

+ ∇2 ∂

∂(∇2ψ∗
0(r, t))

− .....

]
E

As for the LGPE, we wish to write down an energy functional for corrections to the

LGPE. We now propose that any correction (addition) to the local GP equation of the

form αψ∇l|ψ|2 would correspond to an addition to the energy functional of the form

α |ψ|2
2 ∇l|ψ|2, where l is even and α is an arbitrary constant. For simplicity, we work in

Cartesian coordinates, where the Laplacian can be split as ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. In the

rectangular coordinate system, the derivatives with respect to x, y, z coordinates are on

equal footing as regards their appearance in the operator ∇n. In what follows, we show

what happens when a correction term with even order derivative of |ψ|2 with respect to

the x-coordinate is added to the energy functional. This argument can then be extend

to even order derivative of y and z as x, y, z are linearly independent.



Energy functional correspondence 52

Consider the term in the energy functionalG = |ψ|2
2 ∂lx|ψ|2 = |ψ|2

2

(∑l
n=0

(
l
n

)
(∂l−nx ψ)(∂nxψ

∗)
)

.

Let us look at the functional derivative of G with respect to ψ∗.

δG

δψ∗ =
( l∑

m=0

(−1)m∂mx
∂

∂(∂mx ψ
∗)

)[ |ψ|2
2

( l∑

n=0

(
l

n

)
(∂l−nx ψ)(∂nxψ

∗)
)]

=
( ∂

∂ψ∗ +
l∑

m=1

(−1)m∂mx
∂

∂(∂mx ψ
∗)

)[ |ψ|2
2

( l∑

n=0

(
l

n

)
(∂l−nx ψ)(∂nxψ

∗)
)]

=
∂

∂ψ∗

[ |ψ|2
2

( l∑

n=0

(
l

n

)
(∂l−nx ψ)(∂nxψ

∗)
)]

+
l∑

m=1

(−1)m∂mx
∂

∂(∂mx ψ
∗)

[ |ψ|2
2

( l∑

n=0

(
l

n

)
(∂l−nx ψ)(∂nxψ

∗)
)]

=
ψ

2
∂lx(|ψ|2) +

1

2

[ l∑

m=0

(−1)m
(
l

m

)
∂mx

(
|ψ|2(∂l−mx ψ)

)]
,

which gives

δG

δψ∗ =
ψ

2
∂lx(|ψ|2) +

1

2




l∑

m=0

(−1)m
(
l

m

) m∑

p=0

((
m

p

)
(∂px|ψ|2)(∂l−px ψ)

)
 . (3.8)

Let us fix p and considering the sum over all m, look at the the second term on the right

hand side in square brackets of Eq.(3.8), which becomes
∑l

m=p(−1)m
(
l
m

)(
m
p

)
∂px|ψ|2∂l−px ψ.

Notice the lower sum is from p and not zero. This is necessary, because to have a term

with p-th derivative, the minimum necessary value for the upper limit ‘m’ of the inner

sum in the above equation is p. Also note that p ≤ m. Let us introduce q = m− p. So

we have,

l∑

m=p

(−1)m
(
l

m

)(
m

p

)
(∂px|ψ|2)(∂l−px ψ) =

l−p∑

q=0

(−1)q+p
(

l

q + p

)(
q + p

p

)
(∂px|ψ|2)(∂l−px ψ)

=

l−p∑

q=0

(−1)q+p
(
l

p

)(
l − p

q

)
(∂px|ψ|2)(∂l−px ψ)

= (∂px|ψ|2)(∂l−px ψ)(−1)p
(
l

p

) l−p∑

q=0

(−1)q
(
l − p

q

)
,

where we have used the property
(

l
q+p

)(
q+p
p

)
=
(
l
p

)(
l−p
q

)
. It is easy to see that

∑l−p
q=0(−1)q

(
l−p
q

)

is nothing but the expansion of (1−1)l−p , which is zero, except for the case when p = l,

for which, from Eq.(3.8) we can see that, m = l. So, we can conclude that the term
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1
2

[∑l
m=0(−1)m

(
l
m

)∑m
p=0

((
m
p

)
(∂px|ψ|2)(∂l−px ψ)

)]
on the right hand side of Eq.(3.8) is

zero, except when p = m = l. So, we need only consider the case where p = m = l in

which case, Eq.(3.8) assumes the following form

δG

δψ∗ =
ψ

2
∂lx(|ψ|2) +

1

2

[
(−1)l

(
ψ(∂lx|ψ|2)

)]

=
(ψ

2
∂lx|ψ|2

)
+ (−1)l

(ψ
2
∂lx|ψ|2

)
.

(3.9)

From this it is clear that δ
δψ∗

(
|ψ|2
2 ∂lx|ψ|2

)
= ψ∂lx

(
|ψ|2

)
only when l is even and that

δ
δψ∗

(
|ψ|2
2 ∂lx|ψ|2

)
= 0 if l is odd. The absence of similar correspondence between the free

energy and dynamics for odd ‘l’ actually manifests the non-trivial nature of the present

result. Since the microscopic expansion for the s-wave scattering involves only even

powers of k [35, 36] and hence only even order derivatives of |ψ|2, the energy functional

obtained by us can be used to calculate the energy of the system where we want to

consider corrections to the local GP equation. As mentioned before, this same proof

can be used for even order derivatives with respect to y and z. Thus, we have proven

that any correction (addition) to the local GP equation of the form αψ∇l|ψ|2 would

correspond to an addition to the energy functional of the form α |ψ|2
2 ∇l|ψ|2, where l is

even.

This result is very important in the sense that the energy functional is very straightfor-

ward to evaluate, simply by writing the correction terms to the local GP equation and

multiplying them by ψ∗/2 as long as s-wave scattering prevails. Now that we have the

energy functional for corrections to the local GP equation, we can use it to study the

effects of the corrections on the BEC.

3.3 Discussion

In the work done presented in this chapter, we have considered the standard form of

corrections to the local GP equation arising from an effective range expansion due to

non-local s-wave scattering. This effective range expansion gives corrections to the

local GP equation. The order of expansion at which such a modified GP equation is

truncated depends on BEC parameters. These parameters may include the effective

range of the inter-boson interaction potential, the average inter-particle separation, etc.

These corrections should be taken into account as we approach the strongly interacting

BEC limit as shown by Fu et al. [36] These correction terms typically are associated with

the length scales in a BEC. The kinetic term in the local GP equation is represented by
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a Laplacian. Since the first correction term to this local GP equation is also a Laplacian,

it is the term which is popularly considered in literature which studies BEC beyond the

Fermi pseudopotential. In other words, the correction term probes a length scale similar

to the kinetic term apart from the coefficient. To probe smaller length scales, one needs

to add higher order corrections to the GP equation.

In this chapter the key novel result discussed concerns the corrections to the local GP

energy functional arising due to corrections to the local GP equation. The given rigorous

combinatorial proof of the same for taking into consideration non-local corrections up

to any order in derivatives of |ψ(r, t)|2 is of importance. The non-triviality of this corre-

spondence is represented by the fact that such a correspondence is absent for correction

terms with odd order derivatives of |ψ(r, t)|2. Since the correction terms, as shown by

Collin et al., contain only even order derivatives and not odd order ones, our result

will help write energy functional for corrections up to any order. In this sense, such a

correspondence is special to symmetric s-wave scattering in BECs. This correspondence

can be used to study the energetics of corrections to the GP equation, beyond the Fermi

pseudopotential.

The energy functional presented here is used in our further works and, as we shall

see, plays an extremely important role. This is because, the variational principle used

to estimate ground states of quantum systems uses energy minimization as the key

condition to fix variational parameters. As such finding the correct energy functional

for a given systems assumes prime importance. Our further works on single vortex state

and solitons will make extensive use of the energy functional derived.



Chapter 4

Vortex solution of the MGPE

In the previous chapter we showed the series of corrections to the local Gross-Pitaevskii

equation (LGPE) arising from non-local interactions and the corresponding energy func-

tional. Having obtained this modified GP equation (MGPE) and its corresponding en-

ergy functional, we now proceed to probe its implications on excitations in a BEC. In

this chapter, we use the MGPE and study its vortex solution in a BEC.

One of the most important characteristic of a superfluid is its response to an externally

induced rotation. In classical fluids, any external stirring immediately produces vortex

states. As the external stirring is continuously increased, the angular momentum of

the fluid increases continuously. As opposed to this, when a superfluid is subjected to

external stirring starting from zero, vortex states don’t appear until the stirring reaches

a particular frequency. At this point, a single vortex line appears in the superfluid.

As the stirring frequency is increased continuously beyond this point, in contrast to a

classical fluid, the angular momentum of the single vortex line does not change at all

until the frequency reaches a certain value when a second single vortex line is nucleated,

and so on. This is one of the signatures of a superfluid, viz., the appearance of vortices

with quantized angular momentum [12]. As a BEC exhibits superfluidity, such quantized

vortices appear in BECs as well.

The width of the core of a vortex in a BEC, described by the LGPE, is of the order of

healing length (ξ0) which is an important length scale of a BEC. This length scale arises

as a measure of length over which the kinetic energy term and the interaction term in

the LGPE equation become comparable. For a BEC with inter-particle scattering length

‘a’ and density n, it is given by ξ0 = ~√
2mgn

[37]. As ξ0 is also the length scale of vortex

solution of LGPE, it is crucial to address the question as to what happens when the trap

size is made to be smaller than the healing length. This would take us into the regime of

strong confinement in which the corrections to the LGPE would become significant. In

55
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this chapter we will see that in this regime one finds a new class of vortex solution whose

width is of the order of length scale of microscopic interactions [135]. Thus, we show the

existence of an entirely new class of vortex solution which has never been shown before

to the best of our knowledge.

In what follows we discuss the vortex solution for the LGPE and the effect of corrections

to the LGPE on the vortex solution.

4.1 Overview of vortex solution for local GP equation

4.1.1 Quantization of angular momentum

Let us start by discussing the appearance of quantization of angular momentum for

vortex solutions to the GP equation [34, 37, 44]. This appears mainly because of two

reasons, first due to the interpretation of |ψ|2 as the condensate density and second due

to the constraint imposed of ψ to be single valued. To see this, let us consider the LGPE

given by

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t) + g ψ(r, t)|ψ(r, t)|2.

Multiplying the equation above with ψ∗(r, t) and subtracting the resultant equation

from its complex conjugate yields

i~
∂|ψ(r, t)|2

∂t
+ ∇ ·

[
~

2mi

(
ψ∗(r, t)∇ψ(r, t) − ψ(r, t)∇ψ∗(r, t)

)]
= 0.

The equation above has the form of continuity equation for the condensate density

|ψ|2, with velocity v = ~

2mi
(ψ∗(r,t)∇ψ(r,t)−ψ(r,t)∇ψ∗(r,t))

|ψ(r,t)|2 . Now, due to the interpretation

of |ψ(r, t)|2 to be the density of the condensate, for a radially symmetric solution any

dependence of ψ(r, t) on the angular coordinate has to be through the phase factor.

Mathematically stating, the wave-function has to be of the form ψ(r, t) = f(r, t)eisφ,

where s is an integer to account for the single-valuedness of the wave-function. This form

of ψ ensures that the solution is radially symmetric and that the flow is only azimuthal

and not radial, which are key features of a vortex solution. Writing ψ thus gives us the

velocity of BEC as v = s~
m∇φ = s~

m
φ̂
r . Thus, the circulation around a closed contour

∮
~vs.~dl = 2π~s/m. From this, it comes out that the angular momentum of a condensate

with radial symmetry is quantized in units of h.
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4.1.2 The vortex solution

Having discussed the origin of quantized vortex in LGPE, let us discuss the explicit

solution. We intend to find a vortex solution to the LGPE given by Eq.(3.2). We start

by taking BEC in a cylindrical geometry, with strong confinement along the z- axis.

As the confinement along the radial direction is weak, we neglect the external potential

along radial direction as a first order approximation [58]. Doing this, we write the 2D

LGPE in the absence of external potential as

i~
∂ψ(r, t)

∂t
= − ~

2

2m

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂φ2

]
ψ(r, t) + g ψ(r, t)|ψ(r, t)|2.

We wish to obtain a stationary vortex solution. Hence, we take an ansatz of the form

ψ0(r, t) = ψ0(r)e−iµt/~, where µ is the chemical potential. As seen in the previous sub-

section, the vortex solution shows a 1
r velocity profile. Therefore, by physical arguments,

we place the constraint that the density of a vortex solution varies as a function only

of radial distance from the vortex core. Therefore, placing our origin at the core of the

vortex, we take the ansatz ψ0(r) = eisφ|ψ0(r)|. Lastly, we take the density variation over

a background density n, by considering |ψ0| =
√
nf(η), where η = r/ξ0 and f varies

from 0 at the core of the vortex, to 1 far away from the core. Using such an ansatz gives

the equation for f(η) ≡ f as

1

η

d

dη

(
η
d

dη
f
)

+
(

1 − s2

η2

)
f − f3 = 0. (4.1)

As the velocity profile of the vortex is given by v ∝ 1
r , the density of BEC at the core

has to go to zero, since the velocity diverges there. Whereas far away from the vortex

core, the density should relax to a uniform density. The solution f should reflect such a

behaviour. Since the density vanishes at the vortex core, we should have the behaviour

of f near the core of the vortex to be f ∼ ηq, where q is a natural number. It turns out

that near the core, for a vortex with circulation ‘s’, the ansatz f ∼ η|s| is suitable [37].

This ansatz turns Eq.(4.1) to

|s|2η|s|−2 − s2η|s|−2 + η|s| − η3|s| = 0.

This choice of f near the origin is suitable as it ensures that the largest contribution near

the origin of the order η|s|−2 cancels out. Thus we can say that this is the approximate

behaviour of the vortex solution near the origin. Unfortunately, Eq.(4.1) has no closed

form solution in general. It can be solved numerically. Analytically what can be done is
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that we can find an ansatz which satisfies the conditions set on f , keeping a parameter

free to be minimized using the energy functional. Such a solution, even though not exact,

closely resembles the numerical solution. As an example, let us consider the vortex with

unit circulation, i.e. s = 1. For this vortex, we take ansatz as f = η√
α2+η2

, where α is a

free parameter to be minimized using the energy functional. As we can see, this solution

satisfies the boundary conditionz on f ; it goes to 0 near the core as f ∼ η, is always

< 1, goes from 0 at the core to 1 smoothly for η → ∞ and its derivative goes to zero

for η → ∞. One can plug this ansatz for f in the energy functional and minimize the

energy functional with respect to α. As mentioned in the previous chapter, the energy

functional is given as

E =

∫
dr

(
~
2

2m
|∇ψ0(r, t)|2 +

g

2
|ψ0(r, t)|4

)
.

Doing this, one gets α ∼
√

2 and the ansatz becomes f = η√
2+η2

. As a comparison,

we can see in Fig.(4.1), the simultaneous plot of the numerical solution and the ansatz

for |s| = 1 [34]. As one can see, the ansatz and the numerical solution approximately

resemble each other.

η

f

Figure 4.1: Figure shows the density profile of single vortex line using the ansatz f =
η√
2+η2

(dotted line) and the numerical solution (solid line) to the LGPE. (Credits: Bose-

Einstein Condensation in dilute gases by Pethick and Smith.)[34]

One can, using a suitable ansatz or numerical methods, construct the vortex solution

for higher values of circulation (s).
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There are a few things to note here. Firstly, the ansatz used shows the approximate

behaviour of the solution quite accurately. Secondly, even though the dynamics indicates

the approximate behaviour near the origin as ∼ η|s|, it doesn’t give the value of the

slope of the solution. This slope (1/α) has to be determined by taking an ansatz and

minimizing the energy functional.

In the next section, we shall see the vortex solution for the MGPE. We shall see how

the MGPE gives the slope selection from the dynamics itself. For the LGPE, the width

of the vortex solution is of the order of the healing length ξ0. For the MGPE, we get an

entirely new class of vortex solution with width of the order of the microscopic length

scale of interactions.

4.2 MGPE and a new class of vortex solution

Let us consider the entire series of correction to the LGPE. Re-writing this series given

by Eq.(3.5), we have

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t) + g ψ(r, t)|ψ(r, t)|2

+ g2 g ψ(r, t) ∇2|ψ(r, t)|2 +O
(
ψ(r, t)∇4|ψ(r, t)|2

)
.

A point to note here is that due to the form of correction terms, one can get a continuity

equation here as well using the same procedure viz., multiply the series with ψ∗ and

then subtract it from its complex conjugate equation. Hence, one may get quantized

vortex solutions for the LGPE with correction series as well.

As for the LGPE, we wish to find the vortex solution and hence write the solution as

ψ(r, t) = ψ0(r)e
isφe−iµt/~. Then, the series of corrections to the LGPE can be written

in the form

− ~
2

2m

1

r

d

dr

(
r
d

dr
|ψ0(r)|

)
+

~
2s2

2mr2
|ψ0(r)| + g|ψ0(r)|2ψ0(r)

+ g |ψ0(r)|
[
g2

1

r

d

dr

(
r
d

dr
|ψ0(r)|2

)
+ g4

(1

r

d

dr

(
r
d

dr

))2
|ψ0(r)|2+

.....+ g2l

(1

r

d

dr

(
r
d

dr

))2l
|ψ0(r)|2 + ....

]
= µ|ψ0(r)|,

(4.2)

where g2l represent the factors arising due to the strength of finite range of interactions

up to different orders (l is a natural number). Due to the shape of the inter-particle
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interaction potential, the strength of corrections to different orders need not be the

same. Before scaling this equation as done for the LGPE, let us see if for a vortex with

circulation s, if the equation above gives a r|s| behaviour for small r. Therefore, we plug

in ψ0(r) =
√
n β r|s| and take µ = gn in the equation above to get

β2|s|2r|s|−2 − β2|s|2r|s|−2 − 8πanr3|s|

+ 8πanr|s|
[
1 − g2β

2(2|s|)2r2|s|−2 − g4β
4(2|s|)2(2|s| − 2)2r2|s|−4

− ....− g2|s|β
2|s|((2|s|)!!)2

]
= 0,

where we have multiplied throughout by 2m
√
n/~2. Let us analyze the key feature of the

above equation. In the absence of correction terms to the LGPE, terms with coefficients

g2l equal 0. This gives us back the LGPE, where the leading order unbalanced term

in the above equation is of the form r|s|. However, in the presence of the correction

terms, we get a series of new terms. These terms are of the order r3|s|−2, r3|s|−4, ...., r|s|.

Note that there do not appear terms with negative power of r due to the structure of

the radial derivative part of the Laplacian. The number of new terms appearing in the

equation depend on |s|. However, now for a vortex with circulation s, we have two

terms of the order r|s|. Hence, we can make these two terms to balance each other. This

means that now the leading term in the dynamics is of the form r|s|+2. This is a better

approximation than for LGPE because for the LGPE, the unbalanced term left in the

equation for dynamics was the same order as the ansatz, viz., r|s|. However, with the

correction terms to the GP equation, the leading order term in the dynamics, viz., r|s|+2

is two orders smaller than the ansatz r|s| for small r.

As one can see from the equation above, balancing terms of the order r|s| essentially

means setting a constraint on β. This means that we get a selection for the slope from

the dynamics itself. Furthermore, by balancing terms of the order r|s|, we can see that

the slope β is of the order of ∼ 1/
√
g2|s|. Thus, the length scale of this vortex is of the

order 1/β ∼ √
g2|s|, which is the microscopic length scale of the non-local corrections.

This shows that one may get a new class of vortex solution which arise due to the

non-local correction terms to the LGPE.

With this slope selection for the core arising from the corrections to the LGPE, let us

now construct a variational ansatz to obtain the full vortex solution.
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4.2.1 Construction of solution

In the previous sub-section, we have not explicitly considered the form of coefficients

of the correction terms to the LGPE. They were just abbreviated by g2l. Let us now

consider the form of these terms explicitly. This can be done by considering an extended

pseudopotential as follows.

The local GP equation follows from its full non-local form

i~
∂ψ0(r, t)

∂t
=
(
− ~

2

2m
∇2 + Vext(r, t)

)
ψ0(r, t)

+ ψ0(r, t)

∫
dr

′
ψ∗
0(r′, t)V (r′ − r)ψ0(r

′, t).
(4.3)

Let us consider the pseudopotential approach to account for the s-wave scattering in a

BEC. We consider a BEC with cylindrical symmetry. The radial size of the condensate

is taken to be D, with strong confinement along the z-direction.

Under the first Born approximation, s-wave scattering can be captured by using an

effective repulsive soft-potential [37, 38]. The range of this effective repulsive potential

is in general of the order of the scattering length [38]. The effective potential simply

sets the length scale over which the density variation is now being probed. Important to

note that, although we are capturing here the interactions underlying s-wave scattering

through an effective repulsive potential for the sake of simplicity, the actual potential

can have bound states and, thus, can undergo Feshbach resonance [83]. To note here is

the fact that the range of the pseudopotential is taken to be of the order of a and not

exactly equal to a.

We take the interaction pseudopotential as V (r
′ − r) ≃ Veff = [g/(

√
2πa)3]×exp[− |r−r

′ |2
2a2

].

Following the arguments given above, the range of the Veff would be of the order of s-

wave scattering length and hence we set the range of Veff as a. Doing a Taylor expansion

of the wave-function ψ(r
′
, t) about r, we get

− ~
2

2m

1

r

d

dr

(
r
d

dr
|ψ0|

)
+

~
2s2

2mr2
|ψ0| + g|ψ0|2ψ0 − µ|ψ0|

+ g|ψ0|
[a2

2

1

r

d

dr

(
r
d

dr
|ψ0|2

)
+
a4

8

(1

r

d

dr

(
r
d

dr

))2
|ψ0|2

+ .....+
a2l

(2l)!!

(1

r

d

dr

(
r
d

dr

))2l
|ψ0|2 + ....

]
= 0,

(4.4)
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Considering µ = gn, ψ0(r) =
√
nf(r), and f(r) = R|s| near the origin, where R = βr,

for a vortex with |s| quanta of circulation, the series in square brackets in Eq.(4.4)

terminates at 2|s|-th order in derivatives as all other higher order derivatives would be

zero. Thus, we get

β2|s|2R|s|−2 − β2|s|2R|s|−2 − 8πanR3|s|

+ 8πanR|s|
[
1 − a2β2

2
(2|s|)2R2|s|−2 − a4β4

8
(2|s|)2(2|s| − 2)2R2|s|−4

− ....− a2|s|β2|s|

(2|s|)!! ((2|s|)!!)2
]

= 0.

The first 3 terms correspond to local GP equation and at the leading order R|s|−2 we get

the same result as is already shown. The next higher order terms are the first and the

last terms in the square bracket which are in balance when β = 1/a[(2|s|)!!]
1

2|s| giving us

a selection on β. Note that, the first term in the square bracket comes from the linear

term µ|ψ0| in Eq.(4.4). Note also that, had we considered any other flat symmetric

repulsive potential in the place of the Gaussian one, the Taylor expansion would only

undergo change in numerical constants. Thus, the scaling behaviour of β ∼ 1/a is always

there.

The natural truncation of the Taylor expansion of the interaction term, depending upon

the order of the quantized vortex, is something of immense importance here. There is

no need to truncate the series based on order of magnitude arguments. The structure

of the core of a vortex, i.e. f(r) = R|s| naturally truncates the series and that is where

the Taylor expansion makes perfect sense to be in use. For the kind of order parameters

which do not provide such a natural truncation of the Taylor series, the Taylor expansion

method cannot be used for these small scale structures where λ ∼ a.

Having constructed the core with a definite selection of the length scale, we can construct

a full variational solution for a vortex with |s| quantum of circulation. We shall use the

energy functional for series of correction terms, obtained in the previous chapter, for

this purpose. To compute the free energy in what follows, we take the energy integral

over R varying from 0 to D, where r = D/β is the radial cut off. To obtain the solution,

we divide the region (0, D) in two parts. These regions are (0, α|s|) and (α|s|, D). In the

region (0, α|s|) we consider the vortex solution as R|s| (as was shown above in the analysis

to obtain β) and in the region (α|s|, D), we take the ansatz f(R) = (1−λ|s|e−δ|s|R). The

choice of this latter part of the solution is particularly good because it rises to unity

at large R and it involves two free parameters which we can adjust to get a continuous

solution. By matching of these two functions and their derivatives at R = α|s| we obtain
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λ|s| = (1 − (α|s|)
|s|) · exp[|s|(α|s|)

|s|/(1 − (α|s|)
|s|)], δ|s| = |s|/

[
(α|s|)

(1−|s|) − α|s|
]

as a

function of α|s|. Then, we plug in the complete solution (from 0 to D) in the energy

functional (Eq.(4.4)) [45] to minimize the energy and thereby fix the position of matching

α|s|.

The free energy functional corresponding to the general vortex of number of circulation

|s| in the solution we have chosen is [135]

Ev =

∫ D

0

2πRdR

β2

[
~
2β2

2m
n
( df
dR

)2
+

~
2β2

2m
n
f2

R2
+
gn2

2
(1 − f2)2 +

gn2f2

2

{β2a2
2

1

R

d

dR

(
R
d

dR
f2
)

+
β4a4

8

( 1

R

d

dR

(
R
d

dR

))2
f2 + ...+

β2|s|a2|s|

(2|s|)!!
( 1

R

d

dR

(
R
d

dR

))2|s|
f2
}]
.

(4.5)

We use the above mentioned prescription and evaluate the energy minimum in terms of

α|s|. As we assume the diluteness limit a3n≪ 1, we can take an≪ β2 for any |s| since

β ∼ 1/a. Making use of this inequality and keeping terms which go as β2 over terms

which go as ‘an’ we get an expression for free energy as

E =
2π~2n

m

[ |s|2
2
ln
( D

α|s|

)

+
(λ2|s|

8

)
(1 + 2α|s|δ|s|)e

−2α|s|δ|s| +
|s|α2|s|

|s|
2

]
.

The minimization of the above energy functional fixes the value of the parameter as

α|s| = [(1−|s|+
√

49|s|2 − 10|s| + 1)/(12|s|−2)]
1
|s| . Using this α|s|, we can now evaluate

λ|s| and δ|s| for a given value of |s|, thus we determine f(R) for the interval (α|s|, D).

We plot f(R) for |s| = 1, 2, 3 in Fig.(4.2) of the variational solution obtained.

A model similar to the non-local model obtained above was used by Collin et al. [36]

for proposing the first order correction to the LGPE. This equation was of the form

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + g ψ(r, t)|ψ(r, t)|2

+ g2 g ψ(r, t) ∇2|ψ(r, t)|2,
(4.6)

where g2 =
(
a2

3 − are
2

)
, where re determines the effective range of interactions. Here, re

is defined to be such that g2 ≥ 0. For this non-local model of Collin et al we have taken
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re = a/2 to plot the density profile of the vortex in Fig.(4.2). The figure shows that the

width of the vortices is of the order of s-wave scattering length.

0.0
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Figure 4.2: Figure shows the density profile of single vortex line for different circulations
s for the generalized model and also for the microscopic interaction model by Collin et al.
labeled by sP for |s| = 1 with re = a/2.

4.3 Comparison of the solutions

Even though till now we have talked about vortex state with circulation s in general, for

comparison of the two class of solutions shown above (LGPE and LGPE with correction

terms), we will talk about only solutions with |s| = 1. This is because in BEC, vortices

with higher quanta of circulation |s| > 1 are unstable and break down into multiple

vortices with |s| = 1 [37]. This is due to the reason that the energy of a vortex with

|s| = q (Eq), where q is a natural number, is greater than energy of q vortices with

|s| = 1 (E1). This can be easily verified by using the energy functional of the LGPE

and corrections to the LGPE upto order q. Plugging in the ansatz for vortex solution,

once with |s| = q and then for q vortices with |s| = 1, it turns out that Eq > qE1. It

turns out that even the contribution for interaction does not make these two energies

equivalent. This is mainly due to the logarithmic nature of energy of a vortex. Hence for

the purpose of comparison, we will only use vortex solution with |s| = 1 in this section.

Till this point, we have seen that an ansatz for the vortex solution can be constructed

for the LGPE, the width of whose core is of the order of the healing length ξ0. With the

corrections to the LGPE, an ansatz for the vortex solution can be constructed whose

width is of the order of the microscopic length scale governing the non-local interactions.

This width is approximately of the order of a. However, there is one point which we

have not analyzed till now. In the case of corrections to the LGPE, if we don’t take β

such that it cancels the term of the order r1, we are left with the highest term of the

order of r1. This still vanishes as we take the limit r → 0. Therefore, in the presence of
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corrections to the LGPE, we need to check if an ansatz of the form ψ0(η) =
√
n r√

α2+r2

holds. In case if it does hold, we would need to compare the vortex solutions with width

of the order of ξ0 and a to see which solution will manifest itself in experiments. But

before doing that, we review the scale selection using the LGPE energy functional in

detail.

4.3.1 Scale selection from energy functional for LGPE

A scale selection for the vortex core is obtained by the variation of the grand canonical

free energy functional of the LGPE (Eq.(3.2)) in general. As before, let us take the

ansatz for the vortex solution to be of the form ψ(r, t) =
√
n|f(r)|eiφe−iµt/~ with |f(r)| =

r/
√
α2 + r2. Note that the ansatz involves r and not η = r/ξ0. Since, this is a procedure

employing energy variations, the term containing any constant phase factor of f(r) is

of no use. We plug this ansatz in the grand canonical energy functional of the LGPE

and minimize the energy with respect to α to get a scale selection. The grand canonical

energy functional of the local GP equation is [37]

E =

∫ L
2

−L
2

∫ 2π

0

∫ D

0

[
~
2

2m
|∇ψ(r, t)|2

+
g

2
(|ψ(r, t)| − n)2

]
r dr dφ dz.

(4.7)

After putting the aforementioned ansatz for ψ(r, t) in the above energy functional, we

extremize it by setting (∂E/∂α) = 0. This gives the following equation for α̃ (α̃ = α/D),

α̃4[6ξ20 −D2] + α̃2(4ξ20 −D2) + 2ξ20 = 0,

We can find the roots of the above equation in α̃, which gives

α̃2 =
(D2 − 4ξ20) ±

√
D4 − 32ξ40

2(6ξ20 −D2)
.

For the above equation to have roots, D4 ≥ 32ξ40 . This condition is tailored in a BEC

while exciting multiple vortices[114, 116, 136]. In this D ≫ ξ0 limit, we see that taking

the + sign makes the numerator ∼ 2D2. However, we see that there is another factor

1/[6ξ20 − D2], which becomes negative for D ≫ ξ0, in turn making α̃2 negative. If we

take the − sign from the ±, the numerator of the above equation becomes ∼ (−ξ20) ,
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giving α̃2 ∼ (ξ20/D
2) for D ≫ ξ0. This gives us a scale selection of α ∼ ξ0. This is the

vortex with core size of the order of healing length.

The important point to note here is that for D4 − 32ξ40 < 0, the solution breaks down

because α̃ becomes complex. Now, D being a free parameter of a single vortex, it can be

increased up to the system size, but in a vortex lattice, D is restricted by the position

of the nearest neighbours and in what follows we are going to look at this limit after

introducing the other class of solution.

4.3.2 Scale selection from energy functional for MGPE

The condition for the above mentioned class of vortex solution’s breakdown appears in

the context of a local GP dynamics is what we have seen so far. An important question

to ask at this point is - does the leading order non-local correction to the local dynamics

improve the situation? Note that we talk here only about the leading order correction

since we only intend to talk about vortex with s = 1

Let us revisit the above variational procedure taking into consideration non-local inter-

actions. We do that to see if there exists a vortex solution of core size ξ0 when non-local

interactions are present, despite having D2 <
√

32ξ20 . We use g2 to denote the strength

of first order correction to the LGPE. Thus, the MGPE is of the form

i~
∂ψ0(r, t)

∂t
=
[
− ~

2

2m
∇2

+ g
(
|ψ0(r, t)|2 + g2∇2|ψ0(r, t)|2

)]
ψ0(r, t),

(4.8)

where g2 ∼ a2. Let us take Eq.(4.8) and determine the nature of vortex solution.

The energy functional for the non-local GP equation given by Eq.(4.8) is

E =

∫ L
2

−L
2

∫ 2π

0

∫ D

0

[
~
2

2m
|∇ψ(r, t)|2 +

g

2
(|ψ(r, t)|2 − n)2+

gg2
2

|ψ(r, t)|2∇2|ψ(r, t)|2
]
r dr dφ dz.

(4.9)

We plug in the same ansatz, |f(r)| = r/
√
α2 + r2 as in the previous section and check

for energy functional minimization. Note that, since we do not want three body effects

to dominate, it is desirable to work in the diluteness limit a3n ≪ 1 and hence g2 ≪ ξ20
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which can safely be considered in orders of magnitude as g2 ∼ a2. The minimization

condition yields

α̃6(6ξ20 −D2) + α̃4(10ξ20 − 2D2 + 4g2)

α̃2(6ξ20 −D2 − 4g2) + 2ξ20 = 0.
(4.10)

The above condition is cubic in α̃2. The coefficients show that the length scale dictated

by g2 would be masked by that by ξ0, unless g2 ≥ ξ20 . However, this would take us away

from the diluteness limit and into the region where three body effects would become

important. Hence while we stay in the diluteness limit, the length scale dictated by ξ0

would always dominate. Now, in the previous section, we have seen that for D2 <
√

32ξ20 ,

the solution breaks down. For the same condition over most of the parameter space,

one can see that all the coefficients of Eq.(4.10) are positive which denies any acceptable

solution for α̃2. Therefore, even the presence of non-local interaction does not help

getting such a vortex solution for D2 <
√

32ξ20 in a system when the leading order

non-local correction has been taken into account.

4.3.3 Energy comparison of solution for |s| = 1

The analysis above has us at somewhat of a crossroad. It seems that there are two

different classes of variational solutions which satisfy the MGPE, one with width of the

order of ξ0 and one with width of the order of a. We have to ascertain which one of them

shows up in experiments. To do this, let us start by analyzing the energy of the two

solutions. Due to the principle of energy minimization, we may say that the solution

with lesser energy shall hold.

Consider these solutions for a uniform BEC in the absence of any trap. Let us compare

the grand canonical energy of the two classes of vortices, one with core size of the order

of healing length (thick vortex) and other with core size of the order of s-wave scattering

length (thin vortex). To do this, we use Eq.(4.9) and calculate energy of the ansatz for

the thick and thin votex state presented above for s = 1. To the leading order then the

energies of the vortex with core of size of healing length (Eξ0) and that with core size of

scattering length (Ea) are given by Eξ0 ∼ (π~
2Ln
m )ln

(
|s|D
ξ0

)
and Ea ∼ (π~

2Ln
m )ln

(
D

α|s|a

)

respectively, where α|s| is an order unity number. From these terms, we can see that if

the healing length and the s-wave scattering length are of equal order, the two classes

of vortices actually become comparable in energy. However, as we change the scattering

length and make it smaller by keeping the density fixed, we increase the healing length.
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In this case, the thick vortex with the length scale corresponding to the healing length

will be energetically favoured because it is a state of lower energy.

This being said, if we desire to obtain the thin vortex solution, we would have to make

the thick vortex cease to exist. To do this, one can take cue from the conditions required

for the thick vortex solution to exist. As mentioned earlier, for the thick vortex solution

to exist, the condition is D4 ≥ 32ξ40 . In the case D4 < 32ξ40 , the thick vortex would cease

to exist as that length scale selection is no longer present. Hence, the vortex solution

existing in this regime could be a thin vortex with core size of the order of the s-wave

scattering length.

Let us discuss an experimentally plausible situation where a thick vortex solution does

not exist and a thin vortex state can possibly be captured [137]. Note that, the radial

cut off D corresponding to a single vortex inside a vortex lattice is rather restricted

and is actually much smaller than the system size. In such a situation, one can employ

Feshbach mechanism off resonance to reduce the s-wave scattering length to smaller

values such that ξ0 ∼ D or make the packing of the vortices in the lattice so dense that

the ξ0 ∼ D condition is satisfied. One can reasonably expect here that the thin vortices

to show up in the absence of thick vortices and some already trapped quantized angular

momenta.

4.4 Thin vortex solution in a harmonic trap

Experimentally, vortex states are achieved in a BEC in a trap. Let us consider a har-

monic trapping potential and show that the thin vortex solution exists here as well. Since

we are talking about thin vortices only, we assume that we are in the regime where thick

vortex state ceases to exist. We shall discuss a vortex solution with unit circulation,

i.e. s = 1 using the model of MGPE as before. We consider cylindrical geometry and

assume tight confinement along the z direction and use the MGPE used by Collin et al.

This consideration would give the MGPE as

i~
∂ψ0(r, t)

∂t
=
[
− ~

2

2m
∇2 +

1

2
mω2r2

+ g
(
|ψ0(r, t)|2 + g2∇2|ψ0(r, t)|2

)]
ψ0(r, t),

(4.11)

where ω is the trap frequency and r is the radial distance from the trap center. Due

to the harmonic trapping, the ground state of the BEC is no longer one with uniform

density, but would fall off away from the center of the trap. The Thomas-Fermi(TF)
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density of the condensate can be evaluated by neglecting the kinetic contribution coming

from the Laplacian terms. By considering ψ0 =
√
nTF e−iµt/~, we get the TF density

as nTF = 1
g (µ− 1

2mω
2r2) [37]. We wish to probe the vortex core scaling similar to the

previous analysis (where we had considered a uniform background density). To this end,

we consider a vortex with unit circulation (s = 1) at a distance d away from the trap

center. If we consider a coordinate system (ρ, θ) centered at the vortex core, we would get

the vortex profile near the core as
√
nTF (d) β ρeiθe−iµt/~, where nTF (d) is the TF density

at a distance d from the trap center. In considering a linear profile, we have assumed that

the TF density of the condensate remains constant up to the first order in ρ. Also, as

before we have considered here the vortex as an excited state on top of the ground state

density. With respect to the coordinate system (r, φ) around the trap center, ρ and θ

transform as ρ =
√
r2 − 2rd cosφ+ d2 and θ = tan−1[r sinφ/(r cosφ− d)]. Considering

this, we can write the density profile of the vortex at a distance d from the trap center as

ψ0(r, t) =
√
nTF (d) β

√
r2 − 2rd cosφ+ d2 e

i tan−1[ r sinφ
r cosφ−d

]
e−iµt/~. Putting this ansatz

in Eq.(4.11) gives us

µ
√
r2 − 2rd cosφ+ d2 =

~
2

2m

[eiφ
√
r2 − 2rd cosφ+ d2

r(d− eiφr)

− eiφ
√
r2 − 2rd cosφ+ d2

r(d− eiφr)

]

+
1

2
mω2r2

√
r2 − 2rd cosφ+ d2

+ gnTF (d)β2(
√
r2 − 2rd cosφ+ d2)3

+ 4gg2nTF (d)β2
√
r2 − 2rd cosφ+ d2.

(4.12)

From the equation above, we can see that the terms coming from ∇2ψ cancel each other

out. We then wish to look at the remaining terms in Eq.(4.12). Since we consider ρ to

be small, we go back to the (ρ, θ) coordinate system. This gives us

ρ
(
µ− 1

2
mω2d2 − gg2nTF (d)β2

)
− ρ2(mω2d cos θ)

− ρ3
(1

2
mω2 + gnTF (d)β2

)
= 0.

Up to the leading order in ρ then, we get, [µ− 1
2mω

2d2−4gg2nTF (d)β2] = 0. As the TF

density at a distance d from the trap center is given as nTF = 1
g (µ− 1

2mω
2d2), we get the

expression for β as β = 1/2
√
g2, same as for a BEC in the absence of a trap. While, the

vortex profile far away from the core may be different from that in the uniform density
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background case, the scaling of the density profile near the vortex core remains the same.

This shows that the thin vortex solution obtained on top of a BEC with uniform density

can be obtained for a harmonically trapped BEC as well. An anharmonic term of the

order r4 in the potential will again get absorbed by the TF density profile and will not

change our result up to the scope of the present approximation.

Having obtained the core, we can now use the variational method applied in the previous

section to obtain the entire vortex solution. We take the large scale cut-off width for

the harmonically trapped BEC to be D and divide the radial interval (0, D) into two

regions as before. So long as D is bigger than the width of the actual confinement,

there is no problem because the density vanishing beyond the actual width makes the

integrand vanish and the integral remains the same as the one obtained considering the

actual width. If the vortex is situated at a distance d from the trap center, there would

in effect be three regions in the coordinates of the vortex(along a line joining the trap

center to the core), viz., the region of the core (−α, α) and the regions away from the

core (α,D−d) and (−(D+d),−α) . In our calculation, we write the TF density in terms

of the radial coordinates of the vortex center (̺, θ), where ̺ = βρ. Thus, the TF density

is nTF (̺) = (1/g)(µ− mω2

2 [(̺2/β2) + 2̺(d/β) cos θ+ d2]). We take the ansatz for vortex

solution of the form ψ = f(̺) eiθe−iµt/~. For the interval of the core given by (0, α),

f = ̺ nTF (̺). Outside the core, the ansatz is f(̺) = (1 − λe−δ̺) nTF (̺). As before,

we match the two solutions and their derivatives at ̺ = α. Further, we minimize the

energy functional with respect to α as before. Following this procedure, we numerically

evaluate the parameters in the variational procedure and thus obtain the profile shown

in Fig.(4.3) for the constant mω2/2µ set equal to unity. Our variational method works

perfectly in determining the large scale profile of the vortex.
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Figure 4.3: Figure shows the density profile of single vortex line in a harmonically trapped
BEC situated at d/a = 12 from the center of the trap based on the model by Collin et al.
for |s| = 1 with re = a/2.
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4.5 Discussion

In this chapter, we have shown the existence of an entirely new class of thin vortex

solution. We have indicated ways to realize it experimentally as well. The width of the

thick vortex approximately scales as ξ0 = 1/(
√

8πan), whereas the width of the thin

vortex solution scales as ∼ a. Thus the two class of vortex solutions differ tremendously

on their dependence on a. This would be extremely important in order to manipulate

their width.

Note that in arriving at the new class of vortex solution we have used here the already

existing method of fixing the vortex core structure, in the presence of non-local correc-

tions. The variational procedure then is employed to make this vortex core smoothly

evolve to the uniform density far field. As opposed to Padé type approximate solution

being used as a variational ansatz, which is standard, our variational analysis (practically

for all vortices) is using a well determined solution of the core of the vortices at small r

up to next to leading order approximation. As we have already shown in Sec.(4.1), at

the leading order for small r near the core of a vortex, the conventional theory based on

the dynamics cannot give a length scale selection and works fine for the thick vortices.

However, in order to go to the sub-leading corrections, one must take the non-local

correction into account which we have done and have determined the solution for the

core of the vortex from the dynamics itself where the appropriate length scale shows

up. Then, while making this core of the vortex recover to the uniform field, far away

from the core, we have used variation to have a smooth transition. Thus, our variational

approach is just not based entirely on guessed ansatz, rather, the most important part

of the solution is obtained from the dynamics and then it is extrapolated to the far field

smoothly using variation.

Note that the results involving higher order vortices resulting from the higher order

terms of the expansion although are coming out through a general procedure, but may

not all be physically accessible because of involvement of higher derivative i.e. smaller

length scales. However, the first correction term should always be there since a Laplacian

is already present in the local model. So, the result involving the lowest order vortex

which is most stable is there.

A consistent mathematical analysis following well established methods of theoretically

capturing vortex solutions, indicate here the presence of thin vortex solutions due to non-

local interactions. The non-local interaction correction taken in the present context and

in other previous works [35, 36] presents small length scales on top of that captured by the

LGPE dynamics. The origin of such fluctuations probably lies in the quantum effects not

captured by the local GP dynamics. In that sense, the dynamics of these thin vortices
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would possibly manifest quantum fluctuations in the system which are required for

vortex lattice melting and also important in the context of superfluid turbulence that has

attracted a lot of attention lately [138]. Apart from the possible experimental situation

where the thick vortex breaks down, which we have identified as a plausible situation

where our thin vortex solution can be realized, a quench through the critical point

and subsequent formation of vortex-antivortex pairs through Kibble-Zurek mechanism

[124, 139] could also be a possible procedure to realize such a vortex. If experimentally

realized, these objects can possibly demonstrate quantum fluctuations in vortices which

involves rich physics.

The regime described for obtaining thin vortex solution may be realized by tuning the

s-wave scattering length of a trapped BEC. Decreasing the scattering length below a

certain value would take us into the regime where the condition of condensate size

being ≫ ξ0 may be violated. Such scenarios have been achieved in experiments used

to demonstrate tunability of the s-wave scattering length [140]. Such a solution may be

observed experimentally by using the usual time of flight analysis. The thick and thin

vortices may be distinguished based on their widths as captured by a CCD camera after

expansion of the BEC cloud.

By monitoring a thin single vortex, quantum fluctuations may be monitored. The tran-

sition from a thick to thin vortex both for a single vortex solutions and a vortex lattice

would require a more detailed study and we shall present such a study in our future

works. We also plan to explore the phase diagram for the thick and thin vortex solution

in future works.



Chapter 5

Effect of non-local interactions on

soliton solution

In the previous chapter, we saw that the corrections to the LGPE give a new class of

vortex solution with width of the order of length scale of microscopic interactions. Let

us now move to another excited state solution of the LGPE and determine the effect of

corrections to LGPE on it. The excited state solution which we wish to examine is the

soliton solution.

Solitons are solitary, shape preserving travelling waveforms. These solutions are peculiar

to non-linear differential equations and arise as a result of the balance between dispersion

and non-linearity [15]. The discovery of solitons is attributed to John Scott Russell, who

discovered a solitary dip in the Union Canal in Scotland [15]. Since then, they have been

studied in a variety of systems like non-linear fluids, optical fibers and even biological

systems like proteins, DNA and neurons [141–145]. As the LGPE has a kinetic term and

a non-linear term, one may obtain a soliton solution [37]. The effect of the correction

terms to the LGPE on the soliton solution is of interest then.

In the GP equation describing a BEC, the sign of the non-linearity depends on the

attractive or repulsive nature of the inter-particle interactions. For the LGPE, one

obtains bright soliton (solitary density peak) solution in an attractive BEC and dark

soliton (solitary density trough) solution in a repulsive BEC [34, 37]. In BEC, solitons

have been realized in trapped atomic condensates [61, 146]. These are mainly achieved by

techniques like phase imprinting, density engineering, matter-wave interference method

and by dragging an obstacle sufficiently fast through a condensate [59]. Solitons in BEC

are of interest mainly due to the tunability by the control which atomic BEC systems

provide in experiments. These control parameters include wide tunability of the s-wave

73



Soliton solution 74

scattering length in a BEC, the availablity of trapping techniques in order to modify the

external potential and the achievement of multi-component BEC [89, 147–149].

As solitons solutions for the LGPE are widely explored, the natural question to ask is

whether such soliton solutions exist for the MGPE as well? Obviously one would expect

the strength corrections to the LGPE to play a role if the soliton solutions exist. One

straightforward observation might be the change in width of the soliton. The width of

soliton of the LGPE is of the order of the healing length ξ0. Qualitatively speaking,

ξ0 appears as the length scale since soliton solution arises due to the balance of kinetic

and interaction terms. Then for a MGPE, one may expect to see a change in the length

scale of soliton. The extent of modification of length scale as compared to ξ0 would

depend on the strength of the corrections to LGPE. Thus, the soliton solution might

help us probe the strength of the correction terms to the LGPE. Therefore, a complete

characterization of the soliton solution of the MGPE becomes essential. Apart from the

change in width, it might also show some change in stability due to change in energy.

It appears that an equation similar the MGPE is used to describe a weakly non-local

Kerr medium in optics [150]. Although the form of the non-locality is similar, the origin

of the non-locality is quite different in optics and BEC. Exact soliton solutions in the case

of non-local Kerr medium have been obtained and studied, and are found to be stable

[151]. However, to our knowledge, the implications of these solutions in a non-local

BEC along with the stability considerations have not been studied. Further, Sivan et al.

have proposed a quantifier of soliton stability [152]. In light of this stability quantifier

proposed, the effect of the non-local term to the stability of soliton solution in a BEC

is of interest. In this chapter we present a detailed analysis of the soliton solution of

the MGPE in order to systematically demonstrate the role of microscopic interaction on

such typical nonlinear states.

We start by briefly describing the well known soliton solution in a local GP equation

in Sec.(5.1). Then, in Sec.(5.2), the MGPE to be used is introduced. In Sec.(5.3) we

use the soliton solutions previously obtained by Krolikowski et al. [151] and study the

bright soliton solution for the case of non-local BEC. In Sec.(5.4) the same is done for

a dark soliton in a non-local BEC. We end with a discussion on the scope of the soliton

solutions in a non-local BEC.

5.1 Soliton solution in LGPE

Let us briefly review the well-known soliton solution in the LGPE [34, 37]. As done

for the vortex solution, we assume the trapping to be weak as a first approximation
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and hence neglect it. The GP equation with contact interactions in the absence of an

external potential then is given by

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) ± g|ψ(r, t)|2ψ(r, t), (5.1)

where the + sign in the final term indicates a BEC with repulsive interactions and

− sign indicates one with attractive interactions. Here, ‘m’ is the mass of the boson,

g = 4π~2a/m is the inter-boson interaction strength and ‘a’ is the s-wave scattering

length. In the absence of the non-linear term, one would get a dispersive system such

that any local disturbance in the system would disperse. The non-linearity counters

this dispersion and leads to creation of localized structures like soliton [15]. We want to

look at 1D soliton solutions of this equation. Therefore, we assume that ψ(r, t) varies

only along 1 direction. Let that direction be the z-direction. This can be achieved

in experiment, by strong harmonic confinement in the radial direction. With such a

confinement in place, consider the form of the solution as ψ(r, t) =
√
n0f(z, t), where

n0 is the uniform density of the BEC far away from the soliton center. The localized

soliton solution has the boundary conditions |f | → 0, df/dz → 0 as z → ±∞ for a

bright soliton. For dark soliton, the conditions are |f | → 1, df/dz → 0 as z → ±∞ .

For a solution obeying these boundary conditions, one can see from Eq.(5.1) that for

an attractive BEC, one gets a bright soliton solution, whereas a dark soliton solution is

obtained for a repulsive BEC. The exact bright soliton solution is given by

ψ(z, t) =
√
n0 sech[(z − vt)/

√
2ξ0] e

it
2~

(µ−4mv2) e
2imvz

~ ,

where v is the soliton speed and ξ0 = ~/
√

2mgn is the healing length. One can see

that the bright soliton density far away from the soliton centre falls off to 0. The bright

soliton moves along the z-direction like a particle.

For a BEC with repulsive inter-boson interactions, one can obtain an exact dark soliton

solution given by

ψ(z, t) =
√
n0

[
i
v

c
+

√
1 − v2

c2
tanh

(
z − vt√

2ξ0

√
1 − v2

c2

)]
,

where c =
√
gn0/m is the speed of sound in BEC, v is the soliton speed and n0 is the

uniform density far away from the soliton centre. Unlike the bright soliton where the

density far from the soliton centre tends to zero, the density in a dark soliton heals to
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a uniform density far away from the soliton centre. Also, the dark soliton has a phase

which depends both on the co-moving coordinate (z − vt)/ξ0 and the speed v of the

soliton. Note that, soliton width in both cases scales as ξ0.

As mentioned before, ξ0 appears as the length scale of solitons as it arises from a balance

between the kinetic and non-linear terms. We shall next look at the origin of ξ0 using

small amplitude oscillations around uniform density ground states in the LGPE. Having

done this, it would be interesting to see the length scale modification arising due to

corrections to the LGPE. Using the same method of small amplitude oscillations, we

determine the length scale modification due to corrections to the LGPE as well in what

follows. However, before looking at the healing length and modified healing length, we

briefly revisit the MGPE used.

5.2 The MGPE

In this section, we consider corrections to the LGPE as a perturbation series in decreasing

order of strength along the series. Therefore to the leading order, we only consider the

first order correction to the LGPE. We call this equation, as before, the MGPE. The

MGPE, in the absence of an external potential, is given by

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) ± g|ψ(r, t)|2ψ(r, t)

± g g2ψ(r, t)∇2|ψ(r, t)|2,
(5.2)

where the + sign implies a BEC with repulsive interactions and − sign implies a BEC

with attractive interactions. The effective range of the interactions is captured by g2.

We use the expression for g2 used by Fu et al. and Collin et al., given as g2 =
(
a2

3 − are
2

)

[35, 36]. The energy functional of the MGPE is given by [45]

F =

∫
~dr

[
~
2

2m
|∇ψ(r, t)|2 ± g

2
|ψ(r, t)|4 ± gg2

2
|ψ(r, t)|2∇2|ψ(r, t)|2

]
. (5.3)

Henceforth, we use γ = 2g2/ξ
2
0 as a non-locality parameter to compactify equations.

Also, instead of using µ = gn0, as is the case for ground state condensate, we use

µ = α gn0, where ‘α’ is a factor that takes into account the change in the chemical

potential due to the presence of soliton in the BEC. Having defined the MGPE, we shall

now compare the length scales arising due to small amplitude oscillations about the

uniform density ground state in LGPE and MGPE.
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5.2.1 Healing length and the modified healing length

Let us look at how one may obtain the healing length of the LGPE. We then extend the

analysis to find out a modified length scale for the MGPE.

We start by considering a uniform density ground state for a BEC in the absence of ex-

ternal potential term. We then consider small amplitude oscillations around the uniform

density ground state of the form, ψ(r, t) = (
√
n0+ueik.re−iωt+ve−ik.reiωt)e−iµt/~. Here,

u and v are constants. By plugging in this form of ψ in the LGPE and equating modes

with (eiωt) and those with (e−iωt) separately, we obtain the following set of equations

~ωu =
~
2k2

2m
u± gn(u+ v)

− ~ωv =
~
2k2

2m
v ± gn(u+ v),

where the + sign is for repulsive interactions and − sign is for attractive interactions.

Writing them in a matrix form, we have

(
−~ω + ~2k2

2m ± gn ±gn
±gn ~ω + ~2k2

2m ± gn

)(
u

v

)
=

(
0

0

)
.

For a solution of this system to exist, the determinant of square matrix on the LHS

has to be zero. Setting this condition gives the dispersion relation for small amplitude

oscillations as ω = ±k
√
± gn
m + ~2k2

4m2 for the LGPE. The value of k for which the disper-

sion relation turns from phonon-like (ω ∼ k) to particle-like (ω ∼ k2) is ∼ ξ0. Since

an attractive BEC is unstable, the dispersion relation becomes imaginary for small k.

Nevertheless, one can define the healing length to be the length scale when magnitude

of the phonon-like (ω ∼ k) term becomes comparable to the magnitude of the particle-

like term (ω ∼ k2). This is to say that the healing length is the length scale where

kinetic and interaction terms become equivalent. Doing this, we get the healing length

as ξ0 = ~/
√

2mgn. This length scale shows up as width of the soliton solution for LGPE.

A similar analysis can be done for the MGPE to obtain the spectrum of elementary

excitations which comes out to be ω = ±k
√
± gn
m +

(
~2

4m2 ∓ gg2n
m

)
k2 [62]. The length

scale of phonon-particle transition of elementary excitation spectrum can be found by

equating the magnitude of terms which go as k and the term which goes as k2. This

length scale turns out to be ξ = ξ0
√

1 ∓ γ/
√

2. Let us call this as the modified healing

length. As ξ0 shows up as the length scale of soliton solution of LGPE, one may expect

ξ to show up as the length scale of the soliton solution of MGPE. However, note here
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that the form of the correction term to the LGPE appears as somewhat of a mix of

the kinetic and interaction term. Hence, the soliton solution of the MGPE may not

exactly scale as ξ, but one would expect that the width would show qualitatively similar

behaviour as ξ. The nature of change in the healing length indicates that there has to be

a broadening of the width of the bright soliton in the presence of non-local interactions

(due to sign of γ being negative). On the other hand, the width of the dark soliton

would decrease in the presence of non-local interactions. In other words, the widening

of the width of a bright soliton and shrinking of the dark soliton would be a proof of

existence of non-local interactions and corresponding change in the healing length. In

what follows, we will see that the length scale of the soliton solution of MGPE indeed

qualitatively scales as ξ.

5.3 Bright soliton in an attractive MGPE

A bright soliton solution can be obtained in an attractive BEC. This corresponds to

a self-focussing nonlinearity with non-locality for an optical medium, for which exact

implicit solutions were obtained by Krolikowski et al. [151]. The solutions obtained

shall be used to see the behaviour of bright solitons in a BEC in what follows. The 1D

MGPE for an attractive BEC can be written as

i~
∂ψ(z, t)

∂t
= − ~

2

2m

∂2ψ(z, t)

∂z2
− g|ψ(z, t)|2ψ(z, t)

− g g2ψ(z, t)
∂2

∂z2
|ψ(z, t)|2,

(5.4)

where g is taken to be positive and the attractive nature of BEC is expressed by putting

a minus sign in the equation itself. Notice that since g is positive, so is a in the above

equation. This is to say that a physically is negative, but the negative sign is taken out

of a and written explicitly in the equation.

Let us consider here a system with finite size which is very large as compared to the

soliton width and the healing length. Let N be the number of bosons in the system and

V be its volume. For the state with uniform density, the density for the major part of

the volume would be n0 = N/V , barring the healing at the boundaries. This healing

is neglected in the analysis that follows, since the system size is taken to be large as

compared to the healing length. To obtain a bright soliton solution, moving with a speed

v, the z coordinate is scaled as ρ = (z − vt)/(ξ0
√

2), where ξ0 = ~/
√

2mgn0. Further,

we write ψ(z, t) =
√
n0f(ρ)e

it
2~

(αgn0−4mv2)e
i2mvz

~ where n0 is the uniform density in the
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Figure 5.1: The figure shows the density profile of the bright soliton for different values
of re and α = 1. The inset shows the variation of the width of bright soliton with variation
in re(in units of a) for ν = 0.1.

absence of soliton and α is the factor which accounts for the presence of soliton in the

system. This turns the above equation to

∂2f

∂ρ2
+ 2(|f |2 − α

2
)f +

g2
ξ20
f
∂2|f |2
∂ρ2

= 0. (5.5)

This equation can be integrated once, to give

(df
dρ

)2
=

(α− f2)f2

1 + 2
(g2
ξ20

)
f2

. (5.6)

As seen previously from the boundary conditions, the bright soliton has a central peak

and the derivative of the solution at the centre is 0. This information can be plugged in

the equation above to obtain the central peak density of the bright soliton. To do this,

we set df/dρ = 0 for ρ = 0 which gives the peak density as f2(0) = α. The factor α is

evaluated by evaluating the energy functional (F ) and then from dF/dN . This means

that the central density of the soliton would depend on number of particles (N) and

volume (V ) of the system.

A further integral of the above equation leads to the implicit soliton solution [151]

± ρ = tanh−1 (σ/
√
α) +

√
γ tan−1 (σ

√
γ), (5.7)

where, γ = 2g2/ξ
2
0 and σ2 = α−f2

1+γf2
. In this implicit solution, there appear square roots

of α and γ which may have + or − sign. However, for the solution to exist, it is essential

that only the + or the − square root of γ are considered consistently. For the root

of α, only the + square root can be taken for the solution to exist, otherwise the sign
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preceding the tanh−1 term would become negative. Since there are two instances when

γ appears on the RHS, taking different sign for two ′γ′s would imply a change of sign

between the tanh−1 and tan−1 terms. This implicit expression would no longer be a

solution of Eq.(5.5) as can be verified by differentiating it twice.

We can obtain the density profile of the bright soliton from the implicit Eq.(5.7). For

simplicity, we consider the density profile for α = 1. By definition of ψ(z, t), we have

|ψ(z, t)|2 = n0 f
2(ρ). By the boundary conditions set on the density profile of the bright

soliton, f(ρ) goes from 1 at ρ = 0, to 0 as ρ → ±∞. Therefore, varying the value of

f(ρ) from (0, 1] in Eq.(5.7) gives us the density profile of the bright soliton. Fig.(5.1)

shows this profile for U = 0 and different values of re, where U = v/(c
√

2). The inset

shows variation of width with respect to re for U = 0. From this we can see the effect

of non-locality on the width of the bright soliton. For U = 0, the width of the bright

soliton decreases if we increase re.

Using the bright soliton solution in Eq.(5.7), the energy for a bright soliton on top of

the uniform density state can be evaluated using the expression for energy functional

in Eq.(5.3). Here too we set α = 1 for simplicity. Since the integrand involves second

derivative of |f |2, it is convenient to change the integration variable from ρ → f . This

can be done using Eq.(5.6) giving dρ = df

√
1+γf2

f
√

1−f2
. Also, using Eq.(5.6), one can find

d2|f |2/dρ2 = 2× [(df/dρ)2 +f(d2f/dρ2)]. Further subtracting the energy of the uniform

density state from this integral gives the soliton energy. This gives the expression for

energy integral as

E =
gn2

2
−
√

2ξ0gn
2

∫ 1

0

{[f2(1 − f2)

1 + γf2
+ (2f2 − 1 − f4)

− γ

2

(2f4 − 3f6 − γf8

1 + γf2

)
+ 8U2f2

]
×
√

1 + γf2

f
√

1 − f2

}
df.

Fig.(5.2) shows the variation of energy with respect to γ for certain values of U . This

figure shows that the effect of the non-locality in an attractive BEC is to decrease the

magnitude of energy of the soliton as compared to the uniform density state for a fixed

speed.

Having determined the energy of soliton solution as a function of γ, we now compare

the widths of these solutions as a function of γ. To do this, we first define the width

of the soliton solution. We define the width of the bright soliton to be the ρ where the

soliton density falls to half of its peak density. Substituting f2 = 1/2 in Eq.(5.7), we

take re = βa giving γ = 2g2/ξ
2
0 = 16πν(13 − β

2 ). Here, β is a constant proportionality
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Figure 5.2: The figure shows the variation of the energy over the ground state uniform
density of the bright soliton with change in γ, where γ = 2g2/ξ

2
0 for some values of U and

α = 1.

factor. Thus, one obtains, in Fig.(5.3), a plot of the width of the bright soliton as a

function of ν for different values of re. Note that, the width is independent of the speed

v of the soliton. By definition of g2, re ∼ 0.67 corresponds to g2 = 0. In Fig.(5.3), one

can see that re = 0.67a corresponds to a line parallel to the ν axis. This implies that

w/ξ0 is a constant, or w ∝ ξ0, i.e. the width of the soliton scales as ξ0. However for

re 6= 0.67a (g2 6= 0), the plot of variation of w/ξ0 with respect to ν is no longer a line

parallel to the ν axis. This implies that for g2 6= 0, the width no longer scales as ξ0.

The width can be analytically found by putting f2 = 1/2 in Eq.(5.7). This gives us the

width to be

w

ξ0
= tanh−1

(√
2α− 1

α(2 + γ)

)
+
√
γ tan−1

(√
γ(2α− 1)

2 + γ

)
.

Here, w/ξ0 is written for the purpose of comparison with soliton solution of LGPE,

since ρ (used for LGPE) contains a scaling factor of ξ0. In the absence of the non-local

correction, γ = 0 and w/ξ0 = tanh−1(
√

2α−1
2α ), meaning w/ξ0 is a constant. This implies

that the length scale of width of the soliton is ξ0. However, in the presence of the non-

local correction, the width gets modified and the modified length scale is given by Bξ0,

where B = tanh−1
(√

2α−1
α(2+γ)

)
+
√
γ tan−1

(√γ(2α−1)
2+γ

)
.

Thus, we see that the length scale is not captured by the healing length ξ0 as the value of

ν is increased. As seen previously, in the presence of non-local interactions, the healing

length gets modifeid. This modified healing length for BEC with attractive interactions,

necessary for generation of bright soliton is given by ξ = ξ0
√

1 ∓ γ/
√

2. We can see that

the modified healing length shows an expansion when ν increases. So, qualitatively this

feature of soliton width increase is captured by the modified healing length. However,

the width of the bright soliton doesn’t scale exactly as ξ, but scales as cξ, where c is
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a γ dependent function. This is the case because the additional term to the LGPE,

although coming from the interaction term, is of a mixed form. That is to say, it has a

Laplacian as well as interaction part. However, the soliton solution, as mentioned before

arises from a balance of dispersive Laplacian term and the interaction term. This may

be the reason for the width of the bright soliton not scaling exactly as ξ.
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Figure 5.3: Figures show the variation of the width of the bright soliton with change in
the gas parameter ν with α = 1. In subfigure (a), the width is scaled with the healing length
ξ0, whereas in subfigure (b), the width is not scaled.

Having seen the behaviour of soliton width and energy in the presence of the non-local

correction, the next natural step is to check the stability of the bright soliton solution.

This stability condition is given by the sign of dN/dµ [153], where N =
∫
|ψ(z, t)|2 is

the total number of particles in the BEC and µ = αgn0/2. Here too, for simplifying

calculations in the integral, we employ change of variables from ρ to f . Integrating, we

get

N = ~

√
n0
mg

(√
α+

1 + γα√
γ

tan−1(
√
γα)

)
.

Bright solitons are stable if dN/dµ > 0. To find if the soliton solution is stable, we

differentiate the expression above for N with respect to µ. This gives

dN

dµ
∝ 1√

α
+
√
γ tan−1(

√
γα). (5.8)

As explained before,
√
γ and

√
α are positive and hence tan−1(

√
γα) is also positive,

which ensures that dN/dµ > 0. This shows that bright solitons are stable. Fig.(5.4)

shows the variation dN/dµ as a function of γ. This graph corroborates that the bright

soliton solution is indeed stable. There has been a proposal of quantifying the stability

based on |dN/dµ| [152]. It says that the soliton stability increases with increase in the

magnitude of |dN/dµ|. In this regard, it can be seen from Fig.(5.4) that the soliton

stability is enhanced by increasing the non-locality of interactions.
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Figure 5.4: The figure shows the variation of dN/dµ as we change re(in scale of a). Here,
α = 1 and ν = 0.1.

5.4 Dark soliton in a repulsive MGPE

Let us now look at the dark soliton solutions which can be obtained in a repulsive

BEC. This corresponds to a self-defocussing non-linearity with non-locality in an optical

medium. The 1D MGPE for a repulsive BEC is given as

i~
∂ψ(z, t)

∂t
= − ~

2

2m

∂2ψ(z, t)

∂z2
+ g|ψ(z, t)|2ψ(z, t)

+ g g2ψ(z, t)
∂2

∂z2
|ψ(z, t)|2,

(5.9)

As for the attractive BEC case in the previous section, let’s start by considering N

bosons occupying a volume V . The uniform density state has n0 = N/V . The healing

at the boundaries may be neglected by assuming that the system is large compared to

the healing length. To find moving solutions, it is convenient to consider a moving frame

of reference s = (z − vt)/
√

2ξ0 and write ψ = ψ(s)e−iµt/~. The form of ψ(s) is taken as

ψ(s) =
√
n0
√
λ(s)eiφ(s). Using such a form of ψ, Eq.(5.9) gives two equations for real

and imaginary parts as

2λ(1 − γλ)
d2λ

ds2
−
(dλ
ds

)2
− 8λ2(λ− α) − 4λ2

(dφ
ds

)2
+ 8Uλ2

dφ

ds
= 0;

d

ds

[
λ
(dφ
ds

− U
)]

= 0,

(5.10)

where γ = 2g2/ξ
2
0 and U =

√
2mvξ0/~. To simplify the equations above further, we

need to use the boundary conditions for the dark soliton solution. Since, dark soliton
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solutions are localized with an intensity minima at s = 0, we use the boundary conditions

dλ/ds = 0 for s = 0 and s → ±∞. Putting these conditions in Eq.(5.10) one gets the

central dip λ(0) = U2 and the background density λ(s→ ±∞) = α. Further, the lower

of the two equations gives, dφ/ds = U when integrated. This can be used to integrate

the upper equation giving

(
dλ

ds

)2

=
4(λ− U2)(α− λ)2

1 − γλ
.

Using the boundary conditions, we have reduced the second order differential equation

to a first order differential equation above. However, to obtain a solution, we need to

integrate the equation above further. Integrating the equation above gives the following

implicit solution for the density profile and phase of a dark soliton [151]

±s =
1

δ0
tanh−1 δ

δ0
+
√
γ tan−1 (δ

√
γ)

±φ(s) = tan−1 δ

U
− U

√
γ tan−1 (δ

√
γ).

(5.11)

where δ2 = λ(s)−U2

1−γλ(s) and δ20 = α−U2

1−γ . Here, n0 is the background density over which

one observes the dark soliton solution. As for the bright soliton solution, there appears

square root of γ which may have + or − sign. As before, only take the + or the − square

root of γ can be taken consistently. Taking different signs for two ′γ′s would imply a

change of sign between the tanh−1 and tan−1 terms which would no longer be a solution

of Eq.(5.10).

Fig.(5.5) shows the density profile for a dark soliton with U = 0 for different values of

re, with the inset showing variation of the width with re for U = 0. This profile shows

that non-locality changes the width of the dark soliton. However, while the width of

bright soliton decreases with increasing re, the width of the dark soliton increases with

an increase in re.

As for the bright soliton, energy of a dark soliton can be evaluated using expression

for energy functional in Eq.(5.3). The coordinate change in this case is s → λ where

ds = dλ (
√

1 − γλ)/[2(α − λ)
√
λ− U2]. This gives, by setting α = 1 as before, the

energy integral as
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Figure 5.5: The figure shows the density profile of the dark soliton for different values of
re and α = 1 for U = 0. The inset shows the variation of the width of dark soliton with
variation in re(in units of a) for ν = 0.1 for U = 0.
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Figure 5.6: The figure shows the variation of the energy over the ground state uniform
density of the dark soliton with change in γ, where γ = 2g2/ξ

2
0 for some values of U and

α = 1.

E =
√

2ξ0gn
2
0

∫ 1

U2

{ 1

2λ

[(1 − λ)
√
λ− U2

√
1 − γλ

]
+

λU2
√

1 − γλ

2(1 − λ)
√
λ− U2)

+
(1 − λ)

√
1 − γλ

2
√
λ− U2

+
γλ

2

(1 − U2(γ − 2) − λ(3 + U2γ) + 2γλ2√
λ− U2(1 − γλ)3/2

)}
dλ

Fig.(5.6) shows the variation of energy with respect to γ for certain values of U . From

this figure, it can be seen that the effect of the non-locality is to decrease the magnitude

of energy of the soliton.

Fig.(5.7) shows the effect of non-locality on the width of the dark soliton for U = 0.

The incomplete graphs for re < 0.67a beyond certain values of ν are due to the fact that

δ20 = 1
1−γ becomes negative and hence δ0 becomes imaginary. This indicates that the

implicit dark soliton solutions given by Eq.(5.11) exist only till a certain value of ν for

a given value of re.
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Figure 5.7: Figures show the variation of the width of the black soliton with change in
the gas parameter ν for α = 1. In subfigure (a), the width is scaled with the healing length
ξ0, whereas in subfigure (b), the width is not scaled.

The change in width for a stationary dark soliton(U = 0) can be looked at analytically

as follows. For the sake of simplicity, let us consider re ∝ a, such that g2 = ca2.

Since g2 = a2

3 − are
2 , 0 ≤ c ≤ 1/3 because g2 > 0 for a repulsive BEC. Further, since

ξ0 = 1/
√

8πan0, we can write γ as, γ = 2g2/ξ
2
0 = 16πcν. With U = 0, δ2 = λ

1−γλ and

δ20 = 1
1−γ . Let us define the width to the point where the soliton density is half of the

density at the point far off from the central dip. That is, the width of the soliton is the

value of s(say w/ξ0) when λ = 1/2. This gives the width of the black soliton as

w

ξ0
=

√
1 − γ

α
tanh−1

(√
1 − γ

α(2 − γ)

)
+
√
γ tan−1

(√
γ

2 − γ

)
, (5.12)

where α corresponds to the background density as stated before.

Had it been the local GP equation i.e., γ = 0, one would have obtained w/ξ0 =

tanh−1
(√

1
2

)
. This implies that w/ξ0 is a constant, meaning that ξ0 is the length

scale for solitons, in the case of local GP dynamics. However, when γ 6= 0, it can

be seen that the scale is different from ξ0 and depends on γ. Let us say that due

to a finite γ, w/(A × ξ0) is a constant now instead of w/ξ0. Then the new length

scale for the width is Aξ0. To find this new length scale, we can use Eq.(5.12) and

demand that w/(A × ξ0) be a constant. This demand gives us the value of A as

A =
√

1 − γ tanh−1
(√

1−γ
2−γ

)
+

√
γ tan−1

(√
γ

2−γ

)
. This gives us the new length scale

Aξ0.

Having obtained the expression for width of dark soliton solution of MGPE, let us

compare it with the healing length. As shown previously, doing a small amplitude

oscillation analysis around the uniform density ground state gives the dispersion relation

for small amplitude oscillations as ω = ±k
√

gn
m + ~2k2

4m2 for the LGPE. Note here that

since the repulsive is stable, ω is real. The healing length as before is ξ0. Doing such
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an analysis for the MGPE with repulsive interactions gives the modified healing length

as ξ = ξ0
√

1 − γ/
√

2. This change in the healing length indicates that there has to be

a shrinking in the width of the dark soliton in the presence of non-local interactions

which can be observed here, as for the bright soliton. Hence, for dark solitons too, the

width of the dark soliton somewhat follows the modified healing length in the presence

of non-local interactions. However, the width of the soliton in the presence of non-local

interactions although qualitatively follows the modified healing length ξ, the width is

not exactly scaled by ξ. It scales with cξ, where c is a γ-dependent function.

One of the popular methods of obtaining dark solitons experimentally is the phase

imprinting method [61, 131]. From Eq.(5.11), it is evident that along with the spatial

density variation, dark solitons are accompanied by a spatial variation of phase of the

wave function, given by φ(s). The phase imprinting method, as the name suggests,

uses a laser which is off-resonant with regards to the excitations in an atomic BEC and

imprints the required phase for the generation of dark soliton. For a stationary soliton

(U = 0), it can be seen from Eq.(5.11) that there is a sudden phase jump at s = 0 from

−π/2 for s < 0 to π/2 for s > 0. It is phase jumps like these which have to be imprinted.

For U = 0, the factor γ doesn’t play a role. However, as U increases, the variation of the

phase with respect to s is significantly altered by γ and hence the phase to be imprinted

for soliton generation changes with γ. Fig.(5.8) shows the phase variation of the dark

soliton as a function of s for few different values of re, with U = 0.8.

As for the bright soliton, the stability of the dark soliton solution of the MGPE is

of interest. The stability of dark solitons is provided by the Vakhitov-Kolokolov(VK)

conditions which determine the stability based on the sign of dQ/dU , where Q is the

normalized momentum of the soliton given by

Q =
i

2

∫ ∞

−∞

[
ψ(z, t)∂zψ

∗(z, t) − ψ∗(z, t)∂zψ(z, t)
]

×
[
1 − n0

|ψ(z, t)|2
]
dz

Dark solitons are stable if dQ/dU > 0 according to the VK condition. Further, as for

the bright soliton, there is a proposal for a stability quantifier using the magnitude of

dQ/dU . It states that the stability is enhanced as the value of dQ/dU increases beyond

0 [152].

Using the dark soliton solution, the expression for Q is given by
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Figure 5.8: The figure shows the variation of phase of the dark soliton φ(s) as a function
of s for a few values of re. The gas parameter is fixed at ν = 0.1, α = 1 and U = 0.8.

Q = − 2α tan−1
(δ0
U

)
+ (α− U2)

U

δ0

+
U√
γ
{1 + γ(2α− U2)} tan−1(δ0

√
γ).

The integration is done by using the change of coordinates from z → λ as before.

Using this expression for Q, one can evaluate dQ/dU , which is given by

dQ

dU
=

2U4γ − 2U2α− αU2γ + 3α2

δ0(α− U2γ)

+
U2(1 − U2γ + 2αγ)

δ0[−1 + (1 + U2 − α)γ]

+
(1 − 3U2γ + 2αγ√

γ

)
tan−1 (δ0

√
γ).

(5.13)

To bear in mind is the fact that δ0 is a function of U.

Fig.(5.9) shows the variation of dQ/dU with respect to U for different values of the

effective range re. This graph is plotted for ν = 0.5 and α = 1. It shows that the solitons

are stable even for such large values of ν. Note that even for higher and lower value of ν,

one can use Eq.(5.13) to draw plots similar to Fig.(5.9) to show that solitons are stable

for a range of ν values. However, at larger values of ν, the higher order corrections

would come into picture. For lower values of ν, only the lower order correction used in

MGPE is sufficient and as such the solitons are stable using the VK conditions.

Fig.(5.9) shows that the VK stability condition is satisfied for all U for α = 1. A simple

check can be done to show that dQ/dU > 0 for all α for U = 0. This can be done by
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putting U = 0 in Eq.(5.13), which gives dQ/dU = (3α/δ0)+[(1+2α
√
γ tan−1(δ0

√
γ))/

√
γ],

which is > 0.
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Figure 5.9: The figure shows the value of dQ/dU as a function of U for a few values of re
. The gas parameter is fixed at ν = 0.5 and α = 1.

As for the bright solitons, |dQ/dU | increases for a fixed value of gas parameter as we

increase γ ( i.e. decrease re) for U = 0. However, from Fig.(5.9) one can say with

certainty that the increased nonlocality provides additional stability to the dark soliton

[152] for U close to U = 0.

Bright and dark soliton generation in BEC has been achieved by several groups [59,

128]. Bright solitons are generated by trapping a BEC with repulsive interactions and

then using Feshbach resonance to modify the scattering length from positive values

(repulsive BEC) to negative values (attractive BEC). On the other hand, dark solitons

are generated in a repulsive BEC by using methods like phase-imprinting and density

engineering. Both these solitons require strong anisotropic confinement in order to freeze

out the instability modes perpendicular to the 1D soliton. As shown in our analysis, the

non-locality of the interactions manifest upon increasing the gas parameter ν (:= a3n0).

Experimentally, ν can be increased by tuning the s-wave scattering length, using the

Feshbach resonance. As mentioned in the introduction, high values of ν have been

achieved in trapped condensates [41, 42]. However, its effect on solitons in a BEC has

not been experimentally studied to the best of our knowledge. Thus, after generation of

a bright or dark soliton in a BEC, the s-wave scattering length can be tuned to increase

ν and its effect on the width of the soliton can be observed by using imaging techniques.

By studying the variation of the soliton versus ν, the parameter re can be evaluated.

Thus, studying the effect of non-local interactions on the soliton width provides for a

measure of the effective range parameter re.
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5.5 Discussion

In this chapter, we have shown the analysis of 1D soliton solutions for a modified Gross-

Pitaevskii equation(MGPE). The MGPE takes into account the non-locality of s-wave

interactions in a Bose-Einstein Condensate(BEC). Using the exact solutions obtained

by Krolikowski et al., we have studied the behaviour of these solutions for a BEC. As

the soliton solution is obtained due to a balance between dispersion and non-linearity,

the introduction of correction term to the GP equation changes the length scale of the

solitons. Consequently, the width of the solitons change as well. This change in the

length scale of soliton width shows a similar behaviour to the modified healing length

for the MGPE. The change in the width can be experimentally verified as a confirmation

of the existence of non-locality of interactions in a BEC. An important consequence of it

is that the value of effective range of interactions re can be experimentally determined.

We have also studied the energetics of the soliton solution and further explored their

stability.

The effective range of interactions re depends on the details of the interaction potential

which is system specific. However, the strength of the non-local interactions depends

not only on re, but also on the s-wave scattering length (a). The scattering length can

be tuned using Feshbach resonance to amplify the effects of change in soliton width.

This would lead to a considerable shift of the width from that of the healing length ξ0.

The width of the soliton can then be compared with ξ0 to determine the value of re.

Do note that the change in the width of the dark and bright solitons are opposite in

nature and that readily provides one with a qualitative verification of the existence of

change in healing length due to non-locality of interactions. Moreover, in this chapter

we have also given exact quantitative measure for the change in width as a function of

re for the dark and bright solitons. In an experiment, if one uses similar condensates for

positive as well as negative scattering lengths, obtained using Feshbach resonance, one

can actually measure re of the system in two different ways, i.e. from the shrinking and

from the broadening of the respective solitons.

The spectrum of elementary excitations for the local GP equation shows a phonon-like

behaviour ω ∝ k for small wave-numbers (k) and particle-like behaviour ω ∝ k2 for large

k. The healing length is the length scale where there is a transition of this spectrum from

phonon-like behaviour to particle-like behaviour. In the local GP equation the width of

the soliton solution scales as ξ0 = 1/
√

8πan0. For the MGPE, there is a change in the

healing length and this modified healing length ξ shrinks with increasing non-locality

[62] for a BEC with repulsive interactions. Whereas, it is shown in this chapter that for

an attractive BEC, the modified healing length ξ is bigger than the ξ0. Solitons are the
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structures whose width scales as the healing length of the system and therefore solitons

should capture this modification in the healing length resulting from the non-locality of

inter-particle interactions. We show that the width of the soliton shows qualitatively

similar behaviour as ξ.

An exact solution provides with the opportunity of analyzing the energetics of the struc-

ture and we have fully utilized this opportunity to explore the stability of solitons in the

presence of non-local interactions. The soliton solutions of the MGPE are stable even as

one increases the gas parameter (ν) to small but finite values. The non-locality of inter-

actions in a BEC imparts additional stability to the solitons, considering the proposal

of quantifying soliton stability [152]. However, as seen from Fig.(5.9), beyond a certain

value of U , the stability of solitons with stronger non-local interactions decreases. It

would be interesting to analyze such a behaviour with respect to the proposal quan-

tifying soliton stability. Such a behaviour might arise due to the modified behaviour

of dispersive and focussing effects in a MGPE. However, a detailed study of such a

behaviour might throw more light on the stability of solitons in 1D.



Chapter 6

Roton mode softening in

multi-component BEC due to

finite range of interactions

In the previous chapters, we have considered first order corrections to the LGPE and

studied the vortex and soliton in a BEC. For the vortex solution, the new class of vortex

solution arose due to the tight confinement of the condensate along the radial direction.

The soliton solution showed deviation in length scale for increase of gas parameter a3n.

In this chapter, we will study the dispersion relation of small amplitude oscillation modes.

Instead of considering only the first order correction to the LGPE, we shall consider the

entire interaction integral with a non-local pseudopotential. This is because the higher

order corrections would involve terms of the form k2l, for the l-th order correction. As

the value of k increases, the higher order corrections would become prominent. Hence, it

doesn’t make sense to truncate this series. Instead, the exact features of the dispersion

relation would be captured if we keep the entire interaction integral while doing the

small amplitude oscillation mode analysis.

The small amplitude oscillation modes arise as fluctuations on top of the uniform density

ground state of a BEC in the absence of an external potential. For the LGPE, the dis-

persion relation of these modes show a phonon like ω ∝ k behaviour for small momentum

(k) modes and particle like ω ∝ k2 behaviour for large k. This is for the LGPE, which

has a contact pseudopotential. However, for an extended pseudopotential, there appear

roton modes in the dispersion relation [66]. The lowering of these roton modes usually is

a prescribed way to obtain the so-called supersolid state [154]. However, obtaining such

a supersolid state would involve high values of ν := a3n > 1. This regime would involve

92
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high three body losses [34]. To lower the three body losses and enhance the lifetime of

the supersolid state, it is desirable to obtain roton mode softening at a lower value of ν.

Among the many variations obtained in a BEC is the variation of obtaining a BEC

with multiple components. Such a BEC with multiple-components has been realized

experimentally [19, 155]. The miscibility of the many components is defined by the

miscibility criteria relating the density of the species and the inter-species scattering

length [20]. For a multi-component BEC in a miscible state, one obtains a coupled GP

equation, where the wave-function of one species affects the dynamics of all other species.

A small amplitude mode analysis can be done for a BEC with multiple components as

well. In this chapter we shall precisely do this. We will show that as for the single-

component BEC, in the presence of an extended pseudopotential, multi-component BEC

also manifests roton mode in the dispersion relation. We show that as we go on increasing

the number of components in a multi-component BEC, the roton mode softening appears

at progressively lower values of ν [156]. Thus, obtaining roton mode softening in a

multi-component BEC would lower three body losses and enhance lifetime. This mainly

happens due to coupling of different components of the multi-component BEC.

We start by revisiting the roton minimum appearing in the elementary excitation spec-

trum of a single component BEC with extended pseudopotential which has been studied

previously [66, 68]. This roton minimum can be lowered by increasing the gas parameter

a3n. We then study the effect of non-locality of s-wave scattering on the appearance and

lowering of the roton minimum for a BEC with multiple components. We investigate

whether we can soften the roton minimum in a multi-component BEC at a lower value

of the gas parameter
√
ninja

3
ij as compared to that for a single-component BEC, where

aij is the inter-species scattering length and ni and nj represent the densities of the ith

and jth components. We show that for multi-component BECs, the appearance and

lowering of roton minimum can be achieved at a lower value of the gas parameter as

we go on increasing the number of distinct components. We observe that even for a

two-component BEC, the roton mode softening can be achieved at a significantly lower

value of the gas parameter. We shall only be discussing small amplitude modes for a

BEC with repulsive interactions.

Positive interaction strength implies a repulsive BEC, while negative interaction strength

implies an attractive BEC. Positive scattering length (a > 0) would give us a stable con-

densate where we can have high degree of controllability over the BEC parameters. On

the other hand for a < 0, the BEC is inherently unstable and we have to tune parameters

to stabilize it in the first place. As regards the finite range expansion presented in Chap-

ter.3, it is valid for both positive and negative value of a. However, while discussing the

small amplitude oscillation modes, we strictly consider a > 0. The reason for it is that
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since with single-component and multicomponent BECs, we talk of achieving high values

of gas parameter (a3n), it would only be appropriate to talk of a repulsive BEC since

increasing a3n for an attractive BEC would quickly render it unstable. This instability

of a BEC for a < 0 is also reflected in the dispersion relation, where taking attractive

interactions would give us instabilities in the small amplitude oscillation modes.

6.1 Single component BEC

6.1.1 Excitations with local interactions

Let us discuss briefly the dispersion relation for a single component BEC with δ-function

inter-particle pseudopotential given by Veff (r−r′) = g δ(r−r′). This is a standard text-

book calculation [37]. In the absence of an external potential, the Gross-Pitaveskii(GP)

equation with such contact interactions is given by

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t) + g|ψ(r, t)|2ψ(r, t). (6.1)

This equation admits a solution with uniform density. This uniform density state of a

BEC is given by ψ(r, t) =
√
ne−iµt/~, where |ψ(r, t)|2 gives the uniform density and µ

is the chemical potential. Small amplitude oscillations on top of this uniform density

ground state are taken to be of the form θ(r, t) =
∑

l [ul(r)e
−iωlt

~ + v∗l (r)e
iωlt

~ ]e−iµt/~.

The calculation of the small amplitude oscillations over a uniform density state will

be done in the same fashion as was done in Sec.(5.2.1). In this case we drop the

subscript l and take u(r) = ueik.r, v(r) = veik.r and collect terms which evolve in

time identically. This procedure gives us the dispersion relation for excitations as

ω =
√

(~2k4/(4m2)) + (k2gn/m). This relation tells us that for small k, the disper-

sion is phonon like, whereas for large k it is particle like. To keep in mind is the fact

that the current approach uses the δ-function approximation for the pseudopotential,

which is equivalent to taking the range of a rectangular barrier pseudopotential tending

to zero.

Next we briefly describe the extended pseudopotential used in literature and then use it

to study the dispersion relation for a single component and then multi-component BECs

in the presence of non-local s-wave scattering.
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6.1.2 Excitations with non-local interactions

Let us now look at the effect of non-local interactions on the small amplitude oscillation

modes on top of the uniform density state of a BEC. As mentioned before, the uniform

density state of a BEC is given by ψ(r, t) =
√
ne−iµt/~. Let us take the non-local

interaction pseudopotential as Veff (r− r′) = 3g/[4π(σa)3] for |r− r′| ≤ σa and zero

otherwise, where σ is an order unity proportionality factor. Thus the width of the

scattering pseudopotential is of the order of the s-wave scattering length.

The non-local GP equation in presence of the pseudopotential mentioned above can be

derived from the full non-local GP equation, given by [37]

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t)

+ ψ(r, t)

∫
ψ∗(r′, t)Veff (r− r′)ψ(r′, t)dr′,

Inserting the pseudopotential mentioned above, we get,

i~
∂ψ(r, t)

∂t
= − ~

2

2m
∇2ψ(r, t)

+
3g

(σa)3
ψ(r, t)

∫ σa

0
|ψ(φ, t)|2dφ,

(6.2)

where, φ = r− r′ and dφ represents the infinitesimal volume element. The integral

limits are so taken since we have taken the width of the scattering barrier to be of

the order of the s-wave scattering length. We further set the dimensionless constant

σ to unity for brevity. This we do while mentioning the caveat that the range of the

pseudopotential is not exactly the scattering length, but is of the order of the scattering

length.

Once again, we take the form of excitations on top of the uniform density state as

θ(r, t) =
∑

l [ul(r)e
−iωlt

~ + v∗l (r)e
iωlt

~ ]e−iµt/~ and treat u and v as excitations with small

amplitudes and hence neglect their higher powers. As for the local interactions case,

taking u(r) = ueik.r, v(r) = veik.r and collecting terms which evolve in time identically,

we get now equations similar to ones in Sec.(5.2.1)
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~ωu =
~
2k2

2m
u+

gn

ka
sin (σka) [u+ v]

−~ωv =
~
2k2

2m
v +

gn

ka
sin (σka) [u+ v].

These equations can be written in the matrix form as

(
−~ω + ~

2k2

2m + gn
ka sin (σka) gn

ka sin (σka)
gn
ka sin (σka) ~ω + ~

2k2

2m + gn
ka sin (σka)

)(
u

v

)
=

(
0

0

)
.

For the matrix equation above to have a non-zero solution in u and v, the determinant

of the square matrix on the LHS has to be zero. This condition gives us the following

dispersion relation

ω = ± ~

m

√
k4

4
+ (4πkn) sinσka.

which can be equivalently written as

ω = ± ~

a2m

√
λ4

4
+ (4πa3nλ) sinσλ, (6.3)

where λ = ka. The gas parameter a3n appearing in the equation above should be small in

order for the three body interactions to be noticeably small. Particularly, the well known

diluteness limit is given by a3n≪ 1. However, there have been recent experiments which

have explored the limits of the gas parameter, trying to push it towards the strongly

interacting regime a3n ∼ 1 [41, 140].

The dispersion relation given by Eq.(6.3) exhibits a roton minimum which can be lowered

as we increase a3n as shown in Fig.(6.1). The roton minimum touches the ak axis at

a value of a3n ∼ 1.5 which is beyond the a3n ≪ 1 limit. This would take us well

into the strongly interacting regime. Nonetheless, we see that it is possible to pull

the roton minimum down in principle. Thus we get a hint that it might be possible

to pull the roton minimum down, at a lower value of a3n, by introducing additional

interactions such as those in multi-component BEC. Since the macroscopic wave-function

of different components in a multi-component BEC is different, there occur cross terms

between the wave-functions in the GP equation, due to the inter-species scattering.

Thus for multi-component BEC, there exist additional interaction terms than the ones

in the GP equation for a single component BEC. In the following section, we consider
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Figure 6.1: Figure shows the dispersion relation for single component BEC in the presence
of non-local inter-particle interaction pseudopotential for certain values of the parameter
a3n. Here, Ω = mωa2/~ and σ = 1 for the sake of comparison.

multi-component BEC and study the manifestation of inter-species interactions in the

dispersion relation of small amplitude oscillations.

6.2 Multi-component BEC

BECs with more than one components, in the absence of an external potential, can be

analysed by taking into account the inter-particle interaction in the GP energy func-

tional. This can be written as [77]

E =
~
2

2m

∑

j

∫
dr |∇ψj(r)|2 +

∑

j

∫
dr

|ψj(r)|2
2

∫
dr

′
ψ∗
j (r

′
)Vjj(r− r

′
)ψj(r

′
)

+

j>l∑

j,l

∫ ∫
dr

′
dr
(ψj(r)ψ∗

j (r)Vjl(r− r
′
)ψl(r

′
)ψ∗

l (r
′
)

2

)
.

(6.4)

where gij represents the inter-species s-wave scattering strength, gij = 4π~2aij(mi +

mj)/(mimj), mi and mj represent the mass of the atoms of different species whose

wavefunctions are ψi and ψj respectively. The inter-particle scattering length is given

by aij . If the scattering pseudopotential is taken to be δ-function as before with

V eff
ii (r− r′) = giiδ(r− r′) for intra-species scattering and V eff

ij (r− r′) = gijδ(r− r′),

we get the local GP equation for multi-component BEC as
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i~
∂ψj(r, t)

∂t
= − ~

2

2m
∇2ψj(r, t) + gjj |ψj(r, t)|2ψj(r, t) + ψj(r, t)

j 6=l∑

l

gjl|ψl(r, t)|2, (6.5)

for each of the several components, denoted by the subscript j.

Now, as for the single component case, these equations admit solutions with uniform

density for each component given by ψj(r, t) =
√
nje

−iµjt/~. Such BEC might exist

stably in many configurations with regards to the miscibility. The general miscibility

condition for two components i and j is given by aij <
√
aiaj [157]. The miscibility

condition can be obtained using a simple energy calculation as follows.

6.2.1 Miscibility criterion

Let us see this miscibility criterion for a two-component BEC. The same logic can be

extended to multi-component BEC.

The energy of a two-component BEC, occupying a volume V , with N1 particles of species

1 and N2 particles of species 2 in a homogeneous state (mixed phase) can be evaluated

using the energy functional in Eq.(6.4) as

Emis =
1

2

[
g11

N2
1

V
+ g22

N2
2

V
+ 2g12

N1N2

V

]
.

Now, for a segregated phase, the interaction term g12 would be absent. Let us then

consider the species 1 occupying a volume V1 and species 2 occupying the volume V2,

such that V1 + V2 = V . This energy would be E = 1
2

(
g11N

2
1 /V1 + g22N

2
2 /V2

)
. Now,

the volumes V1 and V2 occupied can be fixed by minimizing the energy, subject to the

condition V1 + V2 = V . This gives us the energy as

Eseg =
1

2

[
g11

N2
1

V
+ g22

N2
2

V
+ 2

√
g1g2

N1N2

V

]
.

Now, for the BEC to be present in the miscible phase, Emis < Eseg. This condition

gives g12 <
√
g1g2. Writing g = 4π~2a/m, we get this miscibility condition as a12 <

√
a1a2. This calculation can be extended to multiple components and we may obtain

the condition for miscible state to prevail as aij <
√
aiaj .
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6.2.2 Excitations with local interactions

We shall consider here a uniform, homogeneous mixture state of the many components,

i.e. we consider a state where the miscibility criterion holds for all components. We

shall first look at the dispersion relation of small amplitude oscillations for the local GP

equation given by Eq.(6.5) and then look at the non-local case in the next section.

We take the small amplitude excitations over the state ψj(r, t) =
√
nje

−iµjt/~ of the form

θj(r, t) =
∑

q [uqj(r)e
−iwqt

~ + v∗qj(r)e
iwqt

~ ]e−iµjt/~. Further, as for the single component

case, we take the form of uj and vj as uqj(r) = uqje
ikq.r, vqj(r) = vqje

ikq.r. For a two

component BEC, this dispersion relation has two distinct branches [158]. In general for

a multicomponent BEC we may get a complicated dispersion relation for excitations.

To simplify the system, we assume that all the intra-species scattering lengths are equal

(a1 say), so are the inter-species scattering lengths (a2 say). This simplification enables

us to look particularly into the effects of the presence of multiple components in a BEC

on the roton mode softening. This simplification also brings out the role of inter-species

interaction on roton mode softening, which is our core interest here.

Further, taking species with equal densities (n) and comparable masses (m) we get the

following matrix structure for excitations




U− X c c ........

X U+ c c ........

c c U− X c c ....

c c X U+ c c ....

.

.

.

.

........ c c U− X

........ c c X U+







u1

v1

.

.

.

.

.

.

us

vs




=




0

0

.

.

.

.

.

.

0

0




, (6.6)

where

U± := ± w~− ~
2k2

2m
− g1n

X := − g1n

c := − g2n,
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with s as the total number of distinct components in the multi-component BEC.

To get a non-trivial solution for excitations u and v on top of the uniform density

ground state, the determinant of the 2s × 2s square matrix in Eq.(6.6) must be zero.

This condition gives us

[
w2− ~

2

m2

(k4
4

+4πna1k
2+(s−1)4πna2k

2
)]

×
[
w2− ~

2

m2

(k4
4

+4πna1k
2−4πna2k

2
)](s−1)

= 0.

This equation gives us two branches of the dispersion relation as,

w =
~

m

[k4
4

+ 4πna1k
2 + (s− 1)4πna2k

2
] 1

2

or/and

w =
~

m

[k4
4

+ 4πna1k
2 − 4πna2k

2
] 1

2
.

(6.7)

6.2.3 Excitations with non-local interactions

Let us now consider non-local pseudopotential for both intra-species and inter-species

interactions in a multi-component BEC. Let the interaction pseudopotential be given by

V eff
jj (r− r′) = 3gjj/4π(σajj)

3 for |r− r′| ≤ σajj and zero otherwise for the intra-species

interaction. For the inter-species interaction, we take the interaction psuedopotential

as V eff
ij (r− r′) = 3gij/4π(σaij)

3 for |r− r′| ≤ σaij and zero otherwise. We shall like

to re-emphasize the fact that we do not claim the range of the pseudopotential to be

exactly equal to that of the scattering length, but it is of the order of the scattering

length, which is what is considered here to simplify the model.

Now, we write the non-local GP equation which can be derived from the energy func-

tional in Eq.(6.4) by considering the interaction pseudopotential to be non-local, as given

above. It is of the form
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i~
∂ψj(r, t)

∂t
= − ~

2

2m
∇2ψj(r, t) +

3gjj
(σajj)3

ψj(r, t)

∫ σajj

0
|ψj(φ, t)|2dφ

+

j 6=l∑

l

[ 3gjl
(σajl)3

ψj(r, t)

∫ σajl

0
ψ∗
l (φ, t) · ψl(φ, t)dφ

]
.

(6.8)

As for the single component case, φ = r− r′ and dφ represents the infinitesimal vol-

ume element. The above equation admits a solution where each of the species have a

uniform density, same as that for the local case. This can be verified by plugging in the

form for different ψj as ψj(r, t) =
√
nje

−iµjt/~. As before, considering small amplitude

oscillations θj(r, t) on top of this uniform density state, we get the following matrix by

mode matching.




A− B D D ........

B A+ D D ........

D D A− B D D ....

D D B A+ D D ....

.

.

.

.

........ D D A− B

........ D D B A+







u1

v1

.

.

.

.

.

.

us

vs




=




0

0

.

.

.

.

.

.

0

0




, (6.9)

where

A± := ± ω~− ~
2k2

2m
− g1n

sinσa1k

a1k

B := − g1n
sinσa1k

a1k

D := − g2n
sinσa2k

a2k
.

Here too we have considered the simplification that all intra-species scattering lengths

are equal(a1) and so are the inter-species scattering lengths(a2).

As before, to get a non-trivial solution for excitations u and v on top of the uniform

density ground state, the determinant of the 2s× 2s square matrix in Eq.(6.9) must be
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Figure 6.2: Figures shows the dispersion relation for small amplitude excitations of a BEC,
in the presence of non-local interaction pseudopotential between atoms, for the common
branch of elementary excitations for multi-component BEC. The plots are for different
values of the intra-species gas parameter a31n. Here, Ω = mωa21/~ and σ = 1 for the sake of
comparison.

zero. Since the matrix structure is similar to the one for the local multi-component case,

we get the following equation

[
ω2 − ~

2

m2

(k4
4

+ 4πna1k
2
(sinσa1k

a1k

)
+ (s− 1)4πna2k

2
(sinσa2k

a2k

))]

×
[
ω2 − ~

2

m2

(k4
4

+ 4πna1k
2
(sinσa1k

a1k

)
− 4πna2k

2
(sinσa2k

a2k

))](s−1)
= 0.

This condition gives us two branches of the dispersion relation for excitations as

ω =
~

m

[k4
4

+ 4πna1k
2
(sinσa1k

a1k

)
+ (s− 1)4πna2k

2
(sinσa2k

a2k

)] 1
2

or/and

ω =
~

m

[k4
4

+ 4πna1k
2
(sinσa1k

a1k

)
− 4πna2k

2
(sinσa2k

a2k

)] 1
2
.

(6.10)

The above equations exhibit a roton minimum, similar to the one for a single component

BEC with non-local pseudopotential. However, there is a crucial difference, since now

the factor s in the above equation means that the dispersion relation would depend on

the number of distinct species in the multi-component BEC. Also, for a single component

BEC there was just one length scale for the scattering length. However, for a multi-

component BEC, on top of the intra-species scattering length there exist inter-species

scattering length as well.

We write the dispersion relation in Eq.(6.10) in a form similar to that of Eq.(6.3) as
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Figure 6.3: Figures shows the dispersion relation for small amplitude excitations of a
BEC, in the presence of non-local interaction pseudopotential between atoms, with various
number of distinct components as labelled in the graphs. The plots are for different values
of the intra-species gas parameter a31n and β = a2/a1. Here, Ω = mωa21/~ and σ = 1 for
the sake of comparison.

ω =
~

a21m

[λ4
4

+ 4πa31nλ sinσλ+ (s− 1)4πa31nλ sinσβλ
] 1

2

or/and

ω =
~

a21m

[λ4
4

+ 4πa31nλ sinσλ− 4πa31nλ sinσβλ
] 1

2

(6.11)

where λ = a1k and β = a2/a1. As the miscibility criteria states, we should stay in

the limit a2 < a1, implying β < 1 [157]. Also, as we have taken the densities of each

component to be the same, the gas parameter takes the form na32 and na31 for the inter-

species and intra-species scattering length respectively [20]. Since a2 < a1, na
3
2 < na31.

As we had seen in the single component case with non-local interactions, roton lowering

was possible due to the sin ak term, since it attains negative values. Here too, the roton

minimum is obtained due to sin a1k and sinβa1k terms. However, the behaviour of the

upper and lower branches of Eq.(6.11) is different due to the opposite sign of sin a1k

and sinβa1k, and the absence of s in the lower branch. Also, notice that the lower

branch is common to all the multi-component BEC with s ≥ 2. In Fig.(6.2) we plot this

common branch for various values of the gas parameter. The lowest value of the gas

parameter for which the roton mode of this branch may be pulled down to the ω = 0



Roton mode softening 104

axis is a31n ∼ 0.616. Notice here that since sinλ and sinβλ have opposite sign, the

roton minimum would be lowered when sinβλ is positive and sinλ is negative. This is

in contrast to the upper branch both the terms being negative will enhance the roton

lowering. Hence, for the common branch, the value of β = a2/a1 for which the roton

mode softening is enhanced is β ∼ 0.49. For the upper branch, as we shall see, the roton

lowering would be enhanced for β very close to 1. Having discussed the common branch,

we next discuss the behaviour of the upper branch of Eq.(6.11).

In Fig.(6.3) we plot the dispersion relation of elementary excitations for a two, three

and four component BEC for the upper branch in Eq.(6.11). This figure shows that,

for a fixed value of the parameter a31n, the roton minimum is lowered as we increase

the number of distinct components in a BEC. From the figure we also see that the

lower branch of ω in Eq.(6.11) does not show any instability in the regime of parameters

considered. The values taken in the figure are such that a2 < a1 such that the miscibility

limit is satisfied. For the single component BEC (Fig.(6.1)) the roton lowering was

achieved at a3n ∼ 1.5. However, here the roton lowering is achieved at a value of

a31n ∼ a32n ∼ 0.43 for a four component BEC and a31n ∼ a32n ∼ 0.57 for a three

component BEC. Upon further varying the value of a31n we may observe roton lowering

for a two-component BEC in the upper branch. The value of gas parameter for this

to happen is a31n ∼ 0.85. However, we have already seen that the common branch of

excitation for multi-component BEC gives us roton mode softening at a lower value of

gas parameter, viz., a31n ∼ 0.616. Since, this branch is present for s ≥ 2, it is present

for a two-component BEC as well. Hence the common(lower)branch would give roton

lowering for a two component BEC at a smaller value of the gas parameter than the

upper branch.

The condition for three body losses to be negligible in a BEC is given by the diluteness

condition a3n ≪ 1. As the parameter a3n → 1 or beyond one, loss of atoms from the

condensate occurs. Nonetheless, BEC in such strongly interacting regimes have been

obtained and studied [140]. This is achieved by tuning the s-wave scattering length [159].

The lifetime of such a strongly interacting BEC would depend on the gas parameter and

hence it is important to obtain the roton lowering at a lower value of the gas parameter.

The loss rate for a BEC is given by the equation dN(t)/dt = −Ktot
3 < n2 > N(t)/6,

where N(t) is the number of atoms at time t, < n2 > is the mean square density of

the condensate and Ktot
3 is the total 3 body loss rate constant[160]. The factor Ktot

3

is dependent on the gas parameter a3n. From Feshbach resonance experiments for

commonly used atomic BEC components like rubidium, caesium, potassium, lithium

and sodium [160–164], one can see that obtaining values of a3n near 1 requires working

very close to the resonance. These experiments have also measured value of Ktot
3 for a
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range of values of the scattering lengths. One can see from these experiments that Ktot
3

increases very sharply near the resonance. Hence, an increase in the value of a3n from

0.6 to 1.5 would increase the loss rate Ktot
3 by two to three orders of magnitude. Thus,

it can be seen that the reduction in the value of a3n for roton mode softening that we

have shown is quite significant.

We can see that for finite k, setting the width of the pseudopotential interaction tending

to zero, as is done for local interactions, would mean setting the scattering length tending

to zero. One can set a → 0 in Eq.(6.10). This would essentially give us back the

multi-component dispersion relation in Eq.(6.7), which we had got by neglecting the

non-locality of the pseudopotential in the multi-component BEC.

The phenomenon seen in Fig.(6.3) of the roton mode softening at a lower value of gas

parameter, arises mainly because the inter-species interaction. The lower value of gas

parameter ensures that the three body losses reduce as we increase the number of com-

ponents. As the strongly interacting regime a3n→ 1 has been achieved experimentally,

such a roton lowering is realizable for a multi-component BEC by tuning the scattering

lengths involved at lower loss rates.

6.3 Discussion

In this chapter, we have studied elementary excitations in a BEC in the presence of non-

local s-wave interactions for multi-component BECs. We started by studying the effect

of non-local interactions on the spectrum of elementary excitations in a single component

BEC. We considered these elementary excitations on top of the uniform density ground

state. The consideration of finite range of inter-boson interactions gives us a roton mode

in the spectrum of elementary excitations. This roton mode can be lowered by increasing

the gas parameter (a3n). The roton energy becomes zero for a value of a3n > 1 for a

single component BEC. We then have studied elementary excitations on top of a ground

state of multi-component BEC, where each of the components has a uniform density.

We work in the limit where the various components are miscible. Consideration of finite

range of inter-boson interactions gives us a roton mode for multi-component BEC as

well. We investigated to find the lowest value of the gas parameter a31n for which we

get zero energy roton modes. We have shown that for BEC with two components and

above, zero energy roton modes can be obtained for a31n < 1. Furthermore, we have

shown that as we go on increasing the disticnt components of a multi-component BEC,

zero energy roton modes are obtained for lower and lower values of a31n.
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Note that we have just considered the s-wave scattering and not any other form of long

range interactions. The non-local s-wave scattering pseudopotential is taken to be a

rectangular barrier with width of the order of the s-wave scattering length. Previous

works have shown that in the presence of non-local interaction pseudopotential, there

appears a roton minimum in the dispersion relation, for a single component BEC. This

roton minimum can be lowered by modifying the width of interactions, which can be

taken to be of the order of the scattering length. However, for achieving this roton mode

softening, one has to go beyond the diluteness limit (a3n ≪ 1) and into the strongly

interacting regime.

The experimental progress in obtaining strongly interacting BEC is substantial with the

gas parameter being pushed very close to a3n ∼ 1. This is achieved by tuning the s-wave

scattering length. However, as we go near the strongly interacting BEC regime a3n ∼ 1

value, three body losses become significant. The magnitude of such losses would increase

with the increase of the gas parameter. Hence it is necessary to obtain zero energy roton

modes at a lower value of the gas parameter and this is where multi-component BEC

helps. We have shown that even using just a two-component BEC, we are able to push

the value of gas parameter for obtaining zero energy roton modes from 1.5 to 0.616. As

we increase the number of components further, we get zero energy roton modes for even

lower values of the gas parameters.

As the roton mode exhibits itself in a single-component BEC, it is but natural to expect

such a roton minimum in a multi-component BEC as well. What is peculiar to the

multi-component BEC is the softening of roton mode, at a certain value of gas param-

eter, just by increasing the number of distinct components. This roton mode softening

comes about mainly because of the fact that every species in a multi-component BEC is

represented by a particular wave-function. This brings about presence of cross-coupling

terms in the GP equation used to describe the multi-component system. Due to such

terms, the small amplitude oscillation modes of one component couple to the ground

state of other component at the expense of energy which helps lower the roton energy.

This is seen as roton mode softening in the dispersion relation. Since the strongly inter-

acting regime of a BEC is achieved experimentally, the technique suggested by us would

help realize zero energy roton modes at a lower value of gas parameter, thus reducing

losses.



Chapter 7

Conclusion and future works

In this thesis, we have studied the effect of finite range of interactions on the excitations

in a BEC. We started by considering the corrections to the GP equation with contact in-

teractions, due to the finite range of the interactions. We found the energy functional for

such a GP equation with corrections up to an arbitrary order. The term by term corre-

spondence between correction terms added to the GP equation and its energy functional,

with its applicability restricted to corrections with even symmetry was a characteristic

feature of this correspondence. We then studied the effect of corrections to the LGPE

(GP equation with contact interactions) on the vortex solution in a BEC. Here, it was

shown that there exists a new class of vortex solution whose width is of the order of

microscopic length scale of interactions. This solution was shown to manifest itself in

the presence of tight trapping. This is important in the context of obtaining low filling

fractions in the context of obtaining analogous Quantum hall effect in BECs. Next, we

studied the effect of corrections to the LGPE on the soliton solution. The change in

the length scale, its relation to the modified healing length and the enhanced stability

of the soliton solution due to the finite range corrections were important features here.

Finally, we looked at the effect of finite range interactions on the elementary excitation

spectrum in BECs. We showed here that adding distinct components helps to lower the

roton minimum at lower loss rates.

The LGPE neglects the range of inter-boson interactions and as such this range doesn’t

appear in the LGPE. As we progressively increase the gas parameter, this finite range of

interactions would begin to show up. Hence, it only makes sense for the finite range of

interactions to show up in the equation governing BECs in the regime of non-negligible

values of gas parameter. The simplest way to account for this range is to assume that

the GP equation holds and to add perturbative corrections to the LGPE.

107
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From the experimental point of view, since the discovery of BECs and attainment of

Feshbach resonance in BECs, strongly interacting BECs have been obtained [41, 42]. As

the diluteness limit is breached, it is but natural to expect a modified equation for the

BEC dynamics and this is what we have considered in this thesis. With progressively

higher values of gas parameter obtained in experiments, the results presented in this

thesis are open to experimental verification.

Neglecting the contribution of higher order terms depends upon the problem at hand.

For example, in the case of small amplitude oscillation modes, we have taken the entire

series because the nth order contribution of the series goes as k2n . As a result the series

cannot be truncated for large k. However, for the case of vortex solution and solitons,

the situation is different. For the case of vortex solution, we have shown that for the

vortex of order s, the solution near the core scales as R|s| and hence the corrections to

the local GP equation above the 2sth order in derivative is zero. Thus there is a natural

truncation for the vortex solution. Lastly, for the case of soliton solution, the scenario

becomes clear when we consider the width of the interaction pseudopotential to be of

the order of s-wave scattering length. Doing so gives us that the qth order correction to

the local GP equation is multiplied by a factor of (a3n)q . Thus, as long as we stay in the

limit a3n < 1, we are assured that the higher order terms fall fast. This accompanied

by the fact that the higher derivatives of density fall off enables us to safely truncate

the series of corrections at the first order. Having stated these conditions, it is essential

to re-state that the truncation of the series of corrections depends on the problem in

question. Hence in Chapter.3, we have presented corrections to the energy functional

up to an arbitrary order since the problem at hand may require corrections above the

first order to be included.

The results presented in this thesis can be extended in many directions. Firstly, the

new class of single vortex solution presented by us can be studied in the presence of

various trapping potentials. Its dynamics in three dimensions is also of interest. More

importantly, study of a lattice of such thin vortices can be undertaken in view of obtain-

ing lower vortex filling fractions to achieve analogous quantum hall effect. This may be

studied by starting with two thin vortices and studying their interaction. Their mutual

interaction potential can be thus obtained. This interaction potential can then be ex-

tended to study the formation of vortex lattice as the angular frequency of rotation of

the BEC is increased. This thin vortex may also be studied with respect to formation of

a vortex tangle to study superfluid turbulence. Transport phenomenon in a BEC with

a tangle of thin vortices would be of interest in this direction.

The 1D LGPE has been solved using the inverse scattering problem and is known to

have infinitely many conserved quantities [165]. A crucial step for solving this problem is
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obtaining what are called as ‘Lax pairs’ for the problem. However, this inverse scattering

problem has not been solved for corrections to the LGPE, nor have the Lax pairs for such

a system been found. In this direction, the discovery of Lax pairs for the 1D LGPE with

corrections is important. Even the discovery of Lax pairs for the first order correction

would open a new line of inquiry into the problem. There may then exist a pattern for

Lax pairs of corrections up to an arbitrary order. In any case, the Lax pairs for LGPE

with first order correction would be crucial.

We have shown that roton minimum can be obtained and lowered at a lower value of gas

parameter by adding additional components to the BEC. Lowering this roton minimum

would lead to a solid order on top of the superfluid BEC. The nature of the order can be

further explored. For a single component BEC, various phases of solid order have been

proposed, which includes the 1D stripe phase [68] and various lattice structures [67].

However, such a study for more than one components has not been done to the best of

our knowledge. In this direction the type of structure favoured by a multi-component

system is of interest.

Finally, the effect of finite range of interactions can be studied in finite temperature

models of BEC. The effect of temperature on BEC has been studied in literature and

various finite temperature models have been proposed [166]. The applicability of these

models depend on the system under consideration. However, the simultaneous effect of

finite range of interactions and finite temperature has not been considered to the best

of our knowledge. Such finite temperature models are usually proposed for exciton-

polariton condensate where the temperature and dissipative effects become important.

As such, the effect of finite range of interactions in such systems would be interesting

to see. The interplay between the strengths of finite temperature corrections and finite

range corrections might give an interplay between different phases in such systems.

We thus conclude our discussion on the results presented in the thesis and possible future

works that may stem out of it. We sincerely hope that our work would kindle a lot of

experimental interest towards the study of finite range effects in a BEC.
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