
Simulation of a quantum
particle using NMR

A thesis submitted towards partial ful�lment of
BS-MS Dual Degree Programme

by

Ravi Shankar

under the guidance of

Dr. T. S. Mahesh

Assistant Professor, IISER Pune

Indian Institute of Science Education and Research

Pune





Certi�cate

This is to certify that this thesis entitled Simulation of a quantum particle

using NMR submitted towards the partial ful�lment of the BS-MS dual de-
gree programme at the Indian Institute of Science Education and Research
Pune represents original research carried out by Ravi Shankar at Indian
Institute of Science Education and Research Pune, under the supervision of
Dr T. S. Mahesh during the academic year 2012-2013.

Ravi Shankar

(Student)

T. S. Mahesh

(Supervisor)





Acknowledgements

I consider myself lucky to have got Mahesh sir as my mentor. He's very
approachable, entertains even the silliest of ideas and goes quite easy on you
when you screw things up - oh yes, I have! He's very understanding too -
greets you with a smile even when you bunk o� lab for a couple of days and
return.

I'm thankful to - Swathi for helping me with the experiments and for
being available even on weekends to toil in freezing conditions; - Hemant and
Kota for I have essentially used their GRAPE program for my simulations
and also for the many entertaining conversations we have had; - Abhishek
for being keeping me company in lab late at night many a time; - Bhargava
and Nitesh for various productive and unproductive discussions. It would
border on hypocrisy (only justi�ably so) if I fail to thank Phillip Morris for
coming up with a great stimulant. I'm also grateful to my dad for being so
supportive and understanding of my ambitions.

I'm indebted to KVPY, DST for funding my high-life through all my
years in IISER-P. Needless to say, I'm highly appreciative of all my friends
who have always kept the fun quotient in my life sky-high.





Abstract

Classical computers require exponential time for simulating the dynamics
of quantum systems. But computers built using the laws of quantum me-
chanics are expected to take way lesser time. Challenge has not just been
in constructing one, but even in controlling quantum phenomena at an ex-
perimental level. Though a large scale quantum computer, based on con-
ventional NMR, may never be built, NMR is considered to be an accessible
test-bed for experimental quantum computing. We here simulate single par-
ticle Schrodinger equation for various potentials, e�ectively realising a NMR
quantum simulator. Discretisation of space owing to limited number of qubits
however limits the precision of the simulator. However the successful demon-
stration of Schrodinger evolution by a machine that is governed by quantum
laws keeps one's quest for a quantum computer alive.
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Chapter 1

Introduction

Computation and Communication in today's world are governed largely my
laws of classical mechanics. A Quantum Computer taps into the potential
now o�ered to us by the more fundamental laws of quantum mechanics.

Gordan Moore observed in 1965 that the number of components in inte-
grated circuits (IC) had doubled every year since the invention of IC since
1958 and predicted the trend to continue for at least a decade [1]. Remark-
ably, Moore's law has held true for over �fty years now. The improvement
in computer performance thus far has largely been due to the reduction in
transistor size among other things. But this trend can not go on forever
as quantum mechanical e�ects are bound get more pronounced and hinder
transistor performance. Feynman in 1981 suggested that we use quantum
e�ects to our advantage in building a computer - a quantum computer [2].

A major development that transformed quantum computing from being
just a fancy idea to research interest of many is Shor's prime factorization
algorithm [3] in 1995. The algorithm solves the classically intractable (re-
quiring exponential time) problem of prime factorisation in polynomial time
(tractable). Since then, there has been immense progress in theoretical quan-
tum computation - unsorted database search algorithm [4], cryptography,
teleportation[5], etc.

The most appealing feature of quantum computing is quantum parallelism
- a phenomemon in which computing is done with more than one input si-
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multaneously. A classical bit - the building block of classical computers - is
either in state 0 or in state 1. But a qubit (quantum bit) can also exist in a
coherent superposition of both 0 and 1. This property manifests as quantum
parallelism with any operation on a set of qubits (or a register).

Computational power of computers are not as such limited by any phys-
ical law. However as irreversible computations are associated with loss of
information (which corresponds to energy) and that there is a thermody-
namic limit on how much heat a system can dissipate, a computer which is
to perform arbitrarily fast must be built using reversible gates [6]. In this
regard, quantum gates which simply transform a quantum system state from
one point to a di�erent in a Hilbert space can be described using unitary
operators and are thus reversible.

NMR techniques are capable of initialising (pseudo) pure states and can
implement logic gates. It also has relatively long decoherence times. All these
make NMR techniques suitable for small quantum computers [7]. Progress
in NMR computation has been immense with demonstrations of Deutsch's
algorithm [8] Grover's search algorithm [9] and quantum counting [10] to
name a few. Like any other quantum computing technology, NMR quan-
tum computing also has some fundamental di�culties including its inability
to perform projective measurements - read-out involves ensemble measure-
ments and expectation values, and in scaling up the number of qubits [7].
Conventional NMR QIP experiments have not created genuine entanglement
[11] and the pseudo pure states mentioned earlier are essentially mixed states
that mimics a pure state in the context of the experiment and so, are not
non-seperable, in general.

Even with all the limitations, NMR is a very good choice for small scale
quantum computing problems including the simulation of Schrodinger equa-
tion - the subject of this thesis.

If ever there is to be a computer simulation of physics, that which involves
strange phenomena that can only be explained by the laws of quantum me-
chanics, it can only be through a quantum computer. A classical computer
simply cannot imitate quantum mechanics [2].

nature isn't classical, dammit, and if you want to make a simu-

lation of nature, you'd better make it quantum mechanical.

- Richard Feynman
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Simulation of single-particle Schrodinger equation, though does not involve
any of the strange quantum mechanical phenomena that can't be imitated
by a classical computer, is a challenging enough problem to implement on a
quantum computer.
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Chapter 2

Introduction to NMR

2.1 NMR Theory

Spin is a fundamental property of nature like charge or mass. NMR exploits
the e�ects of nuclear spins. The angular momentum associated with nuclear
spin is quantized. The z-component of angular momentum vector is given by
Sz = m~. Therefore the z-component of magnetic moment µz = γSz = γm~.
γ here is the gyromagnetic ratio of the nucleus. A spin-1

2
nucleus has two

possible spin states: m = 1
2
or m = −1

2
. In the absence of any external �eld,

these two states are degenerate. However in a magnetic �eld, the states split
due to the interaction of the nuclear magnetic moment with the external
magnetic �eld - Zeeman interaction.

H = −~µ. ~B0

E = −µ.B0. Taking the magnetic �eld axis to be z-axis, E = −µz.B0 =
−γm~B0. This implies ∆E = γ~B0. The spin state with lower energy
has more population than the state with higher energy. Magnetic moments
precess around the net magnetic �eld with larmor frequency1, ω = γB0.
Nuclear spins exhibit resonant absorption only when the frequency of elec-
tromagnetic radiation matches the larmor frequency (which is usually in the

1The precession of magnetic moments of nuclei about an external magnetic �eld due to

the torque on the moment by the �eld is referred to as Larmor precession. The precession

rate, ω = −γB
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radio frequency range). This nuclear magnetic resonant absorption is what is
observed in NMR. It might seem that all nuclei of the same isotopic species
would resonate at the same frequency. But it's not the case due to the shield-
ing e�ect of the surrounding electrons which in general reduces the e�ective
magnetic �eld present at the nucleus. Electrons also rotate with a spin to
produce small magnetic �elds opposite to the external magnetic �eld. This
causes the e�ective magnetic �eld to reduce, in general. Therefore the energy
gap between the spin states and the hence the larmor frequency reduce. The
apparent shift in the larmor frequency is termed as chemical shift.

NMR hardware has RF coils in the transverse direction (XY plane) to
create time-dependent magnetic �eld B1(t) in the transverse direction to
rotate the net magnetisation in a pulse sequence. It is also used to detect
the net transverse magnetisation.

2.1.1 Relaxation

At equilibrium, the net magnetization points along the direction of the ap-
plied magnetic �eld and the density matrix describing the state only has
diagonal terms (state with no coherences). The process by which any other
perturbed state returns to this equilibrium state, when left on its own for
long enough, is termed relaxation.

T1 Relaxation

Also called as spin-lattice or longitudinal relaxation, T1 relaxation is a pro-
cess by which Mz returns to its equilibrium value M0. Nuclei precessing
about the external magnetic �eld experience slightly di�erent local magnetic
�eld (both magnitude and direction) because of the surrounding magnetic
electrons and nuclei. The thermal motion of the molecules makes the local
magnetic �eld time-dependent is the prime cause that drives the spins to
orient along the external magnetic �eld. T1 is de�ned as the decay constant
(time) in such a recovery of Mz to M0.

T2 Relaxation

Once o� the z-axis, the di�erence in larmor frequencies of di�erent nuclei
come to play as spins start to precess about the z-axis at di�erent rates.
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The di�erences in larmor frequencies can be due to the time-dependent local
magnetic �eld caused by thermal motion of molecules or due to inhomogene-
ity in the external magnetic �eld. Both result in dephasing of transverse
magnetization with time. The former is irreversible due to the randomness
in thermal motion and is called decoherence while the latter - incoherence -
can be reversed by techniques such as Hahn echo T2 is de�ned to be the time
constant for decay of transverse magnetisation to zero.

In general, T2 is less than or equal to T1.

2.1.2 Pulses

Transverse magnetic �eld B1 which can be created using rf-coils is used to �ip
the net magnetic �eld about any axis on the XY-plane. The �ip angle θp of a
pulse p about an axis is given by −γBpτp where τp is the pulse time and Bp

is the rf magnetic �eld amplitude. A πx-pulse rotates the net magnetisation
about X-axis by an angle of π radians.

2.1.3 Signal

On application of the detection pulse, π
2 x
, magnetization is made to point

along -y direction. Spins start to precess about the z axis. The rf-receiver
measures the transverse magnetization, which decays with time, thus produc-
ing a signal which is termed free induction decay (FID). The fourier transform
of FID, which is in time domain, gives us the spectrum in frequency domain.

In a single qubit system there are two possible spin states in the presence
of an external magnetic �eld. The spin states precess about the z axis with
same frequencies, only with opposite senses of direction. Owing to the bias
in the population distribution which favours the lower energy state (which
has magnetisation pointing along the external magnetic �eld), we get a sin-
gle line in the spectrum corresponding to the larmor frequency of the lower
energy state. The intensity of the line depends on the excess population of
the lower state over the higher energy state. As the transition probability
depends on the population di�erence betweent the two states, we can inter-
pret the intensity as a measure of the transition probability too.

In case of a n-qubit system, a particular state of n−1 qubits is split into two
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Figure 2.1:

by the other qubit. The population di�erence between the two states corre-
sponds to a line in the spectrum. Thus we have 2(n−1) lines corresponding
to every qubit and in total, n.2(n−1) lines in the spectrum. The case of a two
qubit system is illustrated in �gure 2.1.

2.2 GRAPE

In NMR, one often needs to �nd optimal pulse sequences that guide a spin
system ρ0 in a speci�ed time T to a density operator ρT that resembles a
target operator C . Gradient Ascent Pulse Engineering (GRAPE)[12] is an
algorithm that achieves it e�ciently.

The equation of motion of a spin system state is given by the Liouville-von
Neumann equation

ρ̇(t) = −i

[(
H0 +

m∑
k=1

uk(t)Hk

)
, ρ(t)

]
(2.1)

H0 here is the free evolution Hamiltonian andHk correspond to rf-Hamiltonians
(control �elds) - which are basically evolution due to the transverse magnetic
�eld B1 created by the rf-coils.

〈C|ρ(t)〉 = trace(C†ρ(t)) gives a measure (φ) of the overlap between the
spin system density operator and the target operator. The goal of GRAPE is
to maximise C. The algorithm stems from the realisation that φ is improved
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when we transform uk(j) → uk(j) + ε δφ
δuk(j)

where ε is a small step size.
We iteratively perform the transformation until the change in φ is within a
threshold. GRAPE is a relatively new method which is orders of magnitude
faster than the conventional methods used in NMR.
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Chapter 3

Dynamics of Quantum Systems

The dynamics of one-dimensional quantum systems are governed by the time-
dependent Schrodinger equation,

i~
∂ψ

∂t
= Hψ. (3.1)

Unlike the classical mechanics, quantum mechanics paints a probabilistic
world view, not a deterministic one. The wave function ψ when squared
gives only the probability of detecting a particle at a position x at a time t.
This limitation results neither from of our lack of knowledge nor from want of
better technology. It is merely a manifestation of an unavoidable uncertainty
about the position and time of events in the quantum realm.

The rule that the square of ψ gives the probability (and not cube or any
other function of ψ), commonly referred to as Born's rule [13], is one of the
fundamental laws of quantum mechanics. There have been many attempts
to derive the rule from other assumptions of quantum mechanics, but all
in vain. Though with the startling predictions of quantum mechanics being
veri�ed in various experiments validating the rule, there is still a doubt on
its accuracy [14] [15]. A concrete evidence for the exactness of the rule is
sought.
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3.1 Schrodinger Equation

The Schrodinger equation for the evolution of a one-dimensional system in
x-basis

i~
∂ψ

∂t
=
−~2

2m

∂2ψ

∂x2
+ V ψ (3.2)

has the solution
ψ(x, t+ ε) = e−

iĤε
~ ψ(x, t) (3.3)

where Ĥ = H0 + V ; H0 = − ~2

2m
d2

dx2 and V = V (x).
Clearly e−

iV ε
~ is diagonal. However the �rst term in the operator Ĥ involves

a double derivative with respect to x and so is not diagonal. This problem
can be overcome if we transform the wavefunction into p-basis and solve for
the H0 term.

The Fourier transform in continuous space is given by

ψ̃(k, t) =
1√
2π

∫ ∞
−∞

ψ(x, t)e−ikxdx

and the associated inverse by

ψ(x, t) =
1√
2π

∫ ∞
−∞

ψ̃(k, t)eikxdk

The time-dependent Schrodinger equation in p-basis thus becomes

i~
∂ψ̃

∂t
=

~2k2

2m
ψ̃ + V (i

∂

∂k
)ψ̃ (3.4)

Clearly equations 3.2 and 3.4 provide us with one term each - potential
and kinetic energy, respectively, for the evolved ψ.

ψ(x, t+ ε) = ψ(x, t)e−iV (x)ε/~

ψ̃(k, t+ ε) = ψ̃(k, t)e−i~k
2ε/2m

But to make use of the above mentioned method, we need to be able
to split eH0+V into eH0 and eV . But simply splitting the term into two
exponentials is not valid as Ĥ0 and V̂ do not commute. However given ε to
be su�ciently small, we may write

ψ(x, t+ ε) = e−
iV ε
2~ e−

iH0ε
~ e−

iV ε
2~ 1(Trotter decomposition A.2) (3.5)

1In doing so, we have only ignored ε3 and higher order terms.
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3.2 Discretisation

To simulate the evolution of an one-dimensional system we, in NMR, use a
very limited number of qubits. The �nite number of states (2n;n = number of
qubits) requires us to discretise spaces (both x and p, of course not seperately)
in the problem[16]. Discretisation modi�es Fourier transformation in the
following manner.

ψ̃(k, t) =
1√
2π

∫ b

a

ψ(x, t)e−ikxdx (3.6)

Here the limit has been changed from [− inf, inf] to [a, b]. This is a safe
assumption provided our ψ is localised in the range [a, b]. 2

To approximate the integral in 3.6 as a sum of N ( = 2n terms) we de�ne:

∆x = (b−a)
N

which implies xn = x0 + n∆x

∆k = 2π
N∆x

which implies km = k0 +m∆k

which make

ψ̃(k, t) ' 1√
2π

N−1∑
n=0

ψ(xn, t)e
−ikxn∆x (3.7)

=
1√
2π

ΣN−1
n=0 ψe

−iπne
2πi
N
mn∆x (refer to A.1) (3.8)

The above equality follows from limiting the range of k to [− π
∆x
, π

∆x
],

which would imply that high frequency (momentum) terms are ignored. This
is an unavoidable consequence of discretization, in accordance with Nyquist
sampling theorem 3.

3.3 Algorithm

In brief, all we need to do to simulate the evolution of a one-dimensional
quantum system is to construct three unitary matrices: e−

iV δt
2~ , e−i~k

2δt/2m

2Equivalently one can assume that V = inf for x < a and x > b
3Nyquist Sampling theorem: If a function has ∆x = B, then the maximum frequency

it can faithfully represent is 1
2B .
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and QFT (using the relation ??), of sizes N× N each. We will also need
Inverse QFT, which is simply QFT †.

Steps to evaluate ψ(x, t):

1. Declare ψ(x, 0) in discrete points of x.

2. Evaluate ψ(x, δt) = e−
iV δt
2~ .[IQFT].e−i~k

2δt/2m.[QFT].e−
iV δt
2~ ψ(x, 0).

3. Repeat step (2) m times for further evolution of ψ until mδt = t.

One must choose the domain of ψ - ∆x and δt - wisely. A large ∆x
limits kmax and thereby a�ects the simulation. δt must be small to ensure
the validity of Trotter approximation being used.

A sample simuation of a gaussian wavepacket evolving in a linear potential
is given in �gure 3.3

Figure 3.1: Gaussian of width 0.5 centered at -2.5 in a potential V = -5x.

Number of qubits = 6. δt = π
100

; x = -5 : 5

15



Chapter 4

Quantum Simulator

In this chapter we set out to simulate single particle Schrodinger equation
using NMR.

4.1 Pseudo Pure States

NMR is an ensemble technique. So the task of preparing a pure state amounts
to preparing all spin systems (roughly 1018 molecules) to the same state. This
is almost impossible with NMR.

In equilibrium, the population distribution is Boltzmannian. The equi-
librium density operator for an N-spin system is found to be

ρeq =
1

2N

(
I +

~γB0

kT

N∑
j=1

Ijz

)
1 (4.1)

=
1

2N
(I + ερdev) (4.2)

where I represents an uniform background in the populations of the states.
The probability (and hence NMR signal intensity) of a transition is propor-
tional to the population di�erence between the two states involved. This
implies that only the deviation part contributes to the NMR signal.

1Approximation at room temperatures where ε = ~γB0

kT is very low.
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If we intend to create a pure state |ψ〉, then an ensemble, whose density
matrix is

ρ =
1

2N
(1− ε)I + ε|ψ〉〈ψ|, (4.3)

mimics it fairly well. ε here is in the order of 10−5.

Observe that the uniform background does not evolve under unitary
transformations, as UIU † = I. Barring measurement all our operations are
unitary. So ρ is a good enough pure state for our experiment.

4.1.1 Preparation

We prepare pseudo pure states for this experiment using pairs of pseudopure

states (POPS)[17] technique. Di�erence between the equilibrium absorption
spectrum and a selectively inverted absorption spectrum of an ancilla qubit
gives the desired pseudopure state. As an illustration, consider a 3-qubit sys-
tem. On taking the �rst qubit to be our ancilla, we have two computational
qubits. To prepare |10〉 pseudo-pure state, we apply a transition selective
pulse to invert the populations of |010〉 and |110〉. On taking di�erence be-
tween the two distributions, we have e�ectively equalised the populations of
all states except that between |010〉 and |110〉, thereby killing all transitions
other than |010〉 ↔ |110〉. Please refer �gure 4.1.1.

4.2 Evolution

We use GRAPE algorithm to generate pulses for all the four unitary operators
mentioned in 3.3. Other than QFT and its inverse, the rest are implemented
using simple phase gates. The conventional QFT which is given by

ψ̃ =
1√
2π

ΣN−1
n=0 ψe

2πi
N
mn∆x (4.4)

is slightly di�erent from the one we use (3.7) and has a circuit given in 4.2.
Clearly this is no easy operation to implement as it has n(n+1)

2
gates - n are

Hadamard gates and the rest are phase gates.
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Figure 4.1: Population distribution of spin states with respect to

ancilla qubit. (a) At thermal equilibrium. (b) On selective inversion of

|10〉. (c) Di�erence between (a) and (b).

Figure 4.2:

We then design pulse sequences to be run on both equilibrium state and
selectively inverted initial state, which are essentially the same except for the
transition selective inversion.

The pulse sequences are given in 4.2. π
2 x

in the �gure represents de-
tection pulse. The boxed part in the �gure is repeated in the sequence as
many times as required. The gradient pulses are used to kill coherences
(o�-diagonal terms in the density matrix) as we are only interested in the
population terms (diagonal terms). A gradient pulse creates an inhomoge-
neous magnetic �eld along the z-axis which make nuclei in di�erent z-domains
of the sample precess with di�erent larmour frequencies. Coherences dephase
in an inhomogeneous magnetic �eld.
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Figure 4.3: Pulse sequence (a) that evolves the equilibrium state (b) that

performs selective inversion and evolves the ensuing state. Di�erence between

the end spectra gives the desired result.

In a n-qubit system, we get n sets of 2n−1 resolved spectral lines of equal
intensities. For this experiment, we take one of the qubits to be our ancilla.
Therefore we have 2n−1 lines representing computational basis states. We
evolve the two subspaces corresponding to the state of the �rst qubit simul-
taneously with a same unitary operator U. Therefore, (refer �gure 4.1.1(c))
with POPS technique, the density matrix values of the states in the two
subspaces di�er only in sign - �gure 4.2

Figure 4.4:

The intensities of the spectral lines on the �nal spectrum give us the
probability amplitudes of the evolved ψ.
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Chapter 5

Results

5.1 System

We used 1-bromo-2,4,5-tri�uorobenzene (BTFBz) in N-(4-methoxybenzylidene)-
4-n-butylaniline (MBBA) - liquid crystal solvent for the experiment. It has
three spin-1

2
19F nuclei and two spin-1

2
1H nuclei as shown in �gure 5.1. Sam-

ple preparation involved adding 700µL of MBBA to 8µL of BTFBz in a NMR
tube. The sample is repeatedly heated and mixed for homogenization, before
loading the sample in the spectrometer.

The chemical shift and J-coupling values of the sample were about:

Chemical Shift J-coupling
v(1) = 6029 J(1,2) = 277 J(2,4) = 106
v(2) = -3680 J(1,3) = 116 J(2,5) = 1270
v(3) = -6743; J(1,4) = 54 J(3,4) = 1532
v(4) = 50; J(1,5) = 1556 J(3,5) = 55
v(5) = 29; J(2,3) = -26 J(4,5) = -7.6

Our system thus has 5-qubits. Taking one of the qubits to be ancilla, we
have a 4-qubit computational basis. The absorption spectrum of one of the
19F nuclei (ancilla qubit) is shown in �gure 5.2.

20



Figure 5.1: Structure of BTFBz, which was used as a 5-qubit system for the

simulation. Qubits are labelled.

5.1.1 Labelling of Transitions

In a coupled n-spin system, each transition of i -th spin can be labelled using
(n-1) bits, where each bit is either 0 or 1 corresponding to the state of the
respective spin. The labelling however must be consistent with the connec-
tivity of the transitions. The method we use to label the transitions is called
transition-tickling technique which is explained in the appendix B.1.

Labelling done so for our system is depicted in �gure 5.2 where the strings
of bits are represented in decimal format.

5.2 Simulations

We tried simulating a variety of potentials as listed below. Parameters de�n-
ing an experiment are

δt− Evolution period of ψ in every iteration

x−Domain of ψ which is divided into 2n parts where n is the number of qubits.

V − Potential de�ned over x

ψ0 − Initial wavefunction

Computer simulations with unitary matrices computed by GRAPE algo-
rithm are also given below alongside corresponding the experimental NMR
results.
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Figure 5.2:

5.2.1 Delta wavepacket in zero potential

δt = π
20
; x = −4 : 4; V = 0; |ψ0〉 = |8〉. Results are shown in �gure 5.3.

5.2.2 Bar Potential

δt = π
100

; x = −2 : 2; V = 100 at 9 and 10 and zero elsewhere . |ψ0〉 = |7〉.
Results are shown in �gure 5.4.

5.2.3 Linear Potential

δt = π
20
; x = −4 : 4; V = −6x. |ρ0〉 = 1

8
|7〉〈7|+ 6

8
|8〉〈8|+ 1

8
|9〉〈9| Results are

shown in �gure 5.5.

5.2.4 Square-well Potential

δt = π
100

; x = −2 : 2; V = 0 at 6,7 and 8 and +60 elsewhere . |ψ0〉 = |7〉.
Results are shown in �gure 5.6.
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Figure 5.3: Free Particle

Figure 5.4: Bar Potential
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Figure 5.5: Linear Potential

Figure 5.6: Square-well Potential
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Chapter 6

Discussion

Though in theory, any potential can be simulated using the method de-
scribed, in practice it is di�cult to do so. This is because the GRAPE
algorithm takes longer time to converge to a pulse sequence with increas-
ing complexity of the target operator. Any potential more complex than
quadratic will require decomposition of the target operator into simpler com-
ponents in Pauli basis and rerunning GRAPE algorithm with clubbed con-
verged components as initial guess. This is expected to reduce convergence
time signi�cantly.

We use liquid crystal medium (MBBA) rather than liquid medium for
stronger J-couplings, which make gate implementation more e�cient. As a
trade o�, we are let to deal with ever shifting spectra. This is because the
coupling values are dependent on the orientation of the molecules to a good
deal in a liquid crystal medium. The shift is non-linear and as our procedure
involves taking a di�erence between two spectra for the �nal ensemble mea-
surement, liquid crystal medium makes our results error prone.

Methods involving coherence terms can also be used which would enable
us to initialise any given ψ rather than only those whose density matrix can
be described with only population terms.

NMR is highly sensitive to ground vibrations. Care must be taken per-
form experiments in peaceful atmosphere. The construction work going
around in Innovation Park, with all the hammering and banging, has ru-
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ined our shim1 parameters many a time.

The use of POPS technique along with shifting spectra makes the results
error prone. Solutions to minimise this error with better sample selection
or technique is sought. For a more e�cient method, one can also tweak the
GRAPE algorithm or just come up with a more e�cient code for the existing
GRAPE algorithm that which converges to a desired pulse sequence faster.

1Shimming is done to correct for inhomogeneities in the external magnetic �eld
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Appendix A

Long Proofs

A.1 Discrete Fourier Transform Sec.

ψ̂ =
1√
2π

∫ b

a

ψe−ikxdx

−→ ψ̂ =
1√
2π

ΣN−1
n=0 ψe

−ikx∆x

Consider e−ikx:
Substituting

km = k0 +m∆k

xn = x0 + n∆x

into the expression for e−ikx

e−ikx = e−i(k0+∆km)x0e−ik0∆xne−i∆km∆xn

= e−i(k0+∆km)x0e−ik0∆xne−
2πi
N
mn

= e−i(k0+∆km)x0eiπne−
2πi
N
mn (k0 =

−π
∆x

)

(A.1)
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Here x0 can be chosen to be 0 as the domain of x is arbitrary thus far. So
we can safely ignore the �rst exponential.

e−ikx = eiπne
−2πi
N

mn

This implies,

ψ̂ =
1√
2π

ΣN−1
n=0 ψe

iπne
−2πi
N

mn∆x

A.2 Trotter decomposition

Consider

ei
At
n = I +

1

n
iAt+O

(
1

n2

)
Thus

ei
At
n ei

Bt
n = I +

1

n
i(A+B)t+O

(
1

n2

)
Taking products of n such terms,

(ei
At
n ei

Bt
n )n = I +

n∑
k=1

(
n

k

)
1

nk
[i(A+B)t]k +O

(
1

n

)
(A.2)

Also, (
n

k

)
1

nk
=

(
1 +O(

1

n
)

)
1

k!

which makes A.2, on application of lim n→∞

lim
n→∞

(ei
At
n ei

Bt
n )n = lim

n→∞

(
n∑
k=0

[i(A+B)t]k

k!

(
1 +O(

1

n
)

))
+O

(
1

n

)
= ei(A+B)t

Please note, that nowhere has it been assumed anything about the commu-
tation between A and B. Similarly,

ei(A+B)∆t = ei
A∆t

2 eiB∆tei
A∆t

2 +O
(
∆t3
)
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Appendix B

Detailed Explanations

B.1 Transition Labelling using Tickling Exper-

iment

A n-spin system has a total of n×2n−1 transitions. Two transitions that share
a common energy level are said to be connected. The technique involves in-
verting one transition (using a π pulse) while the other transition is either
suppressed (regressive connectivity) or enhanced (progressive connectivity)
(Please refer �gure B.1). The �rst transition is labelled arbitrarily and pro-
gressive and regressive connections are made for every transition, with the
help of which we can consistently label the transitions.

Figure B.1: Transitions (a) and (b) and (a) and (c) are separately connected.

Inverting (a) enhances (b) and suppresses (c)
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