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Abstract

In the past, long-time evolution of an initial perturbation in collisionless Maxwellian
plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate
of such electrostatic perturbations was resolved by Manfredi[G. Manfredi, Phys. Rev.
Lett. 79, 2815-2818 (1997)] using long-time simulations up to t = 1600ω−1

p . The oscilla-
tions were found to continue indefinitely leading to BGK-like phase-space vortices (from
here on referred to as ‘BGK structures’). Using a newly developed, high resolution 1D
Vlasov-Poisson solver based on Piecewise-Parabolic Method (PPM) advection scheme, we
investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions
for long times, up to t = 3000ω−1

p . We show that BGK structures are found only for a
certain range of q-values around q = 1. Beyond this window, for the generic parameters,
no BGK structures were observed. We observe, that for values of q < 1 where veloc-
ity distributions have long tails, strong Landau damping inhibits the formation of BGK
structures. On the other hand, for q > 1 where distribution has a sharp fall in velocity,
the formation of BGK structures is rendered difficult due to high wave number damping
imposed by the steep velocity profile, which had not been previously reported. Wherever
relevant, we compare our results with past work.
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Chapter 1

Introduction

1.1 Landau Damping

Collisionless plasmas, by definition, do not have a significant number of inter-particle
collisions. Because of this, one would not expect the dissipation of energy. For a dissipa-
tional system, such as an oscillating pendulum being slowed down by air resistance, we
would expect the initial energy of the pendulum to be eventually dissipated away to the
surrounding medium, and the pendulum never regains its original amplitude of oscilla-
tion. However, collisionless plasmas, by the virtue of consisting of two oppositely-charged
species, are able to store some of the dissipated energy as the potential energy of that
plasma. This is also the reason that plasma oscillations occur, where the particles keep
exchanging energy of the field periodically, sustaining a steady oscillation in the electric
field. By similar mechanism, the particles, which are more or less stationary in the frame
of perturbation, can resonantly interact with the field in such a manner that they ab-
sorb energy from the field and cause the oscillations to damp away. This collisionless
damping is known as Landau damping[1, 2]. For collisionless plasmas, where dissipation
by collisions is negligible, the damped oscillations may resurge in their full amplitude,
if triggered with an appropriately phased disturbance. This phenomenon is known as
a plasma echo[3]. Particles may also interact with the electric field to form pockets of
trapped particles in the phase-space, due to trapping nonlinearity, leading to coherent
structures in phase-space known as Bernstein-Greene-Kruskal (BGK) structures.

The kinetic theory presents a useful way to several such phenomena in plasma physics.
It involves studying processes in terms of the distribution function and the effect of
the different physical quantities, such as the electric field, on it. One example of the
application of kinetic theory is for collisionless plasma, where the inter-particle collisions
can be neglected.

For collisionless plasma, which will be our concern throughout, the kinetics of the
plasma are described by the Vlasov-Poisson equation system. For one dimensional, col-
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lisionless plasma, the Vlasov-Poisson equations[2] are:

∂f

∂t
+ v

∂f

∂x
− eE

me

∂f

∂v
= 0 (1.1)

∂E

∂x
=

e2

meε0

(
n0 −

∫
fdv

)
(1.2)

where f = f(x, v, t) is the electron distribution function, E = E(x, t) is the electric field,
n0 is the number density of the neutralizing ion background. (Rest of the symbols have
their usual meaning).

One can notice that Eq. (1.1) does not have non-zero RHS. This means that there
are no sources or sinks, such as the ones created by collisions of particles, present in the
system which could lead to dissipation or growth of kinetic energy. Therefore one would
usually not expect an applied perturbation to damp away.

In order to study how an infinitesimal perturbation behaves in a collisionless plasma,
we need to perturb the distribution function with a small perturbation in (x, v). One can
see from Eq. (1.1), that a perturbation in x-domain would soon phase-mix and cause a
perturbation in v-domain. Thus, we need the perturbation to reflect the change of the
distribution in both x- and v-domain. On substituting the infinitesimal perturbation,
f(x, v, t) = f0(v) + f1(x, v, t) and E(x, t) = E1(x, t) (where E0(x) is assumed to be zero
for no initial background electric field), and retaining the terms up to first order only, we
get the linearized system:

∂f1

∂t
+ v

∂f1

∂x
− eE1

me

∂f0

∂v
= 0 (1.3)

∂E1

∂x
= − e2

meε0

∫
f1dv (1.4)

Also, on perturbing the plasma, the plasma will exhibit plasma oscillations caused
by the formation of a periodic charge density. Therefore, the perturbed distribution will
have a wave-like behaviour. Therefore, on choosing the ansatz f1, E1 ∼ exp i(kx− ωit)
(where ωi is complex, given by ωi = ω + iγ), the system can be reduced to the following
dispersion relation:

1 = − e2

kmε0

(∫
∂f0/∂v

ωi − kv
dv

)
(1.5)

The complex angular frequency makes sure that we account for both continuing oscilla-
tions and the damping/growth of the oscillations.

Landau, in 1946, noticed that one had to correctly account for a singularity at kv = ωi
in the complex velocity plane[1]. Within the linear limit, where k << 1, such that γ < 0
and |γ/ω| � 1, the dispersion relation can be approximated, by contour integration, to
get:

ωi = ωp

1 + i
π

2

ω2
p

k2

[
∂f̂0

∂v

]
v=vφ

 (1.6)
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where f̂0 is the normalized equilibrium distribution function and kvφ = ω + iγ. λD is

the Debye length given by λD =
√

ε0kBT
n0e2

, the thermal velocity vth is vth =
√

kbT
m

and

the plasma frequency ωp is given by ωp =
√

n0e2

meε0
. For an initial Maxwellian f(v) =

(πv2
th)
−1/2 exp(−v2/v2

th), the damping rate γ, is found to be:

γ = Im

(
ωi
ωp

)
≈ −0.22

√
π

(
ωp
kvth

)3

exp
−1

2k2λ2
D

(1.7)

Therefore, once can see that the initial perturbation is damped away despite there
being no dissipative term in the RHS of the Vlasov equation. However, for a finite
value of k or for large amplitude of perturbation, the approximation of γ being small
may not be valid. From the linearization process, we can notice that linear Landau
damping is only occurs till the contribution of the nonlinear term in the Vlasov equation,
i.e. (−eE1/me)(∂f1/∂v), becomes significant. Once this term is comparable to rest of the
terms in the Vlasov equation, the behaviour of the system becomes nonlinear.

Attempts at an analytical solution to nonlinear Landau damping have met only with
limited success. However, the Vlasov-Poisson equation system can be solved numerically
to understand the dependence of the nonlinear behaviour on different types of initial
perturbations. We now move to explain a brief history of the study of such analytical
and computational efforts. We also introduce the succinct essentials of our work.

1.2 Recent Work in Nonlinear Landau Damping (1997-

2012)

Summarizing the previous section: Exponential damping of small vibrations in uniform,
one-dimensional, Maxwellian, collisionless, electronic plasma was first pointed out by
Landau by correctly accounting for the singularity in the contour integral for the disper-
sion relation[1]. It meant that damping occurs in a perturbed plasma despite the absence
of any dissipative term. Since then, this phenomenon has been shown in innumerable
simulations for collisionless plasmas. Landau’s treatment is restricted to infinitesimal
perturbations, which helps approximate the system to be linear. This helps simplify the
system and, from there on as shown in the previous section, is solved rigorously.

However, as the amplitude of perturbation becomes larger, contribution from the
nonlinear terms become more significant and the behaviour deviates from uniform expo-
nential damping. The approximate analytical solutions available for nonlinear damping
are not valid for long-times. For example, O’Neil analytically showed that the system
undergoes oscillations with trapping time τ as the period, and that the damping rate goes
to zero with times much greater than the trapping time[4]. However, O’Neil’s treatment
is not applicable for times much greater than the trapping time.

For a many decades, the fate of nonlinear finite amplitude electrostatic perturbations
for times much greater than O’Neil trapping time was an open problem. The question of
whether electrostatic perturbations will damp away at t→∞ or whether it would lead to
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the formation of Bernstein-Greene-Kruskal (BGK)[5] structures was hotly debated. For
example, in 1997, Isichenko proposed that such perturbations undergo Landau damping
following an algebraic decay[6]. However, this derivation itself was under the assump-
tion of decay of the field. Manfredi observed from long-time numerical simulations up to
1600ω−1

p that, for a finite amplitude perturbation, the plasma undergoes a few amplitude
oscillations (O’Neil oscillations) and then approaches a steady-state[7] similar to BGK
mode. Soon after, in 1998, Lancelotti and Dorning showed that Isichenko analysis was
erroneous in that the final damping rate obtained did not satisfy an assumption made
early on in the analysis [8]. Furthering this debate, in 2000, Firpo and Elskens proposed
a Hamiltonian model where in it was shown that there exists a critical wave-intensity
above which Landau damping leads to a finite field amplitude, and below which equilib-
rium amplitude vanishes[9]. Later in 2004, Ivanov, Cairns and Robinson, using Vlasov
simulations, have also found the existence of such a critical perturbation amplitude[10].
Further, in 2009, Barré and Yamaguchi, using a Hamiltonian mean-field model, have
shown that systems with repulsive interactions, such as plasmas, can indeed sustain long-
lasting small travelling clusters, and have discussed the existence of an upper limit on
the value of the perturbation amplitude for which trapping occurs[11].

However, these studies were for Maxwellian plasmas. As is well known, Maxwellians
may not adequately describe systems with long-range interactions, especially collisionless
systems such as gravitational systems and plasmas. It is also well-known that for a system
with short range interactions, the energy of the system is additive or extensive. Therefore,
maximizing Boltzmann-Gibbs-Shannon (BGS) entropy under energy constraints leads to
a Maxwellian.

In the past, linear Landau damping[12] has been studied for non-Maxwellian distribu-
tions. Also, for non-Maxwellian distributions, existence localized steady-state structures
has been found [13] using pseudo-potential method, first developed by Schamel [14].
Also, for systems which interact with long-range interactions and for which energy is
not additive or extensive, deviations from BGS statistics have been attempted leading to
non-extensive generalizations.

One class of non-Maxwellian distributions are the q-distributions, which have a broad
range of applicability. Tsallis, in 1998, introduced the q-nonextensive entropy functional[15]:

Sq =

∫ L

0

∫ +∞

−∞
f(x, v)

(
1− f(x, v)q−1

q − 1

)
dv dx. (1.8)

where q is the strength of nonextensivity. The corresponding q-distribution is derived as
an extremum state of this new entropy functional[16]:

fq(v) = Cq

[
1− (q − 1)

[
v2 − eφ0/me

2v2
th

]]1/(q−1)

(1.9)

where φ0 denotes the electric potential. The normalization constant Cq is given by:

Cq =


n0

Γ( 1
1−q )

Γ( 1
1−q−

1
2)

√
1−q

2πv2th
for − 1 < q < 1

n0

(
1+q

2

) Γ( 1
q−1

+ 1
2)

Γ( 1
q−1)

√
q−1

2πv2th
for q > 1

(1.10)
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Figure 1.1: Plot of the q-distribution function for values q = 0.8, 1.0, 1.2.

Under the limit of q = 1, the entropy functional reduces to BGS entropy S1 =
∫ ∫

f ln f dxdv,
and the q-distribution f1(v) reduces to a normalized Maxwellian. The distributions, for
decreasing q < 1, have longer tails and lower peaks. For increasing q > 1, these dis-
tributions have shorter tails and higher peaks. As one can see from Eq. (1.9), q > 1
distribution functions exhibit a velocity cutoff at vcutoff =

√
2/(q − 1). We can see these

properties in Fig. 1.1. One can notice that f1.2 has a velocity cutoff at v ≈ 3.16. We shall
explore the significance of the velocity cutoff in the simulations performed.

We must mention that there is nothing unique about Sq. However, it has been
found that q-distributions lend themselves to applications in vast number of problems
in plasmas[17, 18]. The q-distribution has also been able account for the velocity distri-
butions of gravitational systems such as galaxy clusters[19].

The trapping of particles for nonlinear Landau damping in q-distributions has been
studied in the past[20]. However, these simulations performed were for relatively smaller
deviations around q = 1, for gridsizes smaller than Manfredi’s simulations and for times
up to 1200ω−1

p . Also, this work[20] is exclusively concerned with the dependence of trap-
ping of particles on perturbation amplitude and the resulting bounce time. In this work,
it is argued that the effect of increasing damping rate and bounce time with decreasing
value of q limits trapping for q < 1 whereas trapping is efficient for q > 1.

However, to the authors’s knowledge, the phenomenon has not been studied for vari-
ations of perturbation wavenumber and its effect on limiting the range of q for which
such trapping can be found. We explore the presence of BGK structures over a broader
range of q around q = 1 and determine numerically the extent to which trapping depends
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on the value of perturbation wavenumber. The simulations undertaken have been run
till 3000ω−1

p on gridsizes comparable to Manfredi’s simulations. In the case of q > 1,
we also find that simulations till 1200ω−1

p do not let the numerical entropy settle to a
stable value, hence making it necessary to prolong the simulations in order to confirm
a numerical steady-state. This, for q < 1, brings to our attention a new behaviour of
the system. On extending the simulations, we confirm that the increasing damping rate
with decreasing q puts a lower limit on q beyond which no trapping occurs. This con-
firms Valentini’s findings for q < 1[20]. We find additionally that, for q > 1, damping is
restricted by an upper limit on the perturbation wavenumber k, which in turn imposes
an upper limit on the value of q for trapping, which was previously not addressed.

We now proceed to describe the construction of the Vlasov-Poisson solver in the next
section.
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Chapter 2

Numerical Solution of the
Vlasov-Poisson Equations

We first construct a numerical solver that can self-consistently solve both the Vlasov
and Poisson equations and advance the solution in time. A one-dimensional, collisionless
plasma can be modelled using the Vlasov-Poisson system, given by:

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0

∂E

∂x
=

∫
f dv − 1 (2.1)

where f(x, v, t) is the electron distribution function and E(x, t) is the electric field. For
this system, time has been normalized to the plasma frequency ωp, space has been normal-
ized to the Debye length λD, velocity has been normalized by vth = λDωp. Consequently,
f gets normalized by n0/vth and E by −mev

2
th/eλD. In this model, the ions form a

stationary neutralizing background of number density n0. Hence, the numerical value
of ‘1’ in the Poisson equation. One can see that any unperturbed normalized velocity
distribution function, in the absence of a background electric field, is a solution of the
Vlasov-Poisson system.

In order to solve Eq. (2.1), we use the time-stepping method suggested by Cheng and
Knorr[21]. We apply the following time-stepping for one time step ∆t:

• Solve ∂f/∂t+ v∂f/∂x = 0 for ∆t/2, for a given v in the v-domain.

• Solve the Poisson equation to obtain E(x)

• Solve ∂f/∂t+ E∂f/∂v = 0 for ∆t, for an E in the obtained E(x)

• Again, solve ∂f/∂t+ v∂f/∂x = 0 for ∆t/2, for a given v in the v-domain.

Thus, the solution of the system is reduced to solving two 1D advection equations and a
Poisson equation. This method formally incurs an error of the order O((∆t)3). Further,
this requires a reliable advection solver and a Poisson solver. There are several methods
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of implementing this time-stepping method depending on how one chooses to evolve the
advections[22]. We select an Eulerian fixed grid advection scheme for the solution of the
advection equation. The advantage of doing so is that the advections are constant speed
advections, for which various methods are available. Some of the advection methods are,
for example, are flux-balance(FB) method[23, 22], piecewise parabolic method (PPM)[24,
22] and flux-corrected transport (FCT) method[25, 22].

Arber and Vann[22] have performed a comparison of various advection solvers with
regards to parameters like monotonicity preservation, positivity of the distribution func-
tion, etc. They found on this basis that lower order methods like the flux-balance method
were too coarse for the accuracy required. On the other end, they found that the finest
advection solver, the flux-corrected transport engaged in truncation of the distribution
function (which implies loss of information during the solution). However, the piecewise-
parabolic(PPM) advection method was found to be sufficiently fine, while not causing
an alarming loss of information. Therefore, we chose PPM advection method as our ad-
vection solver. The PPM advection method is formally third-order accurate away from
the extrema and first-order accurate at the extrema. Also, the monotonicity limiters of
the PPM method ensure that the positivity of the distribution function is maintained.
Also, a Fourier transform based solution is employed for the Poisson equation, described
in section 2.2.

2.1 Piecewise Parabolic Method (PPM) Advection

Solver

Let us consider a general advection equation,

∂a

∂t
+ u

∂a

∂ξ
= 0 (2.2)

where a = a(ξ, t) is the function being advected and u = u(ξ, t) is the constant velocity
by which the function a is advected, and ξ, u are the generalized coordinates. The initial
value for the problem is set as a(ξ, 0) = a0(ξ). u may also be a function of a, in case of
which the advection equation would be nonlinear. To solve the advection equation, we
apply the method outlined by Colella and Woodward[24]:

1. The value of the discretized function anj (where n is the timestep and j is the position
step) is defined as the zone average of the underlying function a(ξ, tn), over the cell:

anj =
1

∆ξj

∫ ξj+1/2

ξj−1/2

a(ξ, tn)dξ (2.3)

where ∆ξj = ξj+1/2 − ξj−1/2, where ∆ξj represents the cell size and ξj+1/2,ξj−1/2

represent the cell edges.

2. Now, the underlying function is defined to be a piecewise parabola[24], as follows:

a(ξ) = aL,j + x(∆aj + (1− x)a6,j) (2.4)
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where x = (ξ − ξj−1/2)/∆ξj, where ξj+1/2 ≤ ξ ≤ ξj−1/2. Now, the solution is just
advection along the characteristics of the problem, given by:

an+1
j =

1

∆ξj

∫ ξj+1/2

ξj−1/2

a(ξ − u∆t)dξ (2.5)

where ∆aj = aR,j − aL,j, and aR,j = a(ξj+1/2, t
n) and aL,j = a(ξj−1/2, t

n) are the
values of a at the cell edges. On substituting the piecewise parabolic function in
the above equation, one gets a constraint:

a6,j = 6(anj − 0.5(aR,j + aL,j)) (2.6)

3. Now we notice that the indefinite integral A(ξ) =
∫ ξ
a(ξ′, tn)dξ′ can be given by:

A(ξj+1/2) = Aj+1/2 =
∑
k≤j

ank∆ξk (2.7)

To define A, one interpolates a quartic polynomial between 5 points, spaced around
a(ξj+1/2), and uses the relation:

aj+1/2 =

(
dA

dξ

)
j+1/2

(2.8)

to obtain a value for aR,j. Also, aL,j is set to be the value of aR,j−1 .

4. Once the interpolated cell-edge values are defined, one applies a monotonicity con-
dition. Now, if anj were the extremum, then the values of aR,j and aL,j are reset
to the value of anj . Now, if a(ξ) achieved an extremum somewhere in the cell, then
depending on where the extremum is close to, then one of the cell-edges is is reset in
such a way, so that the derivative at that cell edge is zero. This procedure maintains
monotonicity of a.

5. Additionally, the values of aR,j and aL,j are reset depending on whether a discon-
tinuity is detected. The discontinuity is detected as per a user given tolerance,
and this modifies the cell-edge function values to preserve the discontinuity during
advection.

6. Now that we have all the required parameters, we advect the function as (2.5) would
define it.

The PPM advection solver is third-order accurate away from the extrema and first-
order accurate at the extrema[22]. Note that PPM advection solver is explicit in nature
and hence has to obey the Courant-Frederichs-Löwy(CFL) condition:

k =

∣∣∣∣u∆t

∆ξ

∣∣∣∣ ≤ 1 (2.9)
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However, if ∆t happens to have a value that violates this condition, then there are ways
to avoid the restriction set forth by the CFL condition. For example, one can displace
the solution by an integral number of grid points, such the remainder of the timestep left
would satisfy the CFL condition[22]. This is correct because, analytically, we have:

a(ξ, t+ ∆t) = a(ξ − u∆t, t) (2.10)

and when u∆t = p∆x, where the CFL number p is an integer then:

a(ξ, t+ ∆t) = a(ξ − p∆x, t) (2.11)

As any CFL number can expressed as a sum of an integer and a number in the interval
(0, 1), we would shift the solution to the right by number of gridpoints equal to that
integer and would apply PPM for the remainder of the time (in which case k ∈ (0, 1)).
However one has to be aware that even though, by using this trick, a larger timestep may
not affect the advection solver, it does contribute to the O((∆t)3) error in the Strang
splitting[30]. The PPM advection solver has been thoroughly benchmarked in Appendix
A. Next, we obtain methods to solve the Poisson equation.

2.2 Solution of the Poisson Equation using Fourier

Transforms

The Poisson equation is:
∂E(x)

∂x
= ρ(x) (2.12)

where ρ =
∫
f dv − 1, in our case. On performing a Fourier transform, we get:

ikẼ(k) = ρ̃(k) (2.13)

where k is the conjugate variable to x and ∼ represents the transform of the original
variable into k-space. Therefore:

Ẽ(k) = −i ρ̃(k)

k
(2.14)

On performing an inverse Fourier transform, we obtain E(x):

E(x) = FT−1

(
−i ρ̃(k)

k

)
(2.15)

where FT−1 represents the inverse Fourier transform. Also, we compare this method to
the conventional method[31], where:

E(x) = FT−1

(
−iρ̃(km)

sin 2πm
M

)
(2.16)
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where m is the mth harmonic and M is the gridsize of E. In our programs we use FFTW
3.2[48] for performing the Fourier transforms. This reduces the number of operations and
makes this method viable as compared to conventional integrators for ODEs. Note that
Fourier transform based methods only work for functions ρ(x) with periodic boundary
conditions. Furthermore, the solutions may have to be corrected by an additive constant.
This additive constant is fixed by the one given boundary condition (on either boundary)
on E(x). In case of the Poisson solver in our Vlasov-Poisson solver, where periodic
boundary conditions are applied and no additional value is specified, we do not calculate
an additive constant to add. For the sake of nomenclature, we call the solution by
expression (2.15) as ‘Method I’ and by (2.16) ‘Method II.’ Both of these methods are
compared and benchmarked in Appendix A.

2.3 Integrator

In order to perform the integration
∫
f dv, we use the conventional trapezoidal rule[32]:

Area =
Lv
N

n∑
i=1

fi (2.17)

assuming that the function f is discretized over equally spaced n points with periodic
boundary conditions (such that fn+1 = f1). Also, Lv/n(= h) represents the stepsize in
v. The theoretical error is (L3

v/12N2) max (f ′′), which roughly corresponds to O(h3).
Now that the individual components have been benchmarked, We assemble the solver.

We proceed to explain how the solver is assembled and introduce some features of the
solver.

2.4 Choice of Timestep and The Large Timestep Al-

gorithm

The first problem, in assembling a functional Vlasov-Poisson solver, is the choice of the
timestep. PPM advection solver, being an explicit advection method, is bound by the
CFL condition |v∆t/∆x| ≤ 1. Thus, one can choose the timestep such that the maximum
CFL number during the advancement of one timestep, does not violate this. Thus we
choose ∆t such that:

∆t = min

(
∆x

vmax
,

∆v

max |E|

)
(2.18)

where vmax is the value of maximum velocity on the velocity grid and max |E| is the
maximum absolute value of the electric field. ∆x,∆v are the sizes of the steps on the x
and v grid. We will often refer to this choice as the “regular timestep algorithm.” Now,
this leads to smaller timesteps as gridsize increases. The computational time is affected
because of both larger time required to solve one timestep and requirement of more
timesteps to solve up to the same time, with larger gridsize. But, we have a workaround,
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when we solve the individual advection algorithms. We can define a value of ∆t in the
beginning. Then, we define an integer p such that:

p =

{ ⌊
v∆t
∆x

⌋
v ≥ 0⌊

v∆t
∆x

⌋
+ 1 v < 0

(2.19)

where bc refers to the floor function (the greatest integer less than the argument). Re-
member that CFL number k = 1 represents the shift of the advected function by one
gridpoint to the right. Thus, depending on whether we are performing advection in x or
v domain, we shift the grid by p to the right in x or v respectively. That is:

a(xm, vn, t)← a(xm−p, vn, t) for advection in x

a(xm, vn, t)← a(xm, vn−p, t) for advection in v (2.20)

This is equivalent to an advection of p number of ∆x or ∆v respectively. Now, the
remainder of the advection will obey the CFL condition, and the time δt for advection
by PPM can be defined as:

δt = ∆t− p∆x

v
for advection in x

δt = ∆t− p∆v

E
for advection in v (2.21)

We perform advection by δt by using PPM advection routine, and this would not violate
the CFL condition. We refer to it in the text as the “large timestep algorithm.” Also,
any round-off error propagated by the large timestep algorithm is overshadowed by the
intrinsic errors caused by PPM. Thus, this is a viable method to use larger timesteps.

2.5 Assembly of the Vlasov-Poisson Solver

Now that the timestep has been decided, we set up other initial conditions, such as the
distribution function. Also, as seen in the previous section, we choose Method I for the
solution of the Poisson equation. Then, we use the Cheng-Knorr timestepping method
and perform the following:

• Apply PPM routine for half timestep ∆t/2 in x-domain, for various constant v.

• Apply Poisson FFT routine to get the electric field. Use the integrator to get the
initial conditions for this routine.

• Apply PPM for a full timestep ∆t in v-domain, for various constant E, obtained
from the previous step.

• Apply PPM routine for another half timestep ∆t/2 in x-domain, for various constant
v.

for advancement in one timestep ∆t, as mentioned before. This method is formally known
as Strang splitting and has a theoretical error of (O((∆t)3)). Also, various diagnostics
are put at the end of each timestep to study various properties of the solver. We describe
them in the next subsection.
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2.6 Some Additional Features of the Vlasov-Poisson

Solver

Some additional features that act as diagnostics and failsafes have been implemented in
the Vlasov-Poisson solver. Diagnostics help us study the accuracy and physicality of the
solutions. Failsafes help the solver fail in a reliable manner, in case it happened to fail.

1. An Integrator package: Given that the distribution f(xm, vn) is a 2d array, we
have implemented an integrator package that accounts for all integrations needed
by various parts of the program.

2. A Write Package: A package has been written for performing file writing func-
tions. This package contains functions for writing files for a quantity at one par-
ticular timestep, and for writing files for quantities that are solely a function of
time.

3. A Restart algorithm: An algorithm has been written to restart the program in
case of an interruption. This leverages the write package to write files at regular
intervals. On restart the user must specify the time of interruption, and this algo-
rithm reads the concerned files and loads those quantities to restart the program
mid-way. The restart algorithm is a failsafe for simulations which require large
CPU-time.

4. Diagnostics: We have built in several diagnostics for the solver. These include
diagnostics for:

• Total energyEtotal(t), given by: Etotal(t) = T (t)+V (t) = (1/2)(
∫ ∫

dx dv v2f(x, v, t)+∫
dx (E(x, t))2), and momentum p(t), given by: p(t) =

∫ ∫
dx dv vf(x, v, t).

The conservation of Etotal(t) and p(t) is a prime concern for the solver.

• Numerical entropy S, given by: S = −
∫ ∫

dx dv f ln f .

• Harmonics of the Electric Field |Ek|, by calculating the kth value of the Fourier
transform of the electric field, then calculating the modulus of that value.

• Maximum value of the electric field Emax, which is required for those cases
when a qualitative representation of the change of electric field with time is
needed.

In addition to these, we store the distribution function f and calculate the cor-
responding contour plots as a diagnostic tool to understand the nature of f at
different times.

As one can notice, these diagnostics may need to leverage other packages or algorithms
for their functioning.

Now that we have assembled the solver, we proceed to benchmark the solver to known
physical results from linear Landau damping and then apply the solver for long-time
simulations for nonlinear Landau damping.
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Chapter 3

Simulations

In order to simulate Landau damping, following Manfredi[7], we perturb the distribu-
tion function with one Fourier mode. Therefore, we initialize the following distribution
function:

f(x, v, 0) = (1 + α cos (kx))fq0(v) (3.1)

where fq0(v) is the initial q-nonextensive velocity distribution function. The normalized
q-nonextensive velocity distribution function[17] is given by:

fq0(v) = Cq

[
1− (q − 1)

v2

2

]1/(q−1)

(3.2)

where q is the strength of nonextensivity and Cq is the normalization constant given by:

Cq =


Γ( 1

1−q )
Γ( 1

1−q−
1
2)

√
1−q
2π

for − 1 < q < 1(
1+q

2

) Γ( 1
q−1

+ 1
2)

Γ( 1
q−1)

√
q−1
2π

for q > 1
(3.3)

where Γ(n) represents the standard gamma function. Also, for q > 1, the distribution
exhibits a velocity cutoff given by |vcutoff | =

√
2/(q − 1). For q = 1, this distribution

reduces to the Maxwellian with C1 = 1/
√

2π.
The independent parameters are the strength of perturbation α, the wave num-

ber k and the nonextensive parameter q. In addition, we also consider the bounce
time τ = α−1/2, after which the linear solution breaks down and nonlinear effects be-
come prominent. (The bounce time τ is the time in which nonlinear trapping becomes
important[4].) Therefore, we have developed a nonlinear Vlasov-Poisson solver in order
to study this phenomenon for times t� τ .

For the present problem, we use the following parameters: We set L = 2π/k. Through-
out the simulations performed, unless mentioned otherwise, we set the strength of per-
turbation α = 0.05 and k = 0.4. For the amplitude considered, the bounce time τ ≈ 4.47.
We also choose ∆t = 0.1, in accordance to the Shannon theorem[26].

With the independent parameters chosen, we now proceed to benchmark the solver
in the linear phase of Landau damping. We do so, as to understand the dependence of
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the effects of the independent parameters on the short time solution of Landau damping.
This helps guage the correctness of the solver, and also lets us independently judge the
limitations the physics of the problem imposes on the solver.

3.1 Benchmarking the Vlasov-Poisson solver for lin-

ear Landau damping.

We have thoroughly benchmarked the solver in linear phase and the nonlinear phases for
Maxwellian distributions, in Appendix B, for test problems in linear Landau damping
and Bump-on-Tail instability. However in order to benchmark the correctness of our
Vlasov-Poisson solver for an arbitrary velocity distribution function, we have developed
a numerical solver for the dispersion relation[27] for linear Landau damping, which we
will describe in this section.

In the past, analytical solutions for the dispersion relation of linear Landau damp-
ing for κ-distributions (where κ = 1/(1 − q)) have been carried out in terms of special
functions, by Valentini and D’Agosta [28]. However, these solutions were constructed for
linear Landau damping under the weakly damped limit, where |γ/ω| � 1. As the damp-
ing rate increases, we find that analytical solutions relying on this assumption deviate
significantly from the observed values. Therefore, we have developed a dispersion relation
solver valid for arbitrary values of |γ/ω|. We also look at the results of our dispersion
relation solver for the weakly damped case and compare it with Valentini and D’Agosta
as an additional benchmark.

We solve the Ampere equation instead of the Poisson equation in order to replicate the
results obtained previously by Vann[27]. In principle, the solution of either of the Poisson
equation or the Ampere equation should exhibit the same results. Showing that the
results obtained from solving the Ampere equation analytically and those obtained from
solving the Poisson equation numerically are in agreement would validate the accuracy
of the solver from an independent method of solution.

The normalized Vlasov-Ampere system is given by

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0

∂E

∂t
= −

∫
vf dv. (3.4)

We first linearize the Vlasov-Ampere system of equations by choosing f(x, v, t) = fq0(v)+
f1(x, v, t), and similarly E(x, t) = E0(x) + E1(x, t), where the subscript ‘0’ refers to the
unperturbed equilibrium solution and the subscript ‘1’ refers to the perturbed correction.
At t = 0, we assume that the zeroth order or equilibrium electric field to be zero, i.e.
E0(x) = 0. Then, we choose ansatz: f1, E1 ∼ exp i(kx− (ω + iγ)t), where we have
chosen a general angular frequency ω + iγ, where ω and γ are real. Substituting the
obtained expression for f1 from the Vlasov equation to the Maxwell equation results in
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the following dispersion relation:

− ω − iγ =

∫ +∞

−∞

v(∂fq0/∂v)

(kv − ω)− iγ
dv (3.5)

The real and the imaginary parts can be separated to obtain:

O(ω, γ) :

∫ +∞

−∞

(kv − ω)v(∂fq0/∂v)

(kv − ω)2 + γ2
dv − Im(z)− ω = 0 (3.6)

G(ω, γ) :

∫ +∞

−∞

γv(∂fq0/∂v)

(kv − ω)2 + γ2
dv + Re(z)− γ = 0 (3.7)

where:

z =

{
0 for γ > 0

2π
(
v
∂fq0
∂v

)
v=vφi

for γ < 0 (3.8)

and where the complex phase velocity vφi is given by kvφi = ω+ iγ. We numerically solve
for both O(ω, γ) and G(ω, γ) simultaneously to arrive at the analytical value of ω and γ
to required tolerance[27].

For a given initial equilibrium distribution function fq0(v) and a value of k, a domain
for ω and γ is chosen. These domains are divided into, say, N equally spaced parts,
thus creating N2 cells on the (ω, γ) grid. Then, the values of LHS of O(ω) and G(γ) are
calculated over each point on the (ω, γ) grid. The solution lies in cell in which the curve
for the zeroes for O(ω, γ) and G(ω, γ) intersect. For this purpose, it is required to search
for cells for which both the LHS of O(ω, γ) and G(ω, γ) have different signs on the corners
of the cell. Once such a zone has been obtained, it is further divided into N2 cells and
the procedure is repeated in order to get the solution with better precision. In order to
ensure that the solution is detected, one has to choose a large value of N , say N = 100.
Also, to reduce the number of cells which satisfy the criteria, but do not contain the
solution, we also test for the zeroes of (O+G)(ω, γ) and (O−G)(ω, γ) in addition to the
zeros of O(ω, γ) and G(ω, γ). Also, we choose the maximum and minimum values for the
domains for ω, γ by ensuring that these limits contain ω, γ calculated from the results of
the corresponding simulation.

The solver for linear Landau damping provides us with a precise value for the angular
frequency ω, and consequently the real phase velocity vφ = ω/k and damping rate γ
for arbitrary |γ/ω|. Also, this solver works for an arbitrary values of k, q and hence an
arbitrary initial q-distribution fq0 . This helps us benchmark the Vlasov-Poisson solver
for linear Landau damping, for arbitrary values of ω, k, for arbitrary q-values. From here
on, we refer to solutions obtained from numerically solving the dispersion relation (3.5)
as ‘analytically’ obtained value.

We now benchmark the nonlinear Vlasov-Poisson solver using the ‘analytical’ solver
for a short period of t = 200. For this purpose, we run our simulations for values of q
from 0.5 to 1.2. We also have used the analytical solver to compute the values of ω and
γ for these runs. We calculate the values of ω and γ from the data obtained from the
simulations. ω is calculated from the data for E1 till t = 200 and γ is calculated till the
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Figure 3.1: Comparison of the ‘analytically’ obtained and simulated values of the damping
rate γ varying with q (k = 0.4, α = 0.05 ).

linear phase of Landau damping which lasts till about t = 25. Since nonlinear behavior
sets in soon after t ∼ 25, measuring ω till t = 200 takes into account the nonlinear
oscillations also. This leads to a small discrepancy in ω values between the ‘analytically’
obtained and the observed results. Even so, the observed values are within 3% of the
analytical value. The plot for comparison of analytically obtained and observed values of
γ can be found in the Fig. 3.1. We can see that the analytically obtained and values of γ
obtained during the linear phase of the nonlinear solution match well, demonstrating the
correctness of the numerical solver. Also, for q > 1.2, the damping rate γ is analytically
obtained to be zero, and the corresponding value of ω is such that vφ > vcutoff , and hence
is unphysical. Also, for q = 1.2, even though vφ < vcutoff , the phase velocity lies very
close to the cutoff velocity. Therefore, the PBC applied on the velocity domain might
result in unphysical effects. Hence, we do not consider cases for q ≥ 1.2. However, for
q = 1.15, when changing k from 0.4 to 1.2, for α = 0.05, the value of vφ = ω/k decreases
to lie within the ‘bulk’ of the q-distribution, which enables us to calculate γ accurately
. However, on increasing k, the value of the damping rate γ also increases. This can be
seen in Fig. 3.2 for the numerically obtained values of γ varying with q for different k
within the linear domain. One can see that the values of |γ| for a higher k are larger than
those with a lower k. Thus, in general for any value of q, we find that increasing k results
in a higher damping rate. This observation has great impact in formation of nonlinear
structures. We shall come back to this point later.

As discussed earlier, we have performed an additional benchmark. For example, for
sufficiently lower values of k where |γ/ω| � 1, we have compared our analytical solver
with the solution given by Valentini and D’Agosta. We find that, for q = 0.95 and
k = 0.01, the analytically obtained value of ω from our dispersion relation solver matches
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Figure 3.2: Plot of damping rate γ as a function of q for values of k = 0.4, 0.7, 1.2. One
can see that as k increases, the values of γ are higher than those for a lower k.

with the result from Valentini and D’Agosta’s to 0.016%. Also, among all simulations
reported in the present work, the maximum change in energy is observed to be within
0.012%. Now that we are confident about the accuracy of the solver, we proceed to extend
the simulations into the long-time regime.

3.2 Nonlinear Landau damping

3.2.1 Case q = 1

Let us consider the simulation for the q = 1 case, which is the normalized Maxwellian.
For the value of k = 0.4, this simulation corresponds to Manfredi’s case[7]. Also, we
choose Nx and Nv in such a manner that there is sufficient resolution in x and v. Also, a
large value of Nv is needed to push the recurrence as far away as possible, which occurs
at TR = L/∆v. We now proceed to show that we have been able to replicate Manfredi’s
results with our solver.

Following Manfredi, the gridsize is set to Nx = 512, Nv = 4000, which has been shown
to be quite accurate for long-time simulations[7]. The choice of parameter results in the
recurrence time TR ∼ 5326. Also, in the past, BGK structures were seen to be sustained
till t = 1600[7]. We have extended Manfredi’s run till t = 5000 and find the electric field
structure to sustain. This can be seen in Fig. 3.3, where we have plotted the amplitude
of the fundamental harmonic of the electric field, denoted by E1, evolving with time.
Since we have only perturbed with only one Fourier mode, the fundamental harmonic
E1 would represent how this mode evolves with time. Similarly, the evolution of higher
harmonics is a representation of how quickly energy is dissipated among various modes.
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Figure 3.3: A run corresponding to Run I of Manfredi [7], who had shown the oscilla-
tions to continue till t = 1600. We extended the run till t = 5000. The vertical grey
line indicates the duration of Manfredi’s simulations. Notice the continuation of the
oscillations.

This has been thoroughly benchmarked in the appendix. (The vertical grey line indicates
the duration of Manfredi’s simulations.)

In the phase-space, a vortex structure is created by particle dynamics during nonlinear
evolution. The resonant region is the region in phase-space where phase velocity vφ
matches with the particle velocity facilitating resonant exchange of energy between the
wave and the particles leading to trapping-detrapping dynamics. Therefore, we look for
the vortex in the distribution function f around the phase velocity vφ = ω/k obtained
by solving Eqns.(3.6) and (3.7) (around which particles exchange energy with the wave).
In this case, the analytical value of ω = 1.28506 for k = 0.4, and hence vφ = ω/k =
1.28506/0.4 ≈ 3.21. The plot for phase-space vortex is a frame moving with velocity
v = 3.21, shown in Fig.3.4(a) at time t = 5000.

One can see from this figure that there is a phase-space vortex in the distribution
function. This, and the figure for E1, implies that there is a prominent potential well
formed, and particles keep getting trapped and detrapped to sustain the steady-state
potential well. We can see that this process continues till t = 5000, far beyond Manfredi’s
run of t = 1600, demonstrating clearly that such trapping oscillations are sustained
for long-time. We now would like to check the velocity distribution function f̂(v) for
non-monotonicity generated by nonlinear Landau damping, at t = 5000. The velocity
distribution function is given by:

f̂(v, t) =

∫ L
0
f(x, v, t)dx∫ vmax

−vmax

∫ L
0
f(x, v, t)dxdv

. (3.9)

In 3.4(b), we show the resultant nonmonotonous steady-state velocity distribution func-
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(a) Plot of distribution function f(x, v) (b) Plot of log10 f̂(v).

Figure 3.4: For q=1, at t = 5000, the phase-space vortex can be seen around at v = 3.21.

tion. Existence of phase-space vortex in the frame moving with the phase velocity
vφ = ±3.21 is clearly demonstrated. We can also infer that the non-monotonicity of

log10 f̂(v) plot can be used to assess the final form of a steady-state travelling wave
solution.

In the original work, BGK solutions are constructed by “arranging” number of parti-
cles trapped (and untrapped) in potential-energy troughs (and crests), leading to vortices
in phase-space and nonmonotonicity in f(v)[5]. In our simulations, we observe phase-
space vortex structures and its sustenance throughout the time of the simulation. More-
over, this BGK-like structure moves with a constant velocity which accurately matches
with the phase-velocity analytically obtained. We, hereon, refer to such solutions as
‘BGK structures,’ which we believe, based on the above said arguments, are close to
analytically constructed steady BGK modes.

We study the numerical entropy for q = 1. The numerical entropy S(t) is computed
by:

S(t) =

∫ L

0

∫ +vmax

−vmax

f(x, v, t) log f(x, v, t) dv dx (3.10)

We plot relative entropy, defined as Srel = (S(t) − S(0))/S(0), with time. This can be
seen in Fig.3.5.

Because of the numerical scheme, the entropy monotonically increases with time. The
numerical entropy is a measure of the information “lost” from the simulation. As is well
known, the evolving distribution function exhibits filamentation which generates a small-
scale structure in phase-space. The numerical entropy saturates when the small-scale
structures generated are dissipated when this filamentation reaches the gridsize[29], ren-
dering a numerical steady-state. (Nevertheless, the growth of entropy is small, signifying
that the information loss is small). Obviously, one can see that the entropy has saturated
at around t = 1500. It has been shown in the past that such dissipation of small-scale
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Figure 3.5: Plot of relative entropy Srel with time. The vertical line represents the
duration of Manfredi’s simulation.

structures do not affect the large-scale solution obtained[29, 7]. Also, one can notice
that the numerical entropy saturates nearly at the same time the value of E1 reaches
steady-state. Saturation of this numerical entropy in time may be used as a diagnosis to
determine the numerical steady-state of the solution in the nonlinear phase.

To summarize q = 1 results, we observe that the electric field E1 initially undergoes
few oscillations and then settles to oscillate around a non-zero value. On inspection of
the phase-space, we find that phase-space vortex which leads to nonmonotonicity in the
velocity distribution function. Also, we find that the phase-space vortex moves with a
constant velocity for the entire simulation. Also, the numerical entropy (which we use as
a measure of whether the system has attained a numerical steady-state) saturates at a
constant value. Thus, we can infer that this non-zero electric field structure, in a neutral
Vlasov plasma, moving with a constant phase velocity, is a BGK-like solution which we
call a ‘BGK structure.’

One can find the complete benchmark process, including other diagnostics, for nonlin-
ear Landau damping for Maxwellians in Sec. B.3. Now that we have observed nonlinear
Landau damping on q = 1 distribution leading to BGK structure, and reproduced Man-
fredi’s results in the process [7], we wish to study the long-time fate of similar perturbation
on q 6= 1 distributions. For this purpose, we perform runs for two different sets of q values:

3.2.2 Case q < 1

In case of q < 1, the distribution functions, as compared to the Maxwellian, exhibit a
lower peak and a longer tail. Therefore, we choose the following parameters in the solver
to accommodate for these changes.

We give runs for 0.5 ≤ q < 1 varied in steps of 0.05, and will be referred to as ‘Set
I.’ For Set I, we choose vmax = 12.5, Nv = 8000, Nx = 512, and keep rest of the initial
conditions same as Manfredi’s. For these runs, the recurrence time TR ∼ 5026 and, thus,
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we choose to run the simulation till t = 2000. Also, it is important to note that, for any
q-distribution in this set, we observe that the phase velocity vφ = ω/k lies well within
the bulk of the distribution, far from vmax.

Now, similar to the case for q = 1, we wish to see the evolution of E1 with time. The
graphs obtained for E1 are plotted in Fig.3.6. We have not shown graphs for q < 0.80
because, for q ≤ 0.80, E1 damps and stays damped. Furthermore, with decreasing value
of q, the value of |γ| increases and, hence, the time in which the system damps decreases.
Hence, the lesser the value of q, the faster it damps. Also, the behaviour shown by the
system is maintained even when the simulation is extended to run till t = 3000.

We can see that the oscillations cease to exist somewhere in the interval q ∈ [0.80, 0.85].
We ran the code for an intermediate value of q = 0.825. We observe that for this case
too the oscillations in E1 arise, albeit at later time. We, in fact, observe this trend in
those values of q for which BGK structure arises, that as q decreases, and |γ| increases,
the time taken for the oscillations to arise increases.

Now again, we wish to see the plots for relative entropy with time Srel. In this case,
entropy S(t) is defined as[15]:

Sq(t) =

∫ L

0

∫ +vmax

−vmax

f(x, v, t)

(
1− f(x, v, t)q−1

q − 1

)
dv dx. (3.11)

which is the same as q-nonextensive entropy. Note that for the limit q = 1, Eq. (3.11)
reduces to Eq. (3.10). The plots for relative entropy for Set I can be seen in Fig.3.7. For
the cases where BGK structures are found, the entropy curves are similar to the curve
for q = 1. Also, one can notice that smaller the value of q, the later the entropy seems
to grow and stabilize. Also, we extended the simulation till t = 3000 in order to confirm
the formation of a steady-state solution. From the figures for E1, we conclude that the
long-time solution is indeed a BGK structure for 0.85 ≤ q ≤ 0.95.

Also, for q ≤ 0.80, the curves for entropy (not shown) have a different shape, and
do not saturate at a fixed value. The phase-space plots of the distribution functions,
in the vicinity of vφ, also does not reveal any vortices. For this reason, we believe that
within t = 3000, cases q ≤ 0.8 do not lead to phase-space vortices and consequently do
not exhibit BGK-like solutions. (In order to verify that the monotonic damping for case
q = 0.8 is not a numerical phenomenon, we ran the same code with higher resolution in
x and v, with Nx = 2048, Nv = 16000 and vmax = 25, keeping rest of the parameters the
same. For this run too, the oscillations damp quickly and stay damped. Thus, the lack
of formation of a BGK structure is not simply a numerical phenomenon.)

For the case of q = 0.85 (which is close to the value of q for which BGK structures
do not form), we wish to see the structure of the distribution function. For q = 0.85, the
analytic value of ω = 1.31135 for k = 0.4 and, hence, vφ = ω/k ∼ 3.28. Thus, we plot
the distribution function around vφ. The plot can be seen in Fig.3.8. Even though, for
q = 0.85, a phase-space vortex is formed in the vicinity of v = vφ. This structure is better
formed for q = 0.9, for which the amplitude of E1 is greater than that of q = 0.85 and
thus looks ‘weak’ in the figure, which is similar to the result obtained by Valentini[20].
We can also see that this structure has sustained till t = 3000. Thus, from E1, Srel and
the phase-space vortex, we can conclude that the solution is a BGK structure.
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(a) q = 0.95 (b) q = 0.90

(c) q = 0.85 (d) q = 0.80

Figure 3.6: Plots for the amplitude of the first harmonic of the electric field E1 with time
for Set I. One can notice that the oscillatory structures are not found for q ≤ 0.80. Also,
as damping rate increases, one can notice that the amplitude of oscillations decreases.
This is similar to the result obtained by Valentini[20]. The vertical line represents the
time of Valentini’s simulations.

23



Figure 3.7: Plot of relative entropy Srel with time for q < 1 till t = 3000. The vertical
line represents the time up to which Valentini’s simulations were performed.

Figure 3.8: Plot of distribution function for the run with q = 0.85, around vφ = 3.28, at
t = 3000.
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Furthermore, in terms of the independent parameters in the simulation, for k =
0.4, α = 0.05, the value of q ∼ 0.8 seems to be the critical q at which the transition of
behavior from completely damped to formation of BGK mode occurs. Therefore, one can
say that the window for sustaining BGK modes in q < 1 is restricted by the damping
rate |γ| which increases for decreasing q. Thus, below the critical q, the electric field is
damped away before a potential well for trapping is formed.

Now, we move on to the next set of runs corresponding to q > 1.

3.2.3 Case q > 1

We can notice from the velocity distribution function Eq. (3.3) that for q > 1, the
distribution function exhibits higher peak and a shorter tail. Also, it exhibits a velocity
cutoff at vcutoff =

√
2/(q − 1), beyond which the function becomes unphysical.

Again, similar to Set I, we give runs for 1 < q ≤ 1.15 in steps of 0.05, and refer to
this set of runs as ‘Set II.’ For the Set II, we choose vmax = vcutoff and keep grid sizes
and rest of the initial conditions the same. The minimum value for the recurrence time
TR ∼ 9934 (as a result of smaller vmax).

In this case, the periodic boundary conditions (PBCs) set on the v-domain may affect
the simulations if the resonant region is close to the boundaries. Therefore, we consider
only those cases for which the resonant region is sufficiently far away from the boundaries.
Hence, as mentioned earlier, we don’t consider cases q ≥ 1.2, as vcutoff . vφ for increasing
q > 1. Clearly, one can increase the value of k, so as to make the value of vφ = ω/k
lie within the ‘bulk’ of the distribution function. However, as we have observed that
increasing k leads to an increase in γ and, therefore, the advantage of having vφ more
distant from vcutoff is overshadowed by the field being damped rapidly (Fig.3.2). We shall
come back to this point soon.

For the cases 1.05 ≤ q ≤ 1.15, we now wish to see the evolution of E1 with time.
These can be seen in the Fig.3.9. One can notice that the oscillations continue at a non-
zero amplitude, similar to q = 1. Next, we now check Srel(t) to see whether filamentation
affects the long-time solutions. This can be seen in Fig.3.10. The shape of entropy
curves are different from the earlier cases, which may be because of higher resolution in
v domain. One can see that the entropy has not saturated within t = 1200. However,
it can be clearly seen, for 1.05 ≤ q ≤ 1.15, that the relative entropy curves settles to
steady-state at a higher value than the other q values, within t = 3000.

For q = 1.15, we wish to see the distribution function at around v = vφ. In this
case, the analytically obtained ω = 1.22917 and, hence, vφ ∼ 3.07. Thus, we plot the
distribution function around vφ at t ∼ 2000. This can be seen in Fig.3.11. In this case
too we can see the phase-space vortex clearly and see the corresponding value for E1,
which resembles the case for q = 0.95 and q = 1. Thus, this long-time state is also a
BGK structure solution.

However, for higher q-values, the decrease in vφ is offset by a competing higher k
damping. To keep vφ � vcutoff , k has to be increased. For this purpose, we perturb with a
higher value of k, initialized with q = 1.30 distribution. We keep α and the grid sizes same

25



(a) q = 1.05 (b) q = 1.10

(c) q = 1.15

Figure 3.9: Plots for the amplitude of the first harmonic of the electric field E1 with time.
The vertical line represents the time of Valentini’s simulations. As we can see, the field
has not saturated within this time.
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Figure 3.10: Plot of relative entropy Srel with time for 1.05 ≤ q ≤ 1.15. It can be seen
that the entropy saturates within t = 3000. The vertical line represents the time up to
which Valentini’s simulations were performed.

Figure 3.11: Plot of distribution function for the run with q = 1.15, around vφ = 3.07, at
t = 3000.
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as in the earlier cases. Increasing k causes the value of vφ to decrease. We perturb with
k = 0.7, 1.2, which corresponds to vφ ∼ 2.29, 2.07 respectively, both under vcutoff ∼ 2.58.
On perturbing with k = 0.7, we see oscillations in E1 (implying a BGK mode solution)
and perturbing with k = 1.2, we see that E1 gets damped quickly and stays damped. This
occurs because, with increasing k, keeping α constant, as mentioned earlier, the absolute
value of γ increases (Fig.3.2), which renders difficult the formation of BGK structures.
For Maxwellian plasma, this effect has been observed in the past[29]. Therefore, we may
reasonably expect such a transition for any q-distribution which shows BGK structures
for some value of α, k. This phenomenon was not considered by Valentini, who states
that trapping for q > 1 is extremely efficient[20]. We, however, find that the efficiency
of trapping decreases with increasing k, eventually leading to monotonic damping at a
critical k.

As discussed before, the change in behaviour from trapping to monotonic damping is
also known to occur for Maxwellian (q = 1). In order to check, we gave runs for q = 1
with k = 0.4−1.2, with the same α, till t = 2000. We found that the critical value of k lies
between 0.49 and 0.5, between which the behaviour changes from BGK mode formation
to exponential damping. For q = 1, for this critical value of k, for α = 0.05, we find
that γτ ∼ 0.67. As pointed out empirically by Manfredi, the index γτ plays a critical
role in determining the long-time behaviour of the system. For an initial Maxwellian,
it has been previously reported by Manfredi that, there seems to be a critical value of
γτ ∼ 0.5 around which the behaviour of a system changes[7]. However, Ivanov, Cairns
and Robinson have reported a critical γτ ∼ 1 for such a change[10].

Valentini has subsequently studied the dependence of critical value of τ on q for
q-distributions.[20]. To understand the effect of perturbation amplitude better, we con-
sidered the limiting case of q = 0.8, for which BGK structures were not found. On
increasing the value of α from 0.05 to 0.1, we find BGK structures start to form again.
It is reasonable to expect that the resurgence of formation of BGK structures occurs for
any value of q. Furthermore, for another value of k = 0.5, we have studied the variation
in the value of γτ for different values of q in the linear phase of Landau damping. We
observe that for q ≤ 0.9, γτ > 1. Since we have already seen that k = 0.5, q = 1 rep-
resents a critical value of the change in behaviour and that the damping rate increases
with decreasing q, we can reasonably conclude that trapping is not observed for those
q-values for which γτ > 1. It is also reasonable to generalize that damping at k values
higher than a critical value occurs for any q-distribution. Especially for q-distributions
with q > 1, these phenomena severely restrict the window in α, k within which one can
observe BGK modes.

Now, we wish to compare the results obtained from the runs corresponding to 0.85 ≤
q ≤ 1.15, for which a BGK mode solutions are formed. To do so, we construct a semi-log
plot for the velocity distribution function f̂(v) to see where the phase-space vortex is. This
can be seen in Fig.3.12. For these values of q, from Fig.3.12, one can notice that distinct
non-monotonicity is observed the vicinity of v = ±vφ. Also, for the case of q = 0.85,
for which the field E1 is weak, we can see that this structure looks rather diminished.
Also, this nonmonotonicity becomes more prominent and visible with increasing q. Thus,
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Figure 3.12: Plot of velocity distribution function log10 f̂(v) at t = 2000 comparing cases
with 0.85 ≤ q ≤ 1.15.

one can say that BGK structures, for a given perturbation, can occur beyond the critical
value of q as long as vcutoff is greater than and sufficiently far away from vφ. Also, as q
increases higher damping rate at larger k values severely limits the window in q for the
formation of steady-state BGK structures.
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Chapter 4

Summary

The work done in development of the solver can be summarized as follows:

1. We developed and benchmarked a Vlasov-Poisson solver based on the piecewise-
parabolic method(PPM) advection solver. The comprehensive benchmark of the
individual components and the assembled solver itself can be found in the appen-
dices.

2. We developed an analytical solver which solves for the angular frequency ω and
damping rate γ from the numerical solution of the Vlasov-Maxwell system. We
find that the solution obtained from this solver independently agreed with the
solution obtained from the numerical solver. This is the key benchmark that gives
us confidence on the accuracy of the solver.

3. We performed long-time simulations of known results of nonlinear Landau damping,
i.e. Manfredi’s and Valentini’s simulations. We find that our solver is in very close
agreement with the results previously obtained by them. This conclusively showed
that our solver is robust for long-time simulations.

Using this solver, we study nonlinear Landau damping, for times up to t = 3000ω−1
p

on q-nonextensive velocity distributions for a window around q = 1. The results of the
simulation can be summarized in the following points:

1. For a given perturbation amplitude α and perturbation wavenumber k, we demon-
strate existence of a window in q where BGK structures are shown to sustain for
very long times. For example, for k = 0.4, α = 0.05, there is a window around q = 1
for which we can see BGK structures. As q decreases below q = 1, the electric field
damps quicker. After a critical value of q, damping renders the existence of BGK
structures difficult and, hence, the electric field is found to monotonically damp
away. Therefore, for q < 1, the formation of BGK modes is limited by the increas-
ing damping rate γ with decreasing q and, in the process, confirmed Valentini’s
observation up to t = 3000ω−1

p .
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2. As q increases beyond q = 1, the perturbation causes the phase velocity to come
closer to the velocity cutoff of the q > 1 distribution. Because of this, there exists
an upper limit on q below which we find BGK structures. Beyond this limit, the
perturbation does not cause Landau damping (hence rendering such a situation
unphysical). To remedy this, we increased the value of k, which causes the phase
velocity to lie within the bulk of the distribution. But this also causes the damping
rate to increase and, thus, a critical value of k exists beyond which BGK structures
cannot be found. Thus, in the q > 1 domain, whenever nonlinear Landau damping
occurs, the formation of BGK structures is limited by an upper limit on k. This
had not been observed previously and leads to a severe restriction on the window
for q > 1 within which trapping occurs.

3. We have shown, using high-resolution Vlasov-Poisson solver for long-times up to
t = 3000ω−1

p that the formation of BGK structures seems to depend critically
on the independent parameters q, k, α. Additionally, there also seems to exist a
lower limit to the perturbation amplitude α below which BGK-structures are not
observed. Further, such a limit seems to exist independently for any q-distribution
with arbitrary initial k. Also, the parameter γτ , which reflects changes in both α
and k, seems to play an important role in determining the behaviour of nonlinear
Landau damping.

4.1 Publication

Our work has been published published in Physics of Plasmas [33]. Also, it has been
presented at International Conference On Complex Processes In Plasmas And Nonlinear
Dynamical Systems (ICCPPNDS-2012) held at Institute for Plasma Research (IPR),
Gandhinagar, India.

4.2 Future Work

We list the future work with our solver:

• Colella and Sekora have published a paper on a 6th order approximation to correct
for the first order error at extrema[34]. We wish to implement this correction, as
it only applies at the extrema. Therefore, it may not alter the performance of the
code.

• GPU Parallelization of the algorithm, so as to speed up the solver. In this pro-
cess, we may replace the Poisson solver with an algorithm to solve for the Am-
pere/Maxwell equation[35], so as to ease parallelization.

• Addition the ion component to the solver, in order to solve for phenomena in which
ion interaction becomes significant.
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• Study of ion-acoustic turbulence[36] and anomalous resistivity[37, 38, 39, 40] for 1D
plasmas. The study of anomalous resistivity is important as it may be an indicator
of magnetic reconnection[41] in plasmas.

• Study of formation of jets in collisionless 1D relativistic and non-relativistic plasmas[42].
This will require only minor modifications to the present solver. However, high ve-
locity jets can be formed out of plasmas with relatively low temperatures. Therefore,
we need a high resolution for this purpose which warrants parallelization of the code
before attempting this problem.

• Study of sheath formation around conducting walls using kinetic simulations[43,
44, 45]. This problem is special in the sense that one of the walls has to be made
conducting. So, instead of the finite-volume-method like simulation used in this
work, we have to modify the solver to represent the complete system in the x-
domain. We also need to be able to account for different boundary conditions as
per the need.

• Modification of the solver so as to be able to account for sources and sinks. This
would help in studying Berk-Breizman phenomenology[47].

• Study of trapping of particles in the BGK mode corresponding to the Bump-on-Tail
instability[46] for different initial distributions.

• Furthering the study of nonlinear Landau damping for different types of initial
perturbations.

4.3 Software

All the codes were written in FORTRAN90. For Fourier transforms required to solve the
Poisson equation, FFTW 3.2 is used[48]. All the graphs were plotted in Python 2.7.3,
using IPython 0.12.1[49] running Matplotlib 1.1.0[50]. The python packages used
were bundled in the Enthought Python Suite (ver. 7.3-1) running under an academic
license.
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[41] J. Büchner, Space Science Reviews 124, 345 (2006).

[42] N. J. Sircombe, T. D. Arber, and R. O. Dendy, Physics of Plasmas 12, 012303
(2005).

[43] Monojoy Goswami and H. Ramachandran, Physics of Plasmas 6, 4522 (1999).

[44] Magdi Shoucri, Japanese Journal of Applied Physics 46, 5A 3045, (2007).

[45] M. Shoucri, H. Gerhauser, and K. H. Finken, Physics of Plasmas 16, 103506 (2009)

[46] N. J. Balmforth, Communications in Nonlinear Science and Numerical Simulation
17, 1989 (2012)

[47] R. G. L. Vann, R. O. Dendy, G. Rowlands, T. D. Arber, and N. d’Ambrumenil,
Physics of Plasmas 10, 623 (2003).

[48] M. Frigo and S. G. Johnson, Proceedings of the IEEE 93, 216 (2005), Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[49] F. Prez, B. E. Granger, Computing in Science and Engineering, 9(3), 21 (2007)

[50] J. D. Hunter, Computing in Science and Engineering, 9(3), 90 (2007)

35



Appendix A

Benchmarking the PPM Advection
Solver and Fourier Transform based
Poisson Solver

We need to benchmark the components of the Vlasov-Poisson solver in order to charac-
terize their accuracy and limitations. This might help understand the behaviour of the
Vlasov-Poisson solver later. For these benchmarks, we choose L = 2π, N = 1000, and
therefore ∆x = 2π

1000
. We apply periodic boundary conditions on the function such that

aN+l = al.

A.1 PPM Advection Solver

For the purposes of the benchmark, we have chosen u = 0.1, and then ∆t is decided by
the CFL condition. We perform advection for the following three cases:

1. Propagation of a periodic sine wave, to study the accuracy of the advection. For
this case, we set the CFL number k = 0.99 and k = 1 in order to establish a pattern
to the propagation of errors..

2. A sharp Gaussian, because this would correspond to the physical cases that we
would study later.

3. A square wave, to demonstrate the discontinuity detection algorithm.

Initially, all of the three benchmarks are performed for two CFL numbers k = 0.99 and
k = 1. For these values, we study the dependence of the growth of error on the number of
advections n. Then, for the first benchmark, we perform a sweep from k = −1 to k = 1
in order to study the variation of error with k. The timestep is chosen by the rule:

∆t = k
dx

u
(A.1)
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(a) Plot of Waveform (b) Plot of Error in Waveform

Figure A.1: Plots (k = 0.99) of the Waveform at the beginning and the end of the
advection, and plot of the error in the Waveform at the end of the simulation.

where k is the CFL number. We give runs of up to timesteps n = 400000. Furthermore,
it would be interesting to see the results for k = 1, as it represents the special case when
advection in time of ∆t is equivalent to setting a(x, t+ ∆t)← a(x−∆x, t).

A.1.1 Initial Sine Wave

The initial wave profile is:

a(x, 0) = sinx, 0 ≤ x < 2π (A.2)

We calculate the error by:

δa(x, n) = |a(x, n∆t)− sin (x− un∆t)| (A.3)

where a(x, n∆t) represents the advected waveform after the nth timestep. The plots
for k = 0.99 are shown in figure (A.1). One can see from the figure (a) how there is no
noticeable difference between the initial and the final waveform. They overlap because the
value of u∆t is a multiple of N∆x. Also, one can notice from (b) that the error is indeed
first order O(∆x) near the extrema and the error falls off away from the extrema. Now,
for the special case of k = 1 where advection of one time-step is equivalent to shifting
one grid-point to the right, we have the plots in figure (A.2). One can see from (a) how,
again there is no noticeable difference in the initial and final waveforms. Also, one can
see how, for this special case, the order of error is very low (O(10−13))as compared to
k < 1. This is the direct consequence of the advection being equivalent to a shift in one
gridstep.
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(a) Plot of Waveform (b) Plot of Error in Waveform

Figure A.2: Plots (k = 1) of the Waveform at the beginning and the end of the advection,
and plot of the error in the Waveform at the end of the simulation

(a) Growth in error with n for k = 0.99 (b) Growth in error with n for k = 1

Figure A.3: Plots for the maximum error, max (δa(x, n)), defined by (A.3), plotted vs. n
for k = 0.99 and k = 1, up to n = 400000
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Figure A.4: Plot, for k ∈ [−1, 1], of the error for initial sine wave, at the end of the
advection at n = 400001.

It would be interesting to see for both values of k here, how the error grows with
progress in time. The plots for those are in figure (A.3). One can see how, for k = 0.99
the error keeps increasing, but stays within the order of O(∆x), and how for k = 1, the
error remains in the order of 10−13, and doesn’t grow past that order.

Also, it would be interesting to see how the error depends on the value of the CFL
number. For this, we apply advection for n = 400000 timesteps, and check the error in
a(x, t400001). We vary the CFL number in the interval [−1, 1], and plot the error thus
obtained. Negative CFL numbers represent a negative value for the advection velocity.
The reason for benchmarking with negative CFL numbers is that the PPM advection
solver applies slightly different expressions for advection for negative and positive values
of advection velocities.

One can see from the plot (Fig. A.4) that error is virtually zero for k = −1, 0, 1,
which is ascribed to the reason mentioned earlier. Also, it can be noticed that the error is
symmetric around the y− axis, and also, the errors for positive k are symmetric around
k = 0.5, and the negative k around k = −0.5. Also, the errors peak at k = ±0.5,
irrespective of the actual time n∆t of advection.

One can, in general, notice that the errors seem to be more dependent on k than on
the actual advection time n∆t. The errors are symmetric around k = ±0.5, since the
advection of |δx| in the positive direction is equivalent to advection of |∆x − δx| in the
negative direction from the next gridpoint. Also, there are maxima in error at k = ±0.5,
since it is the maximum one can advect in one direction without it becoming equivalent
to negative advection from the next gridpoint in the opposite direction.

A.1.2 Initial Gaussian Profile

We initialize with the profile:
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(a) Plot of Waveform, k = 0.99 (b) Plot of Waveform, k = 1

Figure A.5: Plots of the Waveform at the beginning and the end of the advection for
k = 0.99 and k = 1, for initialized Gaussian.

a(x, 0) = exp

(
−1

2

(x− π)2

0.1

)
, 0 ≤ x < 2π (A.4)

As we have already performed a comparison for the error in a periodic initial condition,
we now choose an initial condition that somewhat pertains to waveforms that we may
have to deal with, in physical situations. It is for this purpose, that this (unnormalized)
Gaussian was chosen. The plots for the initial and final advected waveforms, both values
of k, can be found in figure (A.5).

One can see that these plots are, similar to the previous case, not noticeably different.
Thus, we can see that the algorithm has no difficulty handling an analytically non-periodic
waveform, upon which periodic boundary conditions have been imposed.

A.1.3 Initial Square Wave Profile

The initial waveform is:

a(x, 0) =

{
1 π/2 ≤ x ≤ 3π/4
0 otherwise

(A.5)

We have initialized this to check the efficacy of the discontinuity detection algorithm. This
is because pure advection preserves the waveform in its exact shape. However, numerical
methods inadvertently introduce a dissipation. We wish to see how the discontinuity
detection algorithm accounts for the dissipation. To characterize this, the values of the
tolerances are kept the same as that of Colella-Woodward[24]:

η(1) = 20, η(2) = 0.05, ε = 0.01 (A.6)
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(a) Plot of Waveform, k = 0.99 (b) Plot of Waveform, k = 1

Figure A.6: Plots of the Waveform at the beginning and the end of the advection for
k = 0.99 and k = 1, for an initial Square Wave.

The plots of the initial and advected waveform are in figure (A.6). In case of k = 1,
there is virtually no change in the wavefunction, and the advection is near perfect. In
case of k = 0.99, however, there is a minor decay at the discontinuities and that error (as
compared to the initial waveform), is plotted in figure (A.7).

A.2 Fourier Transform based Solution for the Pois-

son Equation

We perform the following benchmarks:

1. A periodic sine function with both the mentioned methods, to check the accuracy
of both the methods.

2. A sharply peaked Gaussian with a flat tail, in order to demonstrate the accuracy
when the function displays periodic boundary conditions, despite the analytical
function used to generate the function not being periodic.

The size of the grid and rest of the tunable parameters are same as that in the previous
subsection.

A.2.1 Initial Sine Profile

The initial profile chosen is:

ρ(x) = cos x, 0 ≤ x < 2π (A.7)
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Figure A.7: Plot (for k=0.99) of the error for initial square wave, at the end of the
advection n = 400000.

and the error is calculated by the expression:

δE(x) = |E(x)− sinx| (A.8)

The plot for the solutions, by both Methods I(2.15) and II(2.16), are plotted in figure
(A.8). Therefore, we plot the errors for both the methods (figure (A.9)). One can see
that the error in Method I is much lesser than that of Method II. This is to be expected as
the former is derived analytically, and the latter is derived by discrete Fourier transform
on divided differences, prone to error.

A.2.2 Initial Gaussian Profile

We initialize the profile:

ρ(x) = exp

(
−1

2

(x− π)2

0.1

)
, 0 ≤ x < 2π (A.9)

The plots of the solutions by both the methods and the analytical solution can be found
in figure (A.10). One can see that one cannot discern any difference in the three plots.
Therefore, we plot the error (figure (A.11)). One can see a similar result as to the previous
case. Also, we have shown that the algorithm can handle analytically non periodic
functions as long as periodic boundary conditions are imposed under some limits (in this
case we chose to apply them at x = 0, 2π as the tail was sufficiently flat enough). It would
also be interesting to study the dependence of the error in E(x) on position x, which we
see from the figures A.9 and A.11.

Now, since both the components have been benchmarked, we proceed to assemble the
solver for the Vlasov-Poisson system.
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Figure A.8: Plots of the analytic and obtained solutions for the Poisson equation. One
can not discern any difference between the analytical and the computational solution.

(a) Error for Method I (b) Error for Method II

Figure A.9: Plots of error in the electric field, δE(x), for Methods I and II, for a cosine
charge density profile.
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Figure A.10: Plots of the analytic and obtained solutions for the Gaussian equation.
Again, one can not discern any difference between the analytical and the computational
solution.

(a) Error for Method I (b) Error for Method II

Figure A.11: Plots of error in the electric field, δE(x), for Methods I and II, for the
derivative of the Gaussian set as the initial charge density.
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Appendix B

Benchmarking the Vlasov-Poisson
Solver

In this appendix, we benchmark the Vlasov-Poisson solver it to study its features and
limitations. We fix a few conditions for the sake of the uniformity of results. We have
applied periodic boundary conditions on both spatial and velocity domains. Periodic
boundary condition(PBC) on velocity domain may not be physical, however, accounting
for the size of the distribution function, and setting the velocity domain limits in such a
way that the velocity distribution function has a flat tail as it approaches the boundaries,
mitigates any unphysical effect on the distribution function caused by the PBCs [26].
The spatial domain is defined as 0 < x < L and the velocity domain is defined as
−vemax < v < vemax, where e superscript denotes the electron velocity. L is usually defined
as L = 2π/k (unless specified), where k is the value of the perturbed mode. vemax varies
as per the benchmark test, because it is defined depending on the velocity distribution
function used. Also, for the purpose of the benchmark, which relies on previously obtained
results, we disable the discontinuity detection algorithm from the PPM module of the
program. Unless otherwise mentioned, we use the regular timestep algorithm.

B.1 Linear Landau Damping

For collisonless plasmas, where damping by collisions is negligible, a damping (or accel-
eration) phenomenon called linear landau damping is observed. Theoretically, this phe-
nomenon is observed by choosing a correct contour for the integration of the dispersion
relation[2]. This is necessary, because one must account for a singularity that otherwise
lies off the path of integration. This was first correctly done by Landau[1]. Physically,
the particles of the plasma that travel at nearly the phase velocity of the plasma wave
do not see a time-dependent value of the electric field and hence can exchange energy
with the wave. Thus, damping happens because a fraction of the particles that are going
slightly faster than the phase velocity of the plasma wave slow down by giving energy to
the wave. Similarly those that are slightly slower than the wave gain energy from the
wave and accelerate (in which case the phenomenon is called Landau acceleration)[2].
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We set a system with a small perturbation over the equilibrium Maxwellian. Now, we
aim to study this by numerical solution of the system. This serves as a useful benchmark
because such a system is also analytical solvable under the linear limit. Thus, one can
compare the numerical results with the analytical ones. Following Vann-Arber[22], we
set the initial distribution function to be:

f(x, v, 0) = (1 + α cos (kx)) exp(−v2/2)/
√

2π (B.1)

where α and k are the tunable parameters. The parameters chosen are:

vemax = 4.5, α = 0.01, k = 0.5 (B.2)

We vary the gridsize, in x, between Nx = 32 and Nx = 512, and in v, between Nv = 32 to
Nv = 512, both in multiples of 2. This is done so as to establish a pattern in the errors
of the linear landau damping rate γ, and the energy E and momentum p, with gridsize.

B.1.1 Benchmark for the damping rate γ

The rate of linear landau damping γ is calculated by the following procedure:

1. We calculate the amplitude of the fundamental harmonic of the electric field |E1|,
by Fourier transform of the electric field E(x, t) (the obtained values have to be
normalized by Nx/

√
2π. We have not done so for these tests as we want to compare

the slopes of the logarithm of |E1| only. A multiplicative constant only displaces
the curve in the y−axis, and does not affect the slope of the curve. Also from here
on, any reference to the harmonics of the electric field refer to the modulus of its
value, unless specified.)

2. We plot the natural logarithm of |E1| with time.

3. We fit a straight line through the the maxima of the plot, using the linear least
squares fit. Now, we know that linear landau damping is only valid till the bounce
time τb = 2π(α)−1/2 of trapped electrons[21, 22]. α in (B.2), is the strength of
perturbation. Here, for α = 0.01, τb ∼ 62.8. Also, for a small perturbation,
such as our initial condition, the damping phenomenon will show recurrence at
time TR = 2π/k∆v. TR is referred to as the “Recurrence time.“ Thus, we choose
maxima till time TR/2 (for Nv = 32) and till t ∼ 44.7 (which is TR/2 for Nv = 64,
and would provide a common yardstick to test the accuracy for Nv ≥ 64. Also, it
should be noted that for Nx = 32, τb > TR and, for Nx = 64, τb > TR/2.)

4. The slope of the fit straight line is the value of γ. The theoretical calculated value of
γ is −0.153359[22], for the parameters used, against which we compare its accuracy.
Also, one should note that the theoretical value of γ is only valid for late time[22],
so the errors calculated are merely deviations.
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(a) Fit of a straight line through the maxima of log |E1|. (b) Example of Recurrence. Here recurrence is at TR ∼
89.36.

Figure B.1: Examples of straight line fit and recurrence on a 32 × 64 grid, for linear
landau damping. A vertical line has been drawn at t = TR in (b) to show the recurrence
time. One can also notice that the system is about to recur again at about the end of
the simulation.

↓ Nv, Nx → 32 64 128 256 512 γ,Nx = 512
32 3.39 3.39 3.34 3.48 3.41 -0.15858331
64 5.49 6.56 6.79 6.88 6.88 -0.16391231
128 0.65 0.83 0.86 0.86 0.86 -0.15467647
256 0.03 0.22 0.24 0.25 0.25 -0.15373746
512 0.06 0.18 0.25 0.25 0.25 -0.15373604

γ,Nv = 512 -0.15344989 -0.15363378 -0.15374081 -0.15374608 -0.15373604 γ

Table B.1: Table of absolute percentage error in γ against theoretical γ = −0.153359.
The values of γ obtained for the gridsizes Nx = 512, and Nv = 512 have been shown as
a reference.
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(a) Plot of percentage energy relative to initial value. (b) Plot of momentum p.

Figure B.2: Plots for percent relative energy and momentum, for a 32× 32 grid.

As an example of the fit and recurrence, one can refer to figure (B.1). This looks similar
to Fig. 1 of Vann-Arber[22]. The absolute percentage errors for for the gridsizes are
in table (B.1). One can see that increasing the dimensions has a limited effect on the
accuracy. However, since these errors are deviations, we can say that as the gridsize
increases there is some convergence of the error value to ∼ 0.25. This means that beyond
a certain gridsize, accuracy doesn’t increase appreciably. Also, the percentage errors for
Nv = 32 and Nv = 64 have a marked difference because of the number of points used for
the fit (as decided earlier). Furthermore, one can see that increasing Nv > 64 decreases
the error. However, increasing Nx doesn’t seem to have any significant effect on the error.
This demonstrates that Landau damping is indeed a velocity-space dependent, or in other
words, a kinetic phenomenon.

B.1.2 Test for conservation properties of the solver.

Now, we compare the energy and momentum conservation properties for various gridsizes.
For a 32 × 32 grid, we can see the energy and momentum plots in figure (B.2). Percent
relative energy is defined as:

E%,rel =
Etotal(t)− Etotal(0)

Etotal(0)
× 100% (B.3)

where Etotal is computed as:

Etotal(t) = T (t) + V (t), T (t) =

∫ ∫
dxdv v2f(x, v, t), V (t) =

∫
dx (E(x, t))2 (B.4)

The actual total energy, at any given, is the half of Etotal(t). However, E%,rel remains
same irrespective of the factor of half.
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(a) Plot of percentage energy relative to initial value. (b) Plot of momentum.

Figure B.3: Plots for percent relative energy and momentum, for varying gridsize.

One can see that energy remains conserved to 0.01% of the the initial value, and
momentum fluctuates in the order of 10−12, which is very close to zero as expected.
It would be interesting to see how these values scale with the gridsize. So, we plot
the logarithm of the corresponding values of the relative energy and absolute value of
momentum. (Natural logarithm has been taken on relative energy and base 10 logarithm
has been taken on momentum. This is because, in case of momentum, we wish to see
how close to machine precision, lie the values of momenta.) This is shown in figure (B.3).
We can see that, with increasing gridsize, both the energy and momentum conservation
improve.

We would also like to see how these qualities scale with individual sizes of dimensions.
So, we fix one dimension to 512 and vary the other. Plots for those can be seen in
figure(B.4). It is noticeable that on increasing Nx and Nv by 2, energy conservation
increases by order of ∼ e and ∼ 2e respectively. With momentum conservation, increasing
Nx (from 32 to 512) improves conservation by a difference of about one and a half orders,
however, increasing Nv (from 32 to 512) is not that effective and settles to an improvement
of one order.

As we saw with the PPM advection solver, an error of O(∆x) develops at the peaks
of the function being advected. Therefore, it is worthwhile to check whether increasing
the strength of perturbation (i.e. α) has any effect on the conservation of energy and
momentum. This is because, a higher value of α creates more peaks in the distribution
along x, and these peaks may gather errors during advection that affect the corresponding
energy and momentum. Therefore, to get an idea of this, we choose the amplitudes of
strength of perturbation α = {0.01, 0.02, 0.03, 0.05, 0.1, 0.2} to check for these errors.
Also, we fix a gridsize of 64 × 64 for this particular test. The plot of the logarithms of
the relative energy and absolute value of momentum can be seen in figure (B.5).
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(a) Plot of percentage energy relative to initial value. Vary-
ing Nx.

(b) Plot of momentum. Varying Nx

(c) Plot of percentage energy relative to initial value. Vary-
ing Nv.

(d) Plot of momentum. Varying Nv

Figure B.4: Plots for percent relative energy and momentum, for varying individual
dimension size.
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(a) Plot of percentage energy relative to initial value. (b) Plot of momentum.

Figure B.5: Plots for percent relative energy and momentum, for different α.

As we can see, on increasing α from 0.01 to 0.2, relative energy conservation deteri-
orates by about 8 orders of e, and momentum conservation decreases by 3 orders of 10.
As mentioned, this may be because of errors accumulated by the peaks during advection.

B.1.3 Benchmarking the large timestep algorithm

Now, we wish to check for the accuracy of the large timestep algorithm, which we use in
the PPM advection solver to circumvent the CFL condition. We apply this solver and
plot the results. Creating plots for errors is difficult because an analytic solution is not
available to compare the results for different timestep sizes. Also, comparing one with
the another is not useful, as with different stepsize, the number of data points in time
changes. Now, the plots for evolution of fundamental harmonic of electric field ln |E1|
with time, for various timestep sizes and gridsizes can be found in figure (B.6).

The CFL number k in the plots refers to the maximum value of k encountered by the
solver in advancement of one timestep. It is calculated by:

k = vemax
∆t

∆x
(B.5)

With the large timestep algorithm enabled, we have plotted the k < 1 graph as a reference
solution, as we increase timestep size. As one can see one can notice virtually no differ-
ence in the plots for different gridsizes (except ∆t = 0.4, which clearly offshoots visibly,
irrespective of gridsize.) One can study the displacement from the reference solution by
zooming into the graph at later timesteps, when landau damping would damp the value
of the electric field, and the errors appear exaggerated. Two such figures for 64× 64 and
512 × 512 gridsize have been shown in figure (B.7). Also, we fit the maxima of the plot
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(a) 64× 64 grid. (b) 128× 128 grid.

(c) 256× 256 grid. (d) 512× 512 grid.

Figure B.6: Plots for (unnormalized) fundamental harmonic of electric field ln |E1|, for
various timestep sizes, on various gridsizes. Legend contains the timestep size and the
value of the CFL number k, for corresponding gridsize.
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(a) 64× 64 grid. (b) 512× 512 grid.

Figure B.7: Plots (zoomed after most of the damping is over) for (unnormalized) funda-
mental harmonic of electric field ln |E1|, for various timestep sizes, on various gridsizes.
Legend contains the timestep size and the value of the CFL number k, for corresponding
gridsize. Since this zoom is performed after most of the damping is over, it reflects the
errors in ln |E1| for small orders of |E1|. Thus, any error in |E1| should have cumulatively
accumulated till this time. This would help us discern the errors corresponding to the
values of k.

to a straight line to find the rate of damping γ. We tablulate the percentage errors in γ
against the value of the CFL number k to search for an empirical relation between k and
errors.

As one can see, the order of the values are roughly the same, but the ∆t = 0.4 plot
has offshot clearly. Also ∆t = 0.2 is slightly, though much lesser than the previous one,
displaced. However, ∆t = 0.1 follows the reference solution closely, and is not discernible
from it even in this zoomed picture.

Now from table B.2, one can see that the errors in γ, seem to become lesser as the
gridsize increases. This is similar to the result we obtained before. Also, the errors
become lesser as the value of k increases. However, for the highest k in each column
(which corresponds to ∆t = 0.4), most of the errors have again offshot in the other
direction. The errors are the least for ∆t = 0.2 (which correspond to the second highest
value of k in each column), however one has to remember that the solution has already
offshot from the reference solution.

Now we notice that, even though these gridsizes are disparate, the behaviour of the
solution with time doesn’t seem to depend much on the gridsize, and instead, seems to
solely depend on the value of ∆t. This is consistent with the choice of timestep size by
Ghizzo, et al[26]. They have arrived at a result for the choice timestep size, which is
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↓ k, gridsize→ 64× 64 128× 128 128× 128 512× 512
0.92 6.56 0.86 0.25 0.25
1.83 6.33 0.83 - -
2.29 6.25 - - -
3.67 - - 0.23 -
4.58 5.02 0.78 - -
7.33 - - - 0.20
9.17 1.57 0.70 0.18 -
18.33 - -0.94 0.14 0.18
36.66 - - -1.44 -0.01
73.33 - - - -1.43

Table B.2: Table for the percentage errors in values of γ. These are obtained by the
same fitting method used at the beginning of the subsection. Tabulated against values of
CFL number k and the gridsize. The entries ‘-’ mean that no run has been given for that
value of ‘k.’ Depending on the gridsize, we have only given a run for those values of k
which show a significant deviation from the reference solution. Also, for smaller gridsizes,
larger values of k have been omitted because we have already shown that the errors have
offshot for a particular value of k.

independent of gridsize (using Shannon theorem):

ωp∆t� 1 (B.6)

and since we have normalized time by plasma frequency ωp anyhow, this simplifies to
∆t� 1. Ghizzo, et al. have chosen ∆t = 0.25. We have shown that ∆t = 0.4 is accurate
in order but does not resemble the reference solution closely and its errors also offshoot.
∆t = 0.2, in our solver, generates more accurate values of γ, but is visibly displaced from
the reference solution.

Thus, looking at Fig. B.7 and Table B.2, we can empirically say that, a value of ∆t
that corresponds to a CFL number k, such that k ≤ (0.05×Nx), will result in a solution
which closely follows the reference solution. (We have said Nx in the previous formula
because, usually we choose Nv ≥ Nx).

Also, it would be interesting to see how energy scales with time. This can be seen
in figure (B.8). One can see from the plot how errors increase with timestep size. This
is where the error of O((∆t)3) from Strang splitting becomes apparent. Till here, we
have summarized the results we have obtained from the study of linear landau damping.
We have purposely not studied entropy because of the small perturbation, which doesn’t
lead to any appreciable change in entropy over time. This results entropy being a weak
diagnostic for linear landau damping. It becomes useful in the next section, where the
perturbation is visibly larger. Also, we have to mention that entropy doesn’t become
undefined anywhere in these simulations. This is an indication that the positivity of the
distribution function is being maintained at all times. This is because, in the entropy
diagnostic, we have deliberately not included a check in case of negative distribution func-
tion, and thus would acquire an unrepresentable value (NaN), if f(x, v, t) ever became
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Figure B.8: Plots of natural logarithm of percent relative energy, lnE%,rel, with time, on
a 64× 64 gridsize.

negative. This doesn’t happen with any of the above simulations. This is an indication
of how well the PPM advection method maintains the positivity of f(x, v, t), primarily
because of the monotonicity limiters.

Also, just to check how the Vlasov-Poisson solver behaves if it ever encountered a
negative distribution function, we initialize an unphysical distribution function as follows:

f(x, v, 0) = (1 + α cos (kx))
exp (−v2/2) cos

(
πv
vemax

)
∫
dv exp (−v2/2) cos

(
πv
vemax

) (B.7)

where the denominator in the RHS is just for normalization. All other constants are kept
the same (α = 0.01, vemax = 4.5, k = 0.5)as in the beginning of the subsection. Also, we
use the regular timestep algorithm to determine the timestep. This function is smoothly
negative in regions of |v| > 2.25. We run this initial condition on a gridsize of 64 × 64
up to about t = 180. We show the time evolution of the fundamental harmonic of the
electric field ln |E1|, just to see how the process of linear landau damping adapts to this
unphysicality (figure B.9). As one can see, the rate of landau damping is much lesser
than in the normal case, and is practically undamped till recurrence time TR = 89. Thus
the perturbations have an effect other than damping. In order to see this, we define
(unnormalized) velocity distribution function f(v):

f(v, t) =

∫
dx f(x, v, t) (B.8)
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Figure B.9: Plot of the logarithm of the fundamental harmonic of the electric field ln |E1|
with time, for initial distribution function (B.7), on a 64× 64 grid.

From here on, f(v, t) which is written without x as an independent variable will denote
the unnormalized velocity distribution function. We plot f(v) at different times during
the simulation to see its behavior (Fig. B.10).

It can be seen that the extrema f(v) decay slightly, with time, at the extrema, but is
otherwise unchanged. In other words, the distribution function, if initialized as negative
in some region remain negative in those regions. As a corollary, we can say that the solver
would maintain an initially positive distribution function to remain positive, by similar
mechanisms.

Now, we also notice that the positive extremum decays a little with time. Therefore,
we zoom the area around one negative extremum. This can be seen in figure (B.11). One
can see that, with time, this extremum also decays toward zero, again by a small amount.
Therefore, the effect of the perturbation is to decay the extrema by small values. This
improvement may not speak much for this case, however it is really crucial for the case of
physical initial conditions. Now suppose that, at some timestep, the distribution function
became negative. Now, on the judicial choice of timestep, as we have discussed earlier, at
any given time, the distribution function won’t become too negative too quickly. Thus,
the distribution function can be assumed to have developed a region of small negativity.
Meanwhile, the solver would have pushed back this small negative region to become
positive. Thus, in the event the the distribution function were to become negative, the
solver would simultaneously push it to become non-negative.

Thus, we now know that the solver tries to maintain the sign of the distribution
function values similar to the initial condition and that regions that would have developed
small negative values would be pushed back to become non-negative. Now we move on
to discuss the behaviour of the Vlasov-Poisson solver in case of a larger perturbation.
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Figure B.10: Plot of the (unnormalized) velocity distribution function at different times,
for initial distribution function (B.7), on a 64× 64 grid.

Figure B.11: Zoom of the negative region of the (unnormalized) velocity distribution
function at different times, for initial distribution function (B.7), on a 64× 64 grid.
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B.2 Bump-On-Tail Instability

The bump-on-tail distribution corresponds to:

f(x, v, 0) = (1 + α cos (kx))fbot(v, 0) (B.9)

where the Bump-on-Tail(B.o.T.) velocity distribution function is given by:

fbot(v, 0) = np exp

(
−1

2
v2

)
+ nb exp

(
−1

2

(v − vb)2

v2
t

)
(B.10)

where the normalization constants are, for the plasma, np = 0.9/
√

2π and, for the beam,
nb = 0.2/

√
2π. For this case, we choose the tunable parameters as:

α = 0.04, k = 0.3, vb = 4.5, vt = 0.5, vemax = 6 (B.11)

Physically, this initial velocity distribution fbot(v, 0) represents the introduction of a
Maxwellian beam of energetic electrons into a Maxwellian plasma (assuming a constant
neutralizing ion background). The beam has an average velocity of vb = 4.5. We per-
turb this system, further, with α cos(kx) perturbation. Thus this simulation essentially
represents the interaction of a beam with plasma, for a small perturbation. It is called
a “beam-plasma instability” because of a small value for nb. For larger values of nb, the
physical situation would correspond to a “two-stream instability.”[2]

Now, the monotonicity algorithm of the PPM advection solver, primarily introduces
a dissipation, and, hence, the solver damps any fine-scale structures that would have
otherwise grown with time. Thus, as these numerical artifacts are corrected for, the
system is more quickly drawn to a stable BGK mode[22]. To see this, we study the
evolution of maximum of the absolute value of electric field |E|max with time. This is
plotted in figure (B.12), on a 128× 128 grid.

For a more refined image, we repeat it on a 512× 512, and the choice of axes is made
so that it can be compared with Fig. 3 of Arber and Vann[22]. This is seen in figure
(B.13).

Now, we can say that this is settling to a stable state, if the entropy doesn’t vary
much at later times. So, we plot the graphs for relative entropy, defined as:

Srel(t) =
S(t)− S(0)

S(0)
(B.12)

where we have:

S(t) = −
∫ ∫

dxdv f(x, v, t) ln f(x, v, t) (B.13)

This can be seen in figure (B.14). One can see that Srel tends to stabilize quicker, and at
a lower value, in the 512× 512 gridsize simulation than in 128× 128. Now, we would like
to see how the phase-space looks like, so we plot at t ∼ 512, the distribution function,
where the perturbation is present. This can be seen in figure (B.15).
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Figure B.12: Plot of maximum of the absolute value of electric field |E|max with time, on
a 128× 128 gridsize.

Figure B.13: Plot of maximum of the absolute value of electric field |E|max with time, on
a 512× 512 gridsize.
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(a) 128× 128 grid. (b) 512× 512 grid.

Figure B.14: Relative entropy Srel plotted with time t.

Figure B.15: Plot of the distribution function f(x, v, t), at t ∼ 512, around the region of
the perturbation.
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(a) t ∼ 512 (b) t ∼ 1998

Figure B.16: 2d contour plots for the distribution function f(x, v, t) at two different times
in the simulation. The phase-space holes are in different positions because of the constant
movement along x.

One can compare this plot to the Fig. 6 in Arber and Vann[22]. Furthermore, the
2d contour plots for the distribution function f(x, v, t) at two different times in the
simulation are in Fig. B.16. One can see the evolution of the phase space hole and how
this hole smoothens out with time. This phase space hole represents a potential energy
trough. One can see this from the plots of the electric field at different times, as shown
in figure B.17. Now, from the plot of maximum amplitude of electric field (Fig. B.13),
one can see that landau damping doesn’t happen here and the electric field settles to
oscillating around a non-zero value. This oscillation corresponds to periodic trapping
and untrapping of particles. One can see this through the electric field plot too, that the
particles inside the phase space hole face a restoring force that tends to keep them inside
the hole. Particularly, at the center of the phase space hole, particles essentially face
no restoring force, i.e. they are trapped at the center. Now, for a fraction of particles
at the boundary (separatrix) of the phase-space hole may escape or enter depending on
their energy. This process acquires a periodicity, and is referred to as a BGK mode. We
wish to, in future, study the properties of particles near the separatrix of the phase space
hole, in order to understand the BGK mode further. Also, BGK mode, such as the one
obtained, is a travelling wave solution.

Now, we check the plots of the velocity distribution function to see its form at t ∼ 2000.
This has been plotted in figure (B.18). It can be seen that the function for the 512× 512
has damped and is almost flat, whereas the other isn’t yet. This is supported by the
observations from the entropy curve.

Now we would like to see the effect of the large timestep algorithm on the B.o.T.
simulation. Since the 512× 512 grid simulation stabilizes much before t = 2000, we run
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Figure B.17: Plots of the electric field E(x, t) at different t. One can see how electric
field becomes zero at the value of x corresponding to the centre of the phase space hole
in Fig. B.16.

(a) 128× 128 grid. (b) 512× 512 grid.

Figure B.18: Velocity distribution function f(v) for both gridsizes tested.
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(a) Percent relative energy E%,rel (b) Relative entropy Srel

Figure B.19: Comparison between large timestepping and regular timestepping, for B.o.T.
initial conditions. For 512× 512 grid.

with this. We choose ∆t = 0.1, and rerun the program for the same initial conditions.
We plot the graphs for percent relative energy and relative entropy, comparing both the
large timestepping and the regular timestepping (figure (B.19)). One can see that the
entropy curve of the large timestep almost remains the same as the regular one. However,
one can see an advantage in energy conservation, as the error from the Strang splitting is
compensated by the smaller number of timesteps needed, and hence, accumulating lesser
error from the PPM advection routine. We have also plotted the velocity distribution
function for both the timestep methods at t ∼ 2000 (figure (B.20)). One can see that there
is no visible difference between the two curves. Note that the curves are from slightly
times, due to the choice of number of dumps in the file writing algorithm. Although it
has not been shown, the evolution of the maximum absolute amplitude of the electric
field |E|max also looks similar to Fig. B.13.

Now that we have benchmarked the Vlasov-Poisson solver for different initial condi-
tions, we move on to one more benchmark that involves the large timestep algorithm.

B.3 Nonlinear Landau Damping

As mentioned before, linear landau damping fails after the bounce time τ = 2π/α. Be-
yond this time, the landau damping phenomenon is inherently nonlinear. O’Neil has
given an approximate solution, but it too breaks down over large times[7, 4]. It is an
open problem to understand the behaviour of nonlinear landau damping over long times.
Bernstein-Greene-Kruskal have suggested that the plasma waves finally settle to a steady
state (called the BGK steady state)[7, 5]. On the other hand, Isichenko has expressed,
as a general result, that Landau damping continues indefinitely though the damping is
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Figure B.20: Plot of the velocity distribution function f(v) for both the timestep methods.

algebraic (i.e. a power of t), not exponential[7, 6]. Manfredi has shown, through numer-
ical simulations, that contrary to Isichenko’s predictions, there exist initial conditions in
which the system settles to a BGK mode[7]. Manfredi further states that Isichenko’s
assumption that the electric field decays to zero by Landau damping, is crucial to finding
the functional form of such a decay[7]. Further, Firpo and Elskens have studied Landau
damping in the regime of a second order phase transition, and have found a critial initial
wave intensity, under which the wave amplitude vanishes and over which the damping
leads to a finite wave amplitude[9]. Thus, this phenomenon is an open problem. We
study this phenomenon with the same initial distribution function, as in Manfredi[7].

The initial distribution function is chosen to be:

f(x, v, 0) = (1 + α cos (kx)) exp(−v2/2) (B.14)

and this time, the parameters chosen are:

vemax = 6, α = 0.05, k = 0.4 (B.15)

Now the problem is to see how nonlinear landau damping behaves at large times (of
up to t = 2000)[7]. As the perturbation is still small, the main problem is to push
away recurrence as away as possible. For this reason the runs are configured with Nv =
4000, 8000, which makes TR ∼ 5236, 10472 respectively. As we know with linear landau
damping, our runs can be considered accurate up to time TR/2. Since TR/2 > 2000 for
both the cases, recurrence related effects are not a worry within this time domain. Also,
Nx is chosen to have values of Nx = 512, 1024 for the high resolution needed in x. Also,
∆t = 0.1, which leads to a maximum CFL number of k = 19.55, 39.11 respectively, both
well within our empirical limit of 5% of Nx. (One can note that Manfredi[7] called the
choice of ∆t = 0.1 “conservative” as compared to the value of ∆t = 0.25 used by Ghizzo,
et al[26]. This is also supported by our observations.)
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Three runs are given, the first one with gridsize 512×4000, the second one 512×8000
and the third one 1024 × 4000. The initial conditions and the runs have been chosen
exactly the same as Manfredi, so as to compare the results. As we did with linear landau
damping, we now plot the amplitude of the fundamental harmonic |Ek| with time for the
three runs (Fig. B.21)

These plots are quite similar, for want of better words, to Fig. 1 of Manfredi[7]. One
can notice slightly more detail in (b) than in the other two. It may be because of larger
Nv. Other than this, one cannot observe any qualitative difference in the plots.

Now, we compare the relative entropy and percent relative energy for the three runs
(Fig. B.22). It can be seen that the relative entropy curves, with the exception of the
near “overlap” of the first and third run, is similar to Fig. 2 from Manfredi[7]. Also,
energy is conserved, in the second case to within 0.005% and within 0.012% for the first
and third.

Now, we would like to see the phase-space resonant region, like in the case of B.o.T..
So, we plot a colormap plot of the distribution function at t = 1600 (Fig. B.23), for
the first run (512 × 4000 gridsize). This also qualitatively looks similar to Fig. 3 from
Manfredi[7]. Again, we would like to look at the nature of the velocity distribution
function. To exaggerate the resonant region, we plot the logarithm (base 10) of the
normalized velocity distribution function. This can be seen in figure (B.24) Again this
is similar to Fig. 4 of Manfredi[7]. It can also be seen that the second harmonic gets
quickly excited and then falls to the order of 10−4 (Fig. B.25). Next, we excite two modes
k = 0.2 and k = 0.4, with the initial condition:

f(x, v, 0) = (1 + α cos (0.2x) + α cos (0.4x)) exp(−v2/2) (B.16)

with L = 2π/0.2 and rest of the parameters remaining the same. This is in order to
regenerate Manfredi’s results with two excited modes. The plots for the amplitudes of
fundamental and second harmonic of the electric field are in figure (B.26) As Manfredi
states, the first harmonic remains undamped and the second harmonic behaves like our
previous case, albeit settling to a smaller value than before[7].

Thus, in this subsection, we have used large timestep algorithm (which was bench-
marked in the previous subsections) to run long time simulations. We have, in this
process, confirmed the validity of our algorithm by replicating Manfredi’s results step-
by-step.

65



(a) 512× 4000 grid. (b) 512× 8000 grid.

(c) 1024× 4000 grid.

Figure B.21: Plot of the amplitude of the fundamental harmonic of the electric field |Ek|
vs time, for Manfredi’s initial conditions.
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(a) Relative entropy Srel vs time (b) Percent relative energy E%,rel vs time

Figure B.22: Plots for the three runs. The plots for the 512× 4000 and 1024× 4000 fall
close together, and hence appear as a single curve. They are slightly spaced apart.

Figure B.23: Plot of the resonant region of the distribution function, for run on the
512× 4000 gridsize, at t = 1600.
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Figure B.24: Plot of the logarithm (base 10) of the normalized velocity distribution
function, for run on the 512× 4000 gridsize, at t = 0, 1600.

Figure B.25: Plot of the second harmonic of the electric field |E2| vs time, for 512× 4000
grid. One can see that it quickly gets excited from zero and then settles at around
0.5× 10−4.
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(a) Plot of |E1| with time (b) Plot of |E2| with time

Figure B.26: Plots for time evolution of fundamental and second harmonics of electric
field with time.
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