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Abstract

The Falicov-Kimball model is the simplest model of correlated electrons
which shows long range order. The Falicov-Kimball model is exactly solvable
in the limit of in�nite dimensions through the use of Dynamical Mean Field
Theory (DMFT). This thesis reviews the Hubbard model and Falicov Model
in some detail, and details the DMFT formalism. The DMFT formalism
is used to investigate continuous second order phase transitions in Falicov-
Kimball model. It is seen that the model shows phase transitions for every
non-zero value of the interaction strength.
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Chapter 1

Introduction

This chapter gives a brief overview of the Falicov-Kimball model and Dy-
namical Mean Field Theory. Selected papers are mentioned in order to trace
out the history of developments in these �elds. The next few chapters will
develop the formalism for analysis of phase transitions in Falicov-Kimball
model. Chapter 5 describes the results of some calculations. Long proofs and
conventions employed can be found in Appendices A and B, respectively.

1.1 Strongly Correlated Systems

Strongly correlated systems are those in which the strength of the electron-
electron interaction is comparable or larger than their kinetic energy. The
key-phrase here is strong correlations. Correlation means that a quantity
describing the many-particle system at position x is a�ected by the property
at y. In the context of statistical physics, a quantity Q(x) is correlated if

〈Q(x)Q(y)〉 6= 〈Q(x)〉〈Q(y)〉.

〈...〉 denotes the ensemble average. In some cases ignoring such correlations
is a reasonable approximation, but not if the system under consideration has
strong correlations in its properties. Strong electronic correlations are most
commonly seen in materials with transition and rare-earth metals, i.e. in
systems with partially �lled d and f orbitals.

Such systems have been investigated since the 1960s with a variety of
theoretical tools, but even now no systematic approach exists to deal with
them. Perturbative approaches do no work well here, except when the in-
teraction energy is far stronger than the kinetic energy, in which case the
kinetic energy can be treated as a perturbation. In absence of exact solu-
tions approximations are invoked but often it is di�cult to ascertain whether
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a given theoretical result is a genuine feature of the system or just an artefact
of the approximation used. Computational methods can be employed too,
such as the exact diagonalisation and quantum Monte Carlo methods. But
these solutions su�er from two major disadvantages. Firstly, computational
solutions do not always provide su�cient insight into the physics. Second is
the lack of computational power to carry out realistic calculations.

The simplest model to describe such systems is the single-band Hubbard
model,[12] with the Hamiltonian given by

H =
∑
ij,σ

t∗ijc
†
iσcjσ + U

∑
i

ni↑ni↓ (1.1)

It is the simplest model of interacting quantum particles in a lattice. As will
be seen in Chapter 2 , where more details are provided, the model o�ers a
highly intuitive picture of mobile fermions on a lattice. It should be men-
tioned at this stage that removal of the interaction term U

∑
i ni↑ni↓ from

the Hubbard Hamiltonian essentially gives the tight-binding model, which
has no electronic correlations.

1.2 Short History of the Falicov-Kimball Model

The Falicov-Kimball (FK) model was introduced by Falicov and Kimball in
1969[6] to investigate metal-insulator phase transitions in rare-earth and tran-
sition metal compounds. In this thesis a spin-less version of the FK model
will be considered. This model can be considered as an approximation to the
Hubbard model. In the model one considers the σ variable of the Hubbard
model to notate two species of spin-less particles, of which one does not hop
and is frozen on the lattice. Essentially, the Hubbard Model is cast into a
form where the one specie of particles is quantum in nature, while the other is
classical. The rest of the section mentions some attempts at studying phase
transitions in FK model.

The initial work based on FK model was targeted at analysing the thermo-
dynamics of metal-insulator transition with a mean-�eld approach.[6], [18], [17]

The solutions with this approach showed both continuous and discontinuous
phase transitions. In the 1970s this model was applied to other systems, and
had both failures and successes.

In the 1980s it was realised that this is the simplest model of strongly cor-
related systems which shows long range order. It was shown that there always
exists a �nite transition temperature to a chessboard phase if the each parti-
cle concentration is 1

2
.[4], [5] This transition can identi�ed as one from a high-

temperature homogeneous �uid phase to a low-temperature ordered solid
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phase. It was also proven that a phase transition takes place for any value
of the interaction strength, given that the temperature is low enough.[13],[15]

In the 1990s various proofs of phase separation were submitted � one dimen-
sion and large interaction strength,[14] one dimension and small interaction
strength,[8] arbitrary dimension and large interaction strength.[10],[9]

1.3 Dynamical Mean Field Theory - A Brie�ng

1.3.1 Mean-Field Theories

In statistical mechanics a rough picture of a model can be obtained by using
mean-�eld theories. Generally in a mean-�eld theory, a quantity describ-
ing the system is replaced by an averaged quantity, the mean-�eld, greatly
simplifying all calculations. As with any other approximation scheme, the
reliability of such a scheme should be well understood in every case of appli-
cation. In some cases a parameter called the control parameter can be found,
which, depending on its value, governs the accuracy of the scheme.

The most well known example of a mean-�eld theory is the Weiss theory
for the Ising model. The theory replaces the detailed actual �eld of the sys-
tem by an averaged �eld which is just a single number, constant in space and
time. It can also be viewed as an e�ective single-site problem. This means
that the mean-�eld approach can be viewed as replacing a system of particles
by a single site embedded in an e�ective medium, with the all the details of
the surroundings being contained within the mean-�eld.

The control parameter for the Weiss theory is 1/Z, Z being the coordi-
nation number of the lattice. In the limit Z → ∞ or 1/Z → 0, the theory
become exact. The small parameter 1/Z can be used to systematically im-
prove the accuracy of the theory. A natural question arises - whether such
an approximation is purely academic in nature without any practical impli-
cations. The answer is two-fold. First, a lot of naturally existing lattices
have large coordination. In three dimensions, Z = 6, 8 and 12 for simple
cubic, bcc, and fcc lattice resp. For the latter two, a mean �eld approach
with 1/Z as the control parameter is expected to yield reasonably accurate
results. This point will be supported quantitatively in Chapter 2. Secondly,
even if the results of a mean-�eld theory in low dimensions are not quanti-
tatively accurate, some qualitative results can be obtained to shed light on
the physics.
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1.3.2 Dynamical Mean Field Theory

The natural generalisation of Weiss mean-�eld theory, when dealing with
quantum many-body systems, is Dynamical Mean Field Theory (DMFT).
The essential idea, much like before, is to replace the system of particles on
a lattice by a single-site quantum impurity model. This impurity model is
contained within an e�ective medium which is determined self-consistently.
This approach has the advantage that a lot of work has already been done
in understanding impurity models.

A crucial feature of DMFT is that only the spacial �uctuations are frozen.
Temporal �uctuations still exist and hence the name dynamical. As with the
Weiss mean-�eld theory, DMFT becomes exact in the limit of large coordina-
tion number, and can be used both to calculate exact properties for materials
with large coordination numbers or to gain valuable qualitative insight for
smaller coordination numbers. In the Z → ∞ limit it can be shown that
the self-energy becomes local, i.e. it has no k-dependence, and this result is
behind the simplicity introduced in DMFT.

The origin of DMFT lies in the work of Metzner and Vollhardt (1989),Metzner89

with the realisation that the self-energy becomes local in large dimensions.
Immediately after this, Brandt and Mielsch solved the Falicov-Kimball model
exactly in large dimensions.[1],[2],[3] In these three papers they also provided
exact results for electronic phase transitions in the FK model and calculated
the free energy.

1.3.3 Falicov-Kimball model and DMFT

There are two main reasons that make the use of DMFT of Falicov-Kimball
model attractive. First, DMFT can be used at all interaction strengths. The
only approximation used was the limit of in�nite dimensions. Second, the
Falicov-Kimball model is exactly solvable in large dimensions. By 'exactly
solvable' it is meant that no quantum Monte Carlo is required to solve.
Once the Green function is exactly known upon using DMFT, virtually any
property can be calculated.
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Chapter 2

DMFT of the Hubbard Model

This chapter introduces the Hubbard model and then describes the derivation
of the DMFT equations for all Hubbard-like models.

2.1 A short introduction to the Hubbard Model

The Hubbard Hamiltonian is

H =
∑
ij,σ

t∗ijc
†
iσcjσ + U

∑
i

ni↑ni↓ (2.1)

t∗ij is called the hopping amplitude which is the probability of an electron
to hop from site j to site i. The hopping amplitude is taken to be non-
zero for nearest neighbour hopping only. This signi�es that an electron has
zero probability of jumping from site i to site j if i and j are not nearest
neighbours. The hopping amplitude is a measure of the kinetic energy of the
electron, and can be calculated as

t∗ij = 〈i|T̂ |j〉 (2.2)

where T̂ is the one-body kinetic energy operator and |i〉 is a Wannier state.
It is clear from de�nition of the hopping amplitude that the model is based
on the tight-binding approach. The dispersion of momenta εk is related to
the hopping amplitude by a Fourier transform.

t∗ij =
∑
k

eik(Ri−Rj)εk (2.3)

Throughout this thesis the modelling will be done on a hyper-cubic lattice
for which the nearest neighbour hopping amplitude can be represented by a
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single constant: t∗ij = t∗, if i, j are nearest neighbours, otherwise 0. Using
(2.3) it can be shown that the dispersion in d-dimensions is

εk = 2t∗
d∑
i=1

cos ki (2.4)

U is the on-site Coulomb interaction strength. Any site on the lattice can
accommodate two electrons (of opposite spins) at maximum due to the exclu-
sion principle. The interaction of such two electrons is quanti�ed by U . The
interaction part of the Hamiltonian contains only local terms ni↑ni↓, which
guarantees that electrons on separate sites do not intract. In transition metal
and rare-earth metals, where strong correlations are usually seen, the d-shell
and f -shell is partially �lled. As the electrons in these orbitals are strongly
localised, it follows that the interactions between electrons of the same ion
are much larger than those of di�erent ones. This justi�es the local nature
of the interaction term. σ denotes the spin.

2.2 The limit of large dimensions

This section analyses Hubbard-type models in large dimensions. Hubbard-
type models, for the purpose of this thesis, are those in which the hopping
term is nearest neighbour only and the interactions are purely local. DMFT
can be extended to more general cases of next-nearest neighbour hopping or
nearest neighbour interactions but such extended Hubbard-type models are
not discussed here.

2.2.1 Scaling of the hopping amplitude

This section investigates the limit of large dimensions for Hubbard-type mod-
els, following [16]. The interaction term is purely local for these models, and
thus independent of the lattice structure and dimensions. It is the kinetic
energy which depends on dimensionality and structure of lattice. Therefore
only the kinetic energy is analysed in large dimensions. The non-interacting
density of states (DOS) associated with dispersion εk in d-dimensions is

Dd(ε) =
∑
k

δ(ε− εk) (2.5)

This expression can considered to be the probability density for �nding ε = εk
for a random k. In this interpretation εk from (2.4) is a sum of d independent
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Figure 2.1: Comparison of DOS of dispersion εk (2.4) for small dimensions
d= 1,2,3,4 and 5 (full lines) and d =∞ (broken line). Notice that from d = 4
onwards the DOS begins to closely resemble the in�nite dimensional DOS.
From [19]

random numbers 2t∗ cos ki. In the limit d → ∞ the central limit theorem
yields

D∞(ε) =
1

2t∗
√
πd

exp
[
−
( ε

2t∗
√
d

)2]
(2.6)

For large d this DOS becomes arbitrarily broad and �at, and only the fol-
lowing scaling saves it from being trivial

t∗ =
t

2
√
d

(2.7)

D∞(ε) =
1

t
√
π

exp
[
−
(ε
t

)2]
(2.8)

t is a �nite constant. Figure 2.1 compares some �nite dimensional DOS
with the in�nite dimensional gaussian DOS. From d = 4 onwards the DOS
begins to closely resemble the d → ∞ one. Thus even for small dimensions
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the calculations in the in�nite dimension limit are expected to yield reliable
results. For a brute-force approach to (2.7) and (2.8) see Appendix A. With
this scaling the dispersion is

εk =
t√
d

d∑
i=1

cos ki (2.9)

2.2.2 Locality of Self-Energy

The most drastic consequence of the scaling (2.7) is that the self-energy be-
comes local in space, leading to great simpli�cations in the study of Hubbard-
type models. The following results all hold true for Hubbard-like models,
even though the Hubbard model is used explicitly throughout the discussion.
The non-interacting kinetic energy is

KE =
t

2
√
d

∑
<i,j>,σ

g0
ij,σ, (2.10)

where g0
ij,σ = 〈c†iσcjσ〉0 is the density matrix. It can interpreted as the ampli-

tude for hopping from site j to i. In d-dimensions, any site has O(d) nearest
neighbours. Since an electron can move only to its nearest neighbour, |g0

ij,σ|2
is of the order 1/d, which gives

g0
ij,σ ∼

1√
d
. (2.11)

Also note that the kinetic energy as given in (2.10) is �nite for in�nite di-
mensions. Without the 1/

√
d scaling of the hopping amplitude, the kinetic

energy would grow as
√
d. This is an independent corroboration of the said

scaling. Now, the density matrix is just the single-particle non-interacting
Green function in the limit τ → 0−, which is de�ned as usual as

G0
ij,σ(τ) = −〈Tĉiσ(τ)ĉ†jσ(0)〉0. (2.12)

It follows that the Green function also follows the same scaling (2.11)

G0
ij,σ ∼

1√
d
, (2.13)

for nearest neighbours i,j. For any arbitrary sites i and j, (2.13) can be used
recursively to obtain

G0
ij,σ ∼

1

d(||Ri−Rj ||)/2
. (2.14)
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||R|| ≡
∑d

i=1 |Rn| is the length of vector R in the New York metric.
Now, consider any self-energy diagram with two internal vertices i and j.

A simple count argument will reveal a surprising feature of such self-energy
diagrams. The self-energy Σ will have sums over both internal vertices i, j.
Suppose the number of paths connecting i and j in the diagram is P . Each
path connecting i and j will contribute a factor (1/

√
d)||i−j||, so that

Σ ∼
∑
ij

(
1√
d

)P ||i−j||
.

The sum over i, j could equally well be written as a sum over i and
R ≡ ||i− j||. The sum over i gives dR, and the above relation becomes

Σ ∼
∞∑
R=0

dR
(

1√
d

)PR
=
∞∑
R=0

dR(1−P/2)

For diagrams with P ≥ 3 the term dR(1−P/2) vanishes in the limit d → ∞,
unless R = 0. Therefore only local terms, i.e. terms with i = j, contribute.
Now, consider perturbation theory for the Hubbard model. The �rst order
self-energy diagram is already local. For second and greater orders, P ≥ 3.
Thus the self-energy consists of terms which are local, and hence the self-
energy itself is local. This fact leads to tremendous simpli�cation when
calculating Green functions, and is the basis of DMFT.

2.3 Construction of DMFT

There are multiple ways of deriving DMFT equations, each relying on the
limit of in�nite dimensions and the locality of self energy. One of the methods
- the cavity method - involves calculation of Green function directly from the
canonical or grand canonical partition function. In this section, DMFT for
Hubbard model will be constructed using the cavity method following [11].

The basic idea of a cavity method is to focus on any one site of the lattice,
say o and then integrate out the degrees of freedom on all other sites. This
creates an e�ective �eld for the lattice. Up till now, this scheme is exact,
that is, no approximation has been used. It is when this e�ective �eld is
required to be the same as the actual �eld at site o (self-consistency), that
the scheme becomes an approximation. The approximation becomes exact in
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in�nite dimensions, as will be seen in the derivation. The derivation begins
with construction of the canonical partition function. In the path integral
formulation with the Grassmann variables ψiσ and ψ̄iσ for the electrons.

Z =

∫
D[ψσ]e−S, (2.15)

S =

∫ β

0

dτ

(∑
iσ

ψ̄iσ(τ) (∂τ − µ)ψiσ(τ) +
∑
ij,σ

t∗ijψ̄iσ(τ)ψjσ(τ) (2.16)

+ U
∑
i

ni↓(τ)ni↑(τ)

)

To calculate the e�ective action, all degrees of freedom except those at site
o are integrated out.

1

Zeff
e−Seff [ψoσ ,ψ̄oσ ] =

1

Z

∫
D(o)[ψσ]e−S (2.17)

Here, D[ψσ] and D(o)[ψσ] are shorthand notation for the path-integral mea-
sure and are explicitly written as

D[ψσ] =
∏
i

Dψ̄iσDψiσ,

D(o)[ψσ] =
∏
i 6=o

Dψ̄iσDψiσ (2.18)

The action S is split into three parts -

So =

∫ β

0

dτ

(∑
σ

ψ̄oσ(τ) (∂τ − µ)ψoσ(τ) + Uno↑(τ)no↓(τ)

)
, (2.19)

∆S =

∫ β

0

dτ
∑
iσ

t∗io
(
ψ̄iσ(τ)ψoσ(τ) + ψ̄oσ(τ)ψiσ(τ)

)
(2.20)

and S(o) = S − So −∆S. So is the action containing the degrees of freedom
at site o, ∆S is the action for the interaction of site o with surroundings, and
S(o) is the lattice action in presence of the cavity, i.e. with site o removed.
Also, de�ne a cavity partition function Z(o) as

Z(o) =

∫
D(o)[ψσ]e−S

o

(2.21)
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With this set-up the e�ective action in (2.17) becomes

1

Zeff
e−Seff =

1

Z
e−So

∫
D(o)[ψσ]e−S

(o)

e−∆S

=
Z(o)

Z
e−So〈e−∆S〉(o) (2.22)

where 〈...〉(o) denotes the trace with respect to the cavity partition func-
tion Z(o). Expanding the right hand side in Taylor series yields a series in
〈(−∆S)n〉(o). Because of the presence of ψoσ and ψ̄oσ Grassmann variables
in ∆S only terms with even n are non-vanishing. The second term in the
expansion of 〈e−∆S〉(o) is

1

2
〈(−∆S)2〉(o) =

∫
dτdτ ′

∑
ij,σ

t∗iot
∗
joψ̄oσ(τ ′)ψoσ(τ)G

(o)
ij,σ(τ − τ ′)

= T
∑
n

∑
ij,σ

t∗iot
∗
joψ̄oσ(iωn)ψoσ(iωn)G

(o)
ij,σ(iωn) (2.23)

which scales as

〈(−∆S)2〉(o) ∼
∑
<ij,o>

1

d

(
1√
d

)||i−j||
(2.24)

In the sum, i and j are both nearest neighbours of o. Therefore ||i − j|| is
either 0 or 2, depending on whether i and j are same or not. Plugging in
these values gives the scaling for the second term as unity. The fourth term
scales as

〈(−∆S)4〉(o) ∼
∑

<ijkl,o>

1

d2

(
1√
d

)||i−j||(
1√
d

)||j−k||(
1√
d

)||k−l||
(2.25)

which simpli�es to 1/d. Further even terms are each smaller by 1/d, and
therefore in the in�nite dimension limit, only the �rst of the even terms
survives.

Now, the local action for site o surrounded by a bath, Seff - the e�ective
action, can be written as

Seff = −
∫ β

0

dτdτ ′
∑
σ

ψ̄oσ(τ)G−1
σ (τ − τ ′)ψoσ(τ ′) + U

∫ β

0

dτno↓(τ)no↑(τ)

(2.26)
Gσ(τ − τ ′) can be interpreted as the bare propagator for the local e�ective
action, and is the amplitude for a particle to move from bath to site o at
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time τ and then return back to the bath at time τ ′. In contrast to the mean-
�eld of Ising model, Gσ(τ − τ ′) is a function of time and devoid of any spatial
�uctuations. In frequency space the kinetic part of So and the e�ective action
Seff read

Skineticeff = −T
∑
n

∑
σ

ψ̄oσ(iωn)ψoσ(iωn)G−1
σ (iωn) (2.27)

Skinetico = −T
∑
n

∑
σ

(iωn + µ)ψ̄oσ(iωn)ψoσ(iωn) (2.28)

The interaction part is same for both Seff and So. Therefore combining
(2.22), (2.23), (2.27) and (2.28) along with the fact that only the second
term in the expansion of 〈e−∆S〉(o) contributes in the in�nite dimension limit
yields

G−1(iωn) = iωn + µ−
∑
ij

t∗iot
∗
joG

(o)
ij (iωn) (2.29)

G
(o)
ij is the Green function in presence of the cavity. To obtain the self-

consistent equations of DMFT, the Green function of the original lattice Gij

is required. Relating G
(o)
ij to Gij is complicated for a general lattice. The

proof will be omitted here, being quite extensive. The relation is

G
(o)
ij = Gij −

GioGjo

Goo

(2.30)

Inserting (2.30) in (2.32) gives

G−1(iωn) = Σn +G−1(iωn) (2.31)

where, G(iωn) =
∑

kGk(iωn) is the local Green function. (Refer to Appendix
A for detailed derivation.) This equation combined with Dyson's equation
for homogeneous systems form the set of equations for DMFT.

2.3.1 DMFT on Bethe lattice

There is one lattice for which relating G
(o)
ij and Gij is very simple - the Bette

lattice. The Bethe lattice of connectivity z is a lattice in which each site
is directly connected to z other sites, and any two sites are connected by
only one path. The proof relies on the fact that once a cavity at site o has
been introduced, the lattice separates into multiple disconnected lattices.
Also note that the sum over site indices i, j in (2.29) is only over i, j which
are nearest neighbours of the cavity site o. Combination of these two facts
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Figure 2.2: z = 3 Bethe lattice. From [11]

means that all the nearest neighbours of the cavity site are disconnected, and
therefore the sum in (2.29) will have i = j.

G−1(iωn) = iωn + µ−
∑
i

t∗iot
∗
ioG

(o)
ii (iωn) (2.32)

In the in�nite dimension limit, the local Green functions for lattice with
and without cavity are equal, as removal of a single site does not make a
di�erence. It should be cautioned that this statement does not hold for the
non-local Green function Gij. Also, for homogeneous phases, the local Green
function Gii is independent of i. Thus the above relation reduces to, upon
introducing the scaling (2.7)

G−1(iωn) = iωn + µ− t2Gii(iωn) (2.33)

2.4 Summary

The Hubbard model has been brie�y described in this chapter. It has been
shown for Hubbard-type models in large dimensions that the density of states
becomes trivial and the kinetic energy diverges, unless the hopping amplitude
is scaled in a particular fashion. This scaling results in a simpli�cation of the
theory - the self-energy ceases being momentum-dependent, which has been
proven using a simple power-counting argument. Employing the scaling the
hopping amplitude and the locality of self-energy, the equations of DMFT
have been derived. Finally, the form of bare propagator has been determined
for Hubbard-like models on a Bethe lattice.
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Chapter 3

DMFT of Falicov-Kimball Model

The Falicov-Kimball model is introduced in this chapter. Later the DMFT
of FK model is formulated.

3.1 The Falicov-Kimball Model

As stated in Chapter 1, the FK model is a simpli�ed version of the Hubbard.
In this work, only the spin-less version of the FK model will be considered.
The σ parameter of Hubbard model denotes not the spin in this case, but
rather two species of particles c and f . The FK Hamiltonian can be written
as

H =
∑
ij

t∗ijc
†
icj + E

∑
i

f †i fi + U
∑
i

c†icif
†
i fi (3.1)

Here, t∗ij is the nearest neighbour hopping amplitude. Only the c-particles
have an associated hopping amplitude and thus kinetic energy, and are ap-
propriately called itinerant electrons. The f -particles occupy sites on the
lattice with energy E and have no kinetic energy. These can either be con-
sidered to be localised electrons or ions. Thus, the model can interpreted as
having quantum c-particles (electrons) interacting with an external classical
�eld (f -particles). As in the Hubbard model, the only interaction between
electrons and ions occurs when they occupy the same site. In general, the
chemical potentials associated with c and f particles µ and µf are unequal,
unless the f -particles are also electrons.

FK model is essentially an independent-electron one, and thus appears to
be a one-body model. The many-body aspects enter through the annealing
average over all the possible con�guration of ions. To understand this better,
the Hamiltonian will be written in such a manner as to explicitly show the
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classical nature of the ions.

H =
∑
ij

t∗ijc
†
icj + E

∑
i

Wi + U
∑
i

c†iciWi (3.2)

The set Wi is the con�guration of ions, with Wi 1 (or 0) if site i is occupied
(or unoccupied)by an ion. In calculating the partition function, the sum over
all possible states will include a sum over all possible ion con�gurations. As
can be seen from (3.2) the itinerant electrons do not interact with themselves,
and it is only through the averaging over the ionic con�gurations does this
model become a many-body model. This creates an e�ective long range
interaction among the ions, and causes them to order or phase separate at
low temperatures.

3.2 DMFT of the Falicov-Kimball model

The result from chapter 2 for the bare propagator G (2.31)still holds here, as
FK model is a Hubbard-type model too. The classical nature of f -particles
makes the solution of the DMFT equations much easier in this case. Begin
with the single particle Green function written in grand canonical ensemble

Gij(τ) = − 1

Z
Trcf

[
e−β(H−µN−µfNf)Tci(τ)c†j(0)

]
(3.3)

where Trcf means the trace over both c and f degrees of freedom. N is the
total electon number operator, while Nf =

∑
iWi is the total ion number.

The Hamiltonian can be separated into two parts, one of which is ion-only
- Hf = ENf . With this division of the Hamiltonian the Green function can
written in path-integral formalism as

Gij(τ) = − 1

Z
Trf

[
e−β(Hf−µfNf)

∫
DψDψ̄ψi(τ)ψ̄j(0)e−S

]
(3.4)

where S is the action for FK Hamiltonian given by

S =
∑
i

∫ β

0

dτψ̄i(τ)(∂τ + UWi − µ)ψi(τ) +
∑
ij

t∗ij

∫ β

0

dτψ̄i(τ)ψj(τ). (3.5)

The action in frequency space reads

S =
∑
n

Sn

Sn =
∑
ij

t∗ijψ̄inψjn +
∑
i

(UWi − iωn − µ)ψ̄inψin (3.6)
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As before, the action is separated into three parts: Sn = Son + ∆Sn + S
(o)
n .

One for degrees of freedom on the cavity site o, one for interaction of the site
with the surroundings and one for the remaining lattice.

Son = (UWo − iωn − µ)ψ̄onψon

∆Sn =
∑
j

t∗jo
(
ψ̄jnψon + ψ̄onψjn

)
(3.7)

S(o)
n = Sn − Son −∆Sn

Then the local Green function at site o, Goo,n, can be expanded exactly as
for Hubbard model -

Goo,n = −T Z
(o)

Z
Trf

[
e−β(Hf−µfNf)

∫
Dψ̄oDψoψonψ̄on

× exp

(
−T

∑
n

Son

)〈
exp

(
−T

∑
n′

∆Sn′

)〉(o) ]
(3.8)

Only the second term in the Taylor expansion of
〈
e−T

∑
n ∆Sn

〉(o)
survives in

the limit of in�nite dimensions. Associate with this term the Weiss �eld λn
so that the Green function becomes

Goo,n = −T Z
(o)

Z
Trf

[
e−β(Hf−µfNf)

∫
Dψ̄oDψoψonψ̄on

× exp

(
T
∑
n′

(iωn′ + µ− UWo − λn′)

)]
(3.9)

The Weiss �eld λn, or equivalently it's Fourier transform λ()τ is the mean-
�eld of DMFT. As mentioned at the outset, this mean �eld is static in space
and �uctuates in time. The term in the exponent is the e�ective action Seff ,
to which can be associated a partition function

Zeff = Trf

[
e−β(Hf−µfNf )

∫
Dψ̄Dψ

× exp

(
T
∑
n

(iωn + µ− UWi − λn)ψ̄onψon

)]
. (3.10)

The trace represents sum over all ion-con�gurations {Wi}. The trace has
been evaluated in [4]

Zeff = exp

[
eiωn0+

∑
n

log
An
iωn

]
+ e−β(E−µ) exp

[
eiωn0+

∑
n

log
An − U
iωn

]
(3.11)
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The Green function (3.9) can be written as a derivative of the partition
function.

Goo,n = − 1

Zeff

∂Zeff
∂λn

(3.12)

Evaluating the derivative gives

Goo,n ≡ Gn =
w0

An
+

w1

An − U
, (3.13)

w0 =
1

Zeff
e−β(E−µ) exp

[
eiωn0+

∑
n

log
An − U
iωn

]

w1(= 1−w0) can be interpreted as the probability of occupation of site o by
an ion. Looking back at the e�ective action it is obvious that the inverse of
iωn + µ− λn ≡ An is the bare propagator, Gn, for the e�ective action, i.e.

G−1
n = iωn + µ− λn (3.14)

Using the result for Hubbard model (2.31)

Σn = G−1
n −G−1

n

and combining it with (3.13) and (3.14), a quadratic equation in the self-
energy Σn is obtained. Of the two solutions only one is analytic in iωn, and
it is

Σn =
U

2
− 1

2Gn

+

√(
U

2
− 1

2Gn

)2

+ w1
U

Gn

(3.15)

As seen in Appendix A, equation (A.7), the Green function for homogeneous
systems is

Gn =

∫ ∞
−∞

dε
D(ε)

iωn + µ− ε− Σn

(3.16)

Equations (3.15) and (3.16) form the set of DMFT equations for the Falicov-
Kimball model. These equations are solved self-consistently, i.e. a guess is
made for the Green function, which is used to evaluate the self-energy from
(3.15). Then the self-energy is input in (3.16) to get another value of Green
function. This process is repeated until the inital and �nal values of Green
functions are su�ciently close.
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3.3 Summary

In this chapter, the Falikov-Kimball model has been introduced. Thereafter,
the DMFT equations for the model were derived using the cavity method.
As the FK model is a Hubbard-type model, the DMFT equation derived
in Chapter 2 also holds here, with one major di�erence. The simplicity of
FK model as compared to the Hubbard model allows the expression of the
self-energy as a very simple function of the Green function. This makes the
model exactly solvable through DMFT, i.e. in the limit of large dimensions.
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Chapter 4

Phase transitions

This chapter introduces the quantities and parameters needed to investigate
phase transitions in Falicov-Kimball model and is based on [1] and [2]. As
an introduction an intuitive understanding of phase transitions based on free
energy will prove useful. A system will exist in that phase which minimises
the free energy.

F = E − TS (4.1)

The internal energy E has its origin in the Coulomb interaction between
ions and electrons, represented in the FK model by the interaction strength
U . The entropy is simply the measure of disorder in the system. For very
large temperatures, the entropy S gives the major contribution minimisa-
tion of the free energy. This is why at large temperatures, systems exist in
phases with maximum entropy, i.e. totally disordered ones. As temperature
is lowered, the contribution from the entropy decreases and the e�ect of E
becomes more prominent. This causes a phase transition to a more ordered
phase. In case of the FK model, the �rst phase encountered, as temperature
is decreased, is the chessboard phase. In this phase, as the name suggests,
the ions are arranged in an alternating pattern like a chessboard, while the
itinerant electrons move through this con�guration.

With further decrease in temperature various other phases might be en-
countered. The last phase is the segregated phase, in which one half of the
lattice is entirely occupied by the ions, whereas the itinerant electrons remain
in the other half. This is a manifestation of the fact that at low temperatures
E is the dominant factor, and a minimum E implies minimum interaction
between the ions and itinerant electrons.
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4.1 The Charge-density-wave susceptibility

Since phase transitions are a change in the ordering of the system, it is useful
to de�ne correlation functions that can quantify order. Begin by de�ning the
density correlation function for c-particles.

χ(Ri −Rj) ≡ χij = 〈(ni − 〈ni〉)(nj − 〈nj〉)〉 (4.2)

The charge-wave-density suscpetibility is de�ned as the fourier transform of
the density correlation. To calculate the correlation, recall the de�nition of
Green function (3.4). To the FK Hamiltonian add a time-independent �eld Λ
which couples only to the itinerant electrons. Denote quantity A in presence
of Λ by AΛ.

HΛ = H +
∑
i

Λid
†
idi

SΛ = S +
∑
i

Λi

∫ β

0

dτψ̄i(τ)ψi(τ)

= S +
∑
i

∑
n

Λiψ̄inψin (4.3)

As usual, GΛ can be found by di�erentiating the partition function.

GΛ
ii = T

∑
n

GΛ
ii,n = − 1

ZΛ

∂ZΛ

∂Λi

and
∂GΛ

ii

∂Λj

= GΛ
iiG

Λ
jj −

1

ZΛ

∂2ZΛ

∂Λi∂Λi

(4.4)

The density at site i 〈ni〉 is just the Green function Gii(τ) with τ → 0−, i.e.

〈ni〉 = lim
τ→0−

GΛ
ii(τ)|Λ=0

= T
∑
n

GΛ
ii,n|Λ=0

Then it is clear that the �rst term in (4.4) corresponds to 〈ni〉〈nj〉, and the
second term corresponds to 〈ninj〉. So,

χij = −T dG
Λ
ii

dΛj

∣∣∣
Λ=0

(4.5)

23



Now observe that

−dG
Λ
ii

dΛj

= −
∫
dk̄
dGΛ

k

dΛj

=

∫
dk̄GΛ

k

d(GΛ
k)−1

dΛj

GΛ
k

where (GΛ
k)−1 is the inverse of the momentum-dependent Green function.

Switching to position-space changes the equation to

− dGΛ
ii

dΛj

= −
∑
a,b

GΛ
ia,n

[
d

dΛj

(G−1Λ
n )ab

]
GΛ
ai,n (4.6)

(G−1Λ
n )ab is the fourier transform of (GΛ

k)−1 and not the inverse of the fourier
transform of GΛ

k . Combining the explicit expression for (G−1Λ
n )ab

(G−1Λ
n )ab = (iωn + µ− Σbb,n − Λb)δab − t∗ab

(which can be easily obtained by a fourier transform of (GΛ
k)−1) and (4.6)

gives
dGΛ

ii,n

dΛj

= GΛ
ij,nG

Λ
ji,n +

∑
a

GΛ
ia,nG

Λ
ai,n

∑
m

dΣa,n

dGΛ
aa,m

dGΛ
aa,m

dΛj

(4.7)

Fourier transform of the above equation results in the expression for the
charge-wave-density susceptibility χn(q).

χn(q) = χ0
n(q)

[
1 +

∑
m

dΣn

dGm

χm(q)

]
(4.8)

χn(q) = −T 2
∑
n

χn(q)

where, Gii,n ≡ Gn, Σii,n ≡ Σn. χ
0
n(q) is the fourier transform of −Gij,nGji,n.

χ0
n(q) = −

∑
ij

e−iq.(Ri−Rj)Gij,nGji,n

= −
∑
ij

e−iq.(Ri−Rj)

∫
dk̄dp̄ei(k−p).(Ri−Rj)Gk,nGp,n

=
∑
ij

e−iq.(Ri−Rj)

∫
dk̄dk̄′eik

′.(Ri−Rj)Gk,nGk−k′,n

=

∫
dk̄Gk,nGk−q,n (4.9)
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Consider Σn as a function of Gn and w1. Using the chain rule for the deriva-
tive of Σn in (4.8) gives

χn(q) =
χ0
n(q)

1− χ0
n(q) ∂Σn

∂Gn

[
1 +

∂Σn

∂w1

γ(q)

]
(4.10)

where

γ(q) =
∑
m

dw1

dGm

χm(q) (4.11)

Combining (4.10) and (4.11) gives an equation explicitly devoid of χn(q)

γ(q) =
∑
n

dw1

dGn

χ0
n(q)

1− χ0
n(q) ∂Σn

∂Gn

[
1 +

∂Σn

∂w1

γ(q)

]
(4.12)

w1 is a function of all An. This fact along with (2.31) can be used to express
dw1/dGn by expanding through chain rule as

dw1

dGn

= − dw1

dAn

1
G2
n
−
(
∂Σn
∂Gn

)
w1

1−
∑

m
dw1

dAm

(
∂Σm
∂w1

)
Gm

(4.13)

Finally, de�ning

ηn(q) =
Gn

χ0
n(q)

− 1

Gn

,

θn = 1−G2
n

(
∂Σn

∂Gn

)
w1

(4.14)

and using (4.12) and (4.13), the expression for γ(q) can be written as

γ(q)

[
1−

∑
n

dw1

dAn

(
∂Σn

∂w1

)
Gn

ηn(q)Gn

θn + ηn(q)Gn

]
= −

∑
n

dw1

dAn

θn
θn + ηn(q)Gn

(4.15)

χn(q) is a function of the wave vector q. This wave vector, called the ordering
vector, will serve as a guide into investigating phase transitions in FK model.
Similar calculation can be done for density correlation between f particles,
and between c and f -particles. The results are

χff (q) =
w0w1

1−
∑

n
dw1

dAn

(
∂Σn
∂w1

)
Gn

ηn(q)Gn
θn+ηn(q)Gn

(4.16)
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χcf (q) = χff (q)T
∑
n

1− θn
θn + ηn(q)Gn

(4.17)

The numerator in none of the cases diverges, while the denominator is the
same for all three. This implies that phase transitions in the ions and elec-
trons happens together.

4.2 Order parameter for Falicov-Kimball model

in large dimensions

De�ne

X(q) =
1

d

d∑
i=1

cos qi. (4.18)

The parameter X serves as the order parameter for continuous second order
phase transitions in FK model. Di�erent values of X correspond to di�erent
phases. X = −1 corresponds to the chessboard con�guration, while X = 1
corresponds to the segregated phase.[1],[7] The electron-electron bare suscep-
tibility χ0

n(q) can be written as a function of X.[7]

χ0
n(X) =

1√
π

1√
1−X2

∫ ∞
−∞

dy
e−y

2

iωn + µ− Σn − y
G

(
iωn + µ− Σn −Xy√

1−X2

)
(4.19)

G(z) was de�ned in Appendix A (A.9). With guassian density of states the
expression for G(z) is

G(z) =
1√
π

∫ ∞
−∞

dy
e−y

2

z− y
(4.20)

(From this point onwards, the hopping amplitude t is set to unity. The energy
scale is thus de�ned in terms of t.) For X = 0,±1 the bare susceptibility can
be analytically derived. For other values of X, the integrations have to done
numerically. Correspondingly, the value of ηn(X) for these three values of X
can also be calculated analytically. The values for X = −1 are

χ0
n(X = −1) =

Gn

iωn + µ− Σn

(4.21)

ηn(X = −1) = λn ≡ iωn + µ− An (4.22)

Assuming a continuous second order phase transition, the temperature at
which γ(X) diverges is the critical temperature. For all three susceptibili-
ties, χ, χff and χcf , the numerators never diverge. Any divergence will be a
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result of the denominator approaching zero. The fact that all three suscep-
tibilities have a common denominator, implies that phase transitions occur
simultaneously for electrons and ions. Thus, the critical temperature is one
that satis�es ∑

n

dw1

dAn

(
∂Σn

∂w1

)
Gn

ηn(X)Gn

θn + ηn(X)Gn

= 1 (4.23)

In general, for each value of X the susceptibility will diverge for a di�erent
temperature, i.e. to each X a critical temperature T (X) can be associated.
The critical temperature for transition from a homogeneous phase to a non-
homogeneous one is, then, the greatest among these.

Tc = max{T (X)} (4.24)

Recall that the equations of DMFT derived in Chapter 3 are valid only for
homogeneous phases, and will not hold for temperatures below Tc.

4.3 Summary

In this chapter a measure of the ordering, the charge-density-wave suscepti-
bility χ(q), has been de�ned and calculated for a system based on Falicov-
Kimball model. It has been shown that the two species of particles c and f
have same critical temperatures. Using DMFT it has been shown that an
ordering parameter can be de�ned.
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Chapter 5

Results and discussion

In this chapter, the formalism developed in past chapters is put to use and
phase transitions for small interaction strength U are analysed. In the last
section future plans are described.

5.1 Phase transitions for small interaction strengths

It can be shown that critical temperature de�ned in (4.24) always corresponds
to the chessboard phase (X = −1).[2] This means that DMFT as developed
in the previous chapters can be used only for calculating the transition from
a homogeneous phase to the chessboard phase. The calculations are easiest
for small interaction strength U . The relevant quantities to �rst order in U
are

Σn = w1U(
∂Σn

∂Gn

)
w1

= 0(
∂Σn

∂w1

)
Gn

= U

dw1

dAn
=
w0w1UG

2
n

1 + UGn

θn = 1

ηn(−1) = iωn + µ− w1U −
1

Gn

(5.1)

Since the self-energy is just a constant, the Green function Gn (3.16) can
be calculated directly without resorting to any numerical approach based on
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self-consistency. Plugging in all these quantities in (4.15) gives

γ(X = −1)

[
1− w0w1U

2
∑
n

(iωn + µ− w1U)G2
n −Gn

(1 + UGn)(iωn + µ− w1U)

]
= −w0w1U

∑
n

Gn

(1 + UGn)(iωn + µ− w1U)
(5.2)

There are three possibilities for the behaviour of the critical temperature to
the chessboard phase Tc as a function of U .

1. Tc > 0 for all U ≥ 0. In particular, there is a non-zero Tc even for zero
interaction.

2. Tc = 0 for U = 0, and Tc > 0 for U > 0.

3. Tc = 0 for U < U0, and Tc > 0 for U > U0. U0 is a positive number.

It is easy to check that possibility 1 is wrong. For U = 0, γ = 0, and
χ = χ0. The bare susceptibility χ0 in this case is simply

∑
nGn/(iωn + µ)

which does not diverge for any �nite value of temperature. Thus there is no
phase transition in absence of interactions. This is also intuitively obvious -
without any interactions to counter it, the entropy of the system will keep
the system in a disordered homogeneous phase.

To check possibilities 2 and 3, consider a half-�lled lattice, i.e. w0 = w1 =
1/2.

γ(X = −1) = −
U
∑

n
Gn

(1+UGn)(iωn+µ∗)

4− U2
∑

n
(iωn+µ∗)G2

n−Gn
(1+UGn)(iωn+µ∗)

(5.3)

Here µ∗ = µ − U/2 is the reduced chemical potential. The numerator is
always �nite, except for U = 0, and hence it su�ces to calculate the tem-
perature at which the denominator vanishes. Explicit numerical calculation
shows that possibility 2 is the correct one. Figure 5.1 shows the variation of
critical temperature with U , with the chemical potential set at 0.5. Thus, to
every non-zero value of U , corresponds a non-zero critical temperature.

U = 0⇒ Tc = 0

U > 0⇒ Tc > 0 (5.4)

The critical temperature Tcs for the segregated phase (X = 1) is always
lesser than the critical temperature Tc for the chessboard phase (X = −1).
It follows that a zero interaction Tcs is also zero.
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Figure 5.1: Critical temperatures for transition from a homogeneous to chess-
board phase in weakly interacting systems . µ = 0.05

5.2 Discussion and future research plan

In the last section it was seen that phase transitions will not occur if and
only if the interaction strength U is zero. This result implies that at zero
interaction strength the segregated phase cannot be the dominant phase re-
gardless of the temperature. This is in complete contrast to the zero temper-
ature phase diagram in [7] (refer to Fig 5.2), where the segregated phase was
shown to be stable for some range of electronic concentrations even for zero
interaction. In the said diagram, the segregated phase is stable at zero inter-
action for some range of electronic concentration. It should be remembered
at this point that the DMFT formalism developed in previous chapters is
valid only for homogeneous phases. This gives a clue to the possible reason
behind this discrepancy. The author of [7] has used the DMFT formalism for
homogeneous phases to analyse phases at temperatures lower than the high-
est critical temperature. In shorter terms, the formalism for homogeneous
phases has been erroneously applied to heterogeneous phases in [7].

The result of last section was based on a calculation which assumed small
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Figure 5.2: Phase diagram for the symmetric case, with regions of stabilities
indicated by respective names.

interaction strength U . This restriction to U makes the calculation a lot
simpler, but severely restricts the scope of the result. It is intended that the
restriction is removed, and the calculation is done for any arbitrary U . Also,
for more general analysis, the current DMFT formalism which holds only for
homogeneous phases, has to be extended for heterogeneous phases. With
this extension, it will be possible to probe critical temperatures other than
just the highest one (corresponding to the chessboard phase).
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Appendix A

Long derivations

A.1 Density of states in large dimensions

This section derives the gaussian density of states (DOS) in large dimensions
by explicit summation. The DOS is

Dd(ε) =
∑
k

δ(ε− εk) (A.1)

and the dispersion is

εk = −2t∗
d∑
i=1

cos ki. (A.2)

Converting the sum in (A.1) to an integral over the �rst Brillouin zone gives

Dd(ε) =

∫
dk̄δ(ε− εk), dk̄ =

d∏
i=1

dki
2π

=

∫
dk̄

∫ ∞
−∞

dxeix(ε−εk)

=

∫ ∞
−∞

dxeixε
[∫ π

−π

dk

2π
ei2t

∗x cos k

]d
Denote the integral inside the brackets [...]d by F (2t∗x). By explicit Taylor
expansion it can be shown that

F (x) = 1− x2

4
, x� 1. (A.3)

It is clear that for �nite t∗x, limd→∞ [F (2t∗x)]d either vanishes or blows up.
The only way it remains �nite is if t∗ approaches zero at the same rate as
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1/
√
d does. In this case t∗ = t/2

√
d and (A.3) can be used, which implies

that in the limit d→∞

[F (2t∗x)]d =

(
1− t2x2

4d

)d
= e−t

2x2/4 (A.4)

Finally,

D∞(ε) =

∫ ∞
−∞

dxeixεe−t
2x2/4 (A.5)

which returns the same result as (2.8). It is clear that any scaling t∗ = t/c
√
d,

c being a �nite constant would work equally well. c = 2 is nothing more than
a convenience.

A.2 Self energy for the Hubbard Model

The bare propagator G(iωn) was calculated in (2.29), and the Green function

in presence of the cavity G
(o)
ij in (2.30). Combining the two gives

G−1
n = iωn + µ−

∑
ij

t∗iot
∗
joGij,n +

1

Goo,n

(∑
i

t∗ioGio,n

)2

(A.6)

To evaluate (A.6), �rst calculate Gn =
∑

kGk,n, with

Gk,n =
1

iωn + µ− εk − Σn

(A.7)

which is just the Dyson equation for homogeneous phases. Thus the entirety
of work built upon this equation holds only for homogeneous phases. Note
that the self-energy ΣN is local in space, i.e. has no momentum dependence.
This result was arrived at in Chapter 2 in the limit of in�nite dimensions.

Gn =

∫ ∞
−∞

dε

∑
k δ(ε− εk)

iωn + µ− ε− Σn

=

∫ ∞
−∞

dε
D(ε)

iωn + µ− ε− Σn

(A.8)

D(ε) is the density of states, which in the in�nite dimensional limit is a
gaussian. (A.8) can also be written in the following manner, with z replacing
the variable (iωn + µ− Σn) -

G(z) =

∫ ∞
−∞

dε
D(ε)

z− ε
(A.9)
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Thus, the Green function is just the Hilbert transform of the density of states.
(A.6) in momentum-space reads

G−1
n = iωn + µ−

∑
k

ε2kGk,n +
(
∑

k εkGk,n)2∑
kGk,n

(A.10)

which in terms of the density of states is

G−1
n = Σn + z−

∫
dεD(ε)

ε2

z− ε
+

(∫
dεD(ε) ε

z−ε

)2∫
dεD(ε) 1

z−ε
(A.11)

Using the fact that the density of states is even function of ε in the limit of
in�nite dimensions, the above equation simpli�es to

G−1
n = Σn +G−1

n (A.12)
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Appendix B

Conventions

B.1 Units

Throughout this thesis natural units are used.

~ = kB = 1 (B.1)

The lattice spacing is also set to unity.

B.2 Fourier transform

The discrete position-momentum fourier transform and its inverse are de�ned
as

fi =
1

N

∑
k

eik.Rifk (B.2)

fk =
∑
i

e−ik.Rifi (B.3)

Each component of the momentum k is restricted to

kj =
2πmj

N
mj ∈

(
−N

2
,
N

2

]
(B.4)

N is the number of sites on the lattice. The work in this thesis is modelled
upon an in�nite lattice, N →∞, and the Fourier relations read

fi =

∫ π

−π
dk̄eik.Rifk (B.5)

fk =
∑
i

e−ik.Rifi (B.6)
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where, dk̄ =
∏

j
dkj
2π
. Throughout this thesis, even if momentum to position

Fourier transform is written as a sum, it actually means an integral .

B.3 Imaginary time formalism

A Fourier transform of a function in imaginary time is given by

F (iωn) ≡ Fn =

∫ β

0

dτeiωnτF (τ) (B.7)

ωn = (2n+ 1)πT are the Matsubara frequencies. The reverse transformation
is

F (τ) = T

∞∑
n=−∞

dτe−iωnτFn. (B.8)
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