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Abstract

Concepts developed in Quantum information have recently been successfully utilized in char-
acterizing various physical phenomena. One of the frameworks developed in studying quantum
systems is quantum resource theory. It is a rigorous mathematical framework which identifies a
physical characteristic as a resource, and develops a theory in which the building blocks are “free
quantum operations” - the operations that do not create the resource, and “free quantum states”
- the states that are devoid of the resource. It also often provides ways to optimally convert one
resource state into another. This report is a review on the resource theoretic approach to the study
of quantum coherence. Along with focusing on the general development of the resource theory
of quantum coherence, it discusses about the measures that quantify the resource. In addition,
numerics on the quantitative measures for single qubit states is being done and analysed. It also
discusses how the theoretical framework gives new perspective to the previous experimental results
and demands for new experimental designs for better understanding of the concepts.
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Chapter 1

Introduction

Quantum information science emerged as a field of study around two decades ago. The study in-
volves in exploiting the quantum properties of a system to perform tasks efficiently. This field is
related to many other areas such as mathematics, computer science etc apart from physics. Along
with major applications like cryptography, faster and efficient quantum computation, it is also stud-
ied as a tool to understand deeper questions involving quantum mechanics and properties of quan-
tum systems. Amongst the various frameworks of study, quantum resource theory(QRT) structure
was a very recently developed framework which involves rigorous mathematical equations to bring
out the beauty of a physical phenomena or a quantum object.

Each object gets a value assigned according to its characteristic properties. Resource theory
is a mathematical framework that characterizes a particular object or a property according to its
physical capabilities. From resource theory, we get to know about the allowed actions and the
operations that are free or prohibited in the given scenario. Resource theory approach to problems
depends on what particular object or an action you are considering at that point of time. Recently
this perspective has succeeded in quantum information and communication branch in studying the
quantum systems. So, in quantum case, this approach is called quantum resource theory and it deals
with the study of systems involving atomic and sub-atomic level particles, objects and phenomena.
Depending on the physics of the problem that we are interested in, quantum resource theoretic
approach helps optimize the study process. This outlook was a great hit for the entanglement
theory. So, this approach has been adopted in characterizing various other physical phenomena in
quantum physics and hence building resource theory for all those resources. The examples within
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quantum information theory include quantum resource theory of entanglement [19, 20], quantum
coherence [22] and superposition [1], quantum thermodynamics [21, 23], quantum correlations
[24], asymmetry and quantum reference frames [25] , non-locality [26], ‘magic states’ in stabilizer
quantum computation [27] etc. We can hence say that QRTs correspond to physical models.

Resources are classified as follows : classical or quantum, noisy or noiseless and static or
dynamic. The term “resource theory” was first coined by Schumacher in article of 2003 that was
unpublished. The name was first made official in [6]. That was the first explicit construction of
quantum resource theory of something other than that of entanglement. There have been papers
earlier discussing about the QRT of information. A precise mathematical definition of resource
theory was first given in [29] and [28] as symmetric monoidal cathegory. Later it was in [18] a
simpler mathematical generalization of QRTs was given.

We present here a brief discussion of general structure of quantum resource theory. The dis-
cussion involves only a finite dimensional Hilbert Space (H ), say of the dimension d.
Definition of QRT (minimal mathematical requirements): Let O be a mapping that assigns two
Hilbert spaces into a unique set of completely positive trace preserving (CPTP) operations, that
is, O(Hin,Hout)⊂B(Hin,Hout) . Let an induced mapping be defined as F := O(C,H ) where
C is complex field and H is an arbitrary Hilbert space. QRT is defined as a tuple R = (F ,O)

provided the following conditions hold:

i. Identity map id should be contained in the set O(H ) := O(H ,H ) for any Hilbert space
H . Physically, this simply means that identity map is free.

ii. If Λ ∈ O(H A,H B) and Φ ∈ O(H B,H C) then Φ ◦Λ ∈ O(H A,H C). This means that
Φ◦Λ is free only when both Φ and Λ are free.

In QRT, we have:

• Free states: F (H ) ⊂ S(H ) defines the set of free states acting on H . Here S(H ) is set
of states in H . These are states which do not have the resource that is under study.

• Resource states:These are also known as static resources. These are the states that belong
to set S(H ) \F (H ). These are the states that contain resource of interest and are not
available free of cost. These are those states that allow for operational advantage in some
task.
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• Free operations: CPTP maps in O(Hin,Hout). These operations are freely accessible and
they map set of free states onto itself.

• Dynamical resources: CPTP maps that are not contained in O(Hin,Hout).

There is also tensor product structure of QRTs which is a better mathematical description and
explains more properties. There are other types of mathematical structures in QRTs which include
convex resource theories, non-convex resource theories, affine resource theories, resource theories
of quantum processes and QRTs with resource destroying maps. The golden rule of QRTs is that
free operations cannot convert any free state to another state which is not contained in the set of free
states and also cannot create resource state from any free state. If resource state(s) is available then
the parties can certainly overcome the limitations of the allowed(free) operations either partially or
completely. Depending on the physical constraint either free operations or free states turn out to be
the natural choice. We can say that QRT models the tasks that can be accomplished physically by
the parties, given a quantum system with rules/law of physics and the experimental limitations. It
basically studies the interconversion of resource states under free or restricted operations, specially
it is about interconversion between pure resource states and mixed ones. If conversions between
pure states is asymptotically reversible then we can construct a standard unit resource measure.
This motivates to study of two basic processes which are resource distillation and resource for-
mation. Resource distillation is transformation from mixed resource state to unit resource and
resource formation is the reversion transformation from a unit resource to mixed one. The two
well-motivated quantities due to the two basic processes are distillable resource and resource cost.
These quantities have a clear operational interpretation and characterising these quantities is the
principle objective of the theory.Limits on possible transformations and achievable rates are given
by resource monotones and thus reduce the complexity of the characterization problem. In case
of reversible QRT, a unique measure exists, everything about resource transformation is clear and
simple. But in case of irreversible QRT, the focus is on whether a bound resource states exist or
not. Irreversible QRT is the case in which no resource can be extracted (or distilled) but a non-zero
amount of resource is needed to create the bound resource states.

Main advantages of QRT framework are:

• This framework allows for comparison of amount of resource present in the different quan-
tum states. This tells us that if a particular resource state can be converted into another
through free operations then the both states have same amount of resource. This framework
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helps us understand how valuable resources are and they cannot be created freely.

• From practical viewpoint, QRT framework help reflect experimental capabilities. Depend-
ing on the resource under investigation, practical setup is always in such a way that free
operations can be performed within experimental degrees of freedom.

• QRT gives a complete and detailed mathematical description of the physical phenomenon
that is under study. It also analyses the physical phenomena and completely characterizes it.

• It is easier to draw similarities and do comparisons amongst the resources studied with this
framework. This helps a lot in identifying various applications. This is specially when
resource that has already been characterised is having few similar properties with the one
being studied.

This report is an overview of a specific physical phenomena as a resource.The resource theory
framework of quantum coherence has been discussed in detail and few results have been repro-
duced. The first section introduces to the concept of quantum coherence and explains the basis-
dependent structure of resource theory of quantum coherence that was first developed in [2]. The
second section is all about coherence quantifiers. And then there is discussion on some of the
numerics done based on the coherence quantifiers. The report closes on briefly summarizing the
explained topics.
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Chapter 2

Quantum Coherence

Study of coherence dates back to the time when people were trying to understand the physics of
waves. Coherence concept which is central to interference phenomena has applications beyond ray
optics and classical regime. Quantum Mechanics, a theory that unifies waves and particle nature
further strengthened the role of coherence in physics. Superposition principle is a signature reason
for departure of quantum mechanics from classical physics. Coherence along with energy quanti-
zation and tensor product structure is fundamental to interference and multipartite entanglement.
Hence has a wide applications in quantum physics and quantum information science.

Quantum theory of coherence is constructed viewing coherence as a quantum physical phe-
nomena that can be exploited as a resource to achieve various tasks that are otherwise not possible
in classical physics regime. Framework of the theory resembles classical electromagnetic phenom-
ena and is in terms of phase space distribution and multipoint correlation functions [15, 16, 17].
Quantitative theory was developed capturing the resource character of this physical phenomena in
a mathematically rigorous fashion. The constructed theories focus on the ability to create coher-
ence and detect coherence as in, how the presence of coherence makes differences in measurement
statistics [14]. The development of such a theory has resulted in number of quantum technolo-
gies not just restricted to lasers and its applications but also quantum-enhanced metrology and
communication protocols and extends to thermodynamics and certain branches of biology.

Following the early approach of quantifying superposition of orthogonal quantum states [1] and
progressing along the lines of the independent related resource theory of asymmetry [5, 6, 7, 8, 9]
and trying to draw parallels with resource theory of quantum entanglement, primary work on re-
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source theory on coherence was proposed by in [2] and was further developed in [10, 11, 12],[4]
and several others including [13]. The theory is still under development, provides rigorous frame-
work describing quantum coherence in analogy to what has been done with other non classical
resources. This theory focuses on answering questions like the resource cost and number of achiev-
able tasks by a classical device that cannot create coherence in preferred basis. There are theoretical
frameworks which are constructed on level of operations [14] and they mainly focus on how well
coherence be detected by a given operation.

2.1 Resource Theory of Quantum Coherence

The resource theory framework of quantum coherence that will be discussed here will be the one
which was developed in [2]. This framework is built by considering coherence to be a basis de-
pendent concept. This is related to superposition principle. Intuitively, the amount of coherence
present in the system is considered to be a function of the off-diagonal elements of the system’s
density matrix. The off-diagonal entries of a density matrix are basis dependent. Any density
matrix can be diagonalized and hence off-diagonal elements can be made zero which would im-
ply zero coherence. Basically, in this framework, coherence is measured as the minimal distance
between the quantum system state and the line passing through the center of the bloch sphere con-
necting the poles (that is, computational eigenbasis which would be {|0〉 , |1〉}). There are also
works done in the basis-independent direction which is related to purity of the system [30, 31].In
basis-independent measure, coherence is the distance measured from the system state to the center
of the block sphere. In this report only the basis-dependent framework will be discussed.

2.1.1 Incoherent states

These are what are called as the free states , that is , these are the states available free of cost in the
resource theory of quantum coherence. These states are defined depending on preferred reference
basis. The physics of the problem dictates the choice of the reference basis. These are the states
which when written in density matrix formulation are diagonal in the specific basis.

The following is the mathematical definition of incoherent states. Given the Hilbert space di-
mension to be d denoted as H (please note that here ‘d-the dimension of the considered Hilbert
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space’ is assumed to be finite though some extensions to ‘infinite d’ can be contemplated). For
single party case. Let the reference basis of the corresponding Hilbert space be denoted as
{|ψi〉i=0,1,..,d−1}. Note that these are orthonormal states. All the incoherent density operators
in the choice of basis defined above are of the form

ρ =
d−1

∑
i=0

pi |ψi〉〈ψi|

where pi denotes the probability of |ψi〉.
These form a set of states called Incoherent states denoted by I. The set of Incoherent states set are
subset of set of bounded trace class operators defined on H (that is, I⊂ B(H )).

For Multi party case. Coherence is studied with respect to the reference basis that is con-
structed as the tensor product of the local preferred basis of each corresponding subsystems. The
convex combinations of incoherent pure product states are defined to be the general multi party
incoherent states. So, for an N-qubit system, all the diagonal density matrices ρ in the composite
computational basis, i.e. , {|0〉 , |1〉}⊗N are the only states that form set of incoherent states I.

2.1.2 Coherent states

In the resource theory of coherence, all those states that do not belong to the set of incoherent states
are resource states. These states are called coherent states. These are those states when written in
terms of density matrix have non-zero off diagonal elements in the preferred basis.

2.1.3 Incoherent operations

Free operations for the resource theory of coherence are called the incoherent operations. An
incoherent state (free state) acted upon by an incoherent operation remains incoherent. Mainly
coherence (resource) cannot be created, not even probabilistically from incoherent states when
acted upon by incoherent operations. These operations are not unique but rather dependent on the
practical considerations of the problem under investigation.

The following is the characterization of the set of incoherent physical operations. These are
set of completely positive trace preserving (CPTP) maps, Λ: B(H ) 7→ B(H ) acting on a state as
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Λ[ρ] = ∑n K†
n ρKn where {Kn} are set of Kraus operators satisfying,

∑
n

K†
n Kn = I

K†
n IKn ⊆ I ∀n

The two mainly distinguished general classes of quantum operations are:

I. Incoherent completely positive and trace preserving quantum operations (ICPTP).

ICPT P(ρ) = ∑
n

K†
n ρKn

where {Kn} are all of same dimension dout×din.
This formulation implies that any information loss about measurement outcome may in prin-
ciple be available.

II. The quantum operations for which measurement outcomes are preserved and accordingly
sub selection is permitted. Corresponding to outcome n, the state is

ρn = (K†
n ρKn)/pn

occurring with probability pn =tr[KnρK†
n].

Few important classes of incoherent operations are:

• Maximally incoherent operations (MIOs): Also known as incoherence preserving operations
was first defined in [1]. These creation-incoherent operations are defined to be completely
positive trace preserving and non-selective quantum operations. These constitute the largest
set of free operations in the resource theory of quantum coherence.

• Strictly incoherent operations (SIOs): This class of operations were first introduced in [4].
Under the constraints that incoherent operators must follow, each Kraus operator of mth

measurement outcome can be written in the following form.Km = ∑i c(i) | j(i)〉〈i| where |i〉
is index set of basis , | j〉 is function of the index set and c(i) are coefficients. Now we call the
quantum operation SIO when not just Km is incoherent but K†

m is also incoherent. And the
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strictly incoherent Kraus operators, Km are specified as one-to-one | j(i)〉 function. SIOs are
those operations which have Kraus decomposition {Km} such that measurement outcome in
reference basis when applied to output state are independent of the coherence of the input
state.

There are many other classes of incoherent operations that aren’t discussed here but are con-
structed from operational point of view which include translationally invariant operations (TIO)
[5, 6, 7, 8, 32, 33, 34], physical incoherent operations (PIO) [10, 11], dephasing-covariant incoher-
ent operations (DIO) [10, 11, 12, 33]. Many classes of incoherent operations are constructed for
studying the role of energy in the context of coherence and these include genuinely incoherent op-
erations (GIO) [35], energy preserving operations (EPO) [36]. Fully incoherent operations (FIO)
[35] are the most general set which turn out to be incoherent for every Kraus decomposition.

2.1.4 Maximally Coherent State

A d-dimensional maximally coherent state is defined as the state which allows deterministic gen-
eration of all other d-dimensional quantum states via free operations(i.e, incoherent operations).
The definition of a maximally coherent state is independent of a particular coherence measure and
allows to identify a unit for coherence measure which is termed as coherence bit or cobit [37] to
which all measures can be normalized. A canonical example of a maximally coherent state is given
by:

|φd〉=
1√
d

d−1

∑
k=0
|k〉

2.2 Quantifying Coherence

After qualitatively characterising the resource, the very next topic of interest would be whether
the physical trait that has been termed as resource can be quantified or not. To know whether a
particular value can be considered as the amount of resource present in the given system. So in the
following section, measures and their properties are briefly summarized. Intuitively one can relate
a function of the off-diagonal elements of considered quantum state to be quantitative measure of
the coherence. This idea simply comes from the way the free states in the basis-dependent resource
theory framework of coherence. In case of quantum coherence as a resource, axiomatic approach
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on quantification was first presented in [1]. Later on in [2], an alternative framework was put forth
and there has been lot of work still on going in this area.

Resource theoretic approach to quantification of a resource defines the properties of a func-
tional and states the conditions that it has to satisfy to be a valid measure of the resource under
investigation. The following are the postulates of any coherence quantifier must obey [22].

(C1) Non-negativity: The very first quick check for measure, C is that it should vanish only for
incoherent states and it should vanish for all incoherent states. Otherwise( that is, for all the
other states which are termed coherent) the value that C takes should be positive.

C(ρ)≥ 0

with equality if and only if ρ ∈ I.

(C2) Monotonicity: For C to be a proper measure of coherence, it must not increase under any
type of incoherent operations.

C(∧ [ρ])≤C(ρ)

for any IO. Monotonicity under type(I) incoherent operations, that is for ICPTP maps.

C(∧ [ρ])≤C(ρ) ∀∧ being ICPTP maps.

(C3) Strong monotonicity: Monotonicity under type (II) incoherent operations(i.e,selective mea-
surements on average).

∑
n

pnC((ρn)≤C(ρ) ∀{Kn}

with ∑
n

K†
n Kn = I and

K†
n IKn ⊆ I ∀n

where pn =tr[KnρK†
n] and the post measurement being ρn = (KnρK†

n )/pn.

(C4) Convexity: C should not increase when there’s mixing of quantum states. Therefore, C must
be a convex function.

∑
n

pnC(ρn)≥C(∑
n

pnρn)

for any {ρn} and pn ∈(0,1) satisfying ∑n pn = 1
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(C5) Uniqueness for pure states: The measure C takes special form in case for pure states |ψ〉.

C(|ψ〉〈ψ|) = S(4|ψ〉〈ψ|)

where4 is dephasing operator that is defined as4 [ρ] = ∑
d−1
j=0 | j〉〈 j|ρ | j〉〈 j| and

S(ρ) =−Tr[ρ log(ρ)] is the von Neumann entropy.

(C6) Additivity: Under tensor products, C is additive.

C(ρ⊗σ) =C(ρ)+C(σ)

Few remarks on the postulates.
We observe that if a quantity C satisfies the postulates C3 and C4, it implies that C also satisfies
the postulate C2 [2]. And here’s the proof.
Consider

C(ICPT P(ρ)) =C(∑
n

pnρn)

⇒C(ICPT P(ρ))≤∑
n

pn C(ρn) (∵ postulate C4)

⇒C(ICPT P(ρ))≤C(ρ) (∵ postulate C3)

This is exactly C2 postulate. Hence proved.

Conditions C1 and C2 are the minimal conditions that any measure C to be a meaningful
coherence quantifier. Remaining conditions are derived by drawing analogy from the entanglement
theory. So, we name coherence quantifiers accordingly. If a quantity C satisfies only postulates C1
and either of C2 or C3 or both, its called a coherence monotone. Most of the Coherence monotones
are observed to violate the postulates C5 and C6 even if few of them follow C3 and C4 postulates
along with C1 and C2.
In 2016, [40] came up we alternate requirements for a coherence monotone. This showed that
instead of C3 and C4,along with obeying C1 annd C2 it is enough for a quantity C to be additive
on block-diagonal state. Mathematically,

C(p ρ⊕ (1− p) σ) = p C(ρ) + (1− p)C(σ)
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If a quantity satisfies all the conditions together from C1 to C6, it is called a coherence measure.

Additional to these postulates, in [41] postulated that a valid quantifier of coherence must be
maximal only on the set of pure maximally coherent state |φd〉. This additional postulate is satisfied
by particularly by two coherence measures, i.e, distillable coherence and coherence cost. These
two quantifiers follow C1 to C6 and are hence considered to be proper coherence measures.

2.2.1 Distance based measures

Distance measures have been natural applicants for resource quantifiers.
Definition [2]: We define coherence measure C as the minimum distance, D of the given state ρ to
the set of incoherent states I. Mathematically,

CD(ρ) = min
σ∈I

D(ρ,σ)

We recheck whether the distance measure defined above follows the postulates that we had
defined.

• Consider ρ to be an incoherent state, i.e, ρ ∈I. In this case, the minimum distance from an
incoherent state to incoherent set would be the distance from ρ to itself which is zero.So,the
quantifier C vanishes when ρ is incoherent. And for any other state ρ(that is not incoherent),
the distance is always positive.Hence this defined quantifier follows postulate C1.

• If distance D contracts under CPTP maps, that is ,

D(ρ,σ) ≥ D(CPT P(ρ),CPT P (σ))

Same follows for ICPTP maps, that is,

D(ρ,σ) ≥ D(ICPT P(ρ),ICPT P (σ))
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Now consider

CD(ρ) = min
σ∈I

D(ρ,σ)

⇒CD(ρ) ≥ min
σ∈I

D(ICPT P(ρ), ICPT P(σ))

We have ICPT P(I) ∈ I and σ ∈ I

⇒ICPT P (σ) = σ and

∴CD(ρ) ≥ min
σ∈I

D(ICPT P(ρ),σ)

⇒CD(ρ) ≥ CD(ICPT P(ρ))

Hence the defined quantifier in terms of distance between the states follows postulate C2.

• If distance is jointly convex, that is,

D(∑
i

piρi,∑
j

p jσ j) ≤ ∑
i

pi D(ρi,σi).

Now we have

CD(∑
n

pnρn) = min
σ∈I

D(∑
n

pnρn,∑
n

pnσn) for σ ∈ I

CD(∑
n

pnρn)≤min
σ∈I ∑

n
pn D(ρn,σn)

⇒CD(∑
n

pnρn)≤∑
n

pn min
σ∈I

D(ρn,σn)

But since min
σ∈I

D(ρn,σn) =CD(ρn)

∴CD(∑
n

pnρn)≤∑
n

pn CD(ρn)

Hence coherence quantifier CD(ρ) follows postulate C2.

• The coherence quantifier CD(ρ) is convex and hence follows the postulate C4.

• The proof of distance measure follows postulate C3 includes proof of few conditions that are
given in [39] are following :

(F1) D(ρ‖ σ)≥ 0) with equality holding only when ρ = σ

Now in the case of coherence quantifier CD(ρ), this is true because of the postulate C1.

13



(F2) Unitary invariance: D(ρ‖ σ) should remain invariant under unitary operation.That is,

D(ρ‖σ) = D(UρU†‖UσU†)

(F3) Distance doesnot increase under partial tracing.That is,

D(trpρ‖ trpσ) ≤ D(ρ‖ σ)

where trp is partial trace.

(F4) ∑i pi D((ρi/pi)‖(σi/qi)) ≤ ∑iD(ρi‖σi)

where pi = tr(ρi); qi = tr(σi); ρi = ViρV †
i ; σi = ViσV †

i ; where Vi’s may not be
necessarily local.

(F5a) D(∑i PiρPi ‖ ∑i PiσPi) = ∑iD(PiρPi ‖ PiσPi)

where Pi =Any set of orthogonal projectors,i.e, PiPj = δi jPi

(F5b) D(ρ⊗Pα ‖ σ ⊗Pα) = D(ρ‖σ); Pα is any projector.

Condition F2 ensures that measure is invariant under local unitary. Conditions F2, F3, F4
and F5 ensure that the quantifier does not increase under local general measurement and
postselection.

Two distance based measures of coherence will be briefly discussed here and are following :

i. Based on matrix norms.

ii. Relative entropy of coherence.

Distance measure based on matrix norm

Matrix norm based distance measures are defined in the following way:

D(ρ,σ) = ‖ρ−σ‖

with ‖ · ‖ being some matrix norm.
Now, for the above defined quantity to be a valid coherence quantifier(i.e, a coherence monotone),
it must satisfy the postulates C1 to C4.
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We observe that the general definition that is given above turns out to be a jointly convex function
provided it satisfies

• Triangle inequality which is in general stated as

‖M1+M2‖ ≤ ‖M1‖ + ‖M2‖

for any two matrices M1 and M2.

• Absolute homogenity which is stated as

‖αM‖ = |α| ‖M‖

for any α ∈ C and any matrix M.

Hence distance measure based on matrix norm is called convex coherence quantifier as it satisfies
the postulate C4.

Now we have to check whether in general all the matrix norm satisfy other postulates or only
specific ones do. This is done by taking relevant norms and checking for the conditions.And these
include the lp norms and Schatten p-norms.

• lp norms: These are denoted as ‖ · ‖lp . And the mathematical definition goes as follows:

‖M‖lp = ( ∑
i, j
|Mi, j|p )1/p f or p≥ 1.

Corresponding coherence quantifier is denoted as Clp .

– For p=1 we have l1- norm of coherence. This measure of coherence was introduced in
[2]. It is mathematically of the form:

Cl1 = min
σ∈I
‖ρ−σ‖l1 = ∑

i6= j
| ρi j |

Now we have to check if the l1 norm follows the postulates and is whether a valid
measure or not.
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∗ For a ρ ∈ I then ρ can be denoted as σ and hence we find that for such a state,l1
norm vanishes.Clearly when the system state ρ is a resource state, that is, not a
incoherent state,then we actually find that the l1 norm to be always positive. Hence
proving that it follows postulate C1.

∗ Now consider, for a given ρ

∑
n

pn Cl1(ρn) = ∑
n

pn ∑
i 6= j
| [ρn]i, j |

where ρn =
KnρK†

n
pn

, p= tr
[
KnρK†

n
]

and {Kn} are incoherent Kraus operators.

∑
n

pn Cl1(ρn) = ∑
n

∑
i 6= j
|
[
KnρK†

n

]
i, j
|

∑
n

pn Cl1(ρn) = ∑
n

∑
i6= j
|∑

k,l
[Kn]i,k ρk,l

[
K†

n

]
l, j
|

∑
n

pn Cl1(ρn) ≤ ∑
k 6=l
|ρk,l|∑

n
∑
i6= j
| [Kn]i,k

[
K†

n

]
l, j
|

Now consider

∑
n

∑
i 6= j
| [Kn]i,k

[
K†

n

]
l, j
| ≤∑

n
∑

i
| [Kn]i,k | ∑

j
|
[
K†

n

]
l, j
| (by using Schwarz inequality)

∑
n

∑
i6= j
| [Kn]i,k

[
K†

n

]
l, j
| ≤
√

∑
n

(∑
i
| [Kn]i,k |)2 ∑

m
(∑

j
|
[
K†

n

]
l, j
|)2

Finding whether we can simplify RHS further :

∑
n

(∑
i
| [Kn]i,k |)

2 = ∑
n

∑
i, j
| [Kn]i,k

[
K†

n

]
k, j
|

∑
n

(∑
i
| [Kn]i,k |)

2 = ∑
n

∑
i, j
| 〈i|Kn |k〉〈k|K†

n | j〉 |= ∑
n

∑
i, j

δi, j| 〈i|Kn |k〉〈k|K†
n | j〉 |

∑
n

(∑
i
| [Kn]i,k |)

2 = ∑
n

∑
i
| 〈k|Kn |i〉〈i|K†

n |k〉 |= 1
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Substituting back in the previous inequality gives us

∑
n

∑
i 6= j
| [Kn]i,k

[
K†

n

]
l, j
| ≤ 1

Now substituting this back in the l1 norm inequality gives

∑
n

pn Cl1(ρn) ≤ ∑
k 6=l
|ρk,l|

but since ∑
k 6=l
|ρk,l| = Cl1(ρ)

⇒∑
n

pn Cl1(ρn) ≤ Cl1(ρ)

Hence proved that Cl1 norm satisfies postulate C3(strong monotonicity condition).

∗ l1 norm is jointly convex. Convexity condition C4 is also satisfied.

∗ We know once a quantity satisfies C3 and C4 postulates, it implies that it satisfies
postulate C2.

Hence we conclude that l1 norm is a coherence monotone as it satisfies the postulates
C1 to C4.
For it to be a proper coherence measure, additional to the four postulates, it has to
satisfy additivity(C6) and uniqueness for pure states(C5). But it is found that it vio-
lates these because we can find a counterexample. For maximally coherent state |φd〉,
Cl1(|φd〉) = d−1. [42] have also shown that for d=2, Cl1 norm is a coherence monotone
but it violates monotonicity condition and is no longer a coherence monotone for DIO
and MIO for d ≥ 2.

– For p=2, though Cl2 seems like a good candidate for coherence quantification but isn’t
because of monotonicity postulates(C2 and C3) violation. This is explained in [2] with
a counter example.

• Schatten p-norm: It is denoted as ‖ · ‖p and is mathematically of the form

‖M‖p = (Tr
[
(M†M)p/2

]
)1/p

Corresponding coherence quantifier is denoted as Cp.

– For p=1, we have Schatten p-norm reducing to trace norm. Trace norm is found to
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follow C1, C2 and C4 postulates for any class of incoherent operations. But it was
shown in [40] that it violates C3 for any set of IOs. It is found that for single-qubit
states C1 =Cl1 . We have also proved that this is a coherence monotone. For all single-
qubit states, it is found that Cp is convex coherence monotone for p≥ 1.

– For p=2, C2 is equivalent to Hilbert Schmidt norm or Cl2 norm and hence is not a
coherence monotone. Cp for all p≥ 1 is shown to be a coherence monotone for set of
GIO in 2017.

But in general for higher dimensional systems, Cp as well as Clp are observed to violate C2 and C3
for any set of IOs and p > 1.

Relative Entropy of Coherence

The relative entropy of coherence is a measure induced from the quantum relative entropy. This
measure was first introduced in [2]. This measure is denoted by Crel.ent .

Consider quantum relative entropy which is

S(ρ‖σ) = Tr(ρ logρ)−Tr(ρ logσ)

The induced coherence quantifier is defined as

Crel.ent = min
σ∈I

S(ρ‖σ)

Checking if the defined induced quantifier is a valid measure or not.

• We clearly observe that Crel.ent = 0 only when ρ = σ . We observe that for other states ρ

which are resource states, Crel.ent > 0 provided support of σ is greater than that of ρ . Hence
Crel.ent follows condition C1.

• Since quantum relative entropy is contractive under CPTP maps, it surely follows condition
C2.

• For showing that the defined quantity follows C3, we’ll follow selective measurement ap-
proach. It is found that quantum relative entropy follows F1 to F5 conditions and hence we
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get:
S(ρ‖σ) ≥ ∑

n
pn S(ρn‖σn)

for all set of {Kn} being incoherent Kraus operators. pn =Tr
[
KnρK†

n
]

; ρn =(KnρK†
n )/pn ; σn =

(KnσK†
n )/Tr

[
KnσK†

n
]

So, we have
Crel.ent(ρ) = min

σ∈I
S(ρ‖σ)

Using previous inequality we can write

Crel.ent(ρ) ≥ min
σ∈I ∑

n
pn S(ρn‖σn)

Since all incoherent Kraus operators take incoherent state to another incoherent state,we can
denote σn as σ . we have,

Crel.ent(ρ) ≥ min
σ∈I ∑

n
pn S(ρn‖σ)

But min
σ∈I

S(ρn‖σ) = Crel.ent(ρn

∴Crel.ent(ρ) ≥ ∑
n

pn Crel.ent(ρn)

This proves that relative entropy of coherence quantity follows postulate C3.

• Quantum relative entropy is jointly convex and hence the quantifier defined also follows the
postulate C4.

Since the defined relative entropy of coherence follows all the postulates from C1 to C4, it is a
coherence monotone.
Closed form solution of Crel.ent : Let ρd denote the incoherent state with only the diagonal elements
of given state ρ , That is , ρd = ∑i ρi,i |i〉〈i|
Writing quantum relative entropy in terms of ρd

S(ρ‖σ) = S(ρd)−S(ρ)+S(ρd‖σ)

Now minimising this over the incoherent states, we get the coherence quantifier. We find that
S(ρ‖σ) is minimum when ρd = σ .
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Final form of relative entropy of coherence is as follows:

Crel.ent(ρ) = S(ρd)−S(ρ)

For pure states:

Crel.ent(ρ) = S(ρd) (∵ S(ρ) = 0 for pure state, ρ = |ψ〉〈ψ|)

For maximally coherent state(|φd〉):

Crel.ent(|φd〉〈φd|) = log(d)

We see that this closed form solution follows the postulates C5 and C6 in addition to C1 to C4
and hence is a proper coherence measure. It is mentioned in the review paper [22], the right hand
side of the closed form solution was independently proposed as coherence quantifier in [38].

2.2.2 Distillable coherence and Coherence cost

Distillable coherence : Under incoherent operation, copies of a given state ρ can be used to pro-
duce certain number of maximally coherent single-qubit states |φ2〉. The optimal number of these
maximally coherent state obtained per copy of the given state in the asymptotic limit is called
distillable coherence. Its mathematical definition was first given in [4] and it goes as follows:

Cd(ρ) = sup{R : lim
n→∞

( inf
Λi
‖ Λi

[
ρ
⊗n] − |φ2〉〈φ2|⊗bnRc ‖1 ) = 0}

Such complicated looking formula for Λi ∈ I simplifies to

Cd(ρ) =Cr(ρ) = S(ρdiag)−S(ρ)

for any arbitrary mixed state ρ . Cr(ρ) is the relative entropy of coherence.

Coherence cost : It quantifies the minimal rate of maximally coherent single-qubit states |φ2〉
required to produce a given state ρ under incoherent operations in the asymptotic limit. [4] was
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the first one to give mathematical formulation of this quantity in 2016 and is as follows:

Cc(ρ) = in f{R : lim
n→∞

(inf
Λi
‖ ρ
⊗n − Λi

[
|φ2〉〈φ2|⊗bnRc

]
‖1) = 0}

By considering those Λi ∈ I we have

Cc(ρ) =C f (ρ) = inf
{pi,|ψi〉}

∑
i

pi S(4 [|ψi〉〈ψi|])

where C f is coherence of formation.

In [4], it has been proved rigorously that both distillable coherence and coherence cost follow
all six postulates C1 to C6 and hence qualify t be proper coherence measure.
In general,

Cd(ρ)≤Cc(ρ)

with equality holding only for pure states.
For pure state ρ = |ψ〉〈ψ|,

Cd(ρ) = S(ρdiag) (∵ S(ρ) = 0 as ρ is a pure state)

Cc(ρ) =C f (ρ) = S(ρdiag) for a pure ρ

Hence equality is proved for pure states.
Equality implies that interconversion between pure coherent states is asymptotically reversible and
standard unit coherence measure exists. This means that a pure state |φ1〉 of distillable coherence
of c1 cobit can be asymptotically converted to another pure state |φ2〉 at the rate c1

c2
. [4] proves

that for mixed states Cd(ρ) is strictly less than Cc(ρ). [4] also prove that there are no states with
Cd(ρ) = 0 and Cc(ρ) 6= 0. This implies that in the resource theory of coherence based on the set
of incoherent operations, there does not exist a concept ‘bound coherence’. This is an important
result as this is one of the major differences between coherence and entanglement theory.
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Chapter 3

Numerics and discussion

This section consists of all the first hand numerical results of distance measure of coherence ex-
plained in the previous sections. We study the behaviour of plots.
For numerical calculation we have taken a single-qubit state.

ρ =

[
1+(r cos(θ))

2
r sin(θ)

2
r sin(θ)

2
1−(r cos(θ))

2

]

Single-qubit pure state density matrix would be of the form: ρ(r = 1)

ρpure =

[
1+cos(θ)

2
sin(θ)

2
sin(θ)

2
1−cos(θ)

2

]

which reduces to give the form:

ρpure =

[
cos2(θ

2 )
sin(θ)

2
sin(θ)

2 sin2(θ

2 )

]

Section of plots include the behaviour of coherence quantifiers based on distance measure with
respect to different single-qubit states.
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Figure 3.1: l1-norm measure of coherence
x-axis: Radial distance, r
y-axis: Polar angle, θ (in rad)
z-axis: Cl1

Figure 1: Numerical calculation of the Cl1 measure of coherence as a function of r ∈ [0,1] and
θ ∈ (0,π) for a given ρ

x-axis: r which is the radial distance varies from 0 to 1 for bloch sphere
y-axis: θ which is the polar angle that varies from 0 to π

z-axis: Cl1 which is the l1 norm coherence quantifier.
Note that the phase factor(polar angle) doesn’t play an important role and hence is not considered.

We know, Cl1 = min
σ∈I
‖ρ−σ‖1

Clearly, Cl1 is minimum when σ = ρd where ρd = ∑k ρk,k |k〉〈k|, incoherent state with diagonal
elements of the system state ρ .
Cl1=Sum of the off-diagonal elements of the system density matrix. We observe that, as r increases
from 0 to 1, the maximum coherence value also increases.
Coherence is minimum when r=0, that is, Cl1 = 0 for all θ .
Value of Maximum Coherence is highest at r=1, that is, Cl1 = 1 for θ = π

2
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In general we observe that the coherence value is maximum for pure state when compared to other
states(i.e, mixed states). This is because the pure state is the only state that is superposition of its
eigenstates of the system density matrix.

Figure 3.2: l1 norm measure of coherence for pure statex-axis: Polar angle,θ (in rad)y-axis: Cl1

Figure 2: Numerical calculation of the Cl1 measure of coherence as a function of θ ∈ (0,π)
for a given pure state ρ

r is fixed and r=1.
x-axis: θ which is the Polar angle that varies from 0 to π

y-axis: Cl1 which is the l1 norm coherence quantifier.

Here we focus more on the behaviour of the measure with respect to pure states. Pure states
are those that constitute the surface of the bloch sphere. We observe that coherence measure
increases from 0 as θ increases from 0 to π

2 , attains maximum at θ = π

2 and again decreases to
0 at θ = π . Even in double-slit experiments (3), we observe that interference is maximum(or we
observe brightest fringes) when the θ = π

2 , that is, when the system state is equal superposition of
the eigenstates. This result is consistent with experimental result (3) and hence can be considered
as a coherence quantifier.
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Figure 3.3: Relative entropic norm measure of coherence
x-axis: Radial distance, r
y-axis: Polar angle,θ (in rad)
z-axis: Crel.ent

Figure 3: Numerical calculation of the Crel.ent. measure of coherence as a function of r ∈ [0,1]
and θ ∈ (0,π) for a given ρ

x-axis: r which is the radial distance varies from 0 to 1 for bloch sphere
y-axis: θ which is the Polar angle that varies from 0 to π

z-axis: Crel.ent which is the relative entropic coherence quantifier.
Note that the phase factor(polar angle) doesn’t play an important role and hence is not considered.

Crel.ent. = S(ρd)− S(ρ) where ρd = ∑k ρk,k |k〉〈k|, incoherent state with diagonal elements of
the system state ρ . S(ρ) =−Tr(ρ logρ) von Neumann entropy of the state ρ

We observe that the measure value Crel.ent. = 0 when r=0 irrespective of the value of θ . We observe
that the measure value Crel.ent. = 0 when θ = 0 and θ = π

2 irrespective of the value of r. This
matches with the intuition, that is, at the center of bloch sphere and at the poles, coherence is
minimum and is zero. At each r, as r increases, the maximum value of the measure is attained at
θ = π

2 . Value of Maximum Coherence is highest at r=1, that is, Crel.ent. = 1 for θ = π

2
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In general we observe that the coherence value is maximum for pure state when compared to other
states(i.e, mixed states). This is because the pure state is the only state that is superposition of its
eigenstates of the system density matrix.

Figure 3.4: Relative entropic norm measure of coherence for pure state
x-axis: Polar angle,θ (in rad)
y-axis: Crel.ent

Figure 4: Numerical calculation of the Crel.ent. measure of coherence as a function of θ ∈ (0,π)
for a given pure state ρ

r is fixed and r=1.
x-axis: θ which is the Polar angle that varies from 0 to π

y-axis: Crel.ent which is the relative entropic coherence quantifier.

We know, Crel.ent. = S(ρd)− S(ρ) where ρd = ∑k ρk,k |k〉〈k|, incoherent state with diagonal
elements of the system state ρ . S(ρ) =−Tr(ρ logρ) von Neumann entropy of the state ρ

And we also know that for pure states S(ρ) = 0.
Hence we have Crel.ent. = S(ρd) only for pure states. Here we focus more on the behaviour of
the measure with respect to pure states. Pure states are those that reside on the surface of the
bloch sphere. We observe that coherence measure increases from 0 as θ increases from 0 to π

2 ,
attains maximum at θ = π

2 and again decreases to 0 at θ = π . Even in double- slit experiments (3),
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we observe that interference is maximum(or we observe brightest fringes) when the θ = π

2 , that
is, when the system state is equal superposition of the eigenstates. This result is consistent with
experimental result (3) and hence can be considered as a coherence quantifier.

We observe that the numerical results are consistent with not just the experimental observations
(3) but also with each other in case of both l1 norm measure and relative entropic measure of
coherence.

Bridge connecting experiments and theory

Theory is considered to be successful only when it can explain the experimental observations and
can come up with new ideas on experiments for further strengthening of concepts. I have divided
this section into three eras:

1. Oldest experiment: Double- slit experiment with electrons, a thought experiment. The ex-
periment that is discussed here is the thought experiment involving electrons explained in
[43] which led to the development of quantum mechanics. The aim of the experiment was to
understand the behaviour of electrons. The distribution of the electrons ejected from the elec-
tron gun aimed in the direction of the two slits is observed. It was found that the probability
distribution of electron distribution on the screen was unequal to the sum of the probabilities
of electrons passing through each slits. This surprising result paved way for development of
quantum mechanics.

Figure 3.5: Thought experiment for understanding quantum behaviour of electrons [43]
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How the theoretical framework explains the observation? The electron wavefunction passes
through both the slits. The superposition of the wavefunctions out of the two slits result in
the intensity pattern of alternate bright and dark bands on the screen. Superposition being
the signature of quantumness, is studied as the quantum coherence. Considering the incident
beam to be a pure single qubit state, and split beam after two slits to be superposition of
the fixed reference basis, we get the distribution pattern to be consistent with the numerics
plotted above for pure single qubit case.

2. Intermediate era: Set of those experiments that had observed signatures of quantum coher-
ence but didn’t have a well-established resource-theoretic framework. Those experiments
that were performed after the oldest thought experiment and before the development of the-
oretical framework in the year 2014, fall into this category. One such experiment include
that described in [44]. In [44] they find a way of saying how long quantumness of a qubit
is preserved, by which they mean violation of a Leggett-Garg inequality (LGI). The system
is observed to have non-zero off diagonal terms implying non-zero quantum coherence even
after that time. Which implies that this quantumness is not detectable by the LGI but can
be explained by the resource theoretical framework of quantum coherence. There have been
several studies in which it was analysed how destruction of coherence leads to reduction of
quantum correlations. An experiment in this direction can be found in [46].

3. Era after development of theoretical framework: All those experiments designed based on
the theoretical framework for further clarity of concepts, or the experimental observations
gotten that can be clearly explained after the theory came into existence belong to this set.
One of the experiments that was designed very recently based on the given theoretical frame-
work includes [45]. This experiment aims at answering the question on the efficiency of
manipulation and inter-conversion of resource which is one of the key questions of the the-
ory. They find optimal probabilities for mixed state conversions via stochastic incoherent
operations for qubit states. They also extend discussion on distributed scenarios. Experi-
mentally they show that in a linear optics set-up, optimal state conversion probabilities can
be achieved which would be very helpful for real world applications, specially in quantum
technologies. Few other works that fall into this classification include [47, 48, 49, 50, 51].
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Chapter 4

Conclusion and Outlook

In this report we have seen how the resource theory of quantum coherence was developed and has
played a central role in quantum information theory, in general physics. Coherence can be studied
as a resource, provided the experimenter is limited to what are called as “free operations” that
cannot create any resource.

The report mainly discusses the set of definitions and conditions that any resource theory of
coherence must include. Basically the resource theory of coherence should have:

• Free states (F) which are called incoherent states in this context, that do not contain any
resource (zero coherence) and are freely accessible.

• Free operations (O) which are a well-defined class of incoherent operations and are physi-
cally justified.

• No free operations defined must be able to create coherence (resource) from set of incoherent
states (free states).

• Free operations can take an incoherent state to another incoherent state of same dimension.

• Free operations also allow for conversion of d-dimensional maximally coherent state |φd〉(termed
as a cobit) to any other d-dimensional state.

After discussion of resource theory formulation of coherence, next section of the report dis-
cussed on the quantification of coherence. A detailed review of a few important postulates for
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a valid coherence quantifier is given. In later section, we provide a discussion of two important
distance-based quantifiers of coherence, viz, matrix norm measures and relative entropic measures.
There’s also a brief discussion on distillable coherence and coherence cost. This leads to the con-
cept of ‘bound coherence’ (or rather, its absence) within coherence resource theory based on the
set of IOs that brings out the contrast between entanglement and coherence theory.

Though there is a large body of work on the resource theory of quantum coherence, the theory
is still at a nascent stage, and substantial research focusing on various physical aspects of coherence
are imminent in near future.

ρ = ∑
i

piρ
A
i ⊗ρ

B
i (4.1)
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