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1. ABSTRACT 

The prediction of ISO using two multivariate linear regression (MVR) models 

were analyzed using various indices, which captures the ISO signal, as predictors 

and convective and circulations fields as predicted depending on the index under 

consideration. The MVR model using OLR MJO Index(OMI) is showing relatively 

high prediction skill during boreal winter as well as boreal summer compared to other 

considered models and could be preferred for operational prediction of ISO during 

both the summer and winter seasons. Comparison of prediction skill of ISO between 

j-model and t-model shows that t-model is showing better prediction skill as 

compared to j-model in most of the cases. Here, j-model is created based on the 

cross validation approach (Jiang et. al, 2008) which uses same dataset for training 

and validation  whereas t-model keeps separate some data set to train the model 

and separate data set to validate the model. Prediction Skill of MVR model created 

using OMI and RMM index is relatively higher compared to that created using MISO 

index. The skill of ISO prediction remains sufficiently good for a lead time which is 

greater in boreal winter as compared to boreal summer in case of all season ISO 

indices (such as OMI and RMM) and this could be because of the multiple 

propagation directions in case of boreal summer as compared to its winter 

counterpart which complicates the prediction of the same. A time-related correlation 

between the predicted and observed u200 anomaly data is found to be relatively 

high and coherent as compared to OLR and u850 field data in case of MVR model 

created using RMM. 
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2. INTRODUCTION 

Monsoon generally referred to the tropical and subtropical seasonal reversal 

of atmospheric circulation and the rainfall linked to it. Monsoonal rainfall undergoes 

an extended period of active (above seasonal mean rainfall) and break (below 

seasonal mean rainfall) conditions. Earlier studies (Dakshinamurthy and 

Keshavamurty, 1976; Alexander et al., 1978) have associated it with the motion of 

Inter tropical convergence zone (ITCZ) over the core monsoon region (Krishnamurti 

et al 1976; Sikka and Gadgil 1980). The active and break episodes in monsoon is 

often considered as the manifestation of monsoon intraseasonal oscillations 

(MISOs). Two prominent modes of the MISOs are the westward and northward 

propagating modes with the periodicity of 10-20 and 30-60 days respectively 

(Goswami et al. 2018). The ‘30-60 days northward propagating mode’ is prominent 

during northern hemispheric summer. The prediction of monsoon rainfall few weeks 

in advance is crucial for agricultural practice, economy, life and properties across the 

Indian subcontinent. The existence of large-scale organized, quasi-periodic 

propagating Intraseasonal modes provides an untapped source for extending the 

weather prediction beyond one week. Even though significant progress has been 

made in the simulation of MISOs, there are still significant biases in the extended 

range (10-30 days) prediction of rainfall using numerical models.  

2.1 Depending on the time scale of occurrence of atmospheric processes, 

forecasting is divided into the following major categories: 

2.1.1 Weather Forecasting: Weather forecasting is the branch of science which 

deals with the modern scientific technologies in predicting the future state 

of the weather. Following are the different types of weather forecasting: a. 

now casting (2-6 hours), b. Short- Range (2-3 days), c. Medium-Range (7-

10 days) d. Extended-Range (10-30 days) 
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2.1.2 Long-Range Forecasting: Time range for this type of forecasting is from 

30 days or 1 month to two years. 

2.1.3 Climate Forecasting: Time range for this type of forecasting is beyond 

two years. 

 

2.2 Different methods which are used for forecasting are listed below: 

    2.2.1  Statistical methods:  

In these methods we attempt to find a relationship between predictand or 

dependent variable and predictors or independent variable using the available 

observed historical data with the help of statistical techniques. E.g. Methods based 

on regression, analog, Singular value decomposition (SVD) etc. 

Regression is one of the fundamental methods of modeling and analyzing of 

data in which we try to minimize the error between the lines or the curve that we 

want to fit to the observed data values and the actual observations. Regression 

model, Logistic Regression, Polynomial Regression etc. are few examples of 

regression. 

Analog techniques for prediction are based on the assumption that if state of 

two atmospheric systems has same initial condition, and then they are going to 

evolve in the similar fashion. This technique for prediction has been used extensively 

in different scales of forecasting. e.g. “General Circulation forecasting” (Gutzler and 

Shukla 1984; Van den Dool 1989) 

   2.2.2 Dynamical methods: 

In dynamical methods, we use the solution of the mathematical equations 

which govern the Physics of Ocean and Atmosphere to get an estimate of the future 

state. Considering the highly non-linear behavior of the governing equations, we 

make certain assumptions and provide initial conditions in accordance with the 

system under study, e.g. CFSv2, ECMWF, NCEP’s MRF model etc.  

2.2.3 Hybrid methods: 

These methods of forecasting use a combination of both the dynamic and 

statistical methods in the prediction of future state of the atmosphere. 
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One of the major reasons for errors in predicting the precipitation is attributed 

to the representation of clouds and cloud microphysics in the dynamical models. 

Also the dynamical models are unstable to perturbations and are sensitive to the 

initial conditions. These errors increase with time and give a poor and unreliable 

weather forecast beyond a period of 10 days. Hence we are interested in using the 

statistical method for prediction that is more skillful and compatible for extended 

range prediction. 

          The first statistical ISOs model was developed by Von Storch and Xu (1990) 

and it was based on the ‘Principal Oscillation Patterns’ (POPs) (Hasselmann,1988) 

of equatorial 200 hPa velocity potential anomalies. They got a skillful forecast up to 

about 15 days. Later, a statistical model based on the ‘singular value decomposition’ 

(SVD) method was proposed (Waliser et al (1999)). By using past and present 

pentads (5-day average) of filtered outgoing Longwave Radiation (OLR), they were 

able to predict the future pentads of OLR.  Because this model needs filtered data, 

we cannot use the same for real time application. Ever since, several efforts have 

been made to get a skillful forecast without using explicit time filtering. Lo and 

Hendon (2000), developed a lag regression model based on the observation that the 

MJO can be well represented by leading two EOFs (Empirical orthogonal functions) 

of OLR and leading three EOFs of stream function at 200mb. Separate methods 

were used to extract the signal of Intraseasonal time scale by removing the annual 

cycle, interannual and high frequency component. They found a skillful forecast up to 

about 15 days after the application of model on the independent data and also better 

skill in the case of active MJO condition contrary to quiescent condition. Even after 

that numerous studies using statistical methods for the extended range prediction 

was also done (See ‘Mo, 2001; Wheeler and Weichmann, 2001; Jones. et al, 2004; 

Maharaj and Wheeler, 2005; Jiang. et al, 2008.’) 

Recently, different approach was introduced to forecast the Intraseasonal 

summer rainfall over China. The method involves the division of the entire domain 

into ten sub-regions using the rotated empirical orthogonal function analysis of 

Intraseasonal (10-80 days) rainfall anomalies (Zhu and Li, 2016). The ISO signal 

extraction was done by “non-conventional filtering “following Hsu et al., 2015 

methodology. The methodology allows the model to be used in real time. The 

forecasts were made using the spatial-temporal projection models (STPMs). Within 
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the group of ten predictors (OLR, zonal wind at 850 hPa (U850), zonal wind at 200 

hPa (U200), geopotential height at 850 hPa (H850), geopotential height at 500 hPa 

(H500), geopotential at 200 hPa (H200), relative vorticity at 850 hPa (Curl850), 

relative humidity at 700 hPa (Rhum700), soil moisture (Soilm), surface precipitation 

(Precip), an optimal ensemble of the best five predictor was selected and then used 

for each region for the prediction. Results showed that the overall pattern of 

Intraseasonal rainfall over china can be reproduced with a good skill at 20 day lead 

using this model. Since the temporal resolution of this model (based on pentad data), 

is quite low, it will not be able to capture the Intraseasonal signal at 10-30 day period 

over the entire region. But this issue might be minimized by increasing the temporal 

resolution of the model. One more alternative is to conduct STPM particularly for 10-

30 day mode. Similar study was done using STPM (Zhu and Li, 2017). 

Since ISOs exhibit seasonality, the statistical models must capture the 

seasonality the ISOs. Roundy 2017 introduced an algorithm to access the regression 

slope coefficients which vary seasonally. For each day best fit regression slope 

coefficient value can be obtained by dividing the outcoming seasonal covariance with 

its variance. The proposed method was applied to estimate the seasonally varying 

relationship between the MJO and various circulation patterns. 

        Linear regression, a machine learning algorithm, does not need a complete 

understanding of physical processes of the atmospheric systems. We propose to 

develop a forecast model based on multivariate linear regression approach using 

various ISO indices. Predictors for the model will be the various indices representing 

different aspects of tropical Intraseasonal oscillations.  
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3. DATA AND METHODS 

3.1 Data: Various observed as well as reanalysis products are used to develop a 

multivariate lag regression forecast model. The variables used are wind at 200 

and 850 hPa pressure levels, precipitation and Outgoing Longwave Radiation 

(OLR). 

3.1.1 OLR: The daily OLR data of 2.5°X 2.5° horizontal resolution for the time period 

of 1974-2015, are obtained from National Ocean and Atmosphere 

Administration (NOAA). 

3.1.2 Wind data: We have used the four-times daily, 1.5°X 1.5° horizontal 

resolution; ERA-Interim reanalysis wind data at 850 and 200 hPa pressure 

levels for the period 1979-2015 (Dee DP, Uppala SM, Simmons AJ,  et al. 2011).   

3.1.3 GPCP Precipitation: The daily global precipitation climatology project 

(GPCP) of horizontal resolution 1°X 1° for the time period of 1997-2015 is 

obtained from the website: https://precip.gsfc.nasa.gov/ 

3.2  Methods: 

A multivariate linear lag regression (MVR) forecast model is developed to 

predict various Intraseasonal dynamic and thermodynamic fields by following Jiang 

et. al, 2008. The general expression of the multivariate linear lag regression model is 

given below. 

�(�� + �) = �����(��) + �����(��) 

          X is the predictand field (which is the field to be predicted), �=Number of lead 

days, tₒ= time for which initial condition is given. PC1 and PC2 correspond to the 

bivariate indices which are used for creating the seasonally varying lag-regression 

coefficients β1 and β2. 

3.3 Procedure for creating Indices 
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   Using the MVR model, we forecast the various modes of tropical intra-seasonal 

variability. The modes include the eastward and northward propagating intra-

seasonal disturbances. The procedures for creating various indices that depict the 

circulation and convective features related to the ISO are (RMM, MISO, and OMI 

indices) are described below. 

 

3.3.1 Real time Multivariate MJO (RMM) index:  

 RMM is a bivariate index, and it represents how the MJO is evolved 

(Wheeler, M.C. and H.H. Hendon, 2004). The procedure for creating the RMM index 

is briefly explained below. 

          The anomalies of OLR and zonal wind at 200 hPa and 850 hPa pressure 

levels from 15°S to 15°N latitudes and all longitudes for the period 1979 - 2001 (8401 

days) are used for creating the RMM index. The anomalies are created by pulling out 

the climatological annual cycle (1st three harmonics of daily climatology) from the 

original data. The effects of major interannual variability are removed by subtracting 

the previous 120 day mean from the daily anomaly fields.  Then, latitudinal average 

over 15°S − 15°N domain is performed for all the fields. All the fields are then 

normalized by their respective global variance.  

       Combined EOF (CEOF) analysis is done on the pre-processed zonal wind at 

pressure level of 200 hPa and 850 hPa (here after u200 and u850) and OLR 

anomalies. The spatial structure of the EOF’s is a function of longitude alone. The 

first two modes of the CEOFs capture the planetary scale circulation and convective 

anomalies of the MJO which propagates eastward. One of the CEOF modes  depicts 

the  enhanced convection over the Maritime Continent, low- level westerly wind 

anomalies over the Indian Ocean  and Maritime Continent region and baroclinic 

structure of wind anomalies over the pacific region with easterlies at low level and 

westerlies at upper level.. The other mode captures the enhanced convection over 

the Pacific Ocean The first two CEOF modes together explain 25% of the total 

variability. The projection of the OLR and zonal wind anomalies at 850 hPa and 200 

hPa onto the two leading CEOF modes gives two time series (known as principle 

components (PCs). These two PCs are named as RMM indices. These indices have 

been used for estimating the location and Amplitude of the MJO in real-time.  
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3.3.2  Monsoon Intraseasonal Oscillation (MISO) index: 

  Like the RMM index, the MISO index provides the phase and amplitude of the 

northward propagating Intraseasonal convective disturbances in real-time. A detailed 

description of the creation and use of the MISO index is given in Suhas et.al, 2013. 

The various steps involved in the calculation of MISO indices are briefly explained 

below: 

 First, daily precipitation anomalies are computed by withdrawing the 

climatological annual cycle from the original observed data. Since we want to extract 

the northward propagating Intraseasonal convective disturbances, the longitudinal 

average is done over the domain of (60.5°E - 95.5°E). Then the extended EOF 

analysis is carried out on the resultant data over the latitudinal domain 12.5°S-

30.5°N, by keeping 15 days lagged copies of the data. 

First two major modes of the EEOF analysis which explain the 23% of the 

total variability are chosen. The EEOFs prefer meridional wavenumber one structure 

which implies that opposite signal of convection will be present above Indian 

continental region and the Indian equatorial ocean region. The PC1 and PC2 which 

we get by projecting precipitation data to the two EEOF spatial structures chosen are 

named as MISO1 and MISO2 index. Since MISO1 and MISO2 index are related to 

the precipitation over the ISM domain we tried to find the spatial region over the ISM 

domain which is showing reasonable relation with MISO1 and MISO 2 evolution over 

time. The region chosen in this manner are, 

BOX1. 15°N- 20°N and 60°E-100°E and BOX2.  0°N-14°N and 60°E -100°E 

Where the area averaged the time series give reasonable relation with the 

MISO1 and MISO2. The correlation between MISO 1 and BOX2 is 0.48 and that 

between MISO2 and BOX1 is 0.54. For the rest of the analysis, instead of MISO1 

and MISO2 index the BOX area averaged time series are used. 

    3.3.3 OLR Based MJO (OMI) Index  

The OLR-based MJO index (OMI) describes the evolution of convective 

feature of the MJO. The MJO shows notable seasonality in their main properties. 

The eastward propagating feature of MJO is strong and frequent during boreal winter 
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as compared to that during boreal summer. The northward propagating convective 

signal over the ISM is another dominant feature during boreal summer. Hence, to 

incorporate seasonality the EOF analysis of 30-96 day filtered OLR with a time 

window of 120 days is calculated which gives the EOF as a function of day of the 

year as well as space. The EOF analysis of the mentioned field with time window 

less than 120 days was found to make the EOF structure degenerate while making it 

above 120 days was found to reduce the seasonality associated with MJO. So, an 

optimum time window as mentioned (120 days) was chosen while the EOF 

calculation was done. The first 2 dominant modes of EOF viz. EOF1 and EOF2 

together represent the spatial structure of MJO. Then the OLR data for a particular 

calendar day was projected to the corresponding EOF1 and EOF2 spatial pattern to 

get the PC’s which are called as OMI1 and OMI2 respectively. 

3.4 Model skill analysis metrics 

The performance of the MVR forecast model is quantified using the Root 

mean Square Error (RMSE), Bivariate Correlation (COR), and the Phase angle error 

(ERR)  metrics. The definition and formula of these three metric are as follows: 

���(�) =
∑ [��(�)��(�)+��(�)��(�)]�

���

�∑ [��
�(�) + ��

�(�)]�
��� �∑ [��

�(�) + ��
�(�)]�

���

      … … … … … … … (�) 

            ����(�) = �
�

�
∑ {[��(�) − ��(�)]�+[��(�) − ��(�)]�}�

���       … … … … … … (�) 

           ���(�) =
�

�
∑ ����� �

��(�)��(�,�)���(�)��(�,�)

��(�)��(�,�)���(�)��(�,�)
�        … … … … …  (�) 

 ��(�) and ��(�) are the observed RMM1 and RMM2 at time � and��(�, �)��� ��(�, �) are the  

respective forecasts for time � with a lead time of � days or lag time of � days.  Also,   is the 

 number of predictions. 

 

3.4.1 Bivariate Correlation:  Bivariate correlation (Eq.1) provides the 

information about the strength of the relationship between the two variables. 

Bivariate correlation is used for quantifying the strength of the relationship 
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between the predicted and observed indices. Higher the value of correlation is 

better will be the relationship and hence better will be the prediction. 

3.4.2 e-folding time: The time (in days) corresponds to the correlation value 

of 
�

�
 is called e-folding time which is taken as reference in all the ACC plots. 

3.4.3 RMSE: Root mean Square Error represented by Eq. 2 calculates the 

error between the predicted value and observed value of the variable used in 

the study. 

3.4.4 Phase angle Error: Phase angle Error is the measure of error 

associated with the phase angle between the predicted and observed value of 

the variables. Negative value of phase angle implies the slow propagation in 

prediction in comparison to the observed values and vice versa. It is 

represented by the formula given in Eq.3 
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4. RESULTS AND DISCUSSION 

The MVR prediction model is expected to capture the basic spatial structure 

and northward and eastward propagating properties of the ISOs. The spatial pattern 

of the relation between predicted and observed fields(which show the convective and 

dynamic features associated with ISO) are analyzed.  The model skills using various 

metrics are also analyzed.  

4.1 Multivariate Regression model (MVR) forecast using RMM index 

The spatial structure of temporal correlation within the model predicted and observed 

fields of OLR and Zonal Wind at pressure level of 850 hPa and 200 hPa for different 

time lags are shown in Fig1.  

4.1.1 OLR. 
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Figure 1. Temporal correlation evolution within observed and t-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer. 

Figure 2. Temporal correlation evolution within observed and t-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 



13 | P a g e  
 

 

Figure 3. Temporal correlation evolution within observed and j-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer. 
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Figure 4.  Temporal correlation evolution within observed and j-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 
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             In Fig.1, a strong negative correlation is found above central equatorial 

Indian Ocean and the northern Australia which is persistent even after 20 days of lag 

in both the cases. As the ISO signal during boreal summer has dominant northward 

propagating component and weak eastward propagating component we expect the 

spatial correlation to be reasonably strong above Indian summer monsoon region as 

well as over the equatorial Indian Ocean. Negative correlation is found over the 

Equatorial Indian Ocean and the strength reduces as the lead time increases. The 

RMM index captures the eastward propagating component better in comparison to 

the northward component of MJO. This may be a reason why the correlation plots 

are not showing significant correlation over the Indian Monsoon domain.  

             In  Fig.2,  moderately strong negative correlation is observed above east 

African region, western equatorial Pacific, central and eastern Equatorial Indian 

Ocean which are the regions where the convective anomalies of the MJO is clear 

during an MJO event.  The correlation pattern is more coherent during the boreal 

winter season as compared to boreal summer season which can be seen clearly in 

the eastern equatorial Indian Ocean and central Pacific and the correlation value 

remains strong even after 25 days.  

Fig.3 shows the spatial correlation between observed and Jiang et al 2008 

model (here after j-model) predicted OLR. Strong positive correlation values are 

observed over the equatorial Indian Ocean, southern part of Indian monsoon region 

and some part of South America. Even for 15-20 day lag, the correlation remains 

moderately strong over the central and eastern equatorial Pacific region. It implies 

the potential for skillful prediction in this region.  

Fig.4 shows the j-model predicted and observed OLR anomalies’ spatial 

correlation during boreal winter season. The boreal winter ISO spatial pattern is best 

represented in this model in comparison to the t model. A strong positive correlation 

is observed from the equatorial Africa to central equatorial Pacific (where the 

convective signal in general dies off) which imply the potential of this model as an 

operational forecast model for predicting the boreal winter ISOs. Over the eastern 

equatorial and central pacific region, a strong negative correlation is observed which 

shows persistence for many lag days. 
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4.1.2 Since the model also captures the dynamic fields associated with the MJO, 

The spatial plots of temporal correlation for u850 and u200 for different time lags are 

shown in Fig. 5 

4.1.2.1 u850 

 

Figure 5. Temporal correlation evolution within observed and t-model forecasted 

u850 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer.    
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         Fig.5 shows the t-model predicted and observed u850 anomalies’ spatial 

correlation during boreal summer. A very low correlation is observed over the tropics. 

The correlation persists over Indonesian region and it last for a lead of 20 days.  An 

opposite behaviour is observed over the continental Indian region after 30 days lead.  

 

Figure 6.  Temporal correlation evolution within observed and t-model forecasted 

u850 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter.           

           Fig.6 shows the t-model predicted and observed u850 anomalies’ spatial 

correlation during boreal winter. A moderately strong correlation coefficient is 
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observed over the eastern equatorial Indian Ocean and it persist for 30 days lead 

and the reversal of correlation sign is also observed. It implies the ability of the 

model to capture the propagating component of the MJO.  

 

Figure 7. Temporal correlation evolution within observed and j-model forecasted 

u850 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer. 

  Fig 7 shows the j-model predicted and observed u850 anomalies’ spatial 

correlation during boreal summer. A strong positive correlation in the eastern and 

central Pacific region is observed and some patches of strong negative correlation is 

also observed in the western Pacific region.  
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Figure 8.  Temporal correlation evolution within observed and j-model forecasted 

u850 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 

Fig. 8 shows the j-model predicted and observed u850 anomalies’ spatial 

correlation during boreal winter. Positive correlation values are more coherent as 

compared to the other cases of the t-model and boreal summer case of j-model. A 

strong positive correlation coefficient is observed over the South America and it 

persists for 20 day lead time. 
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4.1.2.2 u200 

  Fig. 9 shows the t-model predicted and observed u200 anomalies’ spatial 

correlation during boreal summer. Very low values of correlation similar to that case of u850 

for the same season can be observed. A negative correlation of 0.15-0.2 can be seen over 

the Indonesian region which persists for 15 days. As the correlation values are very less, the 

model might not give good prediction in that region. 

 

Figure 9. Temporal correlation evolution within observed and t-model forecasted 

u200 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer. 
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Figure 10.  Temporal correlation evolution within observed and t-model forecasted 

u200 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 

Fig 10 shows the t-model predicted and observed u200 anomalies’ spatial 

correlation during boreal winter. Negative correlation over the South Asian monsoon 

domain which is extending with increasing lead days over 20S-20N domain can be 

seen. Values are more during winter as compared to summer in case of t-model. 
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Figure 11. Temporal correlation evolution within observed and j-model forecasted 

u200 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer. 

Fig.11 shows the j-model predicted and observed u200 anomalies’ spatial 

correlation during boreal summer. Correlation values for u200 are the highest 

compared to correlation in case of other fields mentioned above which is consistent 

with the past studies. Signal reversal over the north and South American region is 

much more clearly visible as compared to all other regions by 30 days lead time. 
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Positive correlation signal over East Africa and Indonesian domain can be seen but it 

stayed till 10 days lag.  

   

Figure 12.  Temporal correlation evolution within observed and j-model forecasted 

u200 anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 

        Fig.12 shows the j-model predicted and observed u200 anomalies’ spatial 

correlation during winter. u200 has the highest values of correlation within all the 

three used fields and temporal correlation is highest when we are using j-model for 
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winter u200. The highest positive correlation can be seen over the central equatorial 

Indian Ocean and it extends westwards till the equatorial African region and 

eastwards till the central equatorial pacific. 

4.2 Skill analysis for RMM 

4.2.1 Anomaly Correlation Coefficient 

 

 

Figure 13. Anomaly correlation Coefficient (ACC) is plotted against number of lead 

days for j-model (green color) and t-model (purple color) for Boreal winter (Left) and 

Boreal Summer (Right) calculated using RMM indices. 

Fig. 13 shows the lead day vs. correlation plots of seasonal Anomaly 

correlation coefficients for two models. During summer, as j-model skill (green) and 

e-folding time (red) are crossing each other at almost 8th day. So, prediction till 8th 

day can be done successfully with a good prediction skill. Similarly, 10 days is value 

for t-model which is showing greater prediction skill than j-model. During summer as 

well as winter the skill is same for j-model but for t-model it has been increased to 13 

days (in case of winter). 
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4.2.2  Root  Mean Square Error 

 

Figure 14. Root Mean Squared Error (RMSE) is plotted against number of lead days 

for j-model (green color) and t-model (purple color) for Boreal summer (Left) and 

Boreal winter (Right) calculated using RMM indices. 

         Fig. 14 shows the comparison of seasonal root mean square error for two 

models. Error increases with lead time which is we observe in general for most of the 

prediction systems. Same trend is being followed during both seasons. t-model is 

giving less value between the predicted and observed values than j-model with lead 

time for most of the time which is an implication of better prediction skill than t-model. 
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4.2.3  Phase Angle Error 

 

 

Figure 15. Phase Error is plotted against number of lead days for j-model (green 

color) and t-model (purple color) for Boreal summer (Left) and Boreal winter (Right) 

calculated using RMM indices. 

        Fig. 15 shows the comparison of seasonal phase angle error between two 

models. Values of phase error are fluctuating with the increasing number of lead 

days. But, following definition of phase error we can say that phase error in case of 

summer t-model values are positive which implies that predicted values are 

propagating faster than that of observed values. 
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4.3 MVR model using OMI indices 

 

 Figure 16. Temporal correlation evolution within observed and t-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer.      

          Fig.16 shows the t-model predicted and observed OLR anomalies’ spatial 

correlation during boreal summer. Total reversal of correlation signal over the 

continental Indian region and equatorial Indian Ocean after 20 days lag can be 

observed. Weakening of extent over the western Pacific region is also clear with 

increasing number of lead days. 
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Figure 17.   Temporal correlation evolution within observed and t-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 

          Fig. 17 shows the t-model predicted and observed OLR anomalies’ spatial 

correlation during winter. High positive correlation values covering almost whole of 

the equator at 5 day lead which further decreases with increasing number of lead 

days. Signal reversal is also clearly visible over the Indonesian region after 30 days 

lead. 
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Figure 18. Temporal correlation evolution within observed and j-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal summer. 

        Fig. 18 shows the j-model predicted and observed OLR anomalies’ spatial 

correlation during summer. High positive correlation over the Indian summer 

monsoon domain which can be the implication of northward shift of MJO which is 

consistent with the past studies and persistent till 20 days lead. A consistent 

negative signal over the Indonesian region is also noticeable for 20 days lead. 
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 Figure 19. Temporal correlation evolution within observed and j-model forecasted 

OLR anomalies are plotted for lead days from 5 to 30 with an increment of 5 days for  

boreal winter. 

        Fig 19 shows the j-model predicted and observed OLR anomalies’ spatial 

correlation during winter . High positive and coherent correlation signal can be seen 

which is mostly confined to the equator and is due to the reason that MJO is more 

confined to the equator during winter. A reasonably good positive correlation over 

east Africa is also visible which is decreasing with increasing number of lead days. 
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4.3.1 Skill Analysis of OMI Index 

4.3.1.1 Anomaly correlation coefficients: 

 

                                                                                                    

Figure 20. Anomaly correlation Coefficient (ACC) is plotted against number of lead 

days for j-model (green color) and t-model (purple color) for Boreal summer (Left) 

and Boreal winter (Right) calculated using OMI indices. 

Fig. 20 shows the lead day vs. correlation plots of seasonal Anomaly 

correlation coefficients for two models .Both the models shows better prediction skill 

till 15-24 days as compared to the skill for RMM indices and here too t-model is 

comparable or better than the j-model in both the cases. 
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4.3.1.2 Root mean square error: 

 

Figure 21. Root Mean Square Error (RMSE) is plotted against number of lead days 

for j-model (green color) and t-model (purple color) for Boreal summer (Left) and 

Boreal winter (Right) calculated using OMI indices. 

Fig. 21 shows the comparison of seasonal root mean square error between 

two model for predicted and observed value of OMI indices. Increasing value of 

RMSE with increasing number of lead days can be observed which the trend we 

expect from any prediction model is. Values are high in case of winter season as 

compared to the summer season. Values observed for t-model are always 

comparable or less than j-model which conclude that t-model is better in prediction 

as compared to j-model for both the seasons.      
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 4.3.1.3  Phase Angle Error: 

 

Figure 22. Phase Error is plotted against number of lead days for j-model (green 

color) and t-model (purple color) for Boreal summer (Left) and Boreal winter (Right) 

calculated using OMI indices. 

 Fig. 22 shows the comparison of seasonal phase angle error between two 

models for predicted and observed OMI indices. Values for t-model in case of 

summer season are always positive which implies faster propagation in prediction in 

comparison to the observed value. Similarly, other patterns can also be analyzed by 

using the definition of phase angle error. 
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4.4  MVR model using MISO index  

The bivariate index called the MISO index represents position and strength of 

northward propagating component of ISO.  

Figure 23. Temporal correlation evolution within observed and t-model forecasted 

precipitation anomalies are plotted for lead days from 3 to 15 with an increment of 3 

days for  boreal summer. 

  Fig. 23 shows the t-model predicted and observed Precipitation anomalies’ 

spatial correlation during summer using t-model. We can observe the negative 

correlation signal over the western coast of India near Arabian Sea branch and 

positive correlation signal in Bay of Bengal branch at 3 day lag which got reversed 

after 15 days lag. This implies that reasonably good prediction of ISO signal over the 
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Indian summer monsoon domain can be done with lead of 15 days. We expect the 

MISO prediction skill during 15 days lead time to be reasonably good. 

 

 Figure 24. Temporal correlation evolution within observed and t-model forecasted 

precipitation anomalies are plotted for lead days from 3 to 15 with an increment of 3 

days for  boreal winter. 

The spatial correlation of t-model predicted and observed precipitation 

(Fig.24) shows reasonably good positive correlation over the Southern Indian 

monsoon domain, north equatorial African, central and eastern equatorial Pacific 

regions with a lead of 3 days. A relatively strong negative correlation region can also 

be seen over the western Equatorial Indian Ocean. During boreal winter, as was 

observed in the case of boreal summer, the positive correlation over the south Indian 
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region flips its sign which imply that this relation is more or less independent of 

season. 

 

 Figure 25. Temporal correlation evolution within observed and j-model forecasted 

precipitation anomalies are plotted for lead days from 3 to 15 with an increment of 3 

days for  boreal summer. 

In case of spatial correlation between j-model predicted and observed 

precipitation during JJA (fig.25) we can see positive correlation over the Indian 

monsoon domain though it is not very strong for a lead of 3 days. The relatively 

strong positive correlation over the Bay of Bengal and eastern equatorial Indian 

Ocean is another striking feature which extends to western equatorial Pacific for 3 
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days lead. A relatively strong negative correlation over central and eastern equatorial 

pacific can be seen which is persistent from 3 days to 15 days lead time. A 

reasonable negative correlation which spatially spreads from 6 days lead to 9 days 

lead can be observed over Bay of Bengal, maritime continent, and the eastern 

equatorial Indian Ocean regions. 

 

 Figure 26. Temporal correlation evolution within observed and j-model forecasted 

precipitation anomalies are plotted for lead days from 3 to 15 with an increment of 3 

days for  boreal winter. 

In case of spatial correlation between j-model predicted and observed 

precipitation during DJF (fig.26) relatively strong negative correlation over Equatorial 
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Pacific which extends from western equatorial pacific till eastern equatorial pacific 

can be seen for all leads beginning from 3 days to 15 days. The same feature can be 

seen over the eastern and western equatorial Indian Ocean as well. The correlation 

over the Indian monsoon domain is more or less negative for all the lead times from 

3 to 15 days and it strengthens the relation as the lead time increases.  

4.4.1 Skill Analysis for MISO 

  4.4.1.1  Anomaly Correlation Coefficients:     

  

Figure 27.  Anomaly Correlation Coefficient (ACC) is plotted against number of lead  

days for j-model (green color) and t-model (purple color) for Boreal summer (Left) 

and Boreal winter (Right) calculated using MISO indices. 

      The bivariate anomaly correlation coefficient in case of MISO index for the 2 

models is compared and is plotted for boreal winter as well as summer. The Boreal 

summer MISO skill analysis shows that the j-model depicts relatively good skill till 6 

days lead time and afterwards drops its skill rapidly with lead time and crosses the e-

folding time at around 8 days lead time. t-model unlike j-model shows relatively less 

skill during the 1st few day of lead time and then reaches a steady state, which is 

above the e-folding time, after which the skill is more or less constant  with further 

increase in lead time. 
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       The MISO skill analysis for winter season shows that the skill is relatively less as 

compared to summer season as this index is created to capture the boreal summer 

ISO and the skill increases with lead time initially and then decreases which is a 

striking feature which require further investigation. The skill for both the models is 

maximum at a lead time of 4 days and then declines to lower values and crosses the 

e-folding time around 5 and 8 days respectively for t-model and t-model. 

4.4.1.2  Root  Mean Square Error:                                         

  

Figure 28.  RMSE is plotted against number of lead  days for j-model (green color) 

and t-model (purple color) for Boreal summer (Left) and Boreal winter (Right) 

calculated using MISO indices. 

       The RMSE first show a rapid decrease and then a gradual increase with lead 

time. The minimum RMSE corresponds to a lead time of 5 days lead time for both 

the considered MVR models. 
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4.4.1.3 Phase Angle Error: 

            The phase error analysis in case of t-model and j-model for summer season 

reveals that the MISO propagation is faster than observation in t-model throughout 

the prediction period. In case of j-model the MISO propagation is initially faster than 

observation and then it lags behind the observation and this trend is repeated as the 

lead time increases. During winter the MISO propagation in j-model and t-model are 

more or less slower than that of observation except for t-model around 3-7 days 

lead. 

 

Figure 29. Phase error is plotted against number of lead days for j-model (green 

color) and t-model (purple color) for Boreal summer (Left) and Boreal winter (Right) 

calculated using MISO indices. 
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5. CONCLUSION  

The following conclusions are made from the analysis carried out using the MVR 

forecast model. 

1. The MVR forecast model using the OMI index shows higher prediction skill 

during boreal winter and boreal summer and could be preferred for 

operational prediction of the ISOs. 

2. In general t-model is showing better prediction skill as compared to j-model. 

3.  The prediction skill of the OMI and RMM index based MVR model is higher 

than the MISO index based MVR model. 

4.  Temporal correlation for u200 is relatively high and coherent as compared to 

OLR and u850 fields of MJO in case of MVR model created using RMM. 

5. The spatial correlation shows that the spatial structure of ISO during winter 

(summer) is captured by t (j)MVR model created using OMI.  

 

         MVR model had been studied extensively and had been employed to predict 

the ISOs. More new and efficient models will be explored and the existing ones will 

be refined to get better results and predications as well. 
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