
Models and Statistical Inference for
Multivariate Count Data

A Thesis

submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

by

Pankaj Bhagwat

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Prof. Eric Marchand
c© Pankaj Bhagwat 2019

All rights reserved









This thesis is dedicated to my parents and my brother Rohit









Acknowledgments

I would like to express my sincere gratitude towards Prof. Eric Marchand for his constant
support, insightful discussions and guidance. I am grateful to him for encouraging me to
think independently. I am also thankful for providing opportunities to interact with other
researchers which were certainly helpful for the project. I thank Prof. Uttara Naik Nimbalkar
for monitoring the project, providing constructive feedback and discussions. I would like to
thank the Université de Sherbrooke, Quebec, Canada for hosting me. I am also thankful to
the Mathematics Department at IISER Pune for allowing me to carry out this project at
the Université de Sherbrooke. I would also like to thank Mitacs and DST-INSPIRE for the
financial support which made my stay in Canada possible. Finally, I would like to thank my
parents and friends for their consistent support.

ix



x



Abstract

We investigate different multivariate discrete distributions. In particular, we study the multi-
variate sums and shares model for multivariate count data proposed by Jones and Marchand.
One such model consists of Negative binomial sums and Polya shares. We address the param-
eter estimation problem for this model using the method of moments, maximum likelihood,
and a Bayesian approach. We also propose a general Bayesian setup for the estimation of
parameters of a Negative binomial distribution and a Polya distribution. Simulation studies
are conducted to compare the performances of different estimators. The methods developed
are implemented on real datasets. We also present an example of a proper Bayes point esti-
mator which is inadmissible. Other intriguing features are exhibited by the Bayes estimator,
one such feature is the constancy with respect to the large class of priors.
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Notations and Abbreviations

Γ(a)
∫∞

0
za−1e−zdz, Gamma function

R≥0 {r ∈ R : r ≥ 0}, set of non-negative real numbers

I [0, 1]

(a)m
Γ(a+m)

Γ(a)
, Pochhammer symbol

E[X] Expectation of a random variable X

I(a,b)(x) Indicator function

N {0, 1, 2, 3, · · · }, set of non-negative integers

V[X] Variance of a random variable X

ρ(X, Y ) correlation between random variables X and Y

B(a, b) Beta function
(

1∫
0

θa−1(1− θ)b−1dθ

)
Cov(X, Y ) covariance between random variables X and Y

Nd(µ,Σ) d-variate Normal distribution

X ∼ F (X) random variable X has a distribution F (X)

c.d.f. cumulative distribution function

log (x) natural logarithm of x

MCMC Monte Carlo Morkov Chain
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MLE maximum likelihood estimator

MoM method of moments

p.d.f. probability density function

p.m.f. probability mass function

s.d. standard deviation
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Introduction

Problem and Motivation

Multivariate count data arises very often, for example, when one wants to analyze
the number of insurance claims falling in to different time periods, or the number of dengue
cases falling in to different locations. To model general dependencies among the counts in
such scenarios, multivariate discrete distributions are needed. There is a vast literature on
multivariate continuous distributions. It is because of the availability of natural generaliza-
tions of univariate continuous distributions to their multivariate counterparts which covers
full ranges of correlations. This natural generalization is not always possible for the discrete
distributions. There are some methods to construct multivariate discrete models. Johnson,
Kotz and Balkrishnan (2004) have provided a book-length treatment on discrete multivari-
ate distributions in [16] with the focus on strategies for the construction of multivariate
discrete distributions. Kocherlakota , S. and Kocherlakota, K. (1992) also provides a survey
of generating methods for bivariate discrete distributions in [18]. But most of them fail to
cater to all correlation structures in the data, even for bivariate cases. Unlike construction
of multivariate discrete distributions, the problem of parameter estimation for these models
has not been addressed thoroughly. The main reason is the complexity of the likelihood
functions which forbid the development of the estimation methods for such models. As the
computational facilities became available in the recent years, parameter estimation methods
can be addressed more effectively.

A recent manuscript of Jones and Marchand [17] introduces a simple and appealing
two-step strategy for decomposing or generating multivariate count data. The strategy is
highly appealing since for the bivariate cases, it covers the whole range of correlations. A
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rich ensemble of distributions arise using this strategy. Several known distributions can
be recovered, including bivariate cases which are prominent in the literature, and several
extensions or novel distributions can also be obtained. One such model consists of Negative
Binomial (a, θ) sums and Polya shares with parameters t, α1, . . . , αd, with the corresponding
probability mass function (p.m.f.) for M1, . . . ,Md reducing to :

p(m1, · · · ,md) =
(a)m1+···+md

∏d
i=1(α)mi

m1!m2! · · ·md!
(∑d

i=1 αi
)
m1+m2+···+md

θα(1− θ)m1+m2+···+md (1)

m1, . . . ,md ∈ N. Several challenges related to the estimation of the parameters a, θ, α1, . . . , αd

arise, as well as fitting the above p.m.f. to actual datasets, namely for the purposes of pre-
diction. The main goal of the thesis is to study the problem of parameter estimation for
Negative binomial sums and Polya shares model. We explore the implementation of estima-
tion based on the methods of moments, maximum likelihood, as well as Bayesian methods.
In particular, Bayesian methods are developed with a focus on interpretation and prior-
posterior analysis. This problem of parameter estimation is decomposed into two separate
sub-problems:

• Parameter estimation for a Negative Binomial distribution

• Parameter estimation for a Polya distribution

The two parameter Negative binomial distribution model has been studied in terms
of method of moments and maximum likelihood (for instance, Fisher (1941, [11]) , Drop-
kin (1959, [9]) , Savani, et al. (2006, [31])). It is well known that both methods may lead
to infeasible estimators. A Bayesian approach can be used to avoid such problems. But,
not much work is done from the Bayesian perspective. Due to the complexity of the like-
lihood function, the posterior distributions becomes intractable. Bradlow, et al. (2002), in
[7], suggest closed form approximations for the posterior moments of the parameters using
polynomial expansions. We provide a family of distributions for the parameters which is
semiconjugate for Negative binomial distribution. This allows us to use Gibbs sampler for
sampling from the posterior distributions. The comparison of the risk performances of the
available estimators is also of high interest. Besides, the methods are implemented on data
sets and compared.

The Polya distribution also leads to convoluted likelihood function which makes
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the parameter estimation for such model challenging. In this case, maximum likelihood
estimators (MLE) may not exist (Levin and Reeds (1977, [23] ) ). Whenever, they exist,
one needs to employ numerical methods to find the estimators. We propose the use of data
cloning method for the estimation of MLE. Lele, et al. (2010) proposed a method of data
cloning for MLE estimators in a random effect models in [22]. This method also provides
estimates for the standard errors related to MLE. We also provide a semiconjugate family
of priors for the Polya distribution and the use of the Gibbs sampler for sampling from
the posterior distributions which enables to approximate posterior densities and posterior
moments of the parameters.

While studying Bayesian inference for Negative binomial model, we found an interest-
ing example of proper Bayes estimator which is also inadmissible. Proper Bayes estimators
are generally admissible. There are very few constructive examples in the literature of in-
admissible proper Bayes estimators. We provide an occurrence of such instance in a very
natural setting. Other intriguing features are exhibited by this estimator, one such is the
constancy of the Bayes estimator with respect to the large class of priors.

Outline

In Chapter 1, we provide lists of notions used throughout this work. In Chapter 2, we
review different methods of generating or constructing multivariate discrete distributions.
Chapter 3 introduces the multivariate sums and shares model proposed by Jones and Marc-
hand [17]. Statistical properties such as moments and correlation structure of the model are
discussed in this chapter. This chapter also introduces the main aim of the thesis which is
the parameter estimation problem for the negative binomial sums and Polya shares model.
In Chapter 4, we provide the details of the different estimators for the two parameter un-
known negative binomial distribution. This involves the novel Bayesian setup for such model
which is an important outcome of the thesis. In Chapter 5, we study the parameter esti-
mation problem for the Polya distribution. This involves maximum likelihood estimators
and Bayesian estimators for the parameters of a Polya distribution. Later in Chapter 6,
we combine methods of parameter estimations obtained in previous chapters to address the
estimation problem for the Negative binomial sums and Polya shares model. In Chapter 7,
we present an example of proper Bayes but an inadmissible estimator. An article based on
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this chapter is accepted for publication in The American Statistician.

Contributions

This thesis builds on the article of Jones and Marchand [17] which introduces sums and
shares model, but extends the material in several ways. The main contributions of the thesis
are as follows:

1. We provide a more general Bayesian setup for the Negative binomial distribution which
allows the use of Gibbs sampler for the sampling from the posterior distribution.

2. We propose a new class of priors which is semiconjugate for the negative binomial
distribution. This is a generalization of Gamma and Lindley distributions, which are
used frequently.

3. We propose the use of a data cloning method for the estimation of parameters of
a Polya distribution. This method of estimating MLE was proposed by Lele, et al.
(2010) for a random effect models.

4. We extend the work of Jones and Marchand on multivariate discrete distributions via
sums and shares in terms of the parameter estimation for the Negative binomial sums
and Polya shares model proposed by them.

5. We also provide an interesting example of proper Bayes estimator which is also inad-
missible. This estimator also has other interesting features as well. (Accepted for the
publication in The American Statistician.)
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Chapter 1

Preliminaries

The following list summarizes basic definitions and notations used throughout this work.
The reader may skip this chapter and revisit when needed.

Definition 1.0.1. A multivariate discrete probability mass function on Nd is any
function f : Nd → R≥0 for some positive integer d, such that

∑
x∈Nd

f(x) = 1. In case of d = 1,

f is the usual univariate probability mass function.

Definition 1.0.2. Any function H : R → [0, 1] is a distribution function if following
holds:

1) H(x) is non-decreasing in x.
2) lim

x→−∞
H(x) = 0.

3) lim
x→+∞

H(x) = 1.

4) H is right continuous i.e. lim
x↓x0

H(x) = H(x0)

Definition 1.0.3. A joint distribution function is a function F : Rd → [0, 1] such that
1) lim

x1,··· ,xd→+∞
F (x1, · · · , xd) = 1.

2) limxi→−∞ F (x1, · · · , xd) = 0 , ∀i ∈ {1, 2, · · · , d}.
3)For any (x1, · · · , xd) and (y1, · · · , yd) ∈ Rd such that xi ≤ yi,∀i ∈ {1, 2, · · · , d},∑

wi∈{xi,yi}

(−1)
∑d
i=1 1(yi,wi)F (w1, · · · , wd) ≥ 0, (1.1)
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where 1(yi,wi) =

0 if yi = wi

1 otherwise.

Definition 1.0.4. The margins of a joint distribution function F are given by

Fi(x) = lim
xj→∞;j 6=i

F (x1, · · · , xi = x, · · · , xn).

Definition 1.0.5. A discrete random variable X is said to have Poisson distribution with
mean λ if p.m.f. is given as

p(x|λ) =
e−λλx

x!
, λ > 0, (1.2)

where x ∈ N.

Definition 1.0.6. A continuous random variable X is said to have Gamma distribution
with shape parameter a > 0 and scale parameter b > 0, if probability density function is given
as

f(x|a, b) =
baxa−1e−bx

Γ(a)
, x > 0. (1.3)

Definition 1.0.7. A continuous random variable X is said to have Beta distribution with
parameters a , b > 0, if probability density function is given as

f(x|a, b) =
1

B(a, b)
xa−1(1− x)b−1, x ∈ I. (1.4)

Definition 1.0.8. A random variable U = (U1, . . . , Ud), d ≥ 2, is said to have Dirichlet
distribution with parameters α1, . . . , αd > 0 if probability density function is given as

h(u1, . . . , ud−1|α1, . . . , αd) =

Γ(
d∑
i=1

αi)
∏d

i=1 u
αi−1
i∏d

i=1 Γ(αi)
, (1.5)

where ui ∈ I such that
d∑
i=1

ui = 1.
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Definition 1.0.9. A multivariate discrete random variable X = (X1, . . . , Xd), d ≥ 2, is
said to have Multinomial distribution with parameters t ∈ N and t, u1, . . . , ud > 0, if
probability mass function is given as

f(x1, . . . , xd−1|t, u1, . . . , ud) =
t!
∏d

i=1 u
xi−1
i∏d

i=1 xi!
, xi ∈ {0, · · · , t},

d∑
i=1

xi = t, (1.6)

where ui ∈ I such that
d∑
i=1

ui = 1.

Definition 1.0.10. The moment generating function for the random variable X with
c.d.f FX is defined as

MX(s) = E(esX). (1.7)

Definition 1.0.11. Any estimator δ(X) for a parameter θ is said to be an unbiased esti-
mator if E(δ(X)) = θ.

Bayesian Inference

Let θ ∈ Θ be parameter vector and Y be a random variable with p.d.f. (or p.m.f.) f(y|θ).
We observe y, a realization of Y . Assume prior density g(θ) for θ. Then the joint probability
density function for θ and y can be written as the product of the prior density g(θ) and
f(y|θ) as follows:

π(y, θ) = g(θ)f(y|θ)

Bayes rule is used to obtain expressions for the posterior density of θ (π(θ|y)), the marginal
density of y (f(y)), and the posterior predictive density (f(ŷ|y)) as follows:

• f(y) =
∫
Θ

π(y, θ)dθ =
∫
Θ

f(y|θ)g(θ)dθ.

• π(θ|y) = π(θ)f(y|θ)
f(y)

.

• f(ŷ|y) =
∫
Θ

f(ŷ|θ)π(θ|y)dθ.
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Statistical Decision Theory

Consider a random variable X with p.d.f. (or p.m.f.) f(x|θ), where θ ∈ Θ. Θ is called as
parameter space. Now, consider the problem of estimating θ based on the observations from
X. Let D be the set of all estimators (δ(X)) of θ.

Definition 1.0.12. A loss function is any function L : Θ×D → R≥0.

Example 1. Quadratic loss function: L(θ, δ(X)) = (θ − δ(X))2.

Example 2. Absolute deviation loss function: L(θ, δ(X)) = |θ − δ(X)|.

Definition 1.0.13. A Risk function R(θ, δ) with respect to a loss function L(θ, δ(X)) is
defined as function

R(θ, δ) = E(L(θ, δ(X))). (1.8)

Definition 1.0.14. A Bayes Risk r(δ) with respect to a loss function L(θ, δ(X)) and prior
π(θ) is defined as function

rπ(δ) =

∫
Θ

E(L(θ, δ(X)))π(θ)dθ. (1.9)

Definition 1.0.15. A Bayes estimator is any estimator δ(X) which minimizes Bayes risk
rπ(δ).

Consider any two estimators δ1 and δ2 of θ.

Definition 1.0.16. We say, δ1 is better than δ2 if

R(θ, δ1) ≤ R(θ, δ2),∀θ ∈ Θ, (1.10)

and ∃θ0 ∈ Θ such that
R(θ0, δ1) < R(θ0, δ2). (1.11)

Definition 1.0.17. An estimator δ is said to be admissible if there does not exist any other
estimator which is better than δ.
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Chapter 2

Models for Multivariate Count data

Various different models for multivariate count data are available in the literature (see, for
instance, Johnson, Kotz and Balkrishnan (2004) [16], Kocherlakota , S. and Kocherlakota, K
(1992) [18]). In the literature, the more focus is given on constructing models for multivari-
ate count data rather than parameter estimation problem due to computationally inefficient
methods. In this chapter, we review different methods of constructing probability distribu-
tion models for multivariate count data.

2.1 Multivariate Count Data

The multivariate count data can be defined as counts of samples belonging to the dif-
ferent categories sampled from a population which is grouped in those categories. Suppose
there are d categories. Each object in the population belongs to exactly one of the d cate-
gories. We are sampling from such populations and recording the counts in each category.
The data for n such samples can be visualized as follows:

(mi1,mi2, · · · ,mid; ti), i = 1, 2, · · · , n, ti =
d∑

k=1

mik,

where mi represents the counts in the category i.

11



2.2 Construction pf multivariate discrete probability dis-

tributions

Johnson, Kotz and Balkrishnan (2004) have provided a book-length treatment on dis-
crete multivariate distributions in [16] with the focus on strategies for the construction of
multivariate discrete distributions. They also talk about parameter estimation problems for
such models superficially. Due to complexity of the likelihood functions, not much improve-
ment in terms of the estimation methods for such models has been noted in the literature.
Kocherlakota , S. and Kocherlakota, K (1992) also provides a survey of generating meth-
ods for bivariate discrete distributions in [18]. Here, we provide a survey of some of these
available methods of generating models for multivariate count data.

2.2.1 Mixing

If we have two or more multivariate discrete probability distributions with p.m.f. f1

and f2, the new distribution can be obtained by mixing as follows:

f(x1, . . . , xd) = θf1(x1, . . . , xd) + (1− θ)f2(x1, . . . , xd)

for some 0 < θ < 1.

2.2.2 Compounding

LetX1 , . . . , Xd be discrete univariate random variables with p.m.f. f1(x1|θ1) , . . . , fd(xd|θd)
, respectively. Here, θ1 , . . . , θd are parameters associated with the fi’s.

f(x1, . . . , xd) =

∫
· · ·
∫

θ1 ,... ,θd

f1(x1|θ1) . . . fd(xd|θd)g(θ1 , . . . , θd) dθ1 · · · dθd

where g(θ1 , . . . , θd) is the joint probability density of θ1 , . . . , θd.

Example 3. Let Xi be Poisson distributed random variables with means λi, for i = 1, . . . , d

i.e. f(xi) =
e−λiλ

xi
i

xi!
. Suppose, g(λ1, . . . , λd) is a joint probability density for the λi’s. Then,
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we can define

f(xi, . . . , xd) =

∫
· · ·
∫

λ1,...,λd

e
−

∑
i
λi∏

i

λxii
xi!

g(λ1, . . . , λd) dλ1 . . . dλd.

If the λi’s are independent, then the Xi’s are also independent. If λi’s are indepen-
dent and have gamma distribution, then the Xi’s are also independent with a negative bino-
mial distribution. Aitchison, et al. (1989) considered a Poisson-log Normal model in which
g(λ1, . . . , λd) is log-normal density in [2].

2.2.3 Trivariate Reduction

Let U1, . . . , Um be independent discrete univariate random variables. Then, we can
construct d− variate dependent discrete random variables as follows:

X1 =τ1(U1, . . . , Um)

...

Xd =τd(U1, . . . , Um)

(2.1)

where τi’s are functions from Nm → N.

Example 4. Let U1, U2, U3 and U4 be independent Poisson random variables with means
λ1, λ2, λ3 and λ4, respectively. Suppose, Xi’s are the linear combinations of Ui’s are as
follows:

X1 =U1 + U2 + U4

X2 =U1 + U3 + U4

X3 =U1 + U2 + U3

(2.2)

Then, (X1, X2, X3) has a multivariate discrete distribution with marginally distributed Pois-
son random variables with means λ1 + λ2 + λ4, λ1 + λ3 + λ4 and λ1 + λ2 + λ3, respectively.
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The covariance matrix isλ1 + λ2 + λ4 λ1 + λ4 λ1 + λ2

λ1 + λ4 λ1 + λ3 + λ4 λ1 + λ3

λ1 + λ2 λ1 + λ3 λ1 + λ2 + λ3


Note that all the correlations are positive.

Holgate ([13]) derived bivariate Poisson distribution using the method of trivariate reduc-
tion method of deriving bivariate distributions from three independent univariate discrete
distributions. Let U1, U2, U3 be independent univariate discrete random variables. Consider
bivariate random variable (X, Y ) obtained as follows:

(X, Y ) = (U1 + U3, U2 + U3)

Hyunju Lee and Ji Hwan Cha ([20]) generalised this approach to generate two classes of
bivariate discrete probability models based on minimum and maximum operator as

(X, Y ) = (min(U1, U3),min(U2, U3))

and
(X, Y ) = (max(U1, U3),max(U1, U3)),

respectively.

2.2.4 Copula Method

Definition 2.2.1. A copula is a function C : In → I such that

1. C(0, · · · , ui, · · · , 0) = 0,∀ui ∈ I

2. C(1, · · · , ui, · · · , 1) = ui,∀ui ∈ I

3. For any (u1, . . . , un) and (v1, . . . , vn) ∈ In such that ui ≤ vi, ∀i ∈ {1, 2, . . . , n},∑
wi∈ui,vi

(−1)
∑n
i=1 1(vi,wi)C(w1, . . . , wn) ≥ 0,
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where 1(vi,wi) =

0 if vi = wi

1 otherwise.

The following theorem by Sklar (1989) suggests the use of copula functions as links
between the marginals and the joint distributions [28]. This enables to construct multivariate
discrete distributions using univariate marginals and the copula function which provides a
particular dependence structure.

Theorem 2.2.1 (Sklar’s Theorem, 1959). Consider a joint distribution F with margins
F1, . . . , Fn. Then there exist a copula C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), ∀(x1, . . . , xn) ∈ Rn.

If all the margins are continuous, then C is unique. In other cases, C is unique on Range(F1)×
· · · ×Range(Fn).

Conversely, for any copula C and distribution functions Fi, i = 1, 2, . . . , n, then F defined
as

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

is a joint distribution function with margins Fi’s.

Example 5. Consider bivariate Frank’s copula function

C(u, v) =
−1

k
log

(
1− (1− e−ku)(1− e−kv)

(1− e−k)

)
, ∀(u, v) ∈ I2.

Then, a bivariate Negative binomial distribution with Frank’s copula is given by

FX,Y (x, y) =
−1

k
log

1−

(
1− e

−k
x∑
t=0

(a1)t
t!

θ
a1
1 (1−θ1)t

)(
1− e

−k
y∑
t=0

(a2)t
t!

θ
a2
2 (1−θ2)t

)
(1− e−k)

 ,

where (x, y) ∈ N2 and −∞ < k <∞. This has marginal Negative binomial (ai, θi) distribu-
tions and a dependence parameter k. The marginal distributions are independent for k = 0.
Such models are considered by McHale, et al. in [27] used to model outcomes of the soccer
matches.
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Copula functions can be used to model any general dependency structure. But, it is
well-known that all copula functions are bounded by Frechet bounds. In two-dimensions,
the Frechet upper and lower bounds are both copula functions and we have, for any copula
function C,

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v), ∀(u, v) ∈ I2 (2.3)

This also gives bounds on the dependence structure induced by a copula.

Summary

As we have seen, all of the models generated using the above methods have restrictive
covariance structure. Even for the bivariate cases, the whole range of correlation may not
be covered using these models. Hence, this motivates us to find new strategies to generate
multivariate discrete distributions. In Chapter 3, we study a novel strategy which, at least
for bivariate cases, leads to models with both positive and negative correlation structures.
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Chapter 3

Multivariate Sums and Share Model

This thesis builts on the multivariate sums and shares model proposed by Jones and Marc-
hand. In the article [17], they introduce this model and provide various interesting statistical
properties of the model. They also mention the connections of this model with the models
available in the literature. In particular, they introduce a Negative binomial sums and Polya
shares model. In this chapter, we summarize the results obtained by Jones and Marchand.
This chapter also introduces the parameter estimation problem for the Negative binomial
sums and Polya shares model.

3.1 Introduction

In the article by Jones and Marchand [17], they propose a novel strategy to generate
or construct multivariate discrete distributions via sums and shares model. Consider M =

(M1, . . . ,Md) be d-variate discrete random variable. We denote T =
d∑
i=1

Mi be the sum of

the counts Mi. The sums and shares strategy consists of the following two steps:

1. First, model the sum of the counts T by the distribution with p.m.f. pT (t|Θ1) and con-
ditioning on T , model the distribution of counts M ′

= (M1,M2, . . . ,Md−1) in different
categories as M ′|T = t having the distribution with p.m.f. b[t](m1,m2, . . . ,md−1|Θ2).
So that, using the definition of the conditional distribution, the resulting distribution
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has probability mass function

p(M = (m1, . . . ,md)|Θ1,Θ2) = pT (t|Θ1)b[t](m1, . . . ,md−1|Θ2) (3.1)

Here, Θ1 and Θ2 denotes the parameters involved in the probability mass functions pT
and b[t], respectively.

2. Then, averaging this mixing over the distributions of the parameters involved i.e.
Θ1,Θ2. Let F (Θ1,Θ2) be the joint distribution function for the parameters Θ1 and
Θ2. We get the final distribution as follows:

p(M = (m1, . . . ,md)) =

∫
p(M = (m1, . . . ,md)|Θ1,Θ2)dF (Θ1,Θ2) (3.2)

With different choices for the distributions of total sums T , shares (M
′|T ) and parameters

(Θ1,Θ2), this strategy gives rise to many interesting models for the multivariate count data.

3.2 Construction of the Model

Natural choices the distribution of sums and shares of counts are a Poisson distribution
for the sum T and the multinomial distribution for the shares i.e.

p(T = t|Λ) =
e−ΛΛt

t!
, Λ > 0 (3.3)

and
b[t](M = (m1, . . . ,md−1)|t, U1, . . . , Ud−1) =

t!

m1!m2! . . .md!
Um1

1 · · ·U
md
d (3.4)

where t = m1 + · · ·+md and Ui ≥ 0, Ud = 1− U1 − · · · − Ud−1.

Then we get the p.m.f.,

p(m1, . . . ,md) =

∫
e−ΛΛm1+···+md

m1!m2! · · ·md!
Um1

1 · · ·U
md
d dF (Λ, U1, · · · , Ud−1)

=

∫ d∏
i=1

(ΛUi)
mie−ΛUi

mi!
dF (Λ, U1, · · · , Ud−1)

(3.5)
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We obtain the following results related to marginal distributions of shares Mi and expec-
tations of Λ and ΛUi’s conditioned on the observed value of M = (m1, · · · ,md) .

Proposition 3.2.1. The marginal distributions for Mi’s are

p(mi) =

∫
(ΛUi)

mie−ΛUi

mi!
dF (Λ, U1, · · · , Ud−1) (3.6)

Proof. The marginal distribution of Mi is given as

p(mi) =
∑
mj ;j 6=i

p(m1, . . . ,md)

=
∑
mj ;j 6=i

∫ d∏
k=1

(ΛUk)
mke−ΛUk

mk!
dF (Λ, U1, · · · , Ud−1)

=

∫ ∑
mj ;j 6=i

d∏
k=1

(ΛUk)
mke−ΛUk

mk!
dF (Λ, U1, · · · , Ud−1) · · · (Fubini′s theorem)

=

∫
(ΛUi)

mie−ΛUi

mi!

d∏
k=1,k 6=i

(∑
mk

(ΛUk)
mke−ΛUk

mk!

)
dF (Λ, U1, · · · , Ud−1)

=

∫
(ΛUi)

mie−ΛUi

mi!
dF (Λ, U1, · · · , Ud−1).

Proposition 3.2.2. The conditional expectations of Λ and ΛUi conditioned on (m1, . . . ,md)

can be expressed recursively as follows:

E[ΛUi|m1, . . . ,md] =
(mi + 1)p(m1, · · · ,mi + 1, · · · ,md)

p(m1, . . . ,md)
(3.7)

and

E[Λ|m1, . . . ,md] =
d∑
i=1

(mi + 1)p(m1, · · · ,mi + 1, · · · ,md)

p(m1, . . . ,md)
. (3.8)

Proof. Using Bayes rule, we get,

f(λ, u1, · · · , ud|m1, · · · ,md) =
p(m1, . . . ,md|λ, u1, · · · , ud)dF (λ, u1, · · · , ud)

p(m1, . . . ,md)
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where

p(m1, · · · ,md|λ, u1, · · · , ud) =
d∏

k=1

(λuk)
mke−λuk

mk!

Hence,

E[ΛUi|m1, · · · ,md] =
1

p(m1, · · · ,md)

∫
λuip(m1, · · · ,md|λ, u1, · · · , ud)dF (λ, u1, · · · , ud)

=
1

p(m1, · · · ,md)

∫
λui

d∏
k=1

(λuk)
mke−λuk

mk!
dF (λ, u1, · · · , ud)

=
mi + 1

p(m1, · · · ,md)

∫
(λui)

mi+1e−λui

(mi + 1)!

d∏
k=1,k 6=i

(λuk)
mke−λuk

mk!
dF (λ, u1, · · · , ud)

=
(mi + 1)p(m1, · · · ,mi + 1, · · · ,md)

p(m1, · · · ,md)
.

Summing over all i’s, we obtain the expression 3.8.

If we assume that Λ and U ′is are distributed independently, i.e. the distributions L and
H of Λ and U1, . . . , Ud−1 are independent. We get the resulting distribution as follows:

p(m1,m2, · · · ,md) =

∫
· · ·
∫

0≤U1+···+Ud−1≤1

(m1 +m2 + · · ·+md)!

m1!m2! · · ·md!
Um1

1 · · · (Ud)mddH(U1, · · · , Ud−1)

×
∞∫

0

e−ΛΛm1+···+md

(m1 + · · ·+md)!
dL(Λ) (3.9)

By change of variables Ri = ΛUi, we get
U1

U2

...
Ud−1

Λ

 =



1
Λ

0 . . . . . . 0

0 1
Λ

. . . ...
... . . . 0

...
0 . . . . . . 1

Λ
0

1 . . . . . . . . . 1




R1

R2

...
Rd−1

Rd

 (3.10)

20



Hence, the Jacobian of the transformation is
(

1
Λ

)d−1. Thus, we have the joint density function

f(r1, r2, . . . , rd) =
d∏

k=1

rmii e−ri

mi!

1(
d∑
i=1

ri

)d−1
dH

 r1

d∑
i=1

ri

, . . . ,
rd−1

d∑
i=1

ri

 dL

(
d∑
i=1

ri

)
. (3.11)

Now, moments of Mi are given as

EMi = E(ΛUi) = E(Λ)E(Ui) (3.12)

V(Mi) = E(Λ2)V(Ui) + V(Λ)(E(Ui))
2 + E(Λ)E(Ui) (3.13)

Cov(Mi,Mj) = V(Λ)E(UiUj) + (E(Λ))2Cov(Ui, Uj) (3.14)

From (3.12) and (3.13), we can see that the model is inherently overdispersed i.e.

V(Mi) > E(Mi).

Using the Law of total covariance and Cov(Mi,Mj|R1, . . . , Rd) = 0, we get

Cov(Mi,Mj) = E[Cov(Mi,Mj|R1, · · · , Rd)]

+ Cov(E[Mi|R1, · · · , Rd],E[Mj|R1, · · · , Rd])

= Cov(Ri, Rj)

(3.15)

3.3 Negative Binomial sums and Polya shares model

3.3.1 Definition and Construction

Now, if we consider H to be Dirichlet(α1, . . . , αd) and L as Gamma(a, b) , where
α1, . . . , αd, a, b > 0 in (3.9), i.e., the probability density functions for Λ and Ui’s are, respec-
tively,

`(λ|a, b) =
baλa−1e−bλ

Γ(a)
(3.16)
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and

h(u1, . . . , ud−1) =
Γ(α)

∏d
i=1 u

αi−1
i∏d

i=1 Γ(αi)
, (3.17)

where α =
∑d

i=1 αi.

We get the resulting distribution as:

p(m1, . . . ,md) =

∏d
i=1(αi)mi

(α)m1+···+md

(a)m1+···+md
m1! · · ·md!

θa (1− θ)m1+···+md , (3.18)

where θ = b
1+b

.

This is the p.m.f. for Negative Binomial sums and Polya shares distribution.

3.3.2 Moments

Moments of M ′
is for this model can be obtained using (3.12) as:

E[Mi] =
aαi
bα

=
a(1− θ)

θ

αi
α
, (3.19)

and defining Cov(M) as the covariance matrix of (M1, . . . ,Md) with the entries Cov(Mi,Mj),
we obtain from (3.13), and (3.14):

Cov(M) =
a

b2α2(1 + α)
{(α− a)αtα+ (α(a+ 1 + (1 + α)b))Id} (3.20)

where α = (α1, . . . , αd) and Id is d× d identity matrix.

When d = 2,
Cov(M1,M2) =

aα1α2

b2(1 + α)α2
(α− a),

and the correlation ρ(M1,M2) between M1 and M2 is given as:

ρ(M1,M2) =
α1α2(α− a)√

α2(1 + a+ b+ bα)2 + (α− a)2α1α2 + α2(α− a)(1 + a+ b+ bα)
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or
ρ(M1,M2) =

αf1f2(α− a)√
(1 + a+ b+ bα)2 + (α− a)2f1f2 + (α− a)(1 + a+ b+ bα)

,

where f1 = α1

α
and f2 = α2

α
.

Hence,

1) if α > a, ρ(M1,M2) > 0 2) if α < a, ρ(M1,M2) < 0.

Hence, for bivariate cases, both positive and negative correlation are possible.

When d > 2, all correlations are either positive or negative.

3.3.3 Relations to other distributions

Many available distributions can be recovered as special cases of the Negative Binomial sums
and Polya shares model. Jones and Marchand has provided connections to the following well-
known discrete distributions:

Bivariate Bailey distribution

The expression (3.18) can be considered as the multivariate extension of bivariate Bailey
distribution defined by Laurent [19]. The p.m.f. for Bailey distribution is given as

Bailey(m1,m2|α1, α2, θ, a) =
(α1)m1(α2)m2

(α1 + α2)m1+m2

(a)m1+m2

m1!m2!
θa (1− θ)m1+m2 . (3.21)

Schur Constant distribution

With α1 = · · · = αd = 1, we get

p(m1, . . . ,md) =
(a)m1+···+md
(d)m1+···+md

θa (1− θ)m1+···+md (3.22)

This is discrete Schur Constant distribution. Castaner, et al. [8] defined discrete Schur
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constant distributions as follows: A d − variate random variable X = (X1, . . . , Xd), is said
to have discrete joint Schur Constant survival distribution if

P (X1 ≥ x1, . . . , Xd ≥ xd) = S(x1 + · · ·+ xd)

i.e., the survival function of the X depends on the argument (X1, . . . , Xd) only through the
sum

∑d
i=1 Xi.

Limiting model

Let α1, · · · , αd →∞ such that αi
α
→ φi. Then we have,

∏d
i=1(αi)mi

(α)m1+···+md
=

∏d
i=1 αi · · · (αi +mi − 1)

α · · · (α +m1 + · · ·+md − 1)
→

∏d
i=1 α

mi
i

αm1+···+md
=

d∏
i=1

φmii ,

and thus

p(m1, . . . ,md) =
(a)m1+···+md
m1! · · ·md!

(
d∏
i=1

φmii

)
θa (1− θ)m1+···+md . (3.23)

The correlation for any two components Mi and Mj is given as

ρ(Mi,Mj) = (1− θ)

√
φi

(1− θ)φi + θ

φj
(1− θ)φj + θ

> 0.

Multivariate Discrete Liouville Distribution

Jones and Marchand also studied the following model in great detail. They obtain very
interesting results about marginal distributions and bounds on variances of the shares.

Assuming a general distribution pT (t) for T while M ′|(T = t) is distributed as Dirichlet-
Multinomial as before, we get

p(m1, . . . ,md) =
(m1 + · · ·+md)!

m1! · · ·md!

∏d
i=1(αi)mi

(α)m1+···+md
pT (m1 + · · ·+md) (3.24)
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which can be rewritten as

p(m1, . . . ,md) =

∏d
i=1(αi)mi

m1! · · ·md!

(m1 + · · ·+md)!

(α)m1+···+md
pT (m1 + · · ·+md)

=

∏d
i=1(αi)mi

m1! · · ·md!
F (m1 + · · ·+md),

(3.25)

where F (t) = t!
(α)t

pT (t). This is the discrete analogue of the continuous multivariate discrete
Liouville distribution given by Lingappaiah [25].

As done in the previous section, considering α1 = · · · = αd = 1, we get the p.m.f. as:

p(m1, . . . ,md) =
(m1 + · · ·+md)!

(d)m1+···+md
pT (m1 + · · ·+md) =

pT (m1 + · · ·+md)(
m1+···+md+d−1

d−1

) (3.26)

with above p.m.f., the multivariate marginals are obtained as

pS(mi1 , · · · ,mik) =
∑

t≥mi1+···+mik

pT (t)t!

(d)t

(
t− (mi1 + · · ·+mik) + d− k − 1

d− k − 1

)

= (d− 1) · · · (d− k)
∑

t≥mi1+···+mik

pT (t)
(t− (mi1 + · · ·+mik) + 1)d−k−1

(t+ 1)d−1

.

Also, using the inclusion-exclusion principle, one obtains the following relationship:

p(m1, . . . ,md) =
d−1∑
j=0

(−1)j
(
d− 1

j

)
pS(m1 + · · ·+md + j),

previously studied in the bivariate case (d = 2) by Aoudia, et al. [4]. For the total sum T ,
we have

pT (t) =

(
t+ d− 1

d− 1

) d−1∑
j=0

(−1)j
(
d− 1

j

)
pS(t+ j).

Besides, we also have the factorial moments given as follows:

E

{
d∏
i=1

(
Mi

ki

)}
=

E
{(

T
k1+···+kd

)}(
k1+···+kd+d−1

d−1

) . (3.27)

This proof uses Gould’s identity which can be proved easily by a combinatorial argument
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(choosing k1 +k2 + 1 objects out of n+ 1 objects in a special way gives the Gould’s identity.)
Identity (3.27) gives

E(Mi) =
E(T )

d
,V(Mi) = 2

E(T 2)− E(T )

d(d+ 1)
+

E(T )

d
− (E(T ))2

d2
,

Cov(Mi,Mj) = E
{(

Mi

1

)(
Mj

1

)}
− E

{(
Mi

1

)}
E
{(

Mj

1

)}
=

E(T 2 − T )

d(d+ 1)
− (E(T ))2

d2
,

or, again,

Cov(Mi,Mj) =
1

2

(
V ar(Mi)− {E(Mi)}2 − E(Mi)

)
.

Also,

ρ(Mi,Mj) =
1

2

{
1− E(Mi)

2 + E(Mi)

V(Mi)

}
<

1

2
.

Since ρ(Mi,Mj) ≥ −1, for the distribution with p.m.f. (3.26), we also obtain the inequal-
ity

V(Mi) ≥
1

3
E(Mi){E(Mi) + 1}. (3.28)

Johnson, et al. showed that for unimodal continuous distribution X, V(X) ≥ 1
3
(E(X))2

holds [14] . Inequality (3.28) is a discrete analogue of this result.

3.4 Parameter estimation problem

The main goal of the thesis is to provide methods to estimate the parameters for prob-
ability mass function (3.18), namely for negative binomial sums and Polya shares model
obtained in Section 3.3. The pmf is

p(m1, . . . ,md) =

∏d
i=1(αi)mi

(α)m1+···+md

(a)m1+···+md
m1! . . .md!

θa (1− θ)m1+···+md (3.29)

Here the parameters to be determined are a , θ α1 , · · · , αd. The p.m.f. (3.29) can be
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rewritten as

p(m1, . . . ,md) =
(m1 + · · ·+md)!

m1! . . .md!

∏d
i=1(αi)mi

(α)m1+···+md

(a)m1+···+md
(m1 + · · ·+md)!

θa (1− θ)m1+···+md (3.30)

Hence, alternatively, model (3.29) can be decomposed as:

M
′|(T = t) ∼ Polya(t, α1, . . . , αd)

and
T ∼ NegativeBinomial(a, θ).

Hence, we study the problem of the parameter estimation for the model in two steps:

1. Parameter estimation for the distribution of sums - Negative Binomial distribution.

2. Parameter estimation for shares - Polya distribution.

Then, we combine both to obtain set of estimators for the parameters involved in the p.m.f.
(3.29). In Chapter 4, we discuss the parameter estimation for the negative binomial distri-
bution. Later, in Chapter 5, we discuss the parameter estimation for the Polya distribution.
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Chapter 4

Parameter Estimation for the Negative
Binomial Distribution

In this chapter, we study the problem of parameter estimation for the negative binomial
distribution when both parameters are unknown. Here, we consider method of moments
estimators, maximum likelihood estimators and Bayes estimators. We propose a family
of distributions which is semiconjugate for the two-parameter unknown negative binomial
distribution. Simulation studies are performed to compare the performance of the different
estimators obtained.

4.1 Introduction

The negative binomial distribution is a well-known univariate discrete distribution. It
has been applied to model diverse count-data generating processes. We will refer to a Neg-
ative binomial distribution T with parameters a and θ, if the probability mass function is
given as

p(T = t|a, θ) =
(a)t
t!
θa (1− θ)t IN(t) , (4.1)

where a > 0 and 0 < θ < 1. We denote this as T ∼ NB(a, θ). The mean and variance of
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T are given as follows:

µ = E[T ] =
a(1− θ)

θ
, σ2 = V[T ] =

a(1− θ)
θ2

.

The moment generating function for the negative binomial distribution with p.m.f. (4.1)
is

MX(s) =
θa

[1− (1− θ)es]a
(4.2)

Consider t1, t2, . . . , tn be n independent observations from Negative binomial NB(a, θ).
In this chapter, we consider the problem of estimating both the parameters a and θ based on
these n observations. In the section 4.3 and 4.4, we summarize some available results in the
literature related to method of moments and maximum likelihood estimators. There is not
much work done on Bayesian inference for such distribution. There are some studies in the
literature regarding Bayesian inference for negative binomial distribution. Bradlow, et al.
(2002) have suggested Bayesian inference for the Negative Binomial Distribution via Polyno-
mial Expansions [7]. Lio (2009) elaborates on Bayesian approach for parameters estimation
in case of Negative binomial distribution using MCMC techniques [26]. In this Chapter, we
provide a more general setup of Bayesian inference for the negative binomial distribution.
We suggest prior choices for the distribution of a and θ which forms semiconjugate family
of priors for the two parameter negative binomial distribution. We also derive some results
related to posterior distributions and predictive density distributions. Simulation studies are
conducted to compare the performances of the estimators under consideration. All the meth-
ods developed are illustrated using numerical examples. Applications to some real datasets
are also provided.

4.2 Unbiasedness of the Estimators

If the size parameter a is known, we get an unbiased estimator for θ. But, when a

is unknown, no estimator for a is unbiased. These results are reported in the following
theorems:
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Theorem 4.2.1. If a > 1 is known, then the estimator

δ(t1, · · · , tn) =
na− 1

na+
∑n

i=1 ti − 1
(4.3)

of θ is an unbiased estimator of θ.

Proof. If a is known, T =
∑n

i=1 ti is sufficient statistics and is distributed as NB(na, θ).
Now,

E
(

T

na+ T − 1

)
=

∑
T≥0

(
T

na+ T − 1

)
(na)T
T !

θna(1− θ)T

=
∑
T≥1

(na)(T−1)

(T − 1)!
θna(1− θ)T

= (1− θ)
∑
T≥0

(na)T
T !

θna(1− θ)T

= 1− θ.

Hence,

E
(

na− 1

na+ T − 1

)
= θ

Theorem 4.2.2. (Wang [34]) There does not exist an unbiased estimator of a.

Proof. Suppose there exist an unbiased estimator of a, say δ(T ), where T = (t1, · · · , tn).
Then we have,

∑
T

[
n∏
i=1

(a)ti
ti!

]
θna(1− θ)

∑
ti δ(T ) = a ,∀a ∈ (0,∞) and ∀θ ∈ (0, 1) (4.4)

Now, consider a = 1 and θ → 1, we get δ(0, · · · , 0) = 1. Also, for a = 2 and θ → 1, we
get δ(0, · · · , 0) = 2. Thus we get the contradiction. Hence, no estimator of a is unbiased.
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4.3 Method of moments estimators

Fisher (1941), in [11], has provided an elaborate discussion on the method of moments
estimators for Negative binomial distribution as well as their efficiencies. Dropkin (1959)
used method of moments to fit negative binomial model to data consisting of number of
accidents [9]. Savani,et al. (2006) have also discussed the method of moment estimators and
their asymptotic properties [31].

Comparing first sample moment
(
µ̂1 =

∑n
i=1 ti
n

)
and second sample moment

(
µ̂2 =

∑n
i=1 t

2
i

n

)
with their theoretical counterparts, we get point estimates for a and θ as follows:

â =
µ̂1

2

µ̂2 − µ̂1 − µ̂1
2 , θ̂ =

µ̂1

µ̂2 − µ̂1
2 . (4.5)

This estimators may lie outside of the parameter space. Note that these estimators are
valid only if the data is overdispersed i.e. sample variance is greater than sample mean
(µ̂2 − µ̂1

2 > µ̂1). This issue is explored by Nkingi and Vrbik (2016) [29]. They have talked
about the probability of the occurrence of under dispersed samples (sample variance <

sample mean) and constructed the confidence regions for the method of moments estimators.
According to the simulation study, when θ is large the percentage of occurrence of under
dispersion is very high. But the trend is more evident (Refer Table 4.1 and Table 4.2 ) with
the following parametrizations used by Nkingi and Vrbik [29]:

µ =
a(1− θ)

θ
, P =

1

θ
− 1.

µ\P 0.1 0.3 1 10
0.1 0.69 0.60 0.41 0.12
0.3 0.55 0.42 0.27 0.16
1 0.45 0.28 0.08 0.04
10 0.42 0.26 0.04 0.00

Table 4.1: Fraction of samples with under dispersion, sample size N = 20 and number of
samples 10000.
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µ\P 0.1 0.3 1 10
0.1 0.46 0.27 0.12 0.05
0.3 0.31 0.10 0.03 0.01
1 0.29 0.06 0.02 0.01
10 0.27 0.04 0.01 0.01

Table 4.2: Fraction of samples with under dispersion, sample size N = 100 and number of
samples 10000.

4.4 Maximum likelihood estimators

The log-likelihood function is given by

logL(a, θ|t) = nalog(θ) +
n∑
i=1

tilog(1− θ) +
n∑
i=1

(
ti−1∑
j=0

log(a+ j)

)
−

n∑
i=1

log(ti!) (4.6)

Johnson, et al. (2005) have discussed the method of maximum likelihood estimators for Neg-
ative Binomial distribution with both parameters unknown (page 216 of [15]). A closed form
expression of the MLE is not easy to obtain. But, MLE’s of a and θ are given as a solution
to the following system of equations:

â =

∑n
i=1 ti
n

θ̂

1− θ̂
= µ̂1

θ̂

1− θ̂
,

logθ̂ = −
max{tj}∑
j=0

1

â+ j

max{tj}∑
i=j+1

fi,

where fi is the observed frequency of i. We can use numerical root finding methods such
as the secant method or bisection method to find a solution for the above system. Another
way is to use gradient accent algorithm for the log-likelihood function.

It is seen that MLE estimator for a may not be exist as the likelihood function may be
increasing as a → ∞. Anscombe (1950) commented on the existence of MLE in [3]. He
has argued that in case of overdispersion, you have at least one finite root to the above
mentioned system of equations. Proof for the argument of having at least one root when
sample is overdispersed is given by Willson, et al. [35], Levin and Reeds [23] and Aragon,
et al. [5]. Willson, et al.(1986) have also shown that the order statistic is minimal sufficient
statistic but not complete for negative binomial distribution when the sample size is greater
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than three [35] . Aragon, et al. (1992) have shown that MLE exists iff sample is overdispersed.
Simonsen has also proved the same theorem in [32]. We report this result in the following
theorem and provide a proof by Aragaon, et al. [5] :

Theorem 4.4.1. Maximum likelihood estimator for a and θ exists if and only if the sample
is overdispersed.

Proof. The maximum likelihood estimator of a is a root of the score function

g(a) =

max{tj}∑
j=0

1

â+ j

max{tj}∑
i=j+1

fi − log
(

1 +
µ̂1

a

)

and that of θ is θ = â
â+t̄

. Defining the survival functions as Fj =
∑max{tj}

i=j fi , we get,

g(a) =

max{tj}∑
j=1

1

a+ j − 1
Fj − log

(
1 +

µ̂1

a

)

Note that a.g(a)→ F1 as a→ 0. Using change of variable, z = 1
a
, we get,

G(z) = g

(
1

a

)
=

max{tj}∑
j=1

z

1 + (j − 1)z
Fj − log (1 + zµ̂1)

As noted earlier, G(z)
z
→ F1 > 0 as z →∞.

On differentiation, we get,

G
′
(z) =

max{tj}∑
j=1

1

1 + (j − 1)z
Fj −

max{tj}∑
j=1

z(j − 1)

(1 + (j − 1)z)2
Fj −

µ̂1

1 + zt̄

and

G
′′
(z) = −2

max{tj}∑
j=1

(j − 1)

(1 + (j − 1)z)2
Fj + 2

max{tj}∑
j=1

z(j − 1)2

(1 + (j − 1)z)3
Fj +

µ̂2
1

(1 + zµ̂1)2
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Note that G(0) = G
′
(0) = 0 and

G
′′
(0) = −2

max{tj}∑
j=1

(j − 1)Fj + µ̂2
1 = µ̂1 − (µ̂2 − µ̂1

2)

If the sample is overdispersed i.e. (µ̂2 − µ̂1
2) > µ̂1, G

′′
(0) < 0. Hence, G will have the

solution.

Moreover, we have the following result by Levis and Reeds [23]:

Theorem 4.4.2. (Levis and Reeds [23]) If maximum likelihood estimator of a and θ exists,
then it is unique.

4.5 Bayesian inference

In Section 4.3 and Section 4.4, we noted that there are limitations of method of mo-
ment estimators and maximum likelihood estimators in case of underdispersed data. We
have developed Bayesian setup to overcome this parameter estimation problem. Bradlow, et
al. (2002) have suggested Bayesian inference for the Negative Binomial Distribution via Poly-
nomial Expansions [7]. They have used polynomial approximations for ratios of gamma func-
tions appearing in the posterior distribution. With beta prime prior for success probability
θ and Pearson Type V I prior for size parameter a, they provided closed from approxima-
tions to the posterior moments of a and θ. Lio (2009) elaborates on Bayesian approach for
parameters estimation in case of Negative binomial distribution [26].

Besides, in the literature, we can find Bayesian model for negative binomial distribution
in case of single unknown parameter (θ) using beta prior which is conjugate prior. We
propose a Bayesian model when both the parameters are unknown. Also, the prior choice is
shown to be semiconjugate.
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4.6 Priors for a and θ

We consider the prior of the form π(a, θ) = f(a)g(θ), where f(a) is Gammapoly density
defined as follows:

4.6.1 Gammapoly density

Gamma distribution is widely studied and has been used to model continuous data in
the literature. We propose a new density function for a of the following form which we call
Gammapoly density function with shape parameter γ:

f(a) ∝ Φ(a)exp(−aγ),

where Φ(a) is a polynomial in a, say, Φ(a) = c0 + c1a + · · · + cda
d for some non-negative

integer d. Note that this is a proper density function. We have

f(a) =
1

C

d∑
i=0

cia
ie−aγ, (4.7)

where C =
∑d

i=0
ciΓ(i+1)
γi+1 . The Gammapoly density can be considered as finite mixture of

Gamma distributions ( Gamma(i+ 1, γ) , i = 1, . . . , d) with weights wi = ciΓ(i+1)
Cγi+1 .

When Φ(a) = 1, f(a) reduces to an exponential distribution. For Φ(a) = cia
i for some i,

f(a) gives aGamma distribution. We also note that this can be considered as a generalization
of Lindley distribution given by Lindley (1958) [24]. The Lindley distribution is a mixture
of Gamma and exponential distribution with probability density function,

f(a|γ) =
γ2

1 + γ
(1 + a)e−γa.

The Lindley distribution is special case of Gammapoly with Φ(a) = 1+a. The large number
of parameters in Gammapoly provides flexibility to cover large class of distributions which
was not available with Lindley distribution due to single parameter.
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We also note that, if Φ(a) = aα−1(a+ c)d, c > 0, α, d ∈ N, we get

f(a) =
aα−1(a+ c)de−γa∫
aα−1(a+ c)de−γa da

=
aα−1(a+ c)de−γa

Γ(α)cα+dU (α, d+ α + 1, cγ)

(4.8)

where U(x, y, z) is confluent hypergeometric function of second kind, defined as follows,

U(α, y, z) =
1

Γ(α)

∫ ∞
0

tα−1(1 + t)y−α−1e−tz dt.

Equation (4.8) is the density function of Kummer distribution of type 2 given by Hamza and
Vallois (2016) in [12].

Moment Generating Function

Proposition 4.6.1. The moment generating function for a random variable X with the
density function

f(x) =
1

C

d∑
i=0

cix
ie−xγ (4.9)

is

MX(t) =
1

C

d∑
i=0

ciΓ(i+ 1)

γi+1

(
1

1− t
γ

)i+1

.

Proposition 4.6.2. The rth moments of a random variable with the density (4.9) are given
as

E(Xr) =
dr

dtr
MX(t)

∣∣∣
t=0

=
1

C

d∑
i=0

ciΓ(i+ 1)

γi+1

(i+ r)!

i!γr
, r = 1, 2, . . .

In particular,

E(X) =
1

C

d∑
i=0

ciΓ(i+ 1)

γi+1

i+ 1

γ

and

E(X2) =
1

C

d∑
i=0

ciΓ(i+ 1)

γi+1

(i+ 1) + (i+ 1)2

γ2
.

37



With Gammapoly prior for a, we consider Beta prior for θ, i.e.

g(θ|β1, β2) =
Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1 I(0,1)(θ), with known β1, β2 > 0. (4.10)

Hence the joint prior density for a and θ is

π(a, θ) =
1

C

d∑
i=0

cia
ie−aγ

Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1, (4.11)

where C =
∑d

i=0
ciΓ(i+1)
γi+1 , a > 0, θ ∈ (0, 1).

With these choices of priors for a and θ, the c.d.f. of the mean µ = a(1−θ)
θ

is given as
follows:

F (µ) =

∫ ∞
0

∫ 1

a
a+µ

f(a)g(θ) dθ da.

In particular, if a ∼ Gamma(α, γ), we get the following result for the distribution of µ.

Proposition 4.6.3. Suppose a is distributed as Gamma(α, γ) and θ is distributed as Beta(β1, β2).
Then, the probability density function for µ = a(1−θ)

θ
is given by

p(µ) =
γαµα−1

Beta(β1, β2)
U(α + β1, α− β2 + 1, γµ). (4.12)

Proof. Since µ = a(1−θ)
θ

or θ = a
a+µ

, the c.d.f of µ is

F (µ) =

∫ ∞
0

∫ 1

a
a+µ

f(a)π(θ) dθ da

=

∫ ∞
0

∫ 1

a
a+µ

γαaα−1e−γa

Γ(α)

Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1 dθ da

= 1−
∫ ∞

0

∫ a
a+µ

0

γαaα−1e−γa

Γ(α)

Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1 dθ da

= 1−
∫ ∞

0

γαaα−1e−γa

Γ(α)

Beta( a
a+µ

, β1, β2)

Beta(β1, β2)
da,
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where Beta(z, β1, β2) is the incomplete beta function defined as

Beta(z, β1, β2) =

∫ z

0

θβ1−1(1− θ)β2−1 dθ

Then the p.d.f of µ is

p(µ) = −
∫ ∞

0

γαaα−1e−γa

Γ(α)

d
dµ
Beta( a

a+µ
, β1, β2)

Beta(β1, β2)
da

=

∫ ∞
0

γαaα−1e−γa

Γ(α)Beta(β1, β2)

aα+β1−1

(a+ µ)β1+β2
da

=
γαµα−1Γ(α + β1)

Beta(β1, β2)Γ(α)
U(α + β1, α− β2 + 1, γµ),

where we have used the fact that

d

dz
Beta(α, β1, β2) = zβ1−1(1− z)β.

4.6.2 Posterior Density Distribution

Let t1, t2, . . . , tn be n independent observations from Negative Binomial given in (4.1).
We will use t to denote (t1, t2, . . . , tn). The likelihood function is given as

L(a, θ|t) =
n∏
i=1

(a)ti
t!

θna(1− θ)
∑n
i=1 ti . (4.13)

We consider the prior

π(a, θ) =
1

C

d∑
i=0

cia
ie−aγ

Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1 (4.14)
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With respect to this prior, the marginal density for t is

p(t) =

∫∫
L(a, θ|t)π(a, θ) da dθ

=
1

C

Γ(β1 + β2)

Γ(β1)Γ(β2)

∫∫ n∏
i=1

(a)ti
t!

θna+β1−1(1− θ)
∑n
i=1 ti+β2−1

d∑
i=0

cia
iexp(−aγ) da dθ

=
1

C

Γ(β1 + β2)

Γ(β1)Γ(β2)

Γ(
∑n

i=1 ti + β2)

t!

∫ ∏n
i=1(a)ti

∑d
i=0 cia

i

(na+ β1)∑n
i=1 ti+β2

exp(−aγ) da,

and the joint posterior density of a and θ is

π(a, θ|t) =
L(a, θ|t)f(a)π(θ)

p(t)

=

∏n
i=1(a)ti

∑d
i=0 cia

ie−γaθna+β1−1(1− θ)
∑n
i=1 ti+β2−1

Γ(
∑n

i=1 ti + β2)K
,

(4.15)

where

K =

∫ ∏n
i=1(a)ti

∑d
i=0 cia

ie−γa

(na+ β1)∑n
i=1 ti+β2

da.

The posterior marginal densities of a and θ are :

π(a|t) =

∫ 1

0

π(a, θ|t) dθ

=

∏n
i=1(a)tiΓ(na+ β1)

∑d
i=0 cia

ie−γa

Γ(na+ β1 +
∑n

i=1 ti + β2)K
,

(4.16)

and

π(θ|t) =

∫ ∞
0

π(a, θ|t) da

=
θβ1−1(1− θ)

∑
ti+β2−1

Γ(
∑
ti + β2)K

∫ ∞
0

∏
(a)ti

∑
cia

ie−a(γ−nlogθ) da

(4.17)

Semiconjugate priors are defined for more than one dimensional parameter space. It is
a family of probability distributions on parameter space such that for each member of that
family, the full posterior marginals belong to the same family.

40



Proposition 4.6.4. The family of distributions with density

π(a, θ) =
1

C

d∑
i=0

cia
ie−aγ

Γ(β1 + β2)

Γ(β1)Γ(β2)
θβ1−1(1− θ)β2−1, a > 0, θ ∈ (0, 1) (4.18)

is semiconjugate for Negative binomial distribution (4.1).

Proof. From (4.15), the full marginal posterior distribution for a is

π(a|θ, t) ∝
n∏
i=1

(a)ti

d∑
i=0

cia
ie−(γ−nlogθ)a, (4.19)

which is again Gammapoly distribution with polynomial part
∏n

i=1(a)ti
∑d

i=0 cia
i and shape

parameter γ − nlogθ.

Also, the full marginal distribution of θ is Beta(na+ β1,
∑n

i=1 ti + β2) as

π(θ|a, t) =
Γ(na+ β1 +

∑n
i=1 ti + β2)

Γ(na+ β1) Γ(
∑n

i=1 ti + β2)
θna+β1−1(1− θ)

∑n
i=1 ti+β2−1. (4.20)

4.6.3 Predictive Density Analysis

Let Y be a new observation from NB(a, θ) in (4.1). Then, predictive probability mass
function for Y given t1, t2, . . . , tn is given as

q(y|t) =

∫∫
p(y|a, θ)π(a, θ|t) dθ da

=
(
∑n

i=1 ti + β2)y
y!K

∫
(a)y

∏n
i=1(a)ti

∑d
i=0 cia

ie−γa

((n+ 1)a+ β1)(
∑n
i=1 ti+β2+y)

da
(4.21)

Proposition 4.6.5. When β1 = 1, the expected value of Y given t is independent of the
choice of prior for a.

Before proceeding further with the proof, we will recall some properties of ascending
factorials which follows from the properties of Gamma function.
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Lemma 4.6.6. For a, t, r > 0 and a > r,we have,

1. (a− r)r+t = (a)t(a− r)r

2. In particular, for r = 1, we get (a− 1)(a)t = (a− 1)t+1

Proof. (Proposition 4.6.5) We have, from the definition of conditional expectations,

Eq [Y |t] =Eπ(a,θ|t)

[
a(1− θ)

θ

]
=

∫∫
a(1− θ)

θ
π(a, θ|t) da dθ

=

∑n
i=1 ti + β2

K

∫
a
∏n

i=1(a)ti
∑d

i=0 cia
ie−γa

(na+ β1 − 1)(
∑n
i=1 ti+β2+1)

da.

Using property (2) of Lemma 4.6.6 in the denominator, we get, when β1 = 1,

Eq [Y |t] =

∑n
i=1 ti + β2

n
(4.22)

which is independent of the ci’s and γ.

Moreover, we get a general result as follows:

Proposition 4.6.7. For any β1, β2 > 0,

Eπ(a,θ|t)

[
(na+ β1 − 1)

(1− θ)
θ
|t
]

=
n∑
i=1

ti + β2 (4.23)

When β1 = 1, equation (4.23) reduces to (4.22). Note that, uniform prior choice for θ leads
to

Eq [Y |t] =

∑n
i=1 ti + 1

n
. (4.24)

Proposition 4.6.8. For any β1, β2 > 0, ,m2 > m1 > 0

Eπ(a,θ|t)

[
(na+ β1 −m1)m1

(
na+ β1 +

n∑
i=1

ti + β2

)
m2−m1

(1− θ)m2

θm1
|t

]
=

Γ(
∑n

i=1 ti + β2 +m2)

Γ(
∑n

i=1 ti + β2)
.
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4.7 Computational aspects

The implementation of the above-mentioned method of Bayesian analysis of negative
binomial distributed data requires sample generating methods from Gammapoly distribution
(4.7) and posterior density distribution (4.15). In this section, we provide such methods
which will enable us the employment of the new method of inference.

4.7.1 Generating samples from Gammapoly distribution

The characterization of Gammapoly distribution as a finite mixture of Gamma distribu-
tions, given in Section 4.6, is useful in sampling from Gammapoly distribution. To generate
samples from the density function (4.7),

1. Compute the weights wi = ciΓ(i+1)
Cγi+1 , i = 0, 1, . . . , d ;

2. Choose i ∈ {0, 1, . . . , d} with probability wi ;

3. Generate sample from Gamma(i+ 1, γ) .

4.7.2 Generating samples from posterior density distribution

Further, Gibbs sampler can be used to draw samples from posterior density (4.15) as we
can sample from full marginal densities given in (4.19) and (4.20) as follows:

1. Choose prior distributions for a and θ, i.e. to fix values for coefficients c0, . . . , cd in
Φ(a) , γ, β1 and β2 ;

2. Compute polynomial part in full marginal posterior density of a, which is necessary to
compute weights to sample a from (4.19);

3. Start with an arbitrary value for θ;

4. Using this value of θ, sample anew from (4.19);

5. Sample a new value for θ from Beta(nanew + β1,
∑
ti + β2);
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6. Repeat steps 4 and 5 till convergence of Gibbs sampler;

7. Throw away first few samples, also called as burn-in period of Gibbs sampler to get
independent samples ai and θi, i = 1, 2, . . . , N from (4.15).

The above mentioned algorithm can be computationally inefficient in some cases, for
example, large number of samples (n), large values of the observations, etc. But, this can
be improved upon by avoiding computations of weights via long polynomial computations
in step 2 by considering ratios of consecutive coefficients and normalizing them with respect
to particular coefficient, set to be unity. In step 4, note that, the coefficients of ai, i =

0, 1, · · · , n − n0 + δ − 1, (where δ is the lowest non-zero degree in Φ(a)) are all zero and
the remaining coefficients are non-zero which further facilitates the sampling from the target
distribution by the method described with improvement.

4.7.3 Estimators of a and θ

With respect to quadratic loss function, Bayes estimators for a and θ are posterior
means of a and θ. These can be computed using posterior averages of samples generated
using method presented in the previous section.

â =

∑N
i=1 ai
N

, θ̂ =

∑N
i=1 θi
N

(4.25)

We can also use the generated samples to estimate the median or quantiles of the posterior
distributions. The median of a and θ are the Bayes estimators with respect to absolute error
loss.

4.7.4 Empirical estimators of predictive density

To get empirical estimates for predictive probability density function (4.21) and expected
value of new observation given t i.e. Eq[Y |t], for each sampled pair of ai and θi sampled using
Gibbs sampler, we compute (a)y

y!
θaii (1 − θi)y for y = 0, 1, 2, . . . and ai(1−θi)

θi
, and then take

averages.
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q̂(y|t) =

∑N
i=1

(a)y
y!
θaii (1− θi)y

N
, y = 0, 1, 2, . . . (4.26)

and

Ê[Y |t] =

∑N
i=1

ai(1−θi)
θi

N
(4.27)

4.8 Numerical examples

4.8.1 Application to a tiny dataset

We consider a dataset t1 = 0, t2 = 1, t3 = 4 of three independent observations from
NB(a, θ) for some a and θ. For this particular example, we explicitly derived the expressions
for marginal posterior densities of a and θ as well as joint posterior density , predictive
density and expected predictive value for following prior values and compare the results of
simulations with the analytically obtained expressions. Considering prior values as Φ(a) = 1

, γ = 2, β1 = β2 = 1, which corresponds to the prior π(a, θ) = 2e−2a, we get the joint
posterior density

π(a, θ|t) =
a2(a+ 1)(a+ 2)(a+ 3)e−2aθ3a(1− θ)5

0.013215
· · · from (4.15).

The marginal posterior densities are

π(a|t) =
1008.97

9

(
2

81

e−2a

3a+ 1
− 14

81

e−2a

3a+ 2
+

40

81

e−2a

3a+ 4
− 25

81

e−2a

3a+ 5

)
,

and

π(θ|t) =
(1− θ5)

12

{
120

(2 + 3ln(θ))6
+

144

(2 + 3ln(θ))5
+

66

(2 + 3ln(θ))4
+

12

(2 + 3ln(θ))3

}
.

Figure (4.1) shows the comparison of analytic expressions and the results obtained via sim-
ulations using Gibbs sampler. With respect to quadratic loss, Bayes estimates for unknown
parameters are

âBayes = 0.7404, θ̂Bayes = 0.3353
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The predictive density is given as

q(y|t) =
Γ(6 + y)

0.013215y!

∫
(a)ya

2(a+ 1)(a+ 2)(a+ 3)e−2a

(4a+ 1) . . . (4a+ 6 + y)
da

Table 4.3 provides few values of predictive density.

y 0 1 2 3 4 5 6
q(y|t) 0.5004 0.1817 0.1014 0.0621 0.0402 0.0271 0.0189

Table 4.3: Predictive density for a tiny dataset

Comparison of empirical estimates of predictive density with the values in Table 4.3 is
shown in Figure 4.9. We can see that the empirical means, obtained using (4.26) and (4.27)
matches well with the analytically derived values in Table 4.3.

4.8.2 Application to Fisher’s data of the number of ticks on sheep

Consider the dataset (Table A.3) representing a sample of sheep classified according to
the number of ticks found on each, as given by Fisher in [11].

Let prior be as follows:

a ∼ Gamma(3, 1), θ ∼ Beta(1, 1)

The posterior distributions for a and θ are given in Figure 4.3. Predictive density estimates
are obtained (Figure 4.9).

MoM MLE Bayes Estimates(Posterior Means)
a 4.10859 3.75254 3.625036
θ 0.558339 0.535902 0.514822

Table 4.4: Comparison of different estimators for a and θ
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4.9 Risk comparison of estimators

We conducted a simulation study to compare Bayes estimate under quadratic loss with
method of moments estimators and maximum likelihood estimators under different choices
for a and θ. The values chosen for a and θ are 1, 2, 3 and 0.25, 0.50, 0.75, respectively. For
each pair, N = 1000 samples of size n = 50 are generated and estimates for a and θ are
computed. Method of moments (MoM) estimators are calculated using (4.5). The following
prior is considered : π(a, theta) = 1

2
e−

1
2
a , hence the prior mean of a is 2 and θ is 0.5. Figures

(4.5), (4.6) and (4.7) shows boxplots for |â−a| and |θ̂−θ| where â and θ̂ denote the estimates
for a and θ (namely, MoM estimators and posterior expectations of a and θ) , respectively.
We have considered samples which are overdispersed as we know that for underdispersed
samples, MoM and MLE estimators either lie outside the parameter space or do not exist.
All the computations are done using R.

From the simulation study, we can see that, in almost all the cases studied, Bayes estima-
tors performs better than or equal to other estimates, when absolute deviation from the true
values of parameters is considered. The variability in Bayes estimators is less as compared
to other estimates.

Risk functions with respect to quadratic loss functions are plotted (4.9) for a and θ for
(a, θ) ∈ (0, 10)× (0, 1). The samples of size 5 are considered for this simulation study. It can
be seen that, except for the extreme values of θ, the frequentist risk with respect to quadratic
loss function of Bayes estimator is better than that of the MoM estimator, whenever they
exists.
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Figure 4.8: Risk comparison for Bayes estimator (green) and MoM estimator (red) of a

Figure 4.9: Risk comparison of Bayes estimator (green) and MoM estimator (red) of θ
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Chapter 5

Parameter Estimation for the Polya
Distribution

In this Chapter, we consider the problem of the parameter estimation for the Polya dis-
tribution. We propose the use of a data cloning method to obtain MLE for such model.
A Bayesian approach is also suggested. All methods developed are illustrated using real
dataset.

5.1 Polya Distribution

Let X = (X1, . . . , Xd) be a random vector where Xi ∈ {0, 1, . . . , t} and
∑d

i=1 Xi = t.
The probability mass function for a Polya(t;α1, . . . , αd) distribution is

p(x1, . . . , xd|α1, . . . , αd, t) =
t!

(α)t

∏
i

(αi)xi
xi!

, (5.1)

where, α =
∑
i

αi, t =
∑
i

xi. Let (x1j, . . . , xdj), j = 1, 2, . . . , n be n independent obser-

vations from Polya(tj;α1, . . . , αd) distribution, j = 1, 2, . . . , n, respectively. The likelihood
function is given as

L(α1, . . . , αd) =
n∏
j=1

tj!

(α)tj

∏
i

(αi)xij
xij!

(5.2)
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Here, we consider the problem of estimating αi’s.

5.2 Maximum likelihood estimation

Maximum likelihood estimators for αi’s are the solutions for the following score equations:

n∑
j=1

xij−1∑
l=0

1

αi + l
=

n∑
j=1

tj−1∑
l=0

1

α + l
, i = 1, 2, . . . , d (5.3)

Levin and Reeds (1977) showed that the MLE may not exist for Polya distribution in [23].
No closed form solutions can be obtained for the MLE. Numerical methods are needed to
be implemented to obtain solutions for the system of equations (5.3). Here we provide an
alternative method to obtain MLE using data cloning.

5.2.1 Data Cloning

A well known result in asymptotic Bayes theory that under certain regularity conditions,
the posterior distribution π(θ|x1, . . . , xn) asymptotically approaches to Nd(θ̂MLE, I

−1(θ̂MLE))

as n→∞, where θ̂MLE is MLE of the parameter θ and I(θ) is the information matrix based
on n observations x1, . . . , xn. A rigorous proof of such result is provided by Walker (1969)
in [33]. Here is the version of the result for a multidimensional parameter spaces:

Theorem 5.2.1. Let θ = (θ1, . . . , θd) ∈ Θ be d − dimensional parameter vector. Let

X1, . . . , Xn have density
n∏
i=1

f(xi|θ). Assume that following regularity conditions are sat-

isfied:

1. S = {x : f(x|θ)} does not depend on θ.

2. Identification : The distributions corresponding to two distinct values of θ are different.

3. Consider x ∈ S and θ
′ ∈ Θ. Then there exist δ > 0 such that ∀θ with |θ − θ′| < δ, we

have,
|log(f(x|θ))− log(f(x|θ′))| < Hδ(x,θ

′
)
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and
lim
δ→0

Hδ(x,θ
′
) = 0

.

Also, for any θ0 ∈ Θ,

lim
δ→0

∫
S

Hδ(x,θ
′
)f(x|θ0)dµ = 0.

In the below conditions, let θ0 be any interior point in Θ.

4. For unbounded Θ and any θ0 ∈ Θ,

log(f(x|θ))− log(f(x|θ0)) < K∆(x,θ0), ∀θ such that ||θ|| > ∆,

where
lim

∆→∞

∫
S

K∆(x,θ0)f(x|θ0)dµ <∞.

5. Logf(x|θ) is a twice differentiable function of θ near θ0.

6. The d× d information matrix I(θ0) should be finite and positive definite. Here,

Iij(θ0) =

∫
S

f(x|θ0)

(
∂f(x|θ)

∂θi

)
θ=θ0

(
∂f(x|θ)

∂θj

)
θ=θ0

dµ.

7. The prior density π(θ) is continuous at θ0 and π(θ0) > 0.

Then, the posterior distribution π(θ|x1, . . . , xn) converges in distribution to Nd(θ̂MLE,n,
1
n
I−1(θ̂MLE,n)),

where θ̂MLE,n is MLE based on the sample x1, . . . , xn.

Using this result, Lele, et al. (2010) proposed method of data cloning to obtain MLE in
case of random effect models [22]. The idea of the data cloning is as follows :

Suppose we have n observations x1, . . . , xn with the density
n∏
i=1

f(xi|θ). For any prior

π(θ), the posterior density for θ is

π(θ|x1, . . . , xn) ∝
n∏
i=1

f(xi|θ)π(θ)
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Now the cloned data is obtained by considering k copies of the observed data. Then the
likelihood function for the cloned data is

L(θ) =

(
n∏
i=1

f(xi|θ)

)k

.

Here, note that the MLE’s based on the observed data and the cloned data are same. The
posterior distribution based on the cloned data is

π(θ|(x1, . . . , xn)k) ∝

(
n∏
i=1

f(xi|θ)

)k

π(θ).

Invoking above theorem 5.2.1 for the cloned data, we get, the posterior distribution π(θ|(x1, . . . , xn)k)

converges in distribution to Nd(θ̂MLE,n,
1
nk
I−1(θ̂MLE,n)). Hence, for fixed n, if we let k →∞,

the variance matrix will shrink to 0 and the samples from the posterior density based on
the cloned data can be used as as estimator for θ̂MLE,n. Further, we can use this normal
approximation to construct confidence intervals for the estimate of θ̂MLE,n.

5.2.2 Using Data Cloning for estimating the MLE for a Polya Dis-

tribution

Let (x1j, . . . , xdj) j = 1, 2, . . . , n be n independent observations from Polya distribution
(5.1). The likelihood function is given in (5.2).

Levin and Reeds (1977) showed that the MLE may not be finite for some samples [23].
They proved that the MLE is finite if and only if

n∑
j=1

d∑
i=1

(xij − t)2

t
>

d∑
i=1

n∑
j=1

xij

t
− n. (5.4)

Assuming that the MLE exists for a given data, here is an algorithm to estimate the MLE
using a data cloning approach:
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1. We consider independent priors for αi’s.

π(α1, . . . , αd) = π(α1) · · · π(αd).

2. Fix k. Then, the posterior distribution of αi’s is

π(α1, . . . , αd|(x1j, . . . , xdj)
k) ∝ (L(α1, . . . , αd))

k π(α1) · · · π(αd). (5.5)

3. Then, we have the full posterior marginal distributions for αi’s as follows:

π(αi|αj 6=i, (x1j, . . . , xdj)
k) ∝ π(αi)

(
n∏
j=1

(αi)xij
(α)tj

)k

.

4. Use Gibbs sampler to sample (α1, . . . , αd) from the joint posterior density (5.5).

5. Repeat steps 2, 3 and 4 with increasing values for k till samples start to converge.

6. The mean of the samples converges to the MLE for αi’s.

In cases where finite MLE solutions does not exist for αi’s, it is observed that αi
α
converges

for large k. If α1, . . . , αd → ∞ such that αi
α
→ φi , the probability mass function for this

limiting case of Polya distribution is

p(x1, . . . , xd|φ1, . . . , φd) = d!
∏
i

φxii
xi!

(5.6)

Then, the data cloning method can also be used to estimate φi’s by considering αi
α

for the
samples generated using large values of k.

5.2.3 Examples

Here, we present examples of cases where

1) the MLE solution exists and

2) the MLE solution does not exist.
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Shunter’s Accident Data

Conditional on the sum T , we fit a Polya disribution(T ;α1, α2) to the bivariate Shunter
Accidents data. This dataset does not admit finite MLE solution. As expected, the αi’s
don’t converge for any k (Fig. 5.1). But, if we consider φi’s as defined in earlier section, it
can be seen that φi’s converge (Fig. 5.2). Table 5.1 shows estimates for φi’s with standard
errors.

k φ̂1MLE φ̂2MLE

100 0.434212(8.95× 10−6) 0.565788(8.95× 10−6)
1000 0.4340187(1.48× 10−6) 0.5659813(1.48× 10−6)

Table 5.1: MLEs of φi’s for Shunter’s accident bivariate data in Table A.1 using data cloning
for different values of k. The bracketed quantities denote the standard error.

Aitchison’s Trivariate Bacterial Data Count

Conditional on the sum T , we fit a Polya disribution(t;α1, α2, α3) to the trivariate bacterial
data given in Table A.2. This dataset does admit finite MLE solution. Fig. 5.3 shows
sample iterates obtained for α1, α2, α3 from the posterior density using Gibbs sampler for
cloned Aitchison’s trivariate data with k = 100, 1000 and 10000. Table 5.2 shows estimates
for MLE of αi’s with standard errors. We can see that, as k becomes large, the standard
error decreases which is suggested by Theorem 5.2.1.

k α̂1 α̂2 α̂3

100 2.0881(0.0461) 2.8949(0.0602) 2.6497(0.0560)
1000 2.0839(0.0133) 2.8334(0.0194) 2.6471(0.0183)
10000 2.0781(0.0072) 2.8248(0.0101) 2.6402(0.0101)

Table 5.2: MLE of αi’s for Aitchison’s trivariate data using data cloning for different values
of k. The bracketed quantities denote the standard error.
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Figure 5.1: Iterates obtained for α1, α2 from the posterior density using Gibbs sampler for
cloned Shunter’s accident data with k = 100, 1000
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Figure 5.3: Iterates obtained for α1, α2, α3 from the posterior density using Gibbs sampler
for cloned Aitchison’s trivariate data with k = 100, 1000, 10000
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5.3 Bayesian Inference

We consider the following priors for the αi’s :

π(αi) ∝
Pi(αi)

Qi(αi)
e−βαi , i = 1, 2, . . . , d, (5.7)

where Pi(αi) and Qi(αi) are polynomials in αi’s and β is any positive real number.

Proposition 5.3.1. The class of priors given in (5.7) is semiconjugate prior for the Polya(t;α1, . . . , αd)

distribution.

Proof. The joint posterior density of the αi’s is

π(α1, . . . , αd|(x1j, . . . , xdj)
n
j=1) ∝ π(αi)


n∏
j=1

d∏
i=1

(αi)xij

(α)tj

 .

Now, the full posterior marginal density of αi is

π(αi|α1, . . . , αi−1, αi+1, . . . , αd, (x1j, . . . , xdj)
n
j=1) ∝ π(αi)

(
n∏
j=1

(αi)xij
(α)tj

)

∝ Pi(αi)

Qi(αi)
e−βαi

(
n∏
j=1

(αi)xij
(α)tj

)
,

∝
Pi(αi)

n∏
j=1

(αi)xij

Qi(αi)
n∏
j=1

(α)tj

e−βαi

Hence, we have,

π(αi|α1, . . . , αi−1, αi+1, . . . , αd, (x1j, . . . , xdj)
n
j=1) ∝ P

′
i (αi)

Q
′
i(αi)

e−βαi , (5.8)

where P ′i (αi) = Pi(αi)
n∏
j=1

(αi)xij and Q
′
i(αi) = Qi(αi)

n∏
j=1

(α)tj are polynomials in αi.

We can use Gibbs sampling scheme to sample from the joint posterior density of the αi’s.
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The samples generated, then, can be used to estimate functions of αi’s such as posterior
moments of αi’s i.e. E(αri |(x1j, . . . , xdj)

n
j=1). We can thus obtain Bayes point estimators for

αi’s.

5.3.1 Illustration

We apply the Bayesian methodology suggested above to the Shunter’s Accident data to
obtain posterior means of αi’s as Bayes point estimators.

We consider π(αi) = Gamma(3, 1) , i = 1, 2, . . . , d. The samples from the joint posterior
density are generated using Gibbs sampler. Fig. 5.4 shows the marginal posterior densities
for α1 and α2. Table 5.3 gives posterior expectations of α1 and α2.

α1 α2

Posterior mean 4.0546 5.2617
Posterior s.d. 1.1891 1.5226

Table 5.3: Estimates of αi’s for Shunter’s Accident data
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Figure 5.4: Marginal Posterior densities for α1, α2 for Shunter’s Accident bivariate data
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Chapter 6

Parameter estimation for the Negative
Binomial Sums and Polya Shares Model

This chapter addresses the main goal of the thesis. Based on the estimators obtained in
Chapter 4 and Chapter 5, here we provide the estimators for the parameters in Negative
binomial sums and Polya shares model 3.18. The limiting distribution obtained in 3.23 is
also considered. We also provide applications of the model to real datasets.

6.1 Introduction

We return to the original problem of the parameter estimation for the Negative binomial
sums and Polya shares model with the probability mass function

p(m1,m2, . . . ,md) =

∏d
i=1(αi)mi

(α)m1+···+md

(a)m1+···+md
m1!m2! · · ·md!

θa (1− θ)m1+···+md (6.1)

where α =
∑d

i=1 αi. We also consider the limiting distribution obtained as α1, . . . , αd →∞
such that αi

α
→ φi with the probability mass function

p(m1,m2, . . . ,md) =
(a)m1+···+md
m1! · · ·md!

(
d∏
i=1

φmii

)
θa (1− θ)m1+···+md (6.2)
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Let (m11, · · · ,md1), · · · , (m1n, · · · ,mdn) be n independent observations from 6.1. We de-

note these observations as M = {(m11, . . . ,md1), · · · , (m1n, . . . ,mdn)}. Let mi. = 1
n

n∑
j=1

mij,

sij = 1
n

n∑
k=1

(mik −mi.)(mjk −mj.) and tj =
d∑
i=1

mij.

6.2 Method of Moments estimators

There are many challenges in obtaining method of moments estimators for the model
(6.1) due to large number of parameters. Besides, as seen in Section 4.3, the method of
moments estimators may not give a feasible solution for Negative binomial distribution. As
mentioned by Jones and Marchand in [17], here we provide estimators when d = 2. Let
(m11,m21), · · · , (m1n,m2n) be n independent observations from bivariate discrete distribu-
tions with probability mass function

p(m1,m2) =
(α1)m1(α2)m2

(α1 + α2)t

(a)t
m1!m2!

θa(1− θ)t, t = m1 +m2 (6.3)

We denote tj = m1j +m2j, j = 1, 2, · · · , n. Let µ̂1 =
∑n
i=1 ti
n

and µ̂2 =
∑n
i=1 t

2
i

n
. From (4.5),

we have

â =
µ̂1

2

µ̂2 − µ̂1 − µ̂1
2 , θ̂ =

µ̂1

µ̂2 − µ̂1
2 . (6.4)

Comparing theoretical (refer to eq. 3.19 and eq. 3.20) and sample moments of mi’s ,

m1. =
â(1− θ̂)

θ̂

α̂1

α̂
= µ̂1

α̂1

α̂
, m2. =

â(1− θ̂)
θ̂

α̂2

α̂
= µ̂1

α̂2

α̂
, s12 =

â(1− θ̂)2

θ̂2α̂2(1 + α̂)
{(α̂− â)α̂1α̂2},

we get,

α̂1 =
α̂m1.

µ̂1

, α̂2 =
α̂m2.

µ̂1

, α̂ =
â2(1− θ̂)2m1.m2. + s12θ̂

2µ̂2
1

â(1− θ̂)2m1.m2. − s12θ̂2µ̂2
1

Note that α̂ > 0 if and only if â(1− θ̂)2m1.m2. > s12θ̂
2µ̂2

1.

We can’t generalize this method for higher dimensions as there are less number of param-
eters than the moments equations to compare. For instance, when d = 3, one can estimate
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a and θ in a similar way. But, to estimates α1, α2, α3, we have six independent terms in the
covariance matrix. It is not known which equations should be preferred for the estimation
purpose.

For the limiting distribution (6.2), the method of moments estimators are

φ̂i =
mi.

µ̂1

, i = 1, 2, · · · , d (6.5)

6.3 Maximum Likelihood Estimators

The log-likelihood function based on n independent observations from the Negative
binomial sums and Polya shares distribution is given as

logL(a, θ, α1, · · · , αd|M) = nalog(θ) +
n∑
j=1

tjlog(1− θ) +
n∑
j=1

(
tj−1∑
k=0

log(a+ k)

)

+
d∑
i=1

n∑
j=1

(
mij−1∑
k=0

log(αi + k)

)
−

n∑
j=1

(
tj−1∑
k=0

log(α + k)

)
−

d∑
i=1

n∑
j=1

log(mij!) (6.6)

Note that the terms involving a, θ and αi, · · · , αd are separated in the log-likelihood
equation. Hence, the score functions are independent. As seen in the Chapter 4 and Chapter
5, MLE for a as well as αi’s may not exist. Whenever the solutions exist, methods developed
in the Chapter 4 and Chapter 5 can be used.

6.4 Bayesian Inference

Here, we suggest a general setup for the Bayesian inference for the negative binomial
sums and shares model. We consider the priors for the parameters as follows:

1. Polya parameter a is distributed as a Gammapoly distribution introduced in (4.7) i.e.,
π(a) ∝ Φ(a)e−γa ;

2. θ ∼ Beta(β1, β2) i.e. π(θ) = 1
B(β1,β2)

θβ1−1(1− θ)β2−1I(0,1)(θ) ;
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3. π(αi) ∝ Pi(αi)
Qi(αi)

e−βαi , i = 1, 2, . . . , d.

Using the algorithms proposed in previous chapters, we can obtain estimates for the posterior
distribution of the parameters.

Bayesian Inference in case of the limiting distribution 6.2:

We consider the following priors:

1. π(a) ∝ Φ(a)e−γa ;

2. θ ∼ Beta(β1, β2) i.e. π(θ) = 1
B(β1,β2)

θβ1−1(1− θ)β2−1I(0,1)(θ) ;

3. φ1, · · · , φd ∼ Dirichlet(δ1, δ2, · · · , δd) i.e.

π(φ1, · · · , φd) =
Γ(δ)

∏d
i=1 φ

δi−1
i∏d

i=1 Γ(δi)
,

where δ =
∑d

i=1 δi .

Then the joint posterior density is

π(a, θ, φ1, φ2, · · · , φd|M) ∝
n∏
j=1

p(m1j, . . . ,mdj)Φ(a)e−γaθβ1−1(1− θ)β2−1

d∏
i=1

φφi−1
i

∝
n∏
j=1

(a)tjΦ(a)e−γaθna+β1−1 (1− θ)
d∑
i=1

mij+β2−1
d∏
i=1

φ
∑n
j=1mij+δi−1

i ,

and thus

π(φ1, φ2, · · · , φd|M ) ∝
d∏
i=1

φ
∑n
j=1mij+δi−1

i .

Hence,

φ1, φ2, · · · , φd|M ∼ Dirichlet

(
n∑
j=1

mij + δ1, . . . ,
n∑
j=1

mdj + δd

)
. (6.7)
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6.5 Shunter’s Accident Data

We fit the limiting model 6.2 to bivariate Shunters’ accident data (Table A.1). Here are the
Bayes estimators withh respect to the following prior:

a ∼ Gamma(3, 1), θ ∼ Beta(1, 1), φ1, φ2 ∼ Dirichlet(1, 1).

Parameters Posterior means Posterior s.d. 95% HPD intervals
a 3.5539 1.0876 (1.9161 , 6.2798)
θ 0.6004 0.0712 (0.4591 , 0.7380)
φ1 0.4652 0.4329 (0.0822 , 0.8847)

Table 6.1: Fit of limiting distribution to Shunters’ accident data using Bayes estimators.

m1\m2 0 1 2 3 4 5 6 7+
0 19.90 15.12 7.35 2.91 1.02 0.33 0.10 0.03
1 13.15 12.80 7.59 3.55 1.43 0.52 0.18 0.06
2 5.57 6.61 4.63 2.49 1.14 0.46 0.17 0.06
3 1.92 2.68 2.17 1.32 0.67 0.30 0.13 0.05
4 0.58 0.94 0.86 0.59 0.33 0.16 0.07 0.03
5 0.16 0.30 0.31 0.23 0.14 0.08 0.04 0.02
6 0.04 0.09 0.10 0.08 0.06 0.03 0.02 0.01
7+ 0.01 0.02 0.03 0.03 0.02 0.01 0.01 0.00

Table 6.2: Expected counts under fitting of limiting model to Shunters’ accident data

6.6 Aitchison’s Trivariate Bacterial Count Data

We fit the Negative binomial sums and Polya shres model (6.1) to the trivariate bacterial
dataset (Table A.2). Here are the estimators for the parameters obtained using maximum
likelihood estimation and Bayes inference:

For Bayesian inference, we consider following priors:

a ∼ Gamma(5, 1), θ ∼ Beta(1, 1), αi ∼ Gamma(3, 1), i = 1, 2, 3.
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Parameters MLE
a 16.0029
θ 0.4734
α1 2.0781(0.0072)
α2 2.8248(0.0101)
α3 2.6402(0.0101)

Table 6.3: Fit Negative Binomial Sums and Polya Shares model to Aitchison’s trivariate
data using MLE. The bracketed quantities denote the standard error.

Parameters Posterior means Posterior s.d. 95% HPD intervals
a 9.3426 1.9677 (6.0445 , 13.6789)
θ 0.3409 0.0479 (0.2501 , 0.4384)
α1 2.2195 0.4329 (1.4617 , 3.1715)
α2 2.9945 0.5813 (2.0141 , 4.2269)
α3 2.8104 0.5602 (1.8638 , 4.0865)

Table 6.4: Fit Negative binomial Sums and Polya shares model to Aitchison’s trivariate data
using Bayes estimators.
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Chapter 7

On a proper Bayes, but inadmissible
estimator

We present an example of a proper Bayes point estimator which is inadmissible. It occurs for a
negative binomial model with shape parameter a, probability parameter p, prior densities of the
form π(a, p) = β g(a) (1 − p)β−1, and for estimating the population mean µ = a(1 − p)/p under
squared error loss. Other intriguing features are exhibited, one such feature is the constancy of the
Bayes estimator with respect to the choice of g, including degenerate or known a cases.

7.1 Introduction

Bayesian methods are intimately linked to statistical decision theory, they possess desirable
theoretical properties, such as coherence and, in general, good frequentist risk properties. However,
proper Bayes estimators need not be admissible. So much and more is known (see for instance
Berger, 1985 [6]; Lehmann, 1983 [21]; and the discussion following Theorem 7.2.1 below). Nonethe-
less, such examples remain surprising and instructive, especially when they occur in simple situations
that are also relevant in practice. We report and comment on such a situation that occurred re-
cently in studying Bayesian posterior analysis for a negative binomial model. Moreover, the example
which we present exhibits other intriguing features, one such feature is the constancy of a Bayes
point estimator with respect to a large and dispersed class of priors.

As implied by the following well-known result (e.g., Ferguson, 1968 [10]; Lehmann, 1983 [21]),
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the inadmissibility of a proper Bayes estimator can only occur when the Bayes risk is infinite.

Lemma 7.1.1. Consider model X ∼ pθ, θ ∈ Θ, and the problem of estimating τ(θ) under loss
L(θ, δ). Let δπ(X) be a unique 1 Bayes estimator for a proper prior density π. Then, the estimator
δπ(X) is admissible when rπ(δπ) <∞, with rπ(δ) the Bayes risk of δ given by

rπ(δ) =

∫
Θ
EL (θ, δ(x)) π(θ) dθ .

We point out that Lemma 1.1 holds more generally, in particular for cases where π is a probability
mass function.

Proof. Suppose δπ(X) is not admissible and dominated by another estimator δ′π(X). Hence, we
have

rπ(δπ) ≤ rπ(δ
′
π) =

∫
Θ
EL

(
θ, δ(x)

′
)
π(θ) dθ ≤

∫
Θ
EL (θ, δπ(x)) π(θ) dθ = rπ(δπ) (7.1)

But, Bayes estimator is unique. Hence, δπ(X) is admissible.

7.2 The example

Let X1, . . . , Xn, n ≥ 2, be independently distributed NB(a, p), a > 0, p ∈ (0, 1), with common
marginal probability mass function

P(Xi = t) =
(a)t
t!

pa (1− p)t IN(t) , i = 1, . . . , n, (7.2)

with ascending factorial (a)t =
∏t−1
j=0(a + j) for t ≥ 1, (a)0 = 1. We take both a and p to be

unknown. The negative binomial model is one of the better known and appealing models for count
data, in particular for over-dispersed data, with mean lower than the variance, as

E(X1) = µ = a
1− p
p

< σ2 = V(X1) = a
1− p
p2

,

for all a > 0, p ∈ (0, 1). An alternative and appealing representation of (2.1), expressed in terms of
the mean µ and the overdispersion parameter k = a, with σ2 = µ(1 + µ/k), is given by

1Up to an equivalence
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P(Xi = t) =
(k)t
t!

(
k

µ+ k
)k (

µ

µ+ k
)t IN(t) ,

Now, consider estimating µ under squared error loss (δ − µ)2 with Bayesian estimators given
by E(µ|x1, . . . , xn) as long as E(µ2|x1, . . . , xn) < ∞ for all x1, . . . , xn. Our main example is the
following and relates to a joint prior for (a, p) which factorizes into independent components a ∼ g
and p ∼ Beta(1, β).

Theorem 7.2.1. Consider X1, . . . , Xn ∼ NB(a,p) as in (7.2) with prior density

πg(a, p) = β g(a)(1− p)β−1I(0,1)(p) ,

with β > 0 and g being a density (or a probability mass function) such that
∫∞

1 g(a)da = 1 (or∑∞
j=1 g(j) = 1). Then, the Bayes estimator of µ = a (1 − p)/p for loss (δ − µ)2, and with respect

to prior πg(a, p) is given by δπg(x1, . . . , xn) =
∑n
i=1 xi +β

n , irrespective of g. Furthermore, δπg is
inadmissible and dominated by the unbiased estimator δ0(x1, . . . , xn) =

∑n
i=1 xi
n .

Proof. In terms of frequentist risk R((a, p), δ) = Ea,p {δ(X1, . . . , Xn)− µ}2 of an estimator
δ(X1, . . . , Xn), we have

R((a, p), δ0) = V(δ0) = σ2/n

R((a, p), δπg) = V(δ0) + (Bias of δπg)
2 = σ2/n + β2/n2 , (7.3)

which shows indeed that δ0 dominates δπg .

Now, for evaluating δπg , we have the likelihood

p(x1, . . . , xn|a, p) =

{∏
i

(a)xi
xi!

}
pna (1− p)

∑
i xi
∏
i

IN(xi) ,

yielding the posterior density

(a, p)|x1, . . . , xn ∝
∏
i

(a)xi g(a) pna(1− p)
∑
i xi+β−1 ; a ≥ 1, 0 < p < 1 .

Hereafter, we pursue for g being a density. The discrete case (i.e., g is a probability mass function)
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can be studied analogously. From the above posterior density, we obtain

E (µ|x1, . . . , xn) = E
(
a

1− p
p

∣∣∣∣x1, . . . , xn

)
=

∫∞
1 a

∏
i(a)xi g(a)

∫ 1
0 p

na−1(1− p)
∑
i xi+βdp dν(a)∫∞

1

∏
i(a)xi g(a)

∫ 1
0 p

na(1− p)
∑
i xi+β−1dp dν(a)

=

∫∞
1 a

∏
i(a)xi g(a)

Γ(na) Γ(
∑
i xi+β+1)

Γ(na+
∑
i xi+β+1) dν(a)∫∞

1

∏
i(a)xi g(a)

Γ(na+1) Γ(
∑
i xi+β)

Γ(na+
∑
i xi+β+1) dν(a)

=

(∑
i xi + β

n

) ∫∞
1

∏
i(a)xi g(a) Γ(na+1)

{Γ(na+
∑
i xi+β+1)} dν(a)∫∞

1

∏
i(a)xi g(a) Γ(na+1)

Γ(na+
∑
i xi+β+1) dν(a)

(7.4)

=

∑
i xi + β

n
,

as stated.

For the above, an application of Stirling’s formula, i.e., Γ(z + 1) ∼ zz+1/2e−z
√

2π , with a(z) ∼
b(z) meaning limz→∞ a(z)/b(z) = 1, implies that the integrals converge. Indeed, we have

Γ(na+ 1)

Γ(na+ 1 + β +
∑

i xi)
∼ (

e

na
)t
(

na

na+ t+ β

)na+t+1/2 ( e

na+ t+ β

)β
,

with t =
∑

i xi. With
∏
i(a)xi ∼ at, we obtain

∏
i

(a)xi
Γ(na+ 1)

Γ(na+ 1 + β +
∑

i xi)
∼ (

e

n
)t
(

na

na+ t+ β

)na+t+1/2 ( e

na+ t+ β

)β
,

Since the above is bounded for large a, in fact converging to 0 as a→∞, we infer the (2.3) is well
defined.

To conclude the proof, we require the posterior variance V(µ|x1, . . . , xn) to exist, i.e., E(µ2|x1, . . . , xn) <

∞, and we show that this to be the case under the given conditions on g. Indeed, proceeding with
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a decomposition as above, we have

E(µ2|x1, . . . , xn) = E(a2 (1− p)2

p2
|x1, . . . , xn)

=

∫∞
1 a2

∏
i(a)xi g(a)

∫ 1
0 p

na−2(1− p)
∑
i xi+β+1dp da∫∞

1

∏
i(a)xi g(a)

∫ 1
0 p

na(1− p)
∑
i xi+β−1dp da

= (
∑
i

xi + β) (
∑
i

xi + β + 1)

∫∞
1 a2

∏
i(a)xi g(a) Γ(na−1)

Γ(na+
∑
i xi+β+1) da∫∞

1

∏
i(a)xi g(a) Γ(na+1)

Γ(na+
∑
i xi+β+1) da

,

Finally, another use of Stirling’s formula as above establishes that the integrals above converge.
This proves that E(µ2|x1, . . . , xn) <∞ and completes the proof.

Remark 7.2.1. As implied by the above Theorem and Lemma 1.1., the Bayes risk of δg must be
equal to +∞. Indeed, we have for the continuous case and using risk expression (2.2):

rπg(δπg) =

∫ ∞
1

∫ 1

0

(
a(1− p)
np2

+
β2

n2

)
g(a)β(1− p)β−1dp da

=
β2

n2
+
β

n

(∫ ∞
1

ag(a)da

) ∫ 1

0

(1− p)β

p2
dp

= +∞ .

Theorem 7.2.1 exhibits the motivating purpose and the main feature of this note. It adds to a
small collection of known examples where a proper Bayes estimator is inadmissible. Earlier examples
appear in Lehmann (1983, page 270) with a Gamma model and inverse-Gamma prior, as well as in
Berger (1985) (see Robert, 2001, Section 8.2, who reports on both of these examples). In the latter
case, one takes X|θ ∼ N(θ, 1), prior θ ∼ N(0, 1) and weighted squared-error loss e3θ2/4 (δ − θ)2 for
estimating θ. Calculations yield the Bayes estimator δπ(X) = E(e3θ2/4 θ|X)/E(e3θ2/4 |X) = 2X.
Clearly, with larger bias in absolute value and larger variance than the unbiased estimator δ0(X) =

X, the frequentist risk of δπ(X) is quite poor, as represented by the ratio of risks R(θ,δπ)
R(θ,δ0) = (4+θ2).

Theorem 7.2.1 does exhibit other surprises though. Although both the posterior distribution
and variance of µ = a(1− p)/p do depend on the choice of g for the prior (a, p) ∼ β g(a)(1− p)β−1,
the posterior expectation obtained is independent of g, and whether or not the prior is discrete
or continuous for instance. Moreover, it has to be the case for degenerate a, in other words cases
where a is known and p ∼ Beta(1, β). Indeed, this can be verified directly by deriving the posterior
p|x1, . . . , xn ∼ Beta(na+1,

∑
i xi+β), from which one obtains E(a(1−p)/p |x1, . . . , xn) =

∑
i xi+β
n .

Despite its greater simplicity, to our knowledge, this known a case result has not been reported on
before. The Bayes estimator here is still inadmissible and dominated by X̄ as an estimate of
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µ = a(1 − p)/p. Furthermore, the unbiased estimator X̄ is itself inadmissible under squared error
loss and dominated by na

na+1 X̄ (Ferguson, 1967, [10], problem 12, page 86).

Remark 7.2.2. If one happens to derive the result of Theorem 7.2.1 for the known a > 1 case, one
then can see that Theorem 7.2.1’s expression for the Bayes estimator will hold since

E(µ|X1, . . . , Xn) =Ea|X1,...,Xn

[
E
(
a(1− p)

p

∣∣∣∣X1, . . . , Xn, a

)]
=Ea|X1,...,Xn

[∑
iXi + β

n

]
=

∑
iXi + β

n
.

7.3 Concluding Remarks

We have provided an original example of a proper Bayes estimator which is inadmissible and
which arises for both a two-parameter and one-parameter negative binomial model. More specifi-
cally, we came about the finding in an ongoing work aiming to provide Bayesian inference results
for the NB(a, p) model. Although, the negative binomial model arises in many applications, our
ongoing work originates with recent work of Jones and Marchand (2019) who introduce a Sums-
and-Shares model for multivariate discrete data, consisting for instance of a negative binomial
distributed sum T ∈ N, and then randomly allocated shares M1, . . . ,Md into d categories such that∑d

j=1Mj = T [17]. In such a case, as well as for the earlier known examples in the literature, the
Bayes estimators are obtained in a coherent manner from a proper prior and by making trustworthy
inferences from the posterior distribution. As described by Berger (1985, Section 4.8.1) [6], such an
unsettling or paradoxical situation, which can only possibly happen when the Bayes risk is infinite
(Lemma 7.1.1), is alleviated with the use of a bounded loss function for which the Bayes risk cannot
be infinite.

Still, the surprise persists given the deep connections in statistical decision theory between
complete classes of estimators and Bayes estimators. In the other direction, it has long been known
that the collection of proper Bayes estimators is not large enough to generally contain all admissible
estimators and, typically, one requires the inclusion of some generalized Bayes estimators. A well
known example arises for the multivariate normal model with X for X ∼ Np(θ, Ip) and squared
error loss ‖d − θ‖2 for estimating θ. Here, X is generalized Bayes for the improper prior density
π(θ) = 1, admissible for p = 1, 2, but inadmissible for p ≥ 3. There exist many deep findings related
to the admissibility of generalized Bayes estimators (e.g., Rukhin, 1995 [30], as well as the references
below, among others).
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Chapter 8

Conclusion

This thesis addresses an important problem, namely the parameter estimation for the Negative
binomial sums and Polya shares model. This model has a wide range of applications, for instance,
analysis of insurance data, accidents’ count data, joint species distribution models in community
ecology, etc. The methods developed in this work can facilitate the use of the model in such
situations for the estimation purpose.

Besides the development of the methods of parameter estimation for Negative binomial sums
and Polya shares , the work has led to many intriguing outcomes. In Chapter 4, we constructed
a more general Bayesian setup for a two-parameter Negative binomial distribution. There is not
much literature available on this problem. As we have seen, the method of moments and maximum
likelihood estimaton may lead to infeasible estimators. Bayesian inference for Negative binomial is a
challenging problem due to the complexity of the likelihood function and hence the intractability of
the posterior densities. A Bayesian approach proposed in this work uses a Gibbs sampler algorithm
to sample from the joint posterior density. Our methodology can be used to provide closed-form
expressions for full marginal densities. This also enables us to estimate predictive densities, which
is itself an interesting problem. Besides, as seen in an illustrative example consisting of a tiny
dataset, interesting probability density functions emerge in the form of marginal posterior densities.
For instance, marginal distribution of a in (4.8.1) is a mixture of densities with the normalization
constants as exponential integrals. In Chapter 5, for the Polya distribution, we suggest the use of
a data cloning method to obtain MLE when they exist. Interestingly, even when the MLE solution
is not finite, outcomes of the data cloning method can be used to estimate MLE solution for the
limiting distribution.
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We only consider a Negative binomial sums and Polya shares model obtained using sums and
share strategy. The results are very promising for the application of the model. There are many
other constructions possible using the strategy. For instance, if we consider distribution L in (3.9)
to be Gammapoly distribution, we get the mixture of Negative binomial sums and Polya shares
model. This approach provides more flexible way to model multivariate count data. The work
presented in the thesis can be extended to explore the properties of this mixture model.

In Chapter 7, an original example of a proper Bayes estimator which is inadmissible is provided.
It arises for both a two-parameter and one-parameter negative binomial model. This adds to the
small list of such instances. Also, Bayes estimators have deep connections to the complete classes
of estimators in statistical decision theory.
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Appendix A

Datasets

Here are the details of the datasets used in the thesis:

Shunters’ Accident Data

This is a bivariate data set given by Adelstein (1952) in Table 11A in [1]. There are n = 122

observations of (m1,m2), where m1 and m2 denote the number of accidents for shunters on South
African Railways during 1937− 1942 and 1943− 1947, respectively.

m1\m2 0 1 2 3 4 5 6 7+
0 21 18 8 2 1 0 0 0
1 13 14 10 1 4 1 0 0
2 4 5 4 2 1 0 1 0
3 2 1 3 2 0 1 0 0
4 0 0 1 1 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7+ 0 1 0 0 0 0 0 0

Table A.1: Shunters’ accident data
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Aitchison’s Trivariate Bacterial Count Data

The triplet of bacterial colony counts in three air samplers located in each of 50 different sterile
rooms is obtained. This dataset can be found in Aitchison,et al. (1989, Table 4 in [2]).

1 2 11 8 6 0 2 13 5 2 8 1
5 6 5 14 1 7 3 9 2 7 6 8
3 4 12 1 9 7 3 6 6 3 9 14
4 2 25 9 7 3 5 4 8 4 4 7
7 3 2 1 14 6 2 13 0 14 9 5
3 8 2 1 1 30 4 5 15 7 6 3
8 10 4 3 2 10 6 8 5 2 3 10
1 7 3 2 9 12 7 10 5 2 2 8
3 15 3 1 8 2 4 6 0 8 7 3
6 6 6 4 14 7 3 3 14 6 8 3
22 9 6 5 2 4 2 0 6 2 1 1
4 6 4 4 9 2 8 4 6 3 10 6
4 7 10 2 4 6

Table A.2: Aitchison’s trivariate bacterial count data

Fisher’s Data

This is an univariate count dataset (Table A.3) representing a sample of sheeps classified according
to the number of ticks found on each, as given by Fisher in [11]. The total number of observations
is n = 60.

Number of ticks 0 1 2 3 4 5 6 7 8 9 10
Number of sheeps 7 9 8 13 8 5 4 3 0 1 2

Table A.3: Classification of sheeps based on number of ticks
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