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Abstract

This current thesis aims to survey recent development on certain problems in Mathematical
Finance. The geometric Brownian motion model for stock price was first proposed by the
renowned economist Samuelson in 1965. Later in 1973 Black, Scholes and Merton used that
model to find a formula for price of European options. This work commences the application
of Stochastic calculus in the research field of quantitative finance. But this model assumes
that the basic market parameters, namely, growth rate, volatility and bank interest rate
remain constant during the entire period of the option. Numerical data from actual market
does not support these assumptions. To overcome these drawbacks, several alternative mod-
els are still being proposed in the literature and thereby new mathematical challenges are
arising. In recent years a large amount of research is being carried out by considering the
market parameters as Markov chains which evolve according to a prescribed transition rate.
Markov modulated GBM model is one of that kind. This model can be regarded as straight
forward generalization of B-S-M (Black, Scholes and Merton) model. Although such market
is proved to have no arbitrage, but the cost paid for this generalization includes features like
incompleteness of market, lack of analytic solution, non-uniqueness of option pricing etc.
Nevertheless, consideration of the above model opens up a wide range of research topics.
The existing literature, those assume above model and related to locally risk minimizing
pricing, optimal hedging, portfolio optimization with risk sensitive cost, stability of numeri-
cal solutions of associated PDEs, computation of complexity of numerical schemes etc. are
thoroughly being surveyed in this current project. Besides, a number of numerical experi-
ments are carried out based on the theoretical results. During thorough study of Springer
lecture note on Introduction to stochastic Calculus for Finance” by Dieter Sondermann, as
part of prerequisite, a list of errata along with few corrections/suggestion is prepared and
enclosed to this thesis.
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Chapter 1

Preliminaries

1.1 Stochastic processes

A stochastic process is a family of random variables {X(t)|t ∈ T} defined on a given proba-
bility space, indexed by the time variable t, where t varies over index set T . We interpret t
as time and call X(t) as the state of process at time t. If index T is a countable set then X a
discrete-time stochastic process, and if T is continuum it is a continuous-time process. Any
realization of X is called sample path. We are hereby describing those which are relevant
for the present thesis.

Consider a discrete time stochastic process {Xn, n = 0, 1, 2, ...} with a finite number
of states S = {1, 2, 3}. The dynamics of the process is as follows. You move from state 1 to
state 2 with probability 1. From state 3 you move either to 1 or to 2 with equal probability
1
2
, and from 2 you jump to 3 with probability 1

3
, otherwise stay at

1.1.1 Martingale

A stochastic process M is a martingale with respect to the filtration {Ft} if it satisfies the
following two conditions:

1. M is adapted to {Ft}t≥0; that is, for every t, M(t) is Ft measurable.
2. For all 0 < s < t we have E[M(t) | Fs] = M(s).

1



Chapter 1 : Preliminaries

1.1.2 Discrete-time Markov chain

Definition 1.1.1. A Markov chain is a sequence of random variables X1, X2, X3, ... with the
Markov property,

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn).

The possible values of Xi form a countable set S called the state space of the chain.

Example 1.1.1. A famous Markov chain is the so-called simple symmetric random walk, a
random walk on one dimension , at each step, the position may change by +1 or 1 with equal
probability. From any position there are two possible transitions, to the next or previous
integer. The transition probabilities depend only on the current position, not on the manner
in which the position was reached. For example, the transition probabilities from 5 to 4 and
5 to 6 are both 1/2, and all other transition probabilities from 5 are 0. These probabilities
are independent of whether the system was previously in 4 or 6.

Bernoulli process

A Bernoulli process is a finite or infinite sequence of independent random variablesX1, X2, X3, ...,
such that

1. For each i, the value of Xi is either 0 or 1;
2. For all values of i, the probability that Xi = 1 is the same number p.
3. Independence of the trials implies that the process is memoryless.

Interpretations

Several random variables and probability distributions beside the Bernoullis may be derived
from the Bernoulli process:

1. The number of successes in the first n trials, which has a binomial distribution B(n,
p)

2. The number of trials needed to get r successes, which has a negative binomial distri-
bution NB(r, p)

3. The number of trials needed to get one success, which has a geometric distribution
NB(1, p), a special case of the negative binomial distribution.

The negative binomial variables may be interpreted as random waiting times.

2



1.1. Stochastic processes

1.1.3 Continuous-time Markov chain

The process {X(t), t ≥ 0} is a continuous-time Markov chain with discrete state space if for
all s, t ≥ 0, and non negative integers i, j, x(u), 0 ≤ u ≤ s,

P (X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s) = P (X(t+ s) = j|X(s) = i).

In other words, a continuous-time Markov chain is a stochastic process having Markovian
property that the conditional distribution of the future state at time t+ s, given the present
state at s and all the past states depends only on the present state. If P (X(t+s) = j|X(s) =
i) is independent of s, then the continuous-time Markov chain is said to be time homoge-
neous.

Birth and death process

The birth-death process is a special case of continuous-time Markov process where the state
transitions are of only two types: “births” which increase the state variable by one and
“deaths” which decrease the state by one. The model’s name comes from a common ap-
plication, the use of such models to represent the current size of a population where the
transitions are literal births and deaths. It is continuous-time Markov process for which
transitions from state i only happens to either state i − 1 or state i + 1. The state of the
process can be thought as representing the size of some population so when birth occurs the
state increases by 1 and decrease by 1 when death occurs. Let {λi, i ≥ 0} be birth rates and
{µi, i ≥ 0} be death rates and as follows:

λi = qi,i+1

µi = qi,i−1

Since Σjqij = vi,we see that

vi = λi + µi,

Pi,i+1 =
λi

λi + µi
= 1− Pi,i−1

Hence we can think when there are i people in the system the time until the next birth
is exponential with rate λi and is independent of the time until the next death, which is
exponential with µi.

3



Chapter 1 : Preliminaries

1.1.4 Brownian Motion With Drift

Brownian Motion

In 1827 the biologist Robert Brown, looking through a microscope at pollen grains in water,
noted that the grains moved through the water but was not able to determine the mechanisms
that caused this motion. The direction of the force of atomic bombardment is constantly
changing, and at different times the pollen grain is hit more on one side than another, leading
to the seemingly random nature of the motion. This transport phenomena is named after
Robert Brown.

A stochastic process [X(t), t ≥ 0] is said to be Brownian motion process if:

1. X(0) = 0 ;
2. {X(t), t ≥ 0} has stationary independent increments;
3. For every t > 0, X(t) is normally distributed with mean 0 and variance c2t.

The Brownian motion process, often called the Wiener process, is one of the most useful
stochastic processes in applied probability theory. When c=1, the process is called standard
Brownian motion. The mathematical model of Brownian motion has several real-world
applications.
Example-

1. Modelling stock prices.
2. Thermodynamics

Brownian Motion With Drift

{X(t), t ≥ 0} is a Brownian motion process with drift coefficient µ :

1. X(0) = 0;
2. {X(t), t ≥ 0} has stationary and independent increments;
3. X(t) is normally distributed with mean µt and variance c2t.

X(t) = cB(t) +µt, where B(t) is standard Brownian motion. A Brownian motion with drift
is a process that tends to drift off at a rate µ.

4



1.1. Stochastic processes

1.1.5 Geometric Brownian Motion

A geometric Brownian motion(GBM) also known as exponential Brownian motion is a
continuous-time stochastic process in which the logarithm of the randomly varying quan-
tity follows a Brownian motion (also called a Wiener process) with drift. It is an important
example of stochastic processes satisfying a stochastic differential equation (SDE), it is used
in mathematical finance to model stock prices in the BlackScholes model. If {X(t), t ≥ 0}
is Brownian motion,then the process {Y (t), t ≥ 0} , defined by

Y (t) = eX(t)

is called Geometric Brownian motion.
Now if X(t) is normal with mean 0 and variance t, its moment generating function is given
as follows:

E[eY (t)] = e
t
2

V ar(Y (t)) = e2t − et

Geometric Brownian motion is useful in modeling when the percentage changes are indepen-
dent and identically distributed. Suppose that Y (n) is the price of some commodity at time
n

Xn = Y (n)/Y (n− 1)

then, taking Y (0) = 1,
Y (n) = X1X2...Xn

and so

log Y (n) =
n∑
i=1

logXi,

Since the Xi are independent and identically distributed, log Y (n), when normalized, would
be approx Brownian motion, and {Y (n)} would be approx geometric Brownian motion. A
stochastic process St is said to follow a GBM if it satisfies the following stochastic differential
equation (SDE):

dSt = µSt dt+ σSt dWt

where Wt is a Wiener process or Brownian motion and µ (the percentage drift) and σ (the
percentage volatility) are constants.

The Lévy characterization of Brownian motion

Let X(t) = (X1(t), ..., Xn(t)) be a continuous stochastic process on a probability space
(ω,H, Q) with values in Rn. Then the following are equivalent:

1. X(t) is a standard Brownian motion w.r.t Q, i.e. the law of X(t) w.r.t. Q is the same
as the law of an n-dimensional Brownian motion.

5
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2. (a) X(t) = (X1(t), ..., Xn(t)) is a martingale w.r.t. Q ( and w.r.t. its own filtra-
tion) and

(b) Xi(t)Xj(t) − δi,jt is a martingale w.r.t. Q ( and w.r.t. its own filtration)
∀i, j ∈ {1, 2, ..., n}.

1.1.6 Stochastic volatility model

Stochastic volatility models are one approach to resolve a shortcoming of the Black-Scholes
model which assume that the underlying volatility is constant over the life of the derivative,
and unaffected by the changes in the price level of the underlying security. By assuming
that the volatility of the underlying price is a stochastic process rather than a constant, it
becomes possible to model derivatives more accurately. Realised volatility of traded assets
displays signicant variability. Any model used for the hedging of derivative contracts on such
assets should take into account that volatility is subject to fluctuations.

In constant volatility approach, the derivative’s underlying asset price follows standard
model for GBM. For stochastic model just replace constant volatility σ with function νt that
models the variance of St . This variance function is also modeled as brownian motion.

dSt = µSt dt+
√
νtSt dWt

dνt = αS,t dt+ βS,t dBt

where αS,t, and βS,t, are some functions of ν, and S,

1.1.7 Lévy process

Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with
independent, stationary increments. A Lévy process can be viewed as the continuous-time
analog of a random walk.
Let X = (X(t), t ≥ 0) be a stochastic process defined on a probability space (ω,F , P ). We
say that it has independent increments if for each 0 ≤ t1 < t2 < · · · < tn+1 <∞ the random
variables (X(tj+1)−X(tj), 1 ≤ j ≤ n) are independent and that it has stationary increments
if each X(tj+1)−X(tj) = X(tj+1 − tj)−X(0).
We say that X is a Lévy process if it satisfies the following properties:

1. X(0) = 0 a.s;
2. X has independent and stationary increments;
3. X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0;

lim
t→s

P (|X(t)−X(s)| > a) = 0.

6



1.1. Stochastic processes

Examples of Lévy processes are Brownian motion, Gaussian processes and the Poisson pro-
cess. Except Brownian motion, all other Lévy processes have discontinuous paths.

1.1.8 Geometric Lévy process

The geometric Lévy process model is one of improvement in BS model. This model is an
incomplete market model, so there are many equivalent martingale measures such as the
Esscher martingale measure, the variance optimal martingale measure, the minimal entropy
martingale measure etc.

Suppose that a probability space (Ω, F, P ) and a filtration {Ft, 0 ≤ t ≤ T} are given.
A geometric Lévy precess (GLP) is given by

St = S0e
Zt

where Zt is a Lévy process. We call such a process St the geometric Lévy process(GLP).

1.1.9 Markov Modulated GBM

dSt = St(µ(Xt)dt+ σ(Xt)dWt)

Now Markov modulated GBM is Itô process.
Take Ft is a filtration generated by Xt and Wt. Since Xt and Wt are independent. So, Wt

remains martingale and St is adapted to Ft.

1.1.10 Semi Markov Modulated GBM

Xt is a semi markov process(not Markov) and independent to Wt.
then

dSt = St(µ(Xt)dt+ σ(Xt)dWt), t ≥ 0.

with S0 > 0 is not Lévy process but it is Itô’s process.

Semi-Markov process

A semi-Markov process is one that changes state in accordance with a Markov chain but
takes a random amount of time between changes. Consider a stochastic process with states
0, 1, . . . , which whenever enters state i, i ≥ 0 and follows :

7



Chapter 1 : Preliminaries

1. The next state it will enter is state j with probability Pij, i, j ≥ 0.
2. Given that the next state to be entered is state j, the time until the transition from
i to j occurs has distributions Fij.

If Z(t) denote the state at time t, then {Z(t), t ≥ 0} is called a semi Markov process. But
it doesn’t posses the Markovian property. For it prediction the future, it not only requires
present state, but also the length of the time that has been spent in that state. A Markov
chain is a semi-Markov process in which

Fij(t) =

{
0, t < 1

1, t ≥ 1
i.e. all transition times of a Markov chain are identically 1.

Stochastic process

Discrete Time
with Discrete state

Markov chain

Non Markov

Continuous Time

Discrete state

Markov
Ex:Birth & Death

Semi-Markov

General

Continuous path

Markov

Non Markov
Semi Markov Modulated

GBM

Discontinuous path

Non Markov
Ex:Semi Markov Modulated Levy

Markov
Ex:Levy

Ito’s process
Ito’s Difussion
Ex:GBM model

& Stochastic Volatility model

Non strongly Markov

Figure 1.1: Classification Tree of stochastic processes
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1.2 Properties of Markov Processes and its Generators

Markov process

Let (Ω,Ft,P) be a probability space, S be a complete separable metric space and S = S-
valued stochastic process X = (Xt, t ∈ T ) adapted to the filtration is said to possess the
Markov property with respect to the {Ft} if, for each A ∈ S and each s, t ∈ T with s < t,

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs).

A Markov process is a stochastic process which satisfies the Markov property with respect
to its natural filtration.

Strong Markov property

Suppose that X = (Xt : t ≥ 0) is a stochastic process on a probability space (Ω, (Ft)t≥0,P).
Then X is said to have the strong Markov property if, for each stopping time τ , conditioned
on the event {τ < ∞}, the process Xτ+ (which maybe needs to be defined) is independent
from Fτ := {A ∈ F : τ ∩A ∈ Ft, t ≥ 0} and Xτ+t−Xτ has the same distribution as Xt for
each t ≥ 0.

The strong Markov property is a stronger property than the ordinary Markov property,
since by taking the stopping time τ = t, the ordinary Markov property can be deduced. It
can be formulated as follows.

E[f(Xt)|Fs] = E[f(Xt)|σ(Xs)]

for all t ≥ s ≥ 0 and f : Sn → R bounded and measurable.

Xt be a real valued (Markov) Stochastic process with continuous path. Let A : V −→
V0 be an operator where V and V0 are Banach spaces, if A is generator of Xt then

f(Xt)−
∫ t

0

Af(Xs)ds

is a martingale for all f ∈ Dom (A).

Banach spaces

A normed linear space X is said to be a Banach space if for every Cauchy sequence {xn}∞n=1 ⊂
X there exists an element x in X such that limn→∞ xn = x.

9



Chapter 1 : Preliminaries

Motivation using a Deterministic process

Let {St}t≥0 be a family of operators from C1(R) to C(R) such that

Stf(x0) = f(xt), S0f(x) = f(x) ∀f ∈ C1(R)

{St}t≥0 forms a semigroup of operators.

Roughly speaking, one can write St = ctA then A is generator of Xt. We illustrate this
with an example.

Motivation

Let xt = a + ct be a deterministic process where a & c are real constants and t ≥ 0. Using
the fundamental theorem of calculus since xt is of B.V. and chain rule.

f(x(t))− f(x(0)) =

∫ t

0

f ′(x(s))x′(s)ds

=

∫ t

0

c
d

dx
f(x(s))ds ∀f ∈ c′(R)

f(x(t))−
∫ t

0

c
d

dx
f(x(s))ds = f(x0).

a constant, i.e., a Martingale. ∀f ∈ Dom(A) = C1(R)

Hence, A := c d
dx

is differential generator of xt = a+ ct0.

Again,

xt = a+ ct

f(xt) = f(a+ ct)

= f(a) + f ′(a)ct+
1

2
f ′′(a)c2t2 + · · ·

= (I + ctD +
ct2

2!
D2 + · · · )f(x)|a

= ectDf |x=x0 ∀f ∈ c′(R)

i.e St = etcD, where D =
d

dx
.

10



1.2. Properties of Markov Processes and its Generators

1.2.1 Markov Semi group and their generators

Consider the matrix Λ which satisfies λij := limh→0
P (Xt+j=j|Xt=i)

h
for j 6= i

P (Xt+h = j|Xt = i) = λijh+ o(h)

and
∑
j 6=i

λij = −λii.

If t=0, then

P (Xh = j|X0 = i) =

{
λijh+ o(h), if i 6= j

1 + λiih+ o(h)

= (Λh+ 1).

Let us define the matrix P whose (i, j)th entry gives the probability of one step tran-
sition to state j from state i.

Pij = P ({Xt = j} ∩ {Xs = i, ∀s < t} for some t > 0 | X0 = i)

= lim
h→0

∞∑
n=0

P (X(n+1)h = j | {Xs = i, ∀s ≤ nh} ∩ {X0 = i})P (Xs = i, ∀s ≤ nh|X0 = i)

= lim
h→0

∞∑
n=0

(λijh+ o(h))(1 + λiih+ o(h))n

= lim
h→0

(λijh+ o(h))
1

1− (1 + λiih+ o(h))
[as 0 < 1 + λiih+ o(h) < 1 for small h.]

= lim
h→0

λijh+ o(h)

−λiih+ o(h)

Pij =
λij
−λii

then

P = I −Diag

(
1

λi

)
Λ

Λ = Diag(λi)(I − P ).

Markov semigroup

The family (S(t))t≤0 is called Markov semigroup associated to the process (Px)x∈E which
satisfies following conditions:

11



Chapter 1 : Preliminaries

1. S(t) : B(E) → B(E) is a bounded linear operator for any t ≥ 0 and ||S(t)ϕ||∞ ≥
||ϕ||∞ for any ϕ ∈ B(E), t ≥ 0 (that is ||S(t)|| ≤ 1 for any t, r ≥ 0).

2. S(0) = I.
3. S(t+ r) = S(t)S(r), for any t, r ≥ 0.
4. S(t)ϕ ≥ 0 a.e. in particular, if ϕ ≤ ψ a.e., then S(t)ϕ ≤ S(t)ψ a.e..
5. S(t)1 = 1 a.e. (here 1 is the function constantly equal to 1).

where, B(E) is the algebra of Borel sets of E.
Now let us define P(t) which gives the following transition probabilities:

Pij(t) = P (Xt = j|X0 = i)

= lim
n→∞nh=t

P (Xnh = j|Xs = i)

= lim
n→∞nh=t

(Λh+ I)n(i, j)

= lim
n→∞nh=t

(
I +

tΛ

n

)n
(i, j)

= etΛ(i, j)

= Pt(i, j)(say).

Here P is Markov semi group which is equal to eΛ.

We see that it is worth mentioning that

P 6= P := eΛ

which is evident from above.

Actually,
Pij := Probability of being at j at t = 1 given if was at i initially.
Pij = Probability that the next state would be j given it was at i.
Pii need not be equal to 0 = Pii ∀i.

1.2.2 Examples

The differential generator A for standard n-dimensional Brownian motion

is given by

Af(x) =
1

2

∑
i,j

δij
∂2f

∂xi ∂xj
(x) =

1

2

∑
i

∂2f

∂x2
i

(x),

i.e., A = 1
2
∆, where ∆ denotes the Laplace operator.
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1.2. Properties of Markov Processes and its Generators

Itô Diffusion

Stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = x0

where Xt ∈ Rn, b(t, x) ∈ Rn, σ ∈ R(n×m) and Bt is m-dimensional Brownian motion, b is the
drift coefficient and σ is the diffusion coefficient.
Let Xt be an Itô diffusions in Rn. The generator A of Xt is obtained by

Af(x) = lim
t↓0

Ex[f(Xt)− f(x)]

t
; x ∈ Rn,

The set of functions f : Rn −→ R such that the limit exists at x is denoted by DA(x).
For any compactly-supported C2 (twice differentiable with continuous second derivative)
function f lies in DA(x) and that

Af(x) =
∑
i

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j

(
σ(x)σ(x)>

)
i,j

∂2f

∂xi ∂xj
(x).

1.2.3 Applications

FeynmanKac formula

The FeynmanKac formula, named after Richard Feynman and Mark Kac, establishes a link
between parabolic partial differential equations (PDEs) and stochastic processes. It offers a
method of solving certain PDEs by simulating random paths of a stochastic process.

We describe Feynman-Kac formula for Itô processes i.e. of the form

dXt = b(Xt, t)dt+ σ(Xt, t)dBt, X0 = x0

with Bt a Brownian motion under the measure P .

Feynman-Kac considers the following problem-

Find a solution f(x, t) ∈ C2,1(R× [0, T ]) for the PDE

Af(x, t)− b(x, t)f(x, t) = 0 (x, t) ∈ R× [0, T )

under the boundary condition

f(x, T ) = g(x) x ∈ R

13
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where

Af(x, t) = ft(x, t) + fx(x, t)b(x, t) +
1

2
σ2(x, t)fxx(x, t).

A is the so-called infinitesimal generator of Xt, gives the expected rate of change of f(Xt, t),
given Xt = x, i.e.

Af(x, t) = lim
∆→0

1

∆
(E[f(X(t+ ∆), t+ ∆)|Xt = x]− f(x, t)).

From Itôs formula applied to df(Xt, t) and the local martingale property of the Itô-integral
one easily derives. then the FeynmanKac formula tells us that the solution can be written
as a conditional expectation

f(x, t) = EP

[
exp{−

∫ T

t

b(Xs, s)ds}g(XT ) | Xt = x

]
.
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Chapter 2

Overview of Math Finance

2.1 Derivative Markets and instruments

2.1.1 Basic terminology in option pricing

• Option: An option is the right, but not the obligation to buy (or sell) an asset under
specified terms.
• Holder of the Option: Holder has the right without any obligation.
• Writer of the Option: Writer has no right,but is obliged to the holder to fulfill the

terms of the option.
• Call Option: It gives the holder the right to buy something from the writer.
• Put Option: It gives the holder the right to sell something from the writer.
• Asset: It can be anything, but we consider only stocks which will be referred to as

primary security. An option is a derivative security.
• Strike or Exercise Price: A prescribed amount at which the underlying asset may be

bought or sold by the holder.
• Expiration Date: It is a future time(date) after which the option becomes void.
• European Option: It is a contract with the following conditions: At a prescribed time

in future (expiration date) the holder of the option may buy a prescribed asset for a
prescribed price (strike price).
• American Option: It can be exercised any time before and including the expiration

date.
• Short: Selling an asset without actually possessing it.
• Long: buy.

Definition 2.1.1. Derivative contract is a financial instrument with a return that is obtained
from the return of another underlying financial instrument. These contracts are created on
and traded in two distinct and some related types of markets:

15



Chapter 2 : Overview of Math Finance

1. Exchange traded- These have standard terms and futures and are traded on an
organized derivatives trading facility, referred as futures exchange.

2. Over the counter- Any transactions created by two parties anywhere else.

Derivative contracts can be classified into two general types:

1. Forward commitments

(a) Forward contract is an agreement between two parties in which one party,
the buyer agrees to buy from another party,the seller, an underlying asset at
a future date at a price established at initial. In some sense it is customized
contact. In financial world take place in a large and private market consisting
of banking firms, governments and corporations. Its include buy and sell a
foreign currency or a commodity at a future date, locking in the exchange rate
or commodity at a start.

(b) Futures contract has same basic definition but some additional features that
clearly distinguish it from a forward contract. It is public, standardized trans-
action that takes place on future exchange like stock exchange, which is an
organization that provides a facility for engaging in futures transactions and
establishes a mechanism through which parties can buy and sell these con-
tracts. The futures exchange implements performance guarantee through an
organization called the clearinghouse which writes itself in the middle of two
parties so each party has a contract with the exchange and not with the other
party. The exchange collects payment from one party and disburses payment
to other. It also follows process referred as daily settlement or market to mar-
ket. Where as for forward party only solid, credit worthy parties can generally
engage in it.

i. When the position is established, each party deposits a small amount
of money, called the margin, with the clearing house.

ii. When a transaction is initiated, a futures trader puts up a certain
amount of money to the initial margin requirement; however this amount
of money is not borrowed. It is more like a down payment for the com-
mitments to purchase the underlying at a later date. The money helps
the party fulfills his or her obligation. In securities, margin require-
ments are normally set by federal regulators. In US it is set by the
securities exchanges and FINRA.

iii. To provide a fair market process, the clearinghouse must designate the
official price for determining daily gains and losses. This price is called
the settlement price and represents an average of the final few traders
of the day.
Example: Consider a futures contract in which the current futures price
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is $82. The initial margin requirement is $5, and the maintained margin
requirement is $2. You go long 20 contracts and meet all margin calls
but do not withdraw any excess margin. Assume that on the first
day, the contract is established at the settlement price, so there is no
market-to-market gain or loss on that day.

Day Beginning Funds Futures Price Gain/Loss Ending
Balance Deposits Price Change Balance

0 0 100 82 - - 100
1 100 0 84 2 40 140
2 140 0 78 -6 -120 20
3 20 80 73 -5 -100 0
4 0 100 79 6 120 220
5 220 0 82 3 60 280
6 280 0 84 2 40 320

Table 2.1: Holder of long position of 20 contracts

On Day 0, you deposits $100 because the initial margin requirement is
$5 per contract and you go long 20 contracts. At end of Day 2, the bal-
ance is down to $20 below the $40 maintenance margin requirement($2
× 20). You must deposit enough money to bring the balance up to the
initial margin requirement of $100($5 per contract times 20 contracts).
So on Day 3, you deposit $80. The price change on Day 3 causes a loss
of $100, leaving you with a balance of $0 at end of Day 3. On Day 4,
you must deposit $100 to return the balance to the initial margin level.
Moreover, a price decrease to $79 would trigger a margin call. If future
price starts at $82, it can fall by $3 to $79 before it triggers a margin
call.

(c) Forward rate agreement(FRA) is forward contract in which one party,
the long(Buyer), agrees to pay a fixed interest payment at a futures date and
receive an interest payment at a rate to be determined at expiration. FRA’s
are denoted by special notation 3× 6 FRA in three months; underlying is a
Eurodollar deposit that begins in three months and ends three months later,
or six months from now. These are forward on interest rates.

Eurodollar time deposits are dollar loans made by one bank to another.
Eurodollar deposits accrue interest by adding it on the principal, using 360-
day year assumption. The primary Eurodollar rate is called LIBOR(London
Interbank Offer Rate). LIBOR, the rate at which London banks are willing
to lend to other London banks. Euribor is the rate on a euro time deposit, a
loan made by banks to other banks in Frankfurt in which the currency is the
euro.
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The FRA payoff formula:-
Let Notional principal= N ; Underlying rate at expiration= R ; Forward con-
tract rate= F ; Days in underlying rate= D.

N

[
(R− F )( R

360
)

1 +R( D
360

)

]
Example 2.1.1. The treasurer of company A expects to receive a cash inflows
of $15,000,000 in 90 days. The treasurer expects short-term interest rates to
fall during the next 90 days. In order to hedge against this risk, the treasurer
decides to use an FRA that expires in 90 days and is based on 90-day LIBOR.
The FRA is quoted at 5 percent. At expiration, LIBOR is 4.5 percent. Assume
that the notional principal on the contract is $15,000,000.
Here, taking short(seller) position will hedge the interest rate risk for company
A. The gain on the contract will offset the reduced interest rate that can be
earned when rates fall. Moreover this 3× 6 FRA.

$15, 000, 000

[
(0.045− 0.05)(90/360)

1 + 0.045(90/360)

]
= −$18, 541.41

(d) Swap is a variation of forward contract that is essentially equivalent to series
of a series of forward contracts. It is an agreement between two parties to
exchange a series of future cash flows, in other words, one party makes a single
fixed payment and the other makes a single floating payment amounts to a
forward contract. One party agrees to make known payment to the other hand
and receive something unknown in return which depends on some underlying
factors like interest rate, exchange rate,stock price, or commodity price.
Types of swap:-

i. In a Currency swap, each party makes payments to other in different
currencies. A currency swap can have one party a fixed rate in one
currency and the other pay a fixed rate in the other currency; have both
pay a floating rate in their respective currencies; have the first party
pay a fixed in one currency and second party pay a floating rate in other
currency; or have the first party pay a floating rate in one currency in
one currency and the second pay a fixed rate in other currency. (so in
general fixed-fixed; floating-floating; floating-fixed; fixed-floating but
all in their respective currencies.)

ii. An interest rate swap is that in it is a currency swap in which both
currencies are the same. A plain vanilla swap is simply an interest
rate swap in which one party pays a fixed rate and the other pays a
floating rate, with both sets of payments in the same currency. Example
Dollar-dominated plain vanilla swap if both currencies are in Dollar and
Euro-dominated plain vanilla swap if both currencies in Euro.
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iii. The equity swap is a swap in which at least one party pays the return
on stock or stock index. Equity swaps are commonly used by asset
managers.

2. Contingent claims are derivatives in which the payoffs occur if a specific event
happens. We generally refer to these types of derivatives as options. An option is
a financial instrument that gives a party the right, but not the obligation, to buy
or sell an underlying asset from or to another party at fixed price over a specific
period of time. An option that gives the right to buy is referred to as call; an option
that gives the right to sell is referred to as put. Calls are in-the-money when the
underlying value exceeds the exceeds the exercise price and puts are in-the-money
when the exercise price exceeds the value of the underlying.
S0, ST = Price of the underlying asset at time 0 i.e today and time T i.e. expiration.
X = Exercise price
r = Risk-free rate
T = Time of expiration, equal to number of days to expiration divided by 365
c0, cT = Price of European call today and at expiration
C0, CT = Price of American call today and at expiration
p0, p0 = Price of European put today and at expiration
P0, PT = Price of American put today and at expiration
European option = It can be exercised only on its expiration day
American option = It can be exercised on any day through the expiration day.

Option Min. Max.
European call c0 ≥ 0 c0 ≤ S0

American call C0 ≥ 0 C0 ≤ S0

European put p0 ≥ 0 p0 ≤ X/(1 + r)T

American put P0 ≥ 0 P0 ≤ X

Table 2.2: Minimum and Maximum Values of Options.

Put-Call Parity is combinations of puts and calls or with a risk-free bond.
Fiduciary Calls and Protective Puts: A fiduciary call is a call plus a risk-free
bond maturing on the option expiration day with a face value equal to the exercise
price of the option, where as a protective put is the underlying plus a put. Basic put-
call parity equation (A fiduciary call is equivalent to a protective put)is following:

c0 +X/(1 + r)T = p0 + S0
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Strategy Consisting Worth = Strategy Consisting Worth
Fiduciary call Long call + c0 = protective put Long put + p0 + S0

Long bond + X/(1 + r)T Long underlying

Long call Long call c0 = Synthetic call Long put+ short bond p0 + S0 −X/(1 + r)T

+ Long underlying

Long put Long put p0 = Synthetic put Long call + Long bond c0 − S0 +X/(1 + r)T

+ Short underlying

Long underlying Long underlying S0 = Synthetic underlying Long call + Long bond c0 +X/(1 + r)T − p0
+ Short put

Long bond Long bond X/(1 + r)T = Synthetic bond Long put + Short call p0 + S0 − c0
+ Long underlying

Table 2.3: Alternative equivalent combinations of calls, puts, the underlying, and risk free
bonds

2.2 Current Practice

Here we enlist some of the major research directions in mathematical finance.

• Advanced methods for pricing and hedging of derivative securities: models with jumps
and stochastic volatility, asymptotic methods in option pricing, model calibration,
valuation of long-term equity contracts and investment strategies, market with im-
perfections (proportional transaction costs, delta constraint)
• Stochastic analysis: Functional Ito calculus, path-dependent partial differential equa-

tions, Backward Stochastic Differential Equations, Malliavin calculus.
• Interest rate modeling: multi-factor models, multi-curve term structure models, im-

pact of funding on interest rate derivatives.
• Systemic risk: network models of credit contagion, quantitative modeling of feedback

effects, metrics for systemic risk, quantitative models of financial stability.
• Counterparty Credit risk, Collateral and Funding: Credit Value Adjustment (CVA),

DVA, collateral requirements and their impact on pricing of derivatives, and consistent
inclusion of funding costs (FVA); credit derivatives.
• Applications of Stochastic control in finance.
• Liquidity risk: models of price impact and liquidity risk, liquidity-adjusted risk mea-

sures, liquidity-based pricing models
• Market microstructure and high frequency modeling: mathematical modeling of limit

order markets, statistical modeling of high frequency market data, consequences of
high frequency trading for market stability and volatility.
• Rough Differential Equations.
• Numerical Methods for finance: probabilistic methods for non-linear PDE, numerical

methods for BSDEs, model calibration.
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2.3 Success and Recognition

Mathematical finance is a field of applied mathematics with financial markets as focus. Gen-
erally mathematical finance does not require establishing a link to financial theory, observed
market prices are taken as input for deriving and extending the mathematical or numer-
ical models. For example, while a financial economist might study the structural reasons
for company having a certain share price, a financial mathematician may take the share
price as a input, and attempt to use stochastic calculus to obtain the corresponding value of
derivatives of the stock. The fundamental theorem of arbitrage-free pricing is one of the key
theorems in mathematical finance, while the BlackScholes equation and formula are amongst
the key results. Mathematical finance also overlaps heavily with the field of computational
finance as well as financial engineering. Often by help of stochastic asset models, model-
ing and derivation are done (A quantitative analyst). In general, there exist two separate
branches of finance that require advanced quantitative techniques: derivatives pricing and
risk & portfolio management.

In financial economics, a financial institution is an institution that provides financial
services for its clients or members. In modern times the mathematical finance found its
unique place in academics. Imperial college London, King’s College London Financial Math-
ematics, LSE Mathematics, Stanford University and Rutgers, The State University of New
Jersey deserves to be mentioned among many others for their contribution to research and
education in this field. The Mathematical Finance Section of the Department of Mathe-
matics at Imperial College London, is devoted to research on mathematical modeling and
computational methods in finance. The Departments of Mathematics and Statistics, in close
cooperation with the Departments of Economics and Management, Science and Engineering
and the Graduate School of Business, offer an Interdisciplinary Master of Science Degree in
Financial Mathematics.

2.4 Dedicated journals

The growth of the subject can be also perceived by looking at the large spectrum of high
ranked new journals dedicated to the subject. Needless to mention that SIAM Journal on
Financial Mathematics, Quantitative Economics, Quantitative Finance, Annals of Finance,
Applied Mathematical Finance, Decisions in Economics and Finance, Finance and Stochas-
tics, International Journal of Theoretical and Applied Finance, Finance Journal of Com-
putational Finance, The Journal of Finance, Mathematical Finance, Finance Mathematical
Methods in Economics and Finance, Quantitative Finance, Statistics & Risk Modeling with
Applications in Finance and Insurance, Econometric Theory, Econometrica etc are of above
category.
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2.5 Criticism by practitioners

Over the years, increasingly sophisticated mathematical models and derivative pricing strate-
gies have been developed, but their credibility was damaged by the financial crisis of 2007−
2010.

Benot Mandelbrot: In the 1960s he discovered that changes in prices do not follow
a Gaussian distribution, but are rather modeled better by Lévy alpha-stable distributions.
The scale of change, or volatility, depends on the length of the time interval to a power a bit
more than 1/2. Large changes up or down are more likely than what one would calculate
using a Gaussian distribution with an estimated standard deviation.

Nassim Nicholas Taleb: Contemporary practice of mathematical finance has been
subjected to criticism from figures within the field notably by Nassim Nicholas Taleb [48],
a professor of financial engineering at Polytechnic Institute of New York University, in his
book The Black Swan and Paul Wilmott. Taleb claims that the prices of financial assets
cannot be characterized by the simple models currently in use, rendering much of current
practice at best irrelevant, and, at worst, dangerously misleading.

Wilmott and Emanuel Derman: In January 2008, they published the Financial
Modelers’ Manifesto which addresses some of the most serious concerns. Bodies such as the
Institute for New Economic Thinking are now attempting to establish more effective theories
and methods.

The Great Depression

The Great Depression was a severe worldwide economic depression in the decade preceding
World War II. It was the longest, most widespread, and deepest depression of the 20th
century.In the 21st century, the Great Depression is commonly used as an example of how
far the world’s economy can decline. The depression originated in the U.S., after the fall in
stock prices that began around September 4, 1929, and became worldwide news with the
stock market crash of October 29, 1929 (known as Black Tuesday).

The financial crisis of 2007 - 2008

The financial crisis of 2007 − 2008, which is also known as the global financial crisis and
2008 financial crisis, is considered by many economists to be the worst financial crisis since
the Great Depression of the 1930s that resulted in the threat of total collapse of large
financial institutions, the bailout of banks by national governments, and downturns in stock
markets around the world. Including the housing market which was also suffered, resulting
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in evictions, foreclosures and prolonged unemployment. The crisis played a significant role
in the failure of key businesses, declines in consumer wealth estimated in trillions of US
dollars, and a downturn in economic activity leading to the 2008−2012 global recession and
contributing to the European sovereign-debt crisis.
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Chapter 3

BSM Market model

3.1 History of Math-Finance

The geometric Browning motion model for stock price was first proposed by the renowned
economist Samuelson in 1965 [52]. Before these work Bachelier used Brownian motion with
drift to model stock prices in his Ph.D thesis in 1900 [2]. He was perhaps the first person
who did mathematical formulation of Brownian motion. In his study Brownian motion was
obtained as a limit of random walks. It was noticed after the work of Bachelier that the
Brownian motion fails to model the stock price directly due to non-negative feature of stock
prices. Then later in 1973 Black, Scholes and Merton [4], found formula for the price of
European put and call options. This was the first work where Stochastic calculus is used
in the research field of quantitative finance. Black-Scholes model, assumes that the growth
rate, volatility and bank interest rate remain constant during the entire period of the option
but these assumptions do not support market data. Therefore several alternative models
are still being proposed in the literature to overcome these drawbacks which also arises new
mathematical challenges. Some of the models include stochastic volatility models, jump-
diffusions models, Lévy processes, regime-switching models etc. The market represented by
these models are incomplete; that is, a perfect hedge is using self financing strategy is not
possible for every.

In 1979 Harrison and Kreps [27], and in 1981 Harrison and Pliska [28], established that
the absence of arbitrage of a given market is equivalent to the existence of an equivalent
martingale measure under which all discounted price processes are martingales. In 1994
Gerber and Shiu [20], provided a solution to the option pricing problem in an incomplete
market by using the Esscher transform. In 1986 Föllmer and Soundermann [18], in 1991
Föllmer and Schweizer [17], in 1991 Schweizer [53], identified a unique equivalent martingale
measure by minimizing the quadratic utility of the losses due to imperfect hedging. Later
on the minimal martingale measure and risk-minimizing hedging were further developed by
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several researchers. In 2000 Frey [19], carried out studies on a risk-minimizing strategy when
the price process is a pure jump process with a stochastic jump rate and is a martingale
under the empirical measure. In 1999 Chan [9], presented a locally risk-minimizing strategy
when price proces is driven by general Lévy processes. In 2004 Takuji [58], calculated the
density process of the minimal martingale measure and stated the relation to a locally risk-
minimizing strategy in jump-diffusion processes. In 2008 Nele and Michèle [47], investigated
the locally risk-minimizing hedging strategy for unit linked for life insurance contracts in
a financial market. In 2010 Yang and Xiao [63], presented risk-minimizing problems under
jump-diffusion models with restricted information and cost.

3.2 Model Description

The BlackScholesMerton model [4] is a mathematical model of a financial market containing
certain derivative investment instruments. From the model, one can deduce the BlackScholes
formula, which gives the price of European-style options. It is widely used by options market
participants. The model was first articulated by Fischer Black and Myron Scholes in their
1973 paper, “The Pricing of Options and Corporate Liabilities”, published in the Journal of
Political Economy. They derived a partial differential equation, the BlackScholes equation,
which governs the price of the option over time. The key idea behind the derivation was
to hedge perfectly the option by buying and selling the underlying asset in just the right
way and consequently ”eliminate risk”. This hedge is called delta hedging and is the basis
of more complicated hedging strategies such as those engaged in by Wall Street investment
banks. The hedge implies there is only one right price for the option and it is given by the
Black-Scholes formula. Robert C. Merton was the first to publish a paper expanding the
mathematical understanding of the options pricing model and coined the term BlackScholes
options pricing model. Merton and Scholes received the 1997 Nobel Prize in Economics for
their work.

Assumptions:-

1. There is no arbitrage opportunity.
2. It is possible to borrow and lend cash at a known constant risk-free interest rate.
3. It is possible to buy and sell any amount, even fractional, of stock (this includes short

selling).
4. The above transactions do not incur any fees or costs (i.e., frictionless market).
5. The stock price follows a GBM (geometric Brownian motion) with constant drift and

volatility.
6. The underlying security does not pay a dividend.

The BlackScholes equation is a partial differential equation, which describes the price
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of the option over time.

∂C

∂t
+

1

2
σ2x2∂

2C

∂x2
+ rx

∂C

∂x
− rC = 0 (2.1)

3.3 Black - Scholes Theory

We consider a market consisting of one stock and one bond. The stock price S = {St, t ≥ 0}
is assumed to follow a geometric Brownian motion given by

dSt = µStdt+ σStdWt, S0 > 0, (3.1)

i.e.

i.e.St = S0 exp{(µ− 1

2
σ2)t+ σWt}. (3.2)

Since ESt = S0e
µt, µ may be treated as the mean growth rate of return from the stock;

σ > 0 is the volatility. The price of the bond at time t is given by

Bt = ert (3.3)

where r is the rate of interest which is assumed to be constant. One can show that this
market is complete. We assume that the market is viable, i.e., there does not exist any
arbitrage opportunity with self financing strategy with bounded short selling. We derive the
price of an option on the stock St.

A trading strategy is a pair φ = (φ0, φ1) of predictable processes, where φ0
t is the

number of bonds and φ1
t is the number of stocks the investor holds at time t. The value of

the portfolio corresponding to the strategy φ = (φ0
t , φ

1
t ) at time t is given by

Vt(φ) := φ0
tBt + φ1

tSt. (3.4)

The strategy φ = (φ0, φ1) is self-financing if no fresh investment is made at any time t > 0
and there is no consumption. We work with self-financing strategies only. The gain accrued
to the investor via the strategy φ up to time t is given by

Gt(φ) :=

∫ t

0

φ0
udBu +

∫ t

0

φ1
udSu. (3.5)

For a self-financing strategy φ:

Vt(φ) = V0(φ) +Gt(φ). (3.6)

Suppose that a European call option with terminal time T and strike price K itself is traded
in the market. Let Ct denote the price of this call option at time t. Then

Ct = C(t, St) (3.7)

for some function C : [0, T ]× R+ → R.
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3.4 Black-Scholes Partial Differential Equations

We look for a strategy φ = (φ0, φ1) such that

V0(φ) = C0

and
VT (φ) = (ST −K)+

In view of the previous Ct = Vt(φ) for all t. Further we assume that C(t, x)is a smooth
function of t and x. Now

Vt = Vt(φ) = φ0
tBt + φ1

tSt

= V0(φ) +

∫ t

0

φ0
udBu +

∫ t

0

φ1
udSu.

Therefore

dVt = φ0
tdBt + φ1

tdSt.

Using (3.1) and (3.3) it follows that

dVt = rφ0
tBtdt+ φ1

t (µStdt+ σStdWt)

i.e.

dVt =
(
rφ0

tBt + µφ1
tSt
)
dt+ σφ1

tStdWt. (4.1)

Since C(t, x) is a smooth function, by Ito’s formula

dCt = dC(t, St)

=

{
∂

∂t
C(t, St) + µ

∂

∂x
C(t, St)St +

1

2
σ2S2

t

∂2

∂x2
C(t, St)

}
dt

+ σ
∂

∂x
C(t, St)StdWt. (4.2)

From (4.1) and (4.2), we get

φ1
t =

∂C(t, St)

∂x
(4.3)

and

rφ0
tBt + µφ1

tSt =
∂C(t, St)

∂t
+ µ

∂C(t, St)

∂x
St +

1

2
σ2S2

t

∂2C(t, St)

∂x2
. (4.4)
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From (4.3) and (4.4) we get

rφ0
tBt =

∂C(t, St)

∂t
+

1

2
σ2S2

t

∂2C(t, St)

∂x2
. (4.5)

Again,
φ1
tSt + φ0

tBt = Vt(φ) = C(t, St).

Therefore

φ0
t =

1

Bt

[
C(t, St)−

∂C(t, St)

∂x
St

]
. (4.6)

Therefore

∂C(t, St)

∂t
+

1

2
σ2S2

t

∂2C(t, St)

∂x2
+ rSt

∂C(t, St)

∂x
− rC(t, St) = 0, 0 ≤ t < T

with C(T, ST ) = VT (φ) = (ST −K)+.

Thus the option price process Ct = C(t, St) satisfies the partial differential equation.

∂C

∂t
+

1

2
σ2x2∂

2C

∂x2
+ rx

∂C

∂x
− rC = 0 (4.7)

with the boundary condition :

C(T, x) = (x−K)+, and C(t, 0) = 0 ∀t (4.8)

The equation (4.7) is referred to as the Black-Scholes PDE.

3.5 Analytic Solution of Black-Scholes PDE

Introduce the new variables τ, ς by

τ = γ(T − t), ς = α
{

log
x

K
+ β(T − t)

}
, (5.1)

Where α, β, γ are constants to be chosen later. Define the function y(τ, ς) by

C(t, x) = e−r(T−t)y(τ, ς). (5.2)

Then

∂C

∂t
= re−r(T−t)y + e−r(T−t)

∂y

∂t
∂y

∂t
=

∂y

∂ς

∂ς

∂t
− ∂y

∂τ
γ = −αβ∂y

∂ς
− γ ∂y

∂τ
.
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Hence

∂C

∂t
= re−r(T−t)y − αβe−r(T−t)∂y

∂ς
− γe−r(T−t)∂y

∂ς
. (5.3)

Also

∂C

∂x
= e−r(T−t)

∂y

∂x
= e−r(T−t)

∂y

∂ς

∂ς

∂x

= e−r(T−t)
∂y

∂ς

α

x
.

Therefore

x
∂C

∂x
= αe−r(T−t)

∂y

∂ς
. (5.4)

Also

∂2C

∂x2
= e−r(T−t)

∂

∂x

[
∂y

∂ς
.
∂ς

∂x

]
= e−r(T−t)

[
∂2y

∂ς2

(
∂ς

∂x

)2

+
∂y

∂ς

∂2ς

∂x2

]
.

Substituting
∂ς

∂x
=
α

x
,

∂2ς

∂x2
= − α

x2

in the above relation, we obtain

∂2C

∂x2
= e−r(T−t)

[
α2

x2

∂2y

∂ς2
− α

x2

∂y

∂ς

]
.

Therefore

x2∂
2C

∂x2
= e−r(T−t)

[
α2∂

2y

∂ς2
− α∂y

∂ς

]
. (5.5)

Then we have

∂C

∂t
+

1

2
σ2x2∂

2C

∂x2
+ rx

∂C

∂x
− rC

= e−r(T−t)
[
ry − αβ∂y

∂ς
− γ ∂y

∂τ
+
σ2

2

(
α2∂

2y

∂ς2
− α∂y

∂ς

)
+rα

∂y

∂ς
− ry

]
.

Simplifying and using (4.7), we obtain

−αβ∂y
∂ς
− γ ∂y

∂T
+
σ2

2

[
α2∂

2y

∂ς2
− α∂y

∂ς

]
+ rα

∂y

∂ς
= 0 (5.6)
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3.5. Analytic Solution of Black-Scholes PDE

The coefficient of ∂y
∂ς

in (5.6) is equal to

−αβ − ασ2

2
+ rα = α

[
r − β − σ2

2

]
.

Choose β = r − σ2

2
. Then (5.6) becomes

−γ ∂y
∂τ

+
1

2
σ2α2∂

2y

∂ς2
= 0.

Now choose γ = σ2α2 (where α 6= 0 is arbitrary). Then Black - Scholes pde (4.7) becomes

∂y

∂τ
=

1

2

∂2y

∂ς2
(5.7)

with the boundary condition:

C(T, x) = y
(

0, log
x

K

)
.

Then
y(0, u) = K (eu − 1)+ . (5.8)

The (unique solution of (5.7) with the boundary condition (5.8) (in the class of function not
growing faster than eax

2
) is given by

y(τ, ς) =
1√
2πτ

∫ ∞
−∞

e−(u−ς)2/2τK(eu − 1)+du

=
K√
2πτ

∫ ∞
−∞

e−(u−ς)2/2τ (eu − 1)+du.

Thus

y(τ, ς) = Keς+
1
2
τΦ

(
ς√
τ

+
√
τ

)
−KΦ

(
ς√
τ

)
. (5.9)

Now in terms of t, x note that

α = 1, β = r − σ2

2
, γ = σ2.

Thus

eς+
1
2
τ =

x

K
er(T − t)

ς√
τ

+
√
τ =

log r
K

+
(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

:= g(x, T − t)
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and
ς√
τ

= g(x, T − t)− σ
√
T − t := h(x, T − t). (5.10)

Then
C(t, x) = xΦ(g(x, T − t))−Ke−r(T−t)Φ(h(x, T − t)). (5.11)

3.6 Completeness and NA

Definition 3.6.1. A trading strategy is defined as a (finite) sequence of random variables

φ = {(φ0
n, ..., φ

k
n), 0 ≤ n ≤ N}

in Rk+1, where φin denotes the number of assets i held at time n, and φ is predictable, i.e.,
for all i = 0, 1, ..., k, φin is F0-measurable, and for n ≥ 1, φin is Fn−1-measurable. This
means that the position in the portfolio (φ0

n, ..., φ
k
n) at time n is decided on the basis of the

information available at time (n−1), and kept until n when the new quotations are available.
The value of the portfolio at time n is given by

Vn(φ) = 〈φn, Sn〉 =
k∑
i=0

φinS
i
n.

Let S̃in = βSin = (1 + r)−nSin;Sin is called the discounted vale of the asset i at time n. The
discounted value of the portfolio at time n is given by

Ṽn(φ) = βnVn(φ) =
k∑
i=0

φinS̃n
i
.

Definition 3.6.2. A strategy φ = {(φ0
n, ..., φ

k
n), 0 ≤ n ≤ N} is called self-financing if for all

n = 0, 1, ..., N − 1,
〈φn, Sn〉 = 〈φn + 1, Sn〉
k∑
i=0

φinS
i
n =

k∑
i=0

φin+1S
i
n+1.

The interpretation of self-financing strategy is the following: at time n, once the new
prices S0

n, S
1
n, ..., S

k
n are quoted, the investor readjusts his position from φn to φn+1 without

bringing in or consuming any wealth.

Definition 3.6.3. A strategy φ = {(φ0
n, ..., φ

k
n), 0 ≤ n ≤ N} is said to be admissible if it is

self-financing, and Vn(φ) ≥ 0 for any n = 0, 1, ..., N .
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Definition 3.6.4. A probability measure P ∗ is said to be equivalent martingale measure
(EMM) if P ∗ ≡ P and the discounted asset prices {S̃in} are martingales with respect to P ∗.
Such a probability measure is also referred to as a risk neutral measure.

Definition 3.6.5. An arbitrage strategy is an admissible strategy with zero initial value and
positive final value with a positive probability or in other words an arbitrage opportunity in
a market consisting of several securities is a strategy of buying and selling these securities
without any investment by the investor, such that it leads to profit with positive without
any risk of loss.

Definition 3.6.6. The market is said to be viable if there is no arbitrage opportunity. The
market is viable (arbitrage free) if and only if there exists an Equivalent martingale measure
P ∗.

Definition 3.6.7. An FN -measurable function H ≥ 0 is called a contingent claim (of ma-
turity N). For example for a European call option on the underlying S1 with strike price
K

H = (S1
N −K)+ = max(SN

1 −K, 0).

For European put on the same asset with same strike price K,

H = (K − S1
N)+ = max(K − SN 1, 0).

Definition 3.6.8. A contingent claim defined by H is attainable if there exists an admissible
strategy φ worth H at time N , i.e., VN(φ) = H.

Definition 3.6.9. The market is said to be complete if every contingent claim is attainable,
i.e., if H is contingent claim, then there exists an admissible strategy φ such that VN(φ) = H.
The strategy φ is often referred to a strategy replicating the contingent claim H. Thus any
option can be hedged perfectly.

Theorem 3.6.1. A viable market is complete if and only if there exists a unique probability
measure P ∗ ≡ P under which the discounted prices {S̃in} are martingales.

Since a unique EMM exists, the price of an option is uniquely prescribed by the con-
ditional expectation of the discounted price of the stock w.r.t EMM

In an incomplete market there are contingent claims which are not attainable by self-
financing strategies. Thus perfect hedging is not possible. At the same time, since there
are multiple equivalent measures, the option price is not unique. To overcome this difficulty,
option price in an incomplete market is studied by several approaches.

One of the approach in this direction is to assume the existence of a risk neutral measure
and carry out the entire analysis under such a measure. A second approach to treat an
incomplete market is to make complete market by introducing additional securities known
as Arrow-Debreu securities. A third approach in this direction involves superruplicating
portfolio and upper-hedging price.
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Chapter 3 : BSM Market model

3.7 Criticism

Espen Gaarder Haug and Nassim Nicholas Taleb argue that the BlackScholes model merely
recast existing widely used models in terms of practically impossible “dynamic hedging”
rather than “risk,” to make them more compatible with mainstream neoclassical economic
theory. [30] Similar arguments were made in an earlier paper by Emanuel Derman and
Nassim Taleb. [11] In response, Paul Wilmott has defended the model, [60], [51].
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Chapter 4

Regime Switching Market Model

4.1 Model assumption

Let (Ω,F , P ) be the underlying complete probability space. Let χ = {1, 2, . . . , k} be the
state space of an irreducible Markov chain {Xt, t ≥ 0} with transition rule

P (Xt+δt = j|Xt = i) = λijδt+ o(δt), i 6= j

where λij ≥ 0 for i 6= j; and λii = −
∑k

j 6=i λij. Thus Λ = [λij] denotes the generating

Q-matrix of the chain and pij :=
λij
|λii| are the transition probabilities from state i to state j.

We consider a market where the financial parameters, namely interest rate, drift coefficient,
volatility coefficient are functions of the observed Markov chain Xt. Let {Bt, t ≥ 0} be the
price of money market account at time t where, spot interest rate is r(Xt) and B0 = 1. We
have

Bt = e
∫ t
0 r(Xu)du.

We consider a market consisting only one stock as tradeable risky asset. The stock price
process St solves

dSt = St(µ(Xt−)dt+ σ(Xt−)dWt), S0 > 0 (1.1)

where {Wt, t ≥ 0} is a standard Wiener process independent of {Xt, t ≥ 0}. Let Ft be
a filtration of F satisfying usual hypothesis and right continuous version of the filtration
generated by Xt and St. Clearly the solution of above SDE is an Ft semimartingale with
almost sure continuous paths. To price a claim H of European type in the above incomplete
market, we would consider the locally risk minimizing pricing approach by Föllmer and
Schweizer (see [31], [17]). A hedging strategy is defined as a predictable process π = {πt =
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(ξt, εt), 0 ≤ t ≤ T} which satisfies

E

[∫ T
0
ξ2
t σ

2(Xt)S
2
t dt+

(∫ T
0
|ξt||µ(Xt)|dt

)2
]

<∞ (1.2)

and E[ε2
t ] <∞.

The components ξt and εt denote the amounts invested in St and Bt respectively at time
t. An optimal strategy is the one for which the quadratic residual risk (see [17] for details)
is minimized subject to a certain constraint. It is shown in [17] that the existence of an
optimal strategy for hedging an FT measurable claim H is equivalent to the existence of
Föllmer Schweizer decomposition of discounted claim H∗ := B−1

T H in the form

H∗ = H0 +

∫ T

0

ξH
∗

u dS∗u + LH
∗

T (1.3)

where H0 ∈ L2(Ω,F0, P ), LH
∗

= {LH∗t }0≤t≤T is a square integrable martingale orthogonal
to the martingale part of St, S

∗
t := B−1

t , and ξH
∗

= {ξH∗t } satisfies (1.2). Further, ξH
∗

appeared in the decomposition constitutes the optimal strategy. Indeed the optimal strategy
π = (ξt, εt) is given by

ξt := ξH
∗

t

V ∗t := H0 +

∫ t

0

ξH
∗

u dS∗u + LH
∗

t

εt := V ∗t − ξtS∗t
and BtV

∗
t represents the locally risk minimizing price at t of the claim H. Hence the Föllmer

Schweizer decomposition decomposition is the key thing to verify.

Now onward we consider a particular claim i.e., a European call option on {St} with
strike price K and maturity time T . In this case the FT measurable contingent claim H is
given by

H = (ST −K)+. (1.4)

Before stating the main results we recall that in the Black-Schole-Merton model[4] the FT
measurable claim H is attainable and the price η(t, St) at time t ∈ [0, T ] is given by

η(t, St) = StΦ

(
log(St

K
) + r(T − t)
σ
√
T − t

+
1

2
σ
√
T − t

)
−ertK∗Φ

(
log(St

K
) + r(T − t)
σ
√
T − t

− 1

2
σ
√
T − t

)
(1.5)

where r and σ are constants denoting fixed bank rate and fixed volatility coefficients respec-
tively; Φ(x) is the CDF of standard normal distribution, K∗ = e−rTK. The Black-Scholes
hedging strategy, called Delta hedging is given by

∆(t, s) =
∂η(t, s)

∂s

where ∆(t, s) is the number of shares invested in stock.
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4.2 Pricing in incomplete Market

The option pricing in a regime switching framework has been studied by several authors
using different approaches: Buffington and Elliott [6], DiMasi et al [13], Guo [25], Guo and
Zhang [26], Mamon and Rodrigo [44], Roberts and Rogers [50], Tsoi et al. [59], and Yao
et al. [64]. Portfolio optimization problem is also studied in a regime switching market
[65], [66]. Since the regime switching market is incomplete the option pricing is rather in-
volved. As we know that in complete market every contingent claim can be replicated by a
self-financing strategy. Thus any option can be hedged perfectly. At the same time since a
unique equivalent martingale measure exists, the price of an option is uniquely prescribed
by the conditional expectation of the discounted price of the terminal claim with respect to
the equivalent martingale measure. But this is not the case in an incomplete market. In
an incomplete market there are contingent claims which are not attainable by self-financing
strategies. Thus perfect hedging is not possible. At the same time since there are multiple
equivalent measures the option price is not unique.

To overcome this difficulty option pricing in an incomplete market is studied by several
approaches:

1. One of the approaches in this direction is to assume the existence of a risk neutral
measure and carry out the entire analysis under such a measure. A risk neutral
measure is a special kind of an equivalent measure such that the discounted price
of every traded item in the market is a martingale with respect to the available
information σ-fields. Since options are also traded in the market, the present price
of an option is the conditional expectation with respect to the risk neutral measure
of the discounted price of the terminal payoff. It may be noted that the risk neutral
measure exists in an ideal world whereas the stock price evolves in the real world. As
a consequence the parameters of the regime switching market model like λij, σ(i) etc.
have to be estimated using specific risk neutral instruments such as federal bonds,
treasury bills etc. Also hedging of the option is not emphasized in this approach. For
regime switching model this approach has been pursued in several papers including
[6], [44], [50], [64] etc.

2. A second approach to treat an incomplete market is to make the market complete
by introducing additional securities known as Arrow-Debreu securities [13], [14]. For
regime switching market this has been carried out in [25].

3. A third approach in this direction involves superreplicating portfolio and upper-
hedging price; see [37] and the references therein. Though this method is very elegant
from a mathematical viewpoint, its implementation is rather involved. But this ap-
proach for a regime switching model has not been studied thus far as per knowledge.

4. Mean-variance hedging is a powerful method in handling non-attainable claims in an
incomplete market; see [46] and the references therein. Mean-variance hedging are
of two types: variance-minimizing hedging and risk-minimizing hedging. Variance-
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minizing hedging involves self-financing strategies only. Since variance-minimizing
method is essentially based on self-financing strategies it does not allow additional
borrowing or withdrawal of funds before the terminal date. This puts a limitation
on the scope of its applicability. For non-attainable claims it is desirable to do away
with self-financing strategies and use strategies which allow continuous transfer of
funds (borrowing or lending) with the provision of a suitable optimality criterion
which focuses on the minimization of the future risk exposure due to additional cash
flow at any time. A suitable notion of risk-minimizing hedging was introduced by
Föllmer and Sondermann [18] to address the option pricing in an incomplete market
which was further pursued by Föllmer and Schweizer [17]. By introducing a quadratic
residual risk function they obtained an abstract formula for the risk minimizing option
price via the minimal martingale measure P ∗. Furthermore it is shown in [17] that
if the discounted claim admits a certain decomposition known as Föllmer-Schweizer
decomposition under the market probability P , one can obtain expressions for the
hedging strategy and the residual risk; see [54] for an excellent survey on this method.
For regime switching market this has been studied in [13] for European claims which
include call and put options. In particular for a two state Markov chain an explicit
expression for the European call is obtained in [13]. Further development is done in
[3] and [12].

4.3 Equations of Pricing and Hedging

Consider the following system of partial differential equations

∂ϕ(t, s, i)

∂t
+

1

2
σ(i)2s2∂

2ϕ(t, s, i)

∂s2
+ r(i)s

∂ϕ(t, s, i)

∂s
+

k∑
j=1

λijϕ(t, s, i) = r(i)ϕ(t, s, i) (3.1)

for t < T , s > 0 and i = 1, 2 . . . , k with the boundary condition

ϕ(T, s, i) = (s−K)+ s ≥ 0, ϕ(t, 0, i) = 0 ∀t ∈ [0, T ], i ∈ χ (3.2)

where ϕ is of polynomial growth. Note that if Λ is a null matrix i.e., the case when the Markov
chain Xt does not transit almost surely, the equation (3.7) coincides with that of standard
B-S-M model. In view of this, the above system can be considered as a generalization
of Black-Scholes equation for a Markov modulated market where the extra coupling term
represents the correction term arising due to the regime switching. Nevertheless, the fact,
the solution of above problem gives locally risk minimizing price, needs a proof. This is
given below in 4.3.1 which appears in [3]. In order to state the theorem certain terminologies
should be defined.

It would be convenient to represent the Markov chain {Xt} as a stochastic integral with
respect to a Poisson random measure which would play an important role later.
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For a Polish space S, let B(S) denote its Borel σ-field and M(S) the set of all nonnegative
integer valued σ-finite measures on B(S). LetMσ(S) be the smallest σ-field onM(S) with
respect to which the maps αB :M(S)→ N

⋃
{∞} defined by αB(µ) := µ(B) are measurable

for all B ∈ B(S); M(S) is assumed to be endowed with the σ-field Mσ(S).

For i 6= j ∈ X , let Λij be consecutive (with respect to the lexicographic ordering on X ×X )
left closed right open intervals of the real line, each having length λij. By embedding X in
Rk by identifying i with ei ∈ Rk define a function h : X × R→ Rk by

h(i, z) :=

{
j − i if z ∈ Λij

0 otherwise.
(3.3)

Then

Xt = X0 +

∫ t

0

∫
R
h(Xu−, z)℘(du, dz) (3.4)

where the integration is over the interval (0, t] and ℘(dt, dz) is an M(R+ × R) -valued
Poisson random measure with intensity dtdz; ℘(dt, dz), X0,W and S0, defined on (Ω,F , P )
are independent.

℘̂(dt, dz) := ℘(dt, dz)− dtdz is the compensated Poisson random measure.

Theorem 4.3.1. Let {ϕc(t, s, i), i = 1, 2, . . . , k} denote the unique solution of the Cauchy
problem (3.1), (3.2) in C([0, T ]× R̄× χ) ∩ C1,2((0, T )× R+, χ) . Then
(i) ϕc(t, St, Xt) is the risk minimizing option price at time t;
(ii) An optimal strategy π∗ = {ξ∗t , η∗t } is given by

ξ∗t =
∂ϕc(t, St, Xt−)

∂s
(3.5)

η∗t = V ∗t − ξ∗t S∗t (3.6)

where

V ∗t = ϕc(0, X0, S0) +

∫ t

0

∂ϕc(u, Su, Xu−)

∂s
dS∗u

+

∫ t

0

e−
∫ u
0 r(Xv)dv

∫
R
[ϕc(u, Su, Xu− + h(Xu−, z))− ϕc(u, Su, Xu−)]℘̂(du, dz).(3.7)

(iii) The quadratic residual risk at time t is given by

Rt(π
∗) = E[

∫ T

t

e−2
∫ u
0 r(Xv)dv

∑
j 6=Xu

λXuj

(
ϕc(u, Su, j)− ϕc(u, Su, Xu)

)2

du | Ft]. (3.8)
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Proof. Let 0 ≤ t ≤ T . By applying Ito’s formula to e−
∫ t
0 r(Xu)duϕc(t, St, Xt) under the

measure P and using (3.1), (1.1) and (3.6), we obtain after suitable rearrangement of terms

e−
∫ t
0 r(Xu)duϕc(t, St, Xt) = ϕc(0, S0, X0) +

∫ t

0

∂ϕc(u, Su, Xu−)

∂s
dS∗u +

∫ t

0

e−
∫ u
0 r(Xv)dv∫

R
[ϕc(u, Su, Xu− + h(Xu−, z))− ϕc(u, Su, Xu−)]℘̂(du, dz). (3.9)

Letting t ↑ T , we obtain

B−1
T (ST −K)+ = ϕc(0, S0, X0) +

∫ T

0

∂ϕc(u, Su, Xu−)

∂s
dS∗u +

∫ T

0

e−
∫ u
0 r(Xv)dv∫

R
[ϕc(u, Su, Xu− + h(Xu−, z))− ϕc(u, Su, Xu−)]℘̂(du, dz). (3.10)

Since we already know that B−1
T (ST −K)+ admits a Föllmer-Schweizer decomposition (1.3),

we can argue (as in [17] Theorem 3.14) to conclude (i) and (ii) using the decomposition in
(3.10).

(iii) Using Itô’s isometry, the residual risk at time t is given by

Rt(π
∗) = E

[( ∫ T

t

∫
R
e−

∫ u
0 r(Xv)dv

{
ϕc

(
u, Su, Xu− + h(Xu−, z)

)
−ϕc(u, Su, Xu−)

}
℘̂(du, dz)

)2∣∣∣Ft]
= E

[ ∫ T

t

∫
R
e−2

∫ u
0 r(Xv)dv

{
ϕc

(
u, Su, Xu− + h(Xu−, z)

)
−ϕc(u, Su, Xu−)

}2

℘̂(du, dz)
∣∣∣Ft]

= E[

∫ T

t

e−2
∫ u
0 r(Xv)dv

∑
j 6=Xu

λXuj

(
ϕc(u, Su, j)− ϕc(u, Su, Xu)

)2

du | Ft]. (3.11)

It is important to note that the Theorem 4.3.1 assumes existence and uniqueness of solution
(3.1) and (3.2) which should be proved. The following theorem settles that along with some
more interesting results.

Theorem 4.3.2. (i) The following integral equation has a unique solution in the class of
functions belonging to C([0, T ]× R+ × χ)

⋂
C1,2((0, T )× R+ × χ)

ϕ(t, s, i) = e−λi(T−t)ηi(t, s) +

∫ T−t

0

λie
−(λi+r(i))v

×
∑
j

pij

∫ ∞
0

ϕ(t+ v, x, j)
e
− 1

2

((
ln(x

s
)−(r(i)−σ

2(i)
2

)v

)
1

σ(i)
√
v

)2

√
2πσ(i)

√
vx

dxdv(3.12)

with ϕ(T, s, i) = (s−K)+, ϕ(t, 0, i) = 0 ∀t ∈ [0, T ], i ∈ χ (3.13)
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where ηi(t, s) is the standard Black-Scholes price of European call option with fixed interest
rate r(i) and volatility σ(i).

(ii) Moreover, the solution ϕ(t, s, i) of (3.12) and (3.13) is the locally risk minimizing price
of H (as in (1.4)) at time t with St = s,Xt = i.

(iii) The cauchy problem 3.1 and 3.2 has unique classical solution.

Proof: We prove the first part of Theorem 4.3.2 primarily by constructing a smooth solution
of (3.12)-(3.13). In order to do that let (Ω̃, F̃ , P̃ ) be a complete probability space which holds
a standard Brownian motion W̃ and a Markov process X̃ independent of W̃ such that the
rate matrix of X̃ is the same as that of X. Let S̃t be given by

dS̃t = S̃t(r(X̃t)dt+ σ(X̃t)dW̃t), S̃0 > 0 (3.14)

and F̃t be the underlying filtration satisfying usual hypothesis. Thus P̃ is risk-neutral mea-
sure for the risky asset S̃ given by (3.14). Let Yt represent holding time i.e., the amount of
time the process X̃t is at the current state after the last jump. Let the consecutive jump
times be 0 = T0 < T1 < T2 < · · · and n(t) := max{n ≥ 0 | Tn ≤ t}. Hence, Tn(t) = t − Yt.
Clearly, f(y|i) := λie

−λiy is the conditional probability density function of holding time and
F (y|i) = 1− e−λiy is the corresponding CDF where λi = −λii. Here we recall the following
obvious relation

f(y|i)
1− F (y|i)

= λi.

Because of Markovity of (S̃t, X̃t), we know that there is a measurable function ϕ : [0, T ] ×
[0,∞)× χ→ R such that ϕ(t, 0, i) = 0 and

ϕ(t, S̃t, X̃t) = Ẽ[e−
∫ T
t r(X̃u)du(S̃T −K)+ | F̃t] (3.15)

holds for all t ∈ [0, T ] where Ẽ is expectation under P̃ . Due to irreducibility of X̃t, for
any fixed X̃0, S̃0, the map ϕ (as in (3.15)) is defined uniquely almost everywhere on [0, T ]×
[0,∞) × χ. Now by conditioning at transition times and using the conditional lognormal
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distribution of stock price process, we have

ϕ(t, S̃t, X̃t)

= Ẽ[e−
∫ T
t r(X̃u)du(S̃T −K)+|S̃t, X̃t]

= Ẽ[Ẽ[e−
∫ T
t r(X̃u)du(S̃T −K)+|S̃t, X̃t, Tn(t)+1]|S̃t, X̃t]

= P̃ (Tn(t)+1 > T |X̃t)Ẽ[e−
∫ T
t r(X̃u)du(S̃T −K)+|S̃t, X̃t, {Tn(t)+1 > T}] +∫ T−t

0

Ẽ[e−
∫ T
t r(X̃u)du(S̃T −K)+|S̃t, X̃t, Tn(t)+1 = t+ v]

f(t+ v − Tn(t) | X̃t)

1− F (t− Tn(t)|X̃t)
dv

= e−λx̃t (T−t)ηX̃t(t, S̃t) +

∫ T−t

0

λX̃te
−(λX̃t

+r(X̃t))v
∑
j

pX̃tj

∫ ∞
0

Ẽ[e−
∫ T
t+v r(X̃u)du(S̃T −K)+|S̃t+v = x,

X̃t+v = j, T̃n(t)+1 = t+ v]
e
− 1

2
((ln( x

S̃t
)−(r(X̃t)−σ

2(X̃t)
2

)v) 1
σ(X̃t)

√
v

)2

√
2πσ(X̃t)

√
vx

dxdv

= e−λX̃t (T−t)ηX̃t(t, S̃t) +

∫ T−t

0

λX̃te
−(λX̃t

+r(X̃t))v

×
∑
j

pX̃tj

∫ ∞
0

ϕ(t+ v, x, j)
e
− 1

2
((ln( x

S̃t
)−(r(X̃t)−σ

2(X̃t)
2

)v) 1
σ(X̃t)

√
v

)2

√
2πσ(X̃t)

√
vx

dxdv.

where ηi(t, s) is the standard Black-Scholes price of European call option with fixed interest
rate r(i) and volatility σ(i). Again using irreducibility of Markov chain, we can replace
(S̃t, X̃t) by generic variable (s, x) in the above relation and thus conclude that ϕ is a solution
of (3.12)-(3.13). The first term on the right hand side is clearly in C1,2((0, T ) × R+ × χ).
The continuous differentiability in t of the second term follows from the fact that the term
ϕ(t+v, x, j) is multiplied by C1((0,∞)) function in v and then integrated over v ∈ (0, T −t).
Now twice continuous differentiability in s of the second term follows from direct calculation.
Thus ϕ(t, s, i) is in C1,2((0, T )×R+ × χ). Finally the continuity of ϕ on [0, T ]×R+ follows
trivially. We note that the right side of (3.12) can be considered as the image of ϕ under a
contraction. Hence, uniqueness also follows.

In view of Theorem 4.3.1(i), the proof follows if ϕ, as above, is the unique classical solution
of (3.1) - (3.2). Note that (S̃t, X̃t) is jointly Markov with infinitesimal generator Ã given by

Ãϕ(t, s, i) =
1

2
σ(i)2s2∂

2ϕ(t, s, i)

∂s2
+ r(i)s

∂ϕ(t, s, i)

∂s
+

k∑
j=1

λijϕ(t, s, i).

Therefore, (3.1) can be rewritten as ∂ϕ
∂t

(t, s, i) + Ãϕ(t, s, i) = r(i)ϕ(t, s, i). Hence using
Feynman-Kac formula, ϕ as in (3.15) is a mild solution of (3.1) with terminal condition
(3.2). It is also shown above that ϕ is in C([0, T ] × R+)

⋂
C1,2((0, T ) × R+). Hence ϕ is

a classical solution of (3.1)-(3.2). Uniqueness of the Cauchy problem is asserted from the
stochastic representation of its solution. Hence the result follows.
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Theorem 4.3.3. Consider the following function given in terms of solution of (3.12) and
(3.13)

ψ(t, s, i) = e−λi(T−t)
∂ηi(t, s)

∂s
+

∫ T−t

0

λie
−(λi+r(i))v

∑
j

pij

∫ ∞
0

ϕ(t+ v, x, j)

×e
− 1

2

((
ln(x

s
)−(r(i)−σ

2(i)
2

)v

)
1

σ(i)
√
v

)2

√
2πσ(i)3v3/2xs

(
ln
(x
s

)
−
(
r(i)− σ2(i)

2

)
v

)
dxdv(3.16)

with ψ(T, s, i) = 1(K,∞)(s), s ≥ 0 ψ(t, 0, i) = 0 ∀t ∈ [0, T ], i ∈ χ. (3.17)

The processes ξt := ψ(t, St, Xt−) and εt := B−1
t (ϕ(t, St, Xt−) − ξtSt) comprise the optimal

hedging strategy for the claim H in (1.4).

Proof: Let us define

ξ :=
∂ϕ(t, St, Xt−)

∂s
and εt := e−

∫ t
0 r(Xu)du(ϕ(t, St, Xt−)− ξtSt)

where ϕ solves (3.12)-(3.13). Using the both of Theorem 4.3.1 and Theorem 4.3.2 we get,
π := (ξ, ε) is an optimal strategy.

Note that by differentiating both sides of (3.12) with respect to s, (3.16) is obtained. The
terminal condition (3.17) is also an almost everywhere derivative of (3.13).

4.4 Numerical Method

To solve (3.12)-(3.13), we use the step by step quadrature method. Let ∆t and ∆s be the
time step and stock price step sizes respectively. For m,m′, l positive integers and i ∈ χ, set

G(m,m′, l, i) :=
e
− 1

2
((ln(m

′
m

)−(r(i)−σ
2(i)
2

)l∆t) 1

σ(i)
√
l∆t

)2

√
2πσ(i)m′∆s

√
l∆t

ϕnm(i) ≈ ϕ(T − n∆t,m∆s, i), ϕn0 (i) = 0, n = 0, 1, . . . , N := b T
∆t
c.

Now we use the following quadrature rule over successive intervals [0, n∆t] for a function ψ
on this interval, we use ∫ n∆t

0

ψ(v)dv ≈ ∆t
n∑
l=0

ωn(l)ψ(l∆t),
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where ωn(l) are weights to be chosen appropriately. Applying the above procedure in (3.12)
we obtain the following set of equations

ϕnm(i) = e−λin∆tηi(T−n∆t,m∆s)+∆t
n∑
l=1

ωn(l)e−l∆t(r(i)+λi)
∑
j

pij∆s
∑
m′

ϕn−1
m (j)G(m,m′, l, i)

(4.1)
with

ϕ0
m(i) = (m∆s−K)+. (4.2)

We choose a repeated trapezium rule by which the weights ωn are given by

ωn(l) =

{
1, for l = 1, 2, . . . , n− 1
1
2
, for l = 0, n.

Convergence of the above scheme is obvious, the issue of stability is addressed below.

Theorem 4.4.1. Let a := maxχ λie
−(λi+r(i)). For

∆t ≤ e−aT

a
(4.3)

the scheme (4.1) is strictly stable with respect to an isolated perturbation. Moreover, the
scheme displays uniformly bounded error propagation.

Proof. We first note that G(m,m′, l, i) corresponds to a lognormal density and the holding
time densities f(·|·) are bounded. Let δn be an additive error in ϕnm(i) ∀ m and i. Now it is
easy to show that the effect of the isolated perturbation δn in ϕNm(i)(N := b T

∆t
c) is additive

and given by

εn = a∆t(1 + a∆t)N−nδn.

If ∆t is sufficiently small and satisfies (4.3), we get εn < δn, i.e., the scheme is strictly stable
with respect to an isolated perturbation. Let δn be bounded by a fixed constant δ. Now the
total effect ε of the perturbation in the value ϕNm(i) is given by

ε :=
N∑
n=0

εn < (eaT − 1)δ.

Hence the result follows.

Now we are ready to prove Theorem 4.4.2.
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4.4. Numerical Method

Theorem 4.4.2. Given a finite grid of the domain [0, T ]×R+, let N and M be the number
of discrete points on [0, T ] and R+ respectively. Let T (N,M) denote the computational
complexity to solve (3.12) and (3.13) with above grid using step by step quadrature method.
Then we have

T (N,M) = O(N2M2). (4.4)

Proof: To organize better, before computation of (4.1) we evaluate and store the values
of known functions on the entire grid, so that those values can directly be used at later
stages. Let C be the number of operations, required to accomplish that. We first estimate
C. Let the constant cη be the number of elementary operations required to evaluate η at a
single entry. Similarly, let cG and cexp be the constants corresponding to the functions G and
exponential respectively. Hence in view of (4.1), we obtain directly

C = kN(cexp + 1) + kN(cexp + 3) + kNMcη + kNM2cG = O(NM2).

Let C
(i)
m (n) denote the number of additional computational operations which are required to

obtain ϕnm(i) from (4.3) for fixed n(≥ 1), m and i assuming that values of ϕn−1
m (i) are known

for all m and i. We allow C
(i)
m (0) to represent the computational complexity of initial data

at each entry. Hence C(n,M) :=
∑

i∈χ,m≤M C
(i)
m (n) represents the total complexity at nth

stage for each n ≤ N .

It is evident from (4.2) that C
(i)
m (0) is independent of i and similarly complex(c0 say) for all

m. Hence C(0,M) = Mc0.

From (4.1), it is not difficult to get C
(i)
m (n) = 2n(k(M + 1) + 1) + 2. Hence,

C(n,M) = 2[n(k(M + 1) + 1) + 1]kM

for all n = 1, . . . , N . Therefore, total number of operations i.e., T (N,M) is given by

T (N,M) = C +
N∑
n=0

C(n,M)

= C + C(0,M) +
N∑
n=1

2[n(k(M + 1) + 1) + 1]kM

= O(N2M2).

Remark 4.4.1. In this section we have developed a numerical scheme to compute option
price using a quadrature method. It is natural to ask if this has any advantage over the one
based on solving the PDE (3.1)-(3.2) using Crank-Nicholson implicit scheme. In order to
compare the computational complexities, we present a brief description of the corresponding
Crank-Nicholson scheme below.
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To solve (3.1)-(3.2), we transform by replacing t = T − v and s = ez and get a new system
of PDEs

−∂ϕ(v, z, i)

∂v
+(r(i)− 1

2
σ(i)2)

∂ϕ(v, z, i)

∂z
+

1

2
σ(i)2∂

2ϕ(v, z, i)

∂z2
+

k∑
j=1

λijϕ(v, z, j) = r(i)ϕ(v, z, i)

(4.5)
on the domain (0, T )× R with

ϕ(0, z, i) = (ez −K)+. (4.6)

Let ∆t be the time mesh length and ∆z be the stock mesh length in logarithmic scale. Let
N := [ T

∆t
], z0 a large negative number and M a large positive integer. For n ≤ N,m =

0, 1, . . .M
ϕnm(i) := ϕ(n∆t, z0 +m∆z, i).

The terminal condition (4.6) gives

ϕ0
m(i) = (ez0+m∆z −K)+.

Let ϕn := [ϕn0 (1), . . . , ϕn0 (k), ϕn1 (1), . . . , ϕnM(1), . . . , ϕnM(k)] ∈ Rk(M+1). If ϕnkm+i denotes the
km+ ith component of ϕn, then ϕnkm+i = ϕnm(i). Now the Crank Nicholson discretization of
(4.5) gives

Aϕn+1 = (−2I − A)ϕn (4.7)

where A is an appropriate block diagonal real matrix of size k(M + 1) × k(M + 1) (see [?]
for details). By repeated use of (4.7) the numerical solution to (4.5)-(4.6) is given by

ϕn = (−2A−1 − I)nϕ0.

Above scheme essentially involves inversion and multiplication of matrices of order k(M+1).
It is known that the computational complexity of such operation is O(k3M3). Hence the
computational complexity of computing ϕn is O(nk3M3). If T (n,M) is the complexity of
computing ϕn for n ≤ N . Then we have

T (N,M) = O(NM3). (4.8)
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4.5 Numerical Example

In this section we consider an example of a Markov modulated market with three regimes.
The state space is X = {1, 2, 3}. The drift coefficient, volatility and interest rate at each
regime are chosen as follows

(
µ(i), σ(i), r(i)

)
:=


(1, 0.2, 0.3) if i = 1

(1.2, 0.5, 0.8) if i = 2
(1.5, 0.7, 1.2) if i = 3.

The transition rate matrix Λ is assumed to be given by

Λ =

 −1 2/3 1/3
1 −2 1

1/3 2/3 −1

 .

For this case we compute the price of a European call option where the strike price K =
5 and maturity T = 1. In order to compute numerically we need to choose space-time
discretization. For the above market, the restriction suggested by (4.3)is ∆t = T/N . We
consider, in particular

∆t = T/N = 0.5/16 = 0.3125,

∆x = (10 ∗K)/M = (10 ∗ 5)/300 = 0.1667

M is a large positive integer. We carry out computation for solving standard Black-Scholes
pricing call option (3.12)-(3.13) as well as hedging strategy (3.16)-(3.17) for many different
large values of M . For each M , the computational elapsed times are recorded for both the
cases.
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Figure 4.1: We take s along horizontal axis and plot the ϕ(0, s, i) along vertical axis for i = 1, 2, 3. In this plot, the magenta line show the
Black-Scholes price of call option with interest rate r = r(2) and volatility = sigma(2). The other three curves blue, red and green show the show
the European call option prices at time zero for three different initial regimes 1, 2, 3 respectively with the same maturity and strike price.

Figure 4.2: We take s along horizontal axis and plot the ϕ(0, s, i) along vertical axis for i = 1, 2, 3. In this plot, the magenta line show the
Black-Scholes price of call option with interest rate r = r(2) and volatility = sigma(2). The other three curves blue, red and green show the show
the hedging components at time zero for three different initial regimes 1, 2, 3 respectively with the same maturity and strike price.
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Appendix A

Errata

Errata on Springer lecture note (LNEMS 579) on Introduction to stochastic Calculus for
Finance” by Dieter Sondermann.

1. Page 9 line 8 : Point 1. supnE[|X|p] it should be replaced with supnE[|Xn|p].
2. Page 25 line 6 : The equation should be replaced by the following arugment.
g(x) = x2 g′(x) = 2x g′′(x) = 2,
F1 := g ◦ F and
Yt := F (Xt). Thus

F1(Xt) = g(Yt) ∀t > 0.

Using Ito’s formula we get

dYs = F ′(Xs)dXs +
1

2
F ′′(Xs)d〈X〉s ∀s > 0

F1(Xt) = F1(X0) +

t∫
0

F ′1(Xs)dXs +
1

2

t∫
0

F ′′1 (Xs)d〈X〉s

g(Yt) = g(Y0) +

t∫
0

g′(Ys)dYs +
1

2

t∫
0

g′′(Ys)d〈Y 〉s

Using above equations, it follows

d〈Y 〉t =
t∫

0

F ′2(Xs)d〈X〉s.

3. Page 31 line 15: Yt should be replaced with Xt.
4. Page 31 line 18: G0E(αXt) should be replaced with G0E(αXt).
5. Page 35 line 10:Whole sentence can be written as:- But, whereas the return dXt(ω)

depends on ω, the right hand side of (16) does not depend on dXt, and therefore Π
is riskless.
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6. Page 42 line 1: This term L1 ∈ (ω,Ft, P ) should be L1(Ω,Ft, P ).
7. Page 43 line -2: Proof suggestion as follows :

P[Tb <∞]

=P [BT−n,b = b for some n]

=P [
∞⋃
n=0

{B−n,b = b}]

=limn→∞ P [B−n,b = b]

=limn→∞
n
b+n

= 1.
Hence, E[Tb] ≥ E[Ta,b] = |a|.b −→

a↓−∞
∞. ∀a < 0.

8. Page 45 line 16: E[Xti+1
−Xti | Xti ] =0 . The term | Xti should be there.

9. Page 45 line 19: Mn
t is a discrete time martingale.

10. page 47 line 9, line 10 and line 11 : ∀t should be mentioned.
11. Page 49 line 2 : Var[Mt] = E[Mt

2]− (E[Mt])
2 = E[〈M〉]t+ Var[M0].
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Matlab code

 

 

 

 

 

 

 

 

 

 

 

Matlab Code 

 
clear 
d = 1.0/(sqrt(2*pi)); 
f=1/sqrt(2); 
T =0.5;     % MATURITY 
N=16; 
dt=T/(N-1); 
    st= 5.0; % STRIKE PRICE; 
     X0=0; % LOWER LIMIT OF S 
M=300; 
eta= zeros(N,M,3); 
u=zeros(N,M,3); 
C11=zeros(N,3); 
C12=zeros(1,3); 
de= zeros(N,M,3); 
du=zeros(N,M,3); 
C21=zeros(N,3); 
C22=zeros(1,3); 
C3=zeros(N,3); 
LN1=zeros(N,M,M,3); 
LN2=zeros(N,M,M,3); 
xint=zeros(N,M,3); 
dx= (10*st)/M; 
     P= [0,2/3,1/3;0.5,0,0.5;1/3,2/3,0]; 
     lambda=[1,2,1]; 
     R=[0.3,0.8,1.2]; 
     SIG=[0.2,0.5,0.7]; 
% Black-Schole-Merton Solution 
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% GENERATE STANDARD NORMAL DISTRIBUTION FUNCTION 
SND= 0.5+ 0.5*erf(f*(-4+0.001*(1:4000))); 
%CALCULATE eta and de 
for k=1:3 
    rp=R(k)+(1.0/2)*SIG(k)^2; 
    rm=R(k)-(1.0/2)*SIG(k)^2; 
            for i=2:N 
                tm=(i-1)*dt;    %tm is time to expiry:=T-t 
                dn= SIG(k)*sqrt(tm);        %dn is denominator 
                for j=1:M 
                    s=j*dx;            %s is in (0, 10) 
                    x= (log(s/st)+rm*tm)/dn; 
                    if x > 4.0 
                    ph= 1.0; 
                      elseif x<-4.0 
                             ph= 0.0; 
                      elseif x<0.0 
                             xx=floor(1000*(4.0+x))+1; 
                             ph= SND(xx); 
                      elseif  x>0.0 
                             xx=floor(1000.0*(4.0 - x))+1; 
                             ph= 1 - SND(xx); 
                    end 
                    term= st*exp(-R(k)*tm)*ph; 
                    y= (log(s/st)+rp*tm)/dn; 
                    if y > 4.0 
                    ph= 1.0; 
                      elseif y<-4.0 
                             ph= 0.0; 
                      elseif y<0.0 
                             xx=floor(1000*(4.0+y))+1; 
                             ph= SND(xx); 
                      elseif  y>0.0 
                             xx=floor(1000.0*(4.0 - y))+1; 
                             ph= 1 - SND(xx); 
                    end 
                    eta(i,j,k)= s*ph - term; 
                    de(i,:,k) = gradient(eta(i,:,k),dx); 
                end 
            end 
end 
%DEFINE THE INITIAL DATA \Phi^1  
for j=1:M 
     for i=1:3 
         u(1,j,i)=max(0.0,dx*(j-1)-st); 
     end 
end 
%DEFINE THE INITIAL DATA \Psi^1 
for j=1:M 
     for i=1:3 
         du(1,j,i)=max(sign(dx*(j-1)-st),0); 
     end 
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end 
%Construction of Black-Scholes Solution 

%Construction of Matrix LN( v, s, x, i) 
 for i=1:3 
     C12(i)= d/SIG(i); 
     C22(i)= d/(SIG(i)^3); 
        for kk=2:N 
        C11(kk,i) = lambda(i)*(exp(-(R(i)+lambda(i))*((kk-1)*dt)) / 

sqrt((kk-1)*dt)); 
        C21(kk,i) = lambda(i)*(exp(-(R(i)+lambda(i))*((kk-1)*dt)) / 

((kk-1)*dt)^(3/2)) ; 
        C3(kk,i) = exp(-lambda(i)*(kk-1)*dt); 
        for j=1:M 
        for jj=1:M 
        LN1(kk,j,jj,i)=exp(-0.5*(( log(jj/j)-(R(i)-0.5*SIG(i)^2)*((kk-

1)*dt))/(SIG(i)*sqrt((kk-1)*dt) ))^2); 
        LN2(kk,j,jj,i)=(exp(-0.5*(( log(jj/j)-(R(i)-

0.5*SIG(i)^2)*((kk-1)*dt))/(SIG(i)*sqrt((kk-1)*dt) ))^2)) * 

(log(jj/j)-(R(i)-0.5*SIG(i)^2)*((kk-1)*dt)) ; 
        end 
        end 
        end 
end 
%CALCULATING u(t,s,i) FOR ALL t,s,i" 
for k=2:N 
for j=1:M 
for i=1:3 
    vint=0; 
    for kk=2:k 
        jj=1;        % INTEGRATION wrt x starts (trapizoidal rule) 
        term =0; 
        for ii=1:3 
        term=term + u(k-kk+1,jj,ii)* P( i, ii); 
        end 
        xint(kk,j,i) = 0.5 * term * LN1(kk,j,jj,i)/jj; 
        for jj=2:M-1 
             term =0; 
             for ii=1:3 
                term=term + u(k-kk+1,jj,ii)* P( i, ii); 
             end 
        xint(kk,j,i) = xint(kk,j,i)+term*LN1(kk,j,jj,i)/jj; 
        end 
            jj=M; 
            term =0; 
            for ii=1:3 
             term=term + u(k-kk+1,jj,ii)* P( i, ii); 
            end 
         xint(kk,j,i) = xint(kk,j,i)+0.5* term*LN1(kk,j,jj,i)/jj;     
         % INTEGRATION wrt x completed 
        vint = vint + xint(kk,j,i) * C11(kk,i) * dt; 
    end 
        u(k,j,i)=C3(k,i)*eta(k,j,i) + vint * C12(i); 
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end 
end 
end 
 

 %CALCULATING du(t,s,i) FOR ALL t,s,i" 
for k=2:N 
for j=1:M 
for i=1:3 
    vint=0; 
    for kk=2:k 
        jj=1;        % INTEGRATION wrt x starts (trapizoidal rule) 
        term =0; 
        for ii=1:3 
        term=term + u(k-kk+1,jj,ii)* P( i, ii); 
        end 
        xint(kk,j,i) = 0.5 * term * LN2(kk,j,jj,i)/jj; 
        for jj=2:M-1 
             term =0; 
             for ii=1:3 
                term=term + u(k-kk+1,jj,ii)* P( i, ii); 
             end 
        xint(kk,j,i) = xint(kk,j,i)+term*LN2(kk,j,jj,i)/jj; 
        end 
            jj=M; 
            term =0; 
            for ii=1:3 
             term=term + u(k-kk+1,jj,ii)* P( i, ii); 
            end 
         xint(kk,j,i) = xint(kk,j,i)+0.5* term*LN2(kk,j,jj,i)/jj;     
         % INTEGRATION wrt x completed 
        vint = vint + xint(kk,j,i) * C21(kk,i) * dt; 
    end 
        du(k,j,i)=C3(k,i)*de(k,j,i) + vint * C22(i)/(j*dx); 
end 
end 
end 
ss=dx*[1:M]; 
%ploting 

plot(ss,u(N,:,1),'blue', ss,u(N,:,2),'red', ss,u(N,:,3),'green', 

ss,eta(N,:,2),'magenta') 
plot(ss,du(N,:,1),'blue', ss,du(N,:,2),'red', ss,du(N,:,3),'green', 

ss,de(N,:,2),'magenta') 
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