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Abstract

In this thesis we look at the celebrated Riemann-Zeta function and its generalizations and

Tate’s famous thesis which gave a way to arrive at the functional equations and meromorphic

continuouations of such functions. We do this by consider the local fields and finally come

to the global result suing a suitable topology to glue things together. The next level of

generalization is realizing functions on the upper half plane as Automorphic Representations

of a general linear group where the representations are not only one-dimensional because of

the non-commutativity of the space.
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Introduction

The Riemann-Zeta function, originally studied by Euler, admits a meromorphic continuation

to all of the complex plane, even though initially it is defined for a certain half-plane, and the

conjecture which is still unproven states that all non-trivial zeros of the function lie on the

strip with real part 1/2. To solve this, a step forward is to try and look at the generalizations

and try to prove the general hypothesis. But classical methods are too cumbersome. On the

advice of Emil Artin circa 1950, J. Tate made use of Fourier Analysis on adele groups to

prove the analytic continuation and functional equation of the Dirichlet L-function, L(s, χ)

(See, p.242, [RV99]).

The basic idea of Tate was to realize the local factors and global L-functions of χ, a Dirichlet

character, as the greatest common divisor of a family of zeta integrals. The key is to take a

nice topological ring R such as Qp, R or AQ and to consider integrals of the form:

Z(χ, φ) =

∫
χ(x)φ(x)dx

where χ is a character of R× and φ a nice enough function on R. The functional equation

reflects Fourier Duality between the pairs (χ, φ) and (χ∨, φ̂), the dual character χ∨ and the

Fourier transform φ̂. The reason why this thesis is so remarkable is that, his methods can

be easily adapted to derive the analytic continuation and functional equation of any type of

L-functions.

The second part of the thesis, which is essentially chapter 6, talks about Modular forms,

L-functions associated to it, Euler product of such functions. We also take a brief look at

the Rankin-Selberg method for modular forms of SL(2,Z). And we see how to realize a

function on the upper-half plane, satisfying certain growth condition and under the action

of congruence groups (more generally discontinuous groups) and how to pull it back to
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an adelic setting. Because Tate’s celebrated thesis, can be thought of as the theory of

Automorphic representation on GL(1,AQ), AQ being the adele ring of Q. Hence it is natural

to construct a generalization to, say GL(2,AQ). There are many reference for this, but

we follow [DB97] as much as possible. Here we also needed some ideas about Basic Lie

Theory (see [p.127, ch.2, DB97]). This part of the theory shall not be discussed in this

thesis for sake of brevity and also to focus on the main goal, which is to realize the space

of square-integrable functions, under the action of certain general linear groups, decompose

into irreducible Hilbert subspaces and we also see when the Euler product should hold; in the

case for GL(1,AQ), the group being abelian, all representations were one-dimensional, hence

Euler product always will exist if other conditions are suitable enough. So it is important to

study the case for GL(2) and further GL(n), n ≥ 2, which we have tried to do in this thesis.
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Chapter 1

Preliminaries

1.1 Topological Groups

1.1.1 Definition and Examples

Definition 1.1.1. A topological group G is a group with a topology satisfying the following

additional properties:

1. Define map f : G×G→ G, such that f(g, h) = gh. Then f is a continuous mapping

where the domain has the product topology

2. The map I : G→ G, such that I(g) = g−1 is a continuous mapping

If the group G is finite, then we give it the discrete topology.

Examples:

1. R is a topological group w.r.t. addition.

2. R∗, R∗+, C∗ are topological groups with multiplication operation.
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3. Let k be R or C. Then GLn(k), the set of n× n matrices with non-zero determinant,

forms a topological group w.r.t. multiplication, with the Euclidean topology given to

it.

This group has a subgroup, SLn(k), where all the elements have determinant 1. It is

a closed subgroup of GLn(k).

Definition 1.1.2. A locally compact topological group G, is a topological group that is both

locally compact, i.e. every point g ∈ G, has a compact neighbourhood containing g, and G is

also Hausdorff.

For example, R or C with respect to addition, are locally compact topological groups. The

set of p-adic numbers Qp is also a locally compact group w.r.t. addition.

An interesting example is, the ring of Adeles, AK for a number field K, is also a locally

compact group w.r.t. addition operation.

1.1.2 Haar Measure

Let X be a set and Σ be a collection of subsets of X with the following properties:

1. X ∈ Σ.

2. if A ∈ Σ, then Ac ∈ Σ, where Ac is the complement of A in X.

3. Suppose An ∈ Σ, for all n ≥ 1, then ∪∞n=1An ∈ Σ.

X, together with such a collection Σ is called a sigma-algebra. If X is moreover a topological

space, then we can take the smallest σ-algebra generated by the open sets of X, this is called

the Borel σ-algebra of X.

Definition 1.1.3. A positive measure µ on a space (X,Σ), is a mapping µ : Σ→ R+∪{∞},
such that it is countably additive, i.e.

µ(∪∞n=1An) = Σ∞n=1µ(An)

where {An}n≥1 is a disjoint family of sets in Σ, the σ-algebra of X.

In particular, a positive measure defined on the Borel sets of a locally compact set X is called

a Borel Measure.
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Let X be a locally compact space and µ be a Borel measure and let S be a Borel subset

of X. We say that a positive measure is outer-regular if

µ(S) = inf{µ(U)|S ⊆ U,U open in X}

We say that µ is inner-regular if

µ(S) = sup{µ(K)|K ⊆ S,K compact subset of X}

Definition 1.1.4. A Radon measure on X is a Borel measure µ with the following properties:

1. µ is finite on compact subsets of X.

2. µ is outer-regular on all Borel sets.

3. µ is inner-regular on all open sets.

Let G be a topological group and µ be a Borel measure on G. Then µ is called left

translation invariant, if

µ(gS) = µ(S)

for all Borel subsets S of G and for all g ∈ G. Right translation invariance is defined in a

similar manner.

Definition 1.1.5. (Haar Measure) Let G be a locally compact group. A left (resc. right)

Haar measure is a non-zero Radon measure that is left (resc. right) translation invariant.

A Radon measure that is both left and right translation invariant is called a bi-variant Haar

measure.

We end this section with the following theorem:

Theorem 1.1.1. Let G be a locally compact topological group. Then G admits a left Haar

measure. This measure is unique upto multiplication by a scalar. (it is useful to note that a

left Haar measure on G gives rise to a right Haar measure)

Proof. See [p.12, ch.1, RV99].
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1.2 P-adic Numbers

This section we shall discuss about the p-adic numbers. We shall be referring to the first few

sections of chapter 2 in [JK99].

1.2.1 Introduction

Definition 1.2.1. (p-adic Integer) For a fixed prime number p, a p-adic integer is a formal

expression of the form

a0 + a1p+ a2p
2 + · · · ,

where 0 ≤ ai < p for all i = 0, 1, 2....

The set of p-adic integers form a ring and it is denoted by Zp.

Proposition 1.2.1. Every element in Z/pnZ can be uniquely expressed in the form

a0 + a1p · · ·+ an−1p
n−1 (mod pn)

where 0 ≤ ai < p for all i = 0, 1, 2, ..., n− 1.

Proof. See [p.101, ch.2, JK99].

1.2.2 Constructing the P-adic numbers

In analogy with the Laurent series from complex analysis, we extend the domain of p-adic

integers by allowing formal series

∞∑
v=−m

avp
v = a−mp

−m + · · ·+ a−1p
−1 + a0 + a1p · · ·

where m ∈ Z and 0 ≤ av ≤ p− 1. The set of such formal series form a field, this is denoted

by Qp, the set of p-adic numbers.

Suppose c = p−ma
b
∈ Q, written by extracting the multiples of p from a and b. Here m ∈ Z
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and (ab, p) = 1. Suppose
∑∞

v=0 is the p-adic expression of a
b
, then c is associated to the

expression
∑∞

v=−m avp
v ∈ Qp. Hence we have a canonical mapping

Q→ Qp

which takes Z into Zp and is also injective, because if a, b ∈ Z have the same p-adic expres-

sions, then a− b is divisible by pn for all n > 0, hence a = b.

Consider the following sequence of rings and ring homomorphisms:

Z/pZ λ1←− Z/p2Z λ2←− Z/p3Z λ3←− Z/p4Z · · ·

here λi : Z/pi+1Z → Z/piZ is the cacnonical projection taking every a (mod pi+1) to a

(mod pi). Consider the direct product

∞∏
n=1

Z/pnZ = {(xn)n∈N : xn ∈ Z/pnZ}

In this product we look at all tuples (xn) such that λn(xn+1) = xn for all n ≥ 1. The set of

all such that tuples is called the Projective limit of the sets Z/pnZ,

lim←−
n

Z/pnZ = {(xn)n∈N ∈
∞∏
n=1

Z/pnZ : λn(xn+1) = xn for all n ≥ 1}

Proposition 1.2.2. Given any p-adic integer c =
∑∞

v=0, associating it with
∑n−1

v=0 avp
v ∈

Z/pnZ for every n ≥ 1, yields a bijection

Zp ∼= lim←−
n

Z/pnZ.

Every c ∈ Qp can be written as c = p−mg where g ∈ Zp, here −m is called the order of p

of the element c, denoted ordp(c). Using this representation addition, multiplication can be

extended to Qp, which can be realized as the field of fractions of the integral domain Zp.
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1.2.3 P-adic Absolute Value

Let c ∈ Q, c = pma
b

such that (ab, p) = 1 and m ≥ 0 an integer. Define a map:

vp : Q→ Z ∪ {∞}

we put vp(0) =∞. It is easy to check:

1. vp(a) =∞ ⇐⇒ a = 0.

2. vp(ab) = vp(a) + vp(b).

3. vp(a+ b) ≥ min{vp(a), vp(b)}.

The map vp is called the p-adic exponential valuation map. Using this exponential valuation,

we can define the p-adic absolute value as follows:

| · |p : Q→ R, |a|p = p−vp(a).

The p-adic absolute value satisfies the following thing properties, because of the vp satisfying

the above three properties:

1. |a|p = 0 ⇐⇒ a = 0.

2. |ab|p = |a|p · |b|p.

3. |a+ b|p ≤ max{|a|p, |b|p} ≤ |a|p + |b|p.

The fact that every integer can be written uniquely as product of prime powers (often called

the Fundamental Theorem of Arithmetic) can be used to prove the following:

Proposition 1.2.3. For every a ∈ Q∗,
∏

p≤∞ |a|p = 1, where p runs though the sel of all

primes and | · |∞ is the usual absolute value induced from R.

Proof. See [p.108, ch.2, JK99].
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Definition 1.2.2. A Cauchy Sequence w.r.t. the absolute value | · |p is a seuqnce {xn} such

that given any ε > 0, there exists a natural number N , such that for all m,n > N ,

|xm − xn|p < ε

holds.

It can be checked that Q is not complete w.r.t. | · |p for all p ≤ ∞, i.e. there exists

non-convergent Cauchy sequences. One can complete the space by defining limits for all

Cauchy sequences. The p-adic absolute value can be extended to all of Qp by letting, for

x = {xn} ∈ Qp,

|x|p := lim
n→∞

|xn|p ∈ R.

So Qp can be realized as the completion of Q w.r.t. | · |p.

Proposition 1.2.4. Let p be a finite prime. The set

Zp = {x ∈ Qp : |x| ≤ 1}

is a subring of Qp. It is also the completion of Z w.r.t. | · |p in the field Qp.

Proof. See [p.112, ch.2, JK99]

The group of units of Zp, denoted Z×p is the set {x ∈ Zp : |x|p = 1}. Every element

x ∈ Q∗p admits a unique representation of the form x = pm · u, m ∈ Z and u ∈ Z×p .

Proposition 1.2.5. The non-zero ideals of Zp are the sets

pnZp = {x ∈ Zp : vp(x) ≥ n}

and for n ≥ 0

Zp/pnZp ∼= Z/pnZ.

Proof. See [p.112, ch.2, JK99].

Because of the isomorphism

Zp/pnZp ∼= Z/pnZ
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we can define a map

Zp → Z/pnZ

for all n ≥ 0. Looking at elements of Zp as formal power series in p, we take the image as

the truncated polynomial with highest power of p being n − 1. This map is surjective. All

such maps for all n ≥ 0, we can get a surjective homomorphism

Zp → lim←−
n

Z/pnZ

Proposition 1.2.6. The homomorphism

Zp → lim←−
n

Z/pnZ

is an isomorphism.

Proof. See [p.114, ch.2, JK99].

1.3 Valuations

The method used to obtained p-adic numbers from Q can be generalized arbitrary fields

using the theory of (multiplicative)valuations.

Definition 1.3.1. A Valuation on a field K is a function | · | : K → R with properties:

1. |x| ≥ 0 and |x| = 0 ⇐⇒ x = 0.

2. |xy| = |x| · |y|.

3. |x+ y| ≤ |x|+ |y|.

For any two points x, y ∈ K, define distance between them

d(x, y) = |x− y|

makes K into a metric space, and a topological space.

10



Definition 1.3.2. Two absolute values on K are called equivalent if they give the same

topology on K.

Proposition 1.3.1. Two absolute values | · |1 and | · |2 are equivalent if there exists a real

number c > 0, such that |x|1 = |x|c2 for all x ∈ K.

Proof. See [p.117, ch.2, JK99].

Theorem 1.3.2. (Approximation Theorem) Let |·|i, for i = 1, 2..., n be pairwise inequivalent

absolute values on K. Let a1, a2..., an ne given elements of K. Then for every ε > 0, ∃x ∈ K
such that

|x− ai|i < ε for all i = 1, 2..., n.

Proof. See [p.118, ch.2, JK99].

Definition 1.3.3. A valuation | · | on K is non-archimedean, if |n| is bounded for all n ∈ N.

We end this section here, but more about absolute values on Local fields of characteristic

0 shall be discussed in chapter 2 of this thesis.
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Chapter 2

Structure of Arithmetic Fields

In this chapter we shall discuss the modular function on a field and explicitly find its form

for an algebraic number field. The discussion on this chapter shall follow the treatment given

in Chapter 4 of Fourier Analysis on Number Fields, Ramakrishnan, Valenza.

2.1 Module of an Automorphism

Let G be a locally compact additive group with Haar measure µ. Now if X is any Borel subset

of G, then αX is again a Borel subset, because left multiplication by α is an automorphism.

This implies, µ◦α is another Haar measure onG. We define the module of this automorphism,

denoted modG(α), as

µ(αX) = modG(α)µ(X)

This map is multiplicative:

modG(αβ)µ(X) = µ(αβX) = modG(α)µ(βX) = modG(α)modG(β)µ(X)

Let us take G to be a local field denoted k. Let V be a topological vector space over k. Then

every a ∈ k∗ defines an automorphism of V via left multiplication, and we can extend modV

by letting modV (0) = 0. In fact, modk(a) can be thought of as the module of a acting on k

itself.

13



Proposition 2.1.1. Let k be a locally compact field with Haar measure µ. Then modk : k →
R+ is a continuous mapping.

Proof. See [p.133, ch. 4, RV99].

As a corollary we have, if k is a non-discrete local field, modk is unbounded, consequently

k is not compact.

Using this modular map, we can define certain closed balls as follows:

Let k be a non-discrete local field. Let m > 0 be a positive integer. Consider

Bm = {a ∈ k : modk(a) ≤ m}

We have the following important result:

Proposition 2.1.2. Bm, as defined above, is compact.

Proof. See [p.134, ch.4, RV99].

Corollary 2.1.3. For a ∈ k, limn→∞ a
n = 0 iff modk(a) < 1.

This corollary can be used to show that the modular function is trivial on any discrete

field l contained in k. The sets Bm, m > 0 constitute a local base at 0 ∈ k for the topology

of k.

Theorem 2.1.4. Let k be a locally compact, non-discrete field with Haar measure µ, then

∃A ≥ 1, constant such that

modk(a+ b) ≤ A · sup{modk(a),modk(b)},∀a, b ∈ k.

Proof. See [p.136, ch.3, RV99].

If modk satisfies the inequality in the previous theorem with A = 1, then we say k is

Ultrametric, i.e.

modk(a+ b) ≤ sup{modk(a),modk(b)},∀a, b ∈ k.

14



This is called the Ultrametric Inequality. Now the set of natural numbers N can be embedded

in k by mapping n to n ·(1k), 1k ∈ k multiplicative identity of k, then image of N is called the

prime ring of k. Now modk(n) ≤ sup{modk(1k)} = 1, hence in an ultrametric field, modk is

bounded. The converse is stated in the next theorem:

Theorem 2.1.5. If modk is bounded on the prime ring of k, then modk ≤ 1 on the prime

ring of k and k is ultrametric.

Proof. See [p.139, ch.4, RV99].

2.2 Classification of Local Fields

Since we are interested in extensions over Q, we shall consider char(k)=0. Before we go into

the discussion, we shall state the main result of this chapter:

Theorem 2.2.1. Let k be a locally compact, non-discrete field, such that char(k)=0, then,

k is R, C or a finite extension of Qp.

Before we start discussing the proof of the theorem, we need a proposition. Let V be

a topological vector space over k, a non-discrete local field. Let W be a subspace of V of

dimension n. Let {w1, w2, ..., wn} be a basis of W . Consider the map φ:

φ : kn → W

φ((ai)i=1,..,n) =
n∑
i=1

aiwi

Proposition 2.2.2. Let k, V , W be defined as above, then:

1. Let U be any open neighborhood of 0 in V . Then W ∩ U 6= {0}.

2. The mapping φ defined above is a homeomorphism.

3. W is closed and locally compact.
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4. If V is locally compact, then dimension of V over k is finite. Moreover for all a ∈ V

modV (a) = modk(a)dim(V ).

Proof. See [p.141, ch.4, RV99].

Proposition 2.2.3. Let F : N → R+ be a function such that F (mn) = F (m)F (n) for all

m,n ∈ N. Assume that ∃A, some constant such that F (m + n) ≤ A · sup{F (m), F (n)} for

all m,n. Then

1. F (m) ≤ 1 for all m, or

2. F (m) = mλ for some positive constant λ for all m.

Proof. See [p.138, ch.4, RV99].

The Modulus function is defined on the prime ring of k as modk(n) = modk(n ·1k). From

the proposition above, we have two possibilities:

1. modk(m) ≤ 1 for all m, which is equivalent to saying k is ultrametric, or

2. ∃λ, a positive constant such that modk(m) = mλ for all m.

2.3 Preliminary Analysis for Main Theorem

We shall assume char(k) = 0, k being the non-discrete local field in consideration. Now

assume that modk is bounded on the prime ring of k, then {m · 1k : m ∈ N} ⊂ B1, where

B1 = {a ∈ k : modk(a) ≤ 1}. Now since Bm is compact for all m ∈ N, we have a limit

point of the set {m · 1k : m ∈ N}, i.e. if the limit point is a, then ∀ε > 0, ∃N ∈ N, such

that ∀m ≥ N ,modk(m · 1k − a) ≤ ε. Now let m1,m2 > N , then modk(m1 · 1k −m2 · 1k) =

modk((m1 · 1k − a) + (a−m2 · 1k)) ≤ sup{modk(m1 · 1k − a),modk(a−m2 · 1k)} ≤ ε by the

ultrametric inequality. So for large enough m ∈ N, we can have modk(n) < 1, for example

we can take ε = 1, and m1 > N and m2 = m1 + n.

Since modk is multiplicative, the smallest integer n ≥ 1 such that ,modk(n) < 1, must be a
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prime number. Suppose n = p1p2, where p1, p2 are primes (the simplest case of a composite

number), then modk(n) = modk(p1p2) = modk(p1) · modk(p2) < 1, thus at least one of

modk(p1) or modk(p2) is less than 1. But n > p1 and n > p2, contradicting minimality

of n. Hence n must be a prime. We can construct a similar argument for any n. Now

let p, a prime, be the smallest positive integer such that modk(p) < 1. Now modk(mp) =

modk(p+· · ·m-times+p) ≤ modk(p) < 1, by the ultrametric inequality. Hencemodk(mp) < 1

for all m ∈ N. So all multiples of p are strictly bounded above by 1.

Let r be a positive integer less than p. Then from minimality of p, modk(r) ≥ 1, but

modk ≤ 1 on the prime ring, so modk(r) = 1. But modk(r) = modk(r + mp − mp) ≤
sup{modk(r + mp),modk(mp)}, by the ultrametric inequality, and since modk(mp) < 1, we

have 1 = modk(r) ≤ modk(r+mp), again since modk is bounded, modk(r+mp) = 1. Hence

for all co-prime integers to p, modk is equal to 1.

From the above two paragraphs, we can conclude that p is the unique prime, such that modk

is less than 1.

Now since char(k) = 0, modk(p) 6= 0 (in comparison, when we have a field with finite

characteristic p, then modk(p) = 0; also by minimality of p, this is the unique prime for

which modk(p) < 1). We choose a positive real number t, such that modk(p) = p−t. Let

n = mps ∈ N such that m and p are co-prime, then modk(mp
s) = modk(p)

s = p−ts = |n|tp,
where | · |p is the p-adic absolute value on Q.

Now if modk(m) = |m|λ for some positive constant λ, then this absolute value is equivalent

to the usual absolute value on R, denoted by | · |∞. A summary of our discussion in this

section is:

For all n ∈ N, modk(n) = |n|tv
if v = p, a finite prime number, then modk ≤ 1;

if v =∞, then modk(n) = |n|λ holds for some positive constant λ.

2.4 Proof of Classification Theorem

We have k, a non-discrete locally compact field and char(k) = 0. Consider the map φ : Z→
k, such that φ(n) = n·1k. This can be extended to φ : Q→ k, by mapping respective inverses

of non-zero elements of Z. It can be seen that this map is infact a ring homomorphism. Now

modk induces a map on Q, taking all x ∈ Q to |x|tv. The topology generated by this absolute
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value | · |v is the same as that induced by the compact neighborhoods Bt, t positive real

number, because distance between two points x, y is |x − y|v. Thus the image of Q in k,

is isomorphic to the completion of Q with respect to the metric | · |v. When v = p a finite

prime, then this completion is isomorphic to the p-adic numbers Qp. And if v = ∞, then

the completion is R.

Now is v = p, then k is a locally compact vector space over Qp, hence k is a finite extension

of Qp. And if v =∞, then k is isomorphic to either R or C.

2.5 Ring of Integral Elements and Residue Field of a

Local Field

Let k be a locally compact non-discrete field of characteristic 0. Consider the following sets:

A = {x ∈ k|modk(x) ≤ 1}, A× = {x ∈ k|modk(x) = 1} and P = {x ∈ k|modk(x) < 1}. A
is just B1 = {x ∈ k|modk(x) ≤ 1}, hence it is compact. If a, b ∈ A, then modk(a + b) ≤
sup{modk(a),modk(b) ≤ 1}, and also modk(ab) = modk(a)modk(b) ≤ 1, 1 ∈ A, thus a + b

and ab are also elements of A. So A is a subring of k. Since modk(a
−1) = modk(a)−1, A× is

a group w.r.t. multiplication. And finally P is an ideal of the ring A, because if x, y ∈ P ,

then modk(x + y) ≤ sup{modk(x),modk(y)} < 1, and for any a ∈ A and x ∈ P , since

modk(a) ∈ A, modk(ax) = modk(a)modk(x) < 1, so ax ∈ P . Hence P is an ideal.

A local ring, is an Integral Domain, such that it has a unique maximal ideal. A Discrete

Valuation Ring (DVR) is a principal ideal domain which has a unique prime ideal; hence it

is in particular a local ring. The following more concrete result holds:

Lemma 2.5.1. A is a DVR, in particular a local ring. P is the unique prime ideal of A and

P = Aπ where π is the uniformizing parameter. Finally A/P is a finite field.

Proof. See [p.145, ch.4, RV99].

If A = Zp, then A is a local ring, because using the absolute value map, we can define a

local base for the identity 1 of A. The unique prime ideal is pZp. And finally Zp/pZp ∼= Fp.
In general, A/P ∼= Fpr . So card(A/P ) = q = pr. Next we move to discuss the roots of unity

in a local field k.
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2.6 Roots of unity in a Local Field

Let M be the set of roots of unity of order prime to p in k including 0, where p is the

smallest prime for which modk(p) < 1. Then M − {0} forms a group with multiplication

as operation. We can define an injective homomorphism from M∗ to (A/P )∗ which turns

out to be an isomorphism. The proof can be found on p.149 of Ramakrishnan Valenza.

Thus M = M ∪{0} constitutes a complete coset representative for A/P and the polynomial

xq−1 − 1 splits in k.

2.7 Global Fields

Definition 2.7.1. A Global Field F is:

1. A finite extension of Q for characteristic 0.

2. A finitely generated function field in one variable over a finite field Fpr for finite char-

acteristic.

A global field admits many absolute values and we analyze the global field by looking at

the completions with respect to the different absolute value maps.

Definition 2.7.2. Two absolute values | · |1 and | · |2 are called equivalent, i.e. they generate

the same topology on a global field F , if for all a ∈ F , |a|1 = |a|t2 for some positive real

number t. A place of a global field is an equivalence class of non-trivial absolute values.

Proposition 2.7.1. Let | · | be an absolute value on a global field F . Then the following are

equivalent:

1. | · | is ultrametric.

2. The image of N in F is bounded.

In any case, we can say | · | is bounded by 1. We state the next proposition for a global

field F of characteristic 0, but it is true for any arbitrary field.
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Proposition 2.7.2. Let F be a global field of characteristic 0 and let | · | be an absolute value

om F . Then F can be embedded in a field that is complete with respect to an absolute value

that is equivalent to | · |.

This can be seen by looking at the equivalence classes of Cauchy sequences in F , and

completing it with respect to the relevant absolute value. The proof is a constructional one

and is not needed in our discussion.

We close this chapter with the following important result:

Theorem 2.7.3. Let | · | be an absolute value on Q, a global field. Then either

1. | · | is equivalent to | · |∞, the usual absolute value induced from R, or

2. | · | is equivalent to a p-adic absolute value | · | for some prime p.

Proof. See [p.158, ch.4, RV99].
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Chapter 3

Duality for Locally Compact Abelian

Groups

3.1 Characters

Let G be a locally compact abelian topological group. A character of G is a continuous

homomorphism

χ : G→ C∗

where χ(ab) = χ(a)χ(b) for all a, b ∈ G. If the image of χ is contained in S1, the unit circle

on the complex plane, then χ is called a unitary character.

Denote by Ĝ the set of all unitary characters on G. If χ1, χ2 ∈ Ĝ, then χ1 · χ2 is again an

element of Ĝ, because of point-wise multiplication, χ1 · χ2(a) = χ1(a)χ2(a) for all a ∈ G.

And χ−1(a) = χ(a−1). Hence Ĝ is a group. In fact, for a locally compact topological abelian

group G, Ĝ is a locally compact abelian topological group. Ĝ is called the Dual group of G.

To see this, it is enough to specify a local base of neighbourhoods of the identity of Ĝ, which

is the trivial character. To do this we give Ĝ the compact-open topology as follows: Let

V ⊆ S1 be an open neighbourhood of 1. Let K ⊆ G be a compact subset. Define a set

W (K,V ) = {χ ∈ Ĝ|χ(K) ⊆ V }
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Every such set W (K,V ), where K is compact in G and V is an open neighbourhood of 1 in

S1, is an open set containing the trivial character. Hence this gives a topology on Ĝ.

We define a subset of S1 before stating the next proposition. Define the exponential map

φ : R → S1, such that φ(x) = e2πix. φ is a continuous homomorphism with kernel Z. Now

define for 0 < c ≤ 1, N(c) = φ((−c/3, c/3)) = {e2πit| − c/3 < t < c/3}. In particular,

N(1) = {e2πit| − 1/3 < t < 1/3}.

Proposition 3.1.1. Let G be an abelian topological group. The following statements hold:

1. A group homomorphism χ : G→ S1 is continuous iff χ−1(N(1)) is a neighbourhood of

the identity in G.

2. The family {W (K,N(1))}K as K ranges over compact subsets of G constitute a local

base for the trivial character, giving Ĝ the compact-open topology.

3. If G is discrete then, Ĝ is compact.

4. if G is compact then, Ĝ is discrete.

5. If G is locally compact then, Ĝ is locally compact.

Proof. See p.89 of Ramakrishnan, Valenza for a proof of 1, 2 and 5.

For 3, If G is discrete, Hom(G,S1) = Homcont(G,S1). Suppose a sequence of characters

{χi}(s) converges to f(s) for every s. Then {χi(s+ t)} converges to f(s+ t), but χi(s+ t) =

χi(s)χi(t) which converges to f(s)f(t), i.e. f ∈ Ĝ. So Hom(G,S1) is closed in the space of

all maps from G → S1. Every element g ∈ G can be mapped to any element in S1, hence

the space of all maps from G → S1 is isomorphic to
∏

g∈G(S1), which is compact. Hence

Homcont(G,S1) is compact.

For part 4, Suppose G is compact. f ∈ Ĝ is continuous, so f(G) is a compact subgroup

of S1. Consider the basis W (G,N(1)) = {f ∈ Ĝ|f(G) ⊂ N(1)} where N(1) = {e2πit|t ∈
(−1/3, 1/3)}. But no non-trivial subgroup of S1 is contained in N(1). Hence W (G,N(1)) =

{χo}, the trivial character. That is, the trivial character is open. Since Ĝ is a topological

group, any other character is again open. Hence G is discrete.
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3.2 The Fourier Inversion Theorem

In this section we shall state The Fourier Inversion Theorem without proof for a locally

compact abelian group G with bi-variant Haar measure dx. Let the set L1(G) be the set of

functions f : G→ C, such that ||f ||1 =
∫
G
|f |dx <∞.

Definition 3.2.1. For f ∈ L1(G), define the Fourier Transform of f , f̂ : Ĝ→ C by

f̂(χ) =

∫
G

f(x)χ(x)dx

for χ ∈ Ĝ.

Since |χ(x)| = 1 for all x ∈ G, we have |f̂(χ)| ≤ ||f ||1 for all χ ∈ Ĝ and f ∈ L1(G).

We shall see explicitly what the Fourier Transform is for local fields in the next chapter.

Let Cc(G) be the set of all functions f : G → C, that are continuous and has compact

support. For every p, 1 ≤ p ≤ ∞, Cc(G) is contained in Lp(G), where Lp(G) is the set of all

functions f : G → C, such that ||f ||p = {
∫
G
|f |pdx}1/p < ∞ for finite p and it is replace by

|| · ||∞ for the remaining case, where dx is a Haar measure on G. The norm ||f ||p induces a

topology on Lp(G) and makes it a Banach Space. Cc(G) is dense in Lp(G) for all p.

Definition 3.2.2. A Haar measurable function φ : G→ C in L∞(G) is said to be of positive

type if ∫
G

∫
G

φ(s−1t)f(s)dsf(t)dt ≥ 0

for all f ∈ Cc(G).

Let V (G) be the complex span of continuous functions of positive type. Let V 1(G) =

V (G) ∩ L1(G).

Theorem 3.2.1. (Fourier Inversion) For all f ∈ V 1(G), there exists a Haar Measure on

dχ on the dual group Ĝ of G such that,

f(x) =

∫
Ĝ

f̂(χ)χ(x)dχ

The Fourier Transform viewed as a map, identifies V 1(G) with V 1(Ĝ).
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See Sections 3.2 and section 3.3, Chapter 3 of Ramakrishnan, Valenza for proofs and

more details.

3.3 Pontryagin Duality

In this brief section, we shall state the cacnonical isomorphism of topological groups between

G a locally compact abelian topological group and
ˆ̂
G, which is the dual group of Ĝ. This is

called the Pontryagin Duality Theorem.

For a locally compact abelian group G, we construct Ĝ the set of continuous unitary char-

acters on G. By repeating the same construction to Ĝ, which itself is a locally compact

abelian topological group, we denote the set of continuous unitary characters of Ĝ as
ˆ̂
G.

Now if ξ ∈ ˆ̂
G, then ξ : Ĝ→ S1 is a continuous group homomorphism.

Let us define a map

α : G→ ˆ̂
G

where for all g ∈ G, α(g) is an element of
ˆ̂
G and it is defined as α(g)(χ) = χ(g) for all χ ∈ Ĝ,

this makes sense because χ(g) ∈ S1. We can view α(g) as the evaluation of g ∈ G on all the

elements of Ĝ. We shall end this section by stating the theorem for G.

Theorem 3.3.1. (Pontryagin Duality) Let G be a locally compact abelian topological group

and
ˆ̂
G be the dual group of Ĝ. The map α : G → ˆ̂

G defined above is an isomorphism of

topological groups.
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Chapter 4

Adéles and Idéles

In this chapter we shall discuss the ring of Adéles and Idéles of a finite extension K of Q.

We shall be following chapter 5 of [RV99].

4.1 Restricted Direct Product

Let J = {v} be a set of indices and J∞ be a finite subset of J . Suppose we are given a

locally compact group Gv for every v ∈ J and for every v 6∈ J∞ we are given a compact open

subgroup Hv of Gv.

Definition 4.1.1. Restricted direct product of Gv w.r.t. Hv is,

G =
∏
v∈J

′Gv = {(xv)
∏
v

∈ Gv : xv ∈ Gv such that xv ∈ Hv for all but finitely many v}

This is a subset of the direct product
∏

v Gv. We define topology on the restricted direct

product, by specifying a neighbourhood base for the identity, say
∏

vNv where Nv = Hv for

all but finitely many v. This topology is not the same as the product topology. Let S be

a finite subset of indices containing J∞. Let GS =
∏

v∈S Gv ·
∏

v 6∈S Hv. Then the product

topology on GS is the same as the topology induced by the neighbourhood base of identity.

Also for any such finite S ⊇ J∞, GS is locally compact by Tychonoff’s Theorem. It can be

shown that G, the restricted direct product of Gv w.r.t. Hv is locally compact.
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4.2 Characters

Let G be restricted direct product of Gv w.r.t. Hv for locally compact abelian groups Gv for

all v. For y ∈ Gv, let yv be the projection of y onto Gv, which can also be though of as the

element (1, 1, .., yv, ...1, ...) ∈ G.

Lemma 4.2.1. Let χ ∈ Homcont.(G,C∗). Then χ is trivial on all but finitely many Hv. We

have, for all y ∈ G, χ(yv) = 1 for all but finitely many v and

χ(y) =
∏
v

χ(yv).

Proof. See [p.182, ch.5, RV99].

Lemma 4.2.2. If for each v, χv ∈ Homcont.(Gv,C∗) and χv|Hv = 1 for all but finitely many

v, then χ =
∏

v χv ∈ Homcont.(G,C∗).

Proof. See [p.183, ch.5, RV99].

For locally compact abelian group Gv, we can construct its dual, Ĝv, the set of continuous

homomorphisms of Gv with image in S1. Define K(Gv, Hv) = {χv ∈ Ĝv : χv|Hv = 1} for

all v 6∈ J∞. If U ⊆ S1 is a small enough neighbourhood of 1, then it contains no non-

trivial subgroup. Then similar to the neighbourhoods defined for the compact-open topology,

W (Hv, U), the characters that map Hv into U , but the image is {1}, the trivial group, hence

W (Hv, U) = K(Gv, Hv), for a small enough U , hence K(Gv, Hv) is open in Ĝv. Let χ ∈ Ĝv.

Consider the following diagram:

Gv S1

Gv/Hv

χ

χ

The above diagram is commutative. We can define a mapping from K(Gv, Hv) to (Gv/Hv)
∧.

This turns out to be an isomorphism of topological groups. Hv is open in Gv by assumption,
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hence Gv/Hv is discrete, so (Gv/Hv)
∧ is compact. So K(Gv, Hv) is compact. Hence it makes

sense to define a restricted directed product of Ĝv w.r.t. the subgroups K(Gv, Hv).

Theorem 4.2.3. Let Gv, Hv be defined as above. Then the restricted direct product of Ĝv

w.r.t. K(Gv, Hv) is topologically isomorphic to Ĝ, i.e.

Ĝ ≡
∏
v

′Ĝv.

Proof. See [p.184, ch.5, RV99]

4.3 Haar Measure on Restricted Directed Products

Let G =
∏ ′

v∈JGv be the restricted direct product of locally compact abelian groups Gv

w.r.t. compact subgroups Hv ⊆ Gv. Let dgv be the (left) Haar Measure on Gv, normalized

so that
∫
Hv
dgv = 1 for almost all v 6∈ J∞.

Proposition 4.3.1. There exists a unique Haar Measure on G such that for every finite set

of indices S containing J∞, the restriction of dgS to

GS =
∏
v∈S

Gv ×
∏
v 6∈S

Hv

is the product measure.

Proof. See [p.185, ch.5, RV99].

This proposition allows us to write

dg =
∏
v

dgv

for the (left) Haar Measure on G. The next proposition shows how to integrate with this

Haar Measure.

Proposition 4.3.2. Let G be the restricted direct product of locally compact groups as above

with Haar measure dg.
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1. Let f be an integrable function on G. Then∫
G

f(g)dg = lim
S

∫
GS

f(gS)dgS.

If f is only assumed to be continuous this formal identity still holds provided we allow

the integral to take infinite values.

2. Let S0 be a finite set of indices containing J∞, and such that Vol(Hv, dgv) 6= 1 for all

v ∈ S0. Suppose we are given a family of functions fv : Gv → C such that f |Hv = 1

for all v 6∈ S0. Let g = (gv) ∈ G and define

f(g) =
∏
v

fv(gv).

Then f is well-defined and continuous on G. If S is a finite set of indices containing

S0, we have ∫
GS

f(gS)dgS =
∏
v∈S

(

∫
Gv

fv(gv)dgv).

Moreover ∫
G

f(g)dg =
∏
v

(

∫
Gv

fv(gv)dgv)

and f ∈ L1(G), provided the right-hand product is finite.

3. Let {fv} and f be as in the previous part such that fv is the characteristic function

of Hv for all but finitely many v. Then f is integrable. Moreover if {Gv} are abelian

groups, then the Fourier Transform of f is integrable and is given by

f̂v(g) =
∏
v

f̂v(gv).

Proof. See [p.187, ch.5, RV99].

Assume now that we are working with an abelian family {Gv} of locally compact groups.

Assume the respective measures dgv are normalized so that Vol(Hv, dgv) = 1. Define for

each v

dχv = (dgv)
∧
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the dual measure of dgv defined on the group Ĝv, in the sense of the Fourier inversion

theorem. By definition

f̂v(χv) =

∫
Gv

fv(gv)χv(gv)dgv.

If f is the characteristic function of Hv, since characters are orthogonal, we get

f̂v(χv) =

∫
Hv

χv(gv)dgv =

Vol(Hv) if χ|Hv = 1

0 otherwise.

If H∗v be the subgroup of Ĝv such that its elements are trivial on Hv, previously denoted

K(Gv, Hv), then f̂v(χv) is the characteristic function of H∗v . Hence from Fourier Inversion

theorem

Vol(Hv)Vol(H∗v ) = 1

but volume of Hv is 1 due to normalized Haar measure, so Vol(H∗v ) = 1 which is calculated

w.r.t. dχv, hence we can define dχ = (dg)∧.

Proposition 4.3.3. The measure dχ so defined is dual to dg. That is

f(g) =

∫
Ĝ

f̂(χ)χ(g)dχ

for all f ∈ V 1(G).

(V 1(G) = V (G)∩L1(G) where V (G) is the complex span of continuous functions on G.)

Proof. See [p.189, ch.5, RV99].
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Chapter 5

Tate’s Thesis

5.1 Introduction

We shall follow the discussion on Chapter 7, p.241 of Ramakrishnan, Valenza.

The well known Riemann Zeta function ζ(s), defined for s ∈ C, Re(s) > 1 is

ζ(s) =
∞∑
n=1

1

ns

A simple integral test shows that ζ(s) converges absolutely for Re(s) > 1. Euler had estab-

lished that

ζ(s) =
∏
p

1

1− p−s

for Re(s) > 1. Riemann was able to extend the domain of definition of ζ(s) to all of C by

deriving a functional equation that related ζ(s) with ζ(1 − s). Let Λ(s) = π−s/2Γ(s/2)ζ(s)

where Γ(s) =
∫∞

0
exxs dx

x
. Then

Λ(s) = Λ(1− s)

for all s ∈ C.

A classical approach to proving analytic continuity and functional equation is to take the
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Meliin Transform of a certain Theta function

θ(z) =
∑
n∈Z

e2πin2z

for all z ∈ C. A generalization of ζ(s) is the following:

Let L(s, χ) =
∑∞

n=1
χ(n)
ns

where χ is a Dirichlet character modulo N ∈ N. If χ is the trivial

character, i.e. χ(n) = 1 for all n ∈ N, then we get back the Riemann Zeta function.

L(s, χ) =
∏

p
1

1−χ(p)p−s
similar to the Euler product of ζ(s). Similar functional equations

and analytic continuation can be derived for L(s, χ) using a more general version of theta-

function.

The idea of Tate’s thesis is to representing the local factors as integrals, and then using

Adélic topology to arrive at the global result. In our discussion we shall focus on fields with

characteristic 0.

5.2 Characters and Schwartz-Bruhat Space of a local

field F

We shall also try to follow the notation of chapter 7 of Ramakrishnan, Valenza.

Let F be a local field, char(F )=0. Let | · | be an absolute map on F . From the classification

theorem, theorem 2.2.1., we know F is either R, C or a finite extension of Qp for some prime

p ∈ Q. The possible absolute value maps are the following:

1. F = R, then | · | is the usual absolute value.

2. F = C, then |z| = zz, i.e. square of the usual absolute value.

3. F a finite extension of Qp, then | · | = | · |[F :Q]
p , where | · |p is the p-adic absolute value

and [F : Q] is dimension of F over Qp as a vector space.

Let dx be a Haar measure on F . Then F ∗ has Haar measure d∗x = c dx|x| , it is a Haar-measure

since it is translation invariant on F ∗ and c > 0 is a constant.

Let UF be the group of units of F and SF = {y ∈ R×+ : y = |x| for some x ∈ F ∗}, then
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F ∗ = SF ×UF . SF is R×+ if F is Archimedean and for non-Archimedean F , SF = {qn|n ∈ Z},
where q is the cardinality of the residue field of F . By OF = {x ∈ F : |x| ≤ 1} we denote

the ring of integers of F for non-Archimedean F and by p we denote the unique prime ideal

of OF , it is the set {x ∈ F : |x| < 1}.

Now every continuous homomorphism χ : F ∗ → C∗, it factors through the product SF ×UF .

Let X(F ∗) = Homcont(F
∗,C∗), it is the set of continuous group homomorphisms from F ∗ to

C∗.

Definition 5.2.1. An element of χ ∈ X(F ∗) is called unramified if χ
∣∣
UF
≡ 1.

Theorem 5.2.1. For every unramified continuous character, there exists a complex number

s ∈ C such that χ(x) = |x|s for all x ∈ F ∗.

Proof. Define V (F ) = {|x|F : | · |F is an absolute value on F}. So, if F = R, V (R) = R×+.

F× C×

V (F ) C×
|·|F

χ

χ′

The above diagram is commutative because χ is unramified and χ′ is a continuous character

of V (F ) → C×, i.e. χ(x) = χ′(|x|F ), for all x ∈ F×. So it suffices to look at characters on

V (F ).

C× ∼= R×+ × S1. So χ′ factors though χ′r : V (F ) → R×+ and χ′u : V (F ) → S1. For F

Archimedian, V (F ) = R×+. From the previous paragraph, let χ : R×+ → R×+ be the real part

of the character. So χ(ab) = χ(a)χ(b) and χ(1) = 1.For t ∈ R×+, Let χ′(t) = logχ(t). Then

χ′(t1t2) = log(χ(t1)) + log(χ(t2)) = χ′(t1) + χ′(t2). Now ∃!x ∈ R, such that t = ex, then

let z(x) = χ′(t) such that t = ex. Then z(x1 + x2) = χ′(ex1+x2) = χ′(ex1ex2) = χ′(t1t2) =

χ′(t1) + χ′(t2) = z(x1) + z(x2). And z(0) = χ′(e0) = log(χ(1)) = log(1) = 0. So z(x) = σx

for some σ ∈ R. So χ′(t) = eσx. So χ′(t) = σ log(t) and finally, χ(t) = eχ
′(t) = eσ log(t) = tσ �

For the unitary part of the character on V (F ), say ξ : R×+ → S1. But we have the following

diagram:

33



R×+ S1

R S1

log(.)

ξ

exp(.)

ξ′

ι

The above diagram is commutative. Let ξ′(x) = ξ(ex) = ξ(t), t ∈ R×+, and x ∈ R.

Then ξ′(x1 + x2) = ξ(ex1+x2) = ξ(t1)ξ(t2) = ξ′(x1)ξ′(x2). Since ξ′(x) ∈ S1 for all x ∈
R, log(ξ′(x)) ∈ i[0, 1)]. Let z(x) = i−1 log(ξ′(x)) for all x ∈ R. Then z(x1 + x2) =

i−1 log(ξ′(x1)) + i−1 log(ξ′(x2)) = z(x1) + z(x2) and z(0) = log(1) = 0. So z(x) = cx

for some c ∈ R.

So z(x) = i−1 log(ξ′(x)) = cx, that is ξ′(x) = eicx, so ξ′(log(t)) = eiclog(t) =⇒ ξ(t) = tic.

Now taking the counterparts together, for F Archemedian, χ(x) = |x|σ+ic
F for σ, c ∈ R, i.e.

χ(x) = |x|sF , for some complex number s ∈ C

For F non-Archemedian, V (F ) = qZ for some q ∈ N. Here q = |OF/P |, where P is the

unique maximal ideal of OF generated by the uniformizer. So as we saw previously, unram-

ified characters on F× are the same as characters on V (F ) through the projection | · |F . So

any ξ : qZ → C× is determined by its value on q. Suppose χ(q) = qs for some s ∈ C, then

s = logq(χ(q)) = log(χ(q))
log(q)

, which is determined upto an integer multiple of 2πi
log(q)

. Here we see

that only the real part of s is determined uniquely.

Theorem 5.2.2. Any element χ ∈ X(F ∗) is of the for χ(x) = ω(x)|x|s for some s ∈ C and

ω is an unramified character of F ∗ and |cdot| is an absolute value on F .

Proof. Consider the diagram:

F× C×

qZ ×Q×F

χ

Every quasi-character of F× factors though the projection. For every x ∈ F×, x = qn · u for
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some u ∈ O×F . Let x̂ = u and let χ|O×F = χ′. In particular, for x ∈ O×F , χ(x) = χ(x̂) = χ′(x).

Now χ′ being the restriction of a continuous map, is continuous. Since O×F is compact,

χ′(O×F ) is a compact subgroup of C×, hence it is contained in S1, so χ′ is a unitary character

on O×F . And x→ x̂ is a continuous homomorphism from F× → O×F , so χ′(̂·) : F× → S1 is a

continuous homomorphism. Consider the character z(x) := χ(x)χ′(x̂)−1. And for x ∈ O×F ,

z(x) = χ(x)χ′(x̂)−1 = χ(x)χ(x)−1 = 1. So z : F× → C× is an unramified character, hence

z(x) = |x|sF for some s ∈ C. So χ(x) = χ′(x̂)|x|sF .

From theorems 4.2.1 and 4.2.2, we get the following classification for the elements of

X(F ∗):

1. F = R. O×F = {+1,−1}. Any character χ : {+1,−1} → S1, χ(1) = χ(1)2 = 1 and

χ(−1)2 = χ(1) = 1. So either χ(−1) = 1 or χ(−1) = −1. In the first case χ is trivial,

and the second case, χ(x) = x/|x| = sgn(x). So quasi-characters of F× either looks like

|x|s or sgn(x)|x|s where | · | is the usual absolute value. Homcont(R×,C×) is isomorphic

to Z/2Z× C.

2. F = C. O×F = S1. We know Ŝ1 = Z. So quasi-characters look like χs,n(z) =

(z/||z||1/2)n||z||s where || · || is the square of the absolute value of C, i.e. χs,n : r · eiθ →
rs · einθ for uniquely determined n ∈ Z and Re(s). Homcont(C×,C×) is isomorphic to

Z× C.

3. F is non-Archemedian. Let χ : O×F → S1. Since {1+pn}n≥0 constitute a neighborhood

basis of 1 ∈ O×F . So for large enough n, χ(1 + pn) = {1} because there are no smaller

subgroups of S1. Choose the smallest n, such that the above holds. Then pn is called

the conductor of χ. For F non-Archemedian, we have seen that Im(s) is not uniquely

determined since log is a multivalued function.

Two characters χ1, χ2 ∈ F are said to be equivalent, if χ1χ
−1
2 is unramified. Let s1 =

log(χ(q))/ log(q) and s2 = log(χ(q))/ log(q) + (2nπi)/ log(q) for some n ∈ Z. Then for x ∈
O×F , χ1(x)χ2(x)−1 = χ′(x)χ′(x)−1|x|s1−s2=1 = 1. And in particular, |q|s2−s1 = q2πin/ log(q) =

qlogq e
(2iπn)

= q0 = 1. So the space of quasi characters is {s ∈ C|s ∼ s′ if s− s′ = m 2πi
log(q)

,m ∈
Z}.

The space of complex-valued functions which we shall be working with is called the Schwartz-

Bruhat space of functions, denoted S(F ), instead of an ad hoc space.
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Definition 5.2.2. (Schwartz-Bruhat Space)

1. For F Archimedean, a smooth functions such that all its derivatives decay faster than

polynomials is called a Schwartz function.

2. A Schwartz-Bruhat function for F non-Archimedeanm, is the complex span of locally

constant functions with compact support.

It is interesting to note that the Fourier Transform is a bijection between spaces S(F )

and S(F̂ ).

5.3 Local ζ-Function

First we shall discuss the notion of a self-dual measure on F . Let ψ′ : F → S1 be a continuous

additive character of F . Define Fourier transform of f ∈ S(F ) as

f̂(ψ′) =

∫
F

f(x)ψ′(x)dx

Now if this measure dx is equal to the Haar measure dχ used to define the Fourier Inversion

formula in theorem 3.2.1, then we call dx a self-dual measure w.r.t. ψ′, its dual being dχ.

Tate in his thesis had normalized the self-dual measure on F w.r.t. the standard additive

continuous character (existence of such characters will be described later) such that the

identity f(x) =
ˆ̂
f(−x), following the treatment in Ramakrishnan, Valenza, chapter 7, we

shall avoid this normalization of the Haar measure for the local case. For any χ ∈ X(F ∗),

we can define the shifted dual χ∨(x) = χ(x)−1|x| for all x ∈ F ; explicitly for χ = µ| · |s,
χ∨ = µ−1| · |1−s.

Let f ∈ S(F ) and χ ∈ X(F ∗) then, we can define an associated local zeta function:

Z(f, χ) =

∫
F ∗
f(x)χ(x)d∗x

We immediately state the next theorem:

Theorem 5.3.1. Let f ∈ S(F ), χ = µ| · |s be an element of X(F ∗) and σ = Re(s) (called

exponent of χ). Then the following are true:
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1. Z(f, χ) is absolutely convergent for σ > 0.

2. If σ ∈ (0, 1), then we have the functional equation

Z(f̂ , χ∨) = γ(χ, ψ, dx)Z(f, χ)

for some γ(χ, ψ, dx) which is meromorphic as a function of s ∈ C and is independent

of f .

3. There exists a factor ε(χ, ψ, dx) ∈ C∗ such that

γ(χ, ψ, dx) = ε(χ, ψ, dx)
L(χ∨)

L(χ)

.

Proof. See [RV99, p. 247, ch. 7]

Lemma 5.3.2. For all χ ∈ X(F ∗) with exponent σ ∈ (0, 1), we have

Z(f, χ)Z(ĥ, χ∨) = Z(f̂ , χ∨)Z(h, χ)

for all f, h ∈ S(F ).

This implies that the ratio Z(f̂ , χ∨)/Z(f, χ) is independent of f .

Proof. See p.248, ch.7 of [RV99].

Below are some calculations regarding the proof of theorem 4.3.1, part 2 which follow

the treatment given in [RV99] and include some omitted ones and show explicitly what we

mean by a standard additive character of F .

Case 1: F = R. Choose f(x) = e−πx
2

in S(R). Fix a unitary character ψ(x) = e−2πix.

Define local zeta function w.r.t. χ(x) = |x|s,

Z(f, χ) =

∫
R×
f(x)χ(x)d∗x = 2

∫ ∞
0

e−πx
2|x|s−1dx
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Making substitution u = πx2 and after some algebraic manipulations we get

Z(f, χ) = π−s/2
∫ ∞

0

e−uus/2−1du = π−s/2Γ(s/2)

Where Γ(s) is the gamma function, s ∈ C.

Now fourier transform of f is itself, i.e. f = f̂ . And the dual character of |x|s is itself as

well. So Z(f̂ , χ∨) = Z(f, χ).

Now for χ(x) = sgn(x)|x|s, choose f1(x) = xe−πx
2
. Then

Z(f1, χ) =

∫
R×
xe−πx

2 x

|x|
|x|s−1dx

After the same substitution as before we get

Z(f1, χ) = π−( s+1
2

)

∫ ∞
0

e−uus−1/2du = π−( s+1
2

)Γ(
s+ 1

2
)

Similar result holds for the local zeta factor of fourier transform of f and character χ as the

previous result.

Proposition 5.3.3. The fourier transform of f(x) = e−πx
2

is itself.

Proof.
d

dy
f̂(y) =

∫ ∞
−∞

e−πx
2 d

dy
e−2πixydx =

∫ ∞
−∞

e−πx
2

(−2πix)e−2πixydx

= i

∫ ∞
−∞

(−2πx)e−πx
2

e−2πixydx

Next we make substitution u = πx2 when needed and integrate by parts to get

ie−2πixy

∫
−e−udu− i

∫
(−2πiy)e−2πixy(

∫
−e−udu)du

= 0 + i

∫
(2πiy)e2πixye−πx

2

dx = (−2πy) ˆf(y)

So we get a differential equation, which we solve,∫
d(f̂(y))/f̂(y) = −2πy =⇒ log(f̂(y)) = −πy2 + c
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so we finally have, f̂(y) = Ceπy
2
. Now f̂(0) = C, we determine this next.

f̂(0) =

∫ ∞
−∞

e−πx
2

dx

Now

f̂(0)2 =

∫ ∞
−∞

e−πx
2

dx

∫ ∞
−∞

e−πy
2

dy =

∫ ∞
−∞

∫ ∞
−∞

e−π(x2+y2)dydx

Now changing to polar co-ordinates, r2 = x2 + y2 and dydx = rdrdθ,∫ ∞
0

∫ 2π

0

e−πr
2

rdrdθ = 2π

∫ ∞
0

e−u(2π)−1du = 1

Hence f̂(0) = 1, so f̂(y) = e−πy
2
.

Now we return to our calculation of Z(f̂ , χ∨). For R, we have χ∨(x) = |x|1−s and

f1(x) = xe−πx
2
, then f̂1(y) = iye−πy

2
= if1(x). So Z(f̂1, χ

∨) = Z(if1, | · |1−s) = iZ(f1, | ·
|1−s) = iπ

2−s
2 Γ(2−s

2
).

Case 2: F = C and fn(z) = (2π)−1z̄ne−2πzz̄ for n ≥ 0 and fn(z) = (2π)−1z−ne−2πzz̄ for

n < 0. Quasi-characters look like r · eiθ → rs · einθ.The measure on C× is taken to be twice

the usual lebesgue measure. So

Z(fn, χs,n) =

∫
C×
fn(z)χs,n2d∗z

Changing to polar co-ordinates we get for n ≥ 0∫ 2π

0

∫ ∞
0

(2π)−1rne−inθe−2πr2einθr2s2

r
drdθ = 2

∫ ∞
0

e−2πr2r2s+n−1drdθ

And similarly for n < 0∫ 2π

0

∫ ∞
0

(2π)−1r−ne−inθe−2πr2einθr2s2

r
drdθ = 2

∫ ∞
0

e−2πr2r2s−n−1dr

We shall write the following for all n

Z(fn, χs,n) = 2

∫ ∞
0

e−2πr2r2s+|n|−1dr
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Make a change of variable u = 2πr2 to get

2(2π)
1−2s−|n|

2

∫ ∞
0

e−uu
2s+|n|−1

2
1

4π

√
2πu−1/2du = (2π)−(s+

|n|
2

)

∫ ∞
0

e−urs+
|n|
2
−1du

= (2π)−(s+
|n|
2

)Γ(s+
|n|
2

)

Now we calculate Z(f̂n, χ
∨
s,n) = Z(f̂n, χ1−s,−n). We need to find the fourier transform of fn.

Proposition 5.3.4. For all n, f̂n(x) = i|n|f−n(x).

Proof. Choose the character for fourier transform ψ(x) = e−4πi<x,ȳ>, where < x, ȳ > is the

Hermitian inner-product of these two vectors over R. Write x = x1 + ix2 and y = y1 + iy2.

For n = 0, f(x) = (2π)−1e−2π|x|2 and fourier transform of this is itself. Suppose f̂m(y) =

i|m|f−m(y) for some m > 0, i.e.

f̂m(y) =

∫ ∞
−∞

∫ ∞
−∞

(x1 − ix2)me−2π(x21+x22)e−4πi(x1y1−x2y2)dx1dx2

= im(y1 + iy2)−me−2π(y21+y22)

Write total derivative as (∂/∂y1 + i∂/∂y2) and define D = 1
4πi

(∂/∂y1 + i∂/∂y2). We know

D(h) = 0 if and only if h is analytic. Now apply D to both sides of our induction hypothesis,∫ ∞
−∞

∫ ∞
−∞

(x1 − ix2)m+1e−2π(x21+x22)e−4πi(x1y1−x2y2)dx1dx2

= im+1(y1 + iy2)−(m+1)e−2π(y21+y22)

This in terms of notation means f̂m+1(x) = im+1f−(m+1)(x) and by induction we have proved

our claim for n ≥ 0. Now suppose n < 0. We observe that fn(−x) = (2π)−1(−x)−ne−2π|x|2 =

(−1)nf−n(x). From fourier inversion
ˆ̂
f(x) = f(−x). So

ˆ̂
f−n(−x) = i−nf̂n(−x) = i−n(−1)−nf̂n(x),

this implies f̂n(x) = i−nf−n(x), proving the proposition.

Now we can calculate Z(f̂n, χ
∨
s,n) = Z(i|n|fn, χ1−s,−n) = i|n|Z(fn, χ1−s,−n) = i|n|(2π)−(1−s+ |n|

2
)Γ(1−

s+ |n|
2

). The non-Archimedean case, i.e. when F is a finite extension of Qp has been explicitly

described at [p.253, ch.7, RV99].
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5.4 Riemann-Roch and Poisson Summation

The discussion of this section closely follows section 7.2 of [RV99]. Let K be a Global field

of characteristic 0, and AK be its ring of adéles. Let S(Kv) be the Schawrtz-Bruhat space

of functions of Kv, the local field for the place v of K.

Definition 5.4.1. Define Adelic Schawrtz-Bruhat space of functions as

S(AK) := ⊗′vS(Kv) = {⊗vfv : fv ∈ S(Kv)∀v and fv|Ov = 1for almost all v}

For φ ∈ S(AK), define

φ̃(x) =
∑
δ∈K

φ(x+ δ)

The function φ̃ is invariant under translates by elements of K.

Definition 5.4.2. Let f : AK → C such that f̃ and
˜̂
f are both absolutely and uniformly

convergent on compact subsets, then we say f is admissible.

Lemma 5.4.1. If f ∈ S(AK), then it is admissible.

Proof. See [p.261, ch.7, RV99].

Theorem 5.4.2. (Poisson Summation Formula) Let f ∈ S(AK), then f̃ =
˜̂
f , i.e.∑

δ∈K

f(x+ δ) =
∑
δ∈K

f̂(x+ δ)

for all x ∈ AK.

Proof. See [p.262, ch.7, RV99]

Theorem 5.4.3. Let x ∈ A∗K and f ∈ S(AK), then

∑
δ∈K

f(δx) =
1

|x|
∑
δ∈k

f̂(δx−1).

Proof. See [p.264, ch.7, RV99].
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5.5 Global ζ-Function and Functional Equation

Let K be a Global field of characteristic 0. For each place v of K, let ψv be a continuous

additive character of Kv and dxv associated self-dual Haar measure. Explicitly, for every

place v,

ψv(x) = e−2πitr(x) for v infinite

ψv(x) = ψp(tr(x)) for v-finite, v|p

where the map ψp is the composition of maps Qp → Qp/Zp → Q/Z → S1. The first arrow

takes a p-adic number
∑∞

k=−n akp
k to

∑−1
k=−n akp

k, this is called the p-adic fractional part.

An example of such a character is e−2πi{x}p ; {·}p being the p-adic fractional part.

Let K/F be a finite extension of Global Fields. We define the trace map as follows:

tr : AK → AF

(xv)v →
∑
v|u

trKv/Fu(xv)u

as u ranges over places of F . So we have additive character

ψK(x) = ψ(tr(x))

Let dx denote the Haar measure on AK self-dual w.r.t. ψK . Moreover ∀a ∈ A∗K = IK

d(ax) = |a|dx

Now we shall describe the Global Zeta function.

Let χ : IK/K∗ → C∗, i.e. a continuous group homomorphism of IK that is trivial on K∗.

Then for f ∈ S(Ak) and χ = µ| · | where µ : IK/K∗ → S1 be a unitary character

Z(f, χ) =

∫
IK
f(x)χ(x)d∗x.

The Haar measure d∗x is induced by the product measure
∏

v d
∗xv and we normalize d∗xv

by letting

d∗xv =
qv

qv − 1

dxv
|xv|
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where qv is the cardinality of the residue field of Kv. This normalization gives the ring of

integers of Kv, denoted Ov, volume 1. Define χ∨ = χ−1| · |. Let I1
K = {x ∈ IK : |x| = 1}, and

C1
K = I1

K/K
∗. C1

K is compact, hence it has finite Haar measure.

Theorem 5.5.1. (Functional equation and Meromorphic Continuation) Z(f, χ) defined above,

has the functional equation

Z(f, χ) = Z(f̂ , χ∨)

and it becomes a meromorphic function of s on the complex plane.

The extended Z(f, χ), is holomorphic everywhere, except when µ = |·|−iτ , in this case Z(f, χ)

has poles at s = iτ and s = 1 + iτ with corresponding values given by

−Vol(C1
Kf(0)) and VolC1

K f̂(0)

respectively.

Proof. See [p.272, ch.7, RV99].
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Chapter 6

Introduction to the Theory of

Automorphic Forms and

Representations

In this chapter, we follow the discussion given in first few sections of chapter 1, 2 and 3 of

[DB97]. We try to generalize the method developed by Tate in his thesis to locally compact

non-abelian groups where we shall need ideas from Representation Theory of Lie Groups

(matrix groups) and we look at functions on the upper-half plane and then try to relate

them to representations of a matrix group.

6.1 The Modular Group

We shall refer to section 1.2 of [DB97] for the discussion in this chapter.

Definition 6.1.1. The Poincaré upper half plane is the set H = {z = x + iy ∈ C : x, y ∈
R and y > 0}.

Let G = SL(2,R). Define action of g ∈ G on H as

g =

(
a b

c d

)
: z → g(z) =

az + b

cz + d
.
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It is an easy check that g1(g2(z)) = (g1g2)(z), i.e. it is a group action. But since the identity

matrix I and −I, act trivially, we often pass to the group PSL(2,R) = G/{±I}. We shall

later see a more general action by the group GL(2,R+).

More generally we allow SL(2,C) (also GL(2,C)) to act on the Riemann Sphere P1(C) =

C ∪ {∞}.

Consider the action of the set of upper triangular matrices in G on H, suppose x+ iy ∈ H,

then (
y1/2 xy−1/2

y−1/2

)
: i→ x+ iy

Further the stabilizer of i under the action of G is SO(2), because

ai+ b

ci+ d
= i =⇒ a = d, b = −c

and since determinant is 1, we get SO(2) = {( a b
−b a ) : a2 + b2 = 1}. The space of upper

triangular matrices form a subgroup of G, say B. The upper-half plane H can be identified

with the set of cosets of G/SO(2), hence B acts transitively on H and we get

G = B · SO(2)

this is called the Iwasawa Decomposition of SL(2,R).

Definition 6.1.2. We shall mainly be interested in the following type of subgroups of SL(2,R):

1. Let Γ(1) = SL(2,Z) = {( a bc d ) ∈ SL(2,R) : a, b, c, d ∈ Z and ad − bc = 1)}. Γ(1) is a

discrete subgroup of SL(2,R).

2. (Congruence subgroups) We denote by Γ(N) for some N ∈ N, the subgroups

Γ(N) =

{(
a b

c d

)
∈ Γ(1)|a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N)

}
.

Consider a map Γ(1)→ SL(2,Z/NZ), taking every matrix entry to its image in Z/NZ.

Now SL(2,Z/NZ) is a finite group and hence Γ(N) which is the kernel of this map, is normal

in Γ(1) and has finite index. A subgroup of Γ(1) is called a congruence subgroup if it contains

Γ(N) for some N .
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Proposition 6.1.1. Let g = ( a bc d ) ∈ GL(2,R)+, then Im(gz) = det(g) Im(z)
|cz+d|2 for all z ∈ H.

Proof. Im(gz) = Im(az+b
cz+d

) = Im( (az+b)(cz+d)
|cz+d|2 ) = Im( (adz+bcz)

|cz+d|2 ) = (ad−bc)Im(z)
|cz+d|2 .

In particular, if g ∈ SL(2,R), then Im(gz) = Im(z)
|cz+d|2 .

Definition 6.1.3. If Γ is a subgroup of G, then we say action of Γ of the upper-half plane

is discontinuous if for any two compact subsets K1, K2 ⊂ H, the set

{γ ∈ Γ|γ(K1) ∩ γ(K2) 6= ∅}

is finite.

Proposition 6.1.2. Γ(1) acts discontinuously on H.

Proof. See [p.19, ch.1, DB97].

Definition 6.1.4. Suppose Γ is a subgroup of SL(2,R) acting discontinuously on H. A

fundamental domain for the action of Γ is an open set F ⊂ H such that

1. For every z ∈ H, there exists γ ∈ Γ such that γ(z) lies in the closure of F in H.

2. If for any two z1, z2 ∈ F , there exists γ ∈ Γ, such that γ(z1) = z2, then z1 = z2 and γ

is the identity matrix.

Proposition 6.1.3. Consider the set

F = {z = x+ iy ∈ H| − 1/2 < x < 1/2 and |z| > 1}

then F is a fundamental domain for Γ(1).

Proof. See [p.19, ch.1, DB97].

Proposition 6.1.4. SL(2,Z) is generated by the two elements

T =

(
1 1

1

)
and S =

(
−1

1

)
.

Proof. See [p.20, ch.1, DB97].
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If we embed the upper-half plane in the Riemann Sphere P1(C) = C∪{∞}, then P1(R) =

R ∪ {∞} is the topological boundary of H. The point ∞ should be regarded no different

from the other boundary points.

For example, SL(2,R) acts transitively on R ∪ {∞}.

This can be seen by consider the following mapping: Let D be the unit disc, then define a

map C : H → D
C(z) =

z − i
z + i

this map is called the Cayley Transform. C maps R ∪ {∞} onto the unit circle, hence they

are considered equivalent to each other.

If Γ is a discontinuous group acting on H, and Γ\H be set of orbits of elements of H under

the action of Γ. We give topology to the space Γ\H as follows: a subset of Γ\H is open if

and only if its pre-image under the canonical projection H → Γ\H is open in H.

Let Γ be a congruence subgroup. A cusp of Γ is a point where the fundamental domain for

Γ touches the boundary of H. Let P1(Q) = Q ∪ {∞}. SL(2,Q) acts transitively on P1(Q).

A subgroup of finite index can have only finitely many orbits on this set. An orbit of Γ in

P1(Q) is called a cusp of Γ. We have the more general notion of a cusp for a more general Γ

Definition 6.1.5. Let Γ be a discontinuous group acting on H such that Γ\H has finite

volume, then by a cusp of Γ, we mean

1. a point a ∈ P1(R) such that there exists γ ∈ Γ, γ 6= I with |tr(γ)| = 2 and γ(a) = a, or

2. an orbit of such points under the action of Γ

We shall end this section with a discussion on compactification of Γ\H for a congruence

group Γ. Consider the space H∗ = H ∪ Q ∪ {∞}. Let H have to usual topology induced

from the topology on the complex plane. We describe the topology in the neighbourhood of

points a ∈ Q ∪ {∞} as follows:

1. for a point a =∞, we take neighbourhoods of the form {∞} ∪ {z|Im(z) ≥ C for C >

0, C ∈ R}.

2. For a ∈ Q, we take neighbourhoods {a}∪U , where U is the interior of a circle touching

a.
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With this topology on H∗, we give Γ\H∗ the quotient topology.

6.2 Modular Forms for SL(2,Z)

The discussion in the section follows the discussion of section 1.3, [p.26, ch.1, DB97].

Definition 6.2.1. (Modular Form for SL(2,Z)) A modular form of weight k, where k is an

even non-negative integer, is a holomorphic function f on H, satisfying the identity:

f

(
az + b

cz + d

)
= (cz + d)kf(z) for

(
a b

c d

)
∈ Γ(1)

and f is holomorphic at the cusp ∞.

Since ( 1 1
1 ) ∈ Γ(1), so f(z + 1) = f(z) for all z ∈ H. So f has the Fourier expansion:

f(z) =
∞∑

n=−∞

ane
2πinz =

∞∑
n=−∞

anq
n

where we have made the change in variable as q = 2πinz. We have the following conditions:

1. If an = 0 for all n ≥ −N , N ∈ N, then f is meromorphic at ∞.

2. If an = 0 for all n ≥ −1, then f is holomorphic at ∞.

3. If f is holomorphic at ∞ and a0 = 0, the f is said to be cuspidal at ∞, and is called

a a cusp form.

The modular forms of weight k for Γ(1) = SL(2,Z (resp. the cusp forms of weight k)form

a space denoted Mk(Γ(1)) (resp. Sk(Γ(1))). It is useful to note that the space Mk(Γ(1)) is

finite dimensional (see [p.26, ch.1, DB97]).

An automorphic function for Γ, a congruence subgroup is a function f such that f(az+b
cz+d

) =

f(z), f is meromorphic on H and at ∞. It is a consequence of the maximum modulus

principle that an automorphic function with no poles is constant. But an automorphic

function maybe regarded as a Modular form of weight 0, hence we can say a modular form

of wight 0 is constant.
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Example 1. Suppose k ≥ 4 is an even integer. Define

Ek(z) =
1

2

∑
(m,n)∈Z2−{(0,0)}

(mz + n)−k.

Ek(z) is a modular form of weight k (see [p.28, ch.1, DB97]).

6.3 L-Function associated to a Modular Form for Γ(1)

Suppose f, g ∈ Sk(Γ(1)), then it is easily checked that f(z)g(z)yk stays invariant under

action by Γ(1).

Definition 6.3.1. (Petersson Inner Product) Let f, g ∈ Sk(Γ(1)), then define

〈f, g〉 =

∫
Γ(1)\H

f(z)g(z)yk
dxdy

y2

It shall be shown later that dxdy
y2

stays invariant under the action of GL(2,Q)×. Hence the

inner-product and the integral is well-defined, because, qn = e−2πinye2πinx, thus as y → ∞,

a cusp form f(z), having a fourier expansion
∑∞

n=1 anq
n decays rapidly as qn → 0. Hence

the integral is rapidly convergent. It is easy to check that the Petersson Inner Product is

Hermitian.

Definition 6.3.2. Let f(z) =
∑∞

n=0 anq
n be an element of Mk(Γ(1)), then we can associate

the following L-function to f :

L(s, f) =
∞∑
n=1

ann
−s.

L(s, f) is convergent for sufficiently large s. The following proposition gives a sufficient

estimate:

Proposition 6.3.1. If f is cuspidal, its Fourier coefficients satisfy an ≤ Cnk/2 for some

constant independent of n.

Proof. See [p.32, ch.1, DB97].
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We end this section with a result that establishes meromorphic continuation and func-

tional equation for L(s, f) defined above.

Proposition 6.3.2. Let L(s, f) be the L-function associated to a modular form. Define

Λ(s, f) = (2π)−sΓ(s)L(s, f)

then Λ(s, f) extends to an analytic continuation in s if f is a cusp form.

If f is not cuspidal then Λ(s, f) has poles at s = 0 and s = k. Moreover Λ(s, f) satisfies

Λ(s, f) = (−1)k/2Λ(k − s, f).

Proof. See [p.33, ch.1, DB97].

6.4 Hecke Operators

In this section we shall discuss a certain ring of operators acting on the space of Modular

forms, introduced by Hecke (1937). The commutativity of this ring of operators result in

Euler products of the associated L-functions introduced in the previous section. We shall

closely follow the treatment in section 1.4 of [DB97, p.41].

Definition 6.4.1. If f is a holomorphic function on H and γ = ( a bc d ) ∈ GL(2,R)+, then

define

(f |γ)(z) = (det γ)k/2(cz + d)−kf(
az + b

cz + d
).

After an algebraic calculation, it can be verified that (f |γ)γ′ = f |(γγ′), i.e. it is a bona

fide right action on holomorphic functions on H. We would like to state the following group

theoretic result before getting into Hecke Operators.

Proposition 6.4.1. Let α ∈ GL(2,Q)+. Then for the double coset Γ(1)αΓ(1):

Γ(1)αΓ(1) =
N⋃
i=1

Γ(1)αi, αi ∈ GL(2,Q)+.

Moreover the number of right cosets is equal to [Γ(1) : α−1Γ(1)α ∩ Γ(1)] which is finite.
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Proof. See [p.42, ch.1, DB97].

Let α ∈ GL(2,Q+), let αi be the right coset representatives of Γ(1)αΓ(1) as the previous

propositions. Define a Hecke operator Tα = T (α) on Mk(Γ(1)) as

f |Tα =
∑

f |αi

Now if γ ∈ Γ(1), then

(f |Tα)γ =
∑

f |αiγ =
∑

f |γαi =
∑

f |αi =
∑

f |Tα

So f |Tα is again a Modular form.

We can define a multiplication of two Hecke operators as follows:

Tα · Tβ =
∑

σ∈Γ(1)\GL(2,Q)+/Γ(1)

m(α, β;σ)Tσ

where m(α, β;σ) is the cardinality of the set of indices (i, j) such that σ ∈ Γ(1)αiβj. Using

this definition of product it can checked that the product is associative, i.e. for all α, β, γ ∈
GL(2,Q)+, (Tα · Tβ)Tγ = Tα(Tβ · Tγ). Thus the set of Hecke operators form an algebra,

denoted R.

Theorem 6.4.2. The Hecke algebra R is commutative.

Proof. See [p.45, ch.1, DB97]

Since R is commutative, there is no distinction between a right action or left action of f .

Proposition 6.4.3. The differential form dxdy
y2

is invariant under the action of GL(2,Q+).

Now choose N large enough so that f, g are both modular forms for Γ(N). We generalize

the Petersson Inner product for all congruence cusp forms:

〈f, g〉 =
1

[Γ(1) : Γ(N)]

∫
Γ(N):Γ(1)

f(z)g(z)yk
dxdy

y2
.

Theorem 6.4.4. The operator Tα is self-adjoint on Sk(Γ(1)), that is 〈f |Tα, g〉 = 〈f, g|Tα〉.
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Proof. See [p.46, ch. 1, DB97].

The algebra R is a commutative family of self-adjoint operators on the finite-dimensional

vector space Sk(Γ(1)). As a consequence, there exists a basis of the vector space consisting

of eigenfunctions of all the Hecke operators. If f is such an eigenform, let f =
∑
A(n)qn,

normalized so that A(1) = 1, we shall see that L(s, f) =
∑
A(n)n−s has a Euler product.

Definition 6.4.2. Let n be a positive integer. Let T (n) be the sum of Tα(d1,d2) where d1, d2

are integers such that d1d2 = n, d2|d1 and α(d1, d2) = ( d1 d2 )

Suppose f ∈ Sk(Γ(1)) has Fourier expansion
∑
A(n)qn, and T (n)f has Fourier expansion∑

B(m)qm. Then we have the following relation among the coefficients:

B(m) =
∑

ad=n,a|m

(a
d

)k/2
dA
(md
a

)
.

Proposition 6.4.5. Let f be a Hecke eigenform with eigenvalues λ(n) normalized as T (n)f =

n1−k/2λ(n)f and Fourier coefficients A(n), then

1. A(1) 6= 0.

2. If A(1) = 1, then λ(n) = A(n) for all n.

3. If A(1) = 1, then A(mn) = A(m)A(n) for all m,n co-prime.

Proof. See [p.48, ch.1, DB97].

We shall now see the Euler product for normalized Hecke eigenform.

Theorem 6.4.6. Let f be a normalized Hecke eigenform, then

L(s, f) =
∑

A(n)n−s =
∏
p

(1− A(p)p−s + pk−1−2s)−1.

Proof. See [p.49, ch.1, DB97].
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6.5 Twisted L-function

In this section we shall slightly generalize the functional equation for Λ(s, f) by considering

a twisted version. We shall define a space Sk(Γ0(N), ψ), which is a subspace of Sk(Γ1(N), ψ),

if f ∈ Sk(Γ0(N), ψ), it additionally satisfies f |γ = ψ(d) where γ = ( a bc d ) ∈ Γ0(N). Here

Γ0(N) is the subgroup of Γ(1) such that ( a bc d ) ≡ ( a b0 d ) (mod N) and Γ1(N) has the further

condition that a ≡ d ≡ 1 (mod N).

Now for such an f , define L(s, f, χ) =
∑
χ(n)A(n)n−s, where χ is a primitive Dirichlet

character modulo D and ψ is a Dirichlet modulo N and (N,D) = 1. Now let wN = ( −1
N )

and let g = f |wN . It can be seen that g|γ = ψ(d)g, so g ∈ Sk(Γ0(N), ψ). So we again define

L(s, g, χ) =
∑
χ(n)B(n)n−s.

We similarly define Λ(s, f, χ) = (2π)−sΓ(s)L(s, f, χ) and Λ(s, g, χ) = (2π)−sΓ(s)L(s, g, χ).

Proposition 6.5.1. There is a functional equation

Λ(s, f, χ) = ikχ(N)ψ(D)
τ(χ)2

D
(D2N)−s+k/2Λ(k − s, g, χ).

where τ(χ) =
∑

n (mod N) χ(n)e2πin/N is the Gauss Sum.

Proof. See section.1.5 [p.59, ch.1, DB97].

The final theorem of this chapter due to Weil, shows that is sufficiently many twisted

functional equations exists for f , then f is a modular form in Mk(Γ0(N), ψ).

Theorem 6.5.2. (Weil) Suppose ψ is a Dirichlet character modulo N a positive integer.

Suppose A(n), B(n) satisfy |A(n)|, |B(n)| = O(nK) for sufficiently large real number K. If

N,D are relatively prime and χ is a primitive Dirichlet character modulo D, let L1(s, χ) =∑
χ(n)A(n)n[ − s], L2(s, χ) =

∑
χ(n)B(n)n−s, define Λ1(s, χ) = (2π)−sΓ(s)L1(s, χ) and

Λ2(s, χ) = (2π)−sL2(s, χ).

Let S be a finite set of primes, including the ones diving N . Assume that whenever the con-

ductor D of χ is either 1 or a prime, Λ1(sχ) and Λ2(s, χ) originally defined re(s) sufficiently

large, have analytic continuation to all s, are bounded on all vertical strip σ1 ≤ re(s) ≤ σ2,

and satisfy functional equation:

Λ1(s, χ) = ikχ(N)ψ(D)
τ(χ)2

D
(D2N)−s+k/2Λ2(k − s, χ).
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Then f(z) =
∑
A(n)qn is a modular form in Mk(Γ0(N), ψ).

Proof. See [p.61, ch.1, DB97].

6.6 The Rankin-Selberg Method

We follow the reference [p.65, ch.1, DB97], section. 1.6. The Rankin-Selberg method is a

powerful way of proving functional equations of sufficiently many L-functions attached to

an automorphic form, which proves the existence of the automorphic form. For the sake of

brevity, we shall outline the basic ideas and state the main results. Define automorphic form

for SL(2,Z)

E(z, s) = π−sΓ(s)
1

2

∑ ys

|mz + n|2s

It is convergent for re(s) > 1 and E(γz, s) = E(z, s) for all γ ∈ Γ(1).

Let φ be an automorphic function for Γ(1), i.e. φ(γz) = φ(z) for all γ ∈ Γ(1). Suppose

φ(x+ iy) = O(y−N) for N > 0 as y →∞. Because φ(z + 1)φ(z), it has a Fourier expansion∑∞
−∞ φn(y)e2πinx, where φn(y) =

∫ 1

0
φ(x+ iy)e−2πinxdx. Let φ0 be the constant term. Define

M(s, φ0) =

∫ ∞
0

φ0(y)ys
dy

y

the Mellin transform of φ0. Let Λ(s) = π−sΓ(s)ζ(2s)M(s− 1, φ0).

Proposition 6.6.1. With the above hypotheses, we have

Λ(s) =

∫
Γ(1)\H

E(z, s)φ(z)
dxdy

y2
.

Lambda(s) so defined has meromorphic continuation to all s wit hat most simple poles at

s = 0 and s = 1. The residue of Λ(s) at s = 1 is 1
2

∫
Γ(1)\H φ(z)dxdy

y2
.

Proof. See [p.70, ch.1, DB97].

We end this section with an important application of this method. If f(z) =
∑
A(n)qn

and g(z) =
∑
B(n)qn are modular forms, then

∑
A(n)B(n)n−s has an analytic continuation
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to all s. We need to define the following:

L(s, f × g) = ζ(2s − 2k + 2)
∑∞

n=1A(n)B(n)n−s and Λ(s, f × g) = (2π)−2sΓ(s)Γ(s − k +

1)L(s, f × g).

Theorem 6.6.2. With notation as above and Λ(s, f × g) originally defined for re(s) suffi-

ciently large, it has a meromorphic continuation to all s. It is holomorphic everywhere except

possible poles at s = k and s = k − 1. We get functional equation

Λ(s, f × g) = Λ(2k − 1− s, f × g).

The residue at s = k is 1
2
π1−k〈f, g〉, the Petersson Inner product defined over Γ(1)\H.

Proof. See [p.72, ch.1, DB97]. Rough outline:

1. Let φ(z) = f(z)g(z)yk, this is an automorphic form

2. At least one of f or g needs to be a cusp form

3. f, g should be Hecke eigenforms

4. Find φ0(y)

5. Define M(s, φ0) the Mellin transform

6. Define Λ(s) = π−sΓ(s)ζ(2s)M(s− 1, φ0) and derive the functional equation.

6.7 Classical Automorphic Forms and Representations

This section follows section 3.2 of [p.278, DB97].

Let G = GL(2,R)+, it acts on C∞(G) by right-translation, φ(g)F (x) = F (xg). Let Γ be

a discrete subgroup of G such that Γ\G has finite volume. There is an action of the Lie

Algebra of G which are 2 matrices with Lie Bracket [X, Y ] = XY − Y X. The action is

X(F (g)) =
d

dt
F (getX)|t=0
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for F ∈ C∞(G). Let K = SO(2). We say such an F is K-finite, if ρ(k)F for all k ∈ K

forms a finite dimensional vector space. Let C(Γ\G,χ, ω) be space of continuous functions

F : G→ C such that

1. F (γg) = χ(γ)F (g) for all γ ∈ Γ, g ∈ G.

2. F (zg) = ω(z)F (g) where z ∈ Z(R), which is the center of G, consisting of scalar

matrices, g ∈ G.

Let A(Γ, χ, ω) be the set of functions that are K-finite and Z-finite, where Z is the center of

the universa enveloping algebra containing the Lie algebra of G, finiteness defined in a similar

manner to K-finiteness, also they satisfy |F (g)| < C||g||N for some constant C,N where ||g||
is the length of the vector (g, det(g)−1) calculated in R5. A cusp form of A(Γ, χ, ω), also

satisfies the following, if a = ∞, then if either χ(τr) 6= 1 where τr ∈ Γ is the generator

of the stabilier of ∞ inside Γ, although it is not necessary for it to be a generator, or∫ r
0
F (( 1 x

1 )g)dx = 0. If a 6=∞, then we use conjugation to similarly define cuspidality.

Definition 6.7.1. Let g ∈ G. Define a slash operator on f a function on the upper-half

plane:

f |zkg =
( cz + d

|cz + d|
)k
f
(az + b

cz + d

)
for g = ( a bc d ) ∈ G.

A Maass form is not holomorphic, but rather is an eigenform of the non-Eucidean Lapla-

cian operator

∆k = −y2
(
δ2/δx2 + δ2/δy2

)
+ ikyδ/δx

this operator commutes with the action given in the definition above.

The space L2(Γ\G,χ, ω) is the space of square integrable functions satisfying the conditions

1 and 2 above, and L2
0(Γ\G,χ, ω) is the subspace of cusp forms, cuspidality defined in the

same sense as A(Γ, χ, ω), but the sense of equality being almost everywhere.

Let φ ∈ C∞c (G). If f ∈ L2(Γ\G,χ, ω), we define

(ρ(φ)f)g =

∫
G

f(gh)φ(h)dh.

Definition 6.7.2. Siegel sets are nicely shaped substitutes for the fundamental domains.
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1. Fc,d is the set of z = x+ iy ∈ H such that 0 ≤ x ≤ d and y ≥ c.

2. F∞d is the set of points on the upper half plane with 0 ≤ x ≤ d and no condition on y.

Proposition 6.7.1. (Gelfand, Garev and Piatetski-Shapiro) Let φ ∈ C∞c (G).

1. There exists a constants depending on φ, such that for all f ∈ L2
0(Γ\G,χ, ω), we have

supg∈G|ρ(φ)f(g)| ≤ C||f ||2, where || · ||2 is the L2 norm.

2. The restriction of the operator ρ(φ) to L2
0(Γ\G,χ, ω) is a compact operator.

Theorem 6.7.2. The space L2
0(Γ\G,χ, ω) decomposes into direct sum of Hilbert subspaces

which are invariant under the right regular representation ρ. Let H be such a subspace, then

the K-finite vectors in H are dense and every K-finite vector is automatically an element of

C∞(Γ\G,χ, ω). The K-finite vectors form an irreducible admissible (g, K) module contained

in A0(Γ\G,χ, ω).(g is the Lie algebra associated to G).

Proof. See [p.289, ch.3, DB97].

Theorem 6.7.3. 1. Let (π, V ) be an irreducible admissible unitary representation of GL(2,R).

Then the multiplicity of π in the decomposition of L2
0(Γ\G,χ, ω) is finite.

2. Let λ ∈ C and let σ be a character of K. Then A0(Γ, χ, ω, λ, ρ) is finite dimensional.

Proof. See [p.290, ch.3, DB97].

6.8 Automorphic Representations of GL(n)

The reference for the discussion in this section is [p.291, ch.3, DB97], section.3.3. We shall

also follow the notation of [DB97] for less confusion.

Let A be the adele ring of a number field F . Af denote the ring of finite adeles (only

containing the non-archimedean local factors). An Automorphic representation of GL(n,A)

is rather a representation of GL(n,Af ), which is simultaneously a (g∞, K∞) module, where

g∞ =
∏

v Archimedean gl(n, Fv) and K∞ is similarly defined.

The group GL(n,A) is the restricted direct product of the groups GL(n, Fv) w.r.t. the
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maximal compact subgroups GL(n,Ov) for non-archimedean places and for the archimedean

places we again take the maximal compact subgroups. GL(n,A) is unimodular, i.e. the left

and right Haar measures coincide. Note that we assume n = 2 and A = Q for the proofs

but state them for the most general case possible.

Theorem 6.8.1. Let F be an algebraic number field.

1. SL(n, F∞)SL(n, F ) is dense in SL(n,A).

2. Let K0 be an open compact subgroup of GL(n,Af ). Assume that the image of K0 in

A×f under the determinant map is
∏

v 6∈S∞ O
×
v . Then the cardinality of

GL(n, F )GL(n, F∞)\GL(n,A)/K0

is equal to the class number of F (which is the cardinality of the class group of F , order

of the group generated by fractional ideals, called the class group of F and S∞ is the

set containing all the non-archimedean places.)

Proof. See [p.294, ch.3, DB97].

Proposition 6.8.2. Suppose that A is the adele ring of Q. The inclusion SL(2,R) →
GL(2, A) induces a homomorphism

Γ0(N)\SL(2,R) ∼= Z(A)GL(2,Q)\GL(2, A)/K0(N)

(Z(A) is the center of GL(n,A)).

Proof. See [p.294, ch.3, DB97].

In light of the previous theorem, if we have a function f defined on the upper-half plane

satisfying certain properties, then one can pull it back via this isomorphism and approach it

from the adelic point of view. Hence we have the following result:

Proposition 6.8.3. (Gelfand, Garev and Piatetski-Shapiro) Let φ ∈ C∞c (GL(n,A)).

1. There exists constant C > 0, depending on φ such that

supg∈GL(2,A)|ρ(φ)f(g)| ≤ C||f ||2.
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for all f ∈ L2
0(GL(2, F )\GL(2, A), ω).

2. The operator ρ(φ) is compact on L2
0(GL(n.F )\GL(n,A), ω).

Proof. See [p.297, ch.3, DB97].

We end this section and the thesis with the following theorem:

Theorem 6.8.4. The space L2
0(G(n, F )\GL(n,A), ω) decomposes into a Hilbert space direct

sum of irreducible invariant subspaces.

Proof. We assume again n = 2, F = Q. The proof is also similar to theorem 6.7.2. See

[p.299, ch.3, BD97] for the theorem.
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