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Abstract

In this thesis two new criteria used for instability analysis based on equations for distur-
bance mechanical energy (Sengupta et al.:Vortex-induced instability of an incompressible
wall-bounded shear layer. Journal of Fluid Mechanics,493:277-286, 2003) and distur-
bance enstrophy (Sengupta et al.:An enstrophy-based linear and nonlinear receptivity the-
ory. Physics of Fluids, 30(5):054106, 2018) are discussed and compared with commonly
used Q-criterion (Hunt, Wray and Moin: Eddies, streams, and convergence zones in tur-
bulent flows, CTR Report, Stanford Univ.,1988) and A,-criteria (Jeong and Hussain: On
the identification of a vortex, J. Fluid Mech.,285, 69-94, 1995) for vortex identification
for a zero pressure gradient flow over a flat plate. The criteria used for instability analy-
sis are derived directly from navier-stokes equation for incompressible flow without any
assumptions. We show the superiority of these new criteria over the commonly used Q-
and A,-criteia in distinguishing between flow before and after the formation of a turbulent
spot. criteria based on disturbance enstrophy equation is also used along with instanta-
neous vorticity to explain the initiation of flow transition. As the commonly used vortex
identification criteria are just mathematical constructs without any clear physical meaning,
an attempt is made to correlate them with rate of change of disturbance enstrophy using a
point search algorithm. A similarity is observed between instantaneous vorticity and DETE

for all times. Scale factors are then extracted to explain this similarity.
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Chapter 1

Introduction

Turbulence is viewed as a tangle of vortices, with vorticity dynamics playing a vital
role in its understanding. The problem in understanding of vortices and their dynamics is
the absence of a clear definition of a vortex. It is generally understood that a vortex must
be a region of fluid rotating about an axis. There have been various criteria proposed to
educe vortical structures most commonly used of which being A, and Q-criteria. More
recent criteria like Rortex, 7Lp, DME and DETE also attempt to extract vortical structures.
A review of some existing criteria for vortex identification is available in [4]. In this thesis,
we attempt to compare some of these criteria and their salient features by using flow over
a flat-plate at high Reynolds numbers. We start with stating the minimum requirements for
a vortex in § 1.1 followed by a brief description of some criteria for identifying a vortex
in §1.2-§1.10. This is followed by a brief description of simulation of the flow in §2.1,
calculation method of each criteria used in §2.2 and the adopted correlation methodology

in §2.3. Chapter 3 discusses the results obtained.

1.1 Requirements for a vortex core

As discussed before, though a vortex core does not have any universally agreed upon
mathematical definitions, a region of flow is required to satisfy certain conditions to be

considered as a vortex. These criteria are based on the intuitive understanding of a vortex
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and reference frames and are necessary but not sufficient. Stated in [8] these requirements

are:

1. The net vorticity inside a vortex must be non-zero.

2. A vortex must be galilean invariant.

the second requirement is imposed as [10] stated that turbulence does not have any distin-
guished frame of reference, thus any reference frame used to observe the flow must agree
upon the coherent structures observed. In regards to this, [6] extended the requirement
from galilean invariance to objectivity, i.e., a vortex remains invariant under any general
transformation of a reference frame, including rotation. As stated in [4] this condition
is not required in most applications, and galilean invariance of the structures identified is
sufficient. Initial criteria to identify vortices were based on qualitative understanding of a
vortex, and had various drawbacks as are explained in [8] and discussed here for the sake

of completeness.

1.2 Circular path-lines or streamlines

This method proposed in [10] was based on the understanding that a particle in the
vicinity of a vortex will tend to revolve around it, thus resulting in a closed or spiral path-
line. A drawback of using a path-line was that the particle may not complete a full revolu-
tion about the axis during the lifetime of a vortex. This can happen if the vortex undergoes
transition due to non-linear processes before the particle completes a full revolution. This
drawback does not occur if streamlines are used instead of path-lines. The usage of stream-
lines however has a major problem of being frame variant. Thus two vortices in the same

flow convecting with different velocities will not be seen in the same reference frame.

1.3 Vorticity

In a flow in absence of shear, presence of vorticity is a signature of a vortex. This

however is not true if the flow has shear included, as shear provides a large vorticity bank
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even in the absence of a vortex.

1.4 Pressure minimum criteria

This is based on the understanding that the centrifugal force on a particle revolving
around the vortex will be balanced by the pressure force. This was used to develop the
Q-criteria by Hunt et al. [2]. The problem with this criteria however lies in the fact that
pressure can have a minimum in regions without any vorticity as in a flow with unsteady
irrotational axisymetric motion with a stagnation point (ex. u, = —o(t)r, ug =0, u, =
20(1)z where solving euler equation gives pressure as p = (o(t) — oc(t)z)%r2 + (—ofr) —
a(t)?)z?) where the pressure can have a minimum due to the unsteady strain rate o(t)
and its time rate of change d(t). Another problem with this criteria is when either the
centrifugal force or the pressure force is balanced by viscous force as in the case of karman
vortex pump or very low Re stokes flow, which can lead to wrong interpretation of the

structures educed using the pressure minimum criteria.

1.5 Q-Ciriteria

Q-criteria, proposed by Hunt et al. [2], identified different “zones” of flow using dif-
ferent threshold values of the second invariant (Q) of the gradient of velocity tensor (Vu),
defined as:

1 1
0= 5[(W(Vu))2 —tr(Vu)?] = E(”z%i — Ui, juj i) (1.1)

The first term drops out for an incompressible fluid. Thus Eq.(1.1) becomes:

1

Q= —Suijuj; (1.2)

which can be related to pressure poisson equation for incompressible flows by:

V2P =2pQ (1.3)
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Thus a positive value of Q would mean a sink of pressure, and negative Q is a source of
pressure. A vortex (called eddying zone in [2]) is identified as a connected region with posi-
tive Q and a minimum of pressure. Thus the Q-criteria is essentially identifying a minimum
of pressure at the location of a pressure sink. It can be seen from Eq.(1.3) that Q-criteria
is independent of effects of viscous and unsteady straining terms in the pressure minimum
criteria. In common practice the minimum of pressure is ignored and only positive Q is
used to identify a vortex, as data for pressure is not collected at all locations. This however
has the problem that pressure need not have a minimum inside the region of pressure sink,
1.e. pressure can have a minimum at the boundary of this region. Thus there is no explicit

connection between region of pressure sink and a pressure minima.

Q can also be interpreted as a local excess of rotation rate with respect to strain rate.
This can be done by writing Q in terms of rotation rate tensor ({2 = %(Vu — VuT)) and

strain rate tensor (S = %(Vu +Vvu®)) as:
1
0= Etr(QQT —ss?) (1.4)

Eq.(1.4)is true only for an incompressible fluid, and can be derived by taking the trace of

the gradient of Navier-Stokes equation, as shown in [8], and in the next section.

1.6 A,-criteria

Though the use of pressure minimum suffers from the flaws discussed above, Jeong
& Hussain [8] used this as a starting point to define this criteria. While doing this the
contributions from unsteady irrotational straining and viscous terms were neglected. This

criteria can be derived by taking the gradient of Navier-Stokes equation:
1
ai,j = —ERij + VUl; jik (1.5)

where a; ; is the gradient of acceleration term, and P;; is the pressure hessian. The acceler-
ation term can be written in terms of velocity gradient tensor which can be further broken

down in terms of rotation rate tensor ({2) and strain rate tensor (S) giving:
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1 D
——P;j= (D_tﬂij + QiSkj +Sik 8 — VQij,kk)
p b (1.6)
+ (ESU + Qi+ SiSkj — VSij,kk)

The first four terms in parenthesis in Eq.(1.6) are antisymmetric, while the next four
terms are symmetric. The antisymmetric part is the vorticity transport equation in tensor

form and hence, is analytically equal to zero thus Eq.(1.6) becomes:

D%Sij — VSij ik + (S + SiSkj) = —%P,ij (L.7)
The first term of Eq.(1.7) is the unsteady irrotational straining term while the second term
is a viscous term which is neglected from the equation. The second derivative test is then
applied to the remaining equation for the pressure hessian. This requires two positive
eigenvalues of P;; tensor, which translates to two negative eigenvalues of (92 4 S?) tensor.
Let A1, A,, A3 be the three eigenvalues of (Q2 + SZ), such that A; > A, > A3. Then ensuring
A2 < 0 ensures two negative eigenvalues of (2% +S?) and thus two positive eigenvalues of

P;;. Hence a vortex is identified as a connected region with A, < 0.

Taking the trace of Eq.(1.7) and using t7(S) = 0, QQ = —QQ7 and Eq. (1.3), we get

Eq.(1.4). Hence the relation between A;-criteria and Q-criteria is:

1
Q:—§<7Ll+/12+13) (1.8)

Both A,-criteria and Q-criteria give the same results for a planar flow.

1.7 Problems with pressure minimum criteria

As was stated in the section on Ay-criteria, the unsteady straining and viscous terms
can lead to spurious appearance and disappearance of pressure minima in a flow. Thus A,-
criteria drops these terms when considering a pressure minimum. Q-criteria on the other

hand does not suffer from problems caused by these terms, as they do not contribute.
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Another problem is the choice of correct isosurface value for vizualisation of the flow.
It is observed that for isosurface values close to zero the number of structures and their
connectivity with other structures increases. Thus depending on isosurface value chosen,
two structures may or may not be connected. The contribution from the extra structures
identified at very low isosurface values of these criteria, cannot be understood as a clear
physical meaning is not assigned to these structures. In §3.3 an attempt is made to give a

physical meaning to these criteria by correlating with respect to another criteria.

It is a common practice to visualize the isosurfaces at *zero’ value. This practice should
be avoided if possible as zero is the limiting case for both the discussed criteria, hence it
is not necessary that the *zero’ isosurface signify a distinction between region containing
vortices and those not containing it, It could be a saddle region, which would appear as
a vortex if it forms a connected region. This is a point also discussed in [3] where it is
shown that the usage of the isosurface value of "0’ in A,-criteria results in identification of

spurious structures.

The criteria which identify vortices as regions of pressure minimum do not take into
account all the contributions to pressure, and hence do not give a complete picture of the
flow. The eigenvalue based criteria identify vortices as region of two complex eigenvalues
of the Vu tensor. These criteria are more computationally expensive (A;-criteria uses sym-
metric matrix to make things simple), and do not explain the physical significance of the
eigenvalues and eigenvectors together. To counter this problem, we discuss three new crite-
ria that aim to represent the flow without losing on any part of the governing Navier-Stokes

equation.

1.8 Rortex

Tian et.al [14] & Liu et.al [9] proposed defining vortices as connected regions with rigid
rotation about an axis (vortex core). In this method the vorticity vector is decomposed into
a component due to rigid rotation of the fluid and a non-rotating component which includes
shearing, stretching and compression. It should be noted that these two components are not
orthogonal due to non-linearity of the governing Navier-Stokes equation. The rigid rotation

component of vorticity gives the direction of local rotation axis and the magnitude of rigid
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rotation of fluid in a plane perpendicular to the rotation axis.

In a coordinate system *XYZ’ with origin at *O’, a local rotation axis *Z’ at point O’
is defined as an axis such that the rotational motion in a small neighborhood around the
point is confined to the plane *XY’ perpendicular to this axis.Thus there can be no axis of

rotation in the XY plane. This can be achieved by finding a coordinate system such that:

1. g—g =0or %_g{v = 0, for no rotation about the Y axis
2. ‘3—; =0or %_v;/ = 0, for no rotation about the X axis

Letr = rd+ ryj + r.k be the local rotation axis in the global *xyz’ frame of reference. Then
a transformation of Vu in the global frame to VU in the local *XYZ’ frame with Z as the

axis of rotation can be done using quaternions approach as:
VU =MVuM ! (1.9)
Here M is the transformation matrix from ’xyz’ to ’XYZ’ found by schur decomposition

of Vu, with

Mr (1.10)

I
- o o

The transformation from global *xyz’ coordinate system to local X YZ’ coordinate sys-
tem converts the local fluid rotation from 3-D to 2-D, confined to the XY plane in the
transformed *XYZ’ coordinate system. The presence of a local rotation axis however does
not imply that there is rigid rotation about this axis. Rigid rotation requires all points on
the XY-plane in a small neighborhood of the axis to rotate about it with the same angular
velocity. It can be seen from Fig:(1.1) that deformation of fluid element can be classified

into three types using the derivatives of velocity in the XY plane as:

oU dV

§z=—5o (1.11)

1. pure shearing if gz =0
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2. irrotational deformation if gz < 0

3. rotational deformation if gz > 0

Figure 1.1: Deformation of fluid element due to gradients in XY-plane.(a)shear deforma-
tion, (b)rotational deformation

In a 2-D flow, the vorticity is an invariant under rotation of axis in the plane of flow, but the
derivatives ‘Z)—l)f and g—; need not be invariants. Thus to ensure that gz does not change sign
if the local XY-plane is rotated about Z-axis, we calculate gz as a function of rotation of
XY-plane about Z-axis. For solid body rotation to be present, gz should be positive for all
such rotations. The new velocity gradient tensor after rotation of XY-plane about Z-axis,
by an angle 0 is given by:

VU, = PVUP! (1.12)

Where P is the transformation matrix for rotation about Z-axis.the magnitude of rigid rota-
tion is given by twice the minimum angular velocity around the point i.e The Rortex (R) is

given by.

R = rmr (1.13)
v
' OX

2.min{a—U } if |B| > ||
?] 0

Y
0 if [B] <|af

(1.14)

The significance of Rortex can be explained using eigenvalue-eigenvector analysis as done
in [5]. The regions with non-zero magnitudes of Rortex correspond to regions with complex
eigenvalues of velocity gradient tensor. The complex eigenvalues of Vu are regions of

circulating flow, which can be considered as a vortex as discussed in §1.2.



CHAPTER 1. INTRODUCTION 9

1.9 Disturbance Enstrophy Transport Equation

This is a new method proposed by Sengupta et.al [22] for stability analysis. This
method can also be used for identification of vortices. Though this method does not use
Vu tensor, it will be shown subsequently that this method satisfies both requirements for a

vortex as set by [8].

The vorticity transport equation in non-dimensional form is written as:

dw B 1 oo
5 + (u.V)w = (w.V)u+ EV w (1.15)

o 1is the vorticity. Taking a dot product of @ with Eq.(1.15), we get the enstrophy transport

equation:
Q Q 8u,~ 1 82Q 2 8(0,'8(1),‘

0= 2w — " 77
+u]8xj ' ]8xj+Reaxj8xj+Re8xj ox;

Y (1.16)

here i, j = 1,2,3 are coordinate indices. = ®.w is the enstrophy (Not to be confused
with € of rotation rate matrix). The first term on the LHS is the vortex stretching term, the
second term on LHS is the dissipation of €2 and the third term on LHS is the dissipation of
transport of Q.

The Enstrophy can be written as sum of a mean and disturbance from mean as Q =
Q,, +€Q,, where € represents a small value. Velocity and vorticity can similarly be broken
down into u = u,, + €y, and w = wyy, + Ewg. Substituting velocity, vorticity and enstrophy
in terms of mean and disturbance quantities into enstrophy transport equation, subtracting
the equation for mean values from Eq.(1.16) and linearizing by retaining terms of order &€

gives the linear form of Disturbance Enstrophy Transport Equation

DQ,;

du;g itim i
D {wimwjm_ + Oim@jg——— + widwjm_}

8xj 8xj 8xj

i 82£2d _38@,-,” 8a)l~d
Re dxjdx; Re dx; Jx;

(1.17)

To show the galilean invariance of Eq.(1.17), we change to a coordinate system moving

with a constant velocity ¢ with respect to original system as x — x' + ¢z. The various
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quantities in Eq.(1.17) change as:

ox; 9 dt d 9

ax;  oxox, oo ox,
9 _ 9

ot ot

u = u+ec

w0, =

Q = Q

Substituting the above relations to transform the coordinate system for Eq.(1.17) gives
the galilean invariant equation. Thus it is seen that DETE provides a galilean invariant
quantity to use for stability analysis. As this criteria will have a non zero value in locations
of non-zero vorticity, this criteria also meets both the minimum requirements from a vortex
identification criteria as discussed in §1.1. It is also seen that pressure forcing does not
appear in this equation, hence this criteria does not suffer from the problems caused by
unsteady straining and viscous terms as discussed earlier. This allows us to include the

effects of these terms, giving a complete picture of the flow.

1.10 Disturbance Mechanical Energy

Sengupta et.al [12] derived an equation for total mechanical energy from the incom-
pressible Navier-Stokes equation for stability analysis in transitional flows. This equation
gives the regions of source and sink of total mechanical energy. The Navier-Stokes equation

can be written as

d 1 1
a—‘; —ux (Vxw) = — VP SVIUP 4 vV (Vo) = vV x (V x ) (1.18)
Defining the total mechanical energy as E = Il)P + %|u|2 (sum of kinetic energy and energy
due to total pressure). Taking a divergence of Eq.(1.18) and using the continuity equation
gives:

V2E =V.(ux w)

(1.19)
=ww-—u(Vxw)



CHAPTER 1. INTRODUCTION 11

We express total mechanical energy as a mean and a deviation from mean as E = E,,, + €E,
and u =u,, + €u; and w = wyy,, + Ewyg. Defining Q; = wyy, .wg, and subtracting the equation
for mean flow from instantaneous flow, one gets the equation for “Disturbance Mechanical

Energy”(E,) given as:
V2E; = Q+ ewy.wy—um.(V X wg) —ug.(V X wy) — euq.(V X wy) (1.20)

The positive (negative) value of RHS signify a sink (source) of the E;. LHS of Eq.(1.19)

can be written as:

11 1
V2E:V2<I—)P+§]u|2> :2Q+V2§\u|2 (1.21)

Where Eq.(1.3) was used. In case of a zero pressure gradient flow, V2P = V2P, since mean

pressure is a constant quantity. Using this we can rewrite LHS of Eq.(1.20) as
1
V2Eq =20+ 5V ([u* ~[u, ) (1.22)

This equation gives the relation between Q criteria and DME. Thus DME can be used
for vortex identification. RHS of Eq.(1.20) being positive gives the regions of sink of
disturbance mechanical energy in the flow, while the regions of negative RHS are sources of
disturbance mechanical energy. This can also be used to visualize the flow due to presence

of source and sink of disturbance mechanical energy.



Chapter 2

Methods

The flow analyzed in this thesis was simulated at HPCL, IITK [19]. A brief description

of this is given in the next section.

2.1 Flow Details

The flow used for analysis is obtained by Direct Numerical Simulation (DNS) of a flow
over a flat plate [19]. Velocity-vorticity formulation of Navier-Stokes equation as discussed
in [17,18] is used for this simulation. The governing vorticity transport equation (VTE) in
non-dimensionalised form is given by:
aa—(:)-l-Vx(cT)xV—i-]%lecT)):O (2.1)
where Rey is the Reynolds number defined based on free-stream velocity and a represen-
tative length scale. For the current simulation, Re; = 10°. The vorticity field is obtained
directly by solving the governing VTE, while the velocity field is obtained by solving the
vector poisson equations V2V = —V x & for u- and w-components while the v-component
is calculated by integrating the continuity equation. Time integration is done by using an
optimized, dispersion relation preserving three-stage Runge-Kutta scheme [18]. A stag-
gered grid [20,21] is used, with velocity components evaluated at the face centers and the

vorticity components evaluated at the edge centers, to minimize error in numerical diver-

12
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gence of vorticity.

The domain of computation, shown in Fig:(2.1) stretches from —0.05L < x < 50L in
x-direction, 0 <y < L in y-direction and —0.25L < z < 0.25L in z-direction. A uniform
flow with free stream non-dimensional velocity u = 1 is supplied at the inflow. At the
outflow, sommerfeld boundary conditions as detailed in [18] is used. A periodic boundary
condition is used along the span-wise(z) direction. At the top of domain, u = 1,w = 0 and
v is calculated from continuity equation. The boundary condition for vorticity at the top of

domain is @, = @, = 0 and %—? = 0. At the bottom of domain, before the leading edge,
d
G —Oandv= 0, = &, =0,

The number of points used in x-, y- and z-directions are 2501 x 351 x 49, with grid
points concentrated near the leading edge of flat plate in x-direction and near the wall in
y-direction. The equilibrium flow obtained is perturbed by an excitation strip at the wall
with excitation given by v(x,y = 0,z) = A(t)A(x,z) .Here A(t) = sin(10t) (1 +erf(ghso:))
where the error function (erf(x)) is used to start the exciter non-impulsively, and A(x,z) =
0.005(1 + cos2mxey )sin(87mz) with xp = 11.111 x (x — 1.5). The exciter strip has a stream-
wise extent of 1.455 < x < 1.545. The non-dimensional frequency of the time harmonic

excitation is given by F = g2~ =1x 10~*.

/

Inflomw

- Excitation strip

™ z

Leading Edge

Figure 2.1: Computational domain of the flat plate flow
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2.2 Calculation of different criteria

2.2.1 Vorticity

Vorticity field is obtained directly by solving the governing equation in the velocity-

vorticity formulation and is used as-is.

2.2.2 A,-criteria and Q-criteria

The velocity derivatives are calculated at the staggered locations using a central differ-
ence scheme, and interpolated to grid points. These derivatives are used to generate the
velocity gradient tensor at the grid points. The velocity gradient tensor is then broken into

its symmetric (S) and antisymmetric () parts.

To calculate A,-criteria, we find the eigenvalues of (02 + S?) using the lapack sub-
routine ’dsyev’, which gives the eigenvalues in descending order, and select the second

eigenvalue. For Q-criteria calculation, we add these eigenvalues and store them (Eq.(1.8)).

2.2.3 Rortex

Rortex is calculated by doing a schur decomposition of velocity gradient tensor using
lapack subroutine ’dgees’ to obtain the "M’-matrix and the velocity gradient tensor in new
coordinates in Eq.(1.9). Eq.(1.12) and Eq.(1.11) are used to find the g;|g and its minimum

is the value of rortex. The direction of rortex is found by using Eq.(1.10)

224 DETE

To calculate DETE, the vorticity field is first interpolated from the staggered grid to the
grid points. The RHS of vorticity transport equation Eq.(1.15) is then calculated for the
base flow (flow before excitation was provided) and the instantaneous flow. The RHS of
Eq.(1.15) for the base flow is subtracted from that of instantaneous flow to obtain the DETE
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value. The value of disturbance enstrophy (£2;) is obtained by subtracting the vorticity of

base flow from the vorticity of instantaneous flow.

As we need to identify the regions where disturbances are amplified, we find the regions
with both Q; and DETE positive by:

(Qq+ |Qq|)(DETE + |DETE))

DETE(+ve) = (2.2)
(+ve) (Qq+[Qq]) + €
and regions with both Q; and DETE negative by:
Q;—|Qy|)(DETE — |DETE

(Qq—1Q4]) +¢

here € is a small number = 10~13

2.2.5 DME

To calculate DME, the RHS of Eq.(1.19) is evaluated for both the instantaneous flow
and base flow. The value base flow is then subtracted from that of instantaneous flow to get

the value of Disturbance Mechanical Energy at the grid point.

2.3 Correlation Methodology

The isosurface values of different criteria plotted in figures are based on a statistical
correlation between the criteria (|@|, A2, Q, DME, Rortex) vs DETE. We use DETE rather
than vorticity as the basis for this method as it is known that vorticity is not a good measure
to identify vortices in shear flows due to presence of a large vorticity bank in the shear
region even in the absence of vortices. Another advantage of choosing DETE as the basis
is that this method is derived directly from vorticity-transport equation without any sim-
plifications and contains all the terms of the equation, unlike the other criteria in which
the straining and viscous terms are either neglected or do not appear due to the definition.
Also, due to the absence of pressure term in DETE equation, the straining and viscous terms

donot cause any anomalous effects, and hence need not be neglected to identify coherent
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structures.

The correlation methodology is based on grid search, i.e. we find the grid-points DETE
attains a value of a == 5% (a is the basis value of DETE), and check for the values of other
criteria (|@|, A2, Q, DME, Rortex) at these grid-points. This is repeated for each required
value of DETE. In order to perform this search, a sub-region of the computed domain is
identified. This sub-region is selected to lie in the region of transitional/turbulent flow
where coherent structures will be present. Mean and standard-deviation of each criteria
for a particular value of DETE is computed and used as the correlated value of the other

criteria.
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Results and Discussions

3.1 Comparison of different criteria

We show a visual comparison between DETE, DME, A,-criteria, Q-criteria and Rortex
for t=25.3 and t=29.3 in Figs:(5.1, 5.2). Here, DETE(positive/negative) is defined as region
where both DETE and € are positive/negative (Eq.2.2, Eq.2.3). These regions correspond

with a growth of disturbance enstrophy in time.

It is seen that the large scale structures identified by each criteria are similar and of the
same size for t = 29.3, which is not the case for r = 25.3. At ¢t = 25.3, the structures in all
the criteria are identified in the same region, but DETE and DME identify flatter structures
compared to other criteria. It is also observed from Fig:(5.3 a) that the vorticity field at this
time is smooth and has not experienced non-linear effects. Thus, DETE and DME are seen
to be able to differentiate between flow before and after the onset of non-linear growth of
disturbance by the quality of the structures. After the onset of non-linear growth, all criteria

provide similar results as seen in Fig:(5.2).

It is also observed that DME does not cover the entire coherent structure with a single
isosurface, rather both positive and negative DME together form the observed structure.
DETE as well has a combination of both its positive and negative contributions inside the
boundary layer, but is dominated by positive contribution outside the boundary layer. This

domination of positive contribution outside of the boundary layer is due to the fact that in

17
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the base flow, regions outside the boundary layer had no enstrophy thus any addition of en-
strophy to this region will be a positive contribution to disturbance enstrophy. The presence
of structures outside of boundary layer is caused by the non-linear growth of disturbance,
as in Eq.(1.17) the linearized Q; given by ,,.®w,; would be ~ 0 in this region, but the total

disturbance enstrophy (= Q — Q) is a non-zero value with considerable magnitude.

A comparison of structures in the region closer to the exciter in Figs:(5.1, 5.2) shows
another difference. Q—, A, — and Rortex (c,d,e in the respective figures) identify structures
at the leading edge, which are absent from DETE and DME structures. These structures
are not vortices, and are a result of including the leading edge in the flow domain, which

creates a stagnation line resulting in high vorticity at the leading edge.

3.2 Evolution of the flow

Figures:(5.3 to 5.8) show the time evolution of enstrophy, DETE and wall-normal ve-
locity at the anti-nodal location z = 0.1875. Figures:(5.9 to 5.11) show the same at the
anti-nodal location z = 0.0625. It is observed that undulations in the enstrophy structures
appear around ¢ = 25.3 at 12 < x < 13 for z = 0.1875, while they are already present at
12 < x < 13 before t = 25.1. The location of undulation corresponds with region of posi-
tive v-velocity at z = 0.1875 and with negative v-velocity at z = 0.0625. It is also observed
that this undulation appears when the overlap of DETE and enstrophy has lost its symme-
try. The undulation starts at all spanwise locations in the same streamwise strip, and on the
second enstrophy spike. These undulations carry the signature of how the flow was excited,
namely of suction and blowing. Antinodal locations (z = —0.0625,z = 0.1875) show simi-
lar undulations caused by ejections, while those at (z = —0.1875,z = 0.0625) are caused by
sweeps in the region. This memory of exciter cannot be distinguishably seen at later times

due to an increase in number of small scale interacting structures in the turbulent spot.

Another observation is that alternating of DETE(-ve) and DETE(+ve) results in club-
bing of excited wavelets and a conversion from an alternating structure to a linear structure.
It is seen that the exciter results in many wavelets of enstrophy and DETE (evident from
the flow near the exciter), while the flow at locations x > 11 appears to have two spikes of

enstrophy and another one that is still growing. This growth of spike also can be explained
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as DETE(-ve) results in reduction of enstrophy from the mean while DETE(+ve) results in
an increase from the mean. The alternation of these gives rise to these spikes, which are

formed by a combination of various small wavelets of enstrophy generated at the exciter.

3.3 Correlation of criteria

While correlating the different criteria at a given time, we change DETE(+ve) values
and correlate the other criteria with respect to each value of DETE(+ve) chosen. The
resulting histograms for time t = 27.1 and DETE(+ve)= 100 are shown in Fig:(5.12,5.13).
It can be observed that histograms of correlation of DETE with Q- and A,-criteria have
a small number of large outliers. Fig:(5.14) shows the effect of including and excluding
these outliers on the mean and standard deviation. It is observed that there is a major
difference between the statistics with and without outliers for A,- and Q-criteria while the
same for DME and |®@| is not much. Due to this, the statistics without outlier is used
in all subsequent correlation plots. Figs:(5.15-5.25) show the correlation of all criteria
with respect to DETE for times t=25.1 to t=29.3. It can be observed from these figures
that correlation of |@| vs DETE appear to be similar at all times considered, and follow
a logarithmic profile, as plotted in Fig:(5.26) for 27.1 <t < 29.3 to reduce clutter. Here
DETE is fitted to exponential of vorticity as the plotting software does not support fitting
of data to a logarithmic profile. This gives an equation of correlation of the form:

DETE = exp(a(t)|@d| + B(z)) (3.1

the plot of a(¢) and B (¢) with respect to time is as shown in Fig:(5.27). In order to find the

scaling factors, we fit various curves to a(¢) and B(¢) given by a(¢) and b(t) respectively,
Def(ff and |®| — aWlo] e attempt to find the fit

ag

(a(t) and b(t)) such that the difference between the exponential fits (like Eq.(3.1)) of scaled

and scale the data points as DETE —

variables in time is minimized. This results in a quadratic fit a(¢) and a sine function fit for
b(t) given by
a(t) = 2.585 —0.2064 x +0.004385 % 12 (3.2)

b(t) = 0.5072sin(1.094 x¢ — 1.193) +0.1414 (3.3)

the resulting scaled variable fit is shown in Fig:(30) where (a) shows the result for each
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time separately, while (b) shows the same for all times together. It is observed that the

deviation of fit in the newly scaled variables is considerably less than that in the original

variables.
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Summary and Conclusion

During the course of this thesis, we attempted to compare DETE and DME with some
popular vortex identification criteria. It was observed that DME and DETE are able to dif-
ferentiate between the stable and unstable regions in the flow better than the other criteria.
It is also seen that the structures identified by A,- and Q- criteria need not all be vortices.
This is a point that is also emphasized in some discussions on coherent structures within the
research community. An attempt was made to explain the evolution of flow using DETE,
during which it was hinted that the initiation of undulations in enstrophy can be a signature
of the exciter, though the entire memory of the exciter is not present in the flow, as alter-
nating regions of DETE(+ve) and DETE(-ve) result in a clubbing of different wavelets of

disturbance generated by the exciter.

It was noted that DETE, DME and Rortex accord a physical meaning to the identified
structures while the commonly used A,- and Q- criteria are only mathematical constructs
without any physical meaning. In an attempt to give a physical meaning to these criteria, a
correlation was attempted with respect to DETE, and a representative number showing the
value of these criteria for a given value of DETE was obtained. This attempt showed that
the correlation between these criteria and DETE is not good standard deviation obtained

was high.

While correlating different criteria with DETE, it was observed that the correlation of
DETE(+ve) with |@| follows a similar profile at each time considered. A scaling factor for

these criteria was identified. This scaling of DETE(+ve) with vorticity can be extended for

21
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longer durations, and help create a simplified model to track the variation of vorticity with

time.
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Figures

23
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Figure 5.1: comparison between various criteria for t = 25.3
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Figure 5.2: comparison between various criteria for t =29.3
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Figure 5.3: Slices of enstrophy, DETE and v-velocity at different times at z=0.1875 (a,b,c)
att=25.1, (de,f) at t =25.3, (g,h,i) at t =25.5
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Figure 5.4: Slices of enstrophy, DETE and v-velocity at different times at z = 0.1875 (a,b,c)
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Figure 5.5: Slices of enstrophy, DETE and v-velocity at different times at z = 0.1875 (a,b,c)
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Figure 5.6: Slices of enstrophy, DETE and v-velocity at different times at z = 0.1875 (a,b,c)
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Figure 5.7: Slices of enstrophy, DETE and v-velocity at different times at z=0.1875 (a,b,c)

att=27.7, (d,e,f) at t =27.9, (g,h,1) at t =28.1
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Figure 5.9: Slices of enstrophy, DETE and v-velocity at different times at z = 0.0625 (a,b,c)
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(ab,c)att=26.3, (d.e,f) at t =26.5, (g,h,i) at t =26.9



CHAPTER 5. FIGURES

count

count
»
(=]
o

4000

3500 -

3000 -

2500 -

2000 -

1500

1000

-4000 -2000 0 2000 4000 6000
DME

(a) Histogram of DME

(b) Histogram of vorticity

Figure 5.12: Histogram of DME and Vorticity for DETE = 100 +5 at t = 27.1

T E ‘_L‘féé

[R—
-60 -50 -40 -30 -20 -10 o] 10 20 30

Ay

(a) Histogram of A;-criteria

4000

3500 -

3000 -

2500 -

2000 -

count

1500

1000

(b) Histogram of Q-criteria

Figure 5.13: Histogram of A,- and Q- criteria for DETE = 100 +5 at t = 27.1

35



CHAPTER 5. FIGURES

36

5it=20 il 5tz 2 T ey
4 pasme 4 o
2 F1= .0X19//” 4 F1:1.0X]ﬂ’
> - - 1 A
‘ml 15 ——— mean ‘0)‘ mean
- sldev 10 B pmoi 1 o et o 0 (T RP LS T R cereeee SldeY
10 2 S
/ Statisties with outliers § Staistics ithout outliers
5 ! L L L 1
5 0 0 il ] 0 ] 0
DETE DETE
04
[}
06
1 mean
Q ——— mean Q 17— o S stdev
2 stdev b
02
0 T _—
0 T —— — ¢ L e 8 iy P
] 0 i 0 50 10 150 00
DETE DETE
6 0.06
mean 08
1 i - sidev ) oM mean
1 2k ’ ------- sidev
t (17 e e -
i e (R U a2 0t
L I B — | L _L_ . J
100 150 200 50 100 150 200
DETE DETE
10 150
mean mean
g wl et L. sidev g 1000 -~ sidev
4]
4] o 500
0 gy smeadion o I T—— 0 g —E— —
= il W ) 3 i T i)
DETE DETE

Figure 5.14: correlation of various criteria w.r.t DETE atr = 27.1



CHAPTER 5. FIGURES 37

2000 - - 2000

1s00 |-

DETE DETE
(©) (©)
2~ _
i _ =T
L I
= ——=—— mean
I - — - -
or
1 -
e
Q b
=
s
1 =y 1
200
DETE DETE
(d) (d)
= F
25 |- mean 25 ————— mean
I - o - 8-
20| 20
> >
|51 +s B - -3 - [e5] 4 -3 - - - = - = - =~ -
T B - - -~ = ] o - =7 I
10 10 7
[t~
L/
5 5
[
i 1 L _J i 1 1 | _J
50 100 150 200 o 50 100 150 200
DETE DETE

Figure 5.15: correlation of various criteria w.r.t DETE




CHAPTER 5. FIGURES

25.7
a a - -4
(@ (@) =1x10
v =
2000 2000 = —_
P
5 -
5 [ =
1500 1500 -~
wiooo
(=]
500
(b)
L e
L P
0.15 |- _ Py
I [t
= S|
—=— mean
— +1— - o
\ s |
100 150 200
DETE
©
e —g--—-—- 4
E
2
| s
% —=— mean
= - - -
I -
.| 7
1|
@
[ 7
-
Iz
13}
o _
L \ s _—y
50 100 150 200
DETE
(d) (d)
v - S|
25 | 25
F — ——=— mean
[ = B
20 |- 20 =
—> L —>
|(’~)|15T S~ ICD|15
[ o e =1 P = e e =
L =) -
I Y,
10 |-
F o, 10
Jic
5 5/
4 . , , L, | , L ,
50 100 150 200 o 50 100 150
DETE DETE

Figure 5.16: correlation of various criteria w.r.t DETE




CHAPTER 5. FIGURES

1500

DME

[ _=a- =]
l =g
1000 |- 7
e
[ 7
s
g |/
2 oo l?
500 [
i
ol
[
[ L 1
EQ 700
DETE
(b)
03s [
03| -
I =2

=t

DETE

vl

1
50 100
ETI

(d)

1
50 100
DETE

|
150

Figure 5.17: correlation of various criteria w.r.t DETE




CHAPTER 5. FIGURES

1500

a
8
T
N

DETE ) DETE

(®) , ®)

025 |- = _ " -
I - T~ - = -
- = s -
[ . | -
02 = _ =
| P 02| Eh
N = t Ve
oas - // /’
7\,2 L s 7\,2 F P
-
| wd = 7]
I 0.1 - Ve
[ -
"2l F = F
0.05 | ;2/
i ——=—— mean i d ——=—— mean
i} — +1— - o - +l= -
ok 1 1 1 ] o L L 1 J
50 100 150 200 50 100 150 200
DETE DETE
© (c)
o= Pl
al - > - F -
- — -~
| _ S~ - al P A= _ _
F 7z ~ — e
I e ——F—— mean [ =z —=—— mean
3 Va — - - L - - =--c
[ , -
[ LL L =
I ~
Q [ Q. .=
[ » [ &
1f .
£ ]
o ifi
o 1
U‘M /\_’
L = il | 5 L —
50 100 150 200 50 104 150 200
DETE DETE
(d) (d)

N
@
i
M
o

T

——f=—— mean

I
t
i

- o
20 20
> I —>
[as]=F e~ [o5] st
| ‘ B+ B —-==--=- L B -8 - - - - _
~
1w0f g 10
5 5
g
kL L 1 y ) L 1 L )
50 100 150 200 = 50 700 150 200
DETE DETE

Figure 5.18: correlation of various criteria w.r.t DETE



CHAPTER 5. FIGURES

t=26.9
@ EF Z1x10* .
[ e e T T
1500 - =
r - e mean
I R
L L=l
o -
r -
1000 |~ A(
[ =
I
a al
500 =7

I

fe
s
il
=, d/“f'\*f’/—"%
56 700 750 Z00
DETE
(b) (b)
- F r =
5 - - PN
03 - ~ . r -7 S~
[ = = 04l e &
L F =
025 - z = -
b s 5 -
- , 5
o2 71 03| =g

0.2

W

0.1

BT

I

(c) (c)

5 — b _ -
o - =~ -7
r I - =-—--—-- =
-
ar S “+ - 7/
» /s
< —=—— mean 4 s —=—— mean
o S | = , - s-- s
7 g ~
+ ~f
Q Q [~ 7
h=]
2 |7
2l
4
b
= E] [
o
1 1 1 _J L 1 1
50 100 150 200 50 100 150 200
DETE DETE
(d) (d)
L = 25
25 |- [
F ——F—— mean [ ——=—— mean
N S 20 |- - =--c
20 - .
N = s
|| F - S || ) =S
I = - - - s 5 == B--==--
F D= = SE - = [l
10 |- 10 |- 7
- b/
I i
5 5
i L 1 y ) Ra L 1 y |
= 50 100 150 200 o 50 100 150 200
DETE DETE

Figure 5.19: correlation of various criteria w.r.t DETE



CHAPTER 5. FIGURES

42

t=27.1
(a) -a -a
F,=1x10 I 1 10 _ B
| = | -
+ - - B
- 1500 [~ R
1500 [— = ———— mean - e ——=—— mean
I P - - - o - - 8-
I = I ="
I - -
1000 T 1000
w w
= bl =
a a
|/
s00 [
o
h
I
) . . , W
56 700 750 Z00 50 700 750 200
DETE DETE
(b) (b)
- _ - " - - =]
— 0.08 |~ -
0.06 |- — [ -
P i ~
P -
0.05 - =l [ -
~ 0.06 [~ Pl— — —
e r R s
7\( 0.04 - 7\’ I GJ/ N e
2 [ 2 [ \ -2
b = c.0al-, o+
0.03 |-
7l [ 7
i [ ¢
o.02 - B
P : 0.02 [+
——=—— mean ———=—— mean
0.01 — 41— - o [§ — - -0
| 1 1 1 y g L 1 | y
50 100 150 200 50 100 150 200
DETE DETE
(©) (©)
- Ll
| e
5 -
08 - '
N ~ -
IR ~ ——f=—— mean E]— T———=—— mean
os |H o - - - _ - - 8- -0
SN e —— -
H ~ P - -
Q ) ~ - 1
0.4 1— =
02f
1 1 1 L _
50 100 150 20b 100 150 200
DETE DETE
(d) (d)
- =
25| 25 —
[ = ——=—— mean I ———=—— mean
[ - - - 20 [ - 8-
20 — ¢ .
—> > sk
&= [as17f
————F - - —
10 -0~ —F - - Ly - - — — I o 10 — -0
] s(}
5
ot L 1 1 —J it 1 1 —J
50 100 150 200 o 50 100 150 200
DETE DETE

Figure 5.20: correlation of various criteria w.r.t DETE



CHAPTER 5. FIGURES

104

1500 |- _ -

00 - )j

DETE

43

y
200

t=27.7
(a) -4
F,=1x10 __ =
F =
1500 [~ -
F - - ——— mean
[ = - =- -
P
1000
w
=
a
500
o
|
56 700 750
DETE

(d)

L L 1 L _J
50 100 150 200
DETE

(d)

=1
~
~
-
~
=7
~
~
-
~
=
0.0z ———— mean
F = — +1— - o
L y s |
50 100 150 200
DETE DETE
© (c)
W . e
L/
[ N : 7
N, - . .
o L - s ~
i = - =
' g - - ——+— mean = 54— mean
o - - - © e =
‘ l ! Q 1 -
os |- [
[}
= !
I a5 fF
- 7
o
L§&r\\
F = £
L i 1 —J P
50 100 150 200 50 100 150 200
DETE DETE

DETE

Figure 5.21: correlation of various criteria w.r.t DETE




CHAPTER 5. FIGURES

44

DETE

1 _ -2 P _ -
=5-"" 1500 - e
1500 |- j’,,—‘j L - !
I - = ——FF—— mean L - ——=—— mean
3 _ A - 5- - _ - =
= A
~ -
= 1000 -
1000 =
r o
w [ w
58 |/ £ |V
I L
500 | 500 ",:IJ
d th
p +
of- ol
s L 1 1 J B L 1 1 J
50 700 150 Z00 50 700 750 200
DETE DETE
(b) (b)
1 3l
LEYS b L 72
- i 03| ’
e - 4
| . I ’
0.15 7 [ ’
. 7
-
N P L = s
I = 0.2 1 N Ve
Y [ -~ e t ’ N = 7
2 oa | Phe 2 l = N - ~ Vs
NP, - - [N ~ - -~ s
[ NI - ;™ N =
[ 0.1 -
0.05 |- . ira)
L 7
ui} ———— mean b +—u mean
[ = — +1l— - o - -9
L y s | L y y y
50 100 150 200 50 100 150 200
DETE DETE
© (c)
2 M
7 7 [ 7
e
al =t
i = -
I 71 " e
7 i Va \ ~
7 ——fF—— mean 4 \ 8~ s ——+— mean
- = - - -c T N -3 - -
Q e - Q v
B il
J
h o
ol i ==
; ) \_\
L 1 1 1 L 1 1 —J
50 100 150 200 50 100 150 200
DETE DETE
(d) (d)
—> —>
|| |ao’|

DETE

Figure 5.22: correlation of various criteria w.r.t DETE



CHAPTER 5. FIGURES

45

DETE

0.4
Az

=t

t=28.3 t=285
@ 5% 10 . @ F Z1x10° e =
1500 |- _=m--"" [ -
[ -7 o - -
— A - g~ ——f+—— mean +] mean
[ =7 T e 1000 |- = T Ee
1000; 4 /d/
| )
| s il
w 1 " L
= e = L
a a J.\
50071;‘ 00 [
o i
p - i
ol L
T A
56 700 50 )
DETE DETE
(b) (b)
o _ A 0.7 P
o035 | _ - s
s F o 0.6 _ -
XS - - _
E /;’V 05 kg
= =
-

(d)

r Ll
E -
-
-
-
A-==-—-=-9 —=—— mean
. = P - 8-
R N L
\ - N
s
Q =/ v N
Jd =
Pl =l
. — ]
1 1 _J
50 100 150 200
DETE

1
50 100
DETE

L
150

_J
200

(©)

- _ =
el = -
L P e —=— mean
F o -~ e
a4 7 ~T
k
Q [/
2L
ol
I
L 1 1 —J
o 50 100 150 200
DETE

(d)

1 |
50 100 150
DETE

_
200

Figure 5.23: correlation of various criteria w.r.t DETE




CHAPTER 5. FIGURES 46

t =287 t=28.9
a -4 a -4
@ E Z1x10 @ E Z1x10
_ - Fo e — - )
i P s - F -
L P r -
— - ——F——— mean _ - ————— mean
[ _= [ —— i -8 = - -
P 1000 - _=
1000 - P
i =
F =
H b
a [+
500
8 s} . +]
ol
n ===t 1 1 J
50 700 750 Z00 E
DETE DETE
(b) (b)
12l =l
Vs e
0.8 |- i ~
. -
| . -
Ve
o6 |- P -2
- Va -7
~ -
[ = -
7\’2 I =y _ - 7\12 ™~
sl N4 _ -
[ ~ =
’ ~, -
[ = 4 mean ——+— mean
TR [ - =9- <
02|
1} = £
L \ n \ , ! | ,
T 50 100 150 200 100 150 200
DETE DETE
© (c)
F P M
s P P
12 |- -
re
b -7 -
10| =] -
- ——FF—— mean -~ _ mean
- —Ea- s e G R
= i
2E
\ 5 E ,
150 200 100 150 200
DETE DETE
(d)
20 |-
| ——=—— mean
S —_—
15
s [ I
[os] I
| O - — — -
10 |- P~ -3 — =~
e
q
5
L 1 1 1 _J 5 1 1 1 —J
50 100 150 200 o 50 100 150 200
DETE DETE

Figure 5.24: correlation of various criteria w.r.t DETE



CHAPTER 5. FIGURES

1 - =
P - ——f=—— mean
+ n - - - -
1000 |- =
[ -
L = =1
- 7
= s
3 a
500 )
b
th
I ]
ol
i T n )y y
EQ 700 150 200
DETE

1000 |-

50 700

47

(b)

(b)

—
-
-
-
-
1
~
~
—~
P
—
———=—— mean
— - - o
&1
—
50 100 150 200 50 100 150 200
DETE DETE
© (c)
pal _
[ 4 30 -
g s - -
25 —
B // s b e
20 ——=—— mean B ’ ————— mean
I N P T 20 | 14 =)
F / = E
- - i
15 ’ NES ~ _ = 15 [
Q L~ ~ - Q [
n = S T
10 100
I
sip 5F
F =)
1 1 ), ) L 1 y ]
50 100 150 200 50 100 150 200
DETE DETE
(d) (d)
= S|
- ——f—=—— mean
sk B
—> [ P R —>
10 |- — - k= - 10
|co| - - - - 5]
=
L/
5 ]
q
[n L L L =2 & L 1 1 _J
50 100 150 200 50 100 150 200
DETE DETE

Figure 5.25: correlation of various criteria w.r.t DETE




CHAPTER 5. FIGURES

48

| N ITESES _ ,:,7,,
= - :
. == 7§ V o —
| = = = e : -
o 7 7
'Y s B :
4 > —
ol - # B ‘
| | K =
P ) 3
[ @ i
10 ;/‘i
/‘
5 o
!g
j . | | |
) e 200

100 :
DETE

Figure 5.26: similarity of |@| with DETE for 27.1 <t < 29.3

a)

28

=29

{)

)

;_WJLKHJX
= T

_a -

N
T

Figure 5.27

P
100

150 200
DETE

250

300

|
350

(a) exponential fits of scaled data for each time

2]

normalised vorticity

o

s

T
L

EXPONENTIAL FIT DATA:

ZONE = ZONE 001 (Zone 1)

X-Axis Variable = V10 (Variable 10)
Y-Axis Variable = V9 (Variable 9)

i T
e

Gogdness of Fit:
R = 0.907977
? = 0.905587 (residual degrees of freedom adjusted)

X = @589V +0008170)

o
i T

1 1
50 100 150 2
normalised DETE

L 1
00 250

(b) exponential fit of scaled data for all time

Figure 5.28: exponential fit of scaled |@| vs scaled DETE.




Bibliography

[1] Liu C. Physics of turbulence generation and sustenance in a boundary layer. Comput.
Fluids, 102:353, 2014.

[2] J C. R. Hunt, Alan Wray, and Parviz Moin. Eddies, streams, and convergence zones
in turbulent flows. Center for Turbulence Research Report CTR-S88,p.193-208.

[3] Giuliano De Stefano, Filippo Maria Denaro, and Giorgio Riccardi. Analysis of 3-d
backward-facing step incompressible flows via local average-based numerical proce-
dure. International Journal for Numerical Methods in Fluids, 28:1073 — 1091, 11
1998.

[4] Brenden Epps. Review of vortex identification methods. AIAA Paper 2017-0989,
2017.

[5] Yisheng Gao and Chaoqun Liu. Rortex and comparison with eigenvalue-based vortex
identification criteria. Physics of Fluids, 30(8):085107, 2018.

[6] G. HALLER. An objective definition of a vortex. Journal of Fluid Mechanics,
525:1-26, 2005.

[7] A. K. M. Fazle Hussain. Coherent structures and turbulence. Journal of Fluid Me-
chanics, 173:303-356, 1986.

[8] Jinhee Jeong and Fazle Hussain. Hussain, f.: On the identification of a vortex. jfm
285, 69-94. Journal of Fluid Mechanics, 285:69 — 94, 02 1995.

[9] Chaoqun Liu, Yisheng Gao, Shuling Tian, and Xiangrui Dong. Rortex—a new vortex
vector definition and vorticity tensor and vector decompositions. Physics of Fluids,
30(3):035103, 2018.

[10] Hans J. Lugt. The Dilemma of Defining a Vortex, pages 309-321. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1979.

[11] Chakraborty P. On the relationships between local vortex identification schemes. J.
Fluid Mech., 535:189, 2005.

49



BIBLIOGRAPHY 50

[12] T. K. SENGUPTA, S. DE, and S. SARKAR. Vortex-induced instability of an in-
compressible wall-bounded shear layer. Journal of Fluid Mechanics, 493:277-286,
2003.

[13] T.K. Sengupta, A. Kameswara Rao, and K. Venkatasubbaiah. Spatio-temporal growth
of disturbances in a boundary layer and energy based receptivity analysis. Physics of
Fluids, 18(9):094101, 2006.

[14] Shuling Tian, Yisheng Gao, Xiangrui Dong, and Chaoqun Liu. Definitions of vortex
vector and vortex. Journal of Fluid Mechanics, 849:312-339, 2018.

[15] Koléf V. Vortex identification: New requirements and limitations. Int. J. Heat Fluid
Flow, 28:638, 2007.

[16] J. Jeong, F. Hussain, W. Schoppa, and J. Kim. Coherent structures near the wall in a
turbulent channel flow. Journal of Fluid Mechanics, 332:185-214, 1997.

[17] Bhaumik, S. and Sengupta, T. K. Precursor of transition to turbulence: Spatiotemporal
wave front. Phys. Rev. E., 89(4), 043018, 2014.

[18] Bhaumik, S. and Sengupta, T. K. A new velocity-vorticity formulation for direct
numerical simulation of 3D transitional and turbulent flows. J. Comput. Phys., 284,
230-260, 2015.

[19] Sharma, P., Sengupta, T. K. and Bhaumik, S. Three-dimensional transition of zero
pressure gradient boundary layer by impulsively and nonimpulsively started harmonic
wall excitation. Phys. Rev. E., 98, 053106, 2018

[20] M. K. Rajpoot, S. Bhaumik, and T. K. Sengupta Solution of linearized rotating shal-
low water equations by compact schemes with different grid-staggering strategies J.
Comput. Phys. 231, 2300 (2012).

[21] T. K. Sengupta, M. K. Rajpoot, and Y. G. Bhumkar Space-time discretizing optimal
DRP schemes for flow and wave propagation problems Comp. Fluids 47, 144 (2011).

[22] Aditi Sengupta, V. K. Suman, Tapan K. Sengupta, and Swagata Bhaumik. An
enstrophy-based linear and nonlinear receptivity theory.  Physics of Fluids,
30(5):054106, 2018.



