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Abstract

The aim of the project was to study extreme events on complex networks. The study of
complex networks, especially that of scale free and small world networks, has been an
important topic of research in recent times. In this project, extreme events on complex
networks were studied by using random walks to model flow on the network. By considering
a set of independent random walkers to be moving on the network simultaneously, an extreme
event on the network was defined as an event when the number of walkers exceeds a certain
threshold. The existence of a stationary probability distribution, that is, the probability that
a walker will be found on a node at a given time, allows for this definition of an extreme
event. There is abundant literature on stationary occupancy probability distributions of
random walks on networks. Review of literature on the dynamics and stationary probability
distributions in the case of discrete and continuous time random walks constituted the first
part of the project. In the next part of the project, some statistics of extreme events were
studied. The probability of extreme events was obtained through simulations on a scale
free network both in the discrete and continuous random walk cases. Correlation between
magnitude differences of two consecutive extreme events and the time interval between the
occurrence of the two was computed analytically and through simulations on scale-free,
small-world and random networks. As a separate part of the project, the spectral properties
of the adjacency matrices of scale-free networks were studied.
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Chapter 1

Introduction

In the past few decades, network science has emerged as an academic research field that
involves the study of real-world systems by modeling them as complex networks. While
providing newer insights into the structure and characteristics of various complex systems,
it has also provided a formalism that enables the study of real-world systems which may
be difficult to study otherwise. A network, as defined in graph theory, is a theoretical con-
struct consisting of a set of vertices/nodes and edges/links, in which vertices are connected
through edges in some manner that is characteristic of the network. Complex networks are
networks in which the edges or links between different nodes is neither random nor regular,
but such that they mimic or can be used to model real-world systems. Network science has
applications in various fields including biology, physics, computer science, economics and
sociology. Some complex systems that have been studied include biological protein or gene
regulatory networks, food webs, the internet, the internet, the world wide web, etc. [2–6].

One important characteristic of a network is its topology, that is, the pattern in which var-
ious nodes are linked together in the network. While considering the topology of a network,
scale-free and small-world properties are particularly of interest, as it has been observed
these are properties of many real-world networks. To understand what a scale-free network
means, one needs to define a quantity called the degree of a node, which is the number
of links that the node has. A scale-free network is one in which the degree distribution of
the nodes follows a power law distribution, that is, there are fewer nodes of higher degree
than there of nodes of a smaller degree and the fall in the fraction of nodes with increasing
degree is given by the power law distribution. Many real-world exhibit this property, few
among which are the world wide web, citation networks, protein interaction networks and
scientific co-authorship networks [4–7]. Another property of networks that is of interest is
the small-world property. In small-world network, the degree of most nodes is very small, but
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two nodes that are linked to the same node are very likely to be linked to each other as well.
This property is better understood in terms of cliques and near-cliques. A subset of a network
is called a clique if all the nodes in the subset are linked to each other. A near- clique, as
indicated by its name, is a subset in which there exist links between most of the nodes of
the subset. The small-world property of the network then refers to the tendency of nodes to
form a number of cliques or near-cliques, which are poorly connected to other cliques or
near-cliques, or in other words, the number of links between nodes of different cliques is
small. A well-known example of such network, which has recently grown in popularity in
network studies, is the human interaction or social relationship network. Electrical power
grids, the internet, co-authorship and citation networks also exhibit this property.[4, 5] In this
project, dynamics on both scale-free and small-world networks were studied. Dynamics on
a random network (a network in which there is no apparent pattern in which the nodes are
linked) was also considered. The Barab´asi-Albert model [8, 9], Wattz-Strogatz model[10]
and the Erdos-Renyi model[11] were used to construct scale-free, small-world and random
networks respectively.

Diffusion or flow on networks, for example, the flow of current in an electrical circuit,
spread of diseases in human interaction networks, flow of information on the internet, spread
of dementia in the neural network of the brain[4, 12], have been widely studied for the
past few decades. Flow on networks can be modeled using random walks on the networks,
where a random walker moves from a node to one of the nodes that it is linked to, that is, a
neighboring node. A random walk is a stochastic or random process in which the length of a
jump or step and the time of the jump are random variables. In the case of networks, only the
time of the jump is a random variable, the length of the jump is a constant. However, the
neighboring node to which the walker jumps becomes a random variable and the transition
probability is accordingly modified for random walks on networks. It is possible to consider
two types of random walks, discrete time (DTRWs) and continuous time random walks
(CTRWs) on networks. As the names suggest, the distinction between the two is in the
distribution of the time interval after which the walker jumps from a node to one of its
neighbors. In the discrete time case, the walker makes every jump after a constant period
of time, that is, the time between two consecutive jumps of the walker is a constant. In the
continuous time case, however, the time interval after which the walker moves is a random
variable, and its distribution is given by a continuous probability density. In this project, both
continuous and discrete time and continuous time random walks were considered.
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One advantage of modeling flow using DTRWs is that it is possible to obtain analytic
expressions for quantities of interest in most cases. However, since most physical stochastic
processes are more accurately modeled by CTRWs, the study of CTRWs on networks has
increased in the past few decades even though they might be more difficult to analyze. A
formal analysis of continuous time random walks by considering the waiting time as a
random variable began with the work of Montroll and Weiss[13], Montroll[14], Montroll
and Scher [15]. In this project, two types of waiting time distributions have been considered,
the Poisson or exponential distribution and the Pareto or power law distribution. While the
exponential distribution is easier to analyze in the Montroll-Weiss formalism, the power
law distribution provides a more accurate model for real-life processes. The power law
distribution, being quite heavy tailed, can be used to model random processes like flow
in human interaction networks such as mailing or voice calling, spread of diseases, etc.,
in which the distribution of waiting time between two consecutive jumps is quite heavy-tailed.

The study of extreme events on networks is a fairly new topic of research. A sharp spike
in packet flow in the internet, traffic jams in transportation networks, a sudden increase in
the expression of a gene in gene regulatory networks are some examples of extreme events
on networks[16–19]. A fairly large change in flow on the network that exceeds the nodal
capacity can be called an extreme event as it has a significant impact on the flow in the
networks. By considering a fixed number of independent random walkers on the network, it
is possible to define an extreme event as the event that occurs when the number of random
walkers on a particular node exceeds a certain threshold, which can be defined based on the
degree of the node. Even though the probability of occurrence of an extreme event might be
small, the study of these events is important as they can disrupt normal flow or transport on
the network. In this project, the probability of occurrence of an extreme event were studied
in the continuous time random walk case by extending the existing analysis for the discrete
time case.

The stationary probability distribution of a random walk on a network is of interest, as
the existence of a stationary distribution allows for the above definition of an extreme event.
The stationary probability of a given node in the network refers to the occupancy probability
of the node after a steady state has been reached. A steady state may or may not be reached
depending on the type of random walk or the network. In order to derive an expression for
the stationary probability one would then consider the dynamics of the random walk on the
network. A random walk on a strongly connected (a strongly connected network is one in
which it is possible to go from any node on the network to any other node by walking on
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existing edges in the network), undirected (that is, on any given edge, flow from both the end
nodes is possible and flow is not restricted to one direction) network with N nodes has been
considered. It is possible to define an NxN adjacency matrix for the network whose entries
are given by either 1 or 0 depending on whether the two nodes corresponding to that entry
are adjacent to each other or not. In other words, Ai j is 1 if nodes vi and v j are adjacent to
each other and 0 if they are not. After each time interval, the walker makes a jump from one
node, say vi, to one of its neighbors, say v j with probability that is inversely proportional to
the total number of edges going from node vi to other nodes in the network. An occupation
probability for each node at a given time can be defined as the probability that the walker is
occupying that node at that time. It is then possible to show that the occupation probability
of a node goes to a stationary value after some time and that it is proportional to the degree
of the node [20]. The stationary probability distribution has been widely studied in complex
networks in the context of ranking in networks. Ranking refers to the attribution of a certain
amount of importance to all the nodes in the network based on their connectivity to other
nodes and the amount of transport or flow through the nodes. The PageRank algorithm,
which is used to rank web pages in the world wide web and is a major component of the
Google search algorithm, is one application of random walks on networks[2]. The PageRank
vector that is computed for the web network and some modifications to it is equivalent to
the stationary probability distribution of a discrete time random walk on the network[21]. A
large amount of literature exists on the subject of stationary probability distributions, relevant
portions of which have been elaborated in the next chapter.

While studying the statistics of extreme events, one might be interested in studying the
correlation between event size difference and recurrence time between consecutive events.
Distribution of the magnitude of the extreme event on a particular node is given by the tail of
the probability distribution of the number of walkers on that node. The recurrence time, that
is, the time between two consecutive extreme events on the other hand has been found to be
exponentially distributed [17]. A correlation between the difference in event sizes of two
extreme events and the time interval between the two events can be interesting to study. The
presence of a correlation or an anti-correlation between the two quantities would mean that
given the occurrence of an event, something about the magnitude and the time of occurrence
of subsequent extreme events can be predicted to a small extent.

Also, as an independent part of the project, the spectral properties of the adjacency
matrices of scale-free networks were studied. In particular, we looked at the distributions
of eigenvalue spacing ratios of these matrices. In Random Matrix Theory, the spectral
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properties of a matrix are used for characterizing the matrix [22, 23, 1, 24–27]. Some of the
spectral properties that have been studied include the distribution of eigenvalues, eigenvalue
spacing and eigenvalue spacing ratios. One commonly studied property is the nearest-
neighbour eigenvalue spacing. If the eigenvalues of the matrix that is studied are given by,
E1,E2,E3, ......, then the nearest neighbour eigenvalue spacing is given as si = Ei+1−Ei. The
eigenvalue spacing ratio, given by ri =

si+1
si

is another quantity that is widely studied. It is

possible to define higher order spacing ratios by r(k)i =
Ei+2k−Ei+k

Ei+k−Ei
.In this project, the higher

order spacing ratios of adjacency matrices of scale-free distributions have been studied.
Most real-world networks are time dependent. For example, in the world wide web, new

web pages are created or removed every day. Extinction or the introduction of a new species
in an ecosystem thus changing the food web of the ecosystem, or the formation or dissolution
of social relationships, are some other examples or time dependency of real-world networks
[20, 28–31]. However, since static networks are easier to analyze much of the research
on diffusion in networks has focused on static networks. Time dependency of networks
is a fairly recent topic of interest. In the final chapter of the thesis, some of the ways in
which extreme event analysis can be extended to time dependent networks have been outlined.

Thesis overview

Chapter 1 provides an introduction to the thesis and outlines in brief the concepts that
have been used in the project. Also, connections are drawn between different parts of the
project. In Chapter 2, relevant portions of existing literature on the subject of discrete and
continuous time random walks on networks have been elaborated. Theory on extreme events
on networks and some statistics of the extreme events that were studied have been explained.
Analysis, that exists in literature for the discrete time random walk case, has been extended
to the case of continuous time random walks on networks.
As an independent part of the project, spectral analysis of the adjacency matrices of scale-free
networks was conducted by studying the higher order eigenvalue spacing ratios of these
matrices. Chapter 3 briefly describes the theory of eigenvalue spacing ratios studied in
Random Matrix Theory (RMT) and provides the results that were obtained from the spectral
study of adjacency matrices of scale-free networks.
Chapter 4 consists of all the results on extreme events on complex networks that were
obtained as part of the project. The first section of this chapter explains the properties of
different networks that were studied and the algorithms that were used to simulate these
networks. Simulations of discrete time random walks, which already exist in literature, and
our extension of the analysis to continuous time random walks forms the next part of the
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chapter. In the next section, some of the results on the statistics of extreme events have been
presented. Chapter 5 concludes the thesis with a brief summary of the results that were
obtained and outlines some of the future work that can be carried out in this area.



Chapter 2

Theory

2.1 Random walks on networks

A network or a graph is a set of vertices/nodes and edges/links, in which the nodes are
connected to each other in a specific pattern that is characteristic of the network. Complex
networks are networks that are used to model real-life systems, in which the arrangement
of links between different nodes is such that the network mimics or models a real-world
system. The study of networks in the past few decades has focused on various properties
of the network such as its topography, centrality measures for the nodes of the network,
community detection, transport/ flow on the networks, etc. In this section, we focus on the
study of stochastic processes on networks which can be theoretically modeled by random
walks on the networks.
Random walks on complex networks can be used to model a diverse number of physical
processes, such as, the spread of diseases in human interaction networks, the spread of
information in social networks, particle diffusion in porous media, flow of electricity in a
power grid etc. Random walks may be broadly classified into discrete and continuous time
random walks, depending on the distribution of the waiting time after which the walker jumps
to another node. The study of random walks has provided newer insights into the physical
systems under consideration and transport or flow in these systems. A few examples of
topics that have been studied using the random walk model include the stationary occupancy
probability of the nodes of the network, ranking in networks, range of the random walk and
search on networks using random walks. In our project, we are interested in studying the
stationary probability distribution of both discrete and continuous time random walks on
complex networks.
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We consider a strongly connected, undirected, N node network. An NxN adjacency
matrix, A, is defined for the network whose entries are given by either 1 or 0 depending on
whether the two nodes corresponding to that entry are linked to each other or not. In other
words, Ai j is 1 if nodes vi and v j are linked to each other and 0 if they are not.

2.1.1 Discrete time random walks on networks

As mentioned earlier, discrete time random walks are random walks in which the waiting
time before a walker jumps is a constant.The dynamics of discrete time random walk are as
follows[20]-

After every fixed time interval, the walker makes a jump from one node, say vi, to another
node, say v j with probability given by

Ti j =
Ai j

ki
(2.1)

where T is called the transition probability matrix. Let Pi(n) be the probability that the
random walker is at node vi after the nth jump. Thee evolution of the probability that the
walker is at a given node is then given by,

Pj(n+1) =
i=N

∑
i=1

Pi(n)Ti j (2.2)

where j ∈ 1,2, ....,N and i denote the index for the nodes of the network.
This probability can be written in terms of a vector, P = (P1,P2, ....,PN)

It is possible to define a stationary probability distribution (that is, the probability distribution
that remains unchanged as time progresses) P∗ = (P∗

1 ,P
∗
2 , ....,P

∗
N) by

P∗
i = limn→∞Pi(n) (2.3)

Thus,

P∗ = P∗T (2.4)

Thus, the stationary density is the left eigenvector of the transition probability matrix.
In case of a strongly connected network, the existence and uniqueness of the stationary
probability distribution is guaranteed by the Perron-Frobenius theorem [32] and is given by,

P∗
i =

ki

∑
N
j=1 k j

(2.5)
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where ki is the degree of node vi.
Thus, the stationary occupancy probability of a node is proportional to the degree of the
node.

2.1.2 Continuous time random walks on networks

The dynamics of a random walk on the network is given by a generalized master equa-
tion, considering the waiting time as a random variable, initially proposed by Montroll and
Weiss[13], which has been later adapted to several other continuous time random processes
on networks. The derivation of the generalized master equation in this section follows the
work of [33–35].

An N node undirected, strongly connected network is considered whose adjacency matrix
is denoted as A. As in the discrete time random walk case, it is possible to define a transition
probability density, T (vi, t|v j, t ′), as follows,

T (vi, t|v j, t ′) = φ(vi|v j, t)ψ(t − t ′|v j) (2.6)

which is the probability that the walker at node v j at time t ′ jumps to the node vi at time t.
φ(vi|v j, t) denotes the jump density, that is, the probability that the walker jumps from node
v j to vi at time t and ψ(t − t ′|v j) is the waiting or interval time distribution, that is, the
probability that the walker does not move from node v j in the time interval from t ′ to t.
In our case, the jump density is independent of time and hence can be written as,

φ(vi|v j, t)≡ φ(vi|v j) (2.7)

φ(vi|v j) =
Ai j

k j
(2.8)

where Ai j is the adjacency matrix element of the network and k j is the degree of the node
v j.
Also, since the waiting time distribution is independent of the node in which the walker is
present in our case, it can be written as,

ψ(t − t ′|v j)≡ ψ(t − t ′) (2.9)

The probability density that the walker arrives at node vi at time t after n jumps starting
from v0 at time t = 0 is given by the recursive relation,
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rn+1(vi, t|v0) =
N

∑
j=1

∫ t

0
T (vi, t|v j, t ′)rn(v j, t ′|v0)dt ′ (2.10)

with the following initial condition,

r0(vi, t|v0) = δvi,v0δ (t) (2.11)

It is now possible to obtain the probability density that a walker is at node vi at time t,

P(vi, t|v0) =
∫ t

0
Ψ(t − t ′)r(vi, t ′|v0)dt ′ (2.12)

where, Ψ(t − t ′)is the probability that the walker does not jump off the node vi in the
time interval t − t ′, which can be written as,

Ψ(t − t ′) = 1−
∫ t−t ′

0
ψ(τ)dτ (2.13)

and,

r(vi, t|v0) =
∞

∑
n=0

rn(vi, t|v0) (2.14)

By taking a Laplace transform, one will be able to simplify the equations further as a
convolution becomes a product in the Laplace space. Taking the Laplace transform of Eq.
2.12 gives,

P̂(vi,s|v0) = Ψ̂(s)r̂(vi,s|v0) (2.15)

The hat is used to denote the Laplace transform of the variable. While taking the Laplace
transform of Eq. 2.10 gives,

r̂n+1(vi,s|v0) =
N

∑
j=1

T̂ (vi,s|v j)r̂n(v j,s|v0) (2.16)

Putting Eq. 2.16 back in the Laplace transform of Eq. 2.14 gives,

r̂(vi,s|v0) =
∞

∑
n=0

r̂n(vi,s|v0) (2.17)

r̂(vi,s|v0) =
∞

∑
n=0

T̂ (vi,s|v j)r̂(v j,s|v0)+ r̂0(vi, t|v0) (2.18)

Thus,
r̂(vi,s|v0) = (1− T̂ (vi,s|v j))

−1r̂0(vi, t|v0) (2.19)
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Putting, Eq. 2.19 back in Eq. 2.15, gives,

P̂(vi,s|v0) = Ψ̂(s)(1− T̂ (vi,s|v j))
−1r̂0(vi, t|v0) (2.20)

The Laplace transform of Ψ(s) can be obtained from Eq. 2.13,

Ψ̂(s) =
1
s
(1− ψ̂(s)) (2.21)

Putting, this back in Eq. 2.20 gives,

P̂(vi,s|v0) =
1
s
(1− ψ̂(s))(1− T̂ (vi,s|v j))

−1r̂0(vi, t|v0) (2.22)

This, gives the generalized master equation of a continuous time random walk in Laplace
space.

Finally, by taking the inverse Laplace transform of the above equation and some simplifi-
cation, the generalized master equation for a continuous time random walk in real space can
be obtained as follows,

∂

∂x
P(vi, t|v0) =

N

∑
j=1

φ(vi|v j)
∫ t

0
K(t − t ′)P(v j, t ′|v0)dt ′−

∫ t

0
K(t − t ′)P(vi, t ′|v0)dt ′ (2.23)

which gives the time evolution of the occupancy probability of any given node on the network.
K(t − t ′) is the inverse Laplace transform of

K̂(s) =
ψ̂(s)

Ψ̂(s)
(2.24)

In this project, one of the continuous time waiting densities that was considered is the
exponential or Poisson probability density and the Pareto or power law waiting time density
and random walk simulations were carried out for both cases. The stationary probability
distributions for the random walk in these two cases have been considered in the next two
sections.

Poisson waiting time density

In this case, the waiting time density is given by the exponential or Poisson distribution as,
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ψ(t) = λe−λ t (2.25)

For this waiting time density, it is possible to simplify the generalized master equation
given by Eq.2.23 to give,

∂

∂x
P(vi, t|v0) =

N

∑
j=1

λφ(vi|v j)P(vi, t|v0)−λP(vi, t ′|v0) (2.26)

The steady state occupancy probability can then be obtained by setting the first derivative
of the occupancy probability to 0 and it is found that it is the same as in the discrete time
random walk case and is given by P∗

i = ki
∑

N
j=1 k j

, where i and j are node indices, P∗
i is the

stationary occupancy probability of the node vi and ki is the degree of the node vi.

Non-Poisson waiting time density

In general, it is not possible to obtain exact analytic expression for the generalized master
equation, given by Eq. 2.23, for non-Poisson waiting time densities. It can be shown that the
stationary probability distribution in the case on non-exponential waiting time densities is the
same as in the discrete case and it is proportional to the degree of the node. The generalized
master equation in Laplace space that was derived earlier (Eq. 2.22) can be written in matrix
form as,

P̂(s) =
1
s
(I − D̂(s))(I − T̂ (s)−1P(0) (2.27)

where,
D̂i j(s) = ψ(s)δi j (2.28)

The following arguments were used to obtain an expression for the stationary probability
distribution of a general continuous time random walk on the network [34].

By the final value theorem, the stationary probability vector P∗ is given by,

P∗ = ltt→∞P(t) = lims→0sP̂(s) = MP(0) (2.29)

The leading eigenvector of M will give the stationary probability vector. In the lims→0,
an approximation to the Lapalace transform can be used to get an expression for M and one
can show that the leading eigenvector of M is the same as the stationary probability vector in
the discrete time random walk case.
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Thus, the steady state occupancy probability of a node in the case of continuous waiting time
densities is proportional to the degree of the node and is given by P∗

i = ki
∑

N
j=1 k j

.

2.2 Statistics of extreme events on networks

Extreme events on networks are sudden large changes in the amount of flow in the network,
that could possibly significantly impact future flow on the network. A few examples of
extreme events on networks include sharp spikes in the number of packets moving in the
internet that temporarily stops the transport of information, traffic jams in transportation
networks, a sudden increase in the number of organisms of a particular species in a food
web, etc. While studying extreme events, the distribution of the magnitude of extreme
events, the time between two consecutive extreme events, the probability of occurrence of
an extreme events are some of the quantities of interest[36]. A lot of recent research in this
topic has been focused on the prediction and control of such events on networks. In this
project, the statistics that we have analyzed are the probability of occurrence of an event and
the correlation between the magnitude difference between two consecutive extreme events
and the time interval between their occurrences (recurrence time). In all derivations in this
section (Section 2.2), a random variable is denoted by an upper case letter (T,X ,Y,Z, ....) and
the value it assumes is denoted by a lower case letter (t,x,y,z, ...), unless stated otherwise.
P(X = x) has been used to denote the probability that the variable X assumes the value x.

2.2.1 Probability of occurrence of an extreme event

Consider a total of NW walkers moving independently on the network. At any given time after
the steady state has been reached, the probability that a walker is found on a particular node
vi is given by p∗i =

ki
∑

N
j=1 k j

. Given that the occupancy probability density for a random walk

reaches a steady state value, it is possible to obtain the distribution of the number of random
walkers on a particular node. Let W denote the random variable corresponding to the number
of walkers on a given node after steady state has been reached and fW (w) = P(W = w)
denote the probability that there are w walkers on the node that is being considered. In order
to find the distribution of W , one would consider the probability of finding w walkers on a
particular node, which is given by pw since all the walkers move independently[17, 18]. To
find the distribution one would then choose w walkers out of the total NW number of walkers,
consider that they occupy one particular node at a given time and that the rest of the walkers
are present on other nodes in the network. Thus, the distribution of the number of walkers on



14 Theory

a particular node as a function of the stationary occupancy probability p of the node is given
by,

fW (w) = P(W = w) =

(
NW

w

)
pw(1− p)(NW−w) (2.30)

Let µ and σ denote the mean and the standard deviation of the binomial distribution
given above.
An extreme event is then defined as follows- when the number of random walkers on a given
node exceeds a threshold, defined as q = µ +mσ , where m can be any real number. The
probability of occurrence of an extreme event on a node is thus dependent on the degree of
that node. Given this definition of an extreme event, one can then find the probability of the
occurrence of an extreme event on the network, which is a function of the degree of a node
(k) and is given by,

P(W > q) =
NW

∑
j=⌞q⌟+1

(
NW

j

)
p j(1− p)(NW− j) (2.31)

where ⌞q⌟ denotes that floor integer of q.

2.2.2 Correlation between difference in magnitudes of two consecutive
extreme events and the time between their occurrences

Another statistic that we are interested in is the correlation between the difference in mag-
nitude of two consecutive extreme events and the time between the occurrence of the two
(recurrence time) on a particular node in the network. In extreme value theory, this quantity is
often computed to see see if the occurrence of extreme events in the system has some degree
of predictability. If the two quantities are either correlated or anti-correlated to some extent,
then one can speculate to a certain extent the magnitude or time of occurrence of an extreme
event from the knowledge of extreme events in the past. In order to compute this correlation
quantity, one would first need to compute the distribution of the recurrence time and that of
the difference in magnitudes of consecutive extreme events on a given node on the network.
To compute this quantity, we have considered discrete time random walks in three types of
networks- scale-free, small-world and random networks. We consider a generic node on the
network and compute this statistic on the node. The same analysis exttends to all the nodes
in the network.
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Distribution of recurrence time- Assume that a total of NE extreme events occur on a
particular node in the finite time for which the walkers are considered to move on the network.
Let T1,T2,T3, .....,TNE denote the times of occurrence of successive extreme events on a given
node. The recurrence time then refers to the time interval between two consecutive extreme
events, say, TRn = Tn+1 − Tn, n = 1,2,3, ...,NE − 1. We are interested in the probability
distribution of this variable T . The recurrence time T , in the case of discrete time random
walks, has been found to be distributed exponentially from computer simulations of the same.
The distribution is given by,

P(TRn = t) = λe−λ t (2.32)

where, n = 1,2,3, ...,NE −1 the constant λ depends on the the node that is being con-
sidered. The mean E[TR] and the standard deviation σTR of the distribution are then given
by,

E[TR] = σTR =
1
λ

(2.33)

Distribution of difference in magnitudes of two consecutive extreme events- By the
definition of a extreme event we have used, the magnitude or size of an extreme event on a
given node is the number of walkers on the node. Let M1,M2,M3, .....,MNE denote the time
series of the magnitudes of the NE extreme events on the node. We are interested in computing
the distribution of the difference in magnitudes of consecutive extreme events, denoted as,
Zn = Mn+1 −Mn, n = 1,2,3, ....,NE − 1 and the distribution of the absolute value of the
difference in magnitudes of consecutive extreme events, denoted as, |Zn|= |Mn+1−Mn|, n =

1,2,3, ....,NE −1. In order to find the desired distributions, we first consider the distribution
of the number of random walkers on the node, which is given by 4.3,

fW (w) =

(
NW

w

)
pw(1− p)(NW−w) (2.34)

We then find the distribution of the magnitude Mn of an extreme event on the node. This
is given by,

P(Mn = w) = P(W = w|W > q) =
1

P(W > q)
P(W = w∩W > q) (2.35)

where, q is the threshold used for defining an extreme event.
Let

c =
1

P(W > q)
(2.36)
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P(Mn = w) = P(W = w|W > q) = cP(W = w)1(q,NW ](w) (2.37)

where 1(q,NW ](w) is the indicator function which takes the value 1 for w ∈ (q,NW ] and the
value 0 for all other w and P(W = w) is the binomial distribution fW (w) of the number
of walkers on the node. Thus, the distribution of the magnitude of an extreme event on a
network can be written as,

P(Mn = w) =

 c

(
NW

w

)
pw(1− p)(NW−w) w > q

0 otherwise

(2.38)

where c is given by Eq. 2.36.
One can then obtain the distribution of Zn and |Z|n as follows. For simplicity, the Gaussian

approximation to the binomial equation is considered. With this approximation, Eq. 2.38 can
be written as,

P(Mn = x) =

 c√
2πσ

e−
(x−µ)2

2σ2 x > q

0 otherwise
(2.39)

where the mean and standard deviation (µ and σ ) of the Gaussian distribution are the
same as that of the binomial distribution that it approximates.
For notational simplicity, let Y (= Mn) and X(= Mn+1), n ∈ 1,2,3, ...,NE −1, denote the
magnitudes of two consecutive extreme events on a node and Z(= Zn), n ∈ 1,2,3, ...,NE −1
denote their difference. The distribution of Zn = X −Y can then be obtained as,
For z ≥ 0,

P(Z = z) = P(X −Y = z) = P((X = z+ y)∩ (Y = y))) (2.40)

P(Z = z) =
∫

∞

q
P(X = z+ y)P(Y = y)dy (2.41)

P(Z = z) =
∫

∞

q

c2

2πσ2 e−
(z+y−µ)2

2σ2 e−
(y−µ)2

2σ2 dy (2.42)

since X and Y are identically distributed as given by Eq. 2.39. On simplification, this yields
for z ≥ 0,

P(Z = z) =
c2

2
√

πσ
e−

z2

4σ2

[
1√

2π(σ/
√

2)

∫
∞

q
e
− (y−(µ− z

2 ))
2

2(σ/
√

2)2 dy

]
(2.43)

P(Z = z) =
c2

2
√

πσ
e−

z2

4σ2

[
1−Φ

((µ− z
2 ),(

σ√
2
)2)
(q)
]

(2.44)
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where, Φ(µ,σ2)(q) denotes the cumulative distribution function of the Gaussian distribution
with mean µ and variance σ2 at q.
Now, we consider z < 0. Note that, P(Z =−z) = P(X −Y =−z) = P(Y −X = z). Since, X
and Y are identically distributed, P(Z =−z) = P(Z = z). Thus, the distribution is symmetric
around 0. This allows us to write, for z ≤ 0,

P(Z = z) =
c2

2
√

πσ
e−

z2

4σ2
[
1−Φ(µ+ z

2 ),(
σ√

2
)2)(q)

]
(2.45)

Hence, the distribution of Z can be written as,

P(Z = z) =
c2

2
√

πσ
e−

z2

4σ2

[
1−Φ

((µ− |z|
2 ),( σ√

2
)2)
(q)
]
,∀z (2.46)

To find the distribution of the absolute value of the difference, |Z|, we note that,

P(|Z|= z) = [P(Z = z)+P(Z =−z)]1(0,∞)(z) (2.47)

where 1(0,∞)(z) is an indicator function, which takes the value 1 for z ∈ (0,∞) and the value
0 otherwise. Thus, from Eq. 2.46, we get,

P(|Z|= z) =


c2

√
πσ

e−
z2

4σ2

[
1−φ

((µ− |z|
2 ),( σ√

2
)
2
)
(q)

]
z > 0

c2

2
√

πσ

[
1−φ

(µ,( σ√
2
)2)
(q)
]

z = 0
(2.48)

The correlation that we are interested in can then be defined as,

CP =
E[TRH]−E[TR]E[H]

σTRσH
(2.49)

where, H ∈ (Z, |Z|), E[TR] and E[H] denote the expectation values of the random vari-
ables TR and H, σTR and σH denote the standard deviations of the two variables.

Simulations of discrete time random walks were carried out on scale-free, small-world
and random networks to compute this correlation. The above analysis was used to obtain a
semi-analytic expression for the same.





Chapter 3

Results: Higher Order Spacing Ratios of
Adjacency Matrices of Networks

As an independent part of the project, the spectral properties of the adjacency matrices of
scale-free networks were studied. In particular the eigenvalue spacing ratio distributions of
the adjacency matrix was studied. In this chapter, a brief overview of the theory on eigenvalue
spacing ratio distributions has been given, following which the results of studying these
distributions in simulated and real-world scale-free networks have been presented.

In random matrix theory (RMT), eigenvalue distributions, eigenvalue spacing distributions
and spacing ratios are some measures of spectral fluctuations that are used to characterize a
system. RMT can be used to study the statistical properties of the spectra of certain complex
systems [24–27]. One of the most commonly studied measure of spectral fluctuations is the
nearest neighbour eigenvalue spacing, which is defined as, si = Ei+1 −Ei for i = 1,2, ....,
where Ei denotes the ith eigenvalue of the matrix. However, the study of eigenvalue spacing
requires one to unfold the eigenvalue spectra system, which is a complicated process by
which spectral features that are system dependent are removed, in order to study spectral
fluctuations of the system [24, 25, 37]. The eigenvalue spacing ratio, defined as ri =

si+1
si

for
i = 1,2, ...., is independent of the local density of states of the system and hence one does
not have to unfold the eigenvalue spectra to study spacing ratios [22].

One of the widely studied models in RMT is the Gaussian Orthogonal Ensemble (GOE),
which has been used to model systems which can be represented by symmetric matrices,
whose entries are derived from a standard normal distribution. It has been found that the RMT
average for spacing ratio distribution corresponding to the Gaussian orthogonal ensemble
(β = 1) is given by[37, 22],
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P(r,β ) =Cβ

(r+ r2)β

(1+ r+ r2)1+ 3
2 β

(3.1)

Where Cβ is a constant depending on β ,

and,
ri =

si+1

si
(3.2)

si = Ei+1 −Ei (3.3)

for i=1,2,.... where Ei denotes the ith eigenvalue of the adjacency matrix, s denotes the ith

eigenvalue spacing and ri denotes the ith spacing ratio ,

Higher order spacing ratios are defined by,

r(k)i =
Ei+2k −Ei+k

Ei+k −Ei
,(i,k = 1,2, ....) (3.4)

where r(k)i is the kth order spacing ratio.
It has been observed that the kth order spacing ratio distribution is given by [22],

Pk(r,β ) = P(r,β ′) (3.5)

β
′ =

k(k+1)
2

β +(k−1) (3.6)

for k ⩾ 1
In this project, we tried to find out if the eigenvalue spacing ratio distribution of the

adjacency matrices of scale-free networks follows GOE statistics. In order to do so, the
spacing ratio distributions were computed for the adjacency matrix of simulated scale-free
networks with 500, 1000 and 5000 nodes. The spacing ratio distributions of a real-world
scale-free network were also computed.

To simulate a scale-free network, the Barabàsi-Albert model proposed in [8, 9] was used.
A scale-free network is a network in which the degree distribution of the nodes follows, at
least asymptotically, a power-law distribution. The fraction ω(k) of nodes that have a given
degree k (connect to k other nodes) is given by,

ω(k) = ck−γ (3.7)
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where, c and γ are positive constants.
In the Barabàsi-Albert model, new nodes are added sequentially one by one and the links that
the new node makes after each new addition are made preferentially. Preferential attachment,
in this case, means that the new node is more likely to form links with nodes that have higher
degree, a rich get richer scenario. This model was initially developed based on network
growth in the world wide web, which is a good example of a scale-free network. When
new web pages are added to the network, they are more likely to form links with web pages
that have a high degree, also known as hubs, rather than to pages that have fewer links. In
this model, a network is built using the following algorithm. One first starts with an initial
connected network. Newer nodes are added one by one and the probability that an already
existing node forms a link with the new node is proportional to the degree of the existing
node. In this way, the rest of the nodes are added to build a scale-free network.

The eigenvalue spacing ratios of a scale-free networks with 1000 and 5000 nodes, that
were simulated using the Barabàsi-Albert algorithm, were studied and the results have been
presented in Fig. 3.1. The figure (Fig.3.1 ) shows the distribution of the eigenvalue spacing
ratios for k=1,2,3 and 4. It is observed that the spacing distributions follow the GOE statistics
given by Eq. 3.1 and Eq. 3.5.

The analysis was also carried out for a real-world scale-free network. A co-authorship
network in Condensed Matter Physics with 23,133 nodes and 93,497 edges, obtained from
the article [1], was used for analysis. A co-authorship network is a network in which the
authors of journal papers form the nodes of the network and an edge between two nodes
indicates that the two authors corresponding to these nodes have co-authored a paper together.
Co-authorship networks have generally been known to be scale-free networks. The degree
distribution of this network was computed to verify that the network is scale-free. This has
been shown in Fig.3.2. Next, higher order eigenvalue spacing ratios were computed for the
adjacency matrix of this network and the plots are shown in Fig.3.3 .The results that were
obtained again suggest that the eigenvalue spacing ratios of the adjacency matrix of scale-free
networks follow the GOE statistics given by Eq. 3.1 and Eq. 3.5.
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

Fig. 3.1 Distributions of eigenvalue spacing ratios (of orders k = 1,2,3,4) for scale-free
networks with 1000 and 5000 nodes. The solid line is the analytic expression for the
distribution obtained from Eq. 3.1 and 3.5.
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Fig. 3.2 Degree distribution of the co-authorship network (log-log plot). The distribution
follows a power-law asymptotically
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

Fig. 3.3 Distributions of eigenvalue spacing ratios (of orders k = 1,2,3,4) for a real-world
scale-free network (a co-authorship network) [1].The solid line is the analytic expression for
the distribution obtained from Eq. 3.1 and 3.5.



Chapter 4

Results: Extreme Events on Complex
Networks

4.1 Type of networks studied

In this project, three types of networks- scale-free, small-world and random networks were
simulated and statistics of extreme events were analyzed for these network configurations.
A brief overview of the algorithms that were used in the simulations is described in this
section. In the previous chapter, scale-free networks were discussed in detail. In this section,
the algorithms that were used for simulating small-world and random networks have been
discussed.

Small-world networks

Small-world networks are networks that show a high degree of clustering and the tendency
to form cliques or near-cliques. Another characteristic of the network is that the average path
length between two nodes in the network is very small. The Watts-Strogatz model [10] was
used to construct a small-world network. The algorithm that was used is as follows. In order
to construct an N node network, with an average degree of k, first a ring lattice is constructed
with N nodes with each of them connected to their k nearest neighbour, that is, k

2 on either
side. A rewiring probability β is then considered. The k

2 edges on one side, say the right, of
each node is then rewired with probability β to connect to any other node in the network.
A value of β close to 0 creates an almost regular network and a value close to 1 creates an
almost completely random network. By choosing, a suitable value of β one will then be able
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to construct a small-world network.

Random networks

Random networks are graphs in which the vertices are connected randomly, with no
apparent pattern to the arrangement of edges. In order to construct a random network, the
Erdos-Renyi model [11] was used. In this model, an N node system is considered initially
with no links between vertices. The edge between any two nodes is then added independently
(not depending on the presence or absence of other edges in the network) based on some
probability p. The number of edges in the network would then be determined by p. In this
way, a random graph can be constructed.

4.2 Random walk simulations on scale-free networks

All discrete and continuous time random walk simulations in this section were carried out
on a scale-free network with 1000 nodes, 3132 edges and with 5000 random walkers. For
continuous time random walk simulations, the exponential waiting time density and the
power law waiting time density were chosen. The exponential waiting time distribution that
was used in the simulation is given by,

ψ(t) = λe−λ t (4.1)

with λ = 1
2 .

The power-law distribution that was used in simulations is the Pareto distribution, which is
given by,

ψ(t) =

{
γ

tγ+1 t ≥ 1
0 t < 1

(4.2)

In this section the time series of the number of random walkers on three different nodes
of the network (Fig. 4.1, Fig. 4.2) and the probability distribution of the number of walkers
on these nodes (Fig. 4.3 and Fig. 4.4) have been shown. The three nodes have been chosen
based on their degree, one of high, moderate and small degrees each, to effectively show the
dynamics of the random walk in three different cases. The simulations for the discrete time
case already exist in literature and have not been shown here.
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(a) Node of high degree (b) Node of moderate degree

(c) Node of small degree

Fig. 4.1 Time series of number of walkers on nodes of three different degrees for the power-
law waiting time distribution case. The plots show the mean number of walkers µ and the
threshold for an extreme event µ +2σ
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(a) Node of high degree (b) Node of moderate degree

(c) Node of small degree

Fig. 4.2 Time series of number of walkers on nodes of three different degrees for the
exponential law waiting time distribution case. The plots show the mean number of walkers
µ and the threshold for an extreme event µ +2σ
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(a) Node of high degree (b) Node of moderate degree

(c) Node of small degree

Fig. 4.3 Probability distribution of number of walkers on nodes of three different degrees
for the power law waiting time distribution case. The histogram has been obtained from
simulations of the random walk. The solid line is the analytic expression for the distribution
which is given by the binomial distribution in Eq.4.3
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(a) Node of high degree (b) Node of moderate degree

(c) Node of small degree

Fig. 4.4 Probability distribution of number of walkers on nodes of three different degrees for
the exponential law waiting time distribution case.The histogram has been obtained from
simulations of the random walk. The solid line is the analytic expression for the distribution
which is given by the binomial distribution in Eq.4.3
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The time series of number of walkers on a given node gives a sample of the random walk
on that node, that is the dynamics of the random walk on the node (see Fig. 4.1 and Fig.4.2).
From the plots of the time series of the random walks on the networks, one can see that
the number of random walkers fluctuates around a certain value, which is the steady state
value of the number of walkers on the node (µ). The threshold used for the definition on an
extreme event, q = µ +2σ has been shown in the figures. Only the time series plots for the
continuous time random walks have been shown here. Plots for the discrete time case are
similar to those of the continuous time cases.
Fig. 4.3 and Fig.4.4 show the probability distribution of the number of walkers on three
different nodes for Pareto and exponential waiting time cases. These plots give a picture of
the probability of finding a certain number of walkers on a given node at a given time. Since
this has already been studied for discrete time random walks, only the plots for continuous
time random walks have been shown here. The probability distribution of the number of
random walkers on the nodes follow the expected binomial expression (Eqn. 4.3) for both
discrete and continuous time random walks.

fW (w) =

(
NW

w

)
pw(1− p)(NW−w) (4.3)

where p is the stationary occupancy probability of the node, which is dependent on the degree
of the node. The mean of this distribution (µ) for a node gives the number of walkers on that
node at steady state.

4.3 Statistics of extreme events

Probability of an extreme event-

The probability of an extreme event as a function of the node was then computed for both
both discrete and continuous time random walk cases. These simulations were carried out on
a scale free network with 1000 nodes, 3132 edges and with 5000 random walkers. Fig. 4.5
shows the probability of occurrence of an extreme event as a function of the degree of the
nodes. From the plots, it is observed that the probability of occurrence of an extreme event
is greater for nodes of smaller degrees than for nodes of higher degree. Even though flow
through higher degree nodes is greater, the probability of the occurrence of an extreme event
is smaller on these nodes than nodes with smaller degrees. (See Fig. 4.5).
In both discrete and continuous time random walk cases, the probability was computed by
computing the number of times the number of walkers exceeded a threshold of q = µ +2σ ,
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(a) CTRW with power law waiting time (b) CTRW with exponential waiting time

Fig. 4.5 Probability of the occurrence of an extreme event as a function of the degree of the
node. The solid line is the analytic expression for the probability, which is given by Eqn. 4.4

where µ and σ are the mean and standard deviation of the binomial distribution given above.
An analytic expression for the probability of the occurrence of an extreme event is then given
by Eqn. 2.31,

P(W > q) =
NW

∑
j=⌞q⌟+1

(
NW

j

)
p j(1− p)(NW− j) (4.4)

Correlation between difference in magnitudes of consecutive extreme events and the time
between their occurrences-

The Pearson’s correlation coefficient was computed between the difference in magni-
tudes of two consecutive extreme events and the time between the occurrence of the two.
Simulations were carried out on three different networks with 1000 nodes and 5000 random
walkers. A scale-free network with 3132 edges, a small-world network with 3000 edges and
a random network with 3012 edges were considered. This was discussed in Section 2.2.2.
The quantity that was computed is given by,

CP =
E[TRH]−E[TR]E[H]

σTRσH
(4.5)

where, Hε(Z, |Z|), Z denotes the difference in magnitudes of consecutive extreme events,
|Z| denotes the absolute difference in magnitudes of consecutive extreme events,TR denotes
the recurrence time, E[TR and E[H] denote the expectation values of the random variables
TR and H, while σTR and σH denote the standard deviations of the variables. The Pearson’s
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correlation computed between two quantities takes a value between −1 and 1. A significantly
large negative value (closer to −1) indicates that the two quantities are anti-correlated, that
is, a larger value of one quantity is associated with a smaller value of the other quantity. A
significantly large positive value (close to 1) indicates that the two quantities are correlated,
that is, a larger(smaller) value of one quantity is associated with a larger(smaller) value of
the other quantity. A value close to 0 indicates that the two quantities are neither correlated
nor anti-correlated.

The recurrence time TRn,n = 1,2, ....,NE −1 was found to be exponentially distributed
from simulations of discrete time random walks on scale-free, small-world and random
networks. The distribution of TRn is given by,

P(TRn = t) = λe−λ t (4.6)

where, n = 1,2,3, ...,NE −1 the constant λ depends on the node that is being considered.
From existing literature, we know that λ is given by λ = 1

P(W>q) [17]. The distributions of
recurrence time for discrete time random walks on three nodes of a scale-free network with
1000 nodes have been shown in Fig. 4.6.

The distribution of the difference in magnitudes of consecutive extreme events, Z, was
calculated in Section 2.2.2. The distribution of Z, by considering the Gaussian approximation
of the binomial was obtained as (Eq. 2.46),

P(Z = z) =
c2

2
√

πσ
e−

z2

4σ2

[
1−Φ

((µ− |z|
2 ),( σ√

2
)2)
(q)
]
,∀z (4.7)

The distribution of the absolute value of the difference was obtained as (Eq. 2.48),

P(|Z|= z) =


c2

√
πσ

e−
z2

4σ2

[
1−φ
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(4.8)

The correlation coefficient was computed for the two cases, one in which the the absolute
value of the difference in magnitudes of consecutive extreme events was taken and the other
case in which the magnitude of the previous event was subtracted from the magnitude of
the later event. Simulations were carried out on N = 1000 node scale-free, small-world
and random networks (Fig.4.9, Fig. 4.10 and Fig. 4.11) and we are currently working on
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obtaining a semi-analytic expression for the same. When the difference between magnitudes
(Z) of consecutive events is considered, the correlation is close to 0 for all three types
of networks. This indicates that Z and TR are uncorrelated. However, when the absolute
difference between magnitudes (|Z|) is considered, a strong negative correlation is observed
between the two quantities. This indicates that the two variables (|Z|andTR) are strongly
anti-correlated, which allows some degree of predictability for the system. A large(small)
difference in magnitudes of consecutive extreme events is associated with a small(large)
recurrence time. One might be able to comment on the magnitude or time of occurrence of a
future extreme event based on the magnitudes of extreme events in the past and the times at
which they occurred.
Fig. 4.12 compares the Pearson’s correlation coefficient that was computed analytically and
through simulations. When Z is considered while computing the coefficient, simulations
show that the value of the coefficient is close to 0. Semi-analytic values for the coefficients,
however, show a moderate negative correlation, for some nodes of small degrees. However,
when |Z| is considered while computing the coefficient, the analytic and simulation results
match closely.
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(a) Node of high degree (b) Node of moderate degree

(c) Node of low degree

Fig. 4.6 Distribution of relaxation time (semi-log plot) for three nodes in the network. The
solid line gives the linear fit for the plot, which shows that the distribution is exponential as
given by Eq. 4.6
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(a) Node of high degree (b) Node of moderate degree

(c) Node of low degree

Fig. 4.7 Distribution of the difference in magnitudes of consecutive extreme events on a node
(Z). The solid line gives the analytic expression for the distribution, which is given by Eq.
4.7
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(a) Node of high degree (b) Node of moderate degree

(c) Node of low degree

Fig. 4.8 Distribution of the absolute difference in magnitudes of consecutive extreme events
on a node (|Z|). The solid line gives the analytic expression for the distribution, which is
given by Eq. 4.8
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(a) Scale free network (b) Small-world network

(c) Random network

Fig. 4.9 Pearson’s correlation coefficient between the magnitude difference of two consecutive
extreme events and the time interval between the occurrence of the two.
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(a) Scale free network (b) Small-world network

(c) Random network

Fig. 4.10 Pearson’s correlation coefficient between the absolute magnitude difference between
two consecutive extreme events and the time interval between the occurrence of the two.
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(a) Scale free network (b) Small-world network

(c) Random network

Fig. 4.11 Pearson’s correlation coefficient between the absolute magnitude difference between
two consecutive extreme events and the time interval between the occurrence of the two.
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(a) Simulation (b) Analytic

(c) Simulation (d) Analytic

Fig. 4.12 Pearson’s correlation coefficient computed analytically and through simulations for
a scale-free network. The top two plots show the correlation when the difference between
magnitudes of consecutive extreme events Z is considered. The bottom two plots show the
correlation when the absolute value of the difference (|Z|) is considered.





Chapter 5

Outlook

In this chapter, the work that was done as a part of the thesis is briefly summarized and
further work that can be done in this area has been outlined. In this project, discrete and
continuous time random walks on networks were studied and the stationary occupancy
probability densities were obtained. By considering multiple independent random walkers
on the network, a definition for an extreme event was given as the event that occurs when the
number of walkers on a particular node exceeds a certain threshold. Some statistics of the
extreme events were studied. The study of extreme events with this definition of an extreme
event already exists in literature for discrete time random walks on networks [17, 18]. The
work was extended to continuous time random walks by first obtaining an expression for
the stationary probability density and then studying extreme events defined based on these
random walks. A correlation statistic was defined and was computed analytically and through
simulations for the discrete time random walk case. In the future, it can be computed for the
continuous time random walk case as well.

This analysis can be extended to other types of random walks on networks. It might
be interesting to study biased continuous time random walks, in which the transition jump
density of a random walker depends to some extent on the degree of the node to which the
walker jumps [23]. In this project, we looked at uncoupled continuous time random walks
in which the jump density and the waiting time density are independent. Some physical
processes are better modeled by coupled continuous time random walks, in which the jump
density and waiting time density are coupled and cannot be treated as independent random
variables. Another type of random walk that one could consider is a random walk in which the
waiting time density is dependent on some property of the node from which it makes the jump.
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In this project, only static networks have been considered. However, real-world complex
networks are hardly static. In the future, one could extend the study of extreme events to
time dependent networks as well. One of the major problems that one would encounter is
that the occupancy probability of a node may never reach a stationary value. It might be
interesting to look at how different properties of the network, such as its degree distribution,
centrality measures, etc. change with time. In this case, the above formalism would have to
be modified to take into account the time dependency of the network. Some of the recent
research in this field has taken into account the time dependency of networks by modeling the
time dependency through the waiting time distribution of continuous time random walks[? ].
Thus, by appropriately modeling the waiting time distribution, one can study time dependent
networks in which the edges keep appearing or disappearing in time.
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