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Abstract

Action-at-a-distance is an alternative approach to �eld theory in describing all
the interactions. It is based on direct interactions between particles rather than
through their coupling to a �eld having in�nite degrees of freedom. First formulated
in a relativistically invariant manner by Schwarzschild, Tetrode and Fokker, action-
at-a-distance in electrodynamics was provided a paradigm by Wheeler and Feynman
through their absorber theory of radiation. This theory, formulated in static and
�at universe, uses advanced absorber response from the entire universe as the origin
for radiation reaction but allows for both retarded and advanced interactions. In
the �rst part of this work (section 3), we study extension of this formulation in cos-
mological models (using conformal invariance of electromagnetism). Self-consistency
of advanced and retarded interactions is investigated in these models. Only those
models can be considered to be viable which have only retarded interactions. It
is found that steady-state and quasi-steady-state models satisfy this criterion while
Friedman models don't. Thus the origin of arrow of time in electromagnetism can
be attributed to the cosmological structure. In the second part (section 4), we study
the formulation of action-at-a-distance electrodynamics in Riemannian space-times
using Green's functions. Green's functions in curved space-times have a compon-
ent which corresponds to propagation inside the light cone (�tail�), along with the
usual propagation along the light cone. We evaluate the explicit expressions for
Green's functions in de Sitter and Einstein-de Sitter space-times. This can be used
in evaluating the �tail� in an electromagnetic signal.
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1 Introduction

Newton's law of gravitation and Coulomb's law for electrical charges, one of the
very �rst laws of theoretical Physics, assumed instantaneous action-at-a-distance
between particles. The gravitational and electrical e�ects due to masses and charges,
respectively, were assumed to travel at in�nite speed, in these laws. The experiments
in electrodynamics, however, demonstrated that Coulomb's law was inadequate to
explain their results. Gauss summarized this di�culty in a letter to Weber in 1845
[10] which says,

�...I would doubtless have published my researches long since were it not that at

the time I gave them up I had failed to �nd what I regarded as the keystone, Nil

actum reputans si quid superesset agendum: namely, the derivation of the additional

forces - to be added to the interaction of electrical charges at rest, when they are both

in motion - from an action which is propagated not instantaneously but in time as is

the case with light...�

Thus Gauss suggested action-at-a-distance propagating at a �nite speed i.e. speed
of light. However, this did not get immediately formulated. Instead, Maxwell de-
veloped classical �eld theory of electrodynamics which had e�ects propagating at the
speed of light. This was also found to be consistent with special relativity (which
discarded instantaneous action-at-a-distance of Newton's and Coulomb's laws). It
can be described by the following relativistically invariant action,

S = −
∑
a

ˆ
mada−

1

16π

ˆ
FikF

ikd4x−
∑
a

ˆ
eaAida

i (1.1)

where Fik is the �eld, with in�nite degrees of freedom, de�ned in terms of the 4-
potential (Ai) as Fik = (Ak;i − Ai;k). The particles a, b, ... do not interact directly
with each other but through their coupling with the �eld (described by the third
term in S).

In early 19th century Schwarzschild, Tetrode and Fokker [18] developed a relativ-
istically invariant action-at-a-distance theory. This partially found the answer to
Gauss's problem. This theory can be described by the Fokker action which is given
as follows.

S = −
∑
a

ˆ
mada−

∑
a<b

ˆ
eaeb δ(s

2
AB) ηikda

idbk (1.2)

The �rst term is the same inertial term as in �eld theoretic action. The second
term represents electromagnetic interactions between two di�erent particles a, b con-
nected by a light cone1, thus preserving relativistic invariance. This action with the

following de�nitions of direct particle potentials
(
A

(b)
i

)
and �elds

(
F

(b)
ik

)
,

A
(b)
i (X) = eb

ˆ
δ(s2

XB)ηikdb
k, F

(b)
ik = A

(b)
k;i − A

(b)
i;k (1.3)

1implied by s2AB = ηij(a
i − bi)(aj − bj) being zero
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gives exactly Maxwell-like equations for F
(b)
ik and Lorentz-like equations of motion

for the particles [10]. This formulation hence resembles and seems to provide an
alternative to the Maxwell's �eld theory. However, it faces the following problems.

1. The expressions for direct particle potential and �eld state that it is completely
time-symmetric theory. A particle can interact with other particles connected
to it by future as well as past null paths. i.e. Both retarded and advanced
interactions are possible. This is contrary to the observations in the real world
in which there are only retarded interactions.

2. In the absence of self-interactions, there is no obvious way of explaining radi-
ation reaction in Fokker formulation.

3. This theory has to be generalized to curved space-time (and in quantum regime
which we do not consider here).

The subsequent sections present answers to these problems, based on the work by
Wheeler-Feynman and later by Hoyle-Narlikar, to develop a consistent action-at-a-
distance theory of classical electrodynamics.

Notation and conventions

1. The signature of space-time is taken as (+,−,−,−) i.e. �at space metric is
ηik = diag(1,−1,−1,−1).

2. The Roman indices i, j, k, ... run over all space-time indices (0, 1, 2, 3) while
the Greek indices α, β, ..... run over only the spatial indices (1, 2, 3).

3. The units are chosen with c = 1.

2 Wheeler-Feynman absorber theory in static, �at

universe

In this section we describe the absorber theory of radiation proposed by Wheeler
and Feynman (called as WF theory henceforth) for static and �at universe [18, 19].
Being action-at-a-distance theory, the main paradigm it sets is that of the role of
the entire universe as absorber and advanced response from absorber as radiation
reaction. This solves �rst two of the three problems stated in the previous section
for the Fokker formulation of action-at-a-distance.

The asssumptions of the theory are as follows.
1. A point charge doesn't radiate electromagnetic radiation in charge-free space.
2. The �elds acting on a given particle arise only from other particles. (i.e. no

self-interaction)
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Figure 1: Absorber response for non-relativistic, high-density absorber medium

3. These �elds are given by time symmetric solutions of Maxwell's equations i.e.
half-retarded (FRet) plus half-advanced (FAdv) Lienard-Wiechert solutions.

4. Universe is complete absorber i.e. all the radiation from a source charge gets
absorbed.

The net �eld at any point is determined by the sum of the �elds due to the source
particle S (i.e. FS = 1

2
FRet
S + 1

2
FAdv
S ) and the advanced response due to the absorber

(FA). Wheeler and Feynman demonstrate that if we assume the net �eld due to
the source particle S at a typical absorber particle A to be full-retarded then the
absorber response, in the neighbourhood of S, comes out to be FA = 1

2
FRet
S − 1

2
FAdv
S .

Hence the net �eld at any point is FA + FS = FRet
S . This proves, in a self-consistent

way2, that the net interactions between any two particles are retarded in nature.
WF theory proves the above result for increasing level of generality; non-relativistic

to relativistic motion of source particle, low to high density of absorber medium and
�nally the most general case i.e. just assuming complete absorption. We demon-
strate here the result, in particular FA = 1

2
FRet
S − 1

2
FAdv
S , for non-relativistic motion

and high-density absorber medium.
Consider a source particle S, with charge e and mass m, in such a medium. A(~rk)

is a typical absorber particle with charge ek and mass mk. We will evaluate the �eld3

at P (~r), a point in close vicinity of S. We consider P lying in a cavity of radius R,
centered at S, with no absorber particles inside it (see Figure 1). A is considered to
be much far from S as compared to the cavity size (i.e. rk >> R).

Let ~H be the acceleration of the source particle. Consider Fourier components of
~H as ~Hω = ~H0e

−iωt. The full-retarded electric �eld ( ~E) due to S at A only for ~Hω is

2As stated in [8], �It is a feature of time symmetric theory that instead of considering the usual
initial-value problem, one seeks for a self-cosistent solution of the equations. In a self-consistent
solution, the �elds of all charged particles are prescribed and it is shown that the physical description
is the same as that obtained by considering all the particle-particle interactions of the theory.�

3The ��eld� here represents direct particle �eld and is completely determined by the particle
motion. It does not have any extra degrees of freedom.
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given by,

E = H0e
−iωt

(
− e

rk

)
sin( ~H,~rk)e

iωrk

(
2

1 + n− ik

)
eiω(n−ik−1)(rk−R) (2.1)

The above calculation of E takes into account electric �eld in the far-�eld approx-
imation, re�ection at the cavity surface and phase lag due to transmission through
a medium of refractive index (n− ik)4. The direction of ~E is as shown in Figure 1.

Acceleration of A due to E is given by,

~Hk =
ek
mk

~E p(ω) (2.2)

where p(ω)5 is related to the refractive index by,

1− (n− ik)2 =
4πNe2

k

mkω2
p(ω) (2.3)

N is the number density6 of absorber particles. Half-advanced �eld ( ~Ek) at P due

to A (along the direction of ~H) is given by,

Ek = − ek
2rk

Hk sin( ~H,~rk)e
−iω[rk−r cos(~r,~rk)] (2.4)

The net absorber response (EA) is given by integrating Ek over the entire space i.e.
EA =

´
EkNr

2
kdrkdΩ. This, after using all the above expressions, evaluates to the

following,

EA =
1

2
ERet(r)− 1

2
EAdv(r) (2.5)

where ERet(r) = − e
r
H0 sin( ~H,~r)e−iω(t−r) and EAdv(r) = − e

r
H0 sin( ~H,~r)e−iω(t+r) are

retarded and advanced �elds due to S at P .
The above result for absorber response (after Fourier sum), when evaluated at

S itself, gives the following well established result in electrodynamics for radiation
reaction.

~E
[S]
A =

2e

3

~dH

dt
(2.6)

The fact that the �nal result is independent of the details of the absorber medium
(e.g. N , n−ik) is related to the complete absorption. WF theory shows that the only
assumption of complete absorption is su�cient to demonstrate the required result.
This is explained below.

4Imaginary part of refractive index, k, denotes coe�cient of absorption.
5p(ω) denotes frequency dependence of acceleration of absorber particles due to the incident

electric �eld E. This is due to the interactions between the absorber particles, owing to their
high-density.

6Here we assume uniform density of absorber particles.
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Complete absorption implies a test particle placed outside the absorber medium
experiences no radiation, i.e.∑

B

(
1

2
FRet
B +

1

2
FAdv
B

)
[outside]

= 0 (2.7)

where the sum is over all the absorber particles. The individual sums,
∑

B

(
1
2
FRet
B

)
[outside]

and
∑

B

(
1
2
FAdv
B

)
[outside]

, represent net retarded and advanced waves. Since their sum

is always zero, they have to be zero individually along with their di�erence.∑
B

(
1

2
FRet
B

)
[outside]

= 0,
∑
B

(
1

2
FAdv
B

)
[outside]

= 0 (2.8)

∑
B

(
1

2
FRet
B − 1

2
FAdv
B

)
[outside]

= 0 (2.9)

Since
∑

B

(
1
2
FRet
B − 1

2
FAdv
B

)
is a solution of Maxwell's equations for free space7, owing

to the property of having no extrema, it vanishes inside the absorber medium too.
Hence, ∑

B

(
1

2
FRet
B − 1

2
FAdv
B

)
[everywhere]

= 0 (2.10)

The net �eld at a particle A (inside the absorber) is then given by,∑
B 6=A

(
1

2
FRet
B +

1

2
FAdv
B

)
=

∑
B 6=A

(
FRet
B

)
+

(
1

2
FRet
A − 1

2
FAdv
A

)
−
∑
B

(
1

2
FRet
B − 1

2
FAdv
B

)
=

∑
B 6=A

(
FRet
B

)
+

(
1

2
FRet
A − 1

2
FAdv
A

)
where the �rst term is the sum of retarded �elds due to all particles other than A
while the second term (which only depends upon the motion of particle A) represents
radiation reaction. Hence we get the desired expression of radiation reaction (or
absorber response).

However, the net interactions can also be shown to be advanced (FAdv), in the
same self-consistent way8. As we will see in Section 4, both retarded and advanced
solutions being self-consistent is the property of static and �at universe. It is not the
same with other cosmological models.

7The sources for individual �elds, FRetB and FAdvB , are the same. Hence their di�erence satis�es
Maxwell's equations for free space.

8Radiation reaction takes the form
(
1
2F

Adv
A − 1

2F
Ret
A

)
in that case.
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3 Action-at-a-distance electrodynamics in cosmolo-

gical models

As noted at the end of the section 2, WF theory shows that static and �at universe
admits both self-consistent retarded and advanced net interactions.9 Wheeler and
Feynman in [18] argue that thermodynamics (or statistical mechanics) breaks this
time symmetry. The initial conditions required for net advanced interactions have
very low statistical probablity as compared to those for retarded interactions which
are hence preferred over the former.

3.1 Hogarth

This argument of taking refuge to thermodynamics to determine electromagnetic
time arrow was �rst criticized by Hogarth in 1962 [5]. Hogarth's argument was that
Wheeler and Feynman did not consider time asymmetry due to cosmological struc-
ture. In an expanding universe, future and past absorbers (i.e. universe in perfect
future or perfect past) have di�erent properties (e.g. number density, refractive in-
dex). The retarded and advanced waves undergo redshift and blueshift, respectively.
In order to have self-consistent retarded/ advanced solutions, future or past absorbers
need to be perfect, respectively. This depends upon the speci�c cosmological model.
Thus he concluded that electromagnetic arrow of time can be �xed by taking cos-
mological structure into account. In case of static and �at universe, both future
and past absorbers are perfect and hence we have both self-consistent retarded and
advanced solutions.

Hogarth analyzed various cosmological models for self-consistency of retarded or
advanced solutions. Most of the expanding, singular big-bang models (e.g. Einstein-
de Sitter model) have advanced while the steady-state model has retarded solution.

However, Hogarth's work had a few gaps or inconsistencies which were identi�ed
by Hoyle and Narlikar, as descibed in the next section.

3.2 Hoyle-Narlikar approach

Hogarth's work on WF theory in cosmological space-times had the following two
gaps.

1. He used conformal invariance of electromagnetic action to apply the formu-
lation of WF theory in �at space-time to cosmological space-times (which are con-
formally �at). However, action-at-a-distance electrodynamics has to be formulated
in a general curved space-time, in order to establish the validity of these results.

9Retarded interactions follow the conventional notion of causality while advanced interactions
are contrary to it.
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2. The refractive index of the absorber medium was calculated from collisional
damping by the absorber particles which has time asymmetry of thermodynamical
origin.

This was �rst pointed out by Hoyle and Narlikar [8]. They �lled both these
gaps by developing generalized action-at-a-distance electrodynamics in Riemannian
space-times (see(4)) and calculating refractive index from radiation reaction10. The
results obtained by them were in agreement with those by Hogarth despite following
di�erent approach.

For a conformally �at metric gik = Ω2(xi)ηik, net electric �eld (retarded or ad-
vanced) at a distance r is given by11

E = −eH0

r
e−iω0(t+εr) sin θ

(
2

1 + n− ik

)
R

.η (3.1)

where η = e−iε
´

(n−ik−1)ωdz, ω = proper frequency, ω0 = frequency in the conformal
coordinates, dz = proper distance, ε = ∓1 for retarded and advanced �eld, respect-
ively.

For perfect absorption, E → 0 i.e. η → 0, as r approaches future or past boundary
of the universe. This requires,

ε

ˆ
kωdz →∞ (3.2)

Now, evaluating ω and dz in a proper frame (i.e. locally �at and comoving frame),
the above reduces to, (see [15])

ε

ˆ
k(r, t)

(
1 + εV (r, t)

1− εV (r, t)

)
dr →∞ (3.3)

where V (r, t) = dr
dt
.12 Hence the necessary and su�cient conditions for self-consistency

of net retarded and advanced interactions are the divergence of the following integ-
rals.

IR =

ˆ
future

k(r, t)

(
1− V (r, t)

1 + V (r, t)

)
dr → −∞ (3.4)

IA =

ˆ
past

k(r, t)

(
1 + V (r, t)

1− V (r, t)

)
dr →∞

The refractive index can be calculated from radiation reaction as follows. The mo-
tion of a charged absorber particle (x(t)) incident with electric �eld ε and frequency

10This ensures the conclusions about arrow of time are of purely electrodynamical origin.
11The result in (2.1) is valid here in conformal coordinates, due to conformal invariance in elec-

tromagnetism.
12Here we consider only such cosmological models in which the local motion is radial i.e. dθ

dt =
dφ
dt = 0.
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ω is determined by13,

mẍ = eεe−iωt − 2e2ε

3

...
x (3.5)

This gives the solution for displacement as,

x(t) = − eε

mω2

(
1− 2ie2ε

3m
ω

)−1

e−iωt (3.6)

The refractive index of the medium polarized with charges described by x(t) is
given by,

(n− ik)2εe−iωt = εe−iωt + 4πNex (3.7)

Hence in the limit ω → 014,

1− (n− ik)2 =
4πNe2

mω2

[
1− 2ie2

3m
ω +O(ω2)

]
(3.8)

The ω-dependence of k15 in this asymptotic limit is then given by,

k ∼ −N(ω)

ω
(3.9)

Although the classical theory is not valid in the limit ω → ∞16, under some
approximations [8], the refractive index is given by,

1− (n− ik)2 =
4πNe2

mω2

[
1 +O

(
1

ω

)]
(3.10)

The ω-dependence of k17 in this limit is then as follows.

k ∼
[
N(ω)

ω2

]1/2

(3.11)

In the following sections we demonstrate the results for self-consistency of re-
tarded/advanced interactions in various cosmological models by evaluating (3.4) us-
ing (3.9, 3.11).

13ε = ∓1for retarded and advanced wave, respectively.
14This limit applies for the case of future in�nity (i.e. for retarded waves), in an expanding

universe.
15For N(ω)→ 0 as ω → 0,n→ 1
16This limit applies for the case of past in�nity i.e. for advanced waves, in an expanding universe.
17For N(ω)→∞ as ω →∞,n→ 0
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3.2.1 de Sitter and Einstein-de Sitter model

de Sitter (dS) and Einstein-de Sitter (EdS) space-times are described by conformally
�at metrics gik = Ω2(t) ηik with ΩdS(t) = (−Ht)−118 and ΩEdS(t) = Ct219. These
are cosmological solutions to Einstein's �eld equations for a universe with no spatial
curvature (i.e. FRW metric with k = 0) with cosmological constant and matter
domination, respectively.

In any FRW universe20,

ω ∝ S(τ)−1, N ∝ S(τ)−3 ⇒ N ∝ ω3 (3.12)

Hence, using (3.9) and (3.11)

k ∝

{
−ω2 for retarded waves

ω1/2 for advanced waves
(3.13)

For models with no spatial curvature (i.e. k = 0), V (r, t) = dr
dt

= 0 and hence the
integrals IR and IA in (3.4) become,

IR =

ˆ
future

k(r)dr → −∞

IA =

ˆ
past

k(r)dr →∞

These integrals are evaluated below for de Sitter and Einstein-de Sitter space-
times21.

ωR(r) = ω0 (Ω (t0 + r))−1

ωdSR (r) = ω0 (1−Hr)
ωEdSR (r) = ω0 (1 +Dr)−2

IdSR ∼ −
ˆ H−1

0

(1−Hr)2 dr, IEdSR ∼ −
ˆ ∞

0

dr

(1 +Dr)4

ωA(r) = ω0 (Ω (t0 − r))−1

ωdSA (r) = ω0 (1 +Hr)

ωEdSA (r) = ω0 (1−Dr)−2

18H =positive constant and −∞ < t < 0
19C =positive constant and 0 < t <∞
20ds2 = dτ2 − S(τ)2

(
dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2
)

21D is a positive constant (D =
√
C).
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IdSA ∼
ˆ ∞

0

√
(1 +Hr)dr, IEdSA ∼

ˆ D−1

0

dr

(1−Dr)

We can see from the above expressions that IdSR and IEdSR converge while IdSA and
IEdSA diverge to ∞. This implies that de Sitter and Einstein-de Sitter models have
perfect past absorption (but imperfect future absorption) and hence self-consistent
net advanced interactions (but not net retarded ones).

3.2.2 Steady-state model

Steady-state cosmological model (SS) [1, 6] is characterized by N = constant and
Ω(t) = (−Ht)−122. The asymptotic form of k is then given by23,

k ∝

{
−ω−1 for retarded waves

ω−3 for advanced waves
(3.14)

ωSSR (r) = ω0 (1−Hr)
ωSSA (r) = ω0 (1 +Hr)

ISSR ∼ −
ˆ H−1

0

dr

(1−Hr)
, ISSA ∼

ˆ ∞
0

dr

(1 +Hr)3 (3.15)

It can be easily veri�ed that ISSR diverges to −∞ while ISSA converges to a �-
nite value. Hence steady-state model has self-consistent retarded but not advanced
interactions.

3.2.3 Quasi-steady-state cosmology

Quasi-steady-state cosmology (QSSC), based on steady-state cosmology, is an al-
ternative model to the standard cosmology. It was proposed by Hoyle, Burbidge and
Narlikar in 1993 [7]. This model can be described by the scale factor S(τ) expanding
exponentially over a large time scale (P ) and oscillating over a much shorter time
scale (Q). It can be approximated as [11, 17],

S(τ) = e
τ
P

[
1 + η cos

(
2πτ

Q

)]
(3.16)

where P >> Q and η is a constant with 0 < η < 1. The number density (N) of
particles oscillates between Nmin and Nmax during a cycle of time period Q but the

22H = positive constant and −∞ < t < 0
23Asymptotic form of k in case of N = constant is obtained from (3.8) and (3.10) in a di�erent

way than (3.9) and (3.11). See [8] for the same.
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average density remains constant due to creation of matter at particular time epochs,
periodically.

We look for the divergence of the integrals IQSSCR and IQSSCA to check the self-
consistency of retarded and advenced interactions.

e
τ
P (1− η) ≤ S(τ) ≤ e

τ
P (1 + η)

t =
´

dτ
S(τ)

, conformal time, is obtained as follows.

´
dτ e

−τ/P

(1+η)
≤ t ≤

´
dτ e

−τ/P

(1−η)

−P e−τ/P

(1−η)
≤ t ≤ −P e−τ/P

(1+η)

(1−η)
P

eτ/P ≤ −1
t
≤ (1+η)

P
eτ/P

The conformal factor Ω(t) = S(τ) follows the following inequalities.

eτ/P (1− η) ≤ Ω(t) ≤ eτ/P (1 + η)

−P
t

(
1−η
1+η

)
≤ Ω(t) ≤ −P

t

(
1+η
1−η

)
The proper frequency for a retarded wave is given by, ωR = ω0 (Ω (t0 + r))−1,

which then follows,

−ω0
(t0+r)
P

(
1−η
1+η

)
≤ ωR ≤ −ω0

(t0+r)
P

(
1+η
1−η

)
As the number density is almost constant (and oscillates betweenNmin andNmax),

the absorption coe�cient depends upon ω as k ∝ −
√
N
ω
.

√
Nmax
ω0

P
(

1+η
1−η

)
1

(t0+r)
≤ k ≤

√
Nmin
ω0

P
(

1−η
1+η

)
1

(t0+r)

− C2

(C0−r) ≤ k ≤ − C1

(C0−r)

C0, C1 and C2 are positive constants24. The integral IQSSCR =
´ C0

0
kdr then

satis�es,

−
´ C0

0
C2

(C0−r)dr ≤ IQSSCR ≤ −
´ C0

0
C1

(C0−r)dr

Since IQSSCR is sandwiched between two integrals both of which diverge to −∞,
IQSSCR = −∞. Hence QSSC admits self-consistent retarded interactions. A similar
analysis shows that it does not admit self-consistent advanced interactions.

24C0 = −t0, C1 =
√
Nmin

ω0
P
(

1−η
1+η

)
, C2 =

√
Nmax

ω0
P
(

1+η
1−η

)
12



3.2.4 FRW models with k = ±1

In this section we will check the self-consistency of retarded/advanced interactions
in FRW models with k = ±1. The line element in these models is given by ds2 =

dτ 2 − S2(τ)
(

dr2

1−kr2 + r2dΩ2
)
. This line element can be written in conformally �at

form by the following coordinate transformations.

R =

{
sin−1 r k = 1

sinh−1 r k = −1
, T =

ˆ τ

τ0

dτ ′

S(τ ′)
(3.17)

ξ = 1
2
(T +R), η = 1

2
(T −R)

X =

{
tan ξ k = 1

tanh ξ k = −1
, Y =

{
tan η k = 1

tanh η k = −1

ρ = 1
2
(X − Y ), t = 1

2
(X + Y )

This leads to the following form of line element,

ds2 = Λ2(t, ρ)(dt2 − dρ2 − ρ2dΩ2)

where the conformal factor is given by25,

Λ2
±(t, ρ) =

4Σ2

(1±X2)(1± Y 2)
(3.18)

where Σ(T ) = S(τ).
Now, V±(t, ρ) = dρ

dt
is obtained in this case as follows.

V±(t, ρ) =
2ρt

ρ2 + t2 ± 1
(3.19)

The scale factor Σ is obtained by solving Friedman equation Ṡ2 = ∓1 + B
S
, for

k = ±1 and B = constant.

Σ+ =
2 (X + Y )2

(1 +X2) (1 + Y 2)
(3.20)

Σ− =
1 +XY√

(1−X2) (1− Y 2)
− 1 (3.21)

25The subscript ± denotes the quantities for k = ±1, respectively.
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Figure 2: FRW universe with k = +1: XY = ±1 are bounds of the universe. Points
(X, Y ) and (− 1

X
,− 1

Y
) can be identi�ed with each other. The line X+Y = 0 denotes

the central singularity. Retarded null paths have Y = constant. (This �gure is
obtained from [15].)

Figure 2 shows various aspects of FRW universe with k = 1 in (X, Y ) space.
Retarded null paths have Y = constant while the advanced ones haveX = constant.26

Since the universe is closed, both retarded and advanced null paths �nally reach the
singularity. This can be observed in Figure 2. Hence, in the evaluation of both IR
and IA, as ω ∝ Σ−1, we need to take the absorption coe�cient k in the asymptotic
limit ω →∞ .

From (3.11) and (3.12), k ∝
√
ω ∝ Σ−1/2 for both IR and IA.

I+
R =

ˆ
future

k

(
1− V
1 + V

)
dρ ∝ −

ˆ
future

dX√
Σ+ (1 +X2)

(3.22)

26This is also valid for k = −1.
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I+
A =

ˆ
past

k

(
1 + V

1− V

)
dρ ∝

ˆ
past

dY√
Σ+ (1 + Y 2)

(3.23)

Using the expression for Σ+ from (3.20), both the above integrals can be evaluated
and found to be diverging to −∞ and ∞, respectively [15]. This demonstrates
that both retarded and advanced interactions are self-consistent in FRW model with
k = +1.

In the case of k = −1, the asymptotic form of k is di�erent as compared to
k = 127.

k ∝

{
−ω2 retarded wave (ω → 0)
√
ω advanced wave (ω →∞)

(3.24)

I−R ∝ −
ˆ
future

dX

Σ2
− (1−X2)

I−A ∝
ˆ
past

dY√
Σ− (1− Y 2)

Using the expression of Σ− from (3.21) and appropriate limits in the integrals,
it can be seen that I−R converges to a �nite value while I−A diverges to ∞ [15]. This
shows that FRW model with k = −1 admits only self-consistent advanced solution.

3.3 A little about quantum aspects

We would like to mention here brie�y that the action-at-a-distance theory presented
and used in this entire work is restricted to classical physics. No quantum e�ects have
been considered in any part. The calculations using asymptotic form of refractive
index in the limit ω →∞ (3.10) are not as soundly based as those in the limit ω → 0
due to the importance of quantum e�ects in the former case.

The quantum generalization of �eld theoretic approach to electrodynamics, quantum
electrodynamics (QED), has been widely in agreement. However a completely quantum
theory of action-at-a-distance is developed by Hoyle and Narlikar [10] explaining all
the phenomena of QED.

4 Action-at-a-distance in Riemannian space-times:

Non-local aspects

As noted in the section 3.2, action-at-a-distance electrodynamics has to be general-
ized to Riemannian space-times before applying it to cosmological space-times using
conformal invariance. This requires curved space generalization of Fokker action

27It being an open universe, retarded waves travel to ∞ and hence the future boundary corres-
ponds to ω → 0 limit.

15



(stated below) and the corresponding wave equation satis�ed by the vector poten-
tial.

S = −
∑
a

ˆ
mada−

∑
a<b

ˆ
eaebδ(s

2
AB)ηikda

idbk (4.1)

�Ai = 4πJi (4.2)

a and b denote di�erent particles and Ji is the source current density. This gener-
alization can only be done, keeping in mind non-localness of the problem, with the
help of two-point functions such as parallel propagators and Green's functions. The
generalized Fokker action can be written as,

S = −
∑
a

ˆ
mada−

∑
a<b

ˆ
eaebḠiAiBda

iAdbkB (4.3)

where ḠiAiB are Green's functions of the corresponding vector wave equation in
curved space-time. We describe the mathematical formulation of parallel propagators
and Green's functions [9] in the following two sections.

4.1 Parallel propagators

Let X iAbe a 4-vector at a point A.28 Suppose A can be connected with all other
points B along a unique geodesic ΓAB. If we parallel propagate X

iAalong ΓAB to B,
it transforms to X iB , which is a 4-vector at B. Since parallel propagation is a linear
operation, we can write the following.

X iB = ḡiBiAX
iA (4.4)

The functions ḡiBiAare de�ned as parallel propagators, as they parallel propagate
a vector from A to B. These are called as bivectors or two-point vectors as they
transform as vectors at two points. The indices can be raised or lowered using the
metric at the corresponding point thus giving the functions ḡiBiA , ḡiBiA , ḡ

iA
iB
. These

quantities can be used to parallel propagate a vector, with suitable contravariant or
covariant indices, from A to B. It can also be shown that ḡiBiAand ḡ

iA
iB
are inverses of

each other.
ḡiBiA ḡ

iA
jB

= δiBjB , ḡiBjA ḡ
iA
iB

= δiAjA (4.5)

Also since there is symmetry with respect to A and B, we have the following
symmetries for the parallel propagators (which can also be demonstrated by simple
manipulations using properties listed above).

ḡiBiA = ḡiAiB , ḡiBiA = ḡiAiB (4.6)

28Since we are dealing with non-local problem, it becomes essential to specify the location of a
vector. XiA is a 4-vector only at A.
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4.2 Green's functions for wave equations

Green's functions provide the most general way of solving a di�erential equation. In
order to understand how they work, consider the following general equation

ΘXF (x) = B(x) (4.7)

where ΘX is an operator while F (x) and B(x) are functions of x. Green's function
G(x, x′) for ΘX is de�ned by,

ΘXG(x, x′) = δ(x− x′) (4.8)

where δ(x− x′) is Dirac delta function. The solution for F (x) is then given by,

F (x) =

ˆ ∞
−∞

G(x, x′)B(x′)dx′ (4.9)

This can be easily veri�ed by substituting the above solution in (4.7).
Now, the scalar wave equation in curved space time is given by,

�Xφ(X) = ψ(X) (4.10)

where �φ = φ;i
;i with ;i denoting covariant derivative. The corresponding scalar

Green's function Ḡ(X,X ′) and solution for φ(X) is then given by,

�XḠ(X,X ′) = 1√
−ḡ(X,X′)

δ4(X,X ′)

φ(X) =
´
Ḡ(X,X ′)ψ(X ′)

√
−g(X ′)d4x′

(4.11)

The vector wave equation is given by F ;k
ki = 4πJi, where Fki = Ai;k −Ak;i. After

some manipulations and under Lorenz gauge (i.e. A ;i
i = 0),

4πJi = (Ai)
;k
;k − (Ak;i)

;k = �Ai −
(
A;k
k

)
;i

+R k
i Ak (4.12)

this reduces to the following form.

�Ai +R k
i Ak = 4πJi (4.13)

The equation satis�ed by vector Green's function ḠiX iX′
(x, x′) and solution for

AiX (x) is given by,

�XḠiX iX′
+R kX

iX
ḠkX iX′

= 1√
−ḡ(X,X′)

ḡiX iX′δ4(X,X ′)

AiX =
´

4πḠiX iX′
J iX′

√
−g(X ′)d4x′

(4.14)

JiX produced by single particle with trajectory biB and charge eb is given by,

JiX (X) = eb

ˆ
ḡiX iB

δ4(X,B)√
−ḡ(X,B)

dbiB (4.15)
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This gives the following solution for AiX due to a single charge B.

AiX = 4πeb

ˆ
ḠiX iBdb

iB (4.16)

The electromagnetic part of generalized Fokker action can hence be written as,

S = −
∑
a<b

ˆ
eaebḠiAiBda

iAdbkB (4.17)

which denotes the sum of interactions between two di�erent particles.
Scalar and vector Green's functions are related by the following expression (which

is proved in the Appendix A). (
ḠiX iX′

);iX = −Ḡ;iX′
(4.18)

Ḡ(X,X ′) and ḠiX iX′
are chosen to be the solutions of (4.11) and (4.14) which are

symmetric with respect to X and X ′.

Ḡ(X,X ′) = Ḡ(X ′, X), ḠiX iX′
= ḠiX′ iX

(4.19)

These symmetric Green's functions can be split into retarded and advanced parts.
GRet(X,X ′) and GAdv(X,X ′) are nonzero only when X is in the causal future and
past of X ′, respectively.

Ḡ(X,X ′) =
1

2
GRet(X,X ′) +

1

2
GAdv(X,X ′) (4.20)

Similar relations hold for vector Green's functions. GRet and GAdv satisfy all
the properties of Ḡ except the symmetry with respect to X and X ′. The solutions
obtained for scalar and vector wave equations using GRet or GAdv give retarded and
advanced solutions, respectively.

4.3 Evaluation of parallel propagators in conformally �at space-
times

In this section, we evaluate parallel propagators for conformally �at space-times,
which will be used further. Consider a metric of the form,

ds2 = dτ 2 − S2(τ)(dr2 + r2(dθ2 + sin2 θdφ2)) (4.21)

Parallel propagation of a vector V i along a path xi(λ) is given by,

0 =
D

dλ
V i =

dV i

dλ
+ Γijk(λ)

dxj

dλ
V k (4.22)
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A null radial geodesic is given by, (for λ = τ)

τ(τ) = τ

r(τ) = r1 +

ˆ τ

τ1

dτ ′

S(τ ′)

θ, φ = constant

Christofell symbols for the above metric are given by,

Γτrr = SṠ, Γτθθ = r2SṠ, Γτφφ = r2 sin2 θSṠ

Γrθθ = −r, Γrφφ = −r sin2 θ, Γrτr = Ṡ
S

Γθφφ = − sin θ cos θ, Γθτθ = Ṡ
S
, Γθrθ = 1

r

Γφθφ = cot θ, Γφτφ = Ṡ
S
, Γφrφ = 1

r

The di�erential equations satis�ed by V i are given by,

dV τ

dτ
= −ṠV r, dV r

dτ
= − Ṡ

S
V r − Ṡ

S2V
t

dV θ

dτ
= −

[
Ṡ
S

+ 1
rS

]
V θ, dV φ

dτ
= −

[
Ṡ
S

+ 1
rS

]
V φ

The parallel propagators, which are de�ned as V i = V j1 ḡij1 , can be obtained by
solving the above equations.

ḡττ =
1

2

(
S1

S
+
S

S1

)
, ḡτr =

S1

2

(
S1

S
− S

S1

)
, (4.23)

ḡrτ = −S
2

(
S1

S
− S

S1

)
, ḡrr = −SS1

2

(
S1

S
+ S

S1

)
,

ḡθθ = −rr1SS1, ḡφφ = −rr1SS1 sin2 θ

Transforming ḡij (which are bivectors) to conformal coordinates, i.e. for which
the line element is ds2 = Ω2(t)(dt2 − dx2 − dy2 − dz2), gives

ḡtt =
1

2
(Ω2

1 + Ω2)

ḡtµ =
1

2
(Ω2

1 − Ω2)
rµ
r
, ḡµt =

−1

2
(Ω2

1 − Ω2)
rµ
r

ḡµν = −rµrν
2r2

(Ω1 − Ω)2 + Ω1Ωηµν
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e.g. For de Sitter space-time, i.e. Ω(t) = (−Ht)−1, the parallel propagators
connecting A(a,~0) to X(t, ~r) are given by,

ḡtt =
1

2H2

(
1

t2
+

1

a2

)
,

ḡtµ =
1

2H2

(
t+ a

t2 + a2

)
rµ, ḡµt =

−1

2H2

(
t+ a

t2 + a2

)
rµ,

ḡµν = − 1

2H2

1

t2a2
rµrν +

1

H2at
ηµν (4.24)

The above result for parallel propagators in de Sitter space-time is in agreement with
[12].

4.3.1 Equivalence between cosmological and Doppler shifts

This subsection demonstrates a result using the non-local properties of parallel
propagators. Cosmological redshift is the shift in wavelength of a wave transmit-
ted from space-time point B to A. This e�ect, due to the curvature of space-time,
is given by the following expression (for FRW metrics with k = 0,±1),

λA
λB
≡ 1 + z =

SA
SB

(4.25)

where �z� is positive for S being increasing function of time. i.e. There is redshift
for waves going forward in time in an expanding universe.

Doppler e�ect gives shift in the wavelength due to relative velocity between the
two frames at A and B. This is given by,

λA
λB
≡ 1 + z =

√
1 + v

1− v
(4.26)

where v = relative spatial velocity between A and B.
Here we demonstrate that cosmological redshift is equivalent to the Doppler red-

shift observed due to the apparent relative velocity between two space-time points
[13]. We demonstrate this result for FRW metric with k = 0. The apparent relative
velocity can be obtained by parallel propagating 4-velocity vector between the two
points.

Consider an observer �1�, at rest at B, emitting waves which are being ob-
served by another observer �0�, also at rest at A. 4-velocity of �1� at B is given by
(vτ1 , v

r
1, v

θ
1, v

φ
1 ) = (1, 0, 0, 0). Let vi0 be the 4-velocity obtained by parallel propagat-

ing vi1 from B to A. vi0 is the 4-velocity that �0� will assign to �1�. Using parallel
propagators obtained in the previous section (see(4.23)), we get the following.

vτ0 =
1

2

(
S1

S0

+
S0

S1

)
, vr0 =

1

2S0

(
S1

S0

+
S0

S1

)
, vθ0 = vφ0 = 0 (4.27)
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Hence the magnitude of relative velocity (v) and Doppler shift (z), assigned by
�0� to �1�, are given by,

v =
dl

dt
= grr

vr0
vτ0

=
S2

0 − S2
1

S2
0 + S2

1

(4.28)

1 + z =

√
1 + v

1− v
=
S0

S1

(4.29)

This demonstrates that cosmological redshift is equivalent to Doppler redshift
due to apparent relative velocity between A and B.

4.4 Evaluation of Green's functions for wave equation

The scalar and vector wave equations in �at space-time are given by,

�Xφ(X) = ψ(X), �Ai = 4πJi (4.30)

The corresponding scalar and vector Green's functions are given by the following.
(See Appendix B.)

Ḡ(X,X ′) =
1

4π
δ(s2

XX′), Ḡij = ηijḠ (4.31)

; s2
XX′ = ηij(x

i − x′i)(xj − x′j)

Hence the vector potential and Fokker action (electromagnetic part) in �at space-
time are given by the following.

Ai = eb

ˆ
δ(s2

XB)ηikdb
k, S =

∑
a<b

ˆ
eaebδ(s

2
AB)ηikda

idbk (4.32)

4.4.1 Green's functions in conformally �at space-times

Green's functions in curved space-times have the following general structure as shown
by DeWitt and Brehme in [3],

Ḡ(X,A) =
1

4π

[
∆1/2δ(s2

XA)− 1

2
vθ(s2

XA)

]
(4.33)

ḠiX iA =
1

4π

[
∆1/2ḡiX iAδ(s

2
XA)− 1

2
viX iAθ(s

2
XA)

]
where ∆ = det

∥∥∥(1
2
s2
XA

)
;iX iA

∥∥∥ . [ḡ(X,A)]−1. v, viX iA are functions of xi.

These functions have non-zero coe�cients not just for δ(s2
XA), as is the case for �at

space-time, but also for θ(s2
XA). This results in the propagation of electromagnetic

potential, given by (4.14) or (4.16), not just along null cone but also inside the null
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cone. This gives rise to the so called �tail� in the transmission of electromagnetic
signals in curved space-times.

In this section we �rst describe a general scheme to evaluate Green's functions
for conformally �at space-times (i.e. with metric gik = Ω2(t)ηik) (as followed in [12]).
Then we calculate explicitly the Green's functions for two cosmological space-times,
de Sitter and Einstein-de Sitter space-times.

The retarded electromagnetic 4-potential produced by a charge A with a traject-
ory aiA(λ) is given by (see(4.16)),

AiX (x) = 4πe

ˆ
GRet
iX iA

daiA (4.34)

Charge creation can be incorporated in direct interparticle action by de�ning
direct particle �elds suitably as below.

AiX;iX = 4πe

ˆ (
GRet iX
iA

)
;iX
daiA = 4πe

ˆ
A0

−GRet
;iA
daiA = 4πeGRet(X,A0) (4.35)

The above demonstration of violation of Lorenz gauge condition involves the use
of (4.18) and particle creation at A0. The Maxwell-like equations satis�ed by this
potential are given by,

F ik
;k −

(
Aj;j
);i

= −4πJ i (4.36)

Using the form of the metric, gik = Ω2(t) ηik, we can write the above equa-
tion in a better form. Consider the underlined indices (i, j) and Â, F̂ denoting the
corresponding vectors/tensors in ηik. Ai can be decomposed as,

Ai = Âi + φ;i (4.37)

where φ is a scalar. Hence the following relations hold.

Fik = F̂ik, F ik
;k =

1

Ω4
F̂ ik

;k (4.38)

Ai;i =
1

Ω2
Âi;i +

1

Ω2

[
�φ− 2Ω;i

Ω

(
Âi + φ;i

)]
(4.39)

φ can be chosen such that Ai;i = 1
Ω2 Â

i
;i thus satisfying the following equation.

�φ−
2Ω;i

Ω

(
Âi + φ;i

)
= 0 (4.40)

This can be rewritten as �φ =
2Ω;i

Ω3 Â
i and hence is the scalar wave equation. The

vector wave equation, as stated below, is obtained by using all the above relations.

�Âi − 2Ω;i

Ω
Â
j

;j = 4πJ i (4.41)
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Considering the charge created at A0(a,~0) and our coordinate frame (t, ~r) being
its rest frame, the 4-current density J i is given by,

J i = eδ3(r)θ(t− a)(1,~0) (4.42)

i.e. it has only temporal component (charge density) and zero space component
(3-current density). Hence the solution for Âi has the form Âi = (χ(t, r),~0).29 Sub-
stituting this form of Âi in (4.41), we get

∂2χ

∂t2
− 2Ω̇

Ω

∂χ

∂t
− ∂2χ

∂r2
− 2

r

∂χ

∂r
= 4πeδ3(r)θ(t− a) (4.43)

The above di�erential equation can be solved, once the form of Ω(t) is speci�ed,
to obtain χ(t, r). Then GRet(X,A0) can be obtained using (4.35) as follows.

GRet(X,A0) =
1

4πeΩ2(t)

∂χ

∂t
(t, r) (4.44)

φ(t, r), which satis�es the scalar wave equation (4.40), can be obtained using GRet

as follows.

φ(t, r) =

ˆ
GRet[t, ~r; t′, ~r′]

2Ω̇(t′)

Ω3(t′)
χ(t′, r′)

√
−g(t′, r′) d3r′dt′ (4.45)

The complete solution for Ai(X) is then obtained from (4.37) as the following.

Ai(t, r) =

((
χ(t, r) +

∂φ

∂t

)
,
∂φ

∂r
, 0, 0

)
(4.46)

The retarded potential given by (4.34) for the J i given by (4.42) is,

AiX (x) = 4πe

ˆ tf

a

GRet
iX0A

da (4.47)

which gives the following expression for GRet
iX0A

.

GRet
iX0A

= − 1

4πe

∂AiX
∂a

(4.48)

Purely spacelike components, GRet
µXνA

, can be obtained using
(
GRet
iXµA

);iX = −GRet
;µA

and substituting the results for GRet and GRet
iX0A

obtained above. Thus we get scalar
and vector Green's functions from (4.44) and (4.48).

4.4.2 de Sitter space-time

The parallel propagators for de Sitter space-time are calculated in (4.24). The pro-
cedure described in the previous section gives the scalar and vector Green's functions
in this space-time, as stated below [12].30

29The source charge being at rest at the origin, the potential is of electrostatic origin with radial
symmetry.

30All Green's functions are retarded here. The vector Green's functions have �rst index corres-
ponding to X(t, ~r) while the second to A0(a,~0).
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G[t, ~r; a,~0] =
H2

4π

[
at
δ(t− a− r)

r
+ θ(t− a− r)

]
G00 =

1

4π

[
t2 + a2

2at

δ(t− a− r)
r

− 8at

3

(
3

D2
− 4r2

D3

)
θ(t− a− r)

]
G0µ =

1

4π

[
(a+ t)rµ

2at

δ(t− a− r)
r

− 8rµt

3

{
1

D2
+

4a(a+ t)

D3

}
θ(t− a− r)

]
Gµ0 =

1

4π

[
−(a+ t)rµ

2at

δ(t− a− r)
r

+
8rµa

3

{
1

D2
+

4t(a+ t)

D3

}
θ(t− a− r)

]
(4.49)

Gµν =
1

4π

[
−
(rµrν

2at
− ηµν

) δ(t− a− r)
r

−
{

rµrν
(a+ t)2

− ηµν
}
f(t, r)θ(t− a− r)

]
; D = (t+ a)2 − r2

f(t, r) = 4(a+t)2

3D2

[
ln
(

4at
D

)
+ 2(a2+t2+r2)

D
+ 12at(a+t)2

D2 − 3(a2+t2)
4at

− 1
]

4.4.3 Ω(t) = Ctn

In this section we evaluate scalar Green's functions for conformally �at space-times
with Ω(t) = Ctn (for integral value of n) by following a di�erent approach [2, 4]. We
�rst de�ne a reduced symmetric Green's function ḡ(X,X ′) by,

Ḡ(X,X ′) =
ḡ(X,X ′)

Ω(t)Ω(t′)
(4.50)

Then the equation (4.11) satis�ed by G(X,X ′) gives,(
∂2

∂t2
−∇2 − Ω̈

Ω

)
ḡ(X,X ′) = δ(t− t′)δ3(x− x′) (4.51)

where ∇2 is Laplacian operator and Ω̈
Ω

= n(n−1)
t2

for Ω = Ctn. Expanding ḡ(X,X ′) in
Fourier modes in space,

ḡ(X,X ′) =
1

(2π)3

ˆ
g̃(t, t′;~k)ei

~k.(~x−~x′)d3k (4.52)

Putting this expression in the equation above and integrating over space gives,(
∂2

∂t2
+ k2 − n(n− 1)

t2

)
g̃(t, t′;~k) = δ(t− t′) (4.53)

Let the retarded reduced Green's function in Fourier space be g̃Ret(t, t′;~k) =
θ(t− t′)ĝ(t, t′; k). Substituting this in the above equation gives,(

∂2

∂t2
+ k2 − n(n− 1)

t2

)
ĝ(t, t′; k) = 0 (4.54)
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along with the boundary conditions,

ĝ(t = t′; k) = 0,
dĝ

dt
(t = t′; k) = 1 (4.55)

The general solution of the above di�erential equation for ĝ (for an integral value
of n) is given by,

ĝl(t, t
′; k) = AktJl(k |t|) +BktNl(k |t|) (4.56)

where Jl and Nl are Bessel and Neumann functions with n = l + 1 or n = −l.
The arbitrary constants A, B can be �xed by the boundary conditions stated above.

This problem can also be solved more easily using L̂l =
(
− ∂
∂t

+ l+1
t

)
as ladder

operator [2], which gives the solution for higher values of l by the relation L̂lĝl = ĝl+1.
This is explained in detail in Appendix C. Thus starting from ĝ0, the solution for �at
space-time, Green's functions for all the higher-l can be computed by successively
operating L̂l.

l = 1 corresponds to both de Sitter (n = −1) and Einstein-de Sitter (n = 2)
space-times. The reduced Green's function for these two space-times, as calculated
below, is the same.

The general solution for ĝ0 (i.e. for no speci�c boundary conditions) is given by

ĝ0 = A(t′) sin(k4t)
4πk

+B(t′) cos(k4t)
4πk

, with A(t′) and B(t′) arbitrary functions of t′.

ĝ1 = L̂0ĝ0

=
C(t′)

4πk

[
sin(k4t)

t
− cos(k4t)

]
+
D(t′)

4πk

[
cos(k4t)

t
+ sin(k4t)

]
Imposing the boundary conditions �xes C(t′) and D(t′) and gives the following solu-
tion for ĝ1.

ĝ1(t, t′; k) =
1

4πk

[(
1 +

1

k2tt′

)
sin(k4t)− 4t

ktt′
cos(k4t)

]
(4.57)

Evaluating reduced Green's function in position space from (4.52) using the above
form of Fourier components gives,

gRet(X,X ′) =
1

4π

[
δ(t− t′ − |~r − ~r′|)

|~r − ~r′|
+
θ(t− t′ − |~r − ~r′|)

tt′

]
(4.58)

The full scalar Green's functions for both de Sitter and Einstein-de Sitter space-
times is then obtained from the above common reduced Green's function (see (4.18)).

GRet
dS [t, ~r; a,~0] =

H2

4π

[
at
δ(t− a− r)

r
+ θ(t− a− r)

]
GRet
EdS[t, ~r; a,~0] =

1

4πC2

[
1

a2t2
δ(t− a− r)

r
+

1

a3t3
θ(t− a− r)

]
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The scalar Green's function for de Sitter space-time is in agreement with that
computed in the previous section (4.49). GRet can be calculated for other integral
values of n by the procedure described above.

The vector Green's functions can be calculated from scalar Green's functions
by the procedure described in the section 4.4.1 . However, it becomes extremely
di�cult in the case of Einstein-de Sitter space-time to get the explicit expressions
for the same.

5 Summary and Discussion

This section summarizes the work presented in the previous sections. We stud-
ied action-at-a-distance theory, in particular its formulation in electrodynamics by
Wheeler and Feynman (WF theory), its application to cosmological models (using
conformal invariance) and the generalization to any Riemannian space-time. The
�rst part (i.e. section 3) deals with the investigation of existence of self-consistent
retarded and advanced solutions in various cosmological models while the second
part (i.e. section 4) has evaluation of Green's functions for wave equation in curved
space-times.

5.1 Self consistent retarded/advanced solutions in cosmolo-
gical models

Model Future absorber Past absorber Net interaction
Static and �at Perfect Perfect Ambiguous

de Sitter Imperfect Perfect Advanced
Einstein-de Sitter Imperfect Perfect Advanced

FRW k = 1 Perfect Perfect Ambiguous
FRW k = −1 Imperfect Perfect Advanced
Steady-state Perfect Imperfect Retarded

Quasi-steady-state Perfect Imperfect Retarded

Table 1: Self-consistency of retarded/advanced solutions

The above table summarizes the results of section 3. This analysis provides a tool
for limiting viable cosmological models. Since the net interactions are found to be
retarded in our universe, only those cosmological models are viable which have self-
consistent retarded solution. From the above table, we can see that only steady-state
and quasi-steady-state models satisfy this condition while other Friedman models fail.
Although this can not be the su�cient criterion to decide for the correct cosmological
model, it certainly is a necessary criterion, in action-at-a-distance formulation.
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Also, this has interesting implications on the origin of arrow of time. The choice
of the direction of time is ad hoc in �eld theory i.e. the retarded solution is chosen
arbitrarily over the advanced one. However in action-at-a-distance formulation, ori-
gin of time asymmetry can be attributed to the large scale structure of the universe.
The universe has such a cosmological stucture that it provides the correct absorber
response to produce net retarded interactions, thus �xing the arrow of time. Steady-
state and quasi-steady-state models are suitable candidates for such a cosmological
structure.

5.2 Green's functions for wave equations

In section 4.4, we evaluated Green's functions for wave equation in conformally �at
space-times, in particular for those having conformal factor as Ω(t) = Ctn. We
evaluated explicit expressions for de Sitter, Einstein-de Sitter space-times and also
provided a general procedure for all other integral values of n. This shows that
the Green's functions have the form (4.33) which has non-zero coe�cients for the
heaviside theta function (θ(s2

XA)) too. Hence the vector potential (AiX ), for a source
localized in space and time, has the following general form (using (4.14)),

AiX (xi) = Λ
(δ)
iX
δ(s2

XA) + Λ
(θ)
iX
θ(s2

XA) (5.1)

The non-zero functions of xi, Λ
(δ)
iX

and Λ
(θ)
iX
, show that the propagation of wave

is not restricted to null cone but also inside the null cone. The propagation inside
the light cone can also be perceived as a wave travelling with speed less than that of
light. This is referred to as the �tail� in the electromagnetic signals.

The coe�cients Λ
(δ)
iX

and Λ
(θ)
iX

can be calculated for speci�c space-times and also
compared (for orders of magnitude with respect to the spatial distance from the
source). This will give the extent to which the tail a�ects a signal. The detectable
e�ects due to such a tail in pulsed radiation from a pulsar are presented by P. E.
Roe [16].
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Appendix

A Relation between scalar and vector Green's func-

tions

The scalar and vector Green's functions satisfy the following equations.

�xḠ(x, x′) = 1√
−ḡ(x,x′)

δ4(x, x′)

�xḠiX iX′
+R kX

iX
ḠkX iX′

= 1√
−ḡ(x,x′)

ḡiX iX′δ4(x, x′)
(A.1)

Now, di�erentiating both sides of the above equations with appropriate indices,

(
�xḠ(x, x′)

)
;iX′

=

(
1√

−ḡ(x, x′)
δ4(x, x′)

)
;iX′(

�xḠiX iX′
+R kX

iX
ḠkX iX′

);iX
=

(
1√

−ḡ(x, x′)
ḡiX iX′δ4(x, x′)

);iX

Evaluating right sides of the above equations by integrating over test function
f(x),

ˆ
f(x)

(
1√

−ḡ(x, x′)
δ4(x, x′)

)
;iX′

√
−gd4x =

ˆ
f(x) (δ4(x, x′));iX′

d4x

=

(ˆ
f(x) (δ4(x, x′)) d4x

)
;iX′

= f(x′);iX′

ˆ
f(x)

(
1√

−ḡ(x, x′)
ḡiX iX′δ4(x, x′)

);iX √
−gd4x

=

ˆ
V

[
f(x)

1√
−ḡ(x, x′)

ḡiX iX′δ4(x, x′)

];iX √
−gd4x

= −
ˆ
f(x);iX

1√
−ḡ(x, x′)

ḡiX iX′δ4(x, x′)
√
−gd4x

=

[˛
∂V

f(x)
1√

−ḡ(x, x′)
ḡiX iX′δ4(x, x′)dΣiX − f(x′);iX′

]
= −f(x′);iX′
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The surface integral term vanishes as the integral is over the boundary at in�nity
and integrand involves δ4(x, x′). Thus we get,(

�xḠiX iX′
+R kX

iX
ḠkX iX′

);iX
= −

(
�xḠ(x, x′)

)
;iX′

(A.2)

The above equation reduces to the following.

�x(−Ḡ(x, x′);iX′
) = �x(Ḡ

;iX
iX iX′

) (A.3)

This establishes the required relation,(
ḠiX iX′

);iX = −Ḡ;iX′
(A.4)

B Green's functions in �at space-time

The scalar and vector wave equations in �at space-time are given by,

�Xφ(X) = ψ(X), �Ai = 4πJi (B.1)

and hence scalar and vector Green's functions satisfy,

�XḠ(X,X ′) = δ4(X,X ′), Ḡij = ηijδ4(X,X ′) (B.2)

From the above equations, we get Ḡij = ηijḠ.
Now, solving for Ḡ,

�XḠ(X,X ′) = δ4(X,X ′)

�ZḠ(Z) = δ4(Z)

where zi = xi − x′i. Taking Fourier transform of Ḡ(Z) and δ4(Z) and equating the
integrands,

�ZḠ(Z) = �Z

[
1

(2π)4

ˆ
d4k G̃(k) e−ik

jzj

]
δ4(Z) =

1

(2π)4

ˆ
d4k e−ik

jkj

we get, G̃(k) = − 1
kjkj

.

Ḡ(Z) = − 1

(2π)4

ˆ
d4k

1

kjkj
e−ik

jzj

= − 1

(2π)4

ˆ
d3ke−i

~k.~z

ˆ ∞
−∞

dk0
e−ik0z0

k2
0 − k2
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Evaluation of the k0 integral above using contour integral, gives GRet and GAdv

for z0 > 0 and z0 < 0, respectively.

GRet(X,X ′) =
θ(z0)

2π
δ(s2

XX′), G
Adv(X,X ′) =

θ(−z0)

2π
δ(s2

XX′) (B.3)

Ḡ(X,X ′) =
1

4π
δ(s2

XX′) (B.4)

; s2
XX′ = ηij(x

i − x′i)(xj − x′j)

C Ladder operator for getting scalar Green's func-

tion

The Fourier space scalar Green's function for conformally �at space-time with Ω(t) =
Ctn satis�es the following equation, (see 4.54)(

∂2

∂t2
+ k2 − l(l + 1)

t2

)
ĝl(t, t

′; k) = 0 (C.1)

where n = l+ 1 or n = −l. De�ne operators L̂1
l =

(
− ∂
∂t

+ l+1
t

)
and L̂2

l =
(
∂
∂t

+ l+1
t

)
.

The above equation can then be written as,

L̂2
l L̂

1
l ĝl = k2ĝl (C.2)

Now operating both sides of the above equation by L̂1
l gives,

k2L̂1
l ĝl = L̂1

l L̂
2
l L̂

1
l ĝl

k2
(
L̂1
l ĝl

)
=

(
L̂2
l L̂

1
l +

[
L̂1
l , L̂

2
l

])(
L̂1
l ĝl

)
It can be easily checked that the commutator of the two operators is given by[

L̂1
l , L̂

2
l

]
= 2(l+1)

t2
and also L̂2

l L̂
1
l + 2(l+1)

t2
= L̂2

l+1L̂
1
l+1. This gives,

L̂2
l+1L̂

1
l+1

(
L̂1
l ĝl

)
= k2

(
L̂1
l ĝl

)
(C.3)

and hence we obtain,
L̂1
l ĝl = ĝl+1 (C.4)
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