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Abstract

We propose a modified Rankin Selberg convolution, since the functional equation of

Rankin-Selberg convolution for arbitrary cusp form doesn’t respect critical line s = 1/2.

We extend a result of Goldfeld and Hoffstein about the congruence of cusp forms in ’new’

space under the assumption of the Riemann Hypothesis for modified Rankin-Selberg con-

volution.We prove Merel’s conjecture which states that the Hecke operators act linearly

independently on the winding cycle in the homology group H1(X0(N),Z). We also provide

an improvement on the bound of number of Hecke Operators which acts linearly indepen-

dently on the space of cusp forms using estimates on Kloosterman Sums. It also gives linear

independence of Poincare series.

xi



xii



Contents

Abstract xi

1 Preliminaries 5

1.1 Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Modular Curves as Riemann Surfaces . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Dimension of Mk(Γ) and Sk(Γ) . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Hecke Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 L Function of Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Jacobian of Compact Riemann Surface . . . . . . . . . . . . . . . . . . . . . 18

1.7 Introduction to Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Poincare Series 21

2.1 Poincare series as cusp forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Petersson’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Proof of Vanderkam’s Theorem 25

3.1 A quadratic form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The Kloosterman Sum and Bessel function . . . . . . . . . . . . . . . . . . . 29

xiii



4 Sturm’s Theorem for Modular Forms 31

4.1 Proof for Full Modular Group . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Proof for Congruence Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Rankin Selberg Method at Level N 35

5.1 Non Holomorphic Eisenstein series at level N . . . . . . . . . . . . . . . . . 35

5.2 Modified Rankin Selberg Function . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Non-vanishing region for modified Rankin Selberg L function . . . . . . . . . 42

6 Congruence of Cusp forms 43

6.1 Extension of Goldfeld and Hoffstein’s result . . . . . . . . . . . . . . . . . . 43

6.2 Improvement of Vanderkam’s Theorem . . . . . . . . . . . . . . . . . . . . . 47

7 Linear Independence of Hecke Operator 49

7.1 Proof for Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Proof for Poincare Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiv



Nomenclature

Γ Congruence Subgroup

Γ(N)
{[a b

c d

]
≡

[
1 0

0 1

]
( mod N) ∈ SL2(Z)

}
Γ(s)

∫∞
0
ts−1e−sds

Γ0(N)
{[a b

c d

]
≡

[
∗ ∗
0 ∗

]
( mod N) ∈ SL2(Z)

}

Γ1(N)
{[a b

c d

]
≡

[
1 ∗
0 1

]
( mod N) ∈ SL2(Z)

}
Γ∞ Γ ∩ SL2(Z)∞

CRs>t {s ∈ C; Rs > t}

H
{
z ∈ C : Im(z) > 0

}
H∗ H ∪Q ∪∞

Rs Real part of s

C(X) {f : X → C : f is analytic}

f �N g there exists constant C depends on N such that f ≤ Cg

J0(N) Jac(X0(N))

J1(N) Jac(X1(N))

L(f × g; s) A modified Rankin Selberg L function for cusp form f and g
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q = e(τ) exp(2πιτ)

SL2(Z)
{[a b

c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}

SL2(Z)∞

{
±

[
1 m

0 1

]
: m ∈ Z

}
Tn Hecke Operator

X0(N) Γ0(N)\H∗
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Introduction

The Mordell-Weil theorem about elliptic curves E over Q says that for any number field

K, E(K) is finitely generated abelian group. So E(K) ≡ Zr⊕E(K)tor. The strong Uniform

Boundness Conjecture (proved by Loic Merel in 1994, [11]) is |E(K)tor| ≤ B(d), where B(d)

depends on d = [K : Q] but neither E nor K. He explicitly proved bound p ≤ d3d2
on

largest prime divisor p of |E(K)tor|. To prove Uniform Boundness conjecture, a key step is

to show that for sufficiently large prime N , the Hecke operators T1, T2, · · · , TD acts linearly

independently on the winding cycle e from 0 to ι∞ when max {800D4, D8} < N
(log N)4 . Later

in 1998, J.Vanderkam improved using analytic techniques that result is true when D2 � N

(a chapter 3) Moreover, it is conjectured that result is true when D � N .

The aim of thesis is two-fold. Fold one is to understand the necessary background for

the Hecke Operators and the proof given by Vanderkam. The second is to try to improve

the bound on D.

Chapter 1 of thesis is an overview of the theory on Modular forms, the Hecke Operators

and L function associated with cusp form. Chapter 1 is mostly consisting of the definitions.

The first chapter also gives an isomorphism of uncompactified modular curves and enhanced

elliptic curves. The Poincare series are defined in chapter 2. They are an important type of

a basis of a set consisting of cusp forms. A reader can skip these chapters if he/she knows it

properly.

How many number of Fourier coefficient (a1(f), a2(f), · · · ) are required to define a

modular form f of weight k at level N? Let af (n) = ag(n) for n ≤ A(N, k). When can we

say f ≡ g (f is congruent to g)? Sturm’s theorem explicitly gives the form of A(N, k) (see

[12] and [15]). The fourth chapter is a review of that.
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Goldfeld and Hoffstein have proved non-congruence of the newforms in terms of Fourier

coefficients by using the Rankin Selberg L function for which the functional equation respects

the critical line (i.e. Λ(f × g; s) = Λ(f × g; 1− s)). Since the Rankin Selberg L function for

arbitrary ’new’ cusp form does not have a functional equation which respects critical line, we

propose a modification in the Rankin Selberg L function. As a result (Theorem 5.2.3), we

get a new L functions (modified Rankin Selberg) which have Euler product structure when

cusp forms are eigenforms and the functional equation which respects the critical line. We

also discuss the non-vanishing region for the modified Rankin Selberg L functions in chapter

5. Assuming the Riemann Hypothesis for the modified Rankin Selberg Convolution (i.e.

zeros of function lies on critical line) and using Goldfeld-Hoffstein’s method, we get a better

bound for A(N, k) which is independent of k. This enable us to prove that the action of

Hecke Operators T1, T2, · · · , TD on the winding cycle e is linearly independent when D � N

(section 6.2)

We are also interested to find bound on Hecke operators which acts linearly indepen-

dently on a set of cusp space. By using a estimation on Kloosterman Sums and similar

trick (used for Vanderkam’s theorem), we get that the action of Hecke Operators is linearly

independently if D � N1− 1
2k . We also discuss the relation between linear independence of

the Poincare series and linear independence of Hecke operators.

4



Chapter 1

Preliminaries

Chapter 1 emphasizes the theor of Modular Forms, a modular curve, a Complex Elliptic

curve, the Hecke Operators, and the Jacobian of Modular curves. It also introduces L

function associated with modular (or cusp) forms and approximated L function. The details

can be found in [2],[14],[8] and [3]. At the end of chapter, We introduce thesis problem.

1.1 Modular Forms

Definition 1.1.1. SL2(Z) is called as Modular Group.

Define an action of SL2(Z) on H. For τ ∈ H and

[
a b

c d

]
∈ SL2(Z),

[
a b

c d

]
(τ) =

aτ + b

cτ + d

Definition 1.1.2. Let k be an integer. f : H → C is called weakly modular of weight k if

∀α =

[
a b

c d

]
∈ SL2(Z) and τ ∈ H, f(α(τ)) = (cτ + d)kf(τ).

Since

[
1 1

0 1

]
,

[
−1 0

0 −1

]
,

[
0 −1

1 0

]
∈ SL2(Z), any weakly modular of weight k is periodic

5



function of period 1 and f(−1
τ

) = τ kf(τ). Moreover, k is odd integer then f ≡ 0.

Let D =
{
z ∈ C : |z| < 1

}
. Then H is homeomorphic to punctured open unit disk

D′ = D − 0 with usual topology on both set under τ maps to e(τ) = e2πιτ . So, any map

f from H can be map g from D′ as g(q) = f( log q
2πι

)). If f is weakly modular of weight k,

we say f is holomorphic at ∞ if g extends analytically to 0 ∈ C. In this case f has fourier

expansion f(τ) =
∑
n≥0

an(f)qn where q = e(τ).

Definition 1.1.3. f : H → C is called modular form of weight k if f is weakly modular of

weight k,f is holomorphic on H and f is holomorphic at ∞.

Mk(Sl2(Z)) =
{
f : H → C : f is modular form of weight k

}
is complex vector space

because addition (pointwise) and scalar multiplication of modular form of weight k is also

modular form of weight k. M(SL2(Z) =
⊕
k∈Z
Mk(SL2(Z)) is ring because product (pointwise)

of modular form of weight m and n is modular form of weight m+ n.

Definition 1.1.4. Let f is modular form of weight k. f is called cusp form of weight k if

fourier expansion of f vanishes at ∞

Sk(Sl2(Z)) =
{
f : H → C : f is cusp form of weight k

}
is complex vector subspace of

Mk(SL2(Z) and S(SL2(Z) =
⊕
k∈Z
Sk(SL2(Z)) is an ideal of M(SL2(Z).

Definition 1.1.5. Γ(N) is called principle congruence subgroup of level N .

Definition 1.1.6. Γ (subgroup of SL2(Z)) is congruence subgroup if ∃N such that Γ(N) ⊂ Γ.

SL2(Z)
Γ(N)

∼= SL2( Z
NZ). And |SL2( Z

NZ)| = N3
∏
p|N

(1 − 1
p2 ). So, any congruence subgroup has

finite index in SL2(Z).

Let γ =

[
a b

c d

]
∈ GL+

2 (Q) and τ ∈ H then factor of automorphy at γ is j(γ, τ) = (cτ + d).

f : H → C. Define weight-k operator [γ]k such that (f [γ]k)(τ) = (det(γ))k−1j(γ, τ)−kf(γ(τ)).

Since factor of automorphy is neither zero nor infinity, so f is meromorphic iff f [γ]k.

Definition 1.1.7. We say f : H → C is weakly modular form of weight k with respect to Γ

if f [γ] = f for all γ ∈ Γ.

6



Definition 1.1.8. Let Γ be a congruence subgroup and k be an integer. A function f : H → C
is modular form of weight k with respect to Γ if f is holomorphic and weight k invariant

under Γ and f [γ]k is holomorphic at ∞, ∀γ ∈ SL2(Z).

Definition 1.1.9. f is modular form of weight k with respect to Γ is called cusp form of

weight k with respect to Γ if f [γ]k vanishes at infinity ∀γ ∈ SL2(Z).

Similarly, we can define Mk(Γ),Sk(Γ), M(Γ) =
⊕
k∈Z
Mk(Γ) and S(Γ) =

⊕
k∈Z
Sk(Γ).

Example 1.1.1. For k > 2 even, Gk(τ) =
∑

(c,d) 6=(0,0)∈Z×Z

1
(cτ+d)k

is weight k modular form.

Example 1.1.2. Ek(τ) = Gk(τ)
2ζ(k)

= 1− 2k
Bk

∑
n≥1

σk−1(n)qn is called Eisenstein Series of weight

k. Where, σk−1(n) =
∑
d|n
dk−1 and Bk is Bernoulli k-th number.

Example 1.1.3. Let g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ) then discriminant function

∆(τ) = (g2(τ))3 − 27(g3(τ))2 is cusp form of weight 12.

Example 1.1.4. The Dedekind Eta function is η(τ) = q24

∏
n≥1

(1 − qn) where q24 = e2πιτ/24.

Then ∆(τ) = (2π)12η24.

Definition 1.1.10. A lattice Λ = ω1Z + ω2Z ⊂ C is a set, where
{
ω1, ω2

}
is basis for C

over R.

Definition 1.1.11. A quotient of C by Λ (lattice) is known as complex torus.

Proposition 1.1.1. ϕ : C
Λ
→ C

Λ′
is holomorphic map between complex torus. Then ∃mΛ ⊂ Λ′

such that ϕ(z + Λ) = mz + b+ Λ′. And ϕ is invertible iff mΛ = Λ′.

Corollary 1.1.2. ϕ : C
Λ
→ C

Λ′
is holomorphic map between complex torus.Then ϕ is homo-

morphism if and only if b ∈ Λ′ such that ϕ(z + Λ) = mz + Λ′.

Definition 1.1.12. A non-zero holomorphic homomorphism between complex torus is called

an isogeny.

Let [N ] : C
Λ
→ C

Λ
defined as z + Λ 7→ Nz + Λ is isogeny.Now kernel of map is isomorphic

to Z/NZ× Z/NZ. We denote C/Λ by E, then kernel is denoted by E[N ].

Proposition 1.1.3. If Λ = ω1Z⊕ ω2Z then E[N ] = 〈ω1

N
+ Λ〉 × 〈ω2

N
+ Λ〉.

7



Let µN = {z ∈ C : zN = 1}. Let P,Q ∈ E[N ], then

[
P

Q

]
= γ

[
ω1

N
+ Λ

ω2

N
+ Λ

]
for γ ∈

M2(Z/NZ). Then Weil pairing of P and Q is eN(P,Q) = e2πι det γ/N .

Definition 1.1.13. The Weierstrass P- function for lattice Λ defined on C, z /∈ Λ, P(z) =
1
z2 +

∑
ω∈Λ

1
(z−ω)2 − 1

ω2 z /∈ Λ, summation over non-zero element in lattice.

Proposition 1.1.4. For k > 2 is even, Gk(Λ) =
∑
ω∈Λ

1
ω2 . Let P is weierstrass function for

lattice Λ. Then

1. Laurent expansion is P(z) = 1
z2 +

∑
n≥2 is even

(n + 1)Gk+2(Λ)zn. Radius of convergence

is inf {|ω| : ω ∈ Λ}.

2. (P ′(z))2 = 4(P(z))3 − g2(Λ)P(z) − g3(Λ), where g2(Λ) = 60G4(Λ) and g3(Λ) =

140G6(Λ).

3. Let Λ = ω1Z ⊕ ω2Z and ω3 = ω1 + ω2. Then P and P ′ satisfy y2 = 4(x − e1)(x −
e2)(x− e3) where ei = P(ωi

2
) and ei are distinct roots.

Corollary 1.1.5. (P,P ′) is isomorphism between complex torus and elliptic curves.

Corollary 1.1.6. Discriminant function is non vanishing function on H.

Enhanced elliptic curves for Γ0(N) is pair of elliptic curve E and C is cyclic subgroup of

E[N ]. (E,C) ∼ (E ′, C ′) if there exists isomorphism between E and E ′ which maps C to C ′.

Then S0(N) is set of equivalence classes of enhanced elliptic curves of Γ0(N).

Enhanced elliptic curves for Γ1(N) is pair of elliptic curve E and Q ∈ E of order N .

(E,Q) ∼ (E ′, Q′) if there exists isomorphism between E and E ′ which maps Q to Q′. Then

S1(N) is set of equivalence classes of enhanced elliptic curves of Γ1(N).

An Enhanced Elliptic Curve for Γ(N) is pair of elliptic curve E and (P,Q) is pair which

generates E[N ] and Weil pairing eN(P.Q) = e2πι/N .(E, (P,Q)) ∼ (E ′, (P ′, Q′)) if there exists

isomorphism between E and E ′ which maps P to P ′ and Q to Q′. Then S(N) is set of

equivalence classes of enhanced elliptic curves of Γ(N).

Let Γ be congruence subgroup.Then modular curve for Γ is Y (Γ) = {Γτ : τ ∈ H} = Γ\H.

Theorem 1.1.7. Let Y0(N) = Y (Γ0(N)), Y1(N) = Y (Γ1(N)) and Y (N) = Y (Γ(N)). Then

Y0(N) ∼= S0(N), Y1(N) ∼= S1(N) and Y (N) ∼= S(N).

8



1.2 Modular Curves as Riemann Surfaces

Let Γ be congruence subgroup. Then X(Γ) = {Γτ : τ ∈ H ∗}. Let X0(N) = X(Γ0(N)),

X1(N) = X(Γ1(N)) and X(N) = X(Γ(N))

For topology on X(Γ), φ : H → Y (Γ) is defined by τ 7→ Γτ . Define topology on Y (Γ)

by quotient topology where H has subspace topology of euclidean topology on C. Define

topology on X(Γ) such that Y (Γ) is dense subset.

Action of congruence subgroup Γ on H is properly discontinous. So, Y (Γ) is hausdorff space.

Let Γτ = {γ ∈ Γ : γ(τ) = τ} is known as isotropy subgroup.

Definition 1.2.1. A τ ∈ H is an elliptic point if Γτ is non-trivial. Corresponding point

Γτ ∈ Y (Γ) is also called elliptic.

Corollary 1.2.1. Throughout our discussion,For congruence subgroup Γ, for any τ ∈ H we

can find τ ∈ U ⊂ C such that for any γ ∈ Γ, γ(U) ∩ U 6= ∅ ⇒ γ ∈ Γτ . And U has no other

elliptic points.

Definition 1.2.2. For τ ∈ H, period of τ is hτ = |{±I}Γτ{±I} |.

Let γ =

[
a b

c d

]
∈ SL2(Z) (where γ 6= ±I) and τ ∈ H, then γ(τ) = τ if and only if

cτ 2 − (a − d)τ − b = 0 has solution. τ ∈ H implies characteristic polynomial of matrix is

either x2 + 1 or x2 ± x + 1. Further γ3 = I or γ4 = I or γ6 = I. So, hτ is finite. Moreover,

we can check, isotropy subgroup are cyclic. hτ = hγ(τ) for any γ ∈ Γ. It is easy to show,

imaginary part of elliptic point is strictly less than 2.

Now we can give local structre at any Γτ ∈ Y (Γ). Let h = hτ (it is well-defined). Let

δ = δτ =

[
1 τ

1 −τ

]
∈ SL2(C). Then δ(τ) = 0 and δ(τ) = ∞. Clearly, hδ(τ) = h. Choose

a nbd τ ∈ U as corollary 1.2.1., define ψ : U → C by ψ = ρ ◦ δ where ρ(z) = zh. Now

define ϕ : φ(U) → ψ(U) such that ϕ(φ(z)) = ψ(z). This map is homeomorphism because

fractional linear transformation is homeomorphism. It is trivial to check that map between

ϕ1(φ(U1)∩φ(U2)) and ϕ2(φ(U1)∩φ(U2)) is analytic. So, it gives manifold structure on Y (Γ).

Remarks 1.2.1. Let D = {z ∈ C : |z| ≥ 1, |Re(z)| ≤ 1}. Then f : D → Y (SL2(Z)) defined

by f(z) = SL2(Z)z is surjective map. D is called fundamental domain.

9



Note that Y (Γ) is connected but non-compact complex manifold of dimension 1. To make

it compact, we required domain of φ map is compact because continous image of compact

set is compact. So, we add Q ∪ {∞} in H. Clearly, H∗ = H ∪Q ∪ {∞} is compact.

Definition 1.2.3. An element of set Γ\(Q∪{∞}) is called cusp for congruence subgroup Γ.

Definition 1.2.4. A s ∈ Q ∪ {∞} is called irregular cusps, if s = δ(∞) then δ−1Γsδ =〈
−

[
1 h

0 1

]〉
. Otherwise, it is regular cusp.

For topology onH∗, define Ur = {z ∈ H : Im (z) > r}∪{infty} are basic open set around

infinity. For γ ∈ SL2(Z), γ(∞) is either rational number or infinity. Let γ(∞) = q ∈ Q,

then set of γ(Ur) form a base for open set aroud q. It is easy to observe that |Γ\(Q∪{∞})| is
finite. We extend φ in abuse of notation, φ : H∗ → X(Γ). Give quotient topology on X(Γ).

Continous image of connected and compact is connected and compact respectively. So, X(Γ)

is connected and compact. To check hausdorffness, we have already checked for Γτ1 and Γτ2.

For Γτ and Γs, it is easy. When x1 = Γs1 and x2 = Γs2 where x1 6= x2, let s1 = γ1(∞)

and s2 = γ2(∞), V1 = γ1(U2) and V2 = γ2(U2). Let t ∈ φ(V1) ∩ φ(V2) implies ∃γ ∈ Γ such

that γ(t1) = t2, so t1 is an elliptic point, but U2 has no elliptic point, so γ−1
2 γγ1 = SL2(Z∞)

implies x1 = X2. So, X(Γ) is an hausdorff space.

For manifold structure, we need only charts around cusps. Let s ∈ Q ∪ {∞}, δ = δs ∈
SL2(Z) such that δ(s) = ∞. Let h = hs = |SL2(Z)∞/(δ({±I}Γ)δ−1)∞| is called width of

cusp s.Let U = δ−1(U2), define ψ : U → C by ψ = ρ ◦ δ where ρ(z) = e2πιz/h and ψ(U) = V .

Then ϕ : φ(U)→ V such that ϕ(φ(z)) = ψ(z) defines homeomorphism. This gives manifold

structrure around cusps.

Theorem 1.2.2. For any congruence subgroup Γ, X(Γ) is compact, connected and hausdorff

space. Moreover, X(Γ) is complex manifold of dimension 1. (So, it is Riemann Surface.)

1.3 Dimension of Mk(Γ) and Sk(Γ)

We start with genus of compact surfaces. There are saveral ways to define genus. Genus is

number of handles. But mathematically, if manifold has Euler characteristic χ and genus

g = 1 − χ
2
. And Euler characteristic χ = V − E + F , where V is number of verices, E

10



is number of edges and F is number of faces via triangulation. Let f : X → Y be non-

constant holomorphic map between compact Riemann surface, then f is surjective. y ∈ Y
and x ∈ f−1(y). (U, p) and (V, q) are local homeomorphism around x, y respectively. Then

qfp−1 : p(U)→ q(V ) is holomorphic maps 0 to 0. Then order of 0, ex is called ramification

degree of x. Ramification degree is independent of local charts.
∑

x∈f−1(y) ex = d is called

degree of map f . Degree of map is independent of point in range space. Let gX and gY is

genus of X and Y , then by Riemann Hurwitz Formula, 2(gX−1) = 2d(gY −1)+
∑

x∈X(ex−1).

Let X(1) = SL2(Z)\H∗ and X(Γ) are compact Riemann surfaces. f : X(Γ) → X(1)

is surjective holomorphic map. And genus of X(1) is zero. By Riemann Hurwitz Formula

genus of X(Γ) is g = 1 + d
12
− ε2

4
− ε3

3
− ε∞

2
. Here ε2, ε3 and ε∞ are number of elliptic points

of order 2 and 3 and number of cusps.

Definition 1.3.1. Let f : H → C and Γ is congruence subgroup. Then f is called and

automorphic form of weight k respect to Γ if f is an meromorphic function, f [γ] = f∀γ ∈ Γ

and f [γ] has meromorphic continuation at ∞ for all γ ∈ Γ.

So, we can define Ak(Γ) and A(Γ). Clearly, Sk(Γ) ⊂Mk(Γ) ⊂ Ak(Γ).

Definition 1.3.2. Let V ⊂ C is open. Then set of meromorphic differntials on V of degree

n is Ωn(V ) = {f(q)(dq)n : f is meromorphic on V }.

By complex geometry, we can prove ...

Theorem 1.3.1. k ∈ N is even. Γ is congruence subgroup.Then ω : Ak(Γ) → Ωk/2(X(Γ))

is an isomorphism.

Definition 1.3.3. Let X is an compact Riemann surface. A divisor D on X is D =∑
x∈X nxx where nx ∈ Z and nx is non-zero for finitely many x ∈ X. And degree of divisor

D is deg(D) =
∑

x∈X nx

f : X → Ĉ = C ∪ {∞} is meromorphic map then divisors of f is div(f) =
∑

x∈X νx(f)x

where Ĉ is Riemann sphere and νx(f) is ramification degree of x. Let C(X) = {f : X → C :

f is meromorphic}. Then, by complex analysis, ∀f ∈ C(X), degree of f is 0.

Definition 1.3.4. Let D ∈ Div(X), then L(D) = {f ∈ C(X) : f = 0 or div(f) + D ≥ 0}
L(D) is complex vector space. l(D) = dimension of L(D).

11



Definition 1.3.5. A divisor D ∈ Div(X) is principle divisor if ∃ω 6= 0 ∈ Ω1(X) such that

div(ω) = D.

Theorem 1.3.2. Riemann-Roch Theorem Let X is compact Riemann surface of genus

g. D ∈ Div(X) and ω ∈ Ω1(X). Then l(D) = deg(D)− g + 1 + l(div(ω)−D).

Theorem 1.3.3. Let Γ is congruence subgroup.Let g is genus of X(Γ). ε2, ε3, ε
reg
∞ , εirr∞ are

number of elliptic points of order 2,3 and regular and irregular cusps. Let ε∞ = εreg∞ + εirr∞ .

Then

k is even

dim(Mk(Γ)) =


(k − 1)(g − 1) +

⌊
k
4

⌋
ε2 +

⌊
k
3

⌋
ε3 + k

2
ε∞ k ≥ 2

1 k = 0

0 k ≤ 0

dim(Sk(Γ)) =


(k − 1)(g − 1) +

⌊
k
4

⌋
ε2 +

⌊
k
3

⌋
ε3 + k−2

2
ε∞ k ≥ 4

g k = 2

0 k ≤ 0

k is odd

−I ∈ Γ⇒Mk(Γ) = Sk(Γ) = {0}

And

−I 6∈ Γ⇒ dim(Mk(Γ)) =


(k − 1)(g − 1) +

⌊
k
3

⌋
ε3 + k

2
εreg∞ + k−1

2
εirr∞ k ≥ 3

0 k ≤ 0

1
2
εreg∞ k = 1, εreg∞ > 2g − 2

≥ 1
2
εreg∞ k = 1, εreg∞ ≤ 2g − 2

dim(Sk(Γ)) =


(k − 1)(g − 1) +

⌊
k
3

⌋
ε3 + k−2

2
εreg∞ + k−1

2
εirr∞ k ≥ 3

0 k ≤ 0

0 k = 1, εreg∞ > 2g − 2

dim(Mk(Γ))− 1
2
εreg∞ k = 1, εreg∞ ≤ 2g − 2

Proof. Let f ∈ Ak(Γ) Then Ak(Γ) = C(X(Γ))f , Mk(Γ) = {f0f : f0 ∈ C(X(Γ)), div(f0) +

div(f) ≥ 0} And Sk(Γ) = {f0f : f0 ∈ C(X(Γ)), div(f0) + div(f) > 0}.Let {xi} and {x′i} is

12



set of regular and irregular cusps, then

For k is even, Mk(Γ) ∼= L(bdiv(f)c) and Sk(Γ) ∼= L(bdiv(f)−
∑
xi −

∑
x′ic)

For k is odd, Mk(Γ) ∼= L(bdiv(f)c) and Sk(Γ) ∼= L(
⌊
div(f)−

∑
xi − 1

2

∑
x′i
⌋
)

Now, applying Riemann-Roch theorem, we get our result.

1.4 Hecke Operators

Let Γ1,Γ2,Γ are congruence subgroup and α ∈ GL+
2 (Q) (i.e. determinant is positive). Then

define Γ1αΓ2 = {γ1αγ2 : γi ∈ Γi, i = 1, 2}.

Lemma 1.4.1. Continue to notation defined above, α−1Γα ∩ SL2(Z) is also congruence

subgroup. Let Γ3 = α−1Γ1α ∩ Γ2. Then, Γ3\Γ2
∼= Γ1\Γ1αΓ2. Moreover, quotient is finite.

Definition 1.4.1. Let Γ1,Γ2 are congruence subgroup and α ∈ GL+
2 (Q). Let Γ1αΓ2 = ∪Γ1βj

is disjoint union. Then double coset operator of weight k, [Γ1αΓ2] on Mk(Γ1) is defined by

f [Γ1αΓ2] =
∑
f [βj]k.

Lemma 1.4.2. f ∈Mk(Γ1) then f [Γ1αΓ2] ∈Mk(Γ2). Similarly for cusp form also.

Let α =

[
a b

c d

]
∈ Γ0(N), then α−1Γ1(N)α = Γ1(N). Then diamond operator 〈d〉 for

gcd(d,N) = 1 on Mk(Γ1(N)) is 〈d〉f = f [Γ1(N)αΓ1(N)]k = f [α]k.

Lemma 1.4.3. Diamond operator does not depend on α. i.e. Let β =

[
x y

z w

]
∈ Γ0(N)

such that w ≡ d(mod N) then f [α]k = f [β]k

Let χ : (Z/NZ)∗ → C∗ is multiplicative character, thenMk(N,χ) = {f ∈Mk(Γ1(N)); 〈d〉f =

χ(d)f∀d}. ThenMk(Γ1(N)) = ⊕χMk(N,χ). If χ is identity, thenMk(N, 1) =Mk(Γ0(N)).

Definition 1.4.2. Let α =

[
1 0

0 p

]
where p is prime. Then Tp operator on Mk(Γ1(N))

defined by Tpf = f [Γ1(N)αΓ1(N)].

Note that diamond operator on Mk(Γ0(N)) is identity operator for any gcd(d,N) = 1.

Whenever Tp operator on Mk(Γ0(N)) is restricted operator.

13



Lemma 1.4.4. Continue to notations, for f ∈Mk(Γ1(N)),

Tpf =



p−1∑
j=0

f [

1 j

0 p

]k p|N

p−1∑
j=0

f [

1 j

0 p

]k + f [

m n

N p

p 0

0 1

]k p - N,mp− nN = 1

We have defined diamond operator for all integers co-prime to N . gcd(n,N) > 1 then

define 〈n〉 = 0. And, Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 for r ≥ 2 defining T1 is identity. And

Tmn = TmTn if gcd(m,n) = 1.

Definition 1.4.3. Let τ = x+ yι ∈ C. Then hyperbolic measure µ, dµ(τ) = 1
y2dxdy.

Lemma 1.4.5. Let α ∈ GL2(Q) and τ ∈ C. Then hyperbolic measure dµ(α(τ)) = dµ(τ).

Let φ : H → C such that φ(γ(τ)) = φ(τ) for all γ ∈ Γ. Now we can define integration of

φ on X(Γ) by
∫
X(Γ)

φ(τ)dµ(τ) =
∑∫

D φ(αi(τ))dµ(τ) where summation run over Γ\SL2(Z).

Definition 1.4.4. Volume of X(Γ) is VΓ =
∫
X(Γ)

dµ(τ).

Let f, g ∈Mk(Γ), define φ(z) = f(z)g(z)(Im(z))k. Clearly, φ(γ(z)) = φ(z)∀γ ∈ Γ. Then

φ(α(z)) = C + O(e−2π(Im(z))/h)(Im(z))k where C depends only on constant term in fourier

expansion of f and g. To make integration well-define, φ(α(z)) → 0 as Im(z) → ∞ for all

α ∈ SL2(Z). So, constant term must be 0. So, either f or g must be cusp form.

Definition 1.4.5. Let Γ is congruence subgroup. Then Petersson Inner Product, 〈, 〉Γ :

Sk(Γ) × Sk(Γ) → C defined by 〈f, g〉 = 1
VΓ

∫
X(Γ)

f(z)g(z)(Im(z))kdµ(z) is well define inner

product on Sk(Γ). So, (Sk(Γ), 〈, 〉) is finite dimensional complex Hilbert Space.

In Hilbert space (H, 〈, 〉), T is an operator then adjoint operator of T is T ∗ such that

〈Tf, g〉 = 〈f, T ∗g〉 for all f, g ∈ H. We want to find adjoint of double coset operator [ΓαΓ]

for congruence subgroup Γ and α ∈ GL+
2 (Q).

Theorem 1.4.6. Continue to notations, α
′
= det(α)α−1. Then,

1. α−1Γα ⊂ SL2(Z), f ∈ Sk(Γ) and g ∈ Sk(α−1Γα) then 〈f [α], g〉α−1Γα = 〈f, g[α
′
]〉Γ

2. f, g ∈ Sk(Γ) then 〈f [ΓαΓ], g〉 = 〈f, g[Γα
′
Γ]〉.

14



Corollary 1.4.7. For Hilbert Space Sk(Γ1(N)) with Petersson Inner Product, for p - N ,

adjoint of Hecke operators is 〈p〉∗ = 〈p〉−1 and T ∗p = 〈p〉∗Tp.

Since Tn and 〈n〉 for gcd(n,N) = 1 are commuting normal (i.e. commuting with its

adjoint) operators, using spectral theorem of linear algebra on finite dimensional vector

space, we can prove below result.

Theorem 1.4.8. The Hilbert Space Sk(Γ1(N)) has an orthonormal basis of simultaneous

eigenform (eigenvector) for Hecke operator {〈n〉, Tn : gcd(n,N) = 1}.

Proposition 1.4.9. Let ωN = [

[
0 −1

N 0

]
]k operator. Then for any Hecke Operator T = 〈n〉

or T = Tn, adjoint operator of T is T ∗ = ωNTω
−1
N

Let M |N then Γ1(N) ⊂ Γ1(M). So, Sk(Γ1(M)) ⊂ Sk(Γ1(N)). Let αd =

[
d 0

0 1

]
. Then

for any d dividing N
M

,[αd]k operators (on Sk(Γ1(M)) maps to Sk(Γ1(N))) is injective.

Definition 1.4.6. Let d be a divisor of N ∈ N. Let ιd : (Sk(Γ1(N/d)))2 → Sk(Γ1(N)) such

that ιd(f, g) = f + d1−kg[αd]k. Then subspace of oldforms in Sk(Γ1(N)) is

Sk(Γ1(N))old =
∑

prime p|N

ιp((Sk(Γ1(N/p)))2)

Since Sk(Γ1(N)) has Petersson Inner Product, we can define perpendicular notion. Then

subspace of newform is

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥

Proposition 1.4.10. Sk(Γ1(N))old and Sk(Γ1(N))new are invariant under 〈n〉 and Tn for

all n ∈ N. So, Both have simaltenous eigen form for Hecke operator.

Let fp ∈ Sk(Γ1(N/p)). If fp(z) =
∑
n≥1

anq
n then ιp(0, fp)(z) := ιpfp =

∑
n≥1

anq
np. Let

f =
∑
p|N

ιpfp =
∑
n≥1

an(f)qn then an(f) = 0 for all gcd(n,N) = 1.Converse of this statement

is also true.

Theorem 1.4.11. Main Lemma Let f ∈ Sk(Γ1(N)). Let f has Fourier expansion is

f(z) =
∑
n≥1

an(f)qn such that an(f) = 0 if gcd(n,N) = 1. Then ∃fp ∈ Sk(Γ1(N/p)) for all

p|N such that f =
∑
p|N

ιpfp.
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Proof. Let define Γ1(N) =
{[a b

c d

]
∈ SL2(Z);

[
a b

c d

]
≡

[
1 0

∗ 1

]
(mod N)

}
. Since αNΓ1(N)α−1

N =

Γ1(N), Sk(Γ1(N)) is isomorphic to Sk(Γ1(N)) via f 7→ Nk−1f [α−1
N ]k. Since this map com-

mutes with ιd, It is enough to prove, given f ∈ Sk(Γ1(N)) with nth fourier co-efficient

in expansion is 0 if gcd(n,N) = 1 then f =
∑

p|N fp where fp ∈ Sk(Γ1(N/p)). Let

Γ0(N) =
{[a b

c d

]
∈ SL2(Z);

[
a b

c d

]
≡

[
∗ 0

∗ ∗

]
(mod N)

}
. For d|N ,Γd = Γ1(N) ∩ Γ0(N/d).

Then Γd\Γ(N) =
{[1 bN

d

0 1

]
: 0 ≤ b < d

}
. Let πd : Sk(Γ(N)) → Sk(Γ(N)) defined by

πd(f) = 1
d

d−1∑
b=0

f [

[
1 bN

d

0 1

]
]k is a projection to Sk(Γd). Note under this map

∑
n≥1 anq

n
N 7→∑

d|n anq
n
N and πrπs = πsπr = πrs. Let π =

∏
p|N(1 − πp). Then Inclusion-Exclusion

formula from combinatorics, π :
∑

n≥1 anq
n
N 7→

∑
gcd(n,N)=1

anq
n
N . So, our hypothesis says

f ∈ ker (π) =
∑

p|N ker (1−πp) =
∑

p|N im (πp) because πp is projection operator. So our

theorem is reduced to prove Sk(Γ1(N)) ∩
∑

p|N Sk(Γ1(N) ∩ Γ0(N/p)) =
∑

p|N Sk(Γ1(N/p)).

Let G = SL2(Z/NZ). Then G =
∏

i SL2(Z/peii Z), here product runs over prime factors of

N . Sk(Γ(N)) is representation of SL2(Z/NZ). Let Hi = Γ1(peii )/Γ(peii ) and Ki = (Γ1(peii ) ∩
Γ0(pei−1

i ))/Γ(peii ) and H =
∏

iHi. And fixed subspace of Sk(Γ(N)) by subgroup H is denoted

by Sk(Γ(N))H . Then we want to prove Sk(Γ(N))H ∩
∑

i Sk(Γ(N))Ki =
∑

i Sk(Γ(N))〈H,Ki〉.

This is a standard result of representation of finite groups.

Definition 1.4.7. A non-zero f ∈ Mk(Γ1(N)) is an eigenform for Hecke operator 〈n〉 and

Tn for all n ∈ Z+ is an Hecke Eigenform. Let f =
∞∑
n=0

an(f)qn. If a1(f) = 1 then eigenform

is called Normalized Eigenform. f ∈ Sk(Γ1(N))new is newform if it is normalized eigenform.

Theorem 1.4.12. Bk(N) = {f(nτ) : f is new form of level M such that nM |N} is a basis

of Sk(Γ1(N)).

1.5 L Function of Modular Forms

Let f =
∑
n≥0

af (n)n
k−1

2 qn is modular form of weight k at level N . Then define L-function

L(f, s) =
∑
n≥1

af (n)

ns
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Proposition 1.5.1. L(f, s) converges absolutely for Rs > 1.

Let g(s) =
∞∫
0

f(ιt)ts dt
t

is Mellin transform of f . Then g(s) = (2π)−sΓ(s)L(f, s − k−1
2

).

Define WN : Sk(Γ1(N)) → Sk(Γ1(N)) by WN(f) = ιk

(Nτ2)k/2
f(−1

Nτ
). Then W 2

N is identity

operator and WN is self adjoint operator. So only possible eigenvalue of WN is either +1 or

-1. So eigenspace are

Sk(Γ1(N))± = {f ∈ Sk(Γ1(N));WN(f) = ±f}

Theorem 1.5.2. Let ΛN(f, s) = N s/2+ k−1
4 g(s+ k−1

2
) =

(
N

4π2

) s
2

+ k−1
4

Γ(s+ k−1
2

)L(f, s). Then

ΛN(f, s) extends to an entire function such that ΛN(f, s) = ΛN(WNf, 1 − s). Moreover,

L(f, s) has analytic continuation to whole plane. Moreover, if Let f ∈ Sk(Γ1(N))± then

ΛN(f, s) = ±ΛN(f, 1− s)

For Sk(Γ0(N)), for all prime p with p - N , T ∗p = Tp by Corollary 1.4.7. Since commuting

family of normal operators have simaltenous eigenvector.

Theorem 1.5.3. Sk(Γ0(N)) has an orthonormal basis of simaltenous eigenform for

{Tn; gcd(n,N) = 1} ∪ {WN}.

Theorem 1.5.4. f ∈ Sk(Γ1(N), χ) is newform if and only if

L(f, s) =
∏
p|N

(
1− ap

ps

)−1∏
p-N

(
1− ap

ps
+
χ(p)

p2s

)−1

1.5.1 Approximated L function

Let f be an cusp form of weight k at level N and WNf = g. Let f =
∑
n≥1

af (n)n
k−1

2 qn and

g =
∑
n≥1

ag(n)n
k−1

2 qn.

Theorem 1.5.5. Let L(f, s) be an L function. Let G(t) be an holomorphic even and bounded

on vertical strip for −4 < Rt < 4 and G(0) = 1. Let Vs(y) = 1
2πι

∫
Rt=3

y−tG(t)
Γ(s+t+ k−1

2
)

Γ(s+ k−1
2

)
dt
t

.

Then for 0 < Rs < 1,

L(f, s) =
∑
n≥1

af (n)

ns
Vs

(2πn√
N

)
+
( N

4π2

) 1
2
−sΓ(1− s+ k−1

2
)

Γ(s+ k−1
2

)

∑
n≥1

ag(n)

n1−s V1−s

(2πn√
N

)
17



Proof. : Let I(f, s) = 1
2πι

∫
Rt=3

ΛN(f, s + t)G(t)dt
t
. Now move the integration to Rt = −3

and using functional equation of ΛN(f, s) and since ΛN(f, s + t)G(t) is an holomorphic as

function of t in vertical strip −3 < Rt < 3, we get ΛN(f, s) = I(f, s) + I(WNf, 1− s).

I(f, s) =
( N

4π2

) s
2

+ k−1
4
∑
n≥1

af (n)

ns
1

2πι

∫
Rt=3

(2πn√
N

)−t
G(t)Γ(s+ t+

k − 1

2
)
dt

t

=
( N

4π2

) s
2

+ k−1
4
∑
n≥1

af (n)

ns
Γ(s+

k − 1

2
)Vs

(2πn√
N

)
I(WNf, 1− s) =

( N
4π2

) 1−s
2

+ k−1
4

Γ(1− s+
k − 1

2
)
∑
n≥1

ag(n)

n1−s V1−s

(2πn√
N

)
(similarly)

Now adding I(f, s) and I(WNf, s) and dividing by
(

N
4π2

) s
2

+ k−1
4

Γ(s+ k−1
2

), we get our result.

Corollary 1.5.6. If f ∈ Sk(Γ1(N))± (i.e. WNf = ε(f)f). Then

L(f, s) =
∑
n≥1

af (n)

ns
Vs

(2πn√
N

)
+ ε(f)

( N
4π2

) 1
2
−sΓ(1− s+ k−1

2
)

Γ(s+ k−1
2

)

∑
n≥1

af (n)

n1−s V1−s

(2πn√
N

)

Corollary 1.5.7. If f ∈ Sk(Γ1(N)) and WNf = g then, L(f, 1
2
) =

∑
n≥1

af (n)+ag(n)√
n

V 1
2

(
2πn√
N

)

Corollary 1.5.8. L(f, 1
2
) =


2
∑
n≥1

af (n)√
n
V 1

2

(
2πn√
N

)
f ∈ Sk(Γ1(N))+

0 f ∈ Sk(Γ1(N))−

1.6 Jacobian of Compact Riemann Surface

Let X is a compact Riemann Surface and x0 ∈ X. Then x 7→ (ω 7→
∫ x
x0
ω) defines(not

properly) dual space on vector space Ω1
hol(X). But integration from x0 to x is not well-

defined because there are two different paths differentiate by loops. Any loops on genus-g

surface is Z− linear combination of longitudinal and latitudinal loops (Reference [3]). Let

A1, A2, · · · , Ag and B1, B2, · · · , Bg are longitudinal and latitudinal loops on X. Then set of

integration over loops is an abelian group of rank 2g which is also called 1st homology group

denoted by H1(X,Z) = Z
∫
A1
⊕ · · ·⊕Z

∫
A2
⊕Z

∫
B1
⊕ · · ·⊕Z

∫
Bg
∼= Z2g. We also state theorem

of complex manifolds from [3] is Ω1
hol(X)∧ = R

∫
A1
⊕ · · · ⊕ R

∫
A2
⊕R

∫
B1
⊕ · · · ⊕ R

∫
Bg

.
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Definition 1.6.1. The Jacobian of a compact Riemann surface X is Jac(X) = Ω1
hol(X)∧/H1(X,Z).

Let f : X → Y be analytic non-constant map between compact Riemann surface. Then

we want to find map between Jac(X) and Jac(Y ). Then f ∗ : C(Y ) → C(X) defined by

f ∗(g) = g ◦ f . So, f ∗ : Ω1
hol(Y ) → Ω1

hol(X) such that f ∗(ω) = ω ◦ f . So we can define map

duals. F : Ω1
hol(X)∧ → Ω1

hol(Y )∧ defined by F (
∫ x
x0

) =
∫ f(x)

f(x0)
. And let γ be a loop in X then

f(γ) is loop in Y . So, F (
∫
γ
) =

∫
f(γ)

. So, F maps H(X,Z) to H(Y,Z). So, Jac(X)→ Jac(Y )

by [ϕ] 7→ [ϕ ◦ f ∗] is well-defined.

Returning to our objects - modular curves, let Γ is congruence subgroup. Then X(Γ) is

compact Riemann surface. By using Theorem 1.3.1, ω∧(Ω1
hol(X(Γ))∧) = S2(Γ)∧. In abuse

of notation, H1(X(Γ),Z) := ω∧(H1(X(Γ),Z)).

Definition 1.6.2. Let Γ be congruence subgroup. Then Jacobian of modular curve X(Γ) is

Jac(X(Γ)) := S2(Γ)∧/H1(X(Γ),Z)

Now let ΓA and ΓB are congruence subgroup such that αΓAα
−1 ⊂ ΓB for some α ∈

GL+
2 (Q). Then A = X(ΓA) and B = X(ΓB) are compact Riemann surfaces. Let f : A →

B is non-constant holomorphic map defined by f(ΓAτ) = ΓBα(τ). Since, below diagram

commutes,

S2(ΓB) S2(ΓA)

Ω1
hol(B) Ω1

hol(A)

[α]2

ωB ωA

f∗

So, F : S2(ΓA)∧ → S2(ΓB)∧ is defined by ϕ 7→ ϕ ◦ [α]2. Since F maps H1(A,Z) to H1(B,Z).

So, map F ∗ : Jac(A)→ Jac(B) is well-defined.

Proposition 1.6.1. Let T is Hecke operator either T = Tn or T = 〈n〉. Then Hecke operator

T : J1(N)→ J1(N) defined by [ϕ] 7→ [ϕ ◦ T ] for all ϕ ∈ S2(Γ1(N))∧.

Let f ∈ Mk(Γ) is normalized eigenform. If f =
∑
n≥0

an(f)qn then an(f) are eigenvalues

such that Tn(f) = an(f)f . Since eigenvalues of finite dimensional vector space are algebraic

integers, an(f) is algebraic integers.

Proposition 1.6.2. S2(Γ) has basis consists of simaltenous eigenform of Hecke operator

such that all eigenvalues are rational integers.
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1.7 Introduction to Project

We are interested to find largest prime N occurs in torsion parts of any elliptic curves over

field of degree d. Since S0(N) ∼= Y0(N) (by theorem 1.1.7), there must be relation between

degree of extension of field and uncompactified modular curve Y0(N). This relation is proved

by S.Kamienny in [9]. He has proved below result: .

Theorem 1.7.1. Let d be a positive integer and N > 60d− 24 be a prime number. Suppose

there is prime p satisfying,

(1) d < p− 1

(2) N > (1 +
√
pd)2

(3) there exists d weight 2 cusp forms f1, f2, · · · , fd attached to eisenstein quotient J , that

satisfy linear independence condition mod p.

Then there does not exist any elliptic curve with point of order N over any field of degree d.

L. Merel has proved below result in [11] which helps to prove 3rd criteria of theorem

1.7.1.

Theorem 1.7.2. Let d be an positive integer and N > 60d−24 be a prime number. TFAE· · ·
(1) 3rd criteria of theorem 1.7.1

(2) The action of the first d Hecke operator -T1, T2, · · ·Td- on winding quotient e in J0(N),

satisfy linear independence condition in characteristic 0.(Here, (e, f) =
∫∞

0
f(ιy)dy)

Moreover, Merel has also proved that the action of Hecke operators -T1, T2, · · · , TD- on

cycle (winding quotient), satisfy linear independence if max(D8, 400D4) < N
(log N)4 . In 1998,

Jeffrey Vanderkam has improved the result by using only analytic techniques. He proved,

Theorem 1.7.3. Given δ > 0, there exist constant cδ such that T1, T2, · · · , TD acts linearly

independently on cycle e in J0(N) for all primes N > cδD
2+δ.

Now onwards, we never talk about elliptic curves. So, Theorem 1.7.1 and Theorem

1.7.2 are assumed without proof.
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Chapter 2

Poincare Series

Chapter 1 introduces a basis consisting of Hecke Eigenform for cusp space, while this chapter

defines some different type of a basis for cusp space with some properties. For details, see

[8] (-cha. 14) and, [7] (-cha. 3,4).

2.1 Poincare series as cusp forms

Let N be a prime number, Γ = Γ0(N) and k ≥ 2 be a natural number. Then define Poincare

Series for m ≥ 1

Pm(τ) =
∑

γ∈Γ∞\Γ

j(γ, τ)−ke(mγτ) ; e(a) = exp(2πιa)

Since Pm satisfy Cauchy-Riemann equation, Pm is holomorphic for τ ∈ H. It is easy to

observe that series converges absolutely for k > 2. Let α ∈ Γ,

(Pm[α]k)(τ) = j(α, τ)−kPm(ατ) =
∑

γ∈Γ∞\Γ
j(γ, ατ)−kj(α, τ)e(mγατ) =

∑
γ∈Γ∞\Γ

j(γα, τ)−ke(mγατ).

So, (Pm[α]k)(τ) = Pm(τ),∀α ∈ Γ. So, Pm is holomorphic and weight k invariant under Γ.

To prove Pm is a modular form, it is sufficient to find fourier expansion.

Lemma 2.1.1. Γ = Γ0(N) = Γ∞
⋃

(
⋃
c>0

c≡0(mod N)

(
⋃

d(mod c)
gcd (c,d)=1

Γ∞

(
a b

c d

)
Γ∞)), where ad− bc = 1
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Theorem 2.1.2. Pm(τ) =
∑
n≥0

p(m,n)qn, where q = e(τ). Let S(m,n, c) is a Kloosterman

Sum and Jk−1 is (k − 1)th order J-Bessel function then,

p(m,n) =
( n
m

) k−1
2
{
δ(m,n) + 2πι−k

∑
c>0

c≡0(mod N)

S(m,n, c)

c
Jk−1

(4π
√
mn

c

)}

Proof. By help of Lemma 2.1.1, Pm(τ) = e(mτ) +
∑
c>0

c≡0(mod N)

∑
d(mod c)

gcd (c,d)=1

I(c, d, τ). Here,

∗

I(c, d, τ) =
∑
n∈Z

(c(τ + n) + d)−ke
(
m
a(τ + n) + b

c(τ + n) + d

)
=
∑
n∈Z

(c(τ + n) + d)−ke
(ma
c
− m

c(c(τ + n) + d)

)
=
∑
n∈Z

∫
R

(c(τ + ν) + d)−ke
(ma
c
− m

c(c(τ + ν) + d)
− nν

)
dν; (Poisson Summation)

=
∑
n∈Z

e
(am+ nd

c

){∫ ∞+ιy

−∞+ιy

(cν)−ke
(
− nν − m

c2ν

)
dν
}
e(nτ); (change of variable)

(2.1)

By Cauchy Integral, inner integral is independent of y.Moreover, when n ≤ 0 then inner

integral is 0. Since Jν(τ) = τν

2ν+1πι

∫
R
t−ν−1exp

(
t − τ2

4t

)
dt (look at 8.412.2. in [6]). Since

Kloosterman Sum is defined as S(m,n, c) =
∑

d(mod c)
gcd (c,d)=1

e
(
am+nd

c

)
, we get our desired result.

Since Γ0(N) have only 2 cusps- 0 and ∞. We need to check fourier expansion of

Poincare series at 0. Let α =

(
0 −1√

N√
N 0

)
then α(∞) = 0 . Then similar calculation

gives (Pm[α]k)(τ) =
∑
n≥0

p(m,n)qn, where

p(m,n) =
( n
m

) k−1
2
{

2πι−k
∑
c∈N

NN≡1(mod c)

S(mN,n, c)

c
√
N

Jk−1

(4π
√
mn

c
√
N

)}

So, above discription says that Pm has not non-zero constant term in fourier expansion

around both cusps. So, {Pm : m ≥ 1} is set of cusp form of weight k for Γ0(N).
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2.2 Petersson’s Formula

Let f ∈ Sk(Γ0(N)). Let f(τ) =
∑
n≥1

af (n)qn. Then,

VΓ0(N)〈f, Pm〉 =

∫
X0(N)

f(τ)
∑

Γ∞\Γ0(N)

j(γ, τ)
−k
e(mγτ)ykdµ(τ)

=

∫
X0(N)

∑
Γ∞\Γ0(N)

f(γτ)e(mγτ)(Im(γτ))kdµ(τ)

=

∫ 1

0

∫ +∞

0

f(τ)e(−mτ)yk−2dxdy ;(translation of D)

=
∑
n≥1

af (n)

∫ 1

0

e((n−m)x)dx

∫ +∞

0

yk−2exp(−2π(m+ n)y)dy

VΓ0(N)〈f, Pm〉 =
Γ(k − 1)

(4πm)k−1
af (m)

(2.2)

Since Sk(Γ0(N)) is finite dimensional vector space, linear span of {Pm;m ≥ 1} is closed

subspace. Since orthogonal element to all Poincare series has all fourier coefficient 0 implies

{Pm;m ≥ 1} is also basis of Sk(Γ0(N)).Moreover, Soumya Das and Satadal Ganguly has

proved that {Pm; 1 ≤ m ≤ d} is linearly independent in Sk(Γ0(N)), where d is dimension of

Sk(Γ(1)).

Since VΓ0(N) 6= 0, now onwards we write 〈f, Pm〉 = Γ(k−1)
(4πm)k−1af (m). Let F is set of

normalized eigenform (basis) in Sk(Γ0(N)). Then Pm =
∑
f∈F

〈f, Pm〉f . By taking nth fourier

coefficient both side, we get Petersson’s Formula. Similarly, 〈WNPm, f〉 = ε(f)〈Pm, f〉 where

WNf = ε(f)f . Since WNPm = Pm[α]k, we get below result.

Theorem 2.2.1. (Petersson’s Formula) If {f} is a basis of Sk(Γ0(N)) then,

Γ(k − 1)

(4π
√
mn)k−1

∑
f

af (m)af (n) = δ(m,n) + 2πι−k
∑

c>0,N |c

S(m,n, c)

c
Jk−1

(4π
√
mn

c

)

Γ(k − 1)

(4π
√
mn)k−1

∑
f

ε(f)af (m)af (n) = 2πι−k
∑
c∈N

NN≡1(mod c)

S(mN,n, c)

c
√
N

Jk−1

(4π
√
mn

c
√
N

)
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Lemma 2.2.2. For any integer m,n and prime N ,

Γ(k − 1)

(4π
√
mn)k−1

∑
f

af (m)af (n) = δ(m,n) +O(N−k+1/2(mn)
k−1

2

√
gcd (m,n)).

Proof. By using Weil Bound on Kloosterman sum (S(m,n, c) ≤
√

gcd (m,n, c)
√
cτ(c))

where τ(n) is number of positive divisor of n and Jk−1(x)� xk−1, we got · · ·

∑
c>0,N |c

S(m,n, c)

c
Jk−1

(4π
√
mn

c

)
�
∑
t≥1

√
gcd (m,n, tN)

√
tNτ(tN)

tN

(√
mn

tN

)k−1

� N−k+ 1
2 (mn)

k−1
2

√
gcd (m,n)

∑
t≥1

τ(t)

tk−1/2

Since τ(tN) ≤ τ(t)τ(N) and summation over t is equal to ζ2(k − 1/2), lemma follows.
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Chapter 3

Proof of Vanderkam’s Theorem

Linear independence is proved by classical way. Let
∑

1≤i≤D
αiTie = 0, then we want to prove

αi = 0 for all 1 ≤ i ≤ D if hypothesis is satisfied. For reference, look at [16].

Let F is basis of eigenform for S2(Γ0(N)). Then |F | = g, where g is genus of X0(N).

Since S2(Γ0(1)) = {0}, F is consists of newforms. Moreover, (e, f) =
∞∫
0

f(ιy)dy = L(f, 1).

∑
αi(Tie, f) =

∑
αi(e, Tif) =

∑
αiaf (i)(e, f) =

∑
αiaf (i)L(f, 1) = 0

|
∑

αi(Tie, f)|2 =
∑

αiαjaf (i)af (j)|L(f, 1)|2 = 0∑
f∈F

∑
i,j

αiαjaf (i)af (j)|L(f, 1)|2 = 0

(3.1)

Lemma 3.0.1. |L(f, 1)|2 = 2
∑
l,m≥1

G0( lm
N

)
af (l)af (m)√

lm
,where G0(x) = 1

2πι

∫
Re(t)=3/4

Γ(1+t)2

(4π2x)t
dt
t

.

Proof. By functional equation of newforms, g(t) =
(

N
4π2

)t
Γ(1 + t)2L(f, 1 + t)2 is an even

and entire function. By contour shift, we can prove G0(x) ≤

b 0 < x < 1

exp(−c
√
x) x > 1

.

Consequently absolute convergence follows since af (n) = O(
√
n). By change of variable to

t→ −t and functional equation, we get R.H.S. = 1
2πι

∫
C
g(t)dt

t
= g(0) = |L(f, 1)|2.

Here, C is contour which has Re(t) = ±3
4

as two side. Second equality follows by Cauchy
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Residue Theorem.

After substituting Lemma 3.0.1 in equation 3.1,

∑
i,j

αiαj
∑
l,m

1√
lm
G0

( lm
N

)∑
f∈F

af (i)af (l)af (j)af (m) = 0

Since f ∈ F are newforms, af (r)af (s) =
∑

d| gcd(r,s)

af

(
rs
d2

)
. We make two pairs i = Id1,

j = Jd2, l = Ld1 and m = Md2. clearly, d1, d2 ≤ D. So,

∑
d1,d2≤D

1√
d1d2

∑
Id1,Jd2≤D

αId1αJd2

∑
L,M

1√
LM

G0

(LMd1d2

N

)∑
f

af (IL)af (JM) = 0 (3.2)

By Theorem 2.2.1, equation 3.2 divided in two below parts.

Smain =
∑

d1,d2≤D

1√
d1d2

∑
Id1,Jd2≤D

αId1αJd2

∑
IL=JM

1√
LM

G0

(LMd1d2

N

)
Soff =

∑
d1,d2≤D

1√
d1d2

∑
Id1,Jd2≤D

αId1αJd2

∑
L,M

1√
LM

G0

(LMd1d2

N

)∑
c>0
N |c

S(IL, JM, c)

c
J1

(4π
√
ILJM

c

)
(3.3)

3.1 A quadratic form

In this section, a lower bound for Smain is found.

Let K = gcd(I, J) and A = KM
I

= K L
J

. Let I = I1K and J = J1K Then,

Smain =
∑
K≤D

∑
gcd(I1,J1)=1

∑
d1,d2≤D

αI1d1KαJ1d2K√
I1d1J1d2

∑
A

1

A
G0

(A2I1J1d1d2

N

)

Since
∑

gcd(I1,J1)=1

β(I1, J1) =
∑
T

µ(T )
∑
I2,J2

β(I2T, J2T ). So above equations is,

Smain =
∑
K

K
∑
T

µ(T )
∑

I2, J2, d1, d2
αI2d1KTJ2d2KT

KT
√
I2d1J2d2

∑
A

1

A
G0

(A2T 2I2d1J2d2

N

)
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Again we use change of variable, let U = I2d1, V = J2d2 and L = KT . Let xc = αc√
c
. Then,

Smain =
∑
L

L
∑

U,V≤D
L

τ(U)τ(V )xULxV L
∑
T |L

µ(T )

T

∑
A

1

A
G0

(A2T 2UV

N

)
(3.4)

By contour integration,
∑
A

1
A
G0

(
A2

X

)
= 1

2
log (X)+ c0 +O(1/X) for some constant co. Since

T 2UV < L2UV < D2 < N1−δ, error term is small. Later we also show that error term can

be ignored. We continue with only first two terms,

yL =
∑
UL<D

τ(U)xUL

y∗L =
∑
UL<D

log (U)τ(U)xUL

In abuse of notation,

Smain = (
1

2
log N + c0)

∑
L

∑
T |L

µ(T )

T
|yL|2−

∑
L

L|yL|2
∑
T |L

µ(T ) log T

T
− 2R

∑
L

∑
T |L

µ(T )

T
yLy

∗
L

Since
∑
T |L

µ(T )
T

= φ(L)
L

and
∑
T |L

µ(T ) log T
T

= −φ(L)ψ(L)
L

, where ψ(L) =
∑
p|L

log p
p−1

, we get

Smain =
∑
L

φ(L)|yL|2(
1

2
log N + c0 + ψ(L))− 2R

∑
L

φ(L)yLy
∗
L (3.5)

Let η(n) =
∑
d|n
µ(d)µ(n/d) (convolution of two Mobius function) then by Mobius inversion,

xL =
∑

UL<D

η(U)yUL. So,

y∗L =
∑
UL<D

τ(U) log (U)
∑

ULV <D

η(V )yUV L

=
∑

WL<D

yWL

∑
UV=W

η(U)τ(V )
1

2
log V
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Let inner sum is Λ(W ), then Λ(W ) =

log p W = pr, r ≥ 1

0 else
. Thus,

y∗L =
∑
UL<D

Λ(U)yUL

By arithmetic and geometric mean inequality, |2RyLyWL| ≤ |2yLyWL| |yL|
2

W
+ W |yWL|2. So

second term in equation 3.5 is bounded by,

∑
L

φ(L)|yL|2
∑

WL<D

Λ(W )

W
+
∑

WL<D

φ(L)WΛ(W )|yWL|2

By Prime Number Theorem,
∑
t<x

Λ(t)
t
≤ log x+ c1 for some constant c1. And for second term,

∑
M<D

φ(M)|yM |2
∑
L|M

Mφ(L)

Lφ(M)
Λ(M/L) =

∑
L<D

φ(L)|yL|2(log M + ψ(M))

So, second term in 3.5 is bounded by
∑
L<D

φ(L)|yL|2(log D + c1 + ψ(L)). So,

Smain ≥
∑
L

φ(L)|yL|2(log

√
N

D
+ c0 − c1)

Since D2 < N1−δ, Smain is bounded below by positive term for large enough N .

Now we deal with error term of summation of G0. Error term has order of N−δ. So,

extra term in equation 3.4 is be bounded by

N−δ
∑
L

∑
U,V

τ(U)τ(V )|xUL||xV L|

By Mobius Inversion for x, above term is bounded by,

N−δ
∑
L

∑
U,V

τ(U)τ(V )
∑
W,X

|η(W )||η(X)||yUWL||yXV L|
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Since U, V,W,X < D for any ε > 0, |τ(U)|, |τ(V )|, |η(W )|, |η(X)| � Dε,

N−δDε
∑
L

∑
A,B

|yAL||yBL| = N−δDε
∑
A,B

τ(gcd(A,B))|yA||yB| � N−δDε(
∑
L

|yL|)2

By Cauchy’s Inequality ((
∑

1≤t≤n
xtyt)

2 ≤ (
∑
t

(xt)
2)(
∑
t

(yqt)
2)),

DεN−δ(
∑
A

|yA|)2 � DεN−δ(
∑
A

φ(A)|yA|2)(
∑
A

1

φ(A)
)� DεN−δ

∑
A

φ(A)|yA|2

Finally we can say that Smain in equation 3.3,

Smain � log N
∑
L

φ(L)|yL|2 (3.6)

3.2 The Kloosterman Sum and Bessel function

Using Lemma 2.2.2 and G0(x)� e−r
√
x for some constant r > 0, we can say in equation

3.3 contribution from G0(x) is negligible when x ≤ (log N)3. Similarly by using Weil’s bound

on Kloosterman Sum and J1(x)� x, contribution of terms for c > N2 is also negligible.

∑
Id1,Jd2<D

|xId1||xJd2 |
√
IJ
∑
L,M

1√
LM

G0

(LMd1d2

N

) ∑
c≥N2

N |c

S(IL, JM, c)

c
J1

(4π
√
ILJM

c

)

� N−1+ε
∑

Id1,Jd2<D

|xId1||xJd2 |IJ

So, now we have to bound only below equation 3.7. Let taylor series expansion of
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J-Bessel function, J1(x) =
∑
l≥0

blx
2l+1 and integral representation of G0 then

∫
Γ(1 + t)2

t

∑
l≥0

blN
t
∑

Id1,Jd2<D

xId1xJd2

(IJ)l+1

(d1d2)t

∑
c<N2

N |c

1

c2l+2

×
∑

gcd (a,c)=1

∑
L,M

LM�N1+ε

d1d2

(LM)l−te
(aIL+ aJM

c

)
dt (3.7)

Lemma 3.2.1. Given integer a and c with c - a. Let b ∈ C and ||a/c|| denotes distance of

a/c from nearest integer. Then ∀ε > 0,
2M∑
M

mbe
(
am
c

)
�M b min

(
M, c

ε(1+|b|)
||a/c||

)
Proof. Second bound follows from absolute value while second bound follows from upper

bound on partial sum and successive difference of mα is bounded by (1 + |α|)m−1Rα.

Lemma 3.2.2. Let 0 < X < c. Then ∀ε > 0,∑
ab≡X(mod c)

min
(
L, 1
||a/c||

)
min

(
M, 1

||b//c||

)
� cε(LM + c)

Apply this lemma in equation 3.7,

Soff ≤
∫

Γ(1 + t)2

t

∑
l≥0

bl(l + |Rt|)2NRt+ε
∑

Id1,Jd2<D

|xId1||xJd2|(IJ)l+1

(d1d2)Rt

( N

d1d2

)l−Rt

×
∑
c|N
c<N2

(
c+ N

d1d2

)
cε

c2l+2
dt

Since summation over c is bounded byN−2l−1+ε and using formula |xL| �
∑

UL<D |η(L)||yUL|,
for all l, t inner sum (summation over I, J, d1, d2) is bounded by

N−Rt−l−1+εDε
(∑

I

|yI |I l+1
)2

� N−Rt+εDε
(D2

N

)l+1(∑
I

φ(I)|yI |2
)

Since D2 � N , rapid decaying of bl and exponential decay of Gamma function on vertical

line, Soff is negligible for lower bound (equation 3.6) for Smain. Since Smain + Soff = 0 we

say Smain = 0. So, yL = 0 for all 1 ≤ L ≤ D. And consequently αi = 0 for all 1 ≤ i < D.
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Chapter 4

Sturm’s Theorem for Modular Forms

This chapter introduces congruence for Modular forms, i.e. number of Fourier coefficient

required to define modular forms.

As per Example 1.1.3, g2 = 120ζ(4)E4 is weight 4 modular form and ∆ is weight 12 cusp

form. By Corollary 1.1.6, ∆(τ) 6= 0 for all τ ∈ H. And ∆ has simple zero at ι∞. Now

define a function j : H → C by,

j(τ) = 1728
(g2(τ))3

∆(τ)

Then by modularity of g2 and ∆, j(γ(τ)) = j(τ) for all γ ∈ SL2(Z). Since ∆ doesn’t

vanish on upper half, j is holomorphic on H and simple pole at ι∞. Moreover,j has Fourier

expansion, j(τ) = 1
q
+744+196884q+· · · where q = e2πιτ . By Theorem 1.3.3,M0(Γ) = Cj.

Let f ∈ Mk(Γ0(N)). Let R be a subring of C which contains all fourier coefficient of f .

Then we denote f ∈Mk(Γ0(N), R).

Definition 4.0.1. Let F be a field over Q and OF be a ring of integers and P be a prime

ideal. Let f ∈ Mk(Γ0(N),OF ) with f =
∑
af (n)qn. Define ordP(f) = min{n : af (n) /∈

P}.(minimum of empty set is ∞)

Theorem 4.0.1. Sturm’s Theorem: Let f ∈ Mk(Γ,OF ). Let P be a prime ideal and

ordP(f) > k
12

[
SL2(Z) : Γ

]
. Then f ≡ 0(mod P).
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4.1 Proof for Full Modular Group

Proposition 4.1.1. Continue to notation of Theorem 4.0.1, f12

∆k ∈ P
[
j
]
, where P

[
j
]

is

set of polynomials of j with coefficient in P.(i.e. ordP(f) =∞)

Proof. Induction on k,

For k = 1, f 12 ∈ M12. Since M12(SL2(Z)) = C(E4)3 ⊕ C∆, there exists α, β ∈ OF such

that, f 12 = α(E4)3 + β∆. Then f12

∆
= α′j + β =

∑
n≥−1

a(n)qn.Since ordP(f 12) > 1, α, β ∈ P .

For general k, 12k = 4i+6j. Moreover, i = 3i0 and j = 2j0. So, f 12−Ei
4E

j
6 is cusp of weight

12k. So, f 12 = αEi
4E

j
6 +β∆f1 for some f1 ∈M12(k−1). Then, f12

∆k = α
(
E3

4

∆

)i0(E2
6

∆

)j0
+β f1

∆k−1 .

Since ∆ is linear combination of E3
4 and E2

6 , and applying induction hypothesis on f1, we get

our result.(Note that only constant term in fourier expansion of f 12 is because of Ei
4E

j
6.)

Proof of theorem 4.0.1 Since ordP(f) > k/12, ordP(f 12) > k. So, f12

∆k ∈ P
[
j
]
. So,

f 12 ∈ ∆kP
[
j
]
. Consequently, ordP(f 12) =∞. And ordP(f) =∞.

4.2 Proof for Congruence Subgroup

Since Γ is congruence subgroup, there exists N such that Γ(N) ⊂ Γ. So, f ∈ Sk(Γ(N)).

Since Sk(Γ(N)) has a basis of cusp forms whose Fourier coefficients are rational integer, for

all f ∈ Sk(Γ(N), F ), there exists Af ∈ F so that Aff ∈ Sk(Γ(N),OF ). Moreover, there

exists basis whose Fourier coefficients are rational over Q(ζN) (cyclotomic field with Nth

root of unity).

Proof of Theorem 4.0.1: Consider f12

∆k is a modular function at level N . Since Γ(N) is

normal in SL2(Z), for all γ ∈ SL2(Z), f [γ]k ∈ Mk(Γ(N), F (ζN)). Moreover, there exists

Aγ ∈ F (ζN) so Aγf [γ]k ∈Mk(Γ(N),OF (ζN )).

Let K be a field extension of F (ζN) such that POK be prinicipal and unramified ideal and

let P be a prime ideal of OK such that P|POK (existence of such field extension is Hilbert

Class Field). If ordP(f) <∞ then ordP(Aγf [γ]k) <∞
Let Γ(N)\SL2(Z) = {γ1 = 1, γ2, · · · , γn}. Consider Φ = f

n∏
i=2

f [γi]k. It is easy to check
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Φ ∈Mkn(SL2(Z)). Since Γ(N) ⊂ Γ,

ordP(Φ) ≥ ordP(f) = ordP(f) >
kn

12
≥ k

12

[
SL2(Z) : Γ

]
By result for full modular group, ordP(Φ) =∞. Since ordP(Φ) = ordP(f)+

n∑
i=2

ordP(Aγf [γ]k),

we have ordP(f) = ordP(f) =∞.
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Chapter 5

Rankin Selberg Method at Level N

In this chapter, we propose a modification of Rankin Selberg Convolution of L function such

that a modified Rankin Selberg L function for arbitrary cusp forms has a functional equation

which respects critical line. We use techniques given in [13] and [4].

5.1 Non Holomorphic Eisenstein series at level N

Definition 5.1.1. For (z, s) ∈ H × CRs>1,

FN(z, s) = 1 +
∑
m>0

(mN,n)=1

1

|mNz + n|2s

Let ζN(s) =
∑

(n,N)=1

1
ns

then

2ζN(2s)FN(z, s) =
∑
d|N

µ(d)

d2s
G
(N
d
z, s
)

Here G(z, s) =
∑

(m,n)6=(0,0)

1
|mz+n|2s where summation runs over Z2. Then clearly G(z, s)

converges absolutely for Rs > 1 as a function of s. Let’s also define quadratic form as
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Qz(m,n) = 1
y
|mz + n|2. Then disc(Qz) = −4 independent of z. Now define theta series by,

θz(t) =
∑
(m,n)

e−πQz(m,n)t

Now take Mellin transform of θz then

M(θz)(s) =

∫ ∞
0

θz(x)xs
dx

x

=
∑

(m,n)6=(0,0)

∫ ∞
0

e−πQz(m,n)xxs
dx

x
+

∫ ∞
0

xs
dx

x

= Γ(s)
(y
π

)s
G(z, s) +

∫ ∞
0

xs
dx

x

G∗(z, s) := Γ(s)
(y
π

)s
G(z, s) =

∫ ∞
0

(θz(x)− 1)xs
dx

x

By using Poisson summation for e−πQz(m,n)t, we get tθz(t) = θz(1/t). Since
∫∞

0
=
∫ 1

0
+
∫∞

1

and using change of variable for second part and applying Poisson summation,

G∗(z, s) =

∫ ∞
1

(θz(x)− 1)(xs + x1−s)
dx

x
+

1

s− 1
− 1

s

G∗(z, s) = G∗(z, 1− s)

So G∗(z, s) has meromorphic continuation to a complex plane with only simple pole at

s = 0, 1. Moreover, γ ∈ SL2(Z), G∗(γ(z), s) = G∗(z, s) as a function of z.

5.2 Modified Rankin Selberg Function

Definition 5.2.1. Let N is square-free integer. For n =
∏
p

prp ∈ N, σN(n) =
∏

p|(n,N)

(
prp+1−1
p−1

)
.

Let f, g ∈ Sk(Γ0(N)) are Hecke Newforms. Let f =
∑
n≥1

anq
n and g =

∑
n≥1

bnq
n then by

Theorem 1.5.4

L(f, s) =
∏
p|N

(
1− ap

ps

)−1∏
p-N

(
1− ap

ps
+
pk−1

p2s

)−1

=
∏
p|N

(
1− ap

ps

)−1∏
p-N

(
1− αp

ps

)−1(
1− βp

ps

)−1
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L(g, s) =
∏
p|N

(
1− bp

ps

)−1∏
p-N

(
1− bp

ps
+
pk−1

p2s

)−1

=
∏
p|N

(
1− bp

ps

)−1∏
p-N

(
1− γp

ps

)−1(
1− δp

ps

)−1

So here for p - N ,αp + βp = ap, γp + δp = bp and αpβp = pk−1 = γpδp. Now define

D(f × g, s) =
∑ anbn

ns

Since f, g are eigenforms,

D(f × g, s) =
∏
p

∑
l≥0

aplbpl

(pl)s

Now trivial calculation gives below result,

ζN(2s+2−2k)D(f×g, s) =
∏
p|N

(1−apbp
ps

)−1
∏
p-N

(1−αpγp
ps

)−1(1−βpγp
ps

)−1(1−αpδp
ps

)−1(1−βpδp
ps

)−1

Now let’s find 〈ysFN(z, s)f(z), g(z)〉,

〈ysFN(z, s)f(z), g(z)〉 =

∫
X0(N)

FN(z, s)f(z)g(z)ys+k
dxdy

y2

=

∫ ∞
0

∫ 1

0

ys+kf(z)g(z)
dxdy

y2

=
1

(4π)s+k−1
Γ(s+ k − 1)D(f × g, s+ k − 1)

(5.1)

First equality follows from Rankin’s unfolding method. Now using result of section 5.1,

2

(4π)s+k−1
Γ(s+ k − 1)ζN(2s)D(f × g, s+ k − 1) =

∑
d|N

µ(d)

d2s
〈ysG(

N

d
z, s)f(z), g(z)〉

Φ(s) =
( N

4π2

)s
Γ(s)Γ(s+k−1)ζN(2s)D(f×g, s+k−1) =

(4π)k−1

2

∑
d|N

µ(d)

ds
〈G∗(Nz/d, s)f, g〉

has meromorphic continuation to a complex plane since G∗ has.

Let p|N , define β =

[
sp −r
N p

]
∈ Γ0

(
N
p

)[p 0

0 1

]
. Then,

f [β]k =
−ap
p
k
2
−1
f and g[β]k =

−bp
p
k
2
−1
g
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Let d|(N/p),

[
N
pd

0

0 1

][
sp −r
N p

][
d
N

0

0 1

]
∈ Γ(1). So,

G∗
(Nβ(z)

pd
, s
)

= G∗
(Nz
d
, s
)

By change of variable in Petersson’s Inner product (z 7→ β(z)) and β−1Γ0(N)β = Γ0(N),

〈G∗
(Nz
pd

, s
)
f(z), g(z)〉 =

apbp
pk−2
〈G∗
(Nz
d
, s
)
f(z), g(z)〉

So, Φ(s) = (4π)k−1

2

(
1 − apbp

ps+k−2

) ∑
d|(N/p)

µ(d)
ds
〈G∗(Nz/d, s)f, g〉. Now continuing this process

for all p|N and remember N is square free,

Φ(s) =
(4π)k−1

2

∏
p|N

(
1− apbp

ps+k−2

)
〈G∗(Nz, s)f, g〉

Λ(f × g, s) :=
∏
p|N

(
1− apbp

ps+k−2

)−1

Φ(s) =
(4π)k−1

2
〈G∗(Nz, s)f, g〉

So Λ(f × g, s) has meromorphic continuation to a complex plane with at most simple pole

only at s = 0, 1. Moreover, Λ(f × g, s) = Λ(f × g, 1− s). Now we have

Λ(f × g, s) =
( N

4π2

)s
Γ(s)Γ(s+ k − 1)ζN(2s)

∏
p|N

(
1− apbp

ps+k−2

)−1

D(f × g, s+ k − 1)

Definition 5.2.2. Let f, g are newform then modified Rankin Selberg L function,

L(f × g, s) = ζN(2s)
∏
p|N

(
1− apbp

ps+k−2

)−1

D(f × g, s+ k − 1) =
∏
p

Lp(s)

Then by product structure (begining of this section) we got for ζN(2s+2−2k)D(f×g, s),

p - N ⇒ Lp(s− k + 1) = (1− αpγp
ps

)−1(1− βpγp
ps

)−1(1− αpδp
ps

)−1(1− βpδp
ps

)−1

=
(

1− 1

p2s+2−2k

)−1∑
l≥0

aplbpl

(pl)s

(5.2)
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p | N ⇒ Lp(s+ 1− k) = (1− apbp
ps

)−1(1− apbp
ps−1

)−1

=
∑
l≥0

(apbp)
l

(pl)s

∑
l≥0

pl(apbp)
l

(pl)s

=
∑
l,m≥0

pl(apbp)
l+m

(pl+m)s

=
∑
n≥0

( ∑
m+l=n
m,l≥0

pl
)(apbp)

n

(pn)s
=
∑
n≥0

(pn+1 − 1

p− 1

)apnbpn
(pn)s

=
∑
n≥0

σN(pn)
apnbpn

(pn)s

(5.3)

By combining above result,

L(f × g, s) = ζN(2s)
∑
n≥1

σN(n)
anbn
ns+k−1

By Ramanujan-Petersson conjecture (proved by Deligne), an � n
k−1

2 and bn � n
k−1

2 for

(n,N) = 1 and for p|N ,apbp = ±pk−2, we got below result.

Lemma 5.2.1. r(n) = σN(n) anbn
nk−1 � 1. Here constant depends only on f, g.

By using above lemma, L(f × g, s) (infinite series) converges absolutely for Rs > 1.

Theorem 5.2.2. Let f, g ∈ Sk(Γ0(N)) are Hecke Newforms, where N is square-free integer.

Then

L(f × g, s) = ζN(2s)
∑
n≥1

σN(n)
anbn
ns+k−1

converges absolutely for Rs > 1. Moreover, L(f × g, s) extends to meromorphic function on

a complex plane with simple pole (at most) only at s = 0, 1. Let

Λ(f × g, s) =
( N

4π2

)s
Γ(s)Γ(s+ k − 1)L(f × g, s)

then Λ(f×g, s) = Λ(f×g, 1−s), Ress=1(Λ(f×g, s)) = (4π)k−1

2
〈f, g〉 = −Ress=0(Λ(f×g, s)).

So, L(f × g, s) and Λ(f × g, s) has poles at s = 0, 1 if and only if 〈f, g〉 6= 0.

39



Let F = {h1, h2, · · ·hT} = {h;h ∈ Sk(Γ0(N)) is Hecke Newform} where T = dim(Sk(Γ0(N)new).

Let hi =
∑
n≥1

ai(n)qn. Then for any f, g ∈ Sk(Γ0(N))new, f =
∑

1≤i≤T
αihi =

∑
n≥1

af (n)qn and

g =
∑

1≤i≤T
βihi =

∑
n≥1

ag(n)qn define

L(f × g, s) =
∑

1≤i,j≤T

αiβjL(hi × hj, s)

=
∑

1≤i,j≤T

αiβjζN(2s)
∑
n≥1

σN(n)
ai(n)aj(n)

ns+k−1

= ζN(2s)
∑
n≥1

σN(n)

ns+k−1

( ∑
1≤i≤T

αiai(n)
)( ∑

1≤j≤T

βjaj(n)
)

L(f × g, s) = ζN(2s)
∑
n≥1

σN(n)
af (n)ag(n)

ns+k−1

(5.4)

Since L(f × g) is finite linear sum, it also converges absolutely for Rs > 1.

Λ(f × g, s) =
∑

1≤i,j≤T

αiβjΛ(hi × hj, s)

=
∑

1≤i,j≤T

αiβj
(4π)k−1

2
〈G∗(Nz, s)hi, hj〉

Λ(f × g, s) =
(4π)k−1

2
〈G∗(Nz, s)f, g〉

(5.5)

So again by result of section 5.1, Λ(f × g, s) = Λ(f × g, 1− s). Hence we have proved,

Theorem 5.2.3. Let f, g ∈ Sk(Γ0(N))new are arbitrary cusp form, where N is square-free

integer. Then

L(f × g, s) = ζN(2s)
∑
n≥1

σN(n)
anbn
ns+k−1

converges absolutely for Rs > 1. Moreover, L(f × g, s) extends to meromorphic function on

a complex plane with simple pole (at most) only at s = 0, 1. Let

Λ(f × g, s) =
( N

4π2

)s
Γ(s)Γ(s+ k − 1)L(f × g, s)

then Λ(f×g, s) = Λ(f×g, 1−s), Ress=1(Λ(f×g, s)) = (4π)k−1

2
〈f, g〉 = −Ress=0(Λ(f×g, s)).

So, L(f × g, s) and Λ(f × g, s) has poles at s = 0, 1 if and only if 〈f, g〉 6= 0.
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Now we are interested to find logarithmic derivative of L(f×g, s). So let A(s) =
∑
n≥1

r(n)
ns

.

Then by Lemma 5.2.1, A(s) converges absolutely for Rs > 1 (Note that Lemma 5.2.1 is

true for arbitrary cusp also). Moreover, s = x + ιy then |A(s)| � ζ(x) and ∀ε > 0 there

exists constant cε such that

|A(s)

cε
− 1| < 1

Now take logarithm for A(s) and applying Taylor series expansion for log(1 + x),

log A(s) = log cε −
∑
l≥1

(−1)l

l

(A(s)

cε
− 1
)l

For (s, x) ∈ CRs>1+ε × R and l ∈ N define Fl(s, x) = (−1)l(l + 1)
(
A(s)
cε
− 1
)l
1(1+ 1

l+1
, 1
l
)(x)

,where 1 is simple function. Let F (s, x) =
∑
l∈N

Fl(s, x). Then by (Theorem 25,[1]), we can

take derivative of log A(s) with respect to s.

A(s)′

A(s)
=

1

cε

(∑
n≥1

−r(n) log n

ns

)(∑
l≥0

(
1− A(s)

cε

)l)
.

Since log n < nε for some n > N0, A(s)′

A(s)
=
∑
n≥1

a(n)
ns

converges absolutely for Rs > 1 + ε for all

ε > 0. Now take logarithmic derivative of L(f×g, s) = ζN(2s)A(s). So again for Rs > 1+ ε,

log L(f × g, s) = −
∑
p-N

log
(

1− 1

p2s

)
+ log A(s)

L′

L
(f × g, s) = −

∑
p-N

2log p

p2s
(

1− 1
p2s

) + (log A(s))′

−L
′

L
(f × g, s) =

∑
p-N

2log p
∑
l≥1

p−2sl −
∑
n≥1

a(n)

ns
=
∑
n≥1

λ(n)

ns

Since both series converges absolutely for Rs > 1 + ε so sum also converges absolutely.

Now fix x0 ∈ R > 1 + ε for some ε > 0 then for any s = x0 + ιy,

− L′

L
(f × g, s)�x0 1 (5.6)
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5.3 Non-vanishing region for modified Rankin Selberg

L function

Theorem 5.3.1. Let f, g is cusp for of weight k (even) and N (square-free). Then modified

Rankin Selberg L(f × g; s) 6= 0 for any s ∈ Ω = {s ∈ C; Rs > 1}.

Proof. Let’s assume L(f × g; s0) = 0 for some s0 ∈ Ω and order of vanishing is Z > 0. Since

L(f×g; s) is an analytic function in Ω, there exists neighborhood U ⊂ Ω around s0 such that

L(f × g; s) 6= 0 for all s ∈ U except s0. Choose small neighborhood U such that Rs > 1 + ε

for all s ∈ U . Let C ⊂ U is a smooth, closed and simple curve such that s0 is an interior

point for region closed by C.

Recall from Section 5.2, L(f × g; s) has no poles in Ω and

L′

L
(f × g; s) = −

∑
n≥1

λ(n)

ns

converges absolutely for Rs > 1 + ε. Then by Argument Principle,

2πιZ =

∫
C

L′

L
(f × g; s)ds = −

∑
n≥1

λ(n)

∫
C

n−sds = 0

The last equality follows since n−s is an analytic function on U . So, Z = 0, which is

contradiction.

Conjecture 1. (Riemann Hypothesis) Let f, g be any cusp form of weight k(even) at

level N (square-free). Then modified Rankin Selberg L function M(f × g, s) = 0 then either

s is a negative integer or Rs = 1
2
.

42



Chapter 6

Congruence of Cusp forms

Let f =
∑
n≥1

af (n)qn is cusp form of weight k for level N such that af (n) = 0 for all

1 ≤ n ≤ k
12

[Γ(1) : Γ0(N)] then recalling from Cha. 4, f ≡ 0. If we assume Riemann

Hypothesis for modified Rankin-Selberg Convolution for L(f × f, s) then we can prove that

af (n) = 0 for all 1 ≤ n ≤ AN ,where AN � (log N)2(log log N)4 then f ≡ 0. We extended

result of Goldfeld and Hoffstein; proven in (Theorem 2,[5]) using similar proof.

Let k be an even integer and N is square-free integer. Let f, g ∈ Sk(Γ0(N)) are non-zero

cusp forms. Let L(s) := L(f × g, s) and Λ(s) := s(1 − s)Λ(f × g, s) = s(1 − s)DsG(s)L(s)

,here D = N
4π2 and G(s) = Γ(s)Γ(s + k − 1). Then by Theorem 5.2.3, Λ(s) is an entire

function for any f, g.

6.1 Extension of Goldfeld and Hoffstein’s result

Lemma 6.1.1. Let fix κ > 1. Let continue above notation with D > κ and assuming

Riemann hypothesis for L(s) (i.e. all non-trivial zeros of L(s) lies on critical strip Rs = 1
2
).

Then for x > 10 log D,

∑
γ∈R

Λ( 1
2

+ιγ)=0

sin2(γ log x)

γ2
�G,κ (log D)(log x)2
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Proof. By using Hadamard Product theorem (assume without proof) for an entire function,

we can write Λ(s) as product over zeros. Now applying functional equation Λ(s) = Λ(1− s)
and take logarithmic derivative,

log D +
G′

G
(s) +

L′

L
(s) +

1

s
+

1

s− 1
=
∑
γ

1

s− 1
2
− ιγ

Let s = 2 + ιy and N(t) = #{γ | |γ − t| ≤ 1}

R
(∑

γ

1
3
2

+ ι(y − γ)

)
≥

∑
|γ−t|≤1

3
2

9
4

+ 1
=

6

13
N(t)

Consequently,

N(t) ≤ 13

6

(
log D + R

(G′
G

(2 + ιt) +
1

2 + ιt
+

1

1 + ιt

)
+ |L

′

L
(2 + ιt)|

)

As per equation 5.6, |L′
L

(2 + ιt)| � 1 for all t ∈ R and upper bound on Digamma

function (ψ(s) = Γ′

Γ
(s)),

|t| ≤ 1, D > e3 ⇒N(t)� log D

|t| ≥ 1,⇒N(t)� log |t|+ log D
(6.1)

Since |sin(t)/t| ≤ 1,

∑
γ

sin2(γlog x)

γ2
=
∑
|γ|≤1

sin2(γlog x)

γ2
+
∑
|γ|>1

sin2(γlog x)

γ2

= N(0)(log x)2 + 2
∑
n≥0

N(2n+ 1)

(2n+ 1)2

� (log D)(log x)2 + 2
∑
n≥0

log(2n+ 1) + log D

(2n+ 1)2

� (log D)(log x)2 + 2ζ ′(2) + (log D)ζ(2)∑
γ

sin2(γlog x)

γ2
� (log D)(log x)2

(6.2)

Here last inequality follows because x > 10 log D.
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Theorem 6.1.2. Let f 6= g ∈ Sk(Γ0(N))new are cusp forms such that 〈f, g〉=0, where N is

square-free integer. Let f =
∑
n≥1

anq
n and g =

∑
n≥1

bnq
n. Let’s assume Riemann Hypothesis

(conjecture 1) for L(f×f, s) and L(f×g, s). Then for all κ > 1 there exists Cκ > 0 (depends

only on κ, k) such that for all N > κ there exists integer n ≤ Cκ(log N)2(log log N)4 for

which an 6= bn.

Proof. Let consider integral

I =
1

2πι

∫
(2)

(xs− 1
2 − x 1

2
−s

s− 1
2

)2(
− L′

L
(s)
)
ds

Here integration over imaginary line such that Real part is 2. Since (can be proved by

contour shift integration)

1

2πι

∫
(2)

ys−
1
2

(s− 1
2
)2
ds =

(log y)2 y ≥ 1

0 y ≤ 1
, − L′

L
(s) =

∑
n≥1

λ(n)

ns

and recall from equation 5.6 then for x > 1,

I =
∑
n<x2

λ(n)√
n

log
(x2

n

)

To move line of integration from Rs = 2 to Rs = 1/4, we have to pick up residue at

zeros of Λ(s) on Rs = 1/2 and pole at s = 1.

Ress= 1
2

+ιγ

(xs− 1
2 − x 1

2
−s

s− 1
2

)2(
− L′

L
(s)
)

= −4
sin2(γlog x)

γ2

. So we get,

I = 4(x− 2 +
1

x
)− 4

∑
γ

sin2(γlog x)

γ2
+

1

2πι

∫
(1/4)

(xs− 1
2 − x 1

2
−s

s− 1
2

)2(
− L′

L
(s)
)
ds

Since Λ(s) = Λ(1− s),

−L
′

L
(s) = 2 log D +

G′

G
(s) +

G′

G
(1− s) +

L′

L
(1− s)
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and use change of variable s 7→ 1− s,

P :=
1

2πι

∫
(1/4)

(xs− 1
2 − x 1

2
−s

s− 1
2

)2(
− L′

L
(s)
)
ds

=
1

2πι

∫
(3/4)

(xs− 1
2 − x 1

2
−s

s− 1
2

)2(
2 log D +

G′

G
(s) +

G′

G
(1− s) +

L′

L
(s)
)
ds

= J − 1

2πι

∫
(3/4)

(xs− 1
2 − x 1

2
−s

s− 1
2

)2(
− L′

L
(s)
)
ds

= J + 4(x− 2 +
1

x
)− I

(6.3)

Last equality follows by again picking up residue at s = 1 and transfer integral to Rs = 2.

Here J = 1
2πι

∫
(3/4)

(
xs−

1
2−x

1
2−s

s− 1
2

)2(
2 log D + G′

G
(s) + G′

G
(1− s)

)

2I = 2
∑
n<x2

λ(n)√
n

log
(x2

n

)
= 8
(
x− 2 +

1

x

)
− 4

∑
γ

sin2(γlog x)

γ2
+ J (6.4)

L1(s) = L(f × f, s) and L2(s) = L(f × g, s). By using Theorem 5.2.3, L1 has mero-

morphic continuation to a complex plane with simple pole at s = 0, 1 while L2 has analytic

continuation to a whole complex plane. Now by giving appropriate index, we got

2I1 = 2
∑
n<x2

λ1(n)√
n

log
(x2

n

)
= 8
(
x− 2 +

1

x

)
− 4

∑
γ

sin2(γlog x)

γ2
+ J

2I2 = 2
∑
n<x2

λ2(n)√
n

log
(x2

n

)
= −4

∑
γ′

sin2(γ′log x)

γ′2
+ J

Since J does not depends on f, g, we give same index. And L2 has no pole so 8(x− 2 + x−1)

is removed. Let’s assume that λ1(n) = λ2(n) for all n < x2. By subtracting I2 from I1,

8(x− 2 + x−1)− 4
∑
γ

sin2(γlog x)

γ2
+ 4

∑
γ′

sin2(γ′log x)

γ′2
= 0
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By using Lemma 6.1.1,

x− 2 +
1

x
≤ 1

2

∑
γ

sin2(γlog x)

γ2

� (log D)(log x)2

x� (log D)(log log D)2

(6.5)

So, there is a contradiction if x� (log D)(log log D)2.

Corollary 6.1.3. Let f ∈ Sk(Γ0(N))new be arbitrary cusp form such that af (n) = 0 for all

n ≤ AN ,where AN � (log N)2(log log N)4. Then f ≡ 0.

Proof. Let’s assume f 6≡ 0. Then by Theorem 5.2.3, L(f × f ; s) has meromorphic con-

tinuation with simple pole at s = 0 and s = 1. Then, for n ≤ AN , nth coefficient of L′

L
(s)

is

λ(n) =

2 log p n = p2l; p - N

0 else

Now let x =
√
AN then 2

∑
n<x2

λ(n)√
n

log
(
x2

n

)
is bounded by O(log x). On the other hand by

equation 6.4, we get,

x− 2 + x−1 =
1

2

∑
γ∈R

Λ(f×f ; 1
2

+ιγ)=0

sin2(γ log x)

γ2
+O(log x) +O((log N)(log x))

Again by Lemma 6.1.1, x−2+x−1 � (log N)(log x)2. Consequently, x� (log N)(log log N)2

which is contradiction.

6.2 Improvement of Vanderkam’s Theorem

Now we want to check linear independence of Hecke operators in the homology ofH1(X0(N),Z).

Let’s recall from Cha. 3, e be the winding cycle then e acts on S2(Γ0(N)) by

(e, f) =
1

2π
L(f,

1

2
).
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Theorem 6.2.1. Let F = {f1, f2, · · · , fL} are Hecke Newform for S2(Γ0(N)) such that

L(fi,
1
2
) 6= 0, where N is prime. Then {T1e, T2e, · · · , TLe} acts linearly independently on

S2(Γ0(N)).

Proof. Let
∑

1≤i≤L
αiTie = 0. (we want to show that αi = 0.) Since T ′is are linear operator

it is sufficient to check on basis. So, we check on basis consisting of Hecke Newforms,

F∗ = {f1, f2, · · · , fg} where g is genus of X0(N) or dim(Sk(Γ0(N))). F ⊂ F∗ and remaining

elements have L(fi,
1
2
) = 0. Let fi =

∑
n≥1

ai(n)qn. So for fj ∈ F∗,

∑
1≤i≤L

αi(Tie, fj) =
∑

1≤i≤L

αi(e, Tifj) =
∑

1≤i≤L

αiaj(i)
1

2π
L(fj,

1

2
) = 0

So for 1 ≤ j ≤ L, ∑
1≤i≤L

αiaj(i) = 0

Now let A is L×L square matrix such that [A]ij = ai(j) and α = [α1, α2, · · · , αL]T is column

vector then Aα = 0. By linear algebra,
{
Aα = 0 ⇒ α = 0

}
⇔
{
ATα = 0 ⇒ α = 0

}
So

now we have ∑
1≤i≤L

αiai(j) = 0 for 1 ≤ j ≤ L

Now consider f =
∑

1≤i≤L
αifi =

∑
n≥1

af (n)qn then af (n) = 0 for all 1 ≤ n ≤ L. By

(Theorem 2, [10]), we can say that L ≥ 1
6
g = 1

72
N + O(1). So for large enough N ,

L � (log N)2(log log N)4. Then by Theorem 6.1.3, we have f ≡ 0. So αi = 0 for

all 1 ≤ i ≤ L. Hence, theorem is proved.
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Chapter 7

Linear Independence of Hecke

Operator

This chapter is based on work of supervisor and Satadal Ganguly. They prove below theorem

by using analytic techniques. By using this result, we prove linear independence of Poincare

series (see corollary 7.0.2).

Theorem 7.0.1. The Hecke Operators T1, T2, · · · , TD acts linearly independenty on Sk(Γ0(N))

when D � N1− 1
2k and N is prime.

Corollary 7.0.2. The Poincare series P1, P2, · · · , PD are linearly independent elements in

Sk(Γ0(N)) when D � N1− 1
2k and N is prime.

7.1 Proof for Hecke operators

Let
∑

1≤d≤D
cdTd = 0 for some compplex number cd. We wish to prove cd = 0. Since there

is basis consisting of Hecke eigenform, we need to check only on this basis. Let Bk(N) =

{f1, f2, · · · , fg} is basis where g is dimension of Sk(Γ0(N)) then Tnfi = ai(n). So we have,∑
1≤d≤D

cdai(d) = 0 for 1 ≤ i ≤ g ⇔
∑

1≤i≤g

|
∑

1≤d≤D

cdai(d)|2 = 0 (7.1)
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Now opening square and using Petersson’s formula (Theorem 2.2.1),

∑
m≤D

|cm|2 + 2πi−k
∑

1≤m,n≤D

cmcn
∑
c≥1

S(m,n;Nc)

Nc
Jk−1

(
4π
√
mn

Nc

)
= 0 (7.2)

Let’s recall trick which we use to prove Vanderkam’s Theorem (Theorem 1.7.3), and apply

here,

Smain =
∑

1≤m≤D

|cm|2

Soff =
∑

1≤m,n≤D

cmcn
∑
c≥1

S(m,n;Nc)

Nc
Jk−1

(
4π
√
mn

Nc

) (7.3)

Let’s denote inner sum by A(m,n). Then break A(m,n) = A+(m,n, c0) + A−(m,n, co)

into two parts where A+ denotes summation over c > c0 and later denotes summation over

1 ≤ c ≤ c0.

We wish to study A+(m,n, c0) first. We require below lemma for that.

Lemma 7.1.1. We have the estimates, for any δ > 0

∑
c>c0

(a, c)

c1+δ
� τ(a)2c−δ0 .

Proof. We write the sum over c as a double sum∑
c

=
∑
d|a

∑
(a,c)=d

and make a change of variables c = dc1 with (a, c1) = 1. Capturing the coprimality condition

using the Möbius function and making another change of variables we obtain

∑
c

=
∑
d|a

d
∑
r|a

µ(r)
∑
c2

1

(rdc2)1+δ
.

The results follow from this upon trivial estimation.

We also need the bound Jk−1(x)� xk−1 and the Weil bound |S(m,n, c)| ≤
√
c(m,n, c)τ(c),
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where τ(m) denotes the total number of divisors of a postive integer m. Recall that

τ(m) = Oε(m
ε) for any ε > 0. By the above bounds and the lemma, we obtain the es-

timate

A+(m,n, c0)�
∑
c>c0

√
Nc(m,n,Nc)(Nc)ε

Nc

(√
mn

Nc

)k−1

� (mn)(k−1)/2

Nk−1/2−ε

∑
c>c0

√
((m,n), c)

ck−1/2−ε

� (mn)(k−1)/2

Nk−1/2c
k−3/2
0

(NDc0)ε

last inequality follows since m,n ≤ D. Suppose S+
off denotes the sum of those terms in Soff

for which c > c0. We estimate this as follows:

S+
off � N−k+1/2c

−k+3/2
0 (NDc0)ε

∑
m≤D

∑
n≤D

|m(k−1)/2cmn
(k−1)/2cn|

� N−k+1/2c
−k+3/2
0 Dk||c||2(NDc0)ε, (7.4)

where we have used Cauchy’s inequality to estimate the double sum.

Now we estimate the other part of the sum, i.e., the sum S−off which is the sum over those

c with c ≤ c0. First we recall a standard integral representation of the J-Bessel function (see

[6]). For x > 0, one can write

Jk−1(x) =
1

2πi

∫
(α)

Γ(−s)
Γ(2 + s)

(x
2

)k−1+2s

ds

for any α ∈ (−1/2, 0). Writing the Bessel function as above we insert the sum over m and

n inside the integral and write

S−off =
1

2πi

∫
(α)

Γ(−s)(2π)k−1+2s

Γ(2 + s)

∑
c≤c0

1

(Nc)k+2s

∑
m≤D

∑
n≤D

cmm
(k−1)/2+scnn

(k−1)/2+sS(m,n;Nc)

Shifting the contour to the right to the line <s = 1/2 and picking up the residue from the

pole at s = 0 (coming from Γ(−s)), we get

S−off = Ress=0 +
1

2πi

∫
(1/2)

Γ(−s)(2π)k−1+2s

Γ(2 + s)

∑
c≤c0

1

(Nc)k+2s

∑
m≤D

∑
n≤D

cmm
(k−1)/2+scnn

(k−1)/2+sS(m,n;Nc)
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and

Ress=0 =
−(2π)k−1

Γ(2)

∑
c≤c0

1

(Nc)k

∑
m≤D

∑
n≤D

cmm
(k−1)/2cnn

(k−1)/2S(m,n;Nc)

Now we estimate the double sum over m and n, in the expression for the residue as well as

in the integral, using the Weil bound first. By the Weil bound and again using Lemma 7.1.1,

we have that

Ress=0 �
Dk||c||2

Nk−1/2
(NDc0)ε.

Similarly, ∫
(1/2)

� Dk+1||c||2

Nk+1/2
(NDc0)ε

∫ ∞
−∞

∣∣∣∣Γ(−1/2 + it)(2π)k−1+2(1/2+it)

Γ(2 + 1/2 + it)

∣∣∣∣ dt
and ∫ ∞

−∞

∣∣∣∣Γ(−1/2 + it)(2π)k−1+2(1/2+it)

Γ(2 + 1/2 + it)

∣∣∣∣� ∫ ∞
−∞
|1 + it|−3dt� 1

by the Stirling approximation for Γ(s). Thus

S−off � ||c||
2

(
Dk+1

Nk+1/2
+

Dk

Nk−1/2

)
(NDc0)ε

Now, we choose c0 = N . Suppose D � N1−1/2k. Then from Eq. (7.4), we see that S+
OD

is very small compared to ||c||2; for example,

S+
off � N−k||c||2

and the above two bounds yield

S−off � N−1/2k+2ε||c||2.

Hence

Soff = S+
off + S−off � N−1/2k+2ε||c||2.

Since ε > 0 is arbitrary, by choosing ε < 1/4k and the relation

Smain + 2πi−kSoff = 0

we get Smain = 0. Now from equation 7.3, cd = 0 for all 1 ≤ d ≤ D.

52



7.2 Proof for Poincare Series

Let’s recall Poincare series (chapter 2) defined as

Pm(z) =
∑

γ∈Γ∞\Γ

j(γ, z)−ke(mγz) =
∑
n≥1

p(m,n)qn

;where

p(m,n) =
( n
m

)(k−1)/2{
δ(m,n) + 2πι−k

∑
c≥1

S(m,n;Nc)

Nc
Jk−1

(
4π
√
mn

Nc

)}
Then {P1, P2, · · · } consists another basis for Sk(Γ0(N)). i.e. only element which is orthogonal

to set is 0. Now we prove corollary 7.0.2.

Proof. Let D �k N
1− 1

2k , ∑
1≤d≤D

cdPd = 0

Now for any cusp form f , 〈f, Pn〉 = caf (n) ,where c 6= 0 is constant depends on k, n.

Apply this result to any eigenform,

0 = 〈f,
∑
d

cdPd〉 =
∑
d

cdαdaf (d)

So, we get 7.1 for all f ∈ Bk(N). So, we get∑
1≤d≤D

cdPd = 0⇔
∑

1≤d≤D

cdαdTd = 0

Now by theorem 7.0.1, αdcd = 0⇒ cd = 0.
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