
The Role of Plasma Heating and Expansion
in the Energetics of Solar Coronal Mass

Ejections
A Thesis

submitted to
Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the
BS-MS Dual Degree Programme

by

Niranjana Thejaswi S

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2019



Supervisor: Dr. Prasad Subramanian
c� Niranjana Thejaswi S 2019

All rights reserved



Certificate

This is to certify that this dissertation entitled The Role of Plasma Heating and Expansion in
the Energetics of Solar Coronal Mass Ejections towards the partial fulfilment of the BS-MS
dual degree programme at the Indian Institute of Science Education and Research, Pune
represents study/work carried out by Niranjana Thejaswi S at Indian Institute of Science
Education and Research under the supervision of Dr. Prasad Subramanian, Associate
Professor, Department of Physics , during the academic year 2018-2019.

Dr. Prasad Subramanian

Committee:

Dr. Prasad Subramanian

Dr. Arijit Bhattacharyay





This thesis is dedicated to my grandparents





Declaration

I hereby declare that the matter embodied in the report entitled The Role of Plasma Heating and
Expansion in the Energetics of Solar Coronal Mass Ejections are the results of the work
carried out by me at the Department of Physics, Indian Institute of Science Education and
Research, Pune, under the supervision of Dr. Prasad Subramanian and the same has not been
submitted elsewhere for any other degree.

Niranjana Thejaswi S





Acknowledgments

I express my deep gratitude to my supervisor, Prof. Prasad Subramanian for patiently guiding
and encouraging me throughout my thesis. His profound understanding of the subject has aided me
in finding a direction to my thesis and to circumvent problems. I thank Prof. Arijit Bhattacharyay
for supporting me as my TAC member.

I am thankful to Debesh Bhattacharjee for numerous discussions and support throughout my
thesis. I am grateful to Dr. Nishtha Sachdeva whose previous work with Prof. Prasad was founda-
tional to my thesis and also for her valuable suggestions.

I thank my parents who have continuously supported me throughout my life and have encour-
aged me to pursue all the things that I wished to. Last, but not the least, I thank all my friends who
have made my life cheerful and colourful.

ix



x



Abstract

Coronal Mass Ejections (CMEs) are bodily expulsions of hot plasma and magnetic fields from
the solar corona. Such ejections, which are often directed towards the Earth cause geomagnetic
storms, which substantially affect technologies we use on a routine basis. This has prompted
extensive investigations of the manner in which CMEs are initiated in the solar corona and the
manner in which they propagate through the heliosphere. However, there has not been as much
attention devoted to the energy expended in expanding and heating the CME as it propagates.
These are crucial issues, the answers to which can substantially impact our understanding of CME
dynamics.

Were the CMEs to expand adiabatically from near the sun to the earth, then their temperature
would be no more than a few degrees of kelvin. But the observed temperatures of CME plasma
intercepted near the Earth are around a hundred thousand kelvin. Furthermore, our understand-
ing of laboratory tokamak plasmas suggests that expanding magnetic flux ropes (such as CMEs)
should contract in cross-section, whereas CMEs are observed to expand. These suggest that our
understanding of CME driving and thermodynamics is far from complete.

We examine a well-observed set of CMEs that have been tracked from their origin at the Sun
to their interception at the Earth. We seek to reconcile their propagation and expansion profiles in
the context of a flux rope model that accounts for Lorentz forces as well as gas pressure. We obtain
observationally motivated constraints on the evolution of temperature, polytropic index and plasma
beta of these CMEs. These results can also allow us to investigate how turbulent fluctuations inside
the CME are possibly dissipated. Taken together, our results are expected to provide inputs to an
operational model of CME propagation from the Sun to the Earth.
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Chapter 1

Introduction

1.1 Coronal Mass Ejections

Corona is a region of hot plasma outside the photosphere of the sun. Temperature of the corona is
unusually high, even higher than the photosphere. Corona contains highly twisted strong magnetic
fields, storing huge amounts of energy. The high temperature is possibly due to the dissipation of
this magnetic energy. At times, oppositely directed field lines could come close to each other, and
there could be a realignment of field lines accompanied with release of high amounts of energy
and expulsion of plasma from corona. This process is called magnetic reconnection [21], which
would relieve stress in the highly twisted magnetic fields.

Coronal Mass Ejections (CMEs) are such bodily expulsions of hot plasma and magnetic fields
from the solar corona into the interplanetary space. They have a typical mass of around 1015 grams
and contain energy of about 1030 ergs. They move through the heliosphere at velocities of several
hundred kilometres per second (Howard [11]). They occur a few times every day. They can be
studied using white light coronographs and in-situ observations through satellites.

CMEs which are at a larger distance from the sun propagating through heliosphere are termed
as Interplanetary CMEs (ICMEs). When these ICMEs pass through a spacecraft, an increase in
the intensity of the magnetic field, where the field varies smoothly with time is observed. These
manifestations of ICMEs are called magnetic clouds (Burlaga [5])

1



Figure 1.1: An image of a CME on February, 2000 from the LASCO coronograph on board SOHO.
In coronograph, a disc occults the sun. Credits: https://sohowww.nascom.nasa.gov/

1.2 Energetics of CME

CMEs are observed to agument in length and cross-section as they propagate away from the sun.
The increase in length is termed as translation and the increase in the cross-section is termed as ex-
pansion. As the CME erupts and propagates through the heliosphere energy is required to do work
against the gravitational potential energy and to provide kinetic energy and energy for expansion.
This energy is possibly accounted by the high energy stored in the magnetic fields. The energy
stored in magnetic field before erupting is an order of magnitude higher than the required amount
of other energies mentioned above (Forbes [9]). Kumar and Rust [13] have shown that assumption
of magnetic helicity and flux in self-similarly evolving flux ropes leads to a monotonous decrease
in magnetic energy as the CME propagates.

Chen and Garren (1993) [10] estimate that if the CME were to expand adiabatically, then the near
earth temperature would be a few degrees of kelvin. I have also done a similar estimate in a later
section 5.6. But the observed temperatures are about a million-degree kelvin. This indicates that
there is local heating of plasma. The source for this plasma heating is again magnetic energy. They
suggest that about 58-78 per cent of magnetic energy could be used up in heating CME plasma.
Liu et al. [16] state that turbulent dissipation of magnetic fields is sufficient to account for CME

2



plasma heating. They also suggest a polytropic index of about 1.3 at distances between 0.3 and 20
AU

We have obtained temperature, pressure, plasma beta and density profiles of a set of well-observed
CMEs. We can further estimate heating budgets and rates as a function of heliospheric distance.
We also have an estimate of polytropic index of these CMEs.

1.3 Importance

CMEs, which are often directed towards the Earth interact with earth’s magnetic field to cause
geomagnetic storms. These storms substantially affect the technologies we use on a routine basis.

• They can induce currents in long transmission wires and damage them [4]. CMEs with very
high magnetic fields can damage power grids which could cause electrical blackouts for
weeks or even months.

• Radio communications depend on the ionosphere to reflect radio waves. CMEs can drive
storms in the ionosphere of earth’s atmosphere leading to fluctuating signals and disrupting
radio communication.

• Geomagnetic storms can heat earth’s upper atmosphere, leading to an increase in density
of air near satellites, which in turn causes increased drag force on satellites. Due to this,
satellites may go off orbit and may slowly fall and burn. The shocks due to CMEs can pro-
duce energetic particles at near-relativistic energies. These particles can physically damage
sensitive components of satellites and can charge satellite components, destroying them.

• They affect navigation systems like GPS by disrupting its signal propagation through the
ionosphere.

• They also pose a threat of elevated radiation exposure to astronauts and aircraft.

We can conclude that CMEs have the potential to cause billions of dollars of damage to our tech-
nologies and considerably disrupt human life. Hence, it is very important to focus our attention
on their research. A good understanding of their energetics is necessary for reliable space weather
conditions.

3



Figure 1.2: CME as a toroidal flux rope with tapering ends submerged in the photosphere Credits:
Chen 1989[7], 1996[6]

1.4 CME Morphology

We model a fully formed CME propagating through the heliosphere as a torus with tapering ends,
with the foots submerged in the photosphere. Helical magnetic fields are embedded in this torus.
We use the model used by Chen, 1996 [6].

• B

t

and B

p

are the toroidal and poloidal magnetic fields

• J

t

and J

p

are the toroidal and poloidal current densities

• a and R are the minor and major radii of the CME

• B

s

is the external poloidal magnetic field, p

a

is the ambient solar wind pressure
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Chapter 2

Lorentz Force

Lorentz force is the major force which governs the dynamics of CMEs. In electrodynamics Lorentz
force on charge dq is given by (in cgs units),

d f = dq(E +
v

c

⇥B)

Lorentz force density on charge distribution with densityr is given by,

F = r(E +
v

c

⇥B)

Current density is expressed as j = rv. Hence Lorentz force density can be expressed as

F = rE +
j⇥B

c

2.1 Lorentz Force in MHD

In MHD approximation, the plasma is assumed to have infinite conductivity. This is a good ap-
proximation for astrophysical plasmas as they have a very high conductivity. In such plasmas, the
electric field is zero in the rest frame of the plasma. The equations for Lorentz transformations of
electric field components (parallel and perpendicular to plasma velocity) from rest frame of plasma

5



(S’) to the frame of observer (S), with respect to whom, plasma is moving with a velocity, v

E

0
k = Ek

E

0
? = g

✓
E?+

v⇥B

c

◆

Substituting E

0
k = E

0
? = 0, gives us

E =�v⇥B

c

With the expression for Electric field, the following Maxwell’s equation is modified as,

4p j+
∂E

∂ t

= c(—⇥B) =) 4p j+
∂

∂ t

✓
v⇥B

c

◆
= c(—⇥B)

In the non relativistic limit (v/c <<1), We can neglect the second term of the LHS in the modified
equation

4p j = c(—⇥B) =) j =
c

4p

(—⇥B)

Also, we consider plasma to be neutral overall i.e net charge density of a considerable volume of
plasma, r is 0. Lorentz force density is given by,

F =
j⇥B

c

=) 1
4p

(—⇥B)⇥B (2.1)

We can observe that Lorentz force has changed from being a force on moving charges due to
magnetic field to a force with a tensorial nature under MHD approximation

2.2 Resolving Lorentz Force

We use the following vector identity to resolve Lorentz force,

—(a ·b) = (a ·—)b+(b ·—)a+a⇥ (—⇥b)+b⇥ (—⇥a)

Here both vectors a and b are replaced with magnetic field vector B.

—(
�!
B ·�!B ) = (

�!
B ·—)

�!
B +(

�!
B ·—)

�!
B +

�!
B ⇥ (—⇥�!

B )+
�!
B ⇥ (—⇥�!

B )
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=) —(
�!
B ·�!B ) = (

�!
B ·—)

�!
B +(

�!
B ·—)

�!
B � (—⇥�!

B )⇥�!
B � (—⇥�!

B )⇥�!
B

=) 2(—⇥�!
B )⇥�!

B = 2(
�!
B ·—)

�!
B �—(B2)

Therefore, substituting the above expression in 2.1, we have,

F =
1

4p

(—⇥�!
B )⇥�!

B =
1

4p

(
�!
B ·—)

�!
B � 1

8p

—B

2 (2.2)

Now decompose magnetic field vector
�!
B = Bŝ, where ŝ is the unit vector along the direction

of B and B = |�!B |. The First term in the above equation becomes

(
�!
B ·—)

�!
B = (Bŝ ·—)Bŝ = B(ŝ ·—B)ŝ+B

2(ŝ ·—)ŝ (2.3)

The first term on the RHS of the expression can again be resolved as follows

B(ŝ ·—B)ŝ = (ŝ · (B—B))ŝ = (ŝ · 1
2

—B

2)ŝ

Equation 2.3 now becomes,

(Bŝ ·—)Bŝ = (ŝ · 1
2

—B

2)ŝ+B

2(ŝ ·—)ŝ

Substituting the above expression in 2.2

F =
1

4p

(
1
2

ŝ(ŝ ·—B

2)+B

2(ŝ ·—)ŝ)� 1
8p

—B

2

F = (�1+ ŝŝ).
—B

2

8p

+
B

2

4p

(ŝ ·—)ŝ (2.4)

Consider
—B

2

8p

as a vector A, the first term on RHS of the above equation is

(�1+ ŝŝ)A =) �A+(ŝ.A)ŝ

(ŝ.A)ŝ is the component of A parallel to ŝ i.e magnetic field and A� (ŝ.A)ŝ = �
�
�A+(ŝ.A)ŝ

�
is

negative vector of the component of A perpendicular to magnetic field. Hence first term on the

RHS of 2.4 represents the negative gradient of
B

2

8p

in a direction perpendicular to magnetic field.

7



Finally, Lorentz force can be expressed as,

F =�—?B

2

8p

+
B

2

4p

(ŝ ·—)ŝ (2.5)

2.3 Magnetic Tension and Pressure Forces

If a pressure function, p exists in a region then force density due to the pressure is expressed as F =

�—p. In equation 2.5, the first term on RHS represents a force density which is a gradient of
B

2

8p

.

So,
B

2

8p

is called the magnetic pressure force. It acts in a direction perpendicular to the magnetic
field direction. In the second term on RHS of equation 2.5, (ŝ ·—)ŝ represents the curvature vector
that points towards the center of curvature from a point on magnetic field [24].

(ŝ ·—)ŝ =
R̂

R

c

Where R

c

is the radius of curvature

F =�—?B

2

8p

+
B

2

4pR

c

R̂ (2.6)

The second term on the RHS of the above equation represents a force acting towards the centre of
curvature, causing to straighten out curved magnetic fields. This is similar to tension in a string.
Hence this force is called magnetic tension force.
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Chapter 3

CME Dynamics

3.1 Effect of Lorentz force

First, we shall qualitatively see how Lorentz force could affect the dynamics of the CME flux rope

A confined plasma within magnetic fields would not have radial directed currents. Consider a
cross-section of a CME as on Fig. 3.1, toroidal currents are running parallel to each other. As we
know, parallel wires carrying current attract each other. So, a bundle of parallel running currents
should come together leading to contraction of the cross-section of a CME. If we look at a CME
from the top, we would observe Fig 3.2. As we can see the density of the magnetic field is higher
on the inner side than the outer side. Such a configuration would lead to a force pointing radially
away along the negative gradient of magnetic field density leading to an expansion of length of the
CME.
Hence, we can conclude that Lorentz force would lead to,

• Expansion of length of CME

• Contraction of cross section of CME

Wang et al. (2009) [28] have concluded that Lorentz force leads to contraction of cross-section.
This net effect of the Lorentz force is depicted in Fig. 3.3. But what we observe is that CMEs

9



Figure 3.1: Parallel magnetic field lines in a cross-
section of CME attract each other causing contraction

Figure 3.2: Top view of a CME torus from a distance
(torus looks like a ring). Gradient in the magnetic field
densiy causes expansion of length (major radius)

Figure 3.3: Net effect of Lorentz force on a CME torus. Credits: Fundamentals of plasma physics
- Paul Bellan [2]

10



expand both in length and cross-section. This, along with the near earth temperatures of CMEs
indicate plasma heating and increasing contribution of gas pressure as a CME expands

3.2 Major Radial Force Equation

Dynamics of a CME is in three dimensions. We would have three force equations. We shall assume
self-similar expansion, which implies the cross section would expand symmetrically. So, we have
two force equations along major and minor radii of a CME torus. First, we shall derive the major
radial force equation. We shall assume that a CME is a complete torus and then divide the force
expressions to get major and minor radial forces per unit length of CME.

3.2.1 Contribution of J

t

⇥B

p

force
.

Magnetic pressure force

The first term in Eq. 2.6 represents the major radial force density due to the gradient in magnetic
pressure. In the case of CME torus, there is a gradient of poloidal field pressure (RHS of fig. ??).
There is a force which arises due to the interaction of this non-uniform poloidal field with the
toroidal current. This force density is acting major radially outwards ( i.e. negative gradient of
field). If we integrate this quantity over the volume, we get the corresponding force (called a hoop
force, Miyamoto [18])

Z  —
R

B

2
p

8p

!
dV = —

R

 Z
B

2
p

8p

dV

!

But the expression
R B

2
p

8p

dV is the magnetic energy stored in the poloidal fields, which can also be

represented by
1
2

LI

2
t

So, the hoop force is given by,
d

dR

 
1
2

LI

2
t

!
=

I

2
t

2
d

dR

�
L

�

Where, L, Inductance is given by, L =
4pR

c

2

"
ln

⇣8R

a

⌘
+

x

i

2
�2

#
, where x

i

represents the distribu-

tion of toroidal current across the cross section.
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d

dx

⇣
ln(ax)

⌘
=

1
x

=) d

dR

�
L

�
=

4p

c

2

"
ln

⇣8R

a

⌘
+

x

i

2
�1

#

Hence, the hoop force is given by,

F

h

=
2pI

2
t

c

2

"
ln

⇣8R

a

⌘
+

x

i

2
�1

#
R̂ (3.1)

3.2.2 Contribution of J

p

⇥B

t

force
.

Magnetic tension force

Now, we account for the tension force due to the curvature of the toroidal field which acts major
radially inwards. This force arises due to the interaction of poloidal currents with the toroidal field.
The radius of curvature for these toroidal field lines is R, major radius of the CME. From 2.6,
we have tension force density acting towards the center of curvature i.e major radially inwards
which is given by substituting R

c

= R,
B

2
t

4pR

By integrating the above force density by volume we would have the force. And by assuming

Z �
B

2
t

�
dV =

⇣
B

2
t

2

⌘
V =)

Z ⇣
B

2
t

4pR

⌘
dV ⇡

⇣
B

2
t

8pR

⌘
V

Where B

2
t

is the average over cross sectional area

Volume of a CME, V = 2p

2
a

2
R

Hence the tension force is given by,

F

t

=�
"

B

2
t

8p

#
2p

2
a

2
R̂ (3.2)

Myers et al. (2016) [20] have calculated the expression for this tension force by integrating J

p

⇥B

t

force density (Fig. 3.4) over volume and have shown this force per unit length is given by,

pa

2

R

"
B

2
t

8p

� B

2
st

8p

#
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Where B

st

is the external toroidal field. But in our model, external field is poloidal i.e B

st

= 0. So,
the radially inward force due to toroidal tension is given by,

2pR⇥ pa

2

R

"
B

2
t

8p

#
= 2p

2
a

2

"
B

2
t

8p

#

Which is the same as eq. 3.2. So, the magnetic tension treatment is equivalent to J

p

⇥B

t

treatment

Figure 3.4: J

p

⇥B

t

force realised by Magnetic tension force
Credits: Myers et al. (2016) [20]
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3.2.3 Contribution of pressure

Figure 3.5: Relation between radial and tangential forces in cylindrical symmetry,
Credits: www.mathalino.com

Now, we have to account for the contribution of pressure towards major radial acceleration. Con-
sider a hollow cylinder in LHS of fig. 3.5, where the length of the cylinder is L, and it is perpen-
dicular to the plane of the paper. Let the major radial force be FR. We have

p =
FR

pDL

Now consider the same hollow cylinder to be halved along a diameter as in RHS of fig. ??

F = pDL = 2T =) p =
2T

DL

FR

pDL

=
2T

DL

=) FR = 2pT, i.e Radial force = 2p ⇥Tangential force

Our CME flux rope, when looked from top, has a similar cylindrical symmetry. In our case the
tangential force, T = (p� p

a

)⇥pa

2 .
Hence, force acting major radially outwards due to pressure is given by, 2pT

F

p

= (p� p

a

)⇥2p

2
a

2
R̂ (3.3)
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3.2.4 Contribution of J

t

and B

s

(external magnetic field)

Finally, interaction of toroidal currents with external poloidal field gives rise to a force acting
major radially inward ,

2pRB

s

I

t

c

=
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2

"
2pRB

s

I
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2
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=
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Using again, B

pa

=
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t

ca

RB

s
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I
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=
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s
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I
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⇥
B

pa

B

pa

=
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s

c

I

t

⇥ 2I

t

caB

pa

= 2

 
R

a

! 
B

s

B

pa

!

Force due to external magnetic field is given by,

F

s

=�2

 
R

a

! 
B

s

B

pa

!
R̂ (3.4)

The net Lorentz force acting along the major radial direction can be expressed by using equa-
tions 3.1 and 3.2,

F

L

= F
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+F

t
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=
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2

"
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⌘
+
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2
�1

#
�2p

2
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2

"
B

2
t
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#
�2

 
R

a

! 
B

s

B

pa

!
R̂

In the above expression the first term dominates over the next two. This is the force that we
discussed qualitatively in the section 3.1 leading to CME length expansion.

Now, consider the force due to pressure and toroidal tension together equations 3.3 and 3.2,

F

p

+F

t

= 2p

2
a

2

"
p� p

a

� B

2
t

8p

#
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Now, taking 2⇥
B

2
pa

8p

common out of the brackets,

2p

2
a

2 ⇥2⇥
B

2
pa

8p

"
1
2

 
p� p

a

B

2
pa

/8p

!
� 1

2
B

2
t

B

2
pa

#
(3.5)

Now, substituting, B

pa

=
2I

t

ca

the multiplying factor outside the brackets in the above equation

2p

2
a

2 ⇥2⇥ 4I

2
t

8pc

2
a

2 =
2I

2
t

p

c

2

So, 3.5 now becomes, by using b

p

=
p� p

a

B

2
pa

/8p

F

p

+F
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=
2I

2
t

p

c

2

"
b

p

2
� 1

2
B

2
t

B

2
pa

#
R̂ (3.6)

Now using equations 3.4, 3.1 and 3.6 gives the major radial force expression,

F

L

+F

p

+F

s

=
2pI

2
t

c

2

"
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⇣8R

a

⌘
+
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2
� 1

2
B

2
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B

2
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a

! 
B

s

B
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!#

Now if we divide the above equation by 2pR, we get the expression for major radial force per unit
length

F

R

=
I

2
t

c

2
R

"
ln

⇣8R

a

⌘
+

x

i

2
�1+

b

p

2
� 1

2
B

2
t

B

2
pa

�2

 
R

a

! 
B

s

B

pa

!#
R̂ (3.7)

In the above equation, the first three terms represent the contribution from J

t

⇥B

p

force. The next
two terms represent the contribution from J

p

⇥B

t

. The last term represents the J

t

⇥B

s

force.

3.3 Minor Radial Force Equation

3.3.1 Contribution of Tension force
.

J

t

⇥B

p

force

The tension force due to the curvature of poloidal field lines tends to contract cross-section of
CME. From Eq. 2.6, using the expression for tension force density of poloidal field at the surface
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using radius curvature, R

c

= a, minor radius as,

B

2
pa

4pa

Now multiplying by volume, we have the tension force directed minor radially outwards

F1 =�2p

2
a

2
R

 
B

2
pa

4pa

!
=�4p

2
aR

"
B

2
pa

8p

#
â (3.8)

3.3.2 Contribution of pressure

The minor radially outward directed force due to pressure can be straight forwardly expressed as

F2 = net pressure⇥ surface area of CME torus

Surface area of a torus =(2pa)(2pR) = 4p

2
Ra

F2 = 4p

2
aR

⇥
p� p

a

⇤
â (3.9)

3.3.3 Contribution of Magnetic pressure gradient force
.

J

p

⇥B

t

force

As the external toroidal field is 0 in our model, there is a force due to the gradient of toroidal field
acting minor radially outwards. Using the first term of eq. 2.6. This force density is given by,

—
a

 
B

2
t

8p

!

The force itself is given by,

F3 = —
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F3 = 4p

2
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"
B

2
t

8p

#
â (3.10)

The net Lorentz force in the minor radial direction is given by,

F

L

= F1 +F3 =�4p

2
aR

"
B

2
pa

8p

� B

2
t

8p

#
â

for a confined plasma the first term would dominate the second and Lorentz force would lead to
decrease in minor radius. This is the force that we discussed qualitatively in the section, 3.1 to
cause contraction of CME cross section. However, In the force free approximation,

B

2
t

B

2
pa

= 1

Using equations 3.8, 3.9 and 3.10 we get the expression for the net minor radial force
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Now taking
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factor out of the brackets, and using B
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=
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,
the minor radial force becomes
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Now, dividing the above expression by length of the CME, 2pR we get the minor radial force per
unit length

F
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2
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B

2
pa

�1+b

p

#
â (3.11)

We can see that the major and minor radial force equations, 3.7 and 3.11 are the same equations in
Chen, 1996 [6]
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Chapter 4

Force-free Approximation

4.1 Motivation

We need information on the structure of field lines within the CMEs in our analysis. As the
simplest solution, we consider force-free configuration for magnetic fields. In this configuration,
the electromagnetic energy becomes minimum for a plasma with non-zero currents. Burlaga [5]
has analyzed that the in-situ spacecraft observations of magnetic field profile as a CME passes
by, roughly agrees with the fields represented by the force-free configuration. Further, it is fair to
expect a system to evolve towards its minimum energy configuration.

We have estimated the magnetic field profile in this thesis in a later section 5.3. From our data,
we had an estimate of the surface poloidal field only. By assuming force-free approximation, we
were able to estimate average poloidal and toroidal fields and hence the net magnetic field of a
CME as it evolved. Then we extrapolated these profiles to 1 AU and compared them with the
observed field values at 1 AU. These extrapolated values agree very well with the observed values.
These arguments indicate that the force-free approximation for the structure of magnetic fields is
a reasonable one.

We assume the force-free configuration for fully formed CMEs as a first approximation, although
it is not clear how CMEs would evolve into such a configuration. However, an exact force-free con-
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figuration would make the Lorentz force vanish. Lorentz force plays a major role in the dynamics
of CME, and we cannot allow them to vanish. However, a small angle between magnetic fields
and currents would suffice to account for their contribution (Kumar and Rust [13]).

4.2 Force-free Configuration

For a plasma with non-zero currents, minimum energy occurs when,

—⇥B = aB (4.1)

We can show this by applying variation on electromagnetic energy of a plasma. The following
analysis has been done by Spruit [24] In MHD approximation the induction equation relating
magnetic and velocity fields is,

∂B

∂ t

= —⇥ (v⇥B)

For a small fluid displacement x ,
dB = —⇥ (x ⇥B)

In MHD electric fields are neglected due to the infinite conductivity assumption. The net electro-
magnetic energy of plasma is given by,

E =
1

2µ

o

Z
B

2
dV

Now, inducing small displacements in a volume of plasma, energy change dE is given by ,

2µ

o

dE = d [
Z

B

2
dV ]

µ

o

dE =
Z

B.dBdV =
Z

B.—⇥ (x ⇥B)dV

µ

o

dE =
Z
(—⇥B).(x ⇥B)dV +

Z
[(x ⇥B)⇥B]dS

The surface term vanishes as the volume is kept constant
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µ

o

dE =
Z

x .[(—⇥B)⇥B]dV

For dE to be minimum for an arbitrary x , we have

(—⇥B)⇥B = 0 =) —⇥B = aB

Here a is a scalar function. It could be a constant. The configurations where the magnetic field
satisfies 4.1 are called force free configurations and the fields are called force free.

4.3 Lundquist Solution

Now using 4.1, we have
—⇥ (—⇥B) = —⇥ (aB) = a

2
B

—⇥ (—⇥B) = —(— ·B)�—2
B

But — ·B = 0. Hence, we have ,
—2

B =�a

2
B

The above equation is a Helmholtz equation for the magnetic field.
We model CMEs as a torus. The cross-section of a torus is cylindrically symmetrical. As a first
approximation, the Helmholtz equation is solved under cylindrical symmetry, and we get the fol-
lowing solution called the force-free solution or Lundquist solution (Lundquist [17]).

B

t

= B

o

J

o

(aµ

o

r) B

p

= B

o

J1(aµ

o

r) B

r

= 0

Here, B

p

and B

t

are the poloidal and toroidal magnetic fields, B

r

is the minor radial filed, a is the
scalar function in Helmholtz equation, J0 and J1 are Bessel’s functions of order 0 and 1. However,
we have not considered the effect of the curvature of the torus itself on the structure of field lines
and currents. The above solutions represent a family of helical magnetic fields embedded in the
torus. The pitch angle ( p.a, the angle between field direction and the axis of the cross-section)
varying from 0 to 90 degrees. At the centre of this cross section(p.a=0�) the magnetic fields are
only toroidal. At the surface of torus(p.a=90�), the magnetic field is only poloidal.
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Figure 4.1: Force-free helical magnetic fields .
Credits: Burlaga, 1988

Figure 4.2: Force-free helical magnetic fields embed-
ded in a CME torus
Credits: Burlaga, 1988

If we look a flux rope from a distance, d>>R, we see a ring of current (Kumar and Rust[13]).
Such a ring of current cannot produce a toroidal magnetic field immediately near its circumference.
So, we take B

t

to be zero at the boundary of the torus (at r=a). We have,

B

o

J

o

(aµ

o

a) = 0 =) aµ

o

a = x

o

Here x

o

is the first zero of the Bessel’s function, x

o

= 2.405

aµ

o

r = aµ

o

a

✓
r

a

◆
= x

o

y

where y is the fractional minor radius The force free solution can be written as,

B

t

= B

o

J

o

(x
o

y) B

p

= B

o

J1(xo

y) (4.2)
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Chapter 5

Analysis

5.1 Data From GCS Fitting

A set of 38 well-observed, Earth-directed CMEs have been fitted with Graduated Cylindrical Shell
model by Sachdeva et al. (2017) [23]. This model fits the visible CME shape with a 3-dimensional
helical flux rope structure with tapering ends. Time profiles of height(h) of the leading edge and
minor radius (a) have been obtained as parameters in the fitting.
We get the major radius (R) by,

R = h�a (5.1)

which is true for a perfect torus.
The ratio of minor to major radius (termed as aspect ratio by Sachdeva et al.), k is also evaluated.
The value of this aspect ratio for all CMEs is given in 4th column of table 5.1

k =
a

R

(5.2)

Toroidal current, I

t

has been obtained by assuming conservation of poloidal magnetic flux. I

t

at
equilibrium is estimated, where the Lorentz forces due to the magnetic fields inside the CME and
the external magnetic field cancel each other ( Kleim and Torok [12] equation).
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I

eq

values for all CMEs are in 6th column of table 5.1 and estimated B

eq

(h
eq

) values in 7th column
of table 5.1.
Inductance of the CME at heliospheric distance, x is given by,
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Then the flux at equilibrium is equated with flux at arbitrary heliocentric distance (which is also
the major radius, R) to get I

t

as a function of heliocentric distance, R.
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A model is assumed for external magnetic field
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(5.3)

The value of n for each CME is given in 5th column of table 5.1
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where,where, c

0
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Hence, we have the profiles of minor and major radius (and hence k), toroidal current and
external magnetic field using GCS data and equations 5.1, 5.2, 5.3 and 5.4. Sachdeva et al. [23]
have done the analysis mentioned in this section and have obtained data. The following table
summarizes some parameters obtained for the 37 CMEs. The 3rd column gives the height of
first observation. The 8th column gives the normaliation factor for Leblanc’s model of solar wind
density. The last column gives the mass estimate of each CME
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No. Date h

o

(R�)
k n I

eq

1010
A

B

ext

�
h

eq

�

10�1
G

n

wind

cm

�3
Mass
1015

g

1 2010 March 19 3.5 0.28 2.5 0.41 0.13 3.6 2.9
2 2010 April 3 5.5 0.34 1.6 3.13 0.94 7.1 5.85
3 2010 April 8 2.9 0.2 1.9 0.55 0.19 3.6 7.3
4 2010 June 16 5.7 0.23 2.5 0.31 0.11 3.5 2.3
5 2010 Sept 11 4 0.41 1.6 1.77 0.33 4 7.65
6 2010 October 26 5.3 0.25 1.7 0.66 0.22 3.8 7.14
7 2010 Dec 23 3.7 0.4 1.6 2.3 0.65 6.1 4.15
8 2011 January 24 4.4 0.3 1.6 1.21 0.38 9 7.86
9 2011 February 15 4.4 0.47 2.1 1.1 0.29 2.5 5.35
10 2011 March 3 4.9 0.35 2.5 0.5 0.15 2.25 3.13
11 2011 March 25 4.8 0.21 1.9 0.71 0.25 3 4.72
12 2011 April 8 4.7 0.3 2.5 0.47 0.15 5 5.61
13 2011 June 14 3.6 0.26 1.6 1.72 0.56 3.7 10.3
14 2011 June 21 8.4 0.45 1.6 6.26 1.71 8 4.98
16 2011 August 4 7.3 0.69 1.6 5.9 1.39 2 6.17
17 2011 Sept 13 3.8 0.43 1.7 1.06 0.29 2.13 4.87
18 2011 October 22 4 0.6 2.1 8.4 2.09 8 1.31
19 2011 October 26 7.8 0.46 2.1 0.47 0.13 3 3.61
20 2011 October 27 5.3 0.36 2.2 1.67 0.49 8.42 3.01
21 2012 January 19 4.6 0.47 3 11.6 3.11 7 9.17
22 2012 January 23 4 0.48 3 10.3 2.74 6 14.76
23 2012 January 27 3.5 0.38 3 8.51 2.47 4 12.45
24 2012 March 13 3.9 0.74 1.9 3.92 0.91 1 10.04
25 2012 April 19 4.1 0.27 1.6 3.68 1.19 10 5.93
26 2012 June 14 6.2 0.38 1.6 2.89 0.84 3.23 5.65
27 2012 July 12 4.4 0.45 1.6 4.07 1.11 3.2 14.8
28 2012 Sep 28 6.7 0.42 1.6 8.53 2.37 7 8.96
29 2012 October 5 4.4 0.3 1.6 4.05 1.28 6 6.72
30 2012 October 27 7.3 0.2 1.6 1.56 0.56 5 3.7
31 2012 November 9 3.8 0.48 2.9 11.07 2.96 13 5.19
32 2012 Nov 23 6.3 0.52 1.7 3.41 0.89 7 3.45
33 2013 March 15 4.7 0.31 1.8 4.29 1.32 4.5 1.74
34 2013 April 11 5.9 0.14 1.6 1.29 0.52 3.3 15.1
35 2013 June 28 6.6 0.41 2.5 9.55 2.69 10 3.33
36 2013 Sep 29 4.9 0.38 2.1 7.06 2.04 11 13.73
37 2013 November 7 5.9 0.34 1.7 2.5 0.75 5.5 5.25
38 2013 December 7 6.8 0.36 1.9 6.91 2.04 15 4.87

Table 5.1: CME parameters

25



5.2 Estimation of Expressions of b

p

, Pressure and Temperature

5.2.1 b

p

This is the main part of my work. I have analysed 37 of the 38 CMEs (except for CME 15) which
have been studied by Sachdeva et al. We use the major and minor radial force equations to estimate
physical quantities of a CME which are temperature, pressure and plasma beta. The equations are
as follows,
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We neglect aerodynamic drag. We have F

R

and F

a

which are major and minor radial forces per unit
length.
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Here, m is the mass of the CME per unit length.

From the GCS data, we can observe that the ratio of minor radius to the major radius of
a CME roughly remains constant as the CME evolves for all the CMEs we investigate. We
assume that this ratio, k is constant for a CME. So,
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We shall assume a uniform toroidal current density to get a relationship between I

t

and B

p

. Using
Ampere’s law in cgs units
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Using the above expression for B
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in the third term on RHS, expression for b
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becomes,
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Using, b
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5.2.2 Pressure

By the definition of b

p

in Chen, 1996 [6], we have
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5.2.3 Temperature

If we write an ideal gas equation for the plasma, it would be,
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Where n

e

and n

p

are the number densities of electrons and protons. We assume that plasma is
made only from hydrogen. So, n

e
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p

= n. We also assume that both protons and electrons are in
thermal equilibrium with each other at the same temperature, T.
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We assume that half of the CME toroid is submerged in the photosphere. So, Volume of CME
(V) = length of CME ⇥ cross-sectional area of CME

V = (pa
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2
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If M is the total mass of the CME and m
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is the mass of proton, then the number density of CME
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5.2.4 Evaluating B

2
t

B

2
pa

using force-free solutions

In the above expression,
B

2
t

B

2
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is evaluated using force-free solution 4.2. The average of a quantity,x

is defined by Chen,1996 [6] as,
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a

is the fractional minor radius.
The above expression actually gives the average over cross-sectional area of the CME. We shall
check that
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B

pa

is the poloidal field at surface of CME i.e at r = a or y=1.
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x0 = 2.405, is the first zero of Bessel’s function J0.
I calculated the value of above expression using mathematica to be 1 with precision upto 4th
decimal place.

5.2.5 Pressure of the ambient solar wind

We evaluate the pressure of the ambient solar wind, p

a

values using models. First, we estimate the
solar wind density using the model by Leblanc et al. (1998) [14]
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where, R is the heliocentric distance of the CME in solar radii. In the above expression, the expres-
sion within square brackets is the estimate given by Leblanc assuming that the number density at

1 AU is always same, i.e 7.2 cm

�3. The factor
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normalizes the original expression such

that the number density matches the value observed through WIND space craft during these CME
events. We can find n
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values in Sachdeva et al. (2017) [23] The temperature of solar wind as a
function of heliocentric distance is given by Venzmer and Bothmer [27],
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observed. It can be obtained from the website with URL http://www.sidc.be/silso/datafiles . The
gas equation of solar wind would be
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5.3 Estimation of Magnetic Field Profile

We have an estimate of surface poloidal field, B

pa

as a function of heliocentric distance as

B
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Using eq. 5.16 ,
B
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= B

o

J1(2.405)

Equating the above two expressions, value of B

o

can be found out. Now, we can find the magni-
tudes of average poloidal and toroidal field by using equations 5.15 and 4.2
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The magnitude of net magnetic field is given by,
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We also have B values at 1 AU. We can extrapolate the profile obtained by data to 1 AU and
compare it with the observed value.

To extrapolate the B value, first I removed initial range of data points, where B falls deeply. I
used cubic spline interpolation on the to extrapolate B value at 1 AU. But this method would be
effective, if we have data almost upto 1 AU for all CMEs which is not the case.

This is because the slope of the interpolated curve would change signs before reaching 1 AU
and giving very off results. So, I have fit the profile with the functions of the form a

⇣
b

cx

⌘
+ d

and a

⇣
x

b

⌘
, where a,b,c,d are parameters and then extrapolated the function to 1 AU. The least

percentage RMS error occured for the fitting of a

⇣
x

b

⌘
function. So, I have calculated error in B

values using this fit
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Figure 5.1: Extrapolation by fitting a
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Figure 5.2: Extrapolation by fitting a
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5.4 Inconsistencies due to differences in two models: Torus In-
stability Model (Kleim and Torok) and Flux Injection Model
(Chen)

5.4.1 Sign of the term representing the effect of external magnetic field

In the GCS fitting, Torus Instability (TI) model by Kleim and Torok [12] has been used to estimate
I

t

. We use flux injection model suggested by Chen in our analysis.
The major radial force per unit length in the TI model is given by,
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Where, the last term
B

s

I

c

is the force due to external poloidal magnetic field which opposes the
major radial expansion. Here I is the plasma current, which is toroidal and is analogous to I

t

in
Chen’s (1996) [6] model.
The major radial force per unit length is given in Chen’s model by
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The fourth term in the above equation expresses the contribution from external poloidal magnetic

field. Substituting B
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and taking it out of the brackets, the term becomes
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But this term has a positive sign in the major radial force equation as compared to the negative
sign in the Kleim and Torok model. However, in Chen’s model the relation between B
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and B
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equilibrium is as follows,
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5.4.2 Role of pressure in the two models

The minor radial force per unit length which causes CME cross section expansion is given in the
Chen model by,
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Now neglecting the effects of plasma beta (b
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=0) in these equations, we have,
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But this minor radial expansion is neglected in TI model, where minor radial force is equated to 0.
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This is the Kleim Torok Equation. So, we can go from Chen’s equation to Kleim and Torok equa-
tion by neglecting the pressure contribution towards CME dynamics and minor radial expansion
Summarizing the above arguments, we have fit CMEs using TI model which neglects cross-section
expansion and contribution of gas pressure to estimate plasma current (I). But this current has been
used by us as I

t

in Chen’s model to investigate the contribution of gas pressure and expansion of
cross-section. There is an inconsistency here.

5.4.3 Over-estimation of I
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Equating the force expressions in the two models, we get a relation between I and I
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Considering that both the terms
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and
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represent the same force due to external magnetic
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field on toroidal current, we can cancel them on both sides

I

2
t

= I

2

"
ln

✓
8R

a

◆
� 3

2
+

x

i

2

#

"
ln

✓
8R

a

◆
+

b

p

2
� 1

2
B

2
t

B

2
pa

�1+
x

i

2

#

Now, using the force free solutions, we have x = 1 and
1
2

B

2
t

B

2
pa

=
1
2
= 0.5

I

2
t

= I

2

"
ln

✓
8R

a

◆
�1

#

"
ln

✓
8R

a

◆
+

b

p

2
�1

#

I

t

= I

vuuuuut

ln

✓
8R

a

◆
�1

ln

✓
8R

a

◆
+

b

p

2
�1

(5.21)

So, numerator is always smaller than denominator

I

t

< I
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is overestimated by using I.
The expression of plasma beta 5.8 is,
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This overestimation of I

t

is realized in b

p

values through the third term in the above equation.
Hence b

p

is also overestimated.

b

p

(Estimated)> b

p

(Actual)

p(Estimated)> p(Actual)
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Also, since temperature is proportional to b

p

,

T (Estimated)> T (Actual)

Out of all the terms within the square brackets in the above equation, third term is an order of
magnitude lesser then the other two terms So, this overestimation in plasma beta would be very
small.

5.4.4 Error due to over estimation of I

t

We can estimate error in pressure and temperature due to over estimation in I

t

. Using 5.21,
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Maximum error occurs at min A, max error =
I � I

t
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Minimum error occurs at max A, min error = 3.1 %
Hence, the error due to over estimation of I

t

is in between 3.1 % and 29.8 %

5.5 Estimation of Polytropic Index and Heating Rates

Assuming that expansion of a CME is a polytropic process.
Assuming a polytropic relation for the system, PV

n = Pr

�n = constant =C

ln(p) = nln(r)+ constant (5.22)

We can estimate polytropic index as the slope of graph between ln(p) vs ln(r) When the CME
system goes from P1,V1,T1 to P2,V2,T2

C = P1V

n

1 = P2V

n

2 (5.23)

Work done is given by

DW =
Z 2

1
PdV =

Z 2

1
CV

�n

dV =
Z 2

1

CV

1�n

1�n

DW =
1

1�n

(CV

1�n

2 �CV

1�n

1 )

Using 5.23, we have

DW =
(P2V2 �P1V1)

1�n

=
(P1V1 �P2V2)

n�1
Using PV = mRT , we have

DW =
mR(T1 �T2)

n�1
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Internal energy change is given by its definition, heat exchanged at constant volume

DU = mC

v

(T2 �T1)

DU =�mC

v

(T1 �T2)

Where, C

v

, specific heat capacity at constant volume

C

p

�C

v

= R =)
C

p

C

v

�1 =
R

C

v

g �1 =
R

C

v

=) C

v

=
R

g �1

Here g is the adiabatic index. Using the above expression for C

v

, we have

DU =
�mR(T1 �T2)

g �1

First law of thermodynamics states,
DQ = DU +DW

Using expressions for DW and DU

DQ =
�mR(T1 �T2)

g �1
+

mR(T1 �T2)

n�1

DQ = mR(T1 �T2)


1

n�1
� 1

g �1

�

DQ =
mR(T1 �T2)(g �n)

(g �1)(n�1)
(5.24)

We could estimate heating budget between every two data points. We also have time as a function
of heliocentric distance So, we could get an estimate of heating rates between pairs of adjacent
data points and we can evaluate profiles of heating budgets and rates.

Heating Rate =
DQ

Dt

=
mR(T1 �T2)(g �n)

(g �1)(n�1)(Dt)
(5.25)
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5.6 Estimation of CME Temperature at 1 AU for an Adiabatic
Expansion

I tried to get a crude estimate of the temperature of CMEs at 1 AU if they were to expand adiabat-
ically. If CMEs expanded adiabatically,

PV

g = constant =) TV

g�1 = constant

Volume of CME is given by, V=p

2
a

2
R

R =
a

k

=) V =
p

2
a

3

k

(5.26)

For an adiabatically expanding CME, we have

T

o

V

g�1
o

= T

f

V

g�1
f

Where T

o

and V

o

are temperature and volume at equilibrium, before CME starts expanding. T

f

and
V

f

are the values at 1 AU.

T

f

= T

o

 
V

o

V

f

!
g�1

Using Equation 5.26, we have

T

f

= T

o

 
a

3
o

a

3
f

!
g�1

Since, we assume that CME is mostly made of hydrogen, g =
5
3

T

f

= T

o

 
a

3
o

a

3
f

!5/3�1

=) T

f

= T

o

 
a

o

a

f

!2

Chen (1996) [6] have estimated a0 to be of the order 105 km and T

o

to about 106 K. The GCS
fitting data is available for CME 2 until 210 solar radii which is of the order 108 km.

T

f

= 2⇥106

 
105

108

!2

= 2K
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This is in good agreement with the temperature estimated by Chen and Garren (1993) [10] which is
3 kelvin This estimate shows that the temperature at 1 AU would be about a few degrees of kelvin.
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Chapter 6

Results and Discussions

Using the expressions for b

p

, plasma beta, pressure, temperature from equations 5.8, 5.9, 5.11,
5.14 and 5.25, we can get profiles of the respective quantities as the CME evolves for the 38 CMEs
we have analyzed. I have presented representative profiles of 6 CMEs. In all the following plots,
x- axis is the heliocentric distance of the apex of the CME.

6.1 Temperature Profiles

We also have temperature values at 1 AU from WIND spacecraft. We have plotted that too along
with evaluated profiles to investigate the amount of temperature change between last data point
and 1 AU.
Our first data point is around 4 solar radii. Generally the temperature of the first data point is in
between the orders 105 to 106 K. Lee et al. (2009) [15] have estimated the temperature of a blob
of plasma of a CME at a distance of 4 solar radii to be about 106 K by employing various models
of plasma heating. Akmal et al. (2001) [1] have done a similar estimation of 105 K. Our results
match their estimation. If we compare the temperature at the last data point and the 1 AU value,
we can observe that there is a temperature drop of orders of 105 K.
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6.2 Polytropic Index
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The above are examples of the linear fits of Log(pressure) vs Log(density). As we can see that the
data points match the linear fit well. I plotted a histogram for polytropic index of all the CMEs.
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Figure 6.13: Histogram of polytropic index

Most of the CMEs have polytropic index greater than 1. This result confirms that there is
heating in CME plasma which we wanted to study in my thesis. The value of polytropic index
quantifies plasma heating. However, there are a few CMEs whose polytropic index is less than 1
but very near to 1. This could be due to the sensitivity in fitting of data.

6.3 b

p

and Plasma Beta Profiles

We can observe that generally, plasma beta increases as CMEs expand. We have proved and
quantified our assumption that contribution of thermal pressure increases as the CME expands.
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6.4 Magnetic Field Profiles
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In the above plots, The black line is the observed value of magnetic field at 1 AU. We can observe
that the profile tends to match very well with black line at 1AU. I extrapolated the values of the
estimated magnetic field profile and estimated the error in these extrapolated values wrt. to the
observed values at 1 AU and plotted the following histogram
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Figure 6.32: Error in extrapolated B values

Most of the CMEs have an error less than 100 %. This is very good considering that each unit
on y axis measures 100 nT and the observed values are of the order of 10 nT. Even a slight variation
in extrapolation would give values off hundreds of nTs. The profile of magnetic field is estimated
using I

t

values from the GCS model and force free solutions. Hence, we can conclude that the data
from the GCS fitting is good and force-free approximation is reasonable.
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6.5 Pressure Profiles
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6.6 Heating Budget and Rates
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The above figures are the plots of average heating rates between consecutive data points with
heliocentric distance. Generally, the average heating rates are of the order of 1026 ergs/s at helio-
centric distances of 4 - 6 solar radii. The time period between which these rates are of the order
103 seconds. So the heating budgets at 4 - 6 solar radii heliocentric distance is of the order 1029

ergs. Mass of a CME in our sample is around 1015 grams. So the heating budget estimate would
be of the order 1014 ergs/gram. Lee et al. (2009) [15] have studied atomic emission lines of several
blobs of plasma at a distance of about 2-6 solar radii of a CME that occurred on Dec 13th 2001.
They estimated number density and further heating energy of these blobs to be of the order of 1014

to 1015 ergs/gram which agrees with our results. Akmal et al. (2001) [1] have also done a similar
estimation for a CME which occurred on April 23, 1999 and have estimated the heating energy to
about 1015 ergs/gram up to 3.5 solar radii distance. Murphy et al. (20011) [19] have done a similar
estimate of about 1014 ergs/gram for a CME which occurred on June 28, 2000.

Number of protons in a CME =
Mass of the CME

proton mass
=

1015

1.67⇥10�24 ⇡ 1039

Number of protons of a CME in our sample would be of the order of 1039. Then the heating
budget is of the order of 10�10 ergs/proton. Ciaravella et al. (2001) [8] have estimated using atomic
spectra the heating budget to be of the order of 10�10 ergs/proton at a distance of 1.7 solar radii,
which agrees with our results.

At the first point of data at about 5 solar radii the volume of a CME is about 1033
cm

3 for a
semi-torus assumed in our analysis. Then the heating rates would be of the order of 10�7 ergs
s

�1
cm

�3. Lee et al. (2009) [15] have estimated a heating rate of 5⇥10�7 ergs s

�1
cm

�3 which is
in good agreement with our results. It tells us that our estimate of volume is also reasonable. In the
distance between 9 to 20 solar radii, the volume of CMEs is of the order 1035

cm

3 and the heating
rates in this distance range would be around 10�9 ergs s

�1
cm

�3 according to us. Sasikumar Raja et
al. (2017) [22] have estimated the heating rates in solar wind in this distance range to be between
10�11 and 10�13 ergs s

�1
cm

�3. So, we can conclude that the heating rate in CME is much higher
than in the solar wind.
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Chapter 7

Conclusions

We had speculated that while Lorentz force drives the expansion of CME length, it would lead
to contraction of the cross-section. But the cross-section of CMEs is observed to expand. So,
we predicted that the effect of gas pressure increases in CME dynamics as it evolves. Also, the
near earth temperatures indicated that the expansion of CMEs is far from being adiabatic and we
supposed that there is heating of plasma. We sought to understand the thermodynamics of CME
evolution in a better manner. We analyzed data obtained by fitting the GCS model to a set of well
observed, Earth-directed CMEs. We also assumed force-free approximation for the structure of
magnetic field lines within the CMEs.

We have estimated profiles of physical quantities which are temperature, pressure and plasma
beta. This would serve to study the energetics of these CMEs. We have scrutinize the effect of
Lorentz force on the dynamics of a CME by decomposing it into magnetic tension and pressure
forces. We have rigorously demonstrated that Lorentz forces indeed are responsible for contraction
of the cross-section of CMEs. I have also attempted to reconstruct the force equations along major
and minor radii of a CME torus by demonstrating the action of magnetic pressure and tension
forces as well as gas pressure.

The plasma beta generally increases as the CME evolves confirming our supposition that the
contribution of pressure increases as the CME evolves. We have estimated polytropic index for
the evolution of each CME. The value of the polytropic index represents the extent of heating

53



or cooling occurring in a CME as it evolves. The value of the polytropic index for most of the
CMEs is greater than 1. This result confirms that there is indeed plasma heating in CMEs. Using
temperature profile and polytropic index, we have a crude estimate of heating budget and heating
rate profile of each CME. These estimates are in good agreement with many other estimates in
the literature. This result can be further used to study the possible dissipation of magnetic energy
through turbulence to heat the plasma.

We have estimated the profile of the magnetic field as the CME evolves using data from GCS
fitting and assuming Force-free configuration for the magnetic field. We have extrapolated this
profile to 1 AU and compared it with the observed value from WIND spacecraft. The extrapolated
values agree very well with the observed values. This indicates that our data obtained from GCS
fitting ( by Sachdeva et al.) is plausible and also that Force-free approximation for magnetic fields
of CMEs is a reasonable approximation.
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Chapter 8

Appendix

8.1 Another Method to Estimate b

p

and Temperature Profiles

In this method we sought to estimate the same quantities through a different method. Writing the
major and minor radial equations again.

MR̈

2pR

=
I

2
t

c

2
R

"
ln

✓
8R

a

◆
+

b

p

2
� 1

2
B

t

2

B

2
pa

�2
✓

R

a

◆
B

s

B

pa

�1+
x

i

2

#

Mä
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Again using, p = 2nk
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In this method, we need to find the values of R̈ and ä. We had the profiles of R and a as a function
of time. We had to fit these profiles and then take the double derivative of the fit to get R̈ and
ä. But there were several possible fits and each fit gave a different acceleration profile and hence
temperature profiles. We had no solid ground to decide which fit gave the best estimates of the
temperature profile.
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Figure 8.1: 7th order polynomial fit
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Figure 8.2: 11th order polynomial fit
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Figure 8.3: 15th order polynomial fit
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8.2 Correction to Force-free Solutions

In the force free solutions 4.2, we have assumed cylindrical symmetry, neglecting the effects of

curvature of the torus. As R is the major radius of the curvature,
1
R

gives the curvature of the torus.

k being proportional to
1
R

, quantifies curvature of the torus. Berdichevsky (2013) [3] suggested
correction to the force free solution in the argument of the Bessel’s functions.

A(y,f) = x0y[1+ky(cosf � |sinf |)] (8.4)

Figure 8.4: Curvature of helical fields due to cur-
vature of CME torus
Credits: Subramanian et al. (2014) [25]

Figure 8.5: Non-overlapping of adjacent rings
of magnetic field due to curvature of CME torus
Credits: Berdichevsky (2012) [3]

The above correction accounts for the non-overlapping of two consecutive rings of magnetic
field lines in a flux rope. If the flux rope were exactly cylindrical, all the rings would exactly over-
lap, but due to the toroidal shape, two adjacent rings cut only at two points.

We tried to account this correction while calculating
B

t

2

B

2
pa

. We took average value, by taking

average over f ,

B

t

2

B

2
pa

= 4
R 1

0
R 2p

0 J0
�
x0[y+ky

2(cosf � |sinf |)]
�
y df dy

R 2p

0 J1
�
x0[1+k(cosf � |sinf |)]

�
df

�2
(8.5)

We got negative b

p

values using the corrected values for
B

t

2

B

2
pa
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8.3 Mathematica Codes

8.3.1 Physical quantities profiles of CME

A = Import["F:\\Project\\Input\\1.xlsx"];

(*Importing data from an excel file named "1.xlsx" from the location "F:\\Project\\Input\\"

which has time, apex distance, minor radius, kappa, It, external magnetic field of CME 1 in the 1st,

2nd, 3rd, 4th, 6th and 7th column repectively*)

t = A[[1, All, 1]];

Z = A[[1, All, 2]];

a = A[[1, All, 3]];

K = A[[1, All, 4]];

It = A[[1, All, 6]];

Bs = A[[1, All, 7]];

k = Mean[K]; (* calculating average kappa *)

H = Z - a; (* calculating major radius *)

kb = 1.38064852×10-16; (* Boltzmann's constant in cgs *)

M = 2.9 *1015; (* Mass of CME 1 from Nishtha's thesis in grams *)

V = π2 *a2 *H *�6.957×1010�3; (* calculating volume of CME assuming it is a semi-torus *)

ρ = M /V; (* calculating average density of CME 1 *)

na =
3.6
7.2

*��8 *107 *H-6� + �4.1 *106 *H-4� + �3.3 *105 *H-2��;

(* number density of ambient solar wind as a function of heliocentric distance *)

Ta = 1.654*((197 *22 ) + 57300)*
H
215

-1.1
;

(* temperature of ambient solar wind as a function of heliocentric distance *)

pa = 2 *na *kb *Ta ; (* pressure of ambient solar wind as a function of heliocentric distance *)

L = Length[a]

f[i_] :=
2 *k2

2 - k2
Log�

8
k
� - 0.691556

2 + k2

2 *k2
-
Bs[[i]]*H[[i]]*6.957×1011

It[[i]]
+ 1;

β = Table[f[i], {i, 1, L}] // FullSimplify; (* evaluating βp profile *)

e[i_] :=
0.04*It[[i]] 2

8 π*�a[[i]]*6.957×1010�2
*(β[[i]]) + pa [[i]];

p = Table[e[i], {i, 1, L}] // FullSimplify; (* evaluating pressure (in cgs units) profile *)

m = 1.6726219×10-24;

(* mass of proton in grams *)
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g[i_] :=
p[[i]]*m

2 *kb *ρ[[i]]
;

T2 = Table[g[i], {i, 1, L}] // FullSimplify; (* evaluating temperature profile *)

j[i_] := β[[i]] +
pa[[i]]*200 *π*�a[[i]]*6.957×1010�2

(It[[i]] )2
;

β1 = Table[j[i], {i, 1, L}] // FullSimplify; (* evaluating plasma beta profile *)

BP1 = Thread[{Z, β1}];

ListPlot[BP1, Frame → {True, True, True, True},

FrameLabel → {Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style[ "Plasma Beta", Bold, {Blue}]}, LabelStyle → {FontSize → 30, Bold, {Black}},

PlotStyle → {Red, Thick}] (* Plotting plasma beta profile *)

ListPlot�Thread[{Z, p *10^6}], Frame → {True, True, True, True},

FrameLabel → �Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style� "Pressure (10-6 dynes)", Bold, {Blue}	
, LabelStyle → {FontSize → 30, Bold, {Black}},

PlotStyle → {Red, Thick}	 (* Plotting pressure profile *)

BP = Thread[{Z, β}];
ListPlot[BP, Frame → {True, True, True, True},
FrameLabel → {Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style[ "βp", Bold, {Blue}]}, LabelStyle → {FontSize → 30, Bold, {Black}},
PlotStyle → {Red, Thick}, PlotRange → All] (* Plotting βp profile *)

lnP = Log[p];
lnρ = Log[ρ];
P = Thread[{lnρ, lnP}];
f1 = FindFit[P, c y + b, {c, b}, y] (* fitting log(p) vs log(ρ) with a linear fit *)

n = c /. f1 (* value of polytropic index *)

f2 = Fit[P, {1, y}, y]

f4 = Plot[f2, {y, -65, -30}, PlotStyle → {Red, Thick}, Frame → {True, True, True, True},
FrameLabel → {Text@Style[ "Log(ρ)", Bold, {Blue}], Text@Style[ "Log(P)", Bold, {Blue}]},
LabelStyle → {FontSize → 34, Bold, {Black}}];

f3 = ListPlot[P, Frame → {True, True, True, True},
FrameLabel → {Text@Style[ "Log(ρ)", Bold, {Blue}], Text@Style[ "Log(P)", Bold, {Blue}]},
PlotStyle → {Thick}, Epilog → Style[Text[StringForm["n = ``", n], {-55, -5}], 30]];

Show[f3, f4, PlotRange → All, LabelStyle → {FontSize → 35, Bold, {Black}}]
(* Plotting log(p) vs log(ρ) along with the fit and polytropic index *)
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h = Append[Z, 215];
T = Append[T2, 8362.13]; (* appending 1 AU data from WIND data *)

Temp = Thread��h, T� 106��;

N1 = Drop[h, 99];
N2 = Drop[T, 99];

d = ListPlot�Thread��N1, N2� 105��, PlotRange → All, Frame → {True, True, False, False},

FrameLabel → � None, Text@Style� "105K", Bold, Blue��, LabelStyle → {FontSize → 25, Bold, {Black}},

PlotStyle → {Red, Thick}�; (* creating an inset d,

which is the temperature profile of near earth heliocentric distances *)

ListPlot�Temp, Frame → {True, True, True, True},

FrameLabel → �Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style� "Temperature (106K)", Bold, {Blue}�� , LabelStyle → {FontSize → 30, Bold, {Black}},

PlotStyle → {Red, Thick},
Epilog → Inset[d, Scaled[{.5, .5}], Scaled[{0, 0}], 120], PlotRange → All, PlotRangeClipping → False�

(* Plotting temperature profile of CME 1 *)

f[i_] :=
83144621* M*(T2[[i]] - T2[[i + 1]] )*(1.66667 - n)

0.66667*(n - 1)
;

Q = Table[f[i], {i, 1, L - 1}] // FullSimplify
(* evaluating heating budget between adjacent data points *)

j[i_] :=
Q[[i]]

t[[i + 1]] - t[[i]]
;

G = Table[j[i], {i, 1, L - 1}] // FullSimplify
(* evaluating average heating rate between adjacent data points *)

H1 = Drop[Z, 1];
ListPlot�Thread��H1, G � 1025 ��, Frame → {True, True, True, True},

FrameLabel → �Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style� "Heating rate(1025 ergs/sec)", Bold, {Blue}��,

LabelStyle → {FontSize → 30, Bold, {Black}}, PlotStyle → {Red, Thick}�

(* plotting heating rate profile *)
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8.3.2 Magnetic field profile and extrapolation at 1 AU

A = Import["F:\\Project\\MF\\Excel\\magnetic_field_event_1.csv"];
(*Importing data from an excel file which has heliocentric distance of CME apex in the
1st and 2nd columns repectively*)

A1 = A[[All, 1]]; A3 = Drop[A1, 1] ;
A2 = A[[All, 2]]; A4 = Drop[A2, 1];
L = Length[A3];
H = Delete[A3, L]; B = Delete[A4, L];
b = A4[[L]]; (* observed 1 AU value *)

a = b/ 100;
f1 = ListPlot[Thread[{H, B/ 100}], PlotStyle → {Red, Thick}];
f2 = Graphics@Line[{{0, a}, {225, a}}];

Show�f1, f2, AxesOrigin → {0, -3}, PlotRange → All, Frame → {True, True, True, True},

FrameLabel → �Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style� "B(102 nT)", Bold, {Blue}��, LabelStyle → {FontSize → 25, Bold, {Black}}�

(* plotting B profile along with 1 AU value *)

(* 1. Extrapolation of B value at 1 AU by interpolating *)
H1 = Drop[H, 67]; B1 = Drop[B, 67];
K1 = Thread[{H1, B1}]; (* B profile is shortened by removing initial part where B
falls drastically *)

Y = Interpolation[K1, Method → "Spline", InterpolationOrder → 3];
Y3 = Plot[Y[z], {z, 50, 220}];
f3 = ListPlot[K1, PlotStyle → {Red, Thick}];
Show[f3, Y3, AxesOrigin → {0, -0.1}, PlotRange → All, Frame → {True, True, True, True},
FrameLabel → {Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style[ " B(nT)", Bold, {Blue}]}, LabelStyle → {FontSize → 25, Bold, {Black}}]
(* Plotting end profile of B along with the interpolating polynomial *)

c = Y[215]; (* Extrapolated value at 1 AU *)

(* 2. Extrapolation of B value at 1 AU by fitting *)
V = FindFit[K1, {w/(l^(m* x)) + n}, {w, l, m, n}, x];
(* Fitting the end profile with function wl-mx+n *)

U = Function[x, w/(l^(m* x)) + n] /. V
u3 = Plot[U[x], {x, 30, 215}, PlotRange → All];
Show[f3, u3, AxesOrigin → {0, -0.1}, PlotRange → All, Frame → {True, True, True, True},
FrameLabel → {Text@Style[ "Heliocentric distance (in solar radii)", Bold, {Blue}],

Text@Style[ " nT", Bold, {Blue}]}, LabelStyle → {FontSize → 15, Bold, {Black}}]
(* plotting data points of B along with the fit *)

t = U[215]; (* Extrapolated value at 1 AU *)
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