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Abstract

Earthquake catalogs are not complete over the entire range of magnitudes. A
preliminary step that should be performed before any seismicity and hazard-related
studies is to assess the quality, consistency and completeness of the earthquake
catalogs. This can be achieved by assessing a threshold magnitude called magnitude of
completeness, M., defined as the lowest magnitude above which all the magnitudes
follow Gutenberg-Richter law(GR law). Assessing M_have received considerable
attention in the last few decades. In general, most of the catalog based methods are
deployed by fitting GR law fit the observed Frequency magnitude distribution (FMD) of
the earthquake magnitudes. Although, the limitation of these methods in estimating M,
is that they fail in the case of less number of events in the catalog. We propose new
catalog-based methods would work even with less number of events in the catalog. The
stochastic method used for generating the synthetics for testing the method was by
modelling the FMD using the probability density function(pdf) of the normal distribution
to model FMD below M, and GR law for magnitudes greater than or equal to M.. The
best estimate of M.was drawn from a set of assumed M. by using two methods. We
check which of these assumed M_.'s satisfies the criteria of method 1) KS distance
approach and method 2) maximum probability approach, by comparing original FMD
with the modelled FMD. A comparative analysis was carried out to check the
performance of the proposed methods with those of three existing catalog based
methods, using generated synthetics. Furthermore, we are planning to develop
synthetic catalog by incorporating the uncertainties associated with the earthquake
magnitudes. In addition, we are focussed to come up with realistic synthetic catalogs

which carry the spatial and temporal similarity with the catalog.



CHAPTER 1

Introduction

1.1 Aim of the Study

Earthquake catalogs are considered to be one of the foremost necessary products of
geophysical sciences. Seismological research highly depends on the use of earthquake
catalogs as the source of data in regards to the spatial and temporal distribution of
earthquakes. They are a primary result of the seismological network and a general
source of information for varied studies such as earthquake physics, seismicity,
seismotectonics and hazard analysis. Seismological network evolves over time as a
result of improved instrumentation and the progress in better understanding of the
earth’s structure (Hutton, 2010). The spatial and temporal properties of the seismic
network considerably affect the level of earthquake detections and lead to
inhomogeneous earthquake catalogs. The question that arises here is why not all the
earthquakes detected. The reasons responsible for scarcity of detection of smaller
magnitude events as outlined by Mignan, A., J. Woessner (2012) such as, (1) not able
to distinguish smaller events from the background noise on the seismograph, (2) for an
event to be reported, a minimum number of stations should have received the signal in
order to commence the location procedure, and (3) network operators have an authority
to choose a lower bound and discard all events below it. As a result, the current
catalogs available are considered to be only complete up to a certain magnitude(the
magnitude of completeness, M,.) and for events greater than it. Using events with
magnitude less than the magnitude of completeness, i.e. incomplete data, leads to
inaccurate assessments of Gutenberg-Richter law(GR law) parameters and erroneous
seismicity interpretations. Previous studies have been carried out to resolve the critical
issue of completeness of catalog by estimating a completeness magnitude, M,

theoretically defined as the threshold magnitude above which 100% of the events in a



space-time volume are detected (Rydelek and Sacks, 1989). The aim of the thesis is to
propose a new catalog based method to estimate M.and its uncertainty as well as
perform a comparative analysis with the existing deployed methods. Although the
estimation of M, is performed routinely, these state of the art methods is based on
different FMD assumptions and results in different values of the estimation of M.. The
uncertainties of the earthquake catalogs along with the intrinsic assumptions that go into

the pre-processing of the earthquake catalog.

1.2 Theoretical Background

M _ is theoretically defined as the minimum magnitude above which all earthquakes are

c

reliably recorded in a given space-time window. Methods used for Estimation of M. can
be classified into two categories Network-based methods(Schorlemmer and Woessner
2008; D’Alessandro et al. 2011) and catalog-based methods(Rydelek and Sacks, 1989;
Woessner and Wiemer, 2005). Network-based methods are based on the detection and
sensitivity properties of the seismic network with prior information of the density and
distribution of stations.

This approach uses a probability-based magnitude of completeness M, (x,t) , at a given
location x, time t and a predefined probability level P based on the number of network
stations available, M,(x,t) is defined as the lowest magnitude at which the probability of
detection P .(m,x,t) is 1-Q, where Q is the probability that an earthquake is not
detected. This implies probabilistic magnitude of completeness is the function of x,t, Q
is given by -

Mp(x,t,Q) = min(m| P (m,x,t) = 1-Q)wheremeM and M is the interval of possible
magnitudes of completeness.

Whereas the catalog-based methods obeys a different definition of the magnitude of
completeness, M.. It is defined as the lowest magnitude at which the FMD deviates
from the GR law.

Comparing the aforementioned definitions of the magnitude of completeness we can

say that Network-based methods are always better than Catalog based methods.
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However, ensuring this fact is not a trivial task as it involves the understanding of
seismicity as well as mixing of waveforms of two events which is very difficult to

accomplish.

1.2.1 Frequency Magnitude Distribution(FMD)
Frequency Magnitude Distribution as the name suggests is the visual representation of
the variation of the frequency of magnitudes in a specified bin size, with respect to the

magnitudes in a given earthquake catalog.

1.2.2 Gutenberg Richter Law

In this section, the basic principles of earthquake frequency-magnitude distribution are
presented along with the description and determination process of the involved
parameters. Gutenberg Richter law (GR law) illustrates the relationship between the

frequency of magnitudes and the occurrence of earthquakes. The GR law is given by-

log,,(N) = a-bm 1.1

where, N is the cumulative number of earthquakes having magnitudes larger than M,
and a and b are constants. The parameter b commonly referred to as b-value is
commonly closed to 1.0 in seismically active regions(Lay and Wallace, 1995). Fig 1.1

shows the FMD of the California catalog used for the study.
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Fig 1.1 Frequency magnitude distribution(FMD) of the California Catalog

1.2.3 Significance of estimating GR law parameter b-value and M,

Estimation of the magnitude of completeness, M _has a direct influence on the
evaluation of GR law parameter i.e. b — value as reported by C. Godano, E. Lippiello, L.
de Arcangelis, (2014). In general, the GR law parameters are the basis of seismic
hazard studies (Cornell, 1968) and of earthquake forecast models (Wiemer and
Schorlemmer 2007). The spatiotemporal variation of b — value in a given region is highly
linked to the characteristics of seismic hazard analysis, for instance, high b-values in the

magma chambers indicates high seismicity in the region (Sanchez et al., 2004; Wiemer
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and McNutt, 1997). It has also been outlined by Schorlemmer et al., (2005) the regions
with low b —value implies that large differential stress of the earth’s crust and thereby
pointing towards the end of the seismic cycle. Hence, correct estimation of M. and in

turn GR law parameters is an essential task.

1.3 State of the art Methods: Review

1. Maximum Curvature (MAXC),( Wiemer and Wyss, 2000)
Maximum curvature method is a non-parametric method and is considered to be one of
the fastest methods to estimate M. . It determines the maximum of the first derivative of
FMD. Also, the most common practice of using this method is to find the bin of
magnitudes with the highest frequency in non-cumulative FMD, this matches with the

former approach i.e. the maximum of the first derivative of FMD.

2. The M. by b-value stability (MBS) method,(Cao and Gao, 2002)
In this approach, the M. is estimated by studying the stability of b-value with respect to
a cut off magnitude, M, . Woessner and Wiemer, (2005) named the method as MBS.
The author found that b-value increases for M., <M, and for M., >= M, it doesn't
change. The objective was to stabilize the b-value numerically, the method was modified

by Woessner and Wiemer, (2005) he defined an uncertainty measure of b-value given

by

n —
8b = 23b°« [ X (M -M) /N(N-1) 1.2
i=1

Where M is the mean magnitude and N is the total no. of events in the catalog. Further,
for the estimation of M, is defined as the first magnitude at which Ab = |bave - b| < &b
, Where bave is the mean of the evaluated b-values for the successive cut off magnitude

bins of size 0.5.
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3. Goodness-of-Fit Test (GFT)
GFT was introduced by Wiemer and Wyss, (2000), the test estimated M. by
comparing the synthetic data with the FMD. The goodness of fit is computed using the

following parameter.
Mmax
R(a,b,Ms) = 100-( ¥ (/B;-S;|/Y B;) * 100) 1.3
Mco i
where B, and S, are the observed and predicted value cumulative number of events in
each magnitude bin. The first cut off magnitude M, at which the value of R comes out
to be 90% or 95% is defined as estimated M., .
All the above-mentioned methods have been implemented using various synthetics and

compared with the proposed method(see Chapter 3).
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CHAPTER 2
Method

Assessing the magnitude of completeness M, is one of the prerequisites for acquiring a
complete catalog, hence making it reliable for subsequent seismic analysis. Assuming
that earthquakes follow GR law, M. can be defined as the lowest magnitude at which
the FMD deviates from the exponential decay (Zuniga and Wyss, 1995). In an ideal
case, we can ensure that the above-defined definition of M. reconciles with the actual
definition of M (described in section 1.2) whereas in the case of real catalogs ensuring
that this definition of M, adapts the actual definition of M is a challenging task. Obeying
this definition of M, the chapter throws light on two different approaches that we

propose to estimate the GR law parameter b-value followed by estimation of M.

2.1 Maximum probability Estimator(MPE)

To assess the completeness of catalog we first tested a new method to evaluate the
magnitude of completeness, M.. The following derivation of estimating the b-value
describes all the steps involved in evaluating .

Assuming that the magnitudes are discrete, the data greater than and equal to M, is
represented as

m= {m;, my, my,....,m,} where n is the total number of events in the dataset.

The probability mass function, PMF is the exponential relation exhibiting GR law, given

by:
f(mm) = N.(B)*exp(-Pm) , V m, > M, 2.1

The summation of the PMF multiplied by a normalizing constant for all the events above

in the catalog should be 1 i.e.
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N.(B) = [ePmi+ ePma + ePma ] =1

Ne®) =« exp(-pm,) = 1 2.2

S No@) =1 3 exp(-Bm)) 23
i=1

The summation term in the denominator of the above equation is an infinite geometric
series with first term a = exp(-Pm,) where m;, = m, and common ratio
r = exp(- BPAm), where Am = m_, — m, i.e. the difference between two consecutive
magnitudes in an ordered list of events.

Let us denote thissum by S, ,givenby S, = a/1-r

Therefore, S = exp(-pBm.)/ 1 — exp(— BAm) 2.4
Substituting S , ineq 2.3

= N (B) = 1 - exp(-BAm) exp(-pm ) 2.5

The likelihood of the PMF can be defined as

L(Bjm) = II exp(-Bm;)* N .(B), where m is the given set of events in the catalog
i=1

2.6

Eq 2.6 can further be written as

n

LBlm) =V c (B)" T1 exp(=Bm ;) 2.7

i=1

Taking log both the sides would result in log-likelihood given by
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LI =n* log((N ¢ (§) = X pm, 2.8

Substituting the value of N . (B) in the above equation becomes

LL@m) = n* log(1 - exp(~ BAm) ~B+ T(m, - m ) 2.9

i=1

Differentiating Eqg. 2.9 with respect to [ and equating, further equating it to zero to

solve for B will give an expression for the estimated value of B denoted by E and is

given by the following equation

/B\ = (Am)"' * log(1 + nAm/ 2(m; —m.)) 2.10
i=1

Furthermore, to evaluate M . we compute the likelihood points which is a function of

the data m,  and m . given by equation 2.11

LP ;(m, m., B) = log(1 — exp(~PAm)) —p+(m; — m,) Vi=1ton 2.11

Using the likelihood points a true log likelihood value is computed denoted by LL

true

LL, = max(LP(m, m, B)) 2.12

true

The pair of m, and B for which LL, , is defined is used to produce a GR law synthetics
given by Eq. .... for N number of times. Again the same procedure is obeyed to
estimate B (say B *) using Eq 2.10 followed by calculating the true likelihoods (Eq 2.12)
for all the generated N synthetics denoted by LL

LLy = {LLyy LL s LL o } 2.13

truel, true2’

A 90% interquartile range of LL . is calculated, if LL, _(eq 2.12) lies in this range

true

eff
then m, for which LL_ , is defined is considered to be our estimated M. .
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Our algorithm to estimate M. is as follows,

Given an earthquake catalogue of the region of study, extract the magnitude
attribute from the catalogue.

Bin the magnitudes, by fixing the bin width (eg ém = 0.1).

3. Assume an M, for instance, M, = 1.1

9.

Using the assumed M, and the binned magnitudes estimate the b-value(eq.
2.10) and remove all the magnitudes which are less than this assumed M...
Compute the log likelihood points of the binned data, given by eq 2.11, followed
by calculating the true likelihood value(eq 2.12)

Repeat the steps 4 and 5 for all assumed of M...

Sort the set of assumed M, and b-values with respect to the log likelihood (in
descending order).

Generate GR synthetic data(see section 2.3.1) for the first pair sorted M. and
b-value(Note: this pair of M. and b-value have the max log likelihood value)
which follows GR law (eq 2.1).

Repeat steps 4 and 5 for the synthetics generated in step 8.

10. Reiterate the 8th and 9th steps for 10,000 times, and store the log likelihood for

each iteration. This will result in a distribution of log-likelihoods(say LL_eff).

11. The M, for which the true likelihood lies in the 90% confidence interval of LL_eff

2.2

is our estimated M, .absolute difference between assumed Mc and the Mc used
for generating GR synthetics is the estimated Mc i.e. the desired output, else

repeat this step until the result is obtained.

Kolmogorov-Smirnov test (KS - test)

The goal of this method is to estimate the value of M. by making the probability

distributions of the observed data and the best fit GR model as similar as possible for all
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the magnitudes above M_.. To compute the distance between two probability
distributions, we used Kolmogorov - Smirnov or KS statistic, defined as the maximum
distance between the cumulative distribution functions (CDFs) of the observed data and

the fitted model, given by eq 2.14

D = max |S(x) — P(X)] 2.14
where S(x) is the CDF of the observed data and P (x)is the CDF of the GR model that
best fits the data for all the magnitudes above M..

The CDF of the GR model is given by-
F(m) = 1- exp(-B(m-m,)) 2.15
The method can be applied to both discrete and continuous data. The value of  in the
above equation is given by the formula-
B=1<M> - M, 2.16

where <M >is the mean of all the magnitudes greater than or equal to M,

The steps involved in this approach to estimate M, are explained by the help of a
flowchart (Fig 2.1)
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Given M and b-value

Generate Synthetic Data

Assume Mc, Estimate
b-value

|

Compute ecdf and Generate Random N1
theoretical cdf % ' points using RandGr

Compute ecdf and
theoretical cdf

KS Statistics
: (KS eff distribution]
Set Indicator, to check . .
KS_true lies in the quantile
range

Quantile Range

Assumed

Mc is the

estimated
Mc

Fig 2.1 Algorithm- Flowchart of the testing the KS test
The method is explained in brief in the following algorithm.
To begin with, we assume an M. And estimate the b-value using the MLE(eq 2.11).

The basic idea of our method is to use the Kolmogorov-Smirnov test (KS test).

Algorithm

The general algorithm of our method is the following:

1. Using the KS test compute Kolmogorov-Smirnov statistic (eq 2.13) for the original
catalogue and call it KStrue.

2. Next, we compute the distribution of magnitudes with the same B and M. values,
which represents a perfect fit to a power law, using the random uniform function,

U(0,1) and define this function to be a random generator (RandGR hereatfter).

M = m_ - (log(1 - U(0,1))/p) 2.14

3. Computing the Kolmogorov-Smirnov statistic for the distribution generated in step
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2, and name it KSeff.

4. Iterating steps 2 and 3 for 10,000 times and forms a KSeff distribution.

5. Using the quantile MATLAB built-in function, we compute the 90% confidence
interval of the KSeff distribution.

6. The M, for which the difference between KStrue and the confidence interval
computed in step 5 is less than zero, we claim that to be our estimated M. (EM._).

7. To find the error in estimation is computed by calculating the absolute difference

between the EM,. and M..

2.3 Log-Likelihood test(LL-test)

After estimating the value of B (eq. 2.10), the maximum likelihood estimator is been used

to compute the log-likelihood by using the following formula:

N
LL,,. = N =log(l — exp(-BAm)) - = ;1( m;, — mg) 2.15

where N is the number of events greater than or equal to m,.in a given catalog.

The LL is computed for all the assumed m,'s .

true

The pair of m, and B for which LL,  is defined is used to produce a GR law synthetics
given by Eqg. .... N times. Again the same procedure is obeyed to estimate 3 (say B *)
using Eq 2.10 followed by calculating the true likelihoods (Eq 2.15) for all the generated
N synthetics denoted by LL

LLy; = {LLyyeq LLypygs oo LL, s oo LL o} 2.16

truel, true2’

A 90% interquartile range of LL . is calculated, if LL, _(eq 2.15) lies in this range

true

eff
then m, for which LL_ , is defined is considered to be our estimated M. .

2.4 Extension of MLE (EMLE)

Furthermore, in order to take into account the uncertainties of the magnitudes recorded at
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the seismic stations while estimating the magnitude of completeness, an algorithm has
been designed.

1) The first step of the method is to deal with the uncertainties of the magnitudes by
binning the magnitudes of the catalog by the following formula:

m*, =[(m;, — my)/dm] «ém + m, + 6m/2 2.17
where, m*; is the ith binned magnitude, dmis the bin width and m, is the minimum
magnitude of the catalog.

2) The unique values of the binned magnitudes are used as a set of assumed M,
compute the further calculations, let these unique values of magnitudes be denoted by

{m*,, m",, ..., m", }and let the no. of events in these non-empty bins be

3) Assuming m*; to be the magnitude of completeness using the equations 1.3 and

2.10 the estimate of b —value can be computed using the following equation

N
b = (8m * log10)™" » log((1+ 8m)* N)/ Y (m*, - m*;)) 2.18

i=1

J
where m”; is the set of magnitudes which are greater than m*; and N = X n" is the
k=j

total number of magnitudes greater than m*; in the binned catalog.

4) The expected number of events in the kth non-empty bin [m*, - ém/2, m*, + 6m/2]
is given by:

E[n*] = N % (10770 ™) — 1070 om=my)y “the process of finding the expected number

of events in the kth bin is reiterated for all the non-empty bins defined above for which

*

m*, > m IE
5) For each of the above defined non-empty bins, we plan to check whether the observed
number of events i.e. n*, falls within the 95%ile of a Poissonian distribution whose mean
is given by E[n*]. If this is true then the magnitude bin will be considered as consistent.

A fraction of such consistent bins is computed say f, if f is greater than 90%, then the
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combination of m*;, dmandb will be an appropriate combination for the given

earthquake catalog.
6) Reiterate steps 3-5 for all the unique magnitudes assumed in step 2.

7) Repeat the steps 2-6 for any typical value of 6m.

Given dataset of Earthquakes

Bin the magnitudes, with bin size 6m

Find unique magnitudes (m;) along with the number of
events in each non-empty bin.
Let the length of unigue magnitudes be J

Estimate the b-value for all the magnitudes greater or equal
to m;. Let the number of events in this subcatalog be N

Using N and estimated b-value compute the expected
/ number of magnitudes in k*" bin (E[n;])

]
iterations

For each of the non-empty bin, check whether the observed

no. of events ny, lies in the 95%ile of Poissonian distribution
whose mean is given by E[n,]

Label the set of dm, b and m; as Consistent

Find the fraction, f , of
consistent magnitude bins.

Check if, f >90% The combination

Change of
the m;,b and ém is

value of an appropriate
&m combination for

the given
catalog.

Fig 2.2 Algorithm- Flowchart of the testing the EMLE test

The steps involved in this approach to jointly estimate M_ b and ém are explained in a

simpler way with the help of a flowchart (Fig 2.2)
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2.5 Generating Synthetic Data

For testing the robustness of the proposed algorithm, we have generated 2 different

sets of synthetic data, described in the following subsections.
2.5.1 GR Law Synthetics

A unimodal distribution function, that follows GR law frequency relation for M. and all
the magnitudes above it. The goal of testing the method with GR law synthetics was
performing a controlled experiment since this is the most trivial way of generating the
desired dataset. The recipe that goes into simulating the GR law synthetics is as
follows-
The cumulative distribution function of GR law(eq 1.1) is given by-
F(m) = 1- exp(-B(m—-m.)) 2.19

F(m) in eq 2.19 are generated using random uniform function U(0,1). Then the eq.
2.19 is rewritten as

U@©,1) = 1 - exp(- p(m—m,)) 2.20
The equation 2.21 is the inverse function of Eq. 2.20 to generate synthetic data given by

m = m, — (log(1-U(0,1)))/p 2.21
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The histogram plot the synthetics hence generated using eq 2.20 is shown in fig 2.1 for
M, = 3andb-val =1

Histogram: GR law Synthetics
I T T

10%¢

log(N)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Magnitude

Fig 2.2 Histogram plot of GR Law Synthetic forM. = 3andb —-val =1

2.5.2 Normal and GR Synthetics (NGR Synthetics)

Unlike GR law model, this is a bimodal distribution function of magnitudes where M,
and all the magnitudes above it follow GR law and the magnitudes below M. obeys the

Normal distribution function. The pdf of the synthetic data hence simulated is given by:

f(m|o,B) = {1NW exp(— (m — p)2)/2062%, form < Mc} 2.21

= {exp(-Bm), form>=M_}
This is a parametric way of generating data below M,.. The comparison of the real and

synthetic data computed using Eqg. 2.21 is being shown in fig 2.3
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6Real vs Synthetics, Synthetics - Normal+GR, Mc=3.9, b-val = 0.9, sigma = 0.8
10 :E T T T I I T

‘ 3

E [FISynthetics| -

- [TIReal 1
10%F

log10(N)
._I
o
w

Magnitude

Fig 2.3 Histogram plot of Real vs Synthetics data: NGR, M. = 3.9, b —value =0.9, sigma = 0.8

The relation between the parameters involved along with the constraints used to
generate this synthetic data are given by equations 2.22 and 2.23
In order to achieve the continuity of the FMD at M., we constrained the FMD for
magnitudes below M. by introducing a normalizing constant given by,

N . = f(m,)/f(m,,) where n+1 istheindex of M, 2.22

The parameter of the normal distribution p is evaluated using

H=m, — G*\/—Zlog(\/ﬁ * 0 * exp(—Pm.)) 2.23

The equations 2.13 and 2.14 are derived using the continuity condition of the equation
2.12 which also defines the relationship between all the three parameters of the

complete pdf.
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CHAPTER 3

Results

The results obtained by implementing the proposed methods along with state of the art on
various synthetic datasets are presented in this chapter. The plots that we will be
illustrating hereafter are error maps. The error maps provide an inference of how do the
errors(absolute difference between the presumed M. and the estimated M_.) in the
estimation of M, vary with respect to presumed M, and b-value hinting towards how
robust are the proposed methods, how well they perform on varying synthetics as

compared to the state of the art method.

3.1 Synthetic Tests

This section will demonstrate a variety of error maps obtained by experimenting our
proposed methods as well as the state of the art (discussed in section 1.3) on different
synthetics(described in section 2.4) i.e. GR and NGR synthetics.

Figure 3.1 is the output of the error maps of MPE estimator tested on the parametric
synthetics i.e. GR and NGR. It can be observed in the case of Fig 3.1(a), the map
indicates that the MPE method estimates M. with zero error for 80% of the pairs of

presumed b-value and M, .



27

b-val

b-val

Mc

Fig 3.1. Error Maps of a) GR, b) NGR (o = 20.0) and tested on MPE method to estimate M.

Fig 3.1(b) is an error map of NGR synthetics examined by using the MPE method

illustrates for the presumed value of M _ in the range of 1to 2 the estimate converges
with an error of +2 respect to presumed b - value ranging from 0.75to 1.25. For

presumed M.>?2 the errors in  estimation converge to  zero.
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Fig 3.2. Error Maps of a) GR, b) NGR (o = 20.0) and tested on KS method to estimate M.

The plots in Fig 3.2 demonstrates the performance of the KS method when implemented
on GR and NGR synthetics. It can be withessed from the maps in the case of GR
synthetics(Fig 3.2(a)) KS method have an accuracy of 100% in the estimation of M.
Whereas in the case of NGR (Fig 3.2(b)), the estimations converge with an offset of + 2
for 95% of the grid.

Fig 3.3(a) represents the error map of the MAXC method generated for the GR
synthetics, the results are estimated with 100% accuracy for all the pairs of
M. and b — value. It can be observed from Fig 3.3(b) the errors in the estimation of M. on
NGR synthetics for the pairs of presumed M _and b - value, the errors gradually rise in the

order of +(0 - 6).
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Fig 3.3. Error Maps of a) GR, b) NGR (o = 20.0) and tested on MAXC method to estimate M.
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Fig 3.4. Error Maps of a) GR, b) NGR (¢ = 20.0) and tested on MBS method to estimate M.
Fig 3.4 is an Iillustration of the MBS method examined on the synthetics. It can be

observed from the figures 3.4(a) that the method estimates the values of M. with error

bounds of zero over the entire grid. In the case of NGR synthetics, the MBS method has
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error bounds lying in the range of +(0-6) spread across the complete grid of
Mc and b - values as observed in Fig 3.4(b).

The error maps in Fig 3.5 are obtained as a result of the GFT method implemented using
GR and NGR synthetics. Fig 3.5(a) represents the output of error in estimation using GR
synthetic data set where the distribution of errors is zero for the complete grid of
presumed M_andb-value. In the case of NGR synthetics, the errors in estimation

gradually increase with the increase in the presumed M..

(a)

b-val

(b)

b-val

Fig 3.5. Error Maps of a) GR, b) NGR (o = 20.0) and tested on GFT method to estimate M.

3.2 Comparative Analysis

The figures represented in this section are designed with an aim to compare the proposed
methods with the state of the art over various synthetics(section 2.3) and will be

described in more details in chapter 4.
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Fig 3.6 represents error maps of the methods MPE, KS, MAXC, MBS, and GFT
respectively when implemented using NGR synthetics. It can be observed from the plots
that the error in estimation decreases with the increase in the presumed M. in the case of
MPE and KS methods(Fig 3.6(a), (b)). Whereas in the case of state of the art methods i.e
MAXC, MBS and GFT the errors in estimation gradually increases with the increase in the

presumed M, shown in figures 3.6 a), b) and c¢) respectively.

b-val

() (d)

b-val

b-val
=
=

Fig 3.6. Error Maps of NGR Synthetics(c = 20.0) tested on a) MPE, b) KS, c) MAXC, d) MBS

and e) GFT methods to estimate M.

Implementing the proposed methods along with the state of the art methods using binned
NGR synthetic illustrates the effect of binning the data on the estimation of M. Fig 3.7
shows how does the binned dataset affect the estimations of M, when tested on MPE
and KS methods. It can be observed that the errors in estimation decrease with the

increase in the bin size in the case of KS method. The estimations using the MPE method
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are not affected much and produces almost the same results of estimation.
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Fig 3.7. Error Maps of NGR Synthetics(oc = 20.0) tested on a) MPE bin size = 0.1, b) MPE bin
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size = 0.5, ¢) KS, bin size = 0.1, d) KS, bin size = 0.5 to test the impact of binning on the

estimation of M,
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Fig 3.8. Error Maps of NGR Synthetics(c = 20.0) tested on a) MAXC bin size = 0.1, b) MAXC bin
size = 0.5, ¢) MBS, bin size = 0.1, d) MBS, bin size = 0.5, €) GFT bin size = 0.1, f) GFT bin size

= 0.5 to test the impact of binning on the estimation of M,
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It can be observed from Fig 3.8 increasing the bin size from 0.1 to 0.5 does not affect the

estimations in M, in the case of MAXC, MBS and GFT.
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Mc
Fig 3.9 KS method tested on Synthetics NGR a) With binning and ¢ = 0.8, b) Without binning
and o = 20.0
Testing the KS method on parametric synthetic i.e. NGR synthetic. Fig 3.9(a) is a result of
binning the synthetic data, it can be observed from the figure that the error distribution is
of order + (0 -2) and is spread across the grid of M. and b — value . When the synthetic
data is continuous i.e. not binned Fig 3.6(b) is generated which produces errors in the

order of +(0-1).
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Fig 3.10. Error Maps of NGR Synthetics(bin size = 0.1) tested on a) MPE ¢ = 0.8, b) MPE
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o = 20.0,c¢c) KS,0 = 0.8,d)KS, 0 = 20.0 to testthe impact of ¢ on the estimation of M.

The error maps in Fig 3.9 illustrates the effect of changing the value of ¢ from 0.8 to 20.0
while generating the NGR synthetics on the estimations of M.. In the case of MPE
method, it can be observed that from Fig 3.9(a) and (b) that due to the increase in the
value of o the errors in estimation reduces from + 2 and converges to zero for presumed
M. varying from 2to 6. In the case of KS method, the changing value of o not has much
effect on the errors in estimation except for some smaller values of M _ lying in the range
of 1to1.5.

Fig 3.9 shows the impact of the increasing value of ¢ on errors in the estimation of M,
by state of the art methods. It can be observed that with the increasing value of ¢ the

error are more pronounced in the case of MAXC, MBS and GFT method, shown in fig 3.9

b), d) and f) respectively.
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CHAPTER 4

Discussion

Highlighting the key features of the various methods implemented to evaluate M., this
chapter will focus on deciphering the results in more details. The results have been
characterised in such a way so as to discuss the pros and cons of different methods
when compared over NGR synthetics, increasing in bin size, and increasing the value of
o . Synthetics analysis have been carried out to devise a comparative analysis. Starting
with the MPE method tested on all the parametric synthetics i.e. GR and NGR, referring
to the fig 3.1, it can be observed that both the synthetics perform well. The GR
synthetics was just a controlled experiment to test how well the proposed methods
operate. Looking at fig 3.2 the results for the KS method, it estimates the value of M_
with an error of +2 for more than 90% of the pairs of presumed M, and b - value.
Comparing these two proposed methods with the state of the art methods-

1) Over the NGR synthetics (fig 3.6) - it can be observed that our proposed methods are
less prone to error over the entire grid of presumed M, and b - val , unlike the other
three methods where the errors increase gradually over the grid.

2) Over increasing size of binning (fig 3.7, 3.8) - Even though the MPE method does not
have any effect of increasing size on the estimations of M., the KS method have shown
improvement in the estimations of M, by errors converging to zero for 90% of the pairs
of presumed M. andb —value in the grid. Moreover, the KS results with binned and
without binned synthetics (Fig 3.9) i.e discrete and continuous datasets produces errors
converging to zero in the case of without binned case. Whereas, in the case of state of
the art methods there is no effect of the increase in the bin size on the estimations of
M..

3) Over increasing value of ¢ - MPE method have shown improvements in the

estimations of M. by producing errors that converge to zero as the value of oincreases
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from 0.8 to 20.0. While the other method has no pronounced effect in the estimations of

M. due to the increase in the value of o.

4.1 Limitations and Future prospects

Firstly, on implementing the LL-test described in section 2.4 we realised that the true
log-likelihoods computed wusing Eq 2.15 for all the pairs of assumed

M _and estimated b — value lies in the LL,. 90% confidence interval. This implies the

eff
method does not converge to one value M.and hence we cannot use this method for

estimation of M. Secondly, catalog-based methods do not show the temporal and
spatial aspect of the catalog for the estimation of M_.andb —value. Thirdly, the
non-availability of the errors associated with the recorded magnitudes of the catalog
leads to the arbitrary assumption of bin size. Varying the value of bin size is acceptable
but not a very good way of introducing uncertainty in the magnitude of earthquake
catalog. To overcome the drawbacks of the current methods we are planning to improve
all the proposed methods by testing them on revising the real catalog magnitudes with
the errors associated with them. The advantage of using these revised catalog
magnitudes would be to estimate the value of M_ along with the uncertainties in
estimation. Our next goal would be to come up with more realistic synthetic catalogs
one of the ways by which this can be achieved is looking at the area under the curve of
NGR distribution this would give us the proportion of the data above and below
assumed M. . We would also be implementing the EMLE method described in section
2.5. EMLE method incorporates the uncertainty in the magnitudes of the real/synthetic
catalog by discretization of data i.e. binning the data and furthermore, jointly estimates
the bin size, M _and b — value which would lead to the completeness of the catalog up to

M..
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CHAPTER 5

Conclusion

As nature doesn’'t provide us with the clear segregation boundary line at a particular
magnitude to divide the set of magnitudes of the catalog into two subsets of complete and
incomplete datasets the goal of the study was to achieve an adequate earthquake catalog
suitable enough for several seismic hazard-related studies by estimating the magnitude of
completeness, M.. The proposed i.e using maximum likelihood estimator evaluating M,
was implemented by carrying out synthetic catalog tests. From the results obtained it can
be concluded that the method performs convincingly when tested by using all the
synthetics discussed in the previous chapter. However, the method requires some
advancements to overcome with the drawbacks of the current method such as estimation
of M, for smaller b-values, reducing the time complexity of the codes, the modifications
such that it produces appreciable results with any kind of synthetics data and hence be a
trustworthy estimator of M, for any real catalog. This can be achieved by investigating
both the spatial and temporal variations of the catalog simultaneously. Furthermore, we’'ll
be testing the method on a realistic and complex synthetic catalog which would
incorporate the spatial and temporal features and help us in the cope up with the
understanding of how does M, varies with respect to time. And investigate how the

sensitivity of M, varies with the sampling size of the dataset.
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