
ON IMPROVEMENTS OF r-ADDING WALKS TO SOLVE THE
DISCRETE LOGARITHM PROBLEM

A thesis submitted towards partial fulfilment of
BS-MS Dual Degree Programme

by
HARDIK GAJERA

under the guidance of

DR. AYAN MAHALANOBIS

IISER, PUNE

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH,
PUNE

2

Certificate

This is to certify that this thesis entitled ‘On improvements of r-adding walks
to solve the Discrete Logarithm Problem’ submitted towards the partial fulfilment
of the BS-MS dual degree programme at the Indian Institute of Science Education
and Research, Pune represents original research carried out by Hardik Gajera at
IISER, Pune, under the supervision of Dr. Ayan Mahalanobis during the academic
year 2012-2013.

Student
HARDIK GAJERA

Supervisor
DR. AYAN MAHALANOBIS

2

Acknowledgements

I take this opportunity to express my gratitude and deep regards to my guide
Dr. Ayan Mahalanobis for his exemplary guidance, monitoring and constant en-
couragement throughout the course of this thesis.

I would like to acknowledge the help of John Cannon with Magma. I would
like to thank Dr. Jayant Deshpande for stimulating conversations regarding QQ-
plots and Jung Hee Cheon, Min Kyu Kim for their valuable reviews and sugges-
tions through emails.

Lastly, I thank my parents, brother and friends for their constant encourage-
ment without which this assignment would not be possible.

HARDIK GAJERA

MARCH, 2013

IISER, PUNE

2

Abstract

It is currently known from the work of Shoup and Nechaev that a generic al-
gorithm to solve the discrete logarithm problem in a group of prime order must
have complexity at least k

√
N where N is the order of the group. In many col-

lision search algorithms, this complexity is achieved. So with generic algorithms
one can only hope to make the k smaller. This k depends on the complexity of
the iterative step in the generic algorithms. The

√
N comes from the fact there is

about
√
N iterations before a collision. So if we can find ways that can reduce

the amount of work in one iteration then that is of great interest and probably the
only possible modification of a generic algorithm. The modified r-adding walk
does just that. It reduces the amount of work done in one iteration of the original
r-adding walk. In this paper we study this modified r-adding walk, we critically
analyse it and we compare it with the original r-adding walk. In the final chapter,
we discuss an improvement of original r-adding walk on elliptic curve over Fp.

2

Table of Contents

0 Introduction 1

1 r-adding walk 3

2 A time-memory improvement of r-adding walk over finite field 15
2.1 Tag . 16
2.2 The tableMl . 16
2.3 An overview of the algorithm . 17
2.4 Comparison of modified r-adding walk with the original r-adding

walk . 18
2.4.1 r-adding walk . 19
2.4.2 Modified r-adding walk 20
2.4.3 Table lookup . 23
2.4.4 Results of our experiments 24

2.5 Conclusion . 26

3 Morified r-adding method over Elliptic Curve (E(Fp)) 27
3.1 Group structure on rational points of an Elliptic curve 27
3.2 Bilinear maps . 32

3.2.1 Rational functions and divisor 32
3.2.2 Miller’s algorithm . 34
3.2.3 Bilinear Pairing on elliptic curve 35

3.3 The Tag function for the modified r-adding walk over elliptic curve 37
3.3.1 The tag function . 38
3.3.2 The modified r-adding function 38

3

4

Chapter 0

Introduction

In a recent article in the Journal of Cryptology, Cheon et. al. [2] published a novel
time-memory speed-up of the well known Teske’s r-adding walk [20, 21]. Choen
et. al. claim up to 10 times speed-up of the Pollard’s rho algorithm to solve the
discrete logarithm problem in a finite field. This has no doubt stunned the cryptog-
raphy world. Ten times speed-up is a remarkable speed-up. Earlier, what would
have taken ten years to solve a discrete logarithm will now take about one year.
This type of claim must be verified and re-verified.

This thesis is based on our work trying to verify that claim made by the au-
thors [2]. We cannot support their claim of “ten times faster”. However, we
found that the modified r-adding walk, the one proposed by Cheon et. al., is
about two to three times faster (depending on what r one chooses) than the origi-
nal r-adding walk proposed by Teske [20,21]. We would reiterate that we find the
idea of the modified r-adding walk interesting and novel.

As we will discuss in details later, the modified r-adding walk replaces a field
multiplication in the r-adding walk by a tag computation and table lookup. If
we only count the number of multiplications in the base field then the modified
r-adding walk is way ahead. However, when we factor in the table lookup and the
branching necessary to do two operations instead of one, the advantage diminished
substantially.

The only way we find to compare these two algorithms – the r-adding walk [20,
21] and the modified r-adding walk [2] is to do an actually implementation of
these two algorithms in an identical platform. In that implementation we must be
very careful. The way we implement table lookup will influence the outcome of
our experiment. We choose Magma [1] as our language of choice. The reason for
that is simple, Magma probably is the best language to manipulate polynomials
and has the best available large finite field implementation. In trying to imple-
ment the modified r-adding walk we implemented the algorithm many times with
different design paradigms until we were reasonable certain that the implementa-

1

tion was optimal in speed. Then we implemented the original r-adding walk. We
made sure that these two algorithms were as similar as possible. As a matter of
fact we can speak with conviction that the only difference in these two implemen-
tations was, the field multiplication in the original r-adding walk was replaced
by tag computation and table lookup. We changed the r-adding walk to use the
distinguished path segment to define its distinguished points and the same index
function γ.

In the original and the modified r-adding walk we need an index function γ.
We define the function γ and have shown that this is one of the best choices pos-
sible (see Figure 2). This makes us confident about our findings. So the obvious
question comes: why are our findings so different with that of Cheon et. al. [2]?
We think the reason is that the authors used the NTL library. This library is known
to be slower than Magma in the implementation of polynomial multiplication.
Since the authors provide very little details about their implementation, we are
unable to say more. Moreover, we have serious issues with the use of r = 4, 8 in
the modified r-adding walk. It is known and we have re-established in Section 1
that the choice for r must be at least 16. This has substantial effect on the speed
of the modified r-adding walk.

This chapter is organized in two parts. In the first part we study the r-adding
walk. The rho length of a r-adding walk is defined to be the number of iterations
in the walk before the first collision. In Section 1 we study the distribution of
the rho length. Our study of the r-adding walk is different from previous studies
as we are using the distinguished path segment to define the distinguished points.
The purpose of this section is to (re)establish the fact that one should use large
r (r ≥ 16). We thought that it is important to establish this fact because in the
modified r-adding walk uses r = 4, 8. They use the mean of the rho length for
r = 4, 8 but doesn’t compute the standard deviation. The variance is large, which
makes their estimation ineffective.

We then explain the modified r-adding walk and many of its salient features in
details in Section 2. We then do the comparison with the original r-adding walk
and produce our result (Table 2.1). We developed a new table lookup method that
makes the modified r-adding walk go faster.

2

Chapter 1

r-adding walk

Generic algorithms for solving the discrete logarithm problem are algorithms that
do not use the structure or representation of the group. They use the operation of
multiplication, inversion and equality in group elements. These kind of algorithms
are restrictive by nature, they are often not the fastest algorithms. However, they
are very powerful, they can be applied to the discrete logarithm problem in every
possible scenario, be it the group of rational points of an elliptic curve or that of
the group of units of a finite field. It is currently known that the complexity of
solving the discrete logarithm problem in a finite cyclic group of prime order N ,
using any generic algorithm is at least k

√
N [8,17], where k is a positive constant.

So any new modification of a generic algorithm can make the k smaller. This k is
tied to the amount of work done in one iteration.

The generic algorithm that we want to start our discussion with is the famous
Pollard’s rho algorithm. He first developed it to factor integers and then that was
adapted to solve the discrete logarithm problem [9]. The idea behind the Pollard’s
rho algorithm is simple, create an iterated random walk in a finite cyclic group.
Since the set is finite, there will always be a collision in this random walk. From
that collision find the logarithm. However, there is one problem with finding the
collision, store all the elements of the random walk. Not only that, every time a
new node of the walk is computed one must check that with all the previous nodes.
This increases both the time and space complexity of the algorithm. Pollard found
a clever solution to the problem. He introduced a function, iteration by which will
simulate a random walk. Let G = 〈g〉 be a group of prime order. We are given g
and h = gx where x is the discrete logarithm. Pollard’s function is as follows:

f(y) =


gy if y ∈ G1

y2 if y ∈ G2

hy if y ∈ G3

where G1, G2 and G3 is an almost equal sized partition of G. In this case the

3

iterated random walk looks like the Greek letter ρ and so the name Pollard’s rho
algorithm. The rho structure indicates that once there is a collision, the walk
will repeat itself. This changes the storage requirement dramatically as follows:
we pick a few arbitrary points, and call them distinguished points, we will only
have to look for collision in those distinguished points. Another way to think of
distinguished points is laying traps. We lay a few traps and hope that some of
them will be on the repeating part of the ρ. When we have two elements in our
trap, we know that there is a collision and the algorithm stops. It is clear that we
won’t catch the first collision this way, but we don’t have to do the search either,
and the saving in space compensates for this increase in time. We should add here
that Pollard didn’t propose this distinguished point method. His idea was using
the Floyd’s cycle finding method. However we present Pollard’s rho algorithm
this way to motivate our next discussion.

Teske [20, 21] developed r-adding walk in the same spirit as the Pollard’s
rho algorithm (the spirit being the ρ, a repeating random walk) but in practice it
works differently. Let G, g and h be the same as above. For some r ∈ N, let
{m1,m2, . . . ,mr} be a set of elements of G of the form gαhβ picked uniformly
randomly where α, β are integers. This is usually done by choosing α and β
uniformly random. These mis will be referred to as multipliers in this paper. Let
γ : G→ {1, 2, . . . , r} be a function. An r-adding walk F is defined iteratively as
follows:

F(Y) = Y mγ(Y). (1.1)

Note that computation of a node in the r-adding walk requires one group multi-
plication and one evaluation of the function γ.

The starting point of the r-adding walk is computed by choosing a positive
integer α0 uniformly random from the set {1, 2, . . . , |G|} and computing Y0 =
gα0 . To compute mi two integers αi and βi are chosen uniformly randomly from
{1, 2, . . . , |G|} and mi = gαihβi . It is easy to notice that as the walk progresses,
the nodes of the walk are of the form gαhβ for positive integers α and β. When
there is a collision we have gαhβ = gα

′
hβ
′ . Which forms the equation

α + xβ = α′ + xβ′ mod |G|. (1.2)

Since |G| is prime, this equation is easy to solve for the unknown x.
Teske [21, Section 5] has shown that for large enough r and suitable γ the

r-adding walk simulates a random random walk1 very well. In this paper we are
not repeating Teske’s work. We are not looking at the randomness aspect of this
r-adding walk. We want to study the distribution of the rho length of a r-adding
walk.

1A random random walk is a random walk with a random starting point. Random being chosen
uniformly random.

4

Iterative walks depending on functions from a finite set to itself are extensively
studied by statisticians, see [4, 11, 13].

Definition 1.0.1 (Iterated walk). Let Ω be a finite set of size n and T : Ω → Ω
be a function. Let x ∈ Ω. Then the iterative walk corresponding to T is defined
as {x0, T (x0), T

2(x0), . . . , } where T k is defined as composition of T with itself
k times.

Let us define ST (x0) =
{
x0, T (x0), T

2(x0), . . . , T
k(x0), . . .

}
then the size of

ST (x0) is the number of steps required for the collision with T starting from x0.
If we denote the size of ST (x0) by s, then we are interested in the distribution of
s when T is chosen uniformly random from the set of all functions.

Let X be a random variable that counts the number of steps before a colli-
sion, for an iterating walk from T , starting from an arbitrary element x0. Let us
compute the probability density function for X . There is total nn many possible
functions from the set n many elements to itself. If we consider that the T is cho-
sen randomly, then P (T) = 1/nn. Let, s′ denote the number of elements in the
cycle contained in ST (x0). Then for any choice of x,

P (s = k, s′ = j) = P{T r 6= x, Tx, . . . , T r−1x : (0 < r ≤ (k−1));T kx = T k−jx}

Using n many different elements, we can form nk many different sequences of
length k. But, we want to have sequence with s = k, s′ = j. For fixed x, we can
Tx in (n−1) many ways,T 2x in (n−2) and so on up to T k−1. We don’t have any
choice for T kx because T kx = T k−jx where j > 0 and we have already chosen
T k−jx. Hence, number of favourable sequences is (n−1)(n−2) . . . (n−(k−1)) =
(n−1)!
(n−k)! . Hence, we have

P (s = k, s′ = j) =
number of favourable sequences

total number of sequences
=

(n− 1)!

(n− k)!nk

. Note that, P (s = k, s′ = j) is independent of j. Hence, we have

P (s = k) =
k∑
j=1

(n− 1)!

(n− k)!nk
=

(n− 1)!k

(n− k)!nk
.

Let us compute asymptotic probability density of s. Let, s =
√
nx, s′ =

√
ny and

5

use Stirling approximation for factorials (n! ∼
√

2πn(n
e
)n).

P (s =
√
nx, s′ =

√
ny) =

n!

(n−
√
nx)!n

√
nx+1

∼
√

2πnn+1/2e−n√
2π(n−

√
nx)n−

√
nx+1/2e−n+

√
nx

=
nn−

√
nx−1/2e−

√
nx

(n−
√
nx)n−

√
nx+1/2

=
nn−

√
nx−1/2e−

√
nx

nn−
√
nx+1/2(1− x√

n
)n−
√
nx+1/2

Write (1 − x√
n
)n−
√
nx+1/2 = e

(n−
√
nx+1/2) loge(1− x√

n
). If we expand loge(1 − x√

n
)

and let n tends to∞, then e−
√
nx

e
(n−
√
nx+1/2) loge(1− x√

n
) ∼ e−

1
2
x2 . Hence, for large enough

n, we have P (s =
√
nx, s′ =

√
ny) ∼ n−1e−

1
2
x2 . Hence, asymptotic density of

(s/
√
n, s′/

√
n) is given by f(x, y) = e−

1
2
x2 0 < y ≤ x < ∞. By integrating

f(x, y) with respect to y, we get the marginal distribution Γ(x). Hence, Γ(x) =

xe−
1
2
x2 .

Harris [4, §3] has also shown that the probability density function of X con-
verges to

Γ(x) = x exp−
1
2
x2 , x > 0 (1.3)

as n tends to infinity, where x
√
n := s. This is the classic Rayleigh distribution

and it is known that the mean µ(X) = 1 and the standard deviation s.d.(X) ≈
0.523 in units of

√
π
2
q. 2

Our question is: Is the distribution of X , the random variable to count the
number of steps before a collision, for the original r-adding walk close to the dis-
tribution function Γ? We answer this question in affirmative for a large enough
r and a suitably chosen γ by an experiment. Before we discuss our experiment,
let us explain the methodology for the experiment. We have a probability density
function Γ. We call the function Γ(x) = x exp−

1
2
x2 , x > 0 the test distribution

function. We intend to generate data points (number of iterations before collision
in a r-adding walk for different values of r) and then see if the data fits the test
distribution function Γ. We will further plot the data and see the shape of that
curve and compare that with the test distribution function. In judging, if a set of
data fits a distribution – the quantile plots (Q-Q plots) are very useful [23, §4].

2The theoretical mean and standard deviation of Rayleigh distribution are generally in units of√
(q) but, our experimental mean and standard deviation are in units of

√
π
2 q. Hence, we have

provided the theoretical mean and standard deviation in units of
√

π
2 q.

6

Figure 1.1: The QQ-plots for average rho-length for different values of r over
finite field GF(21023) and subgroup of size 235.

7

Figure 1.2: The QQ-plots for average rho-length for different values of r over
finite field GF(21023) and subgroup of size 237.

8

Figure 1.3: The QQ-plots for average rho-length for different values of r over
finite field GF(21023) and subgroup of size 239.

9

Figure 1.4: The QQ-plots for average rho-length for different values of r over
finite field GF(21023) and subgroup of size 240.

10

Figure 1.5: Empirical Probability Density Function for two different r-values over
finite field GF(21023) and prime order subgroup.

11

Figure 1.6: Empirical Probability Density Function for two different r-values over
finite field GF(21023) and prime order subgroup of size 240.

12

For our experiment, We have used a subgroup of the binary field F21024 of
40-bit prime order. We have used the same r-adding walk described in [21]. We
describe the index function3 γ. For each r, choose an integer t ≈ log2 r and define
the tag function τ : F2n −→ F2t where the image of τ is the vector of the coef-
ficients of the first t many highest degree terms in the polynomial representation
of an element in F2n . Define another function σ : F2t −→ {1, 2, . . . , r} where for
each element f(x) = a0 + a1x + . . . + at−1x

t−1 in F2t , σ(f(x)) = 1 + f(2) =
1 + a02

0 + a12
1 + . . . + at−12

t−1. Note that for each i, 1 ≤ i ≤ r, ai is in F2.
This means that 0 ≤ f(2) ≤ r − 1 (t ≈ log2 r) which implies that 2t ≈ r. Then
define γ = σ ◦ τ . Notice that τ is an additive function. It is clear from the above
that once τ is computed, it is straightforward to compute the σ and then γ. For the
purpose of this paper one can use γ and τ interchangeably.

We used the R software [10] to get the empirical probability density function
and the Q-Q plots for our data. We have plotted the empirical probability density
function and the Q-Q plots of the variable X for r = 4 and r = 20 over finite
field F21023 and prime subgroups of size 235, 236, 237, 239 and 240. Figures for
epdf and Q-Q plots can be found in appendix.Figure 1.6 represents the empirical
probability density function(epdf) of the variable X for r = 4 and r = 20 over
finite field F21023 and prime subgroup of size 240.Notice that the maximum y-value
of the function for r = 4 is less than 0.5 and for r = 10 it is greater than 0.55.
Theoretically, maximum y-value of Rayleigh distribution is approximately 0.57.
Also, the epdf for r = 4 is wider than the epdf for r = 20. This means that
for r = 20, the probability of the value of X lying in the neighbourhood of the
mean is higher than that for r = 4. Hence, epdf for r = 20 simulates Rayleigh
distribution more closely than r = 4. This means that 20-adding walk is better
than 4-adding walk. Figure 1.4 represents the Q-Q-plots for different r-values over
finite field F21023 and subgroup of size 240. It seems clear from the Q-Q plots that
as r increases the distribution of X comes closer and closer to the test distribution
function Γ and for r = 20, it is virtually indistinguishable from Γ. Hence, one
should use r close to 20 for practical purposes. Teske [21] also suggested that
r ≥ 16 for practical purposes.

The rho length of a r-adding walk is the number of iterations before the first
collision in the walk. We ran tests to compare the average rho length of a r-adding
walk for different values of r. Let us discuss in details our experiment. We have
used cyclic subgroups of G = 〈g〉 of the field F21024 . We have used four sub-
groups of prime order, they are 36-bit, 37-bit, 39-bit, 40-bit primes. For each DLP
instances, an element h ∈ G was chosen and a set of multipliers were randomly
selected. Then the r-adding iteration function F was iterated from a random start-

3The index function is so chosen because we will use the same index function for the modified
r-adding walk later.

13

Table 1.1: Average rho lengths for different r-adding walk over different sub-
groups of binary field F21024 , in units of

√
π
2
q (the standard deviations of ρr are

given in the parentheses).

r-value 36-bit 37-bit 39-bit 40-bit average ρr
4 1.332(0.701) 1.353(0.705) 1.347(0.697) 1.333(0.688) 1.341
5 1.212(0.627) 1.187(0.620) 1.189(0.627) 1.191(0.620) 1.195
6 1.146(0.598) 1.137(0.583) 1.131(0.588) 1.133(0.585) 1.137
7 1.127(0.575) 1.113(0.575) 1.108(0.570) 1.121(0.585) 1.116
8 1.087(0.566) 1.092(0.565) 1.084(0.570) 1.081(0.567) 1.086
9 1.069(0.557) 1.077(0.565) 1.077(0.561) 1.072(0.560) 1.074
10 1.080(0.563) 1.062(0.556) 1.064(0.558) 1.075(0.558) 1.070
11 1.055(0.547) 1.081(0.549) 1.063(0.547) 1.053(0.544) 1.063
12 1.051(0.545) 1.049(0.554) 1.046(0.542) 1.053(0.550) 1.050
13 1.060(0.543) 1.080(0.551) 1.038(0.550) 1.050(0.533) 1.057
14 1.059(0.546) 1.057(0.548) 1.053(0.546) 1.059(0.547) 1.057
15 1.061(0.547) 1.084(0.566) 1.032(0.540) 1.033(0.537) 1.052
16 1.037(0.541) 1.037(0.542) 1.044(0.541) 1.034(0.540) 1.038
17 1.034(0.548) 1.038(0.559) 1.038(0.540) 1.040(0.545) 1.037
18 1.038(0.542) 1.035(0.538) 1.024(0.535) 1.040(0.544) 1.034
19 1.028(0.543) 1.035(0.538) 1.027(0.537) 1.027(0.537) 1.029
20 1.033(0.538) 1.031(0.538) 1.017(0.536) 1.020(0.521) 1.025

ing point until the first collision in the walk with the γ defined previously. Once
the first collision was found, the rho length was recorded. Note that we were look-
ing for the first collision in a r-adding walk, so we didn’t used the distinguished
point method which gives approximate position of the collision. We have repeated
this processes 10, 000 times for each of the four subgroups mentioned before. In
the Table 1.1, the top row represents the size of the subgroup and all other rows
represents average rho length for a specific r. The rho lengths are given in units
of
√

π
2
q. Let ρr denotes the rho length of the r-adding walk in units of

√
π
2
q. The

table clearly shows that the ρr is nearly stable and almost equal to one over sub-
groups of different order for each r ≥ 16. Hence, it is advisable to use r ≥ 16 for
all practical purpose. This reconfirms Teske’s work [20, 21]. We assume that the
ρr given in Table 1.1 are roughly same even on very large prime order subgroup
of F21024 . Cheon et. al. [2] found similar results for ρr.

14

Chapter 2

A time-memory improvement of
r-adding walk over finite field

Cheon et. al. [2] found an innovative way to speed up the r-adding walk using
a time-memory trade-off. Recall that one iteration of the r-adding walk requires
one field multiplication and one evaluation of the function γ. The novel idea
in this paper is not to do the multiplication at every step, rather do it once in a
while. However multiplication is a binary operation, so it doesn’t matter how
often one does that, it has the same number of multiplications at the end. Authors
circumvented this problem by storing various products as group elements in a
tableMl and calling them when required.

Recall that at any intermediate step, the iteration computes the product Y mi1mi2

. . .mik where ij ∈ {1, 2, . . . , r} and k a positive integer. If there is a table that
can stores the values of product mi1mi2mi3 . . .mik for various k, then these k
multiplications can be reduced to one multiplication. This is the central idea that
makes tag tracing go faster than the normal r-adding walk. Select a positive in-
teger l, and compute the product after every l steps using a tableMl that will be
described soon.

There is one more thing that needs mention, the function γ : G→ {1, 2, . . . , r}
can only be computed after the product is computed. Recall that the iteration in
r-adding walk is F(Y) = Y mγ(Y). So until Y is available one cannot compute
γ(Y) and the iteration cannot work. This gets in the way of the idea, “multiply
after every l steps”. Authors [2] solved this problem by introducing a tag which is
associated with every group element in the table (Ml). Then γ is a function from
this tag to {1, 2, . . . , r}. This involves a table lookup in the modified r-adding
walk that will slow things down. We describe the algorithm of the modified r-
adding walk in details later.

15

2.1 Tag

Recall that we are working in a group G ⊂ F×2η . What we discuss will work for
any field extension of prime characteristic, however we do not know how to make
this work outside of finite fields.

In this case we represent the vector space F2η as a η-dimensional vector space
over the field of two elements F2. We take the polynomial basis {1, x, x2, . . . , xη−1}
as the basis of F2η and any element x ∈ F2η can be written uniquely as a polyno-
mial of degree less than η with coefficients over F2. Fix a small positive integer
t, the tag corresponding to t for an element f(x) = a0 + a1x + . . . ,+aη−1x

η−1

in F2η , is the coefficients of {xη−t, xη−t+1, . . . , xη−1}. In short, the tag is a binary
vector of length t consisting of coefficients of the highest t powers of the poly-
nomial f(x). Notice that our polynomials are always of degree less than η. One
can also define the tag as an additive function τ : F2η → Ft2 where the image
of τ is the vector of coefficients of t highest degree terms in the polynomial basis
representation of an element in F2η . It is easy to verify that this tag is an additive
function and respects scalar multiplication.

Now assume that τ (x0mi) , τ (xmi) , τ (x2mi) , . . . , τ (xη−1mi) is known, then
we can compute τ (fmi) using the following formula:

fmi = a0mi + a1 (xmi) + a2
(
x2mi

)
+ . . .+ aη−1

(
xη−1mi

)
and from the know properties of τ we have

τ(fmi) = a0τ (mi) + a1τ (xmi) + a2τ
(
x2mi

)
+ . . .+ aη−1τ

(
xη−1mi

)
(2.1)

The above statement follows from the distribution of multiplication over addition
in the polynomial algebra F2[x] and is even true if we replace mi by a product
mi1mi2 . . .mik for any positive integer k.

2.2 The tableMl

The table Ml has l rows. The first row contains r cells. Each cell is numbered
by {1, 2, . . . , r} corresponding to {m1,m2, . . . ,mr} stating from the left. The
second row has

(
2+r−1

2

)
=
(
r+1
2

)
cells. Total number of all possible mimj where

1 ≤ i, j ≤ r is r2. Notice that we are in a abelian group and mimj = mjmi.
There are exactly r-many elements of the form mimi where 1 ≤ i ≤ r. Hence,
after removing duplicates, we are left with r2−r

2
+ r = r2+r

2
=
(
r+1
2

)
many el-

ements in second row. Continuing in this way we have the last row as the lth

row. This row has
(
l+r−1
l

)
cells. Each cell in the table corresponds to a vector

16

(i1, i2, . . . , ik) for some positive integer k and this vector correspond to the group
element mi1mi2 . . .mik where each ij ∈ {1, 2, . . . , r}.

Each cell in the above table has four sets of information attached to it:

Multiplier Information This is a vector (i1, i2, . . . , ik) of integers, where k ≤ l
and ij ∈ {1, 2, . . . , r} for all j. We can assume that the vector is ordered. It
contains the information on the multipliers involved in this cell.

Group element The group element formed from multiplication of the multipliers
involved in a cell, i.e., m = mi1mi2 . . .mik is computed and stored.

Exponent Recall that each multiplier mi = gαihβi for some integers αi and βi.
When these multipliers are multiplied, the exponents are added up in the
product. This information (α, β) is the exponent, where α =

∑
j αij and

β =
∑

j βij . One needs the exponent information when the walk reaches a
distinguished point.

Tag The vector (τ(m), τ(xm), . . . , τ(xη−1m)) is stored.

2.3 An overview of the algorithm
The modified r-adding walk proposed by Cheon et. al. [2] follows the original r-
adding walk closely. The only difference is, in the modified one the multiplication
is done after l iterations and the iteration uses a table lookup. In the original r-
adding walk multiplication is performed every iteration.

Let g, h and mi be as defined earlier. We compute the tableMl as described
above. Once that computation is done, we start the iterated walk. An intermediate
step in the iteration looks like

Y ′ = Y mi1mi2 . . .mik .

Now we need to find γ(Y ′) = ik+1 where γ is a index function from Ft2 to
{1, 2, . . . , r}. The function γ was defined earlier. Assume that Y = y0 + y1x +
. . . + yη−1x

η−1, and we know (i1, i2, . . . , ik). The novel idea in the modified r-
adding walk algorithm is, we do not have to compute the product Y ′, to find
ik+1. Notice that (i1, i2, . . . , ik) is the multiplier information in the tableMl. Let
us denotemi1mi2 . . .mik bym. Let us warn the reader that this is just a notation to
increase readability not the product of mi1mi2 . . .mik . Now we do a table lookup
and find the cell containing (i1, i2, . . . , ik) as multiplier information. To that cell
is attached the tag (

τ(m), τ (xm) , τ
(
x2m

)
, . . . , τ

(
xη−1m

))
.

17

Now notice that,

Y ′ = y0m+ y1 (xm) + y2
(
x2m

)
+ . . .+ yη−1

(
xη−1m

)
and from the additivity property of the tag function we have that

ik+1 = γ (Y ′) = y0τ (m) + y1τ (xm) + y2τ (x2m) +

. . .+ yη−1τ (xη−1m) (2.2)

It is clear that the tag of Y ′ can be computed without computing Y ′. So now Y ′′

can be determined the same way Y ′ was determined. We can continue this process
l times and then compute the product from the pre-computed group element in the
table Ml, that requires a table lookup. The full product is also computed when
one reaches a distinguished point. However that is a rare event and we will totally
ignore that.

Why is the modified r-adding walk faster?

In computing an iteration in the original r-adding walk, we need to do about η2

multiplication in F2. We refer to Equation 2.2 to find the number of multiplications
in F2 for a single iteration in the modified r-adding walk. Recall that τ (xim) is
already computed in Ml for each i and is a vector of size t. So γ (Y ′) can be
computed in tη multiplications in F2. Since t is significantly smaller than η, we
have that η2 � tη and an iteration in the modified walk is faster than the original
r-adding walk. Recall that at every l step there is a full product computation and
assume that it takes η2 multiplications. So to complete l steps, in the modified
walk we need ltη + η2 filed multiplications compared to lη2 multiplication in the
original walk. However, one has to do a table lookup as well and that can be time
consuming.

2.4 Comparison of modified r-adding walk with the
original r-adding walk

We now describe the original r-adding walk by Teske and its modification by
Cheon et. al. in more details. Cheon et. al. described a novel idea of distinguished
path segment to find the distinguished point. We start with that.

Definition 2.4.1 (Distinguished Path Segment). Let (gi)i≥0 be a random walk over
a finite group G. Let γ : G −→ {1, 2, . . . , r} be an onto function. Fix a positive
integer δ. For i ≥ δ − 1, the sequence {gi−δ+1, gi−δ+2, . . . , gi} is called distin-
guished path segment if

γ(gi−δ+1) = γ(gi−δ+2) = . . . = γ(gi) = 1 and γ(gi−δ) 6= 1.

18

Cheon et. al. [2] show that the expected number of function iterations before
the appearance of the first distinguished path segment is r

r−1(rδ−1). So, the prob-
ability of a sequence {gi−δ+1, gi−δ+2, . . . , gi} to be a distinguished path segment
is r

(r−1)(rδ−1) .

2.4.1 r-adding walk
In this section, we briefly discuss the r-adding walk to solve the discrete logarithm
problem. Throughout this section G = 〈g〉 denotes a finite cyclic group of prime
order and h = gx where x is the discrete logarithm.

Original r-adding walk requires an index function γ : G −→ {1, 2, . . . , r}.
For our experiment, we had considered γ = σ ◦ τ where τ is as discussed in
Section 3. We want σ to be a surjective function which is roughly pre-image
uniform, i.e., the pre-image of each element is roughly the same size. Choose
t ≈ log2r and assign an unique non-negative integer less than 2t as an image
of an element of F2t under the map σ. This makes γ pre-image uniform. As
described in Algorithm 2.4.1, for each i = 1, 2, . . . , r choose non-zero integers
1 ≤ αi, βi < |G| and set multiplier mi equal to gαihβi . The r-adding iterating
function F is as discussed in Section 2. Start iteration from Y = gα0 where α0

is the random integer between 1 and |G|. Compute F(Y) and set Y = F(Y).
Since mγ(Y) is of the form gαγ(Y)hβγ(Y) , it is easy to keep track of the exponents
of g and h. Fix some positive integer δ > 0 and define current element Y as a
distinguished point if it is the last element of a distinguished path segment of r-
adding walk. The r-adding walk is travelled until the current element Y is found
to be a distinguished point. Whenever a distinguished point is reached, the current
element is searched for in the table of distinguished points and is added to the table
if it is not found. When there is a collision among distinguished points, we can
use (1.2) to find the unknown x.

As discussed in Section 2, for a randomly chosen iteration function, the ex-
pected rho length is 1.253

√
q where q is the order of the group. Since we are

using distinguished points approach, one would expect to compute 1.253
√
|G| +

r
r−1(rδ − 1) iterations until a collision detection. Let MAX be the maximum
number of distinguished points stored. Since the number of iterations until the
appearance of the first distinguished point is r

r−1(rδ − 1), one should choose δ in
such a way that MAX r

r−1(rδ − 1) ≈ 1.253
√
|G|. At the same time one should

keep in mind that r
r−1(rδ − 1) has to be much less than 1.253

√
|G|.

Algorithm 2.4.1 (Original r-adding Walk).
Input:

Field F2n .

19

Subgroup G=〈g〉.

An element h of the subgroup G.

Two positive integers r and t.

M = {(mi = gαihβi , αi, βi) : 1 ≤ i ≤ r}

The main algorithm

1. Start with an empty table of distinguished points.

2. (Y, α, β) = (gα0 , α0, 0)

3. While there is no duplicates among distinguished points

do


i = γ(

⌊
Y

xn−t

⌋
).

(Y, α, β) = (Y ∗mi, α + αmi , β + βmi).
if Y is distinguish point

then add (Y, α, β) to the table of distinguished points.

Solve DLP using exponents α and β of duplicate elements and Equation 2.

2.4.2 Modified r-adding walk
On each iteration, the original r-adding walk computes a field multiplication
whereas modified r-adding walk does not. Instead it requires a table lookup where
the size of the table is quite large and a tag computation. As described in Algo-
rithm 4.2, one needs to compute the tableMl before starting the algorithm. For
a large enough group, time required to compute this tableMl is negligible com-
pared to the time required to solve the discrete logarithm problem.

Tag computation

We have described the concept of tag in details in Section 3.3. It is clear that faster
the tag computation, faster the modified r-adding walk. In implementing our al-
gorithms we are using Magma [1]. One of the reasons we choose magma is that
polynomial arithmetic and finite field implementation is the fastest in this package.
We tried three different methods for this tag computation. We discuss those meth-
ods briefly. Recall that Y = y0 + y1x+ . . .+ yη−1x

η−1 and m is mi1mI2 . . .mik .
We are using m as a shorthand not the product. To compute τ (Y m), one needs to
compute y0τ(m) + y1τ (xm) + y2τ (x2m) + . . .+ yη−1τ (xη−1m). The tableMl

contains (τ(m), τ(xm), . . . , τ(xη−1m)). So we have to do this scalar multiplica-
tion and the addition.

20

Method 1 An obvious way to compute the tag is to loop over yiτ(xim) from
i = 0 . . . η − 1. Advantage of this is that this will use polynomial arithmetic,
which is fast, but the length of this loop will be equal η which is 1023 in our case.
It turns out to be much slower than the later methods explained.

Method 2 Another method is to use the in-built inner product function in Magma.
Let v be the vector of coefficients of the polynomial representation of Y = y0 +
y1x + . . . + yη−1x

η−1, i.e., v = (y0, y1, . . . , yη−1) and fromMl we obtain w =
(γ(x0m), γ(x1m), . . . , γ(xη−1m)). Then the inner product of v and w is γ(Y m).
This method won’t require us to define a loop and at the same time, the inner
product computation will use polynomial arithmetic. However, there is a serious
disadvantage to this method. To use inner product, both the vectors v and w have
to be in the same vector space. Note that the coefficients of w are in F2t , whereas
the coefficients of v are in F2. Hence, we need to coerce (use an inbuilt embedding
function in Magma) the vector v into the vector space of the dimension η over F2t

and that makes it slower.

Method 3 The fastest tag computation that we could achieve was using t-many
inner products instead of one. Again we were using the inbuilt Magma func-
tion for inner products. Recall that we need to compute y0γ(m) + y1γ (xm) +
y2γ (x2m) + . . . + yη−1γ (xη−1m) and γ(xim) is a binary vector of size t. The
idea is to compute these t vectors in the sum independently. Each inner product
has one input (y0, y1, . . . , yη−1) and the other a vector of size η of bits, where the
ith entry comes from γ(xim). Which entry from γ(xim) gets chosen is decided
by a loop. The first iteration of the loop uses the first entry of each γ(xim), the
second the second entry from each γ(xim), and so on, the last entry in the tth iter-
ation of the loop. So, each loop gives the corresponding entry in the sum which is
a binary vector of size t. For this we had to write an external loop in our program
which runs for t iterations. However, since t is small this method was the fastest
among all that we tried and was implemented.

We keep computing the tag value in each iteration until the walk reaches a
distinguished point or l consecutive iterations are performed. Whenever the walk
reaches a distinguished point or l consecutive iterations are performed, one com-
putes the full product Y m and set Y = Y m. Everything else is the same as in the
original r-adding walk.

Here, the value of l determines the speed up factor. If we increase the value
of l, the number of consecutive iterations without product computation increases.
One extreme value of l is

√
|G| where |G| is the order of the group G = 〈g〉.

However the size of the tableMl is
(
r+l
r

)
, increasing the value of l increases the

size of the table. Pre-computation time and the time required for a table looklup

21

on each iteration increases with that. One needs to choose a value of l in such a
way that it balances the table lookup time and the storage availability.

Algorithm 2.4.2 (Modified r-adding Walk).
Input:

Field F2n

Subgroup G=〈g〉

An element h of the subgroup G

Three positive elements r, l and t.

Ml

The main algorithm

1. Start with an empty table of distinguished points.

2. (Y, α, β, v) = (gα0 , α0, 0, (a0, a1, . . . , an−1)) where, gα0 = a0 +a1x+ . . .+
an−1x

n−1.

3. while there are no duplicates among distinguished points

do



i = 1
while i ≤ l and Y is not distinguished point

do



set m = mmsimsi−1
. . .ms0

look up for the vectot u = (τ(m), τ(xm), τ(x2m), . . . ,
τ(xn−1m)) in precomputed tableMl.

compute ss := InnerProduct(v, u)
si = σ(ss).
i = i+ 1.

(Y, α, β, v) = (Y m,α + αm, β + βm, (c0, c1, . . . , cn−1))
where, Y m = c0 + c1x+ c2x

2 + . . .+ cn−1x
n−1.

if Y is a distinguished point
then add (Y, α, β) to the table of distinguished points.

Solve DLP using exponents α and β of duplicate elements and Equation (2).

22

2.4.3 Table lookup
In the modified r-adding walk, the multiplication in field F2η is replaced by few
multiplications in F2 (tag computation) and a table lookup. The size of the table
Ml is

(
l+r
r

)
. For l = 10 and r = 4, 8, 16, 20, the size of the table is

(
10+4
4

)
≈ 210,(

10+8
8

)
≈ 215.4,

(
10+16
16

)
≈ 222.3 and

(
10+20
20

)
≈ 224.8, respectively. We can not

ignore the time required for table lookup in the modified r-adding walk because
the size of the table large. So during implementing the modified r-adding walk
algorithm, we need to use the most efficient way for table lookup.

In general, the best method for table lookup is the binary search, but we came
up with something even better. So, let us count the number of basic operations
required for the table lookup in the binary search method.

Binary search method

Let, the size of the table be approximately equal to 2w. Then on each iteration,
binary search method will require w steps of vector comparisons. Since the length
of the vector (i1, i2, ..., ik) varies from 1 to l, each vector comparison requires on
an average l/2 integer comparisons. Hence, the binary search method requires
total lw/2 many integer comparisons on each iteration. For large value of l and
r, lw/2 is significantly large. For example, for l = 10, r = 16, lw/2 ≈ 110.
It takes a significant number of steps even though we are using the best known
method. We tried many other approaches as well including the inbuilt index search
algorithm in Magma. Finally, we developed our own algorithm using some pre-
computation.

Pre-computation method

Note that we can always write an element m in the tableMl as ma1
1 m

a2
2 . . .mar

r .
We can pre-compute the vector V of length (l + 1)r whose element V [a1 ∗ (l +
1)r−1 + a2 ∗ (l + 1)r−2 + . . . + ar] store the position i of the element m =
ma1

1 m
a2
2 . . .mar

r . Note that to find the position of m = ma1
1 m

a2
2 . . .mar

r , we
need to look at V [a1 ∗ (l + 1)r−1 + a2 ∗ (l + 1)r−2 + . . . + ar]. Let, s =
a1 ∗ (l + 1)r−1 + a2 ∗ (l + 1)r−2 + . . . + ar. For any given 1 ≤ i ≤ r, to
find the position of m′ = mmi, we need to look at V [s + (l + 1)r−i]. We can
also store this s of previous multiplier m and (l + 1)i for each 0 ≤ i ≤ (r − 1).
Hence, on each iteration, the table look up requires just one integer addition. We
know that integer addition requires around N steps where N is the maximum of
the number of digits of integers to be multiplied or added. For l = 10, r = 16,(
l+r−1
r

)
=
(
25
16

)
≈ 220.9 ≈ 106. Hence, for r = 16, l = 10, this method requires

around 6 basic steps on each iteration but, look at the size of the vector V . If we
assume that each element of V consumes 1-bit of space, then for r = 16, l = 10,

23

the vector v consumes 1116 bits of space and 1116 bits > 5 × 106 GB which is
a huge space. Hence, this method is feasible only for small value of r and we
have used this method for r = 4, l = 10. We need to use different method for
r = 16, l = 10. Let us describe the another method for large value of r.

Let, Y be the last fully computed element and m = mi1mi2 . . .mik be the last
multiple. The index of m in the tableMl is {i1, i2, . . . , ik} and we denote it by
indm. Let γ(Y m) be ik+1. This means the next element on the walk is Y mmik+1

.
Set m′ = mmik+1

. We need to find the index of the m′. Note that given an
element m = mi1mi2 . . .mik and a multiplier mik+1

, there is an unique element
m′ = mmik+1

in the table Ml. We can store the index of m′ for each possible
pair (m,mk+1). Note that if the multiple m is of the form mi1mi2 . . .mil , i.e.,
m is the combination of the l-many multipliers, then we compute the γ-value of
the next element by computing full product. So, we are not considering pairs of
the form (m,mk+1) where m = mi1mi2 . . .mil . We are left with

(
l+r−1
r

)
many

multiples. For each multiple m, we have r many choice for mk+1. Hence, total
number of pairs of the form (m,mk+1) is r

(
l+r−1
r

)
. We pre-compute a vector V

of length r
(
l+r−1
r

)
. We divide V in r equal parts of length

(
l+r−1
r

)
where each

part corresponds to a particular multiplier mk+1. For example, first
(
l+r−1
r

)
many

entries corresponds to the pairs of the form (m,m1). If index ofm is indm, then we
store the index of m′ = mmk+1 in the tableMl as the

(
k
(
l+r−1
r

)
+ indm

)
th entry

of V . On each iteration, we can find the index of m′ = mmk+1 using the index of
m and ik+1. So the index ofm′ is V [(s−1)

(
l+r−1
r

)
+ indm] where indm is the index

of m in the tableMl. Note that we need to compute
(
l+r−1
r

)
once because l and r

are fixed. Hence, on each iteration this method requires one integer multiplication
and one integer addition. We know that integer multiplication requires around N2

steps and integer addition requires around N steps where N is the maximum of
the number of digits of integers to be multiplied or added. For l = 10, r = 16,(
l+r−1
r

)
=
(
25
16

)
≈ 220.9 ≈ 106. Hence, for r = 16, l = 10, this method requires

around 62 + 6 = 42 basic steps on each iteration. In Section 5.3.1, we have shown
that the binary search method requires 110 basic steps for the same parameter. So,
this method is faster than the binary search and we have used this method in our
experiment for r = 16, l = 10.

2.4.4 Results of our experiments

Theoretically, it seems that the modified r-adding walk is faster than the orig-
inal r-adding walk. To answer, how fast is the modified r-adding walk compared
to original r-adding walk, we have tested both these algorithms on the prime order

24

Table 2.1: Average time required for 107 iterations of various methods on 47-bit
prime order subgroup of F21023 and the average rho length as in Table 1.1.

r l t time ρr
time×ρr

107

20, original - 6 121.37 1.025 124.404
107

4, modified 10 2 20.68 1.341 27.718
107

16, modified 10 4 51.6 1.038 53.415
107

subgroup of the binary field F2η .

Speed Comparison

We want to compare the time required for the original r-adding walk and the
modified r-adding walk to solve the discrete logarithm problem in the same group.
If we aim for practical parameters, i.e., DLP in a subgroup of size a 80-bit prime,
then it won’t be possible to solve the DLP. So, we have measured the speed of the
first few iteration of the walk for large parameters. One can find the time required
to solve a DLP for each walk in large group using the average speed of each
iteration and the expected rho length. Let v be the speed of each iteration and L be
the expected rho length, then the a DLP can be solved in time v×L. As the results
should not be biased toward modified r-adding walk, we have implemented both
the method on same platform using Magma [1]. We use the binary field arithmetic
functions from the Magma.

Let us explain the details of the experiment. We have selected a cyclic group
〈g〉 ⊆ F21023 of order a 47-bit prime. All other parameters were chosen as de-
scribed in Section 4. Both the algorithms are same as far as possible. We ran
the 20-adding walk algorithm and the modified r-adding walk for different val-
ues of r and l. Timing was started after the full computation of the respective
multiplication tables M and Ml. For each parameter set, we ran 100 different
DLP instances with 100 tests for each instance. We measured the time of the first
107 iterations in each case. Table 2.1 provides the time require for 107 iterations
by both the algorithms. Here, we have excluded the pre-computation time for
modified r-adding walk because time required for pre-computation is negligible
compare to the time required to solve a discrete logarithm problem in the large
group.

From Table 2.1, the average ratio to solve a DLP by original and modified
r-adding walk with r = 4 is 124.404

27.718
≈ 4.49 and for r = 16 is 124.404

53.415
≈ 2.33.

25

2.5 Conclusion
Cheon et. al. [2] used binary field arithmetic functions from NTL library and mea-
sured the average time required by both the algorithm for 108 iterations on 206-bit
prime order subgroup of the binary field F21024 . For r = 4, l = 10, they found
that modified r-adding walk is around 8.6 times faster than the original r-adding
walk. Our results are different from their results. In our case, the original 20-
adding walk took on an average 121.37 seconds for 107 iterations while in [2],
the average time for original 20-adding walk is around 406 seconds per 108 itera-
tions. In our implementation, there are three main steps on each iteration, namely,
field multiplication, conversion of field element in to vector and tag computation.
Out of 121.37 seconds, field multiplication and conversion of field element in to
vector each consumes around 30 seconds and around 60 seconds consume by tag
computation and distinguished point searching. If we ignore the γ function, then
our time is around 40.4 seconds for 107 iterations means around 404 seconds for
108 iterations which is nearly equal to the respective claim in [2]. This proves
that our implementation is as optimal as theirs. In our implementation, we have to
do field element to vector conversion to access the coefficients of xi in polynomial
representation of the element but, in NTL library, it might be possible to access
this coefficients directly from the field element. Even though our implementa-
tion in Magma are almost optimised, our findings are different than that of Cheon
et. al. [2] because of the use of different platform for implementation.

There are some advantages and disadvantages for using r = 4 instead of r =
16 in the modified walk. An advantage of r = 4 is that the modified walk gives a
speed-up of the factor of 4.49 and one can use large values of l compared to that of
r = 16. The size of the tableMl is given by

(
l+r
r

)
. One disadvantage of r = 4 is

that the 4-adding walk has large expected rho length and variance. This means that
finding the collision 4-adding method is quite uncertain. An advantage of r = 16
is that the 16-adding walk has small expected rho length and variance. This means
that finding the collision using 16-adding method is more certain compared to the
4-adding walk. One disadvantage of r = 16 is that the modified method gives a
speed-up to the factor of 2.33 and one can not use large values of l. For example,
with 4 GB memory, we were restricted to use l ≤ 10 for r = 16 but we were
able to use l = 50 for r = 4. Since both values of r have some advantage and
disadvantage, on have to choose cautiously for practical purposes.

26

Chapter 3

Morified r-adding method over
Elliptic Curve (E(Fp))

We got some speed up with modified r-adding method for attacks on DLP over
finite field but, one can use Index calculus method, which is faster than r-adding
method, to solve DLP over finite field.The index calculus method can not be use
to attack DLP over elliptic curve over finite field [19] but, one can always use
the r-adding walk because it is a generic. It is important to check whether this
modified r-adding method can be use to attack DLP over elliptic curve over finite
field. Hence, if we can use modified r-adding method over elliptic curve and find
some speed up, then it would be significant. In this chapter, we have describe the
elliptic curve version of modified r-adding method.

3.1 Group structure on rational points of an Elliptic
curve

General equation of elliptic curve over some field K is given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (3.1)

where, a1, a2, a3, a4, a6 ∈ K. Equation 3.1 is called the general Weierstrass equa-
tion for elliptic curves. The elliptic curve E of the form 3.1 is called non-singular
or smooth if for each (x, y) with coordinates in the algebraic closure of K, the
partial derivatives 2y + a1x + a3 and 3x2 + 2a2x + a4 − a1y do not vanish si-
multaneously. A point on the curve is called singular if both the partial derivative
vanish at that point.

Let us now describe the addition law to turn the set of points of E over some
field K into a group. Let P and Q be any two points of E. As shown in figure

27

Figure 3.1: Addition law on elliptic curve

3.1, to add P and Q, draw a line connecting P and Q. This line intersects curve
at third point R, say R = (x3, y3). Using quadratic formula, it is easy to check
that if (x3, y3) satisfies Equation 3.1, then (x3,−(a1x3 + a3) − y3) also satisfies
Equation 3.1. Denote the point (x3,−(a1x3 + a3) − y3) by R′ and set this R′ as
sum of P andQ so,R′ = P+Q. In similar way, we can add P and P by replacing
connecting line by a tangent to the curve E at P . For more details see [3, Chapter
13].

If the x-coordinates of P and Q are same then line connecting P and Q do
not intersect E at any third point because given a x-coordinate, there are at most
two points which satisfies Equation 3.1. We need to define sum of two points
with same x-coordinate. Note that any line passing through two points with same
x-coordinate is parallel to y-axis. Visualize a point lying far out on the y-axis such
that any line parallel to y-axis passes through it. This point is denoted by O, the
point at infinity. One can check that if (x1, y1) lies on the curve E, then the point
(x2,−(a1x1 + a3) − y1) also lies on the curve E. Let (x1, y1) and (x1, y2) are
two points on E then define (x1, y1) + (x1, y2) = O. One can check that O is the
neutral element which means for any point P in E, P +O = P . Hence, additive
inverse of P = (x1, y1) is given by (x1,−(a1x1 + a3) − y1) and is denoted by
−P . We have defined addition law using geometry. The geometrical method of
addition can be translated in to algebraic method using the theorem 3.1.1.

28

Theorem 3.1.1. Let, E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 be an elliptic

curve over K. Let, P and Q be two points on E. Then following statements are
true.

1. If P = O, then P +Q = P .

2. If Q = O, then P +Q = Q.

3. If P 6= O and Q 6= O, then write P = (x1, y1) and Q = (x2, y2).

(a) If x1 = x2 and y1 6= y2, then P +Q = O.

(b) else, define λ and c by

λ =

{
(y2−y1)
(x2−x1) if P 6= Q
3x21+2a2x1+a4−a1y1

2y1+a1x1+a3
if P = Q

c =

{
y1x2−y2x1
x2−x1 if P 6= Q
−x31+a4x1+2a6−a3y

2y1+a1x1+a3
if P = Q

and let x3 = λ2 +a1λx−a2−x1−x2 and y3 = −(a1 +λ)x3− c−a3
Then, P +Q = (x3, y3).

We postpone the proof of the above theorem for a while and describe some
important concepts. By definition of projective planes, P2(K) consist all triples
(X : Y : Z) where not all X, Y, Z are zero and (X : Y : Z) is equivalent to
(λX : λY : λZ) for all λ ∈ K∗. We choose the line Z = 0 as the line at infinity
in P2(K). Then we have two types of points in P2(K), the points with Z 6= 0:
(X : Y : Z) = (x, y, 1) where x = X/Z and y = Y/Z and the points at infinity
with Z = 0: (X : Y : 0).

By substituting x = X/Z and y = Y/Z in Equation 3.1 and multiplying it by
Z3, we get the following weierstrass equation in projective coordinates:

E1 : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (3.2)

The point at infinity has coordinates (X : Y : 0) and at the point of infinity above
equation reduces to X3 = 0 means X = 0. Hence, above equation has unique
point at infinity which is (0 : Y : 0). Note that in projective coordinates, the point
(0 : Y : 0) is equivalent to (0 : 1 : 0) for all Y . Hence, we choose (0 : 1 : 0) to
represent the point of infinity. One can represents points on elliptic curve over K
as points in projective coordinates as follows:

(x, y) = (X : Y : 1).

Lemma 3.1.2. The lines in the projective plane that intersect E at the point O =
(0 : 1 : 0) at infinity are the lines of the form x = c where c ∈ K.

29

Proof. The general equation of line in the plane is given by

L : αy = βx+ γ

where α, β, γ ∈ K with either α or β is non-zero.The equation of L in projective
coordinates is given by

αY = βX + γZ.

Now, O = (0 : 1 : 0) lies on the line L means α = 0. Since α = 0, β cannot
be zero. Hence, equation for L in affine plane that meets E at O is of the form
x = c. •

PROOF OF THEOREM 3.1.1. (1) To find O + Q, we need to draw a line passing
throughO and Q. Let L be the line passing throughO and Q. SinceO lies on the
line L, from Lemma 3.1.2, the equation of the line is given by L : x = c for some
c ∈ K. Let, Q = (x2, y2). Since Q also lies on the line L, the line L is given by
L : x = x2.

Now, there are at most two points on E with x-coordinate x2. If one point is
(x2, y2), then another point is (x2, y3) with y3 = −(a1x2 + a3)− y2. Hence, third
point of intersection of L with E is given by R = (x2, y3). As describe in geomet-
rical method, take the point R′ = (x2,−(a1x2 + a3) − y3) and set R′ = O + Q.
Since y3 = −(a1x2 + a3) − y2, R′ = (x2, y2) = Q. Hence, O + Q = Q. This
implies if P = O, then P +Q = Q.

(2) Since line passing through P and Q is same as line passing through Q and
P , P +Q = Q+ P . Hence, if Q = O, then we have P +Q = P +O = O + P .
Using part (1) of this theorem, O + P = P . Hence, if Q = O, then P +Q = P .

(3) Let, P 6= O, Q 6= O and P = (x1, y1), Q = (x2, y2).
(a) If x1 = x2 and y1 6= y2, then line passing through P and Q is L : x = x1.
We know that any line parallel to y-axis intersects E at O at infinity. Hence, third
point of intersection of L with E is O. Hence, P +Q = O and −P = Q.

(b) Assume x1 = x2 and y1 6= y2 is not true. If P 6= Q, then the slope of the line
passing through P = (x1, y1) andQ = (x2, y2) is given by λ = (y2−y1)

(x2−x1) . If P = Q,
then the connecting line is tangent to the curve E at P . Hence, slope of the line is
the derivative of E with respect to x at P and is given by λ =

3x21+2a2x1+a4−a1y1
2y1+a1x1+a3

.
The line passing through P,Q is of the form L : y = λx + c for some c ∈ K.
Now, we need to find third point of intersection of L with E.

CASE I: P 6= Q. By substituting x = x1 and y = y1 in the equation of line

30

L, we get c = y1x2−y2x1
x2−x1 . Hence, the equation of the line L becomes

L : y =
y2 − y1
x2 − x1

x+
y1x2 − y2x1
x2 − x1

.

CASE II: P = Q. By substituting x = x1 and y = y1 in the equation of line L, we
get c =

−x31+a4x1+2a6−a3y
2y1+a1x1+a3

. Hence, the equation of the line L becomes

L : y =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
x+
−x31 + a4x1 + 2a6 − a3y

2y1 + a1x1 + a3
.

Now substituting y = λx+ c with respective λ and c in the equation of E, we
get the cubic equation in the variable x,

x3 + (a2− λ2− a1λ)x2 + (a4− 2λc− a1c− a3λ)x+ (a6− c2− a3c) = 0 (3.3)

Since line L intersects E at three points, above cubic equation has exactly
three roots. we know the two roots, x1 and x2. Let third root by x3. We know that
sum of the roots of cubic equation is given by the negative of the coefficient of x2

in the cubic equation. Hence, x1 + x2 + x3 = a2 − λ2 − a1λ. This gives

x3 = λ2 + a1λx− a2 − x1 − x2.

By substituting x = x3 in the equation of L, we get

y = λx3 + c.

Hence, third point of intersection of L and E is (x3, y). Now, as described in
geometrical method, P + Q = (x3, y3) where y3 = −(a1x3 + a3) − y. Since
y = λx3 + c, we get y3 = −(a1 + λ)x3 − c− a3. •

Notation: For any positive integer k and a point P on E, we denote the k
many addition of P by kP . This is also known as scalar multiplication.

If the characteristic of the field K is not equal to 2, then one can get simpler
form of E by some basic transformation. By replacing y by (y − (a1x+a3)

2
) in

Equation 3.1, we get

E : y2 = x3 + b1x
2 + b2x+ b3 (3.4)

where

b1 =
(a21 + 4a2)

4
, b2 =

a1a3 + 2a4
2

, b3 =
a23 + 4a6

4
.

31

If the characteristic of the field K is not equal to 2 and 3, then one can get even
simpler form of E. By replacing x by (x+ b2

12
) in Equation 3.4, we get

E : y2 = x3 + Ax+B (3.5)

where A = − b22−24b4
48

and B = −−b
3
2+36b2b4+−216b6

864
. It is easy to work with the

elliptic curve of the above form. Hence, now onwards we assume characteristic
of K is not equal to 2 and 3 and y = x3 + Ax + B as equation for elliptic curve
over K.

Definition 3.1.1 (m-torsion set). Let, m ≥ 1 be an integer. The set of points
elliptic curve of order m on elliptic curve is called the m-torsion set. We denote
the m-torsion set by E[m] = {P ∈ E : mP = O}.

Note that if mP = O and mQ = O, then m(P + Q) = O and m(−P) = O.
Hence, m-torsion set E[m] is a subgroup of E. If elliptic curve is defined over
some field K, then we write the m-torsion set as E(K)[m].

Definition 3.1.2 (ECDLP). Let, p be a prime and P be a point in E(Fp). Let
G = 〈P 〉. Then G is the cyclic subgroup of E(Fp) generated by P . Given a point
Q of the subgroup G, the Elliptic Curve Discrete Logarithm Problem(ECDLP) is
the problem of finding the smallest positive integer n such that Q = nP .

We want to solve ECDLP using modified r-adding method. Note that modified
r-adding is based on the linearity of the tag function defined in Chapter 3. We
know that there are bilinear maps defined over E(Fp) but, image of these bilinear
maps lies in extension field. The idea is to use this bilinear map with some pre-
computation table and then to use tag function defined in Chapter 3 for converting
an image of bilinear map into an element of the prime field. Before discussing
about attacks on ECDLP, let us describes bilinear maps.

3.2 Bilinear maps

3.2.1 Rational functions and divisor
A rational function is a ratio of polynomials

f(x) =
a0 + a1x+ . . .+ amx

m

b0 + b1x+ . . .+ bnxn
.

As is customary in algebraic geometry, we assume m = n. We know that any
polynomial can be factored completely over the complex numbers. So, one can
write f(x) as

f(x) =
a0(x− α1)

e1(x− α2)
e2 . . . (x− αr)er

b0(x− β1)d1(x− β2)d2 . . . (x− βr)ds

32

for some α1, α2, . . . , αr, β1, β2, . . . , βs distinct complex numbers. The zeros of
the rational function are all those points at which the rational function vanishes
and the poles of the rational function are all those points at which value of the
function is infinite. Hence, the numbers α1, α2, . . . , αr are the zeros of f(x) and
β1, β2, . . . , βs are the poles of f(x).

In general, a divisor is a finite linear combination of points on the surface with
integer coefficients. Now, define the divisor of f(x), div(f(x)), to be the formal
sum

div(f(x)) = e1[α1] + . . .+ er[αr]− d1[β1]− . . .− ds[βs]

One can check that if f, g, h are rational functions such that h = fg, then div(h) =
div(f) + div(g). Also, div(1/f) = −div(f). Hence, divisor of rational functions
forms a group under this addition operation.

If E : y2 = x3 +Ax+B is an elliptic curve and f(x, y) is a rational function
of two variables, then divisor of f can be written as

div(f) =
∑
P∈E

nP [P]

where, coefficients nP are integers and only finitely many of the nP are non-zero.
If nP is positive, then f has zero of order nP at P ∈ E and if nP is negative,
then f has pole of order nP at P ∈ E. The degree of the divisor is the sum
of its coefficients i.e. deg(div(f)) =

∑
P∈E nP and the sum of the divisor is

given by Sum(div(f)) =
∑

P∈E nPP . Note that if D1 and D2 are two divisors,
then deg(D1 + D2) = deg(D1) + deg(D2) and Sum(D1 + D2) = Sum(D1) +
Sum(D2).

A divisor is called principal divisor if its degree is zero. Since deg(D1+D2) =
deg(D1) + deg(D2) and deg(−D1) = −deg(D1), if D1 and D2 are principal
divisors then D1 + D2 is a principal divisor and −D1 is also a principal divisor.
Hence, all principal divisors of rational functions forms a subgroup of the divisor
group.

Theorem 3.2.1. Let D=
∑

P∈E nP [P] be a divisor on E. Then D is the divisor
of a rational function on E if and only if deg(D)= 0 and sum(D)= O.

For a proof of this theorem see [18, Corollary 3.5]. According to the above
theorem, all rational functions on E has principal divisors and hence, the de-
gree of polynomial in numerator of the rational function is same as the degree
of polynomial in denominator of the rational function. Let us now describe the
algorithm to generate a rational function with divisor (η[P]− [ηP]− (η − 1)[O])
for any given P ∈ E and an integer η.

33

3.2.2 Miller’s algorithm
Victor Miller [7] gave an algorithm to quickly create rational functions of speci-
fied divisors. Let E be an elliptic curve. Let P = (xP , yP) and Q = (xQ, yQ) be
any non-zero points on E. Define a rational function gP,Q as follows:

gP,Q =

{
y−yP−λ(x−xP)
x+xP+xQ−λ2

if λ 6=∞
x− xP if λ =∞

where λ is the slope of the line connecting P and Q or the slope of the tangent to
the elliptic curve E if P = Q. Now, let us define Miller’s algorithm which takes a
point P of elliptic curve E and an integer m and gives a rational function f with
div(f) = η[P]− [ηP]− (η − 1)[O].

Algorithm 3.2.2 (Miller’s algorithm).
Input:

An integer η = η0+η12+η22
2+ . . .+ηζ−12

ζ−1 where ηi ∈ 0, 1 for all 0 ≤ i < ζ.

An elliptic curve E

A point P on E

The main algorithm

1. Set T = P , f = 1 and i = ζ − 2.

2. while i ≥ 0

do



Set f = f 2.gT,T
Set T = 2T
if mi = 1

then
{

Set f = f.gT,P
Set T = T + P

i = i− 1

3. Return f .

Theorem 3.2.3. Let E be an elliptic curve. Let P = (xP , yP) and Q = (xQ, yQ)
be any non-zero points on E. Then

1. div(gP,Q)= [P] + [Q]− [P +Q]− [O].

34

2. Let m ≥ 1 and let η as the binary expression is

η = η0 + η12 + η22
2 + . . .+ ηζ−12

ζ−1

with ηi ∈ 0, 1 and ηζ−1 6= 0. Then miller’s algorithm returns a rational
function fP with

div(fP) = η[P]− [ηP]− (η − 1)[O].

For proof see [6, Chapter 5]. If we have a point P of order η (ηP = O), then
Miller’s algorithm returns a rational function fP with div(fP)= η[P] − [ηP] −
(η − 1)[O] = η[P]− η[O].

3.2.3 Bilinear Pairing on elliptic curve
Definition 3.2.1 (Bilinear map). Let, V1, V2, V3 be three vector spaces. A bilinear
map is a function B from product of two vector spaces, V1×V2 to the third vector
space, V3 with the following property:

B(α1v1 + α2v2, β1w1 + β2w2) = α1B(v1, β1w1 + β2w2) + α2B(v2, β1w1 + β2w2)

= α1β1B(v1, w1) + α1β2B(v1, w2) + α2β1B(v2, w1) + α2β2B(v2, w2)

for all v1, v2 ∈ V1, w1, w2 ∈ V2 and α1, α2, β1, β2 in base field.

The Weil pairing that we discuss in this section takes two points of elliptic
curve as inputs and gives a field element as output. However, the bilinarity condi-
tion in Weil pairing is slightly different where additivity in output is replaced by
the multiplicity.

Definition 3.2.2 (The Weil pairing). Let, P,Q ∈ E[η] and fP , fQ be rational
functions on E such that div(fP) = η[P]−η[O] and div(fQ) = η[Q]−η[O]. The
Weil pairing of P,Q is defined as

eη(P,Q) =

fp(Q+S)

fP (S)

fQ(P+(−S))
fQ(−S)

where S ∈ E but, S 6∈ {O, P,−Q,P − Q}. This Weil pairing has many useful
properties.

Theorem 3.2.4. 1. For all P,Q ∈ E[η], eη(P,Q)η = 1. This means eη(P,Q)
is an ηth root of unity.

35

2. (Bilinear property)
Let, P,Q,R ∈ E[η]. Then eη(P+Q,R) = eη(P,R)eη(Q,R) and eη(P,Q+
R) = eη(P,Q)eη(P,R).

3. For all P ∈ E[η], eη(P, P) = 1. This implies that eη(P,Q) = eη(Q,P)−1

for all P,Q ∈ E[η].

4. (Non-degeneracy) If eη(P,Q) = 1 for all Q ∈ E[η], then P = O.

Note that if Q = nP for some positive integer n, then we have eη(Q,P) =
eη(nP, P) = eη(P, P)n = 1n = 1. Hence, Weil pairing is useful only if both
input points comes from different cyclic subgroup of same order.

Proposition 3.2.5. Let η ≥ 1 be an integer.Then

a. If K = Q or R or C, then E(K)[η] ∼= Z/ηZ × Z/ηZ is a product of two
cyclic groups of order η.

b. If K = Fp and p doesn’t divide η, then there exist a value k such that
E(Fpjk)[η] ∼= Z/ηZ×Z/ηZ for all j ≥ 1. The smallest such k is called the
embedding degree of E(Fp) with respect to η.

Hence, whenever we need to use Weil pairing over E(Fp)[η], we first define
it over E(Fpk)[η] where k is the embedding degree of E(Fp) with respect to η.
The question is how to find this embedding degree k for a given η and the elliptic
curve over Fp. The following proposition describe the method to find this k for
different possible cases.

Proposition 3.2.6. Let,E be an elliptic curve over Fp and η be a prime not equal to
p such thatE(Fp) contains a point of order η. Then one of the following statement
is true regarding the embedding degree of E with respect to η.

1. The embedding degree is 1. This are called anomalous curves and DLP in
these curves is trivial [12, 15, 16].

2. p ≡ 1 (mod η) and the embedding degree is η.

3. p 6≡ 1 (mod η)and the embedding degree is the smallest value of k ≥ 2
such that pk ≡ 1 (mod η).

For proof see [22]. The main application of the Weil pairing is to reduce
ECDLP in E(Fp) to the DLP in Fpk where k is the embedding degree. The algo-
rithm of Menezes, Okamoto and Vanstone(MOV algorithm) solves ECDLP over
E(Fp) by reducing ECDLP to DLP in Fpk using Weil pairing. Let us describe the
MOV attack.

36

MOV algorithm

Given an elliptic curve E over Fp, a point P ∈ E(Fp) of order η and Q ∈ E(Fp)
such that Q = nP for some integer n, our aim is to find this integer n. First
compute the embedding degree k of E with respect to η and then compute N =
#(E(Fpk)). Since there is a point P ∈ E(Fp) of order η and E(Fp) ⊂ E(Fpk),
η|N .

Now, choose a random point T ∈ E(Fpk) but not in E(Fp) and computes
T ′ = (N/η)T . Check whether T ′ is equal to O. If T ′ = O, then choose a random
point T again. If T ′ 6= O, then the order of T ′ is η and there isn’t any integer x
such that T ′ = xP .

Now, we have two points from different cyclic subgroups of orderm. Compute
α = eη(P, T

′) ∈ E(Fpk) and β = eη(Q, T
′) ∈ E(Fpk). Using bilinear property

of Weil pairing, we have β = eη(Q, T
′) = eη(nP, T

′) = eη(P, T
′)n = αn.

Hence, solving Q = nP for n is reduced to solving β = αn in Fpk . If pk is
not large then β = αn can be solved using index calculus method which is a
sub-exponential algorithm and if pk is large then we need to use r-adding method
which is an exponential algorithm. As in [6], the MOV algorithm has exponential
time complexity if k > (ln(p))2. Since most of the time a randomly chosen
elliptic curve over Fp has embedding degree that is much larger than (ln(p))2,
the MOV algorithm is not much useful. In next section, we have describe the
modified r-adding method to solve ECDLP over E(Fp) which might be faster
than the original r-adding method. We have to define only tag function related
to elliptic curve, everything else remains same as in modified r-adding method
described in previous chapter.

3.3 The Tag function for the modified r-adding walk
over elliptic curve

Let, p, η be two primes and P be a point in E(Fp) such that ηP = O . Let
G = 〈P 〉. Then G is the cyclic subgroup of E(Fp) generated by P . Let, Q ∈ G
be a point such that Q = xP for some positive integer x. Our aim is to find this x
using modified r-adding method. The main idea of the modified r-adding method
is to compute full product after every l iterations only. Hence, we need to find
a function τ1 over cyclic subgroup E[η] such that given P,Q ∈ E[η], one can
compute τ1(P +Q) without computing P +Q.

37

3.3.1 The tag function
The tag of a point on the curve E is a vector consisting of first few significant
coefficients of the image under the Weil map. Let, E and P be as defined above.
Let, k be the embedding degree of E(Fp) with respect to η. Compute the number
of points N = #(E(Fpk)). If k is very small, then it is easy to compute the
number of points using SEA algorithm [14]. Since there is a point of order η in
E(Fp) and E(Fp) ⊂ E(Fpk), η|N . Now, choose a random point T ∈ E(Fpk) with
T 6∈ E(Fp). Compute T ′ = (N/η)T . If T ′ = O, then choose another T until you
get T ′ 6= O. Note that this T ′ is the point of order η. Now, define a tag function

τ1 : E(Fp)[η] −→ Fpk

as τ1(P) = eη(T, P) for all P ∈ E(Fp)[n]. Since wη is a bilinear map, for
any P1, P2 ∈ E(Fp)[n], τ1(P1 + P2) = eη(T, P1 + P2) = eη(T, P1)eη(T, P2) =
τ1(P1)τ1(P2). Hence, we can compute tag value of sum of two points in E(Fp)[η]
without computing their sum. Now, suppose at some step in modified r-method
we need to compute the tag of P +mi1 +mi2 + . . .+mik . Assume that eη(T, P)
and eη(T,mi1 +mi2 + . . .+mik) is known. Then we can compute τ1(P +mi1 +
mi2 + . . .+mik) using the formula:

τ1(P +mi1 +mi2 + . . .+mik) = eη(T, P)eη(T, P +mi1 +mi2 + . . .+mik).

Hence, on each iteration we need to compute one multiplication in the finite field
Fpk . There is a way to replace this field multiplication by few multiplication in
Fp. We will discuss this in later part of this section.

For given values of r and l, the structure of the tableM′
l is same as described

in Section 2.2. Only the information regarding tag is different. Note that eη(T,m)
is an element in Fpk and we have already defined a function τ : Fpk −→ Fpt where
t ≈ logp r. Hence, the vector (τ(x0eη(T,m)), τ(xeη(T,m)), . . . , τ(xk−1eη(T,m)))
is stored as tag information of m.

3.3.2 The modified r-adding function
We need to first define the index function γ1 : E(Fp)[η] −→ {1, 2, . . . , r}. We
have already defined a function τ1 : E(Fp)[η] −→ Fpk . Now consider the function
γ : Fpk −→ {1, 2, . . . , r} as described in Chapter 2. Then, we can define γ1 =
γ ◦ τ1.

Let P , Q be as defined earlier. Let mi, 1 ≤ i ≤ r, be randomly chosen points
of E(Fp)[η] of the form αiP + βiQ for some 1 ≤ αi, βi ≤ η. We compute the
tableM′

l as described above. Once that computation is done, we start the iterated
walk. A modified r-adding walk F ′ is defined iteratively as follows:

F ′(Y) = Y +mγ1(Y). (3.6)

38

An intermediate step in the iteration looks like

Y ′ = Y +mi1 +mi2 + . . .+mik .

Now we need to find γ1(Y ′) = ik+1 where γ1 is a index function from E(Fp)[η]
to {1, 2, . . . , r}. Assume that we know (i1, i2, . . . , ik). The novel idea in the mod-
ified r-adding walk algorithm is, we do not have to compute the product Y ′,
to find ik+1. Notice that (i1, i2, . . . , ik) is the multiplier information in the table
Ml. Let us denote mi1 +mi2 + . . .+mik by m. Now we do a table lookup and
find the cell containing (i1, i2, . . . , ik) as multiplier information. To that cell is at-
tached the tag information (τ(x0eη(T,m)), τ(xeη(T,m)), . . . , τ(xk−1eη(T,m))).
Let, eη(T, Y) = y0 + y1x+ . . .+ yk−1x

k−1 From the linearity of the Weil map we
have that

τ1 (Y ′) = τ1 (Y) τ1 (m) = eη(T, Y)eη(T,m) (3.7)

Hence, from the additivity property of the tag function we have that

(τ ◦ τ1) (Y ′) = y0τ (eη(T,m)) + y1τ (xeη(T,m)) + y2τ (x2eη(T,m)) +

. . .+ yk−1τ
(
xk−1eη(T,m)

)
(3.8)

We can get ik+1 = σ((τ ◦ τ1)(Y ′)) without computing Y ′. Now, it is clear that the
index of Y ′ can be computed without computing Y ′. So now Y ′′ can be determined
the same way Y ′ was determined. We can continue this process l times and then
compute the product from the pre-computed group element in the tableMl, that
requires a table lookup. The full product is also computed when one reaches a
distinguished point. However that is a rare event and we will ignore that in our
analysis.

Algorithm 3.3.1 (Modified r-adding Walk over Elliptic curve).
Input:

Elliptic curve over E(Fp).

Subgroup G=〈P 〉 and η = #(G).

Embedding degree k of E(Fp) with respect to η.

An element Q of the subgroup G.

An element T ∈ E(Fpk) but not in E(Fp) of order η.

Three positive elements r, l and t.

M′
l

39

The main algorithm

1. Start with an empty table of distinguished points.

2. (Y, α, β, v) = (α0P, α0, 0, (a0, a1, . . . , an−1)) where, eη(T, α0P) = a0 +
a1x+ . . .+ ak−1x

k−1.

3. while there are no duplicates among distinguished points

do



i = 1
while i ≤ l and Y is not distinguished point

do



set m = m+msi +msi−1
+ . . .+ms0

look up for the vectot u = (τ(eη(T,m)), τ(xeη(T,m)),
τ(x2eη(T,m)), . . . , τ(xk−1eη(T,m))) in precomputed

tableM′
l.

compute ss := InnerProduct(v, u).
si = σ(ss).
i = i+ 1.

(Y, α, β, v) = (Y m,α + αm, β + βm, (c0, c1, . . . , ck−1))
where, eη(T, Y m) = c0 + c1x+ c2x

2 + . . .+ ck−1x
k−1.

if Y is a distinguished point
then add (Y, α, β) to the table of distinguished points.

Solve DLP using exponents α and β of duplicate elements and Equation (2).

In original r-adding walk over elliptic curve, we need to compute one addition
in E(Fp). If we use the modified r-adding walk as described above, then this
addition is replaced by one table look up and either k ∗ t many multiplication in
Fp. The modified r-adding walk will be faster than original r-adding walk over
elliptic curve if the time require by computation of one addition in E(Fp) is more
than the time require by either kt many multiplication in in Fp. One need to check
this by implementing both the method.

40

Bibliography

[1] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra
system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–
265.

[2] Jung Hee Cheon, Jin Hong, and Minkyu Kin, Accelarating pollard’s rho on
finite fields, Journal of Cryptology 25 (2012), no. 2, 195–242.

[3] H. Cohen and G. et.al. Frey, Handbook of elliptic and hyperelliptic curve
cryptography, Chapman & Hall/CRC, Boca Raton, 2006.

[4] Bernard Harris, Probability distribution related to random mapping, Annals
of Mathematical Statistics 31 (1960), 1045–1062.

[5] William B. Hart, Fast library for number theory: An introduction, Mahtem-
atical Software - ICMS 2010, Third International Congress on Mathematical
Software, Kobe, Japan, September 13-17, 2010. Proceedings, LNCS, vol.
6327, 2010, pp. 88–91.

[6] J. Hoffstein, J. Pipher, and J. H. Silverman, An introduction to mathematical
cryptography, Springer, New York, 2008.

[7] Victor S. Miller, The weil pairing, and its efficient calculation, Journal of
Cryptology 17 (2004), no. 4, 235–261 (English).

[8] V.I. Nechaev, Complexity of a determinate algorithm for the discrete loga-
rithm, Mathematical Notes 55 (1994), no. 2, 165–172.

[9] J. M. Pollard, Monte Carlo methods for index computation (mod p), Mathe-
matics of Computation 32 (1978), no. 143, 918–924.

[10] R Core Team, R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN 3-
900051-07-0.

41

[11] Sheldon Ross, A random graph, Journal of applied probability 18 (1981),
309–315.

[12] T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete
log algorithm for anomalous elliptic curves, comment. Math. Univ. St. Paul
47 (1998), 81–92 (English).

[13] Eric Schmutz, Period lengths for iterated functions, Combinatorics, Proba-
bility and Computing 20 (2011), 289–298.

[14] Ren Schoof, Elliptic curves over finite fields and the computation of square
roots mod p, Mathematics of Computation 44 (1985), no. 170, pp. 483–494
(English).

[15] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p, Mathematics of Computation
67 (1998), no. 221, pp. 353–356 (English).

[16] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p, Mathematics of Computation
67 (1998), 353–356.

[17] Victor Shoup, Lower bounds for discrete logarithms and related problems,
EUROCRYPT ’97, LNCS, vol. 1233, 1997, pp. 256–266.

[18] J. H. Silverman, The arithmetic of elliptic curves, vol. 106, Springer-Verlag,
New York, 1986.

[19] J. H. Silverman and Joe Suzuki, Elliptic curve discrete logarithms and the
index calculus, Advances in Cryptology ASIACRYPT98 (Kazuo Ohta and
Dingyi Pei, eds.), Lecture Notes in Computer Science, vol. 1514, Springer
Berlin Heidelberg, 1998, pp. 110–125 (English).

[20] Edlyn Teske, Speeding up Pollard’s rho method for computing discrete log-
arithm, Algorithmic Number Theory Symposium, LNCS, vol. 1423, 1998,
pp. 541–553.

[21] , On random walks for Pollard’s rho method, Mathematics of Com-
putation 70 (2000), no. 234, 809–825.

[22] L. C. Washington, Elliptic curves: Number theory and cryptography, Chap-
man & Hall/CRC, 2003.

[23] M.B. Wilk and R. Gnanadesikan, Plotting methods for analysis of data,
Biometrika 55 (1968), no. 1, 1–17.

42

