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Abstract

This project aimed at analysing the records statistics in stock price move-
ments and mathematically model it. Probability distribution of the record
gap for the stock price movements were determined. Power-law is observed
in these probability distribution. Stochastic models namely, random walk
without drift, random walk with �nite drift and geometric random walk were
simulated to generate time series which reproduces the signature properties
of the stock price movements. These time series were then statistically anal-
ysed and probability distribution for record gaps was determined. Similar
statistics were done for empirical stock market indices.

What?
"What" ain't no country I ever heard of. They speak English in "What"?
-Pulp Fiction

http://www.imdb.com/title/tt0110912/
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Chapter 1

Introduction

Record is the highest or lowest value which has not occurred earlier. The
time of occurrence of the record is the record time. Let X(t), t ∈ 1, 2, 3, ...
is a time series. For X(T ) to be a record (highest), its value should be such
that X(T ) > X(T − 1), X(T − 2), ...X(1). For this event X(t = T ) will be
the record value and T will be the time at which record was created. Record
value is a captivating property to observe, like highest number of centuries
scored by any batsman in cricket, maximum number of copies sold-out of any
book, lowest value of dollar-rupee exchange in the past decade etc. Beyond
such entertainment value, records can be studied to determine or predict the
important future aspects, for instance occurrence of natural calamities [1],
environmental changes [2, 3, 4], �nancial prices [5, 6, 7] etc.

There are processes and time series for which record time is as important
as the record value. The emphasis in this thesis is laid on �nancial time series
values for which the time at which records were observed is of considerable
importance. There are several price movements related to �nancial data
viz. currencies, stocks, funds, equities etc, but majority of the work here
will be concentrated on individual stock price movements and on the stock
market indices. In stock price movement, time series of daily closing value is
studied, wherein daily closing value is the price of the stock or the value of the
index at which market closes down. Large amount of stock market data was
required to analyse records statistics. We have accessed them from publicly
available sources, namely, Yahoo Finance [8] and Google Finance [9]. The
data available in these web sources contain details like date, opening value,
highest value, lowest value, closing value, volume and adjusted closing value
for each trading day. Few rows from the actual data obtained from Yahoo
Finance is shown in the table 1.1.

In majority of the current work, time series of the closing values of stocks
are observed and the record time instances are �ltered and analysed to deter-
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Table 1.1: Few rows of the empirical data for IBM obtained from Yahoo
Finance.

Date Open High Low Close Volume Adj Close
2012-08-17 19.52 19.53 19.26 19.52 14626800 19.52
2012-08-16 19.43 19.60 19.22 19.52 17835400 19.52
2012-08-15 19.29 19.40 19.18 19.29 10988200 19.29
2012-08-14 19.76 19.86 19.27 19.36 18077800 19.36
2012-08-13 19.69 20.07 19.48 19.62 13863900 19.62
2012-08-10 19.30 19.73 19.28 19.70 18170700 19.70
2012-08-09 19.40 19.56 19.06 19.41 20192600 19.41
2012-08-08 19.48 19.75 19.24 19.41 44990300 19.41
2012-08-07 18.56 19.05 18.51 18.96 19670100 18.96
2012-08-06 18.29 18.82 18.23 18.69 15318000 18.69
2012-08-03 17.83 18.33 17.72 18.26 18989200 18.26

mine the probability for the occurrence of the records in the future. Although,
not much stress is given on the record values of the stocks, focus was laid on
record gap distributions of the stock price movements. On determining this
statistic on individual stocks and stock market indices, consistent power-law
of the form f(x) = x−γ with 1 < γ < 2 was observed. A longer time series
was required to determine the exponent and to generalise and strengthen the
argument of a consistent power law throughout the stock market data.

Occurrence of records in a typical �nancial time series are very limited.
Financial data available in the public domain for even the old individual
stocks for example IBM, HPQ (refer appendix A for the company and listing
names) etc. has data for ∼ 50− 60 years. As stock market is operational for
about 252 days every year there are ∼ 13000 data points. Since the amount
of data of this order is not su�cient for the purpose of analysis of records
and statistics, therefore, a part of the dissertation was dedicated in �nding
the appropriate model to generate synthetic time series for stock prices. One
of the �rst reported work, to model the �nancial data was done by Louis
Bachelier [5] in his PhD thesis work. Louis Bachelier modelled asset return
prices, the core assumption as a random walk (RW).

The basic form of a random walk can be de�ned as:

Xn+1 = Xn + ξn , (1.1)

where ξ is independent and identically distributed (iid) random variable
(RV). There are several previously studied �nancial data based on RW [10,
11, 12, 13, 14]. In my current work, RW time series were generated using iid
RVs with uniform and normal distributions. Various statistics were observed,
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such as return values (R = Xn+1 − Xn), record values (r), return records,
record gaps (rg), log return (Rlog) etc. To improve the understanding of the
record statistics further, mean number of records were veri�ed which was
discussed by Majumdar and Zi�(2008) [15]. The main purpose of this disser-
tation is to analyse the record gap distribution employing time series and an
ensemble of time series wherever necessary. Empirical stock data has some
signature properties which are termed as stylised facts [16]. These facts are
observed in almost all the stock price movement time series. These were
complied over decades of observations and analysis of stock market data.
Random walk model was tested against these stylized facts. The analysis of
the model and further considerations yielded a need for a better model.

In the standard random walk, the mean position and hence for the drift
is zero. Thus random walk does not show any preferred direction in the
absence of this drift. In order the take into account drifts in the mean of the
�nancial series, we consider random walk with a drift. Random walk when
added with a constant drift (c) term is called as random walk with a drift or
biased random walk.

Xn+1 = Xn + ξn + c

Gregor Wergen et al. in 2011 [17] published a work that takes record analysis
for random walk further to target the �nancial data. The work was focused
primarily on the mean number of records. Using this as the model, work here
was further developed to determine the record statistics, similar to what was
determined for random walk model without drift. Further study of the model
found a few crucial properties, such as variable return pro�le and desired
record count of the stock price movements, missing.

Geometric random walk(GRW) is considered to be an appropriate model
to generate stock price movement time series [18]. LeRoy and Parke in a
study of volatility of market used GRW as the model to generate the synthetic
stock price movements. GRW is de�ned as:

Xn+1 = Xnξn

GRW has varying steps (non uniform jumps) [19]. In this thesis, GRW model
is used to generate time series. Stylized facts of stock price movements are
tested upon them. To generate time series using GRW, data of distribution of
log return is required. Clark in 1973 [20] proposed a model which claims log
returns to be Gaussian distributed. Here in this thesis, log return distribution
is assumed to be Gaussian. Though, this model is under scrutiny [21] and
some even called it as a dangerous assumption to make [22]. Time series were
generated using Gaussian log returns, and its ensemble was used to determine
record gaps and its probability distribution. Record statistics were also done
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for the stock market indices.The aforementioned mentioned models namely,
RW, biased RW and GRWwere analysed from the perspective of stock market
indices to determine the probability distribution of record gaps.

In the subsequent chapters, using some of the available models for stock
price movements, we analysed record statistics and obtained numerical values
of power-law exponents for the probability distributions of record gaps, i.e,
the time intervals between the occurrence of subsequent records.
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Chapter 2

Financial data analysis: empirical

results

2.1 Historical data mining

To analyse the empirical data, the prime requirement is to gather the desired
data which is open to public. Numerous long historical �nancial time se-
ries were required for statistical analysis and modelling. Yahoo �nance and
Google �nance are one of the few free publicly available websites to fetch
such �nancial data. These websites contain only daily values for long his-
torical time series. Details like opening value, highest value, lowest value,
closing value, adjusted closing value and volume transacted are available for
each day.

2.1.1 Closing value

Desired values from the fetched data were the adjusted daily closing val-
ues. Adjusted closing value is the closing value which is splits and dividends
corrected. Splits are the events when company revise the price of their re-
spective stock thereby changes the number of stock owned by any individual.
Most common split is when one share is replaced by two thereby reducing
price of each stock to half of earlier. Historical data of closing value which is
not corrected, is closing price without taking care of dividends and splits, if
any. Figure 2.2 show raw closing value and adjusted closing value for IBM
for year 1962-2012 plotted on top of each other and few of the splits are also
marked inside the plot.

Figure 2.1(a) and 2.1(b) shows the historical adjusted daily closing
values for two of the New York Stock Exchange (NYSE) listed stock prices.
The increasing trend observed here in the long time lapse is because of the
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Figure 2.1: Daily closing values from year 1962 to 2012

market in�ation. Henceforth in this thesis, closing value should always be
treated as adjusted closing value

2.2 Stylized facts

Stylized empirical facts are signature properties of a �nancial time series
[16], and are based on a vast amount of �nancial data studied in the last 2-3
decades. Some of the important stylized facts are stated below.

1. Absence of autocorrelation in the daily return values : Let X(t) rep-
resent the daily closing price of a stock at time t. Then, daily return
R(t) of the stock is de�ned as R(t) = X(t + 1) − X(t). One of the
fundamental principles of the stock markets is that the stock price re-
turns are memory-less. For the traders in the market, this implies that
short-term pro�ts cannot be made by relying upon the past perfor-
mance. This idea is mathematically captured by the behaviour of the
autocorrelation function C(τ) de�ned as,

C(τ) = lim
T→∞

1

T

T∑
t=1

(R(t)− R̄)(R(t+ τ)− R̄)

σ2
R

, τ ∈ [0, 1, 2, ..., T ] (2.1)

where T is the total length of the time series, τ is the time lag, R̄ is the
mean of the return time series and σR is its standard deviation. This
is illustrated for returns of IBM stock values in �gure 2.3.

2. Distribution of daily return values shows heavy-tailed trends:
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Figure 2.2: IBM adjusted and non-adjusted closing values

If the behaviour of the distribution, f(R) as R → ∞, is slower than
exponential decay, then it is called a heavy-tailed distribution. It is
generally observed that return distribution of the daily prices of the
stock shows heavy-tailed trends. This is illustrated in �gure 2.4 which
shows the log-log plot of the distribution of the returns for daily stock
prices of IBM, where f(R) ∼ R−1.7. Power-law in f(R) as R→∞ is a
signature of heavy-tail in return distribution.

3. Volatility of stock are clustered:

Volatility is the measure of �uctuation in the time series. Volatility
in �nancial time series tend to cluster and shows positive correlation.
There are various ways of measuring volatility. One of them can be
absolute returns |R(t)|, where returns can be of several types viz. daily,
weekly, fortnightly, monthly etc, where clustering can be observed.

4. Slow decay of autocorrelation in the absolute returns:

Absolute return values of the �nancial time series shows long range
dependence, which implies the decay is slower than exponential, typi-
cally power-law decay of autocorrelation. Long range dependence can
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turns of IBM stock data

be de�ned as

C(τ) ∼ τ−α, (0 ≤ α ≤ 1), (2.2)

where γ is the autocorrelation exponent. In most of the stock market
data, autocorrelation of absolute returns follows power-law of the form,

C(τ) ∼ τ−α, (0.2 ≤ α ≤ 0.4). (2.3)

The value of α indicates that it falls under the regime of long range
dependence.

These statistical properties are observed in most of the stock-market data.
Stylized facts were veri�ed on several empirical data and the plots for IBM
are shown in �gure 2.3 and 2.4.

2.3 Record statistics

As used in common parlance, records are created when extreme values are
reached at a given instant in time. Record position in a time series is a
position, where the corresponding value till that time is the highest. Consider
a time series xt, t = 1, 2, 3, .... At time t = τ , xτ will be called a record
if x1, x2, · · · , xτ−1 < xτ In �gure 2.5, this is shown for the closing values
of the IBM stock during 1962-2012. The enlarged version of same �gure
shows few of the record positions (indicated by the arrows) in this time series
data. Records in the time series can be ranked as an integer sequence. By
construction, the �rst occurrence of the record or r1 corresponds to x1. The
rank r2 corresponds to the second occurrence of record and so on. Consider ri
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Figure 2.5: Figure shows the closing time series of IBM stock values for year
1962-2012 in the inset and few record positions are marked in the blown up
region

as the record position of the ith record or ith rank. Plots for record positions
for stock data from IBM (Figure 2.6(a)) and Apple (Figure 2.6(b)) are
shown here.

2.3.1 Mean number of records

In statistical analysis of records, mean number of records is an important
characteristic. Mean number of records can be de�ned as the total number
of records in a group of realisations till that time. Let m(x(T )) represent the
total number of records in a given realisation of time series x(t) until time
T . Then the mean number of records is

〈m(T )〉 = lim
N→∞

N∑
i=1

m(xi(T ))

N
(2.4)

This will be further discussed later in the thesis. Several other type of means
can also be de�ned. For instance, mean number of records at any given time,
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Figure 2.6: Rank of records against time

can be illustrated mathematically as

r′(t) =
m(x(t))

t
(2.5)

Figure 2.7 shows mean number of records against time for stock data of IBM
(Figure 2.7(a)) and Exxon (Figure 2.7(b)).

2.3.2 Record gap

Record gaps are the intervals between adjacent record positions. As men-
tioned above in section 2.3, ri is the record position for the ith record. Then
record gap, rg, can be de�ned as

rg(i) = t(ri+1)− t(ri), i ∈ [1, 2, 3, ...], (2.6)

Total number of record gaps will always be one less than the total number
of records.

Record gaps for closing values of empirical data of IBM are shown in
�gure 2.8. For the daily closing values of IBM for approximately 50 years
∼ 12000 days, 432 record positions were observed. This gives 431 values of
record gaps. In this realisation, gaps ranging from as low as 1 day to highest
of 2313 days are present, whereas mean of record gaps came out to be

n∑
i=1

rg(i)

n
∼ 30,
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Figure 2.7: Mean number of records against time

which indicates that most of the records are clustering at the lower ends
of the values. To quantitatively speculate the size of gaps which are more
in number and the others which are rare, distribution of record gaps can be
determined.

Record gap distribution

Record gap distribution, φ(rg), is de�ned as number of values of rg lying
between rg and rg + drg. When area under the distribution curve is made
unity, the plot can be treated as probability distribution of the record gap
size. These statistics were performed on several empirical stock, individual
as well as on index data. Plots for IBM and GIS in individual stocks and
DJT and DJU in stock indices are shown here. From the distribution (φ(rg))
plots (�gure 2.9) of the stock market data, it is evident that record gaps with
low values are abundant compared to bigger record gaps. As these plots can
also be treated as probability plots, it can be concluded that probability of
gap of 1 between records for IBM is ∼ 0.5 and for GIS ∼ 0.4 in individual
stocks case. For stock average indices DJT and DJA it is ∼ 0.55. On further
analysis and curve �tting, all of the above empirical data depicted a power-
law trend. Following are the captured trends for each:

φ(rg)IBM ∝ r−1.64g

φ(rg)GIS ∝ r−1.49g

φ(rg)DJT ∝ r−1.54g

φ(rg)DJA ∝ r−1.66g
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Power-law behaviour of the record gap distribution signi�es strong clus-
tering of record events in time scale of the time series. Detailed analysis of
this will be covered in the upcoming chapters.
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Chapter 3

Record statistics and �nancial

time series

3.1 Financial time series and random walks

Random walk is considered as a corner stone for stochastic processes and
statistical physics. At the �rst glance, �nancial time series also looks random.
Financial time series are randomly evolved [5, 23, 6]. The earliest recorded
study on the modelling of stochastic process [5] was done by Louis Bachelier
in his PhD thesis work, which attempted to study the �nancial market using
statistical tools and gave birth to �nancial mathematics. Several other works
are done on stochasticity of the �nancial data [24] [25].

Another theory e�cient-market hypothesis [24] which was proposed in the
early 1960s and later published in an article, says that the �nancial prices
and trades ruminates the public available information, which relates to the
random-walk model.
Thomas Hellström in A random walk through the stock market [25], showed
the links between the random-walk hypothesis and �nancial time series.

3.2 Records in random walks

Studying random walks and its statistics will help in providing a background
to study the �nancial time series. Random walk is de�ned as:

Xn = Xn−1 + ξn (3.1)

where the seed, X0, can be given any arbitrary value and ξn is an inde-
pendent and identically distributed (iid) random variable.
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Figure 3.1: Comparative plot of random walk with normal and uniform dis-
tributed random variables and empirical IBM closing time series from year
1962-2012

3.2.1 Closing values

To gauge the relatedness of �nancial time series and random walk, a com-
parative study is done. Equating some of the signature statistics of �nancial
time series with random walk's statistics are done in this section. Plot of
random walk and empirical IBM time series of closing value is shown in the
�gure 3.1. Both the random walk series taken here are an ensemble average
over 104 random walk realisations. It is ensured that mean and standard
deviation of the random walk in both the cases is kept same as that of the
empirical data. For both the time series, random walk of almost 13000 data
points which is nearly 50 years of data, can show an overall declining trend
and might even hit negative values unlike the most empirical data which has
an increasing trend in long time lags and will never go negative.

3.2.2 Records

It is observed that occurrence of records in random walk is less as compared
to empirical stock time series. In a time series of length 13000 data points
for random walk, only 107 and 75 records points were observed for normally
and uniformly distributed random variable respectively. Whereas 433 record
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points were observed in stock data of IBM for nearly the same length of time
series. For further analysis and statistics of the random walk, longer time se-
ries (2520000 data points equivalent to 10000 years of time) will be considered
so that enough data points come up for better statistics and approximations.

3.2.3 Stylized facts

For the extended time series of random walk realisations, autocorrelation for
returns is observed. Returns in random walk will be same as the random
variable (ξn). It is found that correlation is absent in both, uniformly dis-
tributed and normally distributed random walk time series return values,
which is similar to what was observed in the empirical data. Return dis-
tribution of random walk realisations will be same as that of the random
variables (ξn) (from Eq. 3.1), which in this case are uniformly and normally
distributed.

3.2.4 Record gap distribution

Record gap distribution will be an interesting property to observe for random
walks, which also is an emphasis of this dissertation. Figure 3.2 shows record
gap distribution of random walk with uniformly distributed (�gure 3.2(a))
and normally distributed (�gure 3.2(b)) random variables. Descending pat-
tern as observed for the empirical data (�gure 2.9) is seen here as well. On
observing the plot on the log-log scale, it shows an approximately straight
line with a negative slope, this shows the trend observed is a power-law. Fur-
ther curve �tting and determination of the exponent distribution of record
gaps can be mathematically expressed as:

φ(rg)uniform ∝ r−1.63g

φ(rg)normal ∝ r−1.56g

3.2.5 Mean number of records

Probability of records in random walks [15] P (M, t) of M records in t time
steps where (M ≤ t+ 1) is given by

P (M, t) =

(
2t−M + 1

t

)
2−2t+M−1 (3.2)
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Figure 3.2: Distribution of record gaps for random walk time series

above equation when approximated for large t gives

〈M〉 ∼ 2√
π

√
t (3.3)

To verify the above equations (3.2 and 3.3), a simulation was performed
which calculates mean number of records for a random walk with the desired
random variable (uniform and normal). Figure 3.3 shows the mean number of
records 〈M〉 plotted against the time step t for random walk with uniformly
and normally distributed random numbers. Simulation was performed over
107 time steps for each realisation and then an ensemble average over 103 such
realisations was done for both random walk, one as uniformly distributed and
the other as normally distributed random variable.

3.2.6 How apposite is the model?

Random walk can be considered as a good model for closing value of stock
market data, as some of the stylized facts like autocorrelation of return values
have no memory, which is expected for stock data. Record gap distribution
also matches with the empirical data's record gap distribution. On the con-
trary, facts like distribution of returns, number of records in a time series do
not match with the empirical data of stock.

3.3 Random walks and �nance data

Random walk model with iid random variables is not apt for record study of
the stock market data. Records produced for random walk realisations were
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tributed RVs and the analytical result shown in Eq. 3.3 plotted against the
time steps

very less as compared to what is expected in the empirical time series. So, a
modi�ed version of the random walk, biased random walk, is used[6, 23].

3.3.1 Biased random walk: The model

Random walks when given a constant drift/bias, give a broad trend to the
time series. Random walk of the form

Xn = Xn−1 + ξn + c , (3.4)

where c is the constant bias/drift given to the system and ξ is the iid random
variable, are biased random walks.

3.3.2 Closing value

Using this as the model, closing values are generated. Uniformly and nor-
mally distributed random variables are considered here. Simulations of ran-
dom walk with a drift,were performed for time length approximately equal
to the length of the empirical time series of the IBM closing values (∼ 13000
days) and an ensemble average is taken over 104 such realisations. Drift is

18



0 2000 4000 6000 8000 10000 12000

time

-50

0

50

100

150

200

X
(t
)

Normally distributed

Uniform distribution
IBM closing values

Figure 3.4: Comparative plot of random walk with a drift, with normal and
uniform distributed random variables and empirical IBM closing time series
from year 1962-2012

adjusted in such a way, that the �nal time series comes out to be very close
to the empirical series statistically; in this case drift is taken as c = 0.001.
Drift in the random walk is quanti�ed [6] as c/σ, where σ is the standard
deviation of the random variable. Plot of the ensemble average of random
walk with a drift with random variables of both the types (normally and
uniformly distributed) are shown in the �gure 3.4. It was ascertained that
both the random walks have the same mean and standard deviation.

3.3.3 Limitations of the model

Models such as biased random walk have a few problems and limitations to
be used as stock market data. It is observed in the �gure 3.4, like unbiased
random walk, biased random walk can also hit negative values depending
on the drift(c) given. Another major problem with both random walk and
biased random walk is that, the return values distribution is irrespective of
the part of the time series. Say for instance, if the stock starts at a price
of $2 and reaches a value of $50 after some years. Then the return value
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distribution will be the same in both the regions with closing values as $2
and $50, which is not the case with the empirical data. For empirical data,
volatility varies with the increase/decrease in the closing value. Figure 3.5
depicts the pro�le change with respect to time in the empirical data of IBM
which is compared with nearly constant pro�le for returns in random walk
with uniformly and normally distributed random variables.

3.3.4 Record gap distribution

In biased random walk model simulation, signi�cant number of records were
observed. 293 and 182 record data points were observed for uniformly dis-
tributed and normally distributed random variable biased random walk re-
spectively. Record gap values ranging from 1-3596 and 1-1765 were observed
for uniformly and normally distributed random variable biased random walk
respectively. Record gap distributions of the aforementioned time series are
shown in the �gure 3.6, which appears similar to the descending pattern ob-
served for the empirical (�gure 2.9) as well as the other random walk model
without drift (�gure 3.2). On taking ln on both the axes of the record dis-
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Figure 3.6: Distribution of record gaps for time series of random walk with
a drift

tribution curve, data points showed an approximately straight line which
suggests that record gap distribution of the simulated data for the model is
a power-law. This can be mathematically expressed as:

φ(rg)uniform ∝ r−1.33g

φ(rg)normal ∝ r−1.21g

This when compared to the random walk model without drift model, is de-
viated from the empirical result of the record gap distribution.
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Chapter 4

Geometric Random Walk

In the case of standard random walk time series given in Eq. 1.1, the change
represented by Xn+1−Xn is taken to be a random variable from a stationary
distribution. In contrast, for most stock market data the change is not sta-
tionary 3.5 [26]. A more suitable model should also capture the non-uniform
changes in stock market prices. In this context, geometric random walk is
a commonly used model to generate synthetic stock market time series [18].
In contrast to the standard random walk, it has a peculiar behaviour of
non-uniform jumps which implies that the change depends on Xn.

4.1 Geometric random walk: The model

GRW, like other random walk models, needs a seed X0. It is de�ned by

Xn+1 = Xnξn (4.1)

where ξn is a random variable from a suitable distribution. It is observed
here that, ξn is the factor multiplied to the nth term to get the (n+1)th term.
Then, the precentage change in Xn is given by,(

Xn+1

Xn

− 1

)
100 = (ξn − 1)100 (4.2)

Thus, the percentage change depends on the random variable ξn (responsible
for the irregularity in the series) and onXn. This feature of geometric random
walk is utilised to generate the synthetic �nancial data.
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4.2 Geometric random walk results

4.2.1 Closing value

First, we discuss the simulated closing value obtained from GRW. It has
been observed for the empirical stock market data that, the distribution of
the log return de�ned as Rlog = log Xn+1

Xn
, is approximately Gaussian [20].

In Figure 4.2, the log-returns from IBM stock prices and GRW is shown
for comparison. For the time series from GRW, we assume the changes to
be a random variable from Gaussian distribution. Using the de�nition of
geometric random walk (Eq. 4.1) and by taking logarithm, we have

lnXn+1 = lnXn + ln ξn ⇒ ln
Xn+1

Xn

= ln ξn

⇒ Xn+1 = Xne
ln ξn (4.3)

Here, ln ξn is a normally distributed random variable. Time series is con-
structed by inserting arbitrary value to X0 in Eq. 4.3 and generating nor-
mally distributed random numbers with the speci�ed mean and standard
deviation. We denote ξ to be a normally distributed random variable with
zero mean and 1 as standard deviation. Now, we can generate normally dis-
tributed random variable of desired mean µ and standard deviation σ using,

ξ(σ, µ) = ξ(1, 0)σ + µ

Normally distributed random numbers are obtained numerically by using
Box-Muller algorithm [27]. Inputs to be generated for the normally dis-
tributed random numbers for the synthetic stock time series, can be deter-
mined from the empirical data of the log return. In this section empirical
data of IBM and HPQ are used for determining the mean and the standard
deviation of the distribution of log returns. Mean and standard deviation for
IBM are 0.00034 and 0.01617 respectively. Using these empirical parameters,
time series of the closing value using geometric random walk is generated for
IBM and HPQ. In �gure 4.1 we compare the simulated and the empirical
time series for both IBM and HPQ.

From the geometric random walk simulation, the distribution of log re-
turns is computed and displayed in Fig. 4.2. It must be observed that the
empirical log returns deviate from the assumed normality of log returns dis-
tribution.
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Figure 4.1: Closing value of the empirical data plotted over the geometric
random walk simulated curve
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geometric random walk.
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4.2.2 Stylized facts

First, we look at the stylized facts for the time series obtained from geometric
random walk. It is observed that the autocorrelation is absent in all the
realisations of geometric random walk.

Distribution of the return values (R = Xn+1 − Xn) of the time series
generated by geometric random walk were calculated. On plotting the curve
in the log scale gives a straight line which signi�es the power-law behaviour
of the return distribution. Figure 4.3 shows distribution of returns for the
simulated time series of geometric random walk. In this, the mean and
standard deviation of the empirical log return (Rlog), needed for the geometric
random walk were derived from the empirical data of IBM and HPQ. On
linear regression of the data points, we have

f(R)grwIBM ∝ R−1.82

f(R)grwHPQ ∝ R−1.61

In addition, the autocorrelation of absolute return |R| of the geometric
random walk simulated time series indicates at least short term memory in
the process.

4.2.3 Records

Total number of records present in a time series is one of the major drawback
with the previous two models, namely random walk and biased random walk.
Geometric random walk time series was generated and averaged over 500
realisations. Parameter inputs of the mean and standard deviation for the
normally distributed random variable were derived from the log return of
empirical data from IBM, HPQ, Apple, Exxon and GE. Table 4.1 shows the
comparison between the number of records generated by GRW simulations
and the empirical data. These numbers shows a clear improvement in the
count of records over other models used such as RW and biased RW. This
further increases the reliability in the statistics based on GRW model we are
computing.

4.2.4 Record gaps distribution from GRW

Empirical data of individual stocks were used to determine the series of log
return (Rlog). Mean and standard deviation for these log return series were
determined and used to generate synthetic time series using Eq. 4.3. The
distribution of record gap is computed and after averaging over 500 realisa-
tions. Record gap distribution of the time series for various stocks are shown
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Table 4.1: Number of records observed in the time series of various models
and empirical data

Stocks/Models Empirical RW Biased RW GRW
IBM 433 92 92 461
Apple 336 67 65 260
Exxon 549 81 82 438
GE 414 87 96 215
HPQ 296 88 94 275
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Table 4.2: Comparison of power-law exponent results for di�erent individual
stocks for the empirical and GRW data.

Stocks/Models γempirical γgrw
IBM 1.64 1.56
Exxon 1.60 1.57
GE 1.63 1.55
HPQ 1.58 1.58

in the �gure 4.4 as log-log plot. The approximate straight line in log-log plot
indicates a power-law behaviour of the form φ(rg)

grw ∝ r−γg . In Table 4.2,
the values of power-law exponent γ is listed along with their corresponding
empirical result. The appearance of a power-law in the distribution of record
gaps implies clustering of records for short time intervals, i.e, records tend to
occur quickly in succession over time scales that are short in comparison with
the observation time of the data. In all the data shown here, the observation
time is of the order of few years and short time scales will correspond to few
days. However, on longer time intervals of months to years, probability of
occurrence of records is vanishingly small.

Results obtained above have some deviation from the empirical results.
Distribution of the record gaps is analysed for the simulated data obtained
from time series of 252000 data points, which is equivalent to 1000 years of
data, and ensemble averaged over 500 realisations. Figure 4.5 is the log-log
plot of the distribution of record gaps for the extended and averaged time
series obtained by using the geometric random walk model. The distribution
turns out to be a power-law and can be mathematically written as,

φ(rg)
grw ∝ r−1.54g (4.4)

Plot (�gure 4.6) is shown to compare the power-law exponent of the dis-
tribution of the record gaps obtained from geometric random walk simulated
data and the various empirical data of individual stocks.

Indices

In the analysis shown above, GRW was used as a model for individual stocks.
In this section, we will treat GRW time-series as a stock market index and
compare the model results with the empirical stock market indices. As dis-
cussed before, stock indices are indicators for a portfolio of stocks represen-
tative of the market. Record gap distribution for empirical index data is
determined for several markets. Some of them are in the �gure 4.7. These
distributions also show power-law trends in record gap distribution.
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Table 4.3: Power-law exponents (γ) for distribution of record gap for empir-
ical stock market indices and GRW generated time series.

Indices/Models Empirical GRW
NYA 1.70 1.55
DJA 1.67 1.55
DJT 1.60 1.58
IXBK 1.94 1.56
IXIC 1.50 1.57
IXIS 1.69 1.58
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Figure 4.7: Record gap distribution for the empirical time series data of stock
market indices plotted against record gaps.
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Further, for these stock market indices, simulated time series were gener-
ated assuming the log return distribution feature as normally distributed and
adopting the mean and standard deviation from the empirical data. These
time series were generated using the same length of data as that of the em-
pirical data and were ensemble averaged over 500 realisations. Record gap
distribution of the series were determined and is shown in log-log plot in the
�gure 4.8. The distributions indicate a power law similar to the case for
individual stocks. The results can be represented as,

indicesφ(rg) ∝ r−1.68g (4.5)

indicesφ(rg)
grw ∝ r−1.57g (4.6)

Power-law exponents (γ) for the empirical stock indices are shown along
with the synthetically generated record gap distributions using geometric
random walk in the table 4.3. Figure 4.9 compares the power-law exponent
of the distribution of the record gaps obtained from geometric random walk
simulated data and the various empirical data of stock market indices.
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Chapter 5

Results and discussion

Probability distribution of the record gaps for empirical stock price move-
ments were found to depict power-law with the exponent 1 < γ < 2. This
shows record gap clustering.

Probability distribution of the record gaps for stochastic processes like
random walk, biased random walk and geometric random walk also depicts
power-law.

• Random walk model:

γ for probability distribution of record gap is:

γuniform ≈ 1.63 (5.1)

γnormal ≈ 1.56 (5.2)

• Biased random walk model:

γ for probability distribution of record gap is:

γuniform ≈ 1.33 (5.3)

γnormal ≈ 1.21 (5.4)

Power-law for probability distribution for the record gaps was consis-
tently observed in all the individual stock market price movements and was
also observed in the stock market indices. Where the γ for the analysed
individual stocks were ranging from minimum of 1.31 for stock prices of
ConocoPhillips(NYSE listing name: COP) and maximum of 1.73 for stock
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prices of Sinopec Group(NYSE listing name: SNP). Arithmetic mean of the
exponents for the analysed individual stock data is:

γempirical ≈ 1.53 (5.5)

Standard deviation of the exponent of the observed lot is:

σempiricalγ ≈ 0.11 (5.6)

Arithmetic mean for the analysed stock market indices is:

indicesγ
empirical ≈ 1.68 (5.7)

Standard deviation of the exponent of the observed lot is:

indicesσ
empirical
γ ≈ 0.15 (5.8)

Probability distribution of the record gaps observed for time series of
geometric random walk modelled for individual stocks. Ensemble average of
probability distribution for this shows power-law where exponent is given as:

γgrw ≈ 1.54 (5.9)

GRW when modelled for stock market indices shows:

indicesγ
grw ≈ 1.57 (5.10)

Scope for future research

To generate the geometric random walk using the distribution of log return
of the empirical data, better assumption than taking a normally distributed
random variables is demanded. I would like to carry this work further and
make a �rm analytical model of probability distribution of record gap to
determine the power-law exponent for the stochastic processes such as ge-
ometric random walk. This work can be applied to stock price movements
with more expectation and can further be expanded for other commodity
price movements.
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Appendix A

Listing names

Individual Stocks

IBM-International Business Ma-
chines
GIS-General Mills, Inc.
APPL-Apple
XON-Exxon Mobil
FP-Total SA
GD-General Dynamics Corporation
GE-General Electric
GM-General Motors Company
HPQ-Hewlett-Packard Company
NTT-Nippon Telegraph and Tele-
phone
SNP-China Petroleum & Chemical
Corporation
TM-Toyota Motor Corporation
Common
VOW-Volkswagen AG
CVX-Chevron Corporation
WMT-Wal-Mart Stores Inc.
FORD-Ford MOtors
COP-ConocoPhillips
BRK-Berkshire Hathaway Inc.
BP-BP p.l.c.

Market Indices

NYA-NYSE Composite Indes Per-
cent OP
DJA-Dow Jones Composite Average
DJT-Dow Jones Transportation
Average
DJU-Dow Jones Utility Average
IXBK-NASDAQ Bank
IXIC-NASDAQ Composite
IXIS-NASDAQ Insurance
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