Topology Of Complex Projective Varieties

A Thesis

submitted to
Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme
by

Vishwajeet S Bhoite

IISER PUNE

Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA.

April, 2019

Supervisor: Prof. A J Parameswaran
(C) Vishwajeet S Bhoite 2019

All rights reserved

Certificate

This is to certify that this dissertation entitled Topology Of Complex Projective Varieties towards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune represents study/work carried out by Vishwajeet S Bhoite at Indian Institute of Science Education and Research under the supervision of Prof. A J Parameswaran, Senior Professor, Department of Mathematics, during the academic year 2018-2019.

Prof. A J Parameswaran

Committee:

Prof. A J Parameswaran

Dr. Rama Mishra

This thesis is dedicated to my parents and my brother

Declaration

I hereby declare that the matter embodied in the report entitled Topology Of Complex Projective Varieties are the results of the work carried out by me at the Department of Mathematics, Indian Institute of Science Education and Research, Pune, under the supervision of Prof. A J Parameswaran and the same has not been submitted elsewhere for any other degree.

Acknowledgments

I would like to express my sincere gratitude to Prof. A J Parameswaran for his guidance and support through the course of this project. Extensive discussions with him helped me understand the subject. I thank all my mathematics teachers at IISER Pune, among them Rama, Tejas and Anisa occupy a special place. I would like to thank my parents for all their support and love. Last but not the least, I would like to thank all my friends for all the love and fun.

Abstract

In this project, I studied some of the interesting results about the topology of complex projective varieties. The project is based on the paper of Klaus Lamotke, titled "The Topology of Complex Projective Varieties After S. Lefschetz." Starting with Lefschetz Pencils, Dual Varieties this thesis covers deep results such as Lefschetz Hyperplane Section theorem, Weak Lefschetz theorem, and Hard Lefschetz Theorem. Along the way, it gives the proof of Lefschetz Hyperplane Section Theorem using Morse Theory, Picard-Lefschetz formula, and Monodromy theorem. Towards the end, we study topology in a neighborhood of a singular point on the complex hypersurfaces.

Contents

Abstract xi
1 Preliminary Definitions and Tools 3
1.1 Affine and Projective Varieties 3
1.2 Some preliminaries about complex manifolds. 7
1.3 Tools from algebraic topology. 8
2 The modification of a projective variety with respect to a pencil of hyper- planes. 13
2.1 Pencil of hyperplanes and the Veronese embedding. 13
2.2 Veronese Embedding 15
2.3 Duality Theorem 16
2.4 Lefschetz Pencil. 18
3 Lefschetz's Theorems 23
3.1 Main lemma. 23
3.2 Lefschetz's Results 29
3.3 Weak Lefschetz Theorem 33
4 The Hard Lefschetz Theorem 37
4.1 Hard Lefschetz Theorem 37
4.2 Homotopy Version of Lefschetz Theorem of Hyperplane Section. 42
5 The Picard-Lefschetz formulas 45
6 The Monodromy and Hard Lefschetz Theorem. 51
6.1 Monodromy Theorem. 51
6.2 Zariski's Theorem 53
7 Singular points of Complex hypersurfaces 57
7.1 Brauner's Construction 57
7.2 Fibration Theorem 58

Introduction

The topology of complex surfaces was introduced by Émile Picard(1897) and extended to higher dimensions by Lefschetz (1924). During Lefschetz's time, the knowledge of topology was primitive, and Lefschetz's often appeals to geometric intuition where one would like to see more precise arguments. In [1], Klaus Lamotke presents Lefschetz's study more rigorously using the modern language of topology. Deligne and Katz (1973) have extended Picard-Lefschetz theory to varieties over more general fields. The main goal of this project is to study [1].

The required prerequisites in algebraic geometry can be found in the first two chapters of Shafarevich's book [5]. The main tool from differential topology is Ehresmann's fibration theorem. The prerequisites from algebraic topology the reader can refer to [2]. In chapter 1 we collect the prerequisites, most of the results are stated without proof. In chapter 2 we see Lefschetz's Pencil and dual Varieties. Lefschetz results and Weak Lefschetz Theorem are described in chapter 3, Equivalent statements of Hard Lefschetz Theorem are discussed in chapter 4. The Picard-Lefschetz formulas and the Monodromy Theorem are discussed in chapter 5 and chapter 6 . The last chapter studies the topology in a neighborhood of a singular point of complex hypersurface.

Topology Of Complex Projective Varieties

Vishwajeet S Bhoite

April 30, 2019

Chapter 1

Preliminary Definitions and Tools

The main aim of this chapter is to introduce preliminary definitions and tools which will be used through out the report. Most of the theorems presented in this chapter are without proof. In the following section we introduce some basic properties of algebraic sets, then we introduce complex manifolds and to the end of the chapter we state some tools from Algebraic topology which will be useful in later chapters.

1.1 Affine and Projective Varieties

Let k be an algebraically closed field. We define affine n-space over k to be the set $\mathbb{A}^{n}=$ $\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in k\right\}$. Let $A=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ring of polynomials in n-variables over k. Let $T \subset A$, by zero set of T we mean $Z(T)=\left\{P \in \mathbb{A}^{n} \mid f(P)=0\right.$ for all $\left.f \in T\right\}$. We define projective N-space over k to be the set $\mathbb{P}_{N}=\mathbb{A}^{N+1} \backslash\{0\} / \sim$ where $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \sim$ $\left(\lambda a_{0}, \lambda a_{1}, \ldots, \lambda a_{n}\right)$ for all $\lambda \in k, \lambda \neq 0$. If T is any set of homogeneous polynomial in $S=k\left[x_{0}, \ldots, x_{N}\right]$ then the zero set of T is $Z(T)=\left\{P \in \mathbb{P}_{N} \mid f(P)=0\right.$ for all $\left.f \in T\right\}$. The dual projective space $\check{\mathbb{P}}_{N}$ of \mathbb{P}_{N} is the set of hyperplanes in \mathbb{P}_{N}. If $\mathbb{P}_{N}=\mathbb{P}(V)$ is a projective space associated to vector space V then $\check{\mathbb{P}}_{N}$ is the projective space associated to its dual vector space \check{V}.

Definition 1.1.1. A subset Y of \mathbb{A}^{n} (respectively \mathbb{P}_{N}) is called algebraic set, if $Y=$ $Z(T)$ for some $T \subset A$ (respectively T is subset of homogeneous polynomials of S). The
set of all algebraic sets of \mathbb{A}^{n} (respectively \mathbb{P}_{N}) form the closed sets of a topology on \mathbb{A}^{n} (respectively \mathbb{P}_{N}), called the Zariski topology.

Definition 1.1.2. Let X be a topological space, a nonempty subset Y of X is called irreducible if it cannot be written as the union of two proper closed subsets of X.

We now define affine variety and projective variety.
Definition 1.1.3. An affine variety (respectively projective variety) is an irreducible Zariski-closed subset of \mathbb{A}^{n} (respectively \mathbb{P}_{N}) in the Zariski topology. An open subset of affine variety (respectively projective variety) is called quasi - affine variety (respectively quasi - projective variety.)

To each subset Y of \mathbb{A}^{n} (respectively \mathbb{P}_{N}) we assign an ideal (respectively homogeneous ideal) in A (respectlively S) called the ideal of Y given by $I(Y)=\{f \in A \mid f(P)=$ 0 for all $P \in Y\}$ (respectively $\{f \in S \mid f$ is homogeneous $f(P)=0$ for all $P \in Y\}$). If Y is an affine (respectively projective) algebraic set then the ring $A(Y)=A / I(Y)$ (respectively $S(Y)=S / I(Y)$) is called the affine (respectively homogeneous) coordinate ring of Y.

Definition 1.1.4. If X is an algebraic set, we define the dimension of X to be $\operatorname{dim} X=$ $\sup \left\{n \mid Z_{0} \subsetneq Z_{1} \subsetneq \ldots \subsetneq Z_{n}\right.$, where each Z_{i} is irreducible Zariski - closed subset of $\left.X\right\}$.

We make a note of the fact that if Y is affine algebraic set the $\operatorname{dim}(Y)=\operatorname{dim} A(Y)$. And if Y is a projective variety with homogeneous coordinate ring $S(Y)$ then $\operatorname{dim} Y=\operatorname{dim} S(Y)-1$.

Having defined the objects in the category of varieties we now define the morphisms in the category.

Definition 1.1.5. Let Y be an quasi affine variety in \mathbb{A}^{n}. A function $f: Y \rightarrow k$ is regular at point $p \in Y$ is there is an open neighborhood U of p in Y such that $f=g / h$, where $g, h \in A$ such that h is nowhere zero on U.

Definition 1.1.6. Let Y be an quasi projective variety in \mathbb{P}_{N}. A function $f: Y \rightarrow k$ is regular at point $p \in Y$ if there is an open neighborhood U of p in Y such that $f=g / h$, where $g, h \in S$ are homogeneous polynomials of same degree such that h is nowhere zero on U.

A regular function is continuous, when k is identified with \mathbb{A}^{1} with Zariski topology. We now define the category of varieties. By a variety we mean affine, quasi-affine, projective, or quasi-projective variety. We denote by $\mathcal{O}(Y)$, the ring of regular functions on Y. If $p \in Y$ we define the local ring of p in $Y, \mathcal{O}_{p}=\{(U, f) \mid U$ is open neighborhood of p in Y and $f \in$ $\mathcal{O}(U)\} / \sim$ where $(U, f) \sim(V, g)$ if $f=g$ on $U \cap V$.

Definition 1.1.7. If X and Y are two varieties, a morphism $\varphi: X \rightarrow Y$ is a continuous map such that for every open set V of Y if $f \in \mathcal{O}(V)$ then $f \circ \varphi \in \mathcal{O}\left(\varphi^{-1}(V)\right)$.

Let $X \subset \mathbb{A}^{N}$ and $Y \subset \mathbb{A}^{m}$ be affine varieties. Then the product of X and Y in the category of varieties is $X \times Y \subset \mathbb{A}^{n+m}$ with the induced topology. The topology is not equal to product topology on general. We have $A(X \times Y)=A(X) \otimes_{k} A(Y)$ and $\operatorname{dim}(X \times Y)=$ $\operatorname{dim}(X)+\operatorname{dim}(Y)$. To define the product of projective spaces \mathbb{P}_{r} and \mathbb{P}_{s} we define a map $\psi: \mathbb{P}_{r} \times \mathbb{P}_{s} \rightarrow \mathbb{P}_{N}$ sending $\left(a_{o}, \ldots, a_{i}, \ldots, a_{r}\right) \times\left(b_{0}, \ldots, b_{j}, \ldots, b_{s}\right) \rightarrow\left(\ldots, a_{i} b_{j}, \ldots\right)$ where $N=r s+r+s . \psi$ is an embedding and image of ψ is a subvariety of \mathbb{P}_{N}. If $X \subset \mathbb{P}_{r}$ and \mathbb{P}_{s} are quasi-projective varieties then $X \times Y \subset \mathbb{P}_{r} \times \mathbb{P}_{s}$ is product of X and Y where we identify $X \times Y$ and $\mathbb{P}_{r} \times \mathbb{P}_{s}$ with image of ψ in \mathbb{P}_{N}. If X and Y are both projective then $X \times Y$ is projective.

We quote the following results without proof, the reader is referred to ch 1 of [5]
Theorem 1.1.1. A subset $X \subset \mathbb{P}_{n} \times \mathbb{P}_{m}$ is Zariski-closed if and only if it is given by a system of equations $G_{i}\left(u_{0}, \ldots, u_{n}, v_{0}, \ldots, v_{m}\right)=0(i=1, \ldots, t)$, homogeneous in each system of variables v_{i} and u_{j} separately. Every Zariski-closed subset of $\mathbb{P}_{n} \times \mathbb{A}^{m}$ is given by a system of equations $g_{i}\left(u_{0}, \ldots, u_{n}, y_{1}, \ldots, y_{m}\right)=0(i=1,2, . . t)$, homogeneous in each variables u_{0}, \ldots, u_{n}.

Theorem 1.1.2. The image of projective variety under a regular map is Zariski-closed.
Theorem 1.1.3. If $X \subset \mathbb{P}_{N}$ is a quasiprojective irreducible n-dimensional variety and Y is the zero set of m homogeneous polynomials on X and is not empty, then each of its components is of dimension atleast $n-m$.

Theorem 1.1.4. If $f: X \rightarrow Y$ is a regular mapping of irreducible varieties, $f(X)=Y$, $\operatorname{dim} X=n, \operatorname{dim} Y=m$, then $m \leq n$ and

1. $\operatorname{dim} f^{-1}(y) \geq n-m$ for every point $y \in Y$;
2. there exists a non-empty open set $U \subset Y$ such that $\operatorname{dim} f^{-1}(y)=n-m$ for $y \in U$.

Theorem 1.1.5. If $f: X \rightarrow Y$ is a regular mapping of projective varieties, $f(X)=Y$, and if Y is irreducible, and all the fibres $f^{-1}(y)$ are irreducible and are of the same dimension, then X is irreducible.

We now define singular and nonsingular points on a variety.
Definition 1.1.8. Let $Y \subset \mathbb{A}^{n}$ be an affine variety, and let $f_{1}, \ldots, f_{t} \in A=K\left[x_{1}, \ldots, x_{n}\right]$ be the set of generators for the ideal of $Y . Y$ is nonsingular at a point $P \in Y$ if the rank of the martix $\left[\left(\partial f_{i} / \partial x_{j}\right)(P)\right]$ is $n-r$, where r is the dimension of Y. Y is nonsingular if it is nonsingular at everypoint.

A noetherian local ring R with maximal ideal m and residue field $k=A / m$, is regular local ring if $\operatorname{dim}_{k} m / m^{2}=\operatorname{dim} A$.

Theorem 1.1.6. Let $Y \subset \mathbb{A}^{n}$ be an affine variety. Let $P \in Y$ be a point. Then Y is nonsingular at P if and only if the local ring \mathcal{O}_{p} is a regular local ring.

Definition 1.1.9. Let Y be any variety. Y is nonsingular at a point $P \in Y$ if the local ring \mathcal{O}_{p} is a regular local ring. Y is nonsingular if it is nonsingular at every point. Y is singular if it is not nonsingular.

Theorem 1.1.7. Let Y be a variety. Then the set of singular points of Y is a proper Zariski-closed subset of Y.

The tangent space Θ_{x} at a point $x \in X$ of a variety is defined as $\left(m_{x} / m_{x}^{2}\right)^{*}$, where m_{x} is the maximal ideal of the local ring \mathcal{O}_{x} at x. Thus $x \in X$ is non-singular if $\operatorname{dim} \Theta_{x}=\operatorname{dim} X$.

Definition 1.1.10. Subvarieties Y_{1}, \ldots, Y_{r} of a nonsingular variety X are transversal at a point $x \in \cap_{i=1}^{r} Y_{i}$ if

$$
\operatorname{codim}_{\Theta_{X, x}}\left(\cap_{i=1}^{r} \Theta_{Y_{i}, x}\right)=\sum_{i=1}^{r} \operatorname{codim}_{X}\left(Y_{i}\right)
$$

Remark. If subvarieties Y_{1}, \ldots, Y_{r} of nonsingular variety X are transversal at x then $\operatorname{dim} \Theta_{Y_{i}, x}=$ $\operatorname{dim} Y_{i}$, and $\operatorname{dim} \Theta_{\left(\cap_{i=1}^{r} Y_{i}, x\right)}=\operatorname{dim} \cap_{i=1}^{r} Y_{i}$, i.e. x is nonsingular point of each Y_{i} and $\cap_{i=1}^{r} Y_{i}$.

1.2 Some preliminaries about complex manifolds.

Definition 1.2.1. A function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$, is holomorphic at $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$ if f has a power series expansion in some open neighborhood U of a given by

$$
f(z)=\sum_{k_{1}, \ldots, k_{n}=0}^{\infty} a_{k_{1} k_{2} \ldots k_{n}}\left(z_{1}-a_{1}\right)^{k_{1}} \ldots\left(z_{n}-a_{n}\right)^{k_{n}}
$$

In particular f is hohomorphic if it is holomorphic in each variable. A map $F=\left(F_{1}, \ldots, F_{m}\right)$: $V \rightarrow \mathbb{C}^{m}, V \subset \mathbb{C}^{n}$ is holomorphic if each F_{i} is holomorphic.

Definition 1.2.2. A function F is a biholomorphic on $W \subset \mathbb{C}^{n}$ if there exists an holomorphic inverse $G: F(W) \rightarrow W$.

Theorem 1.2.1. Inverse function theorem. Let U, V be open sets of \mathbb{C}^{n} and $f: U \rightarrow V$ a holomorphic function. Suppose that $z_{0} \in U$ is such that $\operatorname{det} \mathcal{J}_{\mathbb{C}}(f)\left(z_{0}\right) \neq 0$. Then there exists an open subset U^{\prime} containing z_{0} such that $\left.f\right|_{U^{\prime}}: U^{\prime} \rightarrow f\left(U^{\prime}\right)$ is a biholomorphism.

Proof. We give the sketch of proof. The real Jacobian of f has rank $2 n$, since $\operatorname{det} \mathcal{J}_{\mathbb{R}}(f)=$ $\left|\operatorname{det} \mathcal{J}_{\mathbb{C}}(f)\right|^{2} \neq 0$. So by the real inverse function theorem, there is a local smooth inverse g. g is the required holomorphic inverse.

Now let X be a topological manifold of dimension $2 n$. A local complex chart (U, z) on X is an open subset $U \subset X$ and an homeomorphism $z: U \rightarrow V:=z(U) \subset \mathbb{C}^{n}\left(\equiv \mathbb{R}^{2 n}\right)$. Two complex charts $\left(U_{a}, z_{a}\right),\left(U_{b}, z_{b}\right)$ are compatible if the transition map $z_{b} \circ z_{a}^{-1}: z_{a}\left(U_{a} \cap U_{b}\right) \rightarrow$ $z_{b}\left(U_{a} \cap U_{b}\right)$ is holomorphic. A holomorphic atlas of X is a collection $A=\left\{\left(U_{a}, Z_{a}\right)\right\}$ of local complex charts such that $\cup_{a} U_{a}=X$ and such that all transition maps are biholomorphic. A complex analytic structure on X is a maximal holomorphic atlas.

Definition 1.2.3. A complex manifold is a topological manifold together with a complex analytic structure.

Definition 1.2.4. A function $f: X \rightarrow \mathbb{C}$ on a complex manifold X is holomorphic if for all complex charts (U, φ) the map $f \circ \varphi^{-1}: \varphi(U) \rightarrow \mathbb{C}$ is holomorphic.

Definition 1.2.5. A map $f: X \rightarrow Y$ between complex manifolds is holomorphic if for all complex charts (U, φ) of X and (V, ψ) of $Y, \psi \circ \varphi^{-1}$ is holomorphic.

We now see that our main object of study is an smooth manifold which follows from the following proposition.

Proposition 1.1. Let $X \subset \mathbb{P}^{N}$ be a non-singular complex projective variety of dimension n, then X is a complex manifold of dimension n in the usual topology.

Proof. Consider any affine open cover $X=\cup U_{i}$. We show that each U_{i} is a complex manifold, which will follow from following lemma.

Lemma 1.2.2. If Y is a nonsingular affine complex variety of dimension d in \mathbb{A}^{N}. Then Y is a complex manifold of dimension d and hence a smooth manifold of dimension $2 d$.

Proof. Let the ideal of X be generated by $f_{1}, f_{2}, \ldots, f_{t}$. Let $p=(a, b) \in Y \subset \mathbb{A}^{N}$, where $a \in \mathbb{C}^{d}$ and $b \in \mathbb{C}^{N-d}$ since p is non singular rank of the martix $\left[\left(\partial f_{i} / \partial x_{j}\right)(p)\right]$ is $k=N-d$, where d is the dimension of Y. WLOG we assume that $\operatorname{det}\left[\left(\partial f_{i} / \partial x_{j}\right)(p)\right]_{1 \leq i, j \leq k} \neq 0$. Then by implicit function theorem there exists open neighborhood $U_{1} \in \mathbb{C}^{d}$ containing a and $U_{2} \in \mathbb{C}^{k}$ containing b and a holomorphic map $g: U_{1} \rightarrow U_{2}$ such that for $\left(x_{1}, x_{2}\right) \in \mathbb{C}^{d} \times \mathbb{C}^{k}$ $f_{i}\left(x_{1}, x_{2}\right)=0$ for $1 \leq i \leq k$ if and only if $x_{2}=g\left(x_{1}\right)$. Now $p \in U_{1} \times U_{2}=$: U Then take the chart around p to be $(U \cap X, \varphi)$ where $\varphi\left(x_{1}, x_{2}\right)=x_{1}$ be the projection on first d coordinates.

Consider a holomorphic function $f: U \rightarrow \mathbb{C}, U \subset \mathbb{C}^{n}, 0 \in U$. The point 0 is critical if $D f(0)=0$. It is non-degenerate if the Hessian matrix $D^{2} f(0)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(0)\right]$ is non-singular.

Theorem 1.2.3. Morse lemma. If 0 is a non-degenerate critical point of the function f, then there exists a holomorphic change of variables $x=\varphi(y), y=\left(y_{1}, . ., y_{n}\right), \varphi(0)=0$ such that $f(\varphi(y))=f(0)+y_{1}^{2}+\ldots+y_{n}^{2}$.

1.3 Tools from algebraic topology.

We will be using singular homology with coefficients from a PID. In this section we will be stating the results from algebraic topology without proof,(see [2] for proofs)

Theorem 1.3.1. Let $f:(X, A) \rightarrow(Y, B)$ be a continuous mapping between pairs of compact Euclidean neighborhood retracts (ENR), such that $f: X \backslash A \rightarrow Y \backslash B$ is a homeomorphism.

Then f induces an isomorphism

$$
f_{*}: H_{*}(X, A) \rightarrow H_{*}(Y, B)
$$

of the relative singular homology.

We will be frequently using the homology groups of $\mathbb{C P}^{n}$, here we state them.

Theorem 1.3.2. For coefficients in an PID, R, we have,

$$
H_{p}\left(\mathbb{C P}^{n}\right)= \begin{cases}R, & \text { if } p \text { even, } 0 \leq p \leq 2 n \\ 0, & \text { otherwise }\end{cases}
$$

We now state the Universal coefficient theorem(UCT) for cohomology. Let G be a fixed abelian group. Consider a free resolution F of a abelian group H given by chain $0 \longrightarrow F_{1} \xrightarrow{f_{1}}$ $F_{0} \xrightarrow{f_{0}} H \longrightarrow 0$, with $F_{i}=0, i>1$. Here F_{0} is a free abelian group with elements of H as the generators and f_{0} is the surjective map taking each generator to itself, and $F_{1}=\operatorname{ker}\left(f_{0}\right)$ and f_{1} is inclusion. Take the dual cochain complex $\operatorname{Hom}(F, G)$ and denote the $n^{\text {th }}$ by $H^{n}(F, G)$. We define $\operatorname{Ext}(H, G):=H^{1}(F, G)$.

Theorem 1.3.3. UCT If a chain complex C of free abelian groups has homology groups $H_{n}(C)$ for each n, there is a split exact sequence

$$
0 \rightarrow \operatorname{Ext}\left(H_{n-1} C, G\right) \rightarrow H^{n}(C, G) \xrightarrow{h} \operatorname{Hom}\left(H_{n}(C), G\right) \rightarrow 0 .
$$

If H is a free abelian group we have $\operatorname{Ext}(H, G)=0$. So if $H_{n-1}(C)$ is a free abelian group then $H^{n}(C, G) \equiv \operatorname{Hom}\left(H_{n}(C), G\right)$.

Instead of applying Hom to F we apply \otimes to $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow 0$, to get the chain $F \otimes G: 0 \rightarrow F_{1} \otimes G \rightarrow F_{0} \otimes G \rightarrow 0$. We denote $H_{n}(F \otimes G)$ by $\operatorname{Tor}_{n}(F, G)$, and define $\operatorname{Tor}(F, G):=\operatorname{Tor}_{1}(F, G)$

Theorem 1.3.4. Künneth formula. For a free chain complex C (i.e. each C_{i} is free) and
an arbitrary chain complex D, there is a natural short exact sequence

$$
0 \rightarrow \bigoplus_{p+q=n} H_{p}(C) \otimes H_{q}(D) \rightarrow H_{n}(C \otimes D) \rightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}\left(H_{p}(C), H_{q}(D) \rightarrow 0\right.
$$

and this sequence splits.
Theorem 1.3.5. The topological Künneth formula. If (X, A) and (Y, B) are $C W$ pairs and R is a principal ideal domain, then there are natural short exact sequences

$$
\begin{aligned}
0 \rightarrow \bigoplus_{i}\left(H_{i}(X, A, R) \otimes_{R} H_{n-i}(Y, B ; R)\right) \rightarrow & H_{n}(X \times Y, A \times Y \cup X \times B ; R) \rightarrow \\
& \bigoplus_{i} \operatorname{Tor}_{R}\left(H_{i}(X, A ; R), H_{n-i-1}(Y, B ; R)\right) \rightarrow 0
\end{aligned}
$$

Theorem 1.3.6. Poincare Duality If M is a compact R-orientable n-manifold with fundamental class $[M] \in H_{n}(M ; R)$, then the map $D: H^{k}(M, R) \rightarrow H_{n-k}(M, R)$ defined by $D(\alpha)=[M] \cap \alpha$ is an isomorphism.

Theorem 1.3.7. Ehresmann's fibration theorem Let $f: E \rightarrow B$ be a proper submersion (i.e. the differential is a surjective linear map at all points of E). Then f is locally trivial fibration.

Theorem 1.3.8. Let M be a closed connected orientable n-manifold with boundary, let $\mu \in H_{n}(M)$ be the orientation. If coefficients from field are taken then the intersection form $\langle\rangle:, H^{k}(M ; F) \times H^{n-k}(M ; F) \rightarrow F$ is non-singular.

We now state some preliminaries results which will be used in proving Picard-Lefschetz formula. Let $f: A \rightarrow B$ be a continuous mapping and $B^{*} \subset B$ a subspace such that f fibres $E=f^{-1}\left(B^{*}\right)$ locally trivially over B^{*}. Denote $F_{y}=f^{-1}(y)$ for $y \in B$ Let $w: I=[0,1] \rightarrow B^{*}$ be a path from $a=w(0)$ to $b=w(1)$. The induced bundle $w^{*} E$ over I is trivial, that is

$$
W: F_{a} \times I \rightarrow E \subset A
$$

with the following properties:

1. $f \circ W(x, t)=w(t)$ and $W(x, 0)=x$ for $x \in F_{a}, t \in I$.
2. let $t \in I, W_{t}: F_{a} \rightarrow F_{w(t)}$ given by $W_{t}(x)=W(x, t)$ is an homeomorphism
3. For any L with $F_{a} \cup F_{b} \subset L \subset A$ the lifting W is a mapping between pairs

$$
W: F_{a} \times(I, \partial I) \rightarrow(A, L)
$$

The path w determines W upto homotopy relative to ∂I and L and determines W_{1} : $F_{a} \simeq F_{b}$ upto isotopy. Since the induced isomorphism in homology $\left(W_{1}\right)_{*}$ depends only on w, we denote

$$
w_{*}=\left(W_{1}\right)_{*}: H_{*}\left(F_{a}\right) \simeq H_{*}\left(F_{b}\right)
$$

Definition 1.3.1. If w is closed, W_{1} is called a geometric monodromy and w_{*} is called algebraic monodromy along w.

Definition 1.3.2. Let $i \in H_{1}(I, \partial I)$ be a canonical generator. The map

$$
\begin{gathered}
\tau_{w}: H_{q}\left(F_{a}\right) \rightarrow H_{q+1}\left(F_{a} \times(i, \partial I)\right) \xrightarrow{W_{*}} o H_{q+1}(A, L) \\
\tau(x)=x \times i
\end{gathered}
$$

is the extension along w.

We now list some properties of extensions

1. If $f^{-1}(\operatorname{image}(w)) \subset L$, then we have $\tau_{w}=0$.
2. Naturality. A commutative diagram

with $\varphi\left(B^{*}\right) \subset B_{1}^{*}$ and $\varphi(L) \subset L_{1}$ induces a commutative diagram

3. $\partial_{*}: H_{q+1}(A, L) \rightarrow H_{q}(L)$ denotes the connecting homomorphism, then

$$
\left(w_{*}(x)\right)-x=(-1)^{q} \partial_{*} \tau_{w}(x), \quad x \in H_{q}\left(F_{a}\right) .
$$

4. Composition. If w is a path from a to b and v is a path from b to c and if $F_{a} \cup F_{b} \cup F_{c}$ then $\tau_{v o w}=\tau_{v} \circ w_{*}+\tau_{w}$ and $(v \circ)_{*}=v_{*} \circ w_{*}$.

We will also be using relative version: Let $A^{\prime} \subset A$ be a subspace, denote $E^{\prime}=E \cap A^{\prime}$ and $F_{y}^{\prime}=F_{y} \cap A^{\prime}$. Assume that f fibres the pair $\left(E, E^{\prime}\right)$ locally trivially over B^{*} and F_{a}^{\prime} is a strong deformation retract of A^{\prime}. Then $W:\left(F_{a}, F_{a}^{\prime}\right) \times(I, \partial I)=\left(F_{a} \times I, F_{a} \times \partial I \cup F_{a}^{\prime} \times I\right) \rightarrow\left(A, L \cup A^{\prime}\right)$ and the relative extension is defined

$$
\begin{gathered}
\tau_{w}: H_{q}\left(F, F_{a}^{\prime}\right) \rightarrow H_{q+1}\left(\left(F_{a}, F_{a}^{\prime}\right) \times(I, \partial I)\right) \xrightarrow{W_{*}^{*}} H_{q+1}\left(A, L \cup A^{\prime}\right) \\
\tau(x)=x \times i
\end{gathered}
$$

The list of properties mentioned above are also true for the relative case.

Chapter 2

The modification of a projective variety with respect to a pencil of hyperplanes.

2.1 Pencil of hyperplanes and the Veronese embedding.

Let \mathbb{P}_{N} denote N - dimensional complex projective space and $\check{\mathbb{P}}_{N}$ be its dual projective space. A line G in $\check{\mathbb{P}}_{N}$ is called a pencil of hyperplanes in \mathbb{P}_{N}. We use the notation $H_{y} \subset \mathbb{P}_{N}$ if $y \in \check{\mathbb{P}}_{N}$. Hence a pencil is denoted by $\left\{H_{t}\right\}_{t \in G}$. Let α and β represent two distinct points in G, then we have $G=\left\{a \alpha+b \beta \mid(a, b) \in \mathbb{P}_{1}\right\}$. If $p \in H_{\alpha} \cap H_{\beta}$, then it lies in every hyperplane of the pencil. We define the axis of the pencil to be $A=H_{\alpha} \cap H_{\beta}=\cap_{t \in G} H_{t}$. Thus a pencil in \mathbb{P}_{N} consists of all hyperplanes which contain a fixed $(N-2)$-dimensional projective linear subspace A.

Let $X \subset \mathbb{P}_{N}$ be a closed, irreducible, nonsingular variety of dimension n. We intersect the variety by a pencil $\left\{H_{t}\right\}_{t \in G}$ of hyperplanes,

$$
X_{t}=X \cap H_{t}, \quad t \in G
$$

so that we have

$$
X=\cup_{t \in G} X_{t}
$$

is the union of hyperplane sections X_{t}. Let $X^{\prime}=X \cap A$. We observe that $X \backslash X^{\prime}$ can be looked at as the fibration over G with fibres $X_{t} \backslash X^{\prime}$. We modify X along X^{\prime} to get a new variety Y and a map $f: Y \rightarrow G$ such that the fibres $f^{-1}(t)$ are the whole of hyperplane sections X_{t}. We define the modification

$$
\begin{equation*}
Y=\left\{(x, t) \in X \times G \mid x \in H_{t}\right\} \tag{2.1.1}
\end{equation*}
$$

We observe that $Y=\Gamma \cap(X \times G)$, where $\Gamma=\left\{(x, y) \mid(x, y) \in \mathbb{P}_{N} \times \check{\mathbb{P}}_{N}\right.$ and $\left.x \in H_{y}\right\} . \Gamma$ is called the universal hyperplane. To see Y is a variety it is enough to see Γ is a variety. Let $\left(z_{0}, z_{1}, \ldots, z_{N}\right)$ represent the coordinates of arbitrary point in \mathbb{C}^{N+1} with respect to standard basis, and let $\left(w_{0}, w_{1}, \ldots, w_{N}\right)$ be the coordinates of the dual of \mathbb{C}^{N+1} in the dual basis. Now, let $x=\left(a_{0}, a_{1}, \ldots, a_{N}\right)$ and $y=\left(b_{0}, b_{1}, \ldots, b_{N}\right)$, we have,

$$
\begin{aligned}
(x, y) \in \Gamma & \text { iff } x \in H_{y} \\
& \text { iff } y(x)=0 \\
& \text { iff }\left(\sum b_{i} e_{i} *\right)\left(\sum a_{i} e_{i}\right)=0 \\
& \text { iff } \sum b_{i} a_{i}=0 \\
& \text { iff }(x, y) \in Z\left(z_{0} w_{0}+z_{1} w_{1}+\ldots+z_{n} w_{n}=0\right)
\end{aligned}
$$

by $1.1 .1 \Gamma$ is a variety.
We now have two projections

$$
\begin{equation*}
X \stackrel{p}{\leftarrow} Y \stackrel{f}{\rightarrow} G . \tag{2.1.2}
\end{equation*}
$$

Let $Y^{\prime}:=p^{-1}\left(X^{\prime}\right)=X^{\prime} \times G$. The complement is mapped isomorphically

$$
p: Y \backslash Y^{\prime} \simeq X \backslash X^{\prime}
$$

and each fibre of f is isomorphic to corresponding hyperplane section,

$$
p: Y_{t}=f^{-1}(t) \simeq X_{t}, \quad t \in G
$$

2.2 Veronese Embedding

We now study Veronese embedding of projective spaces. Originally Lefschetz studied more general linear systems of hypersurfaces of X, and not just pencils $\left\{X_{t}\right\}_{t \in G}$ of hyperplane sections. Veronese embedding justifies that restricting to hyperplane sections does not diminish any generality.

Let $S=\left\{x_{0}^{i_{1}} \ldots x_{N}^{i_{N}} \mid i_{0}+i_{1}+\ldots+i_{N}=d\right\}$ be the set of monomials of degree d in $N+1$ variables. The number of elements in S is equal to $\binom{N+d}{d}$. Thus the set of all homogeneous polynomials of degree d is a vector space of dimension equal to $|S|$. Let $M=|S|-1$. Consider \mathbb{P}_{M} whose homogeneous coordinates are represented by $v_{i_{0} \ldots i_{N}}$ such that $i_{0}+i_{1}+\ldots+i_{N}=$ d and $i_{j} \geq 0$. The Veronese embedding of degree d is defined to be $v_{d}: \mathbb{P}_{N} \rightarrow \mathbb{P}_{M}$ by $\left(x_{0}, \ldots, x_{N}\right) \mapsto\left(\ldots, v_{i_{0} \ldots, i_{N}}, \ldots\right)$ where $v_{i_{0} \ldots, i_{N}}=x_{0}^{i_{1}} \ldots, x_{N}^{i_{N}}$.

We now see that $V_{d}\left(\mathbb{P}_{N}\right)=Z\left\{v_{i_{0} \ldots, i_{N}} v_{j_{0} \ldots, j_{N}}-v_{k_{0} \ldots, k_{N}} v_{l_{0} \ldots l_{N}}=0 \mid i_{0}+j_{0}=k_{0}+l_{0}, \ldots, i_{N}+\right.$ $\left.j_{N}=k_{N}+L_{N}\right\}$ Clearly any element of $V_{d}\left(\mathbb{P}_{N}\right)$ satisfies all the equation in the set. To see the converse we first note that for any point in the zero set of equations atleast one of the coordinate of the form $v_{0 \ldots d . . .0}$ corresponding to the monomial u_{i}^{d} is nonzero. Let U_{i} be the set of points such that $v_{0 \ldots d \ldots 0} \neq 0$. On U_{i} we define the inverse φ_{i} of v_{d} by $\varphi_{i}(z)=\left(z_{1 \ldots d-1 \ldots 0}, \ldots, z_{0 \ldots d \ldots 0}, \ldots, z_{0 \ldots d-1 \ldots 1}\right)$ these maps agree on the intersections because v_{d} is injective. Hence $v_{d}\left(\mathbb{P}_{N}\right)$ is defined by the equations above and v_{d} is an isomorphic embedding.

The importance of Veronese embedding is that if $F=\sum a_{i_{0} \ldots i_{n}} x_{0}^{i_{0}} \ldots x_{N}^{i_{N}}$ determines a degree d hypersurface $H \subset \mathbb{P}_{N}$, then $v_{d}(H) \subset v_{d}\left(\mathbb{P}_{N}\right) \subset \mathbb{P}_{M}$ is the intersection of $v_{d}\left(\mathbb{P}_{N}\right)$ with a corresponding hyperplane $H_{F} \subset \mathbb{P}_{M}$. Thus the Veronese embedding allows to reduce the study of problems concerning hypersurfaces to hyperplanes.

We have $v_{d}(F)=V\left(\mathbb{P}_{N}\right) \cap H_{F}$, the point $x \in F$ is nonsingular if H_{F} intersects $v_{d}\left(\mathbb{P}_{N}\right)$ at $v_{d}(x)$ transversally. If $X \subset \mathbb{P}_{N}$ is Zariski-closed and let $x \in X \cap F$ is non singular of both X and F, then F intersects X at x transversally, then H_{F} intersects $v_{d}(X)$ at $v(x)$ transversally.

2.3 Duality Theorem

We now study the dual variety of a projective variety X. We allow X to have singular points. We define the dual variety as $\check{X} \subset \check{\mathbb{P}}_{N}$ as the closure of set of all hyperplanes tangent to X. An hyperplane $H \subset \mathbb{P}_{N}$ is tangent to X if $T_{x} X \subset H$ for some nonsingular point $x \in X$. Thus
 X is a closed set.

Theorem 2.3.1. The dual of X is closed irreducible subvariety of atmost dimension $N-1$.

Proof. Define $V_{X}^{\prime}=\left\{(x, y) \in \mathbb{P}_{N} \times \check{\mathbb{P}}_{N} \mid x \in X_{e}\right.$ and H_{y} is tangent to X at $\left.x\right\}$ where $X_{e} \subset X$ is non-empty open subset of nonsingular points of X. Let π_{1} and π_{2} be first and second projections respectively. A typical fibre of first projection is $\pi_{1}^{-1}(a)=\left\{(a, y) \mid H_{y}\right.$ is tangent to X at a . This fibre is isomorphic to $\check{\mathbb{P}}\left(T_{a}\left(\mathbb{P}_{N}\right) / T_{a} X\right)$ and hence has dimension $N-n-1$. By 1.1.5 V_{X}^{\prime} is irreducible and has dimension $N-1$. Thus the closure V_{X} of V_{X}^{\prime} also has dimension $N-1$. The first projection maps V_{X} onto X since projection is closed map 1.1.2. We observe that $\check{X}=\pi_{2}\left(V_{X}\right)$, since projection is both continuous and closed hence $\pi_{2} \overline{\left(V_{X}^{\prime}\right)}=\overline{\pi_{2}\left(V_{X}^{\prime}\right)}$. The dimension of \check{X} is atmost $N-1$ by 1.1.4.

The set V_{X} as in the proof above is called the tangent hyperplane bundle of X.
Lemma 2.3.2. Let $X \subset \mathbb{P}_{N}$ be a be a closed irreducible variety of dimension n, and let H be a hyperplane, $x \in X \cap H$ then X intersects H at x transversally if and only if $X_{H}=X \cap H$ is smooth at x.

Proof. We have $T_{x}\left(X_{H}\right)=T_{x}(X) \cap T_{x}(H)$ and $T_{x}(X) \not \subset T_{x} H$ since the intersection is transversal. So we have $\operatorname{dim} T_{x} X_{H}=n-1$. Conversely assume X to be affine and let $I(Y)=\left(f_{1}, f_{2}, \ldots, f_{t}\right)$ then the matrix $\left[\left(\partial f_{i} / \partial x_{j}\right)(P)\right]$ has rank $N-n$, now since X_{H} is smooth at x the jacobian of X_{H} has rank $N-n+1$, which implies gradH is linearly independent of span $\left(\left(\partial f_{i} / \partial x_{j}\right)(P)\right)$. We also have $T_{x} X=\cap T_{x} Z\left(f_{i}\right)$. If the intersection of X and H were not transversal then $\cap T_{x} Z\left(f_{i}\right) \subset T_{x} H$ which implies gradH is in orthogonal complement of $T_{x} X$ and hence is in the span of $\left(\partial f_{i} / \partial x_{j}\right)(P)$, a contradiction.

We now study the duality theorem which gives relation between tangent hyperplane
bundle of X and \check{X}. Towards that we make some construction. Define

$$
\begin{equation*}
W=\left\{(x, y) \in \mathbb{P}_{N} \times \check{\mathbb{P}}_{N} \mid x \in X \cap H_{y}\right\} . \tag{2.3.1}
\end{equation*}
$$

We observe that $W=\Gamma \cap\left(X \times \check{\mathbb{P}}_{N}\right)$ where Γ is the universal hyperplane defined above and hence W is a variety. Let $p_{1}: W \rightarrow X$ be first projection, a fibre of a point is $p_{1}^{-1}(x)=$ $\left\{(x, y) \mid x \in H_{y}\right\}$. Thus all fibres are irreducible and have same dimension equal to $N-1$. Thus by 1.1.5 W is irreducible. By 1.1.4 there exist $x \in X$ such that $\operatorname{dim}^{-1}(x)=\operatorname{dim} W-\operatorname{dim} X$, hence W has $N+n-1$ dimensions. We observe that $V_{X} \subset W$ and $\pi_{1}=p_{1} \mid V_{X}$. The open set of simple points is $W_{e}=p_{1}^{-1}\left(X_{e}\right)$. For a simple point $(c, b) \in W$ the second projection p_{2} has maximal rank if and only if H_{b} intersects X at c transversally.

Since if p_{2} has maximal rank at (c, b) then $p_{2}^{-1}(b)$ is smooth, which is isomorphic to X_{b} and hence by the lemma above H_{b} intersects X at c transversally. Conversely we have $T_{c}\left(H_{b}\right)=$ $T_{(c, b)}\left(p_{2}^{-1}\left(p_{2}(c, b)\right)\right)=\operatorname{ker} T p_{2}(c, b)$ has dimension $n-1$ which implies p_{2} has maximal rank. As a result V_{X}^{\prime} is the set of simple points of W which are critical with respect to p_{2}.

Theorem 2.3.3 (Duality Theorem). The tangent hyperplane bundle of X and \check{X} coincide

$$
V_{X}=V_{\check{X}} \text { and hence } \check{X}=X
$$

Proof. Consider the set $U=\left\{(c, b)\left|c \in X_{e}, b \in \check{X},(c, b) \in V_{X}, \pi_{2}=p_{2}\right| V_{X}\right.$ has maximal rank $(=$ $\operatorname{dim} \check{X})\} . U$ is open and nonempty subset of V_{X}. We prove $U \subset V_{\check{X}}$ and irreducibility of V_{X} will imply that $V_{X} \subset V_{\check{X}}$ and since $\operatorname{dim} V_{X}=\operatorname{dim} V_{\check{X}}$ we will get $V_{X}=V_{\tilde{X}}$. Let $(c, b) \in U$ then $\{c\} \times{ }_{c} H \subset W$ where ${ }_{c} H \subset \check{\mathbb{P}}_{N}$ is the hyperplane corresponding to c. Thus $T_{(c, b)}\left(\{c\} \times{ }_{c} H\right) \subset T_{(c, b)} W$ which implies

$$
T_{p_{2}}\left(T_{(c, b)}\left(\{c\} \times_{c} H\right)\right) \subset T_{p_{2}}\left(T_{(c, b)} W\right) .
$$

Now since p_{2} maps $\{c\} \times{ }_{c} H$ isomorphically onto ${ }_{c} H$ we have $T_{p_{2}}\left(T_{(c, b)}\{c\} \times{ }_{c} H\right)=T_{b}\left({ }_{c} H\right)$. Since at $(c, b), p_{2}$ has rank less than N it must be $N-1$. We have

$$
T_{p_{2}}\left(T_{c, b} W\right)=T_{b}\left({ }_{c} H\right) .
$$

We now observe that $T_{(c, b)} V_{X} \subset T_{(c, b)} W$ implies that

$$
T \pi_{2}\left(T_{(c, b)} V_{X}\right) \subset T_{p_{2}}\left(T_{(c, b)} W\right)=T_{b}\left({ }_{c} H\right)
$$

and since $\pi_{2}=p_{2} \mid V_{X}$ has maximal rank $=\operatorname{dim} \check{X}$ at (c, b), we have

$$
T_{b} \check{X}=T \pi_{2}\left(T_{(c, b)} V_{X}\right) \subset T_{b}\left({ }_{c} H\right) .
$$

Hence ${ }_{c} H$ is tangent to \check{X} at b and thus we get $(c, b) \in V_{\check{X}}$.

We now see an application of Veronese embedding.
Proposition 2.1. All smooth hypersurfaces of \mathbb{P}_{N} which have same degree d is diffeomorphic to one another.

Proof. Let $X \subset \mathbb{P}_{N}$ be smooth, consider $p_{2}: W \backslash p_{2}^{-1}(\check{X}) \rightarrow \check{\mathbb{P}}_{N} \backslash \check{X}$ is a proper mapping which has a maximal rank $=N$ everywhere. Therefore $W \backslash p_{2}^{-1}(\tilde{X})$ is locally trivial fibre bundle over $\mathbb{P}_{N} \backslash \check{X}$ by Ehresmann's fibration theorem. Since $\check{\mathbb{P}} \backslash \check{X}$ is path connected all fibres (i.e. all transversal hyperplane sections X_{y} of X) are diffeomorphic to one another. If this is applied to the Veronese variety $X=v\left(\mathbb{P}_{N}\right)$ we get the desired result.

2.4 Lefschetz Pencil.

In this section we define special type of pencils called Lefschetz pencils and see their existence. We fix X to be irreducible, nonsingular projective variety of dimension n. We define class of X to be r if \check{X} is a hypersurface of degree $r>0$, and 0 if $\operatorname{dim} \check{X} \leq N-2$.

Definition 2.4.1. A Lefschetz pencil on $X \subset \mathbb{P}_{N}$ is a pencil determined by a projective line $G \subset \check{\mathbb{P}}_{N}$ with the following properties

1. The axis A of the pencil intersects X transversally.
2. The modification Y of X along $X^{\prime}=X \cap A$ is irreducible and non-singular.
3. The projection $f: Y \rightarrow G$ has $r=$ class X critical values and the same number of critical points each of which is non-degenerate.

Proposition 2.2. Let $b \in \check{\mathbb{P}}_{N} \backslash \check{X}$ (i.e. H_{b} intersects X transversally). Let E be the ($N-1$)dimensional space of all projective lines in $\check{\mathbb{P}}_{N}$ through b. If class $X=0$ the lines which do not meet \check{X} form a non-empty open subset of E. If class $X=r>0$ the lines which avoid the singular set of \check{X} and intersect \check{X} transversally form a non-empty open subset of E. For a line G in this set the intersection $G \cap \check{X}$ consists of $r=$ class X many points.

Proof. We consider the projection $p: \check{X} \rightarrow E$ with centre $b, p(y)=$ line through b and y. Now $p(\check{X})$ is a closed subset of E with $\operatorname{dim} p(\check{X}) \leq \operatorname{dim} \check{X}$, since image of projective variety under a morphism is closed. If class $X=0$ the required open set is $E \backslash p(\bar{X})$. If dimension $\check{X}=N-1$ the subset $C \subset \check{X}$ consisting of singular points of \check{X} and simple points y of \check{X} where $p(y)$ is not transversal to \check{X} is proper and closed, and since \check{X} is irreducible $\operatorname{dim} C \leq N-2$. The required open set is $E \backslash p(C)$.

We now prove the existence of Lefschetz pencil on X. By 2.2 there exists a projective line G which intersects \check{X} transversally and avoids the singular set (for class $X=0$ this means $G \cap \check{X}=\emptyset$.) We prove that the pencil $\left\{H_{t}\right\}_{t \in G}$ with axis A is a Lefschetz pencil in the following propositions.

Remark. If class $X>0$ and $b \in G \cap \check{X} \subset \check{X}_{e}$, there is exactly one point $c \in X$ such that $(c, b) \in V=V_{X}=V_{\tilde{X}}$, because $V_{\check{X}}^{\prime}$ is mapped isomorphically onto \check{X}_{e} by π_{2}. We have

$$
\begin{equation*}
T_{b}\left({ }_{c} H\right)=\left(T p_{2}\right)\left(T_{(c, b)} W\right)=\left(T \pi_{2}\right)\left(T_{(c, b)} V\right)=T_{b} \check{X} \tag{2.4.1}
\end{equation*}
$$

Proposition 2.3. The axis A intersects X transversally, and hence $X^{\prime}=X \cap A$ and $Y^{\prime}=$ $p^{-1}\left(X^{\prime}\right)$ are non-singular and have dimension $n-2$ and $n-1$ respectively.

Proof. We observe that $Y \subset W$ where W is as defined above, and $Y=p_{2}^{-1}(G)$ is modification of X along X^{\prime} and $f=p_{2} \mid Y: Y \rightarrow G$. If class $X=0, G \cap \tilde{X}=\emptyset$, and all hyperplanes of the pencil $\left\{H_{t}\right\}_{t \in G}$ intersect X transversally and hence A intersects X transversally since if $T_{x} X \subset T_{x} A$ then $T_{x} X \subset T_{x} H_{t}$ for all hyperplanes H_{t} a contradiction, and if $T_{x} X \cap T_{x} A$ is codimension one in $T_{x} X$ say $T_{x} X=\left(T_{x} X \cap T_{x} A\right)+M$ then $T_{x} X$ is contained in the hyperplane $T_{x} A+M$. Now let class $X>0$, now if A did not intersect X transversally, we get a hyperplane H_{b} tangent to X at a point $c \in A$ i.e. $(c, b) \in V$. Now $c \in A \subset H_{b}$ dualizes to $b \in G \subset{ }_{c} H$. Since G intersects \check{X} transversally, ${ }_{c} H$ also does, which means $(c, b) \notin V$ a contradiction.

Now since A intersects X transversally we have $N-\operatorname{dim} X^{\prime}=\operatorname{codim} X+\operatorname{codim} A$ and hence $\operatorname{dim} X^{\prime}=n-2$ which implies $\operatorname{dim} Y^{\prime}=n-1$.

Lemma 2.4.1. The projection $p_{2}: W \rightarrow \check{\mathbb{P}}_{N}$ is transversal to G, i.e if $(c, b) \in W$ and $b \in G$ then $T_{b} \check{\mathbb{P}}_{N}=T_{b} G+\left(T p_{2}\right)\left(T_{(c, b)} W\right)$.

Proof. If p_{2} has rank N at $(c, b), T_{b} \check{\mathbb{P}}_{N}=\left(T p_{2}\right)\left(T_{(c, b)} W\right)$, else $(c, b) \in V$ and hence $T_{b} \check{X}=$ $\left(T p_{2}\right)\left(T_{(c, b)} W\right)$ by 2.4, and the lemma is proved since G intersects \check{X} transversally.

Proposition 2.4. The modification Y of X along X^{\prime} is irreducible and non-singular.

Proof. Since p_{2} is transversal to $G, Y=p_{2}^{-1}(G)$ is a submanifold of W of dimension n, and hence is nonsingular. Now since X is irreducible $X \backslash X^{\prime}$ being open set of X is irreducible, which implies $Y \backslash Y^{\prime}$ being isomorphic to $X \backslash X^{\prime}$ is irreducible. $\overline{Y \backslash Y^{\prime}}$ is irreducible component of Y, now any other irreducible component T of Y must be contained in Y^{\prime} or else $T=$ $T \cap \overline{Y \backslash Y^{\prime}} \cup T \cap Y^{\prime}$ would be reducible. Now since every irreducible component of Y has dimension n and cannot be contained in Y^{\prime}.

Proposition 2.5. The projection $f: Y \rightarrow G$ has $r=$ class X critical values, namely the points of $\check{X} \cap G$. There are same number of critical points.

Proof. Let $(c, b) \in Y$, we have $(T f)\left(T_{(c, b)} Y\right)=\left(T p_{2}\right)\left(T_{(c, b)} W\right) \cap T_{b} G$. Now if $b \in G \backslash X$ then $(c, b) \notin V$, and by 2.4 we have $\left(T p_{2}\right)\left(T_{(c, b)} W\right)=T_{b} \check{\mathbb{P}}_{N}$ and hence f maximal rank 1 at (c, b). If $b \in G \cap \check{X}$ then $(c, b) \in V$ and again by 2.4 we have $\left(T p_{2}\right)\left(T_{(c, b)} W\right)=T_{b} \check{X}$. And since $G \cap \check{X}$ transversally and hence (c, b) is critical point of f. By 2.4 there are no two critical points in same fibre of f.

Proposition 2.6. Every critical point of $f: Y \rightarrow G$ is non-degenerate.

Proof. Let $(c, b) \in V$ be a critical point of f. Choose projective coordinates of $\left(x_{0}: \ldots: x_{N}\right)$ of \mathbb{P}_{N} and dual coordinates $\left(y_{0}: \ldots y_{N}\right)$ of $\check{\mathbb{P}}_{N}$ so that $b=(0: \ldots: 0: 1)$ and $c=(1: 0: \ldots, 0)$ and G is given by $y_{1}=\ldots=y_{N-1}=0$. The first projection fibres locally trivially with the explicit trivialization over $U=\left\{x \in X \mid x_{0} \neq 0\right\}$ given by

$$
U \times \check{\mathbb{P}}_{N-1} \rightarrow p_{1}^{-1}(U)
$$

$$
(x, z) \rightarrow\left(x,\left(-\sum_{i=1}^{N} x_{i} z_{i}: x_{0} z_{1}: \ldots: x_{0} z_{N}\right)\right)
$$

where $z=\left(z_{1}: \ldots: z_{N}\right) \in \check{\mathbb{P}}_{N}$. Let $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be holomorphic coordinates around c in X and $\zeta_{1}=\frac{z_{1}}{z_{N}}, \ldots, \zeta_{N-1}=\frac{z_{N-1}}{z_{N}}$ be affine coordinates of \mathbb{P}_{N-1} then w have holomorphic coordinates of W in a neighborhood of (c, b) is $\left(t_{1}, \ldots, t_{n}, \zeta_{1}, \ldots, \zeta_{N-1}\right)$. So now we have $p_{2}=\left(g(t, \zeta), \zeta_{1}, \ldots, \zeta_{N-1}\right)$ and $f: Y \rightarrow G$ is given by $f(t)=g(t, 0)$. Now

$$
\operatorname{Jac}\left(p_{2}\right)=\left[\begin{array}{cccccc}
\frac{\partial g}{\partial t_{1}} & \cdots & \frac{\partial g}{\partial t_{n}} & * & * & * \\
0 & \cdots & 0 & 1 & & \\
\cdots & \cdots & \cdots & & \ddots & \\
0 & \cdots & 0 & & & 1
\end{array}\right]
$$

Now V is given by $\frac{\partial g}{\partial t_{1}}=\frac{\partial g}{\partial t_{2}}=\ldots=\frac{\partial g}{\partial t_{n}}=0$. Therefore the Jacobian of the defining equations together with the Jacobian of p_{2} must have rank $N+n-1$ The big matrix

$$
\operatorname{Jac}\left(p_{2}\right)=\left[\begin{array}{cccccc}
\frac{\partial^{2} g}{\partial t_{1}^{2}} & \cdots & \frac{\partial^{2} g}{\partial t_{1} \partial t_{n}} & * & * & * \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} g}{\partial t_{n} \partial t_{1}} & \cdots & \frac{\partial^{2} g}{\partial t_{n}^{2}} & * & * & * \\
0 & \cdots & 0 & * & * & * \\
0 & \cdots & 0 & 1 & & \\
\cdots & \cdots & \cdots & & \ddots & \\
0 & \cdots & 0 & & & 1
\end{array}\right]
$$

It has rank $N+n-1$ if and only if the rank of the hessian matrix of the second derivatives of f has maximal rank n.

Chapter 3

Lefschetz's Theorems

In this chapter we will see Lefschetz results. The main results studied is Lefschetz's famous theorem on homology of hyperplane sections 3.2.1 and Weak Lefschetz Theorem 3.3.1

3.1 Main lemma.

We first prove two important lemmas 3.1.1 and 3.1.2.
Let $p: Y \rightarrow X$ be modification of X along X^{\prime} as defined in 2.1.1. Since $Y^{\prime}=X^{\prime} \times G$ we have

$$
H_{q}\left(Y^{\prime}\right)=H_{q}\left(X^{\prime} \times G\right)
$$

By Künneth formula 1.3.4 we have

$$
H_{q}\left(X^{\prime} \times G\right) \simeq H_{q}\left(X^{\prime}\right) \otimes H_{0}(G) \oplus H_{q-2}\left(X^{\prime}\right) \otimes H_{2}(G)
$$

and by and 1.3 .2 we get

$$
H_{q}\left(X^{\prime} \times G\right) \simeq H_{q}\left(X^{\prime}\right) \oplus H_{q-2}\left(X^{\prime}\right)
$$

Using the inclusion $Y^{\prime} \subset Y$ there is a cannonical homomorphism $\kappa: H_{q-2}\left(X^{\prime}\right) \rightarrow H_{q}(Y)$.
Lemma 3.1.1. The sequence $0 \rightarrow H_{q-2}\left(X^{\prime}\right) \xrightarrow{\kappa} H_{q}(Y) \xrightarrow{p_{*}} H_{q}(X) \rightarrow 0$ is split exact se-
quence.

Proof. We first show that the sequence splits by by producing a right inverse of p_{*}. Let $x \in H_{q}(X)$ then we have $x=u \cap[X]$ where $u \in H^{2 n-q}(X)$ is Poincaré dual of x. Then we define the inverse $s: H_{q}(X) \rightarrow H_{q}(Y)$ by $s(x)=p^{*}(u) \cap[Y] \in H_{q}(Y)$ and $p(s(x))=$ $p_{*}\left(p^{*}(u) \cap[Y]\right)=u \cap p_{*}[Y]=u \cap[X]=x$. We use long exact sequences of $\left(Y, Y^{\prime}\right)$ and $\left(X, X^{\prime}\right)$, by excision theorem 1.3.1 p_{*}^{\prime} is an isomorphism, exactness follows by diagram chasing.

Let $f: Y \rightarrow G$ be a holomorphic mapping between an n-dimensional compact complex manifold Y and a projective line G, so that f has r critical values and the same number of critical points each of which is non-degenerate. Let x_{1}, \ldots, x_{r} be the critical points of f and t_{1}, \ldots, t_{r} be the corresponding critical values. We decompose G into two closed hemisphere D_{+}and D_{-}such that all the critical values are in the interior of D_{+}. We denote $G=D_{+} \cup D_{-}$, $S^{1}=D_{+} \cap D_{-}, Y_{+}=f^{-1}\left(D_{+}\right), Y_{-}=f^{-1}\left(D_{-}\right)$, and $Y_{0}=f^{-1}\left(S^{1}\right)$. Choose a point $b \in S^{1}$.

Lemma 3.1.2. Main lemma

$$
H_{q}\left(Y_{+}, Y_{b}\right)= \begin{cases}0 & \text { if } q \neq n \\ \text { free of rank } r & \text { otherwise } .\end{cases}
$$

Proof. We identify D_{+}with closed unit in \mathbb{C} by choosing suitable holomorphic coordinates that b corresponds to 1 . We now choose small disks D_{i} with centre t_{i} for each critical value and radius ρ are chosen so that $D_{i} \cap D_{j}=\emptyset$ for $i \neq j$, and each $D_{i}, i=1,2, \ldots r$ is contained in D. See figure 3.1.2.

The lemma is proved in several steps
Step 1- Localization in the base space:

Let

$$
T_{i}=f^{-1}\left(D_{i}\right) \text { and } F_{i}=f^{-1}\left(t_{i}+\rho\right) .
$$

Fig. 1

Figure 3.1: Isolating the critical points.

We first localize in the base space to reduce the investigation of $\left(Y_{+}, Y_{b}\right)$ locally to (T_{i}, F_{i}) as follows: Let l_{i} be a smooth interval from b to $t_{i}+\rho$. We denote

$$
l=\bigcup_{i=1}^{r} l_{i} \text { and } k=l \bigcup_{i=1}^{r} D_{i} .
$$

We choose l_{i} to be disjoint from each other so that l can be contracted to b, and D_{+}can be contracted to k.
claim 1. The fibre Y_{b} is strong deformation retract of $L=f^{-1}(l)$ and $K=f^{-1}(k)$ is a strong deformation retract Y_{+}. Hence we get

$$
H_{*}\left(Y_{+}, Y_{b}\right) \simeq H_{*}\left(Y_{+}, L\right) \simeq H_{*}(K, L)
$$

Proof. We use Ehresmann's fibration theorem 1.3.7. The map $f: Y_{+} \backslash f^{-1}\left\{t_{1}, \ldots, t_{r}\right\} \rightarrow$ $D_{+} \backslash\left\{t_{1}, \ldots, t_{r}\right\}$ is a \mathcal{C}^{∞} locally trivial fibre bundle. Now by homotopy covering theorem, the contraction of l to b can be lifted so that L deformation retracts to Y_{b}. Similarly we lift the contraction $D_{+} \backslash\left\{t_{1}, \ldots, t_{r}\right\}$ to $l \cup \bigcup_{i=1}^{r}\left(D_{i} \backslash t_{i}\right)$ so that $L \cup \bigcup_{i=1}^{r}\left(T_{i} \backslash f^{-1}\left(t_{i}\right)\right)$. Since t_{i} are the interior points of k the singular fibres can be filled in so that K is a deformation retract of Y_{+}.
claim 2.

$$
H_{*}\left(Y_{+}, Y_{b}\right) \simeq H_{*}(K, L) \simeq \bigoplus_{i=1}^{r} H_{*}\left(T_{i}, F_{i}\right)
$$

Proof. We observe that $K \backslash L=f^{-1}(k) \backslash f^{-1}(l)=\bigcup_{i=1}^{r} T_{i} \backslash \bigcup_{i=1}^{r} F_{i}$. Hence the inclusion

$$
\left(\bigcup_{i=1}^{r} T_{i}, \bigcup_{i=1}^{r} F_{i}\right) \hookrightarrow(K, L)
$$

is an excision and by 1.3.1 the claim follows.

Step 2- Localization in the total space:
Let

$$
T=T_{i} \cap B \text { and } F=F_{i} \cap B .
$$

We now localize in the total space and reduce the investigation of $\left(T_{i}, F_{i}\right)$ to (T, F)

By morse lemma 1.2 .3 we get a holomorphic coordinate chart $\left(U, \psi=\left(z_{1}, \ldots, z_{n}\right)\right)$ centered at x_{i} such that

$$
f(z)=t_{i}+z_{1}^{2}+\ldots+z_{n}^{2} .
$$

Let ϵ be small enough so that

$$
B=\left\{z \in \mathbb{C}^{n} \mid\|z\|<\epsilon\right\}
$$

is subset of $\psi(U)$. We denote $\psi^{-1}(B)$ again by B. We shrink radius ρ of D_{i} so that $\rho<\epsilon^{2}$ to get $D_{i} \subset f(B)$. see 3.1.2.
$\operatorname{claim} 3 . H_{*}(T, F) \simeq H_{*}\left(T_{i}, f_{i}\right)$.

Proof. Let $\partial B=\{z \in B \mid\|z\|=\epsilon\}$, and let $T^{\prime}=T \cap \partial B$ and $F^{\prime}=F \cap \partial B$. We consider

The bottom line is a excision because $T \backslash\left(T^{\prime} \cup F\right)=T_{i} \backslash\left(\overline{T_{i} \backslash B} \cup F_{i}\right)$. Now $F_{i} \backslash \stackrel{\circ}{B}$ is strong deformation retract of $T_{i} \backslash \stackrel{\circ}{B}$ and F^{\prime} is strong deformation retract of T^{\prime} because f has maximal rank 2 of smooth manifolds on $T_{i} \backslash \stackrel{\circ}{B}$ and hence be Ehresmann's fibration theorem 1.3.7 we have $\left(T_{i} \backslash \stackrel{\circ}{B}, \partial T\right)$ diffeomorphic to $\left(F_{i} \backslash \stackrel{\circ}{B}, \partial F\right) \times D_{i}$, and D_{i} can be contracted to $t_{i}+\rho$. Thus the vertical lines have the same homology groups, completing the proof of the claim.

Step 3- Explicit calculation:

We will now use explicit coordinate description to calculate the homology groups of the pair (T, F). We have

$$
\begin{gather*}
T=\left\{\left.z \in \mathbb{C}^{n}| | z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2} \leq \epsilon^{2} \text { and }\left|z_{1}^{2}+\ldots+z_{n}^{2}\right| \leq \rho\right\} \tag{3.1.1}\\
F=\left\{z \in T| | z_{1}^{2}+\ldots+z_{n}^{2} \mid=\rho\right\} \tag{3.1.2}
\end{gather*}
$$

claim 4. F is diffeomorphic to unit sphere bundle

$$
Q=\left\{(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \mid\|u\|=1,\|v\| \leq 1 \text { and }\langle u, v\rangle\right\}
$$

Proof. We decompose each coordinate $z_{j}=x_{j}+i y_{j}$ and let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$ and therefore

$$
F=\left\{(x, y) \mid\|x\|^{2}-\|y\|^{2} \rho,\langle x, y\rangle=0\right\}
$$

now $\rho+2\|y\|^{2} \leq \epsilon^{2}$ implies that $\|y\| \leq\left(\frac{\epsilon^{2}-\rho}{2}\right)^{1 / 2}=\sigma$
The diffeomorphism is given by

$$
\begin{align*}
& F \stackrel{\varphi}{\rightarrow} Q \tag{3.1.3}\\
&(x, y) \mapsto\left(\frac{x}{\|x\|}, \frac{y}{\sigma}\right) \tag{3.1.4}
\end{align*}
$$

and the inverse is given by

$$
\begin{align*}
Q & \xrightarrow{\varphi^{-1}} F \tag{3.1.5}\\
(u, v) & \mapsto\left(\sqrt{\left(\sigma^{2}\|v\|^{2}+\rho\right)} u, \sigma v\right) . \tag{3.1.6}
\end{align*}
$$

We get

$$
H_{q-1}(F)= \begin{cases}0 & \text { if } q \neq 1, \neq n \\ \text { free of rank } 1 & \text { otherwise }\end{cases}
$$

claim 5.

$$
H_{q}(T, F)= \begin{cases}0 & \text { if } q \neq n \\ \text { free of rank } 1 & \text { otherwise }\end{cases}
$$

Proof. By 3.1.1, T is linearly contracted to the origin by the contraction $H(z, t)=(1-t) z$. Hence the connecting homomorphism

$$
\partial_{*}: H_{q}(T, F) \rightarrow H_{q-1}(F) \text { for } q \neq 0 .
$$

is an isomorphism.
$H_{n}(T, F)$ is generated by an orientation of real n-disk $\Delta=\left\{z \in T \mid\right.$ all z_{j} real $\}$
This completes the proof of the main lemma.
Remark. We now give an explicit retraction $R: T^{\prime} \rightarrow F^{\prime}$. Let $f(z)=t_{i}+r e^{2 \pi i \varphi}$, let $e^{-\pi i \varphi} z=z^{\prime}$ so that $f\left(z^{\prime}\right)=r$. Let

$$
R^{\prime}: T^{\prime} \rightarrow Q, \quad R^{\prime}(z)=e^{\pi i \varphi}\left(\left(x^{\prime} /\left\|x^{\prime}\right\|\right)+i\left(y^{\prime} /\left\|y^{\prime}\right\|\right)\right) .
$$

We define R to be composition of R^{\prime} and the diffeomorphism of Q and F^{\prime}.

3.2 Lefschetz's Results

We now study many of the Lefschetz's results using techniques from algebraic topology, and the lemmas 3.1.1 and 3.1.2.
We observe that since f has no critical points in Y_{-}we get

$$
Y_{-}=X_{b} \times D_{-} \text {and } Y_{0}=X_{b} \times S^{1}
$$

by 1.3.7 and hence $\left(Y_{-}, Y_{0}\right)=X_{b} \times\left(D_{-}, S^{1}\right)$. Now since $Y \backslash Y_{+}=Y_{-} \backslash Y_{0}$ we have by 1.3.1

$$
H_{q}\left(Y, Y_{+}\right) \simeq H_{q}\left(Y_{-}, Y_{0}\right)=H_{q}\left(X_{b} \times D_{-}, X_{b} \times S^{1}\right)
$$

By 1.3 .4

$$
\begin{gathered}
\bigoplus_{i} H_{i}\left(X_{b}\right) \otimes H_{q-i}\left(D_{-}, S^{1}\right) \simeq H_{q}\left(X_{b} \times D_{-}, X_{b} \times S^{1}\right) . \\
H_{p}\left(D_{-}, S^{1}\right)= \begin{cases}R & \text { if } p=2 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

We get

$$
\begin{equation*}
H_{q}\left(Y, Y_{+}\right) \simeq H_{q-2}\left(X_{b}\right) \tag{3.2.1}
\end{equation*}
$$

The homology sequence of the triple $\left(Y, Y_{+}, Y_{b}\right)$

$$
\cdots \rightarrow H_{q+1}\left(Y_{+}, Y_{b}\right) \rightarrow H_{q+1}\left(Y, Y_{b}\right) \xrightarrow{L} H_{q+1}\left(Y, Y_{+}\right) \xrightarrow{\tau} H_{q}\left(Y_{+}, Y_{b}\right) \rightarrow \cdots
$$

becomes

$$
\begin{equation*}
\cdots \rightarrow H_{q+1}\left(Y_{+}, Y_{b}\right) \rightarrow H_{q+1}\left(Y, Y_{b}\right) \xrightarrow{L} H_{q-1}\left(Y, Y_{+}\right) \xrightarrow{\tau} H_{q}\left(Y_{+}, Y_{b}\right) \rightarrow \cdots \tag{3.2.2}
\end{equation*}
$$

Now by using 3.1 .2 we get the isomorphism

$$
\begin{equation*}
L: H_{q+1}\left(Y, Y_{b}\right) \simeq H_{q-1}\left(X_{b}\right), q \neq n-1, n . \tag{3.2.3}
\end{equation*}
$$

and a five term sequence

$$
\begin{equation*}
0 \rightarrow H_{n+1}\left(Y, Y_{b}\right) \xrightarrow{L} H_{n-1}\left(Y_{b}\right) \rightarrow H_{n}\left(Y_{+}, Y_{b}\right) \rightarrow H_{n}\left(Y, Y_{b}\right) \rightarrow H_{n-2}\left(X_{b}\right) \rightarrow 0 \tag{3.2.4}
\end{equation*}
$$

Proposition 3.1. If $n>1$, the generic hyperplane section $X_{b}(b \notin \check{X})$ is non singular and irreducible.

Proof. $b \notin \check{X}$, implies that H_{b} intersects X transversally and hence X_{b} is nonsingular. Now using 3.2 .3

$$
H_{0}\left(Y, Y_{b}\right)=H_{-2}\left(X_{b}\right)=0, \quad H_{1}\left(Y, Y_{b}\right)=0
$$

Thus $H_{0}\left(Y_{b}\right)=H_{0}(Y)$ using the long exact sequence of the pair $\left(Y, Y_{b}\right)$. Thus $H_{0}\left(Y_{b}\right)=0$ since Y is connected because it is irreducible and nonsingular by proposition 2.4. Thus Y_{b} is connected and hence irreducible.

Proposition 3.2. If $r=$ class X,

$$
e(Y)=2 e\left(X_{b}\right)+(-1)^{n} r
$$

and

$$
e(X)=2 e\left(X_{b}\right)-e\left(X^{\prime}\right)+(-1)^{n} r .
$$

Proof. From 3.1.1 we get

$$
e(Y)=e(X)+e\left(X^{\prime}\right)
$$

and from 3.2.2 we have

$$
e(Y)-e\left(Y_{b}\right)=e\left(Y, Y_{b}\right)=e\left(X_{b}\right)+(-1)^{n} r
$$

Thus

$$
e(Y)=2 e\left(X_{b}\right)+(-1)^{n} r
$$

and

$$
e(X)=2 e\left(X_{b}\right)-e\left(X^{\prime}\right)+(-1)^{n} r
$$

We now present the Lefschetz's famous theorem on homology of hyperplane section.
Theorem 3.2.1. The inclusions $X_{b} \hookrightarrow X$ induces isomorphisms $H_{q}\left(X_{b}\right) \rightarrow H_{q}(X)$ if $q<$ $\frac{1}{2} \operatorname{dim} X_{b}=n-1$, which is equivalent to $H_{q}\left(X, X_{b}\right)=0$ for $q \leq n-1$.

Proof. We use long exact sequence of the triple $\left(Y, Y_{+} \cup Y^{\prime}, Y_{b} \cup Y^{\prime}\right)$. Using excision 1.3.1 we have

$$
\begin{aligned}
H_{q}\left(Y, Y_{+} \cup Y^{\prime}\right) & =H_{q}\left(Y, Y_{+} \cup\left(X^{\prime} \times D_{-}\right)\right) \\
& \simeq H_{q}\left(Y_{-}, Y_{0} \cup X^{\prime} \times D_{-}\right) \\
& =H_{q}\left(X_{b} \times D_{-}, X_{b} \times S^{1} \cup X^{\prime} \times D_{-}\right) \\
& \simeq H_{q-2}\left(X_{b}, X^{\prime}\right) \otimes H_{2}\left(D_{-}, S^{1}\right) \\
& \simeq H_{q-2}\left(X_{b}, X^{\prime}\right) .
\end{aligned}
$$

Now consider the inclusions

$$
\left(Y_{+}, Y_{b}\right) \hookrightarrow\left(Y_{+}, Y_{b} \cup Y_{+}^{\prime}\right) \hookrightarrow\left(Y_{+} \cup Y^{\prime}, Y_{b} \cup Y^{\prime}\right)
$$

The first inclusion induces an isomorphism in homology since $Y_{b}=X_{b} \times\{b\}$ is deformation retract of $Y_{b} \cup Y_{+}^{\prime}=X_{b} \times\{b\} \cup X^{\prime} \times D_{+}$. The second inclusion induces isomorphism in homologies because of 1.3.1. Thus we have

$$
\begin{equation*}
H_{*}\left(Y_{+} \cup Y^{\prime}, Y_{b} \cup Y^{\prime}\right) \simeq H_{*}\left(Y_{+}, Y_{b}\right) \tag{3.2.5}
\end{equation*}
$$

The long exact sequence of $\left(Y, Y_{+} \cup Y^{\prime}, Y_{b} \cup Y^{\prime}\right)$ is transformed into

$$
\begin{equation*}
\cdots \rightarrow H_{q+2}\left(Y_{+}, Y_{b}\right) \xrightarrow{p_{*}} H_{q+2}\left(X, X_{b}\right) \xrightarrow{L^{\prime}} H_{q}\left(X_{b}, X^{\prime}\right) \xrightarrow{\tau^{\prime}} H_{q+1}\left(Y_{+}, Y_{b}\right) \rightarrow \cdots . \tag{3.2.6}
\end{equation*}
$$

Now by using 3.1 .2 we get the isomorphism

$$
\begin{equation*}
L^{\prime}: H_{q+1}\left(X, X_{b}\right) \simeq H_{q-1}\left(X_{b}, X^{\prime}\right), q \neq n-1, n \tag{3.2.7}
\end{equation*}
$$

and a five term sequence

$$
\begin{equation*}
0 \rightarrow H_{n+1}\left(X, X_{b}\right) \xrightarrow{L^{\prime}} H_{n-1}\left(X_{b}, X^{\prime}\right) \rightarrow H_{n}\left(Y_{+}, Y_{b}\right) \rightarrow H_{n}\left(X, X_{b}\right) \rightarrow H_{n-2}\left(X_{b}, X^{\prime}\right) \rightarrow 0 \tag{3.2.8}
\end{equation*}
$$

We now use induction to complete the proof. The case $n=1$ is obvious. We induct from $n-1$ to n. We observe that X^{\prime} is a hyperplane in X_{b}, and hence apply the induction hypothesis to the pair $\left(X_{b}, X^{\prime}\right)$ to get $H_{q}\left(X_{b}, X^{\prime}\right)=0$ for $q \leq n-2$. the isomorphism 3.2.7 proves the theorem.

Corollary 3.2.1.1. $H^{q}\left(X, X_{b}\right)=0$ for $q \leq n-1, n=\operatorname{dim} X$, i.e. The inclusion $X_{b} \hookrightarrow X$ induces isomorphisms of cohomology groups in dimension strictly less than $n-1$ and a monomorphism of H^{n-1}. Also $H^{n}\left(X, X_{b} ; R\right) \simeq \operatorname{Hom}\left(H_{n}\left(X, X_{b}\right), R\right)$ where R is the coefficient ring.

Proof. We apply universal coefficient theorem 1.3 .3 to theorem 3.2.1, to get the result $H^{q}\left(X, X_{b}\right)=0$ for $q \leq n-1$ and $H^{n}\left(X, X_{b} ; R\right) \simeq \operatorname{Hom}\left(H_{n}\left(X, X_{b}\right) R\right)$.

The theorem 3.2.1 is generalised for hypersurfaces.
Corollary 3.2.1.2. Let $X \subset \mathbb{P}_{N}$ be smooth irreducible n - dimensional variety. $F \subset \mathbb{P}_{N}$
be hypesurface such that F intersects X transversally, then

$$
H_{q}(X, X \cap F)=0 \quad \text { for } q \leq n-1
$$

A subset $Y \subset \mathbb{P}_{N}$ if $Y=\bigcap_{i=1}^{r} F_{i}$ such that F_{1} is smooth and F_{k} intersects $\bigcap_{i=1}^{k-1} F_{i}$ transversally and $\bigcap_{i=1}^{k} F_{i}$ are simple points of F_{k}. Y is $(N-r)$ - dimensional variety. We use the corollary above to get

Corollary 3.2.1.3. If $Y \subset \mathbb{P}_{N}$ is an n-dimensional smooth complete intersection, then $H_{q}\left(P_{N}, Y\right)=0$ for $q \leq n$. Equivalently $Y \hookrightarrow \mathbb{P}_{N}$ induces isomorphism at homology groups in dimension strictly less than n and an epimorphism in dimension n.

Proof. We consider the long exact sequence of the triple $\left(\mathbb{P}_{N}, \bigcap_{i=1}^{r-1} F_{i}, \bigcap_{i=1}^{r} F_{i}\right)$ and use induction on r.

3.3 Weak Lefschetz Theorem

Let $\partial_{*}: H_{n}\left(Y_{+}, Y_{b}\right) \rightarrow H_{n-1}\left(Y_{b}\right) \simeq H_{n-1}\left(X_{b}\right)$, be connecting homomorphism. We define the module of "vanishing cycles" as

$$
V=\partial_{*}\left(H_{n}\left(Y_{+}, Y_{b}\right)\right)
$$

The long exact sequences of the pairs $\left(Y_{+}, Y_{b}\right)$ and $\left(X, X_{b}\right)$ form the following commutative diagram

All vertical arrows are induced by the restriction of $p: Y \rightarrow X . p_{1}$ is surjective because it occurs in the exact sequence 3.2 .6 and $H_{n-2}\left(X_{b}, X^{\prime}\right)=0$ according to 3.2 .1 since X^{\prime} is
the hyperplane section of X_{b}. The middle one p_{2} is an isomophism. Hence the Five lemma implies that p_{3} is also an isomorphism. From the above commutative diagram we have

$$
\begin{equation*}
V=\operatorname{kernel}\left(i_{*}: H_{n-1}\left(X_{b}\right) \rightarrow H_{n-1}(X)\right)=\operatorname{image}\left(\partial_{*}: H_{n}\left(X, X_{b}\right) \rightarrow H_{n-1}\left(X_{b}\right)\right) \tag{3.3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank} V+\operatorname{rank} H_{n-1}(X)=\operatorname{rank} H_{n-1}\left(X_{b}\right) \tag{3.3.3}
\end{equation*}
$$

These observation have a cohomological counterpart

We define the module of "invariant cocycles".

$$
\begin{align*}
& I^{*}: \tag{3.3.5}\\
&=\operatorname{kernel}\left(\delta^{*}: H^{n-1}\left(Y_{b}\right) \rightarrow H^{n}\left(Y_{+}, Y_{b}\right)\right) \tag{3.3.6}\\
&=\operatorname{kernel}\left(\delta^{*}: H^{n-1}\left(X_{b}\right)\right) \rightarrow H^{n}\left(X, X_{b}\right) \tag{3.3.7}\\
&=\operatorname{image}\left(i^{*}: H^{n-1}(X) \rightarrow H^{n-1}\left(X_{b}\right)\right)
\end{align*}
$$

The module I of invariant cycles is defined to be the Poincaré dual of I^{*}

$$
\begin{equation*}
I:=\left\{u \cap\left[X_{b}\right] \mid u \in I^{*}\right\} \subset H_{n-1}\left(X_{b}\right) . \tag{3.3.8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
I=\operatorname{image}\left(i_{1}: H_{n+1}(X) \rightarrow H_{n-1}\left(X_{b}\right)\right) \tag{3.3.9}
\end{equation*}
$$

where $i_{1}=D i^{*} D^{-1}$ and D is the duality map. Since i^{*} is injective, i_{1} is also injective so that

$$
\begin{equation*}
\operatorname{rank} I=\operatorname{rank} H_{n+1}(X)=\operatorname{rank} H_{n-1}(X) \tag{3.3.10}
\end{equation*}
$$

Theorem 3.3.1 (Weak Lefschetz Theorem). If coefficients in a field are taken rank $I+$
rank $V=\operatorname{rank} H_{n-1}\left(X_{b}\right)$.

Proof. Since $H_{n-1}\left(Y_{+}, Y_{b}\right)=0$ by 3.1.2 we have $H^{n}\left(Y_{+}, Y_{b}\right)=\operatorname{Hom}\left(H_{n}\left(Y_{+}, Y_{b}\right), R\right)$ by 1.3.3. So we get $I^{*}=\left\{u \in H^{n-1}\left(Y_{b}\right) \mid\langle u, x\rangle=0\right.$ for every $\left.x \in V\right\}$. Here $\langle-,-\rangle$ denotes the Kronecker pairing between cohomology and homology. By Poincaré duality the Kronecker pairing becomes the intersection form

$$
H_{n-1}\left(X_{b}\right) \times H_{n-1}\left(X_{b}\right) \rightarrow R,
$$

and thus

$$
\begin{equation*}
I=\left\{y \in H_{n-1}\left(X_{b}\right) \mid\langle y, x\rangle=0 \text { for every } x \in V\right\} \tag{3.3.11}
\end{equation*}
$$

Since the coefficients are taken from a field this form is non-degenerate by 1.3.8, and hence by 3.3.11 we get

$$
\operatorname{rank} I+\operatorname{rank} V=\operatorname{rank} H_{n-1}\left(X_{b}\right)
$$

Chapter 4

The Hard Lefschetz Theorem

4.1 Hard Lefschetz Theorem

In this chapter we discuss several equivalent statements of "Hard Lefschetz Theorem" and consequences of it.

Let $\left[X_{b}\right] \in H_{2 n-2}(X)$ be the fundamental class of the hyperplane section X_{b} and let $u \in H^{2}(X)$ be its Poincaré dual.

$$
u \cap[X]=\left[X_{b}\right] .
$$

Theorem 4.1.1. If field coefficients are chosen, the following statements are equivalent:

1. $V \cap I=0$
2. $V \oplus I=H_{n-1}\left(X_{b}\right)$
3. $i_{*}: H_{n-1}\left(X_{b}\right) \rightarrow H_{n-1}(X)$ maps I isomorphically onto $H_{n-1}(X)$.
4. $H_{n+1}(X) \simeq H_{n-1}(X), x \mapsto u \cap x$. is an isomorphism.
5. The restriction of the intersection form $\langle-,-\rangle$ from $H_{n-1}\left(X_{b}\right)$ to V remains nondegenerate.
6. The restriction of $\langle-\rangle$.$\rangle to I remains non-degenerate.$

Proof.

$$
1 \Leftrightarrow 2
$$

by weak Lefschetz theorem 3.3.1.

$$
2 \Rightarrow 3
$$

since $i_{*}: H_{n-1}\left(X_{b}\right) \rightarrow H_{n-1}(X)$ is surjective 3.3.1) and $V=\operatorname{ker}\left(i_{*}\right) I \simeq H_{n-1}(X)$.

$$
3 \Leftrightarrow 4
$$

consider $H_{n+1}(X) \xrightarrow{i_{1}} H_{n-1}\left(X_{b}\right) \xrightarrow{i_{*}} H_{n-1}(X)$, now i_{1} is injective and I is image of i_{1} and $i_{*} \circ i_{1}(x)=x \mapsto u \cap x, 4$ follows from 3. Conversely if 4 is true $I=\operatorname{image}\left(i_{1}\right)$ is mapped isomorphically onto $H_{n-1}(X)$ by i_{*}.

$$
3 \Rightarrow 1
$$

since $i_{*}(V)=0$.

$$
2 \Rightarrow 5 \text { and } 2 \Rightarrow 6
$$

by 2 and $3.3 .11\langle-,-\rangle$ on $H_{n-1}\left(X_{b}\right)$ splits as direct sum of its restrictions to V and I,

$$
\langle-,-\rangle=\langle-,-\rangle_{V} \oplus\langle-,-\rangle_{I}
$$

Now since $\langle-,-\rangle$ is non-degenerate, the direct summands must also be non-degenerate.

$$
5 \Rightarrow 1
$$

Let $z \in V \cap I$. Then $\langle z, v\rangle=\langle z, v\rangle_{V}=0$ for every $v \in V$ now 5 implies $z=0$.

$$
6 \Rightarrow 1
$$

Let $z \in V \cap I$. Then $\langle c, z\rangle=\langle c, z\rangle_{I}=0$ for every $c \in I$ now 6 implies $z=0$.

We now state that the Hard Lefschetz Theorem is true without proof.
Theorem 4.1.2 (Hard Lefschetz Theorem). The statements $1-6$ in 4.1.1 are true if coefficients from field of characteristic zero are chosen.

Let $X=X_{0} \supset X_{b}=X_{1} \supset X^{\prime}=X_{2} \supset X_{3} \ldots \supset X_{n} \supset X_{n+1}$ where we obtain X_{q} is
smooth generic hyperplane section of X_{q-1}. We denote the inclusions as

$$
i_{q}: X_{q} \rightarrow X
$$

Let

$$
I\left(X_{q}\right) \subset H_{n-q}\left(X_{q}\right)
$$

be the module of invariant cycles for the pair

$$
X_{q} \subset X_{q-1}
$$

Using the hyperplane section theorem of Lefschetz we have the isomorphisms

$$
i_{*}: H_{k}\left(X_{q}\right) \rightarrow H_{k}\left(X_{j}\right), j \leq q
$$

for

$$
n>k+q .
$$

We then use duality to conclude that

$$
i^{*}: H^{k}\left(X_{j}\right) \rightarrow H^{k}\left(X_{q}\right), j \leq q
$$

for

$$
n>k+q .
$$

By 3 we deduce that

$$
\begin{equation*}
\left(i_{q}\right)_{*}: H_{n-q}\left(X_{q}\right) \rightarrow H_{n-q}(X) \text { maps } I\left(X_{q}\right) \text { isomorphically onto } H_{n-q}(X) . \tag{4.1.1}
\end{equation*}
$$

We now observe that

$$
I_{q}^{*}=\operatorname{Image}\left(i^{*}: H^{n-q}\left(X_{q-1}\right) \rightarrow H^{n-1}\left(X_{q}\right)\right)
$$

and, by Lefschetz hyperplane section theorem we have the isomorphisms

$$
H^{n-q}\left(X_{0}\right) \xrightarrow{i^{*}} H^{n-q}\left(X_{1}\right) \rightarrow \ldots \xrightarrow{i^{*}} H^{n-q}\left(X_{q-1}\right) .
$$

Now using Poincaré duality we obtain

$$
\begin{equation*}
i_{1} \text { maps } H_{n+q}(X) \text { isomorphically onto } I\left(X_{q}\right) \text {. } \tag{4.1.2}
\end{equation*}
$$

Iterating 6 we obtain

The restriction of the intersection form $H_{n-q}(X)$ to $I\left(X_{q}\right)$ remains non - degenerate.

The isomorphism $\left(i_{q}\right)_{*}: I\left(X_{q}\right) \rightarrow H_{n-q}(X)$ carries this form to a non-degenerate bilinear form on $H_{n-q}\left(X_{q}\right)$, and for odd $n-q$ this a skew-symmetric form, and thus the degeneracy assumption implies

$$
\operatorname{dim} H_{n-q}(X)=\operatorname{dim} H_{n+q}(X) \in 2 \mathbb{Z}
$$

and thus we get the following result.
Corollary 4.1.2.1. The odd-dimensional Betti numbers of X are even.
Remark. Consider $X=S^{3} \times S^{1}$. Using Künneth formula we get $b_{1}(X)=1$ and hence is not a complex projective variety by the corollary above.

The q-th power $u^{q} \in H^{2 q}(X)$ is Poincaré dual to the fundamental class $\left[X_{q}\right] \in H_{2 n-2 q}(X)$ of X_{q}. Using 4.1.1 and 4.1.2 we obtain the following generalization of 4 .

Corollary 4.1.2.2. $H_{n+q}(X) \simeq H_{n-q}(X), x \mapsto u^{q} \cap x$. is an isomorphism for $q=1, \ldots, n$.
Definition 4.1.1. An element $c \in H_{n+q}(X), 0 \leq q \leq n$ is called primitive if

$$
u^{q+1} \cap c=0
$$

We denote $P_{n+q}(X) \subset H_{n+q}(X)$ as the subspace consisting of primitive elements.
Definition 4.1.2. An element $z \in H_{n-q}(X)$ is called effective if

$$
u \cap z=0 .
$$

We denote $E_{n-q}(X) \subset H_{n+q}(X)$ as the subspace consisting of effective elements.

Note that $c \in H_{n+q}(X)$ is primitive iff $u^{q} \cap c \in H_{n-q}(X)$ is effective.

Theorem 4.1.3 (Primitive Decomposition.). Every element $c \in H_{n+q}(X)$ decomposes uniquely as $c=c_{0}+u \cap c_{1}+u^{2} \cap c_{2}+\ldots$ where $c_{j} \in H_{n+q+2 j}(X)$ are primitive elements. and every element $z \in H_{n-q}(X)$ decomposes uniquely as $z=u^{q} \cap z_{0}+u^{q+1} \cap z_{1}+\ldots$ where $z_{j} \in H_{n+q+2 j}(X)$ are primitive elements.

Proof. We note that $u^{q} \cap c=z$ we get 4.1.2.2 as a consequence of the Primitive decomposition. Conversely, by induction starting with $q=n$. Clearly, a dimension count shows that $P_{2 n}(X)=H_{2 n}(X), P_{2 n-1}(X)=H_{2 n-1}(X)$ and $c=c_{0}+u \cap c_{1}+u^{2} \cap c_{2}+\ldots$ is trivial for $q=n, n-1$ For the induction step it is sufficient to show that any element $c \in H_{n+q}(X)$ can be written uniquely as $c=c_{0}+u c_{1}, c_{1} \in H_{n+q+2}(X), c_{0} \in P_{n+q}(X)$. According to 4.1.2.2 we have an unique $z \in H_{n+q+2}(X)$ such that $u^{q+2} \cap z=u^{q+1} \cap c$ so that $c_{0}=c-u \cap z \in P_{n+q}(X)$. To prove the uniqueness, assume

$$
0=c_{0}+u \cap c_{1}, c_{0} \in P_{n+q}(X)
$$

Then $u^{q+1} \cap\left(c_{0}+u \cap c_{1}\right)$ and hence $u^{q+2} \cap c_{1}=0$ therefore, $c_{1}=0$ which implies $c_{0}=0$

This theorem shows that the homology of X is completely determined by its primitive part. Moreover, the above proof implies

$$
0 \leq \operatorname{dim} P_{n+q}=b_{n+q}-b_{n+q+2}=b_{n-q}-b_{n-q-2}
$$

and hence

$$
1=b_{0} \leq b_{2} \leq \ldots \leq b_{2\lfloor n / 2\rfloor} .
$$

These inequalities introduce additional topological conditions of complex projective Varieties. For example, the sphere S^{4} cannot be an complex projective variety because $b_{2}\left(S^{4}\right)=0<$ $b_{0}\left(S^{4}\right)=1$.

4.2 Homotopy Version of Lefschetz Theorem of Hyperplane Section.

In this section we give a stronger version of Lefschetz theorem on homology of hyperplane section (3.2.1). The proof presented here is as presented in [4. Towards that we first give some definitions.

Definition 4.2.1. A critical point p of a smooth real valued function $f: M \rightarrow \mathbb{R}$ we define a symmetric bilinear form $f_{* *}$ on $T_{p} M$ by $f_{* *}(v, w)=\tilde{v}_{p}(\tilde{w}(f))$ where \tilde{v} and \tilde{w} are extensions of v and w to vector fields.

Definition 4.2.2. The index of a bilinear form on a vector space V, is defined to be the maximal dimension of the subspace of V on which H is negative definite.

We now state an important result in Morse theory without proof the reader is referred to Theorem 3.5 in [4] for the proof

Theorem 4.2.1. Let f be a differentiable function on a manifold M with no degenerate critical points, and if $M^{a}=\{x \mid f(x) \leq a\}$ is compact, then M has a homotopy type of a $C W$-complex, with one cell of dimension r for each critical point of index r.

Theorem 4.2.2. (Lefschetz) Let X, X_{b} be as in theorem 3.2.1, then we have $\pi_{r}\left(X, X_{b}\right)=0$ for $r<k$.

Proof. We use the fact that some small neighborhood U of X_{b} can be deformed into X_{b} within X. Consider the function $f: X \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}0 & \text { if } x \in X_{b} \\ 1 /\|p-x\|^{2} & \text { otherwise }\end{cases}
$$

The critical points of f have index $\geq k$ and these points are non-degenerate critical points with $\epsilon \leq f \leq \infty$. Hence X has the homotopy type of $f^{-1}[0, \epsilon]$ with finitely many cells of dimension $\geq k$ attached. Choose ϵ small enough such that $f^{-1}[0, \epsilon] \subset U$. Every map from (I^{r}, \dot{I}^{r}) into $\left(X, X_{b}\right)$ is deformed into a map

$$
\left(I^{r}, \dot{I}^{r}\right) \rightarrow\left(f^{-1}[0, \epsilon], X_{b}\right) \subset\left(U, X_{b}\right)
$$

since $r<n$ and thus is deformed into X_{b}.

Chapter 5

The Picard-Lefschetz formulas

Let $f: Y \rightarrow G$ be as in chapter 3 . Let $G^{*}=G \backslash\left\{t_{1}, \ldots t_{r}\right\}$ where $t_{1}, \ldots t_{r}$ are singular values of $f: Y \rightarrow G$, we similarly remove the corresponding singular fibres from Y, to get $Y^{*}=Y \backslash f^{-1}\left\{t_{1}, \ldots, t_{r}\right\}$. Now by Ehresmann's fibration theorem $f: Y^{*} \rightarrow G^{*}$ is a locally trivial fibre bundle with typical fibre $Y_{b} \simeq X_{b}$

Definition 5.0.1. The fundamental group $\pi_{1}\left(G^{*}, b\right)$ acts on the homology of Y_{b}. This action is called monodromy of $f: Y \rightarrow G$.

Definition 5.0.2. An elementary path encircling a singular value t_{v} is

$$
\begin{equation*}
w_{v}=l_{v}^{-1} \cdot \omega_{v} \cdot l_{v} \tag{5.0.1}
\end{equation*}
$$

where if t is the local coordinate of G in a neighborhood of t_{v}, we choose $\rho>0$ small enough so that the disk D_{v} with centre t_{v} and radius ρ does not meet any $t_{u} \neq t_{v}, l_{v}$ is any path in G^{*} from b to $t_{v}+\rho$ and $\omega_{v}(s)=t_{v}+\rho e^{2 \pi i s}, 0 \leq s \leq 1$.

See figure 5

We have $\pi_{1}\left(G^{*}, b\right)=\left\langle\left[w_{1}\right], \ldots,\left[w_{r}\right] \mid\left[w_{1}\right] \cdot\left[w_{2}\right] \cdots\left[w_{r}\right]=1\right\rangle$
We look at the action of elementary paths w_{i} on $H_{q}\left(Y_{b}\right)$. Consider the following sequence of homomorphisms induced by inclusions

$$
\begin{equation*}
H_{n}(T, F) \xrightarrow{\simeq} H_{n}\left(T_{i}, F_{i}\right) \hookrightarrow H_{n}\left(Y_{+}, L\right) \xrightarrow{\simeq} H_{n}\left(Y_{+}, Y_{b}\right) . \tag{5.0.2}
\end{equation*}
$$

Figure 5.1: An elementary path around t_{v}.
3.1.2 implies that an orientation of the disk Δ determines a generator [Δ] of $H_{n}(T, F)$. The injective map 5.0 .2 transforms [Δ] into an element $\Delta_{i} \in H_{n}\left(Y_{+}, Y_{b}\right)$. The generators $\Delta_{1}, \ldots, \Delta_{r}$ of $H_{n}\left(Y_{+}, Y_{b}\right)$ are transformed by the connecting homomorphism into $\delta_{1}, \ldots \delta_{r} \in$ $H_{n-1}\left(Y_{b}\right), i=1, \ldots r$.
δ_{i} is called the vanishing cycle and Δ_{i} is called the corresponding thimble, the geometric boundary $\partial \Delta=S^{n-1} \subset F \subset F_{i}$ is an embedded $(n-1)-$ sphere in F_{i}. Since $f^{-1}\left(l_{i}\right)$ is trivially fibred there is an embedding
$j: F_{i} \times l_{i} \rightarrow Y, j\left(F_{i} \times l_{i}\right)=f^{-1}\left(l_{i}\right), j\left(y, t_{i}+\rho\right)=y$ and $f \circ j(y, r)=r$ for $y \in F_{i}$ and $r \in l_{i}$ Then the thimble

$$
C_{i}=\Delta \cup j\left(S^{n-1} \times l_{i}\right)
$$

represents Δ_{i}.
The boundary of C_{i} is an embedded $(n-1)$-sphere in Y_{b}, which represents δ_{i}. As the sphere ∂C_{i} is moved along the thimble from Y_{b} following l_{i} into $F_{i}=Y_{t_{i}+\rho}$ and furthur into the singular fibre $Y_{t_{i}}$ it vanishes at the critical point x_{i}.

Theorem 5.0.1. The normal bundle of the vanishing cycle ∂C_{i} in Y_{b} is isomorphic to the tangent bundle of $(n-1)$-sphere, The self-intersection number is

$$
\left\langle\delta_{i}, \delta_{i}= \begin{cases}0 & \text { if } n \text { even } \\ (-1)^{(n-1) / 2} .2 & \text { if } n \text { odd } .\end{cases}\right.
$$

Proof. F is a tubular neighborhood of S^{n-1} in F_{i}, and S^{n-1} lies in F as the zero section Q_{0} lies in the tangent bundle Q of the $n-1$ sphere. The self-intersection number of Q_{0} in Q is known to be 0 or 2 depending on whether n is odd or even. This number is calculated with
respect to the orientation of Q (first orientation of Q_{0} and then the corresponding orientation of a fibre.) The orientation induced by complex structure of F on Q differs from the usual by the factor $(-1)^{(n-1)(n-2) / 2}$. Thus the self intersection number of S^{n-1} in F_{i} is $(-1)^{(n-1)(n-2) / 2}$ The orientation preserving diffeomorphism $h_{i}: Y_{b} \simeq F_{i}, h_{i}(y)=j(y, b), y \in F_{i}$ maps S^{n-1} onto ∂C_{i}.

Let $f: T \rightarrow D=\{t \in C| | t \mid \leq \rho\}$ (see 3.1.1) be $f(z)=z_{1}^{2}+\ldots z_{n}^{2}$, with $D^{*}=D \backslash 0$, typical fibre F. We have the relative extension (see 1.3.2) $\tau_{\omega}: H_{n-1}\left(F, F^{\prime}\right) \rightarrow H_{n}(T, F)$ along the path $\omega: I \rightarrow D \backslash 0$, given by $\omega(t)=\rho e^{2 \pi i t}$.

Lemma 5.0.2. Suppose $s=\partial_{*}[\Delta]=\left[S^{n-1}\right] \in H_{n-1}(F)$, and $c \in H_{n-1}\left(F, F^{\prime}\right)$ so that $\langle c, s\rangle=1$. Then $\tau_{\omega}(c)=-(-1)^{n(n-1) / 2}[\Delta]$.

Proof. Since $H_{n}(T, F)=\langle[\Delta]\rangle$ we have $\tau_{\omega}(c)=\gamma[\Delta]$ with $\gamma \in \mathbb{Z}$, we prove $\gamma=-(-1)^{n(n-1) / 2}$
Consider the following commutative diagram,

We have

1. $W: F \times I \rightarrow T$ given by $W(x, t)=e^{\pi i t} . z$
2. $R: T^{\prime} \cup F \rightarrow F, R \mid F=i d_{F}$ and $\left.R\right|_{T} ^{\prime}$ is the retraction given in 3.1.2
3. $R e=$ real part
4. Q is as in the proof of $3.1 .2, Q_{0}=\left\{(u, 0) \in \mathbb{R}^{n} \times \mathbb{R}^{n}\| \| u \|=1\right\}$ and $Q^{\prime}=\{(u, v) \in$ $Q \mid\|v\|=1\}$
5. $g: \partial(Q \times I)=Q^{\prime} \times I \cup Q \times \partial I \rightarrow Q_{0}$, where $g(u+i v, t)=\operatorname{Re}\left(e^{i \pi t}(u+i v)\right)$
6. $C=\left\{e_{1}+i v \mid v \in \mathbb{R}^{n}, v \perp e_{1}\right\}$ where $e_{1}=(1,0 \ldots 0) \in \mathbb{R}^{n}$.

Start with $c \times i \in H_{n}(F, \partial(F \times I))$ the upper line of the diagram gives us $\tau_{\omega}(c)=\gamma \cdot[\Delta]$ The isomorphisms of the right boundary convert this element into $\gamma \cdot\left[Q_{0}\right]$. Here Q_{0} is orientated as the unit sphere of the canonically orientated \mathbb{R}^{n}. The isomorphisms of the left boundary applied to $c \times i$ followed by g_{*} yield $\gamma \cdot\left[Q_{0}\right]$.
claim 6. The orientation which $c \in H_{n-1}\left(F, F^{\prime}\right)$ determines differs by a factor $(-1)^{n(n-1) / 2}$ from the orientation of the coordinate system $\left(v_{2}, \ldots, v_{n}\right)$ on C.

Consider a neighborhood of e_{1} in F. The coordinate system of F is $\left(v_{2}, \ldots, v_{n}, u_{2} \ldots u_{n}\right)$, where $\left(u_{2}, \ldots u_{n}\right)$ is the positively oriented coordinate system of Q_{0}. The orientation of $\left(v_{2}, \ldots, v_{n}\right)$ differs from the orientation of c by the factor as the canonical orientation of F differs the orientation of $\left(v_{2}, \ldots, v_{n}, u_{2} \ldots u_{n}\right)$ since $\langle c, s\rangle=1$. The canonical orientation of F is given by the complex coordinate system $\left(u_{2}+i v_{2}, \ldots, u_{n}+i v_{n}\right)$ which yields a positively orientated real system $\left(u_{2}, v_{2}, \ldots u_{n}, v_{n}\right)$. The orientation due to $\left(u_{2}, v_{2}, \ldots u_{n}, v_{n}\right)$ differs from the one due to $\left(v_{2}, \ldots v_{n}, u_{2}, \ldots u_{n}\right)$ by the sign of the corresponding permutation by $(-1)^{1+2+3+\ldots+n-1}=(-1)^{n(n-1) / 2}$.
claim 7. The degree of $g: \partial(C \times I) \rightarrow Q_{0}$ is -1 .
The only inverse image of the point $-e_{2} \in Q_{0}$ is the point $\left(e_{1}+i e_{2}, 1 / 2\right) \in \partial C \times I \subset$ $\partial(C \times I)$. Therefore the local mapping degree of g at $\left(e_{1}+i e_{2}, 1 / 2\right)$ is γ. The orientation of C is given by $\left(v_{2}, \ldots, v_{n}\right)$ followed by the canonical orientation of I determines an orientation of $C \times I$ and hence of $\partial(C \times I)$. $\left(v_{3}, \ldots v_{n}, t\right)$ is positively orientated coordinate system of $\partial(C \times I)$ in a neighborhood of $\left(e_{1}+i e_{2}, 1 / 2\right)$. The positively orientated coordinate system $\left(u_{1}, u_{3}, \ldots, u_{n}\right)$ is chosen in the neighborhood of $-e_{2}$ in Q_{0}. In these coordinates $g\left(v_{3}, \ldots, v_{n}, t\right)=\left(\cos \pi t,-\sin \pi t \cdot v_{3}, \ldots,-\sin \pi t \cdot v_{n}\right)$. The Jacobian of g at $\left(e_{1}+i e_{2}, 1 / 2\right)$ is negative, and hence the degree of g is -1 .

Combining claim 1 and claim 2 we get $\gamma=-(-1)^{n(n-1) / 2}$.
Theorem 5.0.3. Let $f: T_{v} \rightarrow D_{v}$ be as in 3.1.2, $D_{v}^{*}=D_{v} \backslash T_{v}$ and $t_{v}+\rho$ be the base point. The absolute extension along the path ω_{v} is

$$
\tau_{\omega_{v}}: H_{n-1}\left(F_{v}\right) \rightarrow H_{n}\left(T_{v}, F_{v}\right), \quad \tau_{\omega_{v}}(x)=-(-1)^{n(n-1) / 2}\langle x, s\rangle \cdot[\Delta]
$$

Proof. $H_{n}\left(T_{v}, F_{v}\right)$ is freely generated by $[\Delta]$, and $s=\partial_{*}[\Delta] \in H_{n-1}\left(F_{v}\right)$. Let $r:\left(F_{v}, \phi\right) \hookrightarrow$
$\left(F_{v}, F_{v} \backslash \stackrel{\circ}{B}\right)$ be the inclusion. The relative extension $\tau_{\omega_{v}}: H_{n-1}\left(F_{v}, F_{v} \backslash \stackrel{\circ}{B}\right) \rightarrow H_{n}\left(T_{v}, F_{v}\right)$ is also defined since $F_{v} \backslash \stackrel{B}{B}$ is strong deformation retract of $T_{i} \backslash \stackrel{\circ}{B}$ by the proof of 3. The naturality of the extension 1.3 gives the following commutative diagram:

Now $x \in H_{n-1}\left(F_{v}\right)$ is transformed into $\langle x, s\rangle \cdot c \in H_{n-1}\left(F, F^{\prime}\right)$. The result now follows by using the previous lemma.

Theorem 5.0.4 (The PICARD-LEFSCHETZ FORMULA). If $q \neq n-1$ then $\pi_{1}\left(G^{*}, b\right)$ acts trivially on $H_{q}\left(Y_{b}\right)$. For $q=n-1$ the elementary path w_{i}, acts by

$$
\left(w_{i}\right)_{*}(x)=x+(-1)^{n(n+1) / 2}\left\langle x, \delta_{i}\right\rangle \delta_{i}, \quad x \in H_{n-1}\left(Y_{b}\right) .
$$

Proof. Let $f: Y_{+} \rightarrow D_{+}$with $D_{+}^{*}=D_{+} \backslash\left\{t_{1}, \ldots t_{r}\right\}$. We prove that the extension along the path w_{i} is

$$
\begin{equation*}
\tau_{w_{i}}: H_{n-1}\left(Y_{b}\right) \rightarrow H_{n}\left(Y_{+}, Y_{b}\right), \tau_{w_{i}}(x)=-(-1)^{n(n-1) / 2}\left\langle x, \delta_{i}\right\rangle \cdot \Delta_{i} \tag{5.0.3}
\end{equation*}
$$

The lowers triangles commute because the extension is natural by 1.3. $\tau_{w_{i}}: H_{n-1}\left(Y_{b}\right) \rightarrow$ $H_{n}\left(Y_{+}, L\right)$ is $T_{w_{i}}=T_{l_{i}^{-1} \omega_{i} l_{i}}=T_{l_{i}^{-1}} \circ \omega_{i_{*}} \circ l_{i_{*}}+T_{l_{i}}$. Since $l_{i} \subset L$ the first and the third summands are 0 . Therefore $\tau_{w_{i}}=\tau_{\omega_{i}} \circ l_{i}$ and hence the upper triangle also commutes. Using 1.3 we get the Picard-Lefschetz formula.

Chapter 6

The Monodromy and Hard Lefschetz Theorem.

6.1 Monodromy Theorem.

We now establish the connection between Hard Lefschetz theorem and monodromy. Let $f: Y \rightarrow G$ be as in 2.1.2, where Y is the modification of the projective manifold X along the axis of the pencil of hyperplanes $\left\{H_{t}\right\}_{t \in G}$, and $f(y)$ is the hyperplane H_{t} through y. Let $I \subset H_{n-1}\left(Y_{b}\right)$ be the module of invariant cycles as defined in 3.3.8, the following result gives the reason why this submodule is called invariant submodule.

Theorem 6.1.1. The module $I \subset H_{n-1}\left(Y_{b}\right)$ consists of the cycles which are invariant under the action of $\pi_{1}\left(G^{*}, b\right)$.

Proof. Since $\pi_{1}\left(G^{*}, b\right)=\left\langle\left[w_{1}\right], \ldots,\left[w_{r}\right] \mid\left[w_{1}\right] \cdot\left[w_{2}\right] \cdots\left[w_{r}\right]=1\right\rangle$ where w_{i} are elementary paths. Now $y \in H_{n-1}\left(Y_{b}\right)$ is invariant under the action of $p i_{1}$ iff

$$
y=\left(w_{i}\right)_{*}(y)=y \pm\left\langle y, \delta_{i}\right\rangle \delta_{i}, \quad\left\langle y, \delta_{i}\right\rangle \text { for } i=1, \ldots, r .
$$

We also have by 3.3.11, $I=\left\{y \in H_{n-1}\left(X_{b}\right) \mid\langle y, x\rangle=0\right.$ for every $\left.x \in V\right\}$. Since $\delta_{1}, \ldots \delta_{r}$ generate V we have $I=\left\{y \in H_{n-1}\left(X_{b}\right) \mid\left\langle y, \delta_{i}\right\rangle=0\right.$ for $\left.i=1, \ldots, r\right\}$.

Theorem 6.1.2 (MONODROMY THEOREM). Let $\pi=\pi_{1}\left(G^{*}, b\right)$. For the homology with coefficients from a field the following results are equivalent :

1. The Hard Lefschetz Theorem
2. V is a non-trivial simple π-module or $V=0$
3. $H_{n-1}\left(Y_{b}\right)$ is a semi-simple π-module.

Proof.

$$
2 \Rightarrow 3
$$

$I \cap V \subset V$ is a π-invariant submodule of $V . I \cap V=0$ or $I \cap V=V$ since V is simple. But since I acts non-trivially on V and trivially on $I \cap V$ we have $I \cap V=0$ and hence by 3.3.1 we have $H_{n-1}\left(Y_{b}\right)=V \oplus I$ is a direct sum of simple and semi-simple π-module, and hence is a semi-simple π-module.

$$
3 \Rightarrow 1
$$

We show $3 \Rightarrow 6$. It suffices to show that the map $I \rightarrow I^{\vee}$ given by $z \rightarrow\langle z,-\rangle$, is epimorphic where I^{\vee} is the dual of the module I : Let $\varphi \in I^{\vee}$, since $H_{n-1}\left(Y_{b}\right)$ is semi-simple we have $I \oplus M=H_{n-1}\left(Y_{b}\right)$ fro some π-invariant submodule $M \subset H_{n-1}\left(Y_{b}\right)$, so φ can be extended to a linear form ψ on $H_{n-1}\left(Y_{b}\right)$ as follows:

$$
\psi(x+y)=\varphi(x), x \in I, y \in M
$$

Since $\langle-,-\rangle$ is non-degenerate on $H_{n-1}\left(Y_{b}\right)$ there is unique $z \in H_{n-1}\left(Y_{b}\right)$ with $\langle z, x+y\rangle=$ $\varphi(x)$. Let $\alpha \in \pi$, then $\langle\alpha z, x+y\rangle=\left\langle z, \alpha^{-1}(x+y)\right\rangle=\varphi(x)$, and hence $z=\alpha z$ for every $\alpha \in \pi$, i.e $z \in I$ and $\varphi(x)=\langle z, x\rangle$ for every $x \in I$.

$$
1 \Rightarrow 2
$$

We show $5 \Rightarrow 2$, By $5 V$ is generated by $\delta_{1}, \ldots \delta_{r}$. Let $F \neq 0$ be a π-invariant submodule of V, and let $x \in F$ be a non-zero element. There is δ_{μ} with $\left\langle x, \delta_{\mu}\right\rangle \neq 0$. By Picard-Lefschetz-
formula we have $\left(w_{\mu}\right)_{*}(x)=x \pm\left\langle x, \delta_{\mu}\right\rangle \delta_{\mu}$. Thus π acts non trivially on F and $\delta_{\mu} \in F$, but then F, contains all of V by the following result.

Lemma 6.1.3. For any two vanishing cycles δ_{ν}, δ_{μ} there is an $\alpha \in \pi$ such that $\alpha \cdot \delta_{\mu}= \pm \delta_{\nu}$.

Proof. The proof of the lemma is deferred to next section.

6.2 Zariski's Theorem

Let $G \subset \mathbb{P}_{N}$ be a projective line in general position with respect to a hypersurface $X \subset$ \mathbb{P}_{N}. That is G avoids the singularities of X and intersects X transversally then $G \cap X=$ $\left\{t_{1}, \ldots, t_{r}\right\}$ is finite and $r=$ degree of X.

Theorem 6.2.1. The embedding $G \backslash X \hookrightarrow \mathbb{P}_{N} \backslash X$ induces an epimorphism of the fundamental groups.

Proof. Choose a point b in $G \backslash X$. All the lines through b form a subspace $\check{\mathbb{P}}_{N-1}$ of $\check{\mathbb{P}}_{N}$. Let $a \in \check{\mathbb{P}}_{N-1}$ so that $G_{a}=G$. The point b in \mathbb{P}_{N} is blown up:

$$
Q=\left\{(x, z) \in \mathbb{P}_{N} \times \check{\mathbb{P}}_{N-1} \mid x \in G_{z}\right\}
$$

We have two projections

$$
\mathbb{P}_{N} \stackrel{p}{\leftarrow} Q \xrightarrow{f} \check{\mathbb{P}}_{N-1} .
$$

Now,

$$
p^{-1}(b)=\{b\} \times \check{\mathbb{P}}_{N-1}
$$

and

$$
p: Q \backslash p^{-1}(b) \simeq \mathbb{P}_{N} \backslash\{b\}
$$

Let $Y=p^{-1}(X), p^{-1}(b) \cap Y=\emptyset$ since $b \notin X$. By 1.3 .7 the second projection $f: Q \rightarrow \check{\mathbb{P}}_{N-1}$ fibres Q locally trivially with typical fibre G. Let $C \subset \check{\mathbb{P}}_{N-1}$ be the algebraic subset of set of lines through b which are not in general position with X. The pair $Q^{*}=Q \backslash f^{-1}(C)$, $Y^{*}=Y \backslash f^{-1}(C)$ is locally trivially fibred by f over $\check{\mathbb{P}}_{N-1} \backslash C$. Y^{*} is smooth and $\left.f\right|_{Y^{*}}$ has a maximal rank everywhere, and hence $Q^{*} \backslash Y^{*}$ is fibred locally trivially over $\check{\mathbb{P}}_{N-1} \backslash C$ with typical fibre $G \backslash X$. Consider the following commutative diagram, the upper line is the exact
homotopy sequence of this fibration, we show i_{*} is epimorphic by showing that there exists a $\beta \in \pi_{1}\left(Q^{*} \backslash Y^{*},(b, a)\right)$ with $f_{*}(\beta)=1$ for every $\alpha \in \pi_{1}\left(\mathbb{P}_{N} \backslash X\right)$

We now prove that p_{*} is epimorphic. Let $b^{\prime} \neq b$, every element in $\pi_{1}\left(\mathbb{P}_{N} \backslash X, b^{\prime}\right)$ is given by a path which avoids b and such a path is uniquely lifted to $Q \backslash Y$ because $p: Q \backslash\left(Y \cup p^{-1}(b)\right) \simeq$ $\mathbb{P}_{N} \backslash(X \cup\{b\})$. Similarly j_{*} is epimorphic: since $f^{-1}(C) \cap(Q \backslash Y)$ is of real codimension 2every path in $Q \backslash Y$ can homotopically be deformed avoiding $f^{-1}(C)$ and is contained in $Q^{*} \backslash Y^{*}$. Consider an arbitrary counterimage of $\alpha, \beta^{\prime} \in \pi_{1}\left(Q^{*} \backslash Y^{*}\right)$ but $f\left(\beta^{\prime}\right) \neq 1$. There is a path u in $\{b\} \times\left(\check{\mathbb{P}}_{n-1} \backslash C\right) \subset Q^{*} \backslash Y^{*}$ with $f_{*}\left(\beta^{\prime}\right)=[f \circ u]$. Then $\beta=\beta^{\prime}[u]^{-1}$ is a counterimage of α with $f_{*}(\beta)=1$ since $p \circ j \circ u$ is constant.

Let G_{0} and G_{1} be two lines in general position with respect to the hypersurface X, and $b \in G_{0} \cap G_{1}, b \notin X$. Let v_{0} and v_{1} be elementary paths through b in $G_{0} \backslash X$ and $G_{1} \backslash X$.

Theorem 6.2.2. If X is irreducible the homotopy classes of the elementary paths v_{0} and v_{1} are conjugates in $\pi_{1}\left(\mathbb{P}_{N} \backslash X, b\right)$.

Proof. Let $Z \subset X$ be the proper algebraic set containing of all points x such that the line through x and b is not in general position. The points $c_{0} \in G_{0} \cap X$ and $c_{1} \in G_{1} \cap X$ be such that v_{0} encircles c_{0} and v_{1} encircles c_{1}. Let w be a path in $X \backslash Z$ from c_{0} to c_{1}, such a path exists since X is irreducible. The line through b and $w(t), 0 \leq t \leq 1$ be denoted by G_{t}, and $\Phi_{t}: \mathbb{C} \simeq G_{t} \backslash\{b\}$ be isomorphisms so that $\mathbb{C} \times[0,1] \rightarrow \mathbb{P}_{N},(x, t) \rightarrow \Phi_{t}(z)$, is continuous. Let $\Phi_{t}^{-1}(w(t))=w^{*}(t)$ Choose ρ small enough so that the disk G_{t} with centre $w(t)$ and radius ρ intersects X only in $w(t)$. The homotopy H between the paths $\omega_{0}(s)=w^{*}(0)+\rho \cdot e^{2 \pi i s}$ and $\omega_{1}(s)=w^{*}(1)+\rho \cdot e^{2 \pi i s}$ which encircle c_{0} and c_{1} respectively once is $H(t, s)=\Phi_{t}\left(w^{*}(t)+\rho \cdot e^{2 \pi i s}\right)$. And hence v_{0} and v_{1} are conjugates in $\pi_{1}\left(\mathbb{P}_{N} \backslash X, b\right)$.

We now give the proof of 6.1.3.

Proof. w_{μ} and w_{ν} be elementary paths belonging to δ_{μ} and δ_{ν} respectively. By 6.2.2, $\left[w_{\mu}\right]$ and $\left[w_{\nu}\right]$ are conjugates in $\check{\mathbb{P}}_{N} \backslash \check{X}$, and since $\pi_{1}\left(G^{*}\right) \rightarrow \check{\mathbb{P}}_{N} \backslash \check{X}$ is surjective there is a path u in G^{*} such that

$$
[u] \cdot\left[w_{\mu}\right][u]^{-1}=\left[w_{\nu}\right] .
$$

Let $p_{2}: W \backslash p_{2}^{-1}(\check{X}) \rightarrow \check{\mathbb{P}}_{N} \backslash \check{X}$ be locally trivially fibre bundle as in 2.1. $f^{*}: Y^{*} \rightarrow G^{*}$ is fibre bundle and hence the action of $\pi_{1}\left(G^{*}\right)$ on $H_{n-1}\left(Y_{b}\right)$ factors through $\pi_{1}\left(\check{\mathbb{P}}_{N} \backslash \check{X}\right)$ and thus

$$
u_{*} \circ w_{\mu_{*}}=w_{\nu_{*}} \circ u_{*} .
$$

Let $x \in H_{n-1}\left(Y_{b}\right)$ be arbitrary element, then by Picard-Lefschetz-formula,

$$
\left\langle x, \delta_{\mu}\right\rangle u_{*}\left(\delta_{\mu}\right)=\left\langle u_{*}(x), \delta_{v}\right\rangle \delta_{v}
$$

Since the intersection form is non degenerate by Poincaré duality, either $\delta_{\mu}=0$ and hence $\delta_{\nu}=0$ or there is x such that $\left\langle x, \delta_{\mu}\right\rangle \neq 0$ which is $u_{*}\left(\delta_{\mu}\right)=c \cdot \delta_{v}$. Now $\left\langle u_{*}(x), \delta_{v}\right\rangle \delta_{v}=$ $\left\langle u_{*}(x), u_{*}\left(\delta_{\mu}\right)\right\rangle u_{*}\left(\delta_{\mu}\right)=c^{2}\left\langle u_{*}(x), \delta_{v}\right\rangle \delta_{v}$ which implies $c= \pm 1$.

Chapter 7

Singular points of Complex hypersurfaces

In this chapter we give a brief study of singular points of complex hypersurfaces. We Let $f \in \mathbb{C}\left[z_{1}, \ldots z_{n}\right]$ be a non-constant polynomial, and let $V \subset \mathbb{C}^{n+1}$ denote the zero set of f. The aim of this chapter is to study the topology of V in neighborhood of some point z_{0}.

7.1 Brauner's Construction

Let V be hypersurface as above. Let $K=V \cap S_{\epsilon}$ where ϵ is small enough. Then the topology of V with the disk bounded by S_{ϵ} is closely related to the topology of K in the sense that if $D_{\epsilon}=\left\{z \mid\left\|z-z_{0}\right\| \leq \epsilon\right\}$ and if z_{0} is a non-singular or an isolated singular point of V then for small $\epsilon D_{\epsilon} \cap V$ is homeomorphic to cone over K. By cone over K we mean, Cone $(K)=\left\{t k+(1-t) z_{0} \mid k \in K 0 \leq t \leq 1\right\}$.

Definition 7.1.1. Given a manifold M and a sub-manifold N we say that N can be knotted in M if there exists an embedding of N in M which is not isotopic to N.

Proposition 7.1. Let $z_{0} \in V$ be regular point of f then $K=V \cap S_{\epsilon}$ is an unknotted sphere in S_{ϵ}, for small enough ϵ.

Proof. The smooth function $r(z)=\left\|z-z_{0}\right\|^{2}$ restricted to non-singular points of V has
non-degenerate critical point at z_{0} and so $r(z)=u_{1}^{2}+\ldots u_{k}^{2}$ in local coordinates $u_{1}, \ldots u_{k}$. Hence K is diffeomorphic to to sphere $\left\{\left(u_{1}, \ldots, u_{k}\right) \mid u_{1}^{2}+\ldots u_{k}^{2}=\epsilon^{2}\right\}$

On the other hand if z_{0} is not a regular point of then the embedding can be knotted as illustrated in the following example.

Proposition 7.2. Let $f\left(z_{1}, z_{2}\right)=z_{1}^{p}+z_{2}^{q}$ be a polynomial with $p, q \geq 2$ and co-prime, here origin is the critical point of f. Then the intersection of $V=f^{-1}(0)$ with a sphere S_{ϵ} centered at the origin is a "torus knot" of the type (p, q) in the 3 -sphere.

Proof. By solving the equations $z_{1}^{p}+z_{2}^{q}=0$ and $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$, we observe that $K=$ $\left\{\left(\zeta e^{q i \theta}, \eta e^{(p i \theta+\pi i) / q}\right) \mid \theta \in[0,2 \pi]\right\} \subset T^{2}=\left\{\left(z_{1}, z_{2}\right)| | z_{1}\left|=\zeta,\left|z_{2}\right|=\eta\right\}\right.$. Hence K sweeps around the torus p times in one coordinate and q times in other.

Torus knot of the type $(2,3)$ is illustrated in 7.1

7.2 Fibration Theorem

We now state fibration theorem without proof (see [7] chapter 4 for the proof) which is useful in describing the topology of K.

Theorem 7.2.1. If z_{0} is any point of the complex hypersurface $V=f^{-1}(0)$ and if S_{ϵ} is sufficiently small sphere centered at z_{0} then the mapping $\Phi(z)=f(z) /|f(z)|$ from $S_{\epsilon} \backslash K$ to the unit circle is the projection map of a smooth locally trivially fibre bundle. Each fibre $F_{\theta}=\Phi^{-1}\left(e^{i \theta}\right) \subset S_{\epsilon \backslash} K$.

Now by using Morse theory one can prove that each fibre F_{θ} is parallelizable and is homotopic to a finite CW-complex of dimension n and K is $n-2$ connected. For the proof of these statements refer [7]

If we make the additional hypothesis that z_{0} is an isolated critical point of f we can give a better description of of each fibre F_{θ}.

Figure 7.1: Torus knot of type $(2,3)$

Theorem 7.2.2. If z_{0} is an isolated critical point of f, then each fibre F_{θ} is homotopic to $S^{n} \vee \ldots \vee S^{n}$ of n-spheres. Each fibre F_{θ} has the closure $\bar{F}_{\theta}=F_{\theta} \cup K$.

Proof. We have $H_{n}\left(F_{\theta}\right)$ is a free abelian group since F_{θ} is homotopic to finite CW-complex of dimension n and torsion torsion elements would give rise to cohomology classes in dim $n+1$. Now by Hurewicz theorem we have finitely many maps (S^{n}, basepoint $) \rightarrow\left(F_{\theta}\right.$, basepoint $)$ representing the basis and combining these yeild an isomorphism of homology groups of $S^{n} \vee \ldots \vee S^{n} \rightarrow F_{\theta}$ and using Whitehead's theorem it is a homotopy equivalence.

Remark. Rank $H_{n}\left(F_{\theta}\right)$ is equal to middle Betti number of F_{θ}. ([7] see chapter 7.) Also each fibre F_{θ} has the closure $\bar{F}_{\theta}=F_{\theta} \cup K$.

Theorem 7.2.3. The fibre F_{θ} has the homology of a point in dimension less than n, that is when $i<n$.

Proof. By Alexander Duality $\tilde{H}^{2 n-i}\left(\bar{F}_{\theta}\right) \simeq \tilde{H}_{i}\left(S_{\epsilon} \backslash \bar{F}_{\theta}\right)$ which is zero if $2 n-i>n$.

Theorem 7.2.4. If the origin is an isolated critical point of f, then the fibres F_{θ} are not contractible, and the manifold $K=V \cap S_{\epsilon}$ is not an unknotted sphere in S_{ϵ}.

Proof. Since F_{θ} is homotopic to $S^{n} \vee \ldots \vee S^{n}$ and the number of sphere is greater than 0 hence F_{θ} is not contractible. If K were topologically unknotted sphere in S_{ϵ} then $S_{\epsilon} \backslash K$ would be homotopic to circle. We give the explicit homotopy, Let $S_{\epsilon}=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}\right.$: $\left.\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\ldots+\left|z_{n}\right|^{2}=1\right\}$ let $K=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in S_{\epsilon}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\ldots+\left|z_{n-1}\right|^{2}=1\right\}$. We define the deformation retract of $S_{\epsilon} \backslash K$ to $\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in S:\left|z_{n}\right|^{2}=1\right\} \subset S_{\epsilon} \backslash K$ by

$$
f_{t}=\frac{(1-t)\left(z_{1}, z_{2}, \ldots, z_{n}\right)+t\left(0,0, \ldots, 0, \frac{z_{n}}{\left|z_{n}\right|}\right)}{\left\lvert\,(1-t)\left(z_{1}, z_{2}, \ldots, z_{n}\right)+t\left(0,0, \ldots, 0, \frac{z_{n}}{\left|z_{n}\right|}| |\right.\right.}
$$

Now by the exact homotopy sequence

$$
\ldots \rightarrow \pi_{n+1}\left(S^{1}\right) \rightarrow \pi_{n}\left(F_{0}\right) \rightarrow \pi_{n}\left(S_{n} \backslash K\right) \rightarrow \ldots
$$

would lead us to a contradiction.

The next natural question to ask is if K is a topological sphere when the origin is an isolated critical point. The following theorem gives the criterion to say if K is a topological sphere.

Theorem 7.2.5. If $n \neq 2$ then K is homeomorphic to $S^{2 n-1}$ if and only if K is a homology sphere.

Proof. We give sketch of proof, now if $n \geq 3$, K is simple connected and the dimension of K is greater than or equal to 5 , and hence we can apply generalized Poincaré hypothesis ([8]).

Remark. The statement is not true for $n=2$. Consider the complex polynomial $f\left(z_{1}, z_{2}, z_{3}\right)=$ $z_{1}^{2}+z_{2}^{3}+z_{3}^{5}$. This 3-manifold is homology sphere, but $\pi_{1}(K)$ is isomorphic to $S L\left(2, \mathbb{Z}_{5}\right)$.

Conclusion

In this project we first looked at the existence of Lefschetz Pencil on a non singular complex projective variety. Along the way we encountered beautiful results like Lefschetz famous theorem on Homology of Hyperplane section, and Weak Lefschetz Theorem. We then see more intuitive and subtle Hard Lefschetz Theorem. We then viewed homotopy version of Lefschetz Theorem using Morse Theory, this is originally suggested by R.Thom and worked out by Andreotti-Frakel and Bott. We then saw Picard-Lefschetz Formula and Monodromy, it is a complex analog of Morse theory that studies the topology of a real manifold by looking at the critical points of a real function. At the end we saw the topology associated with singular points of Complex Hypersurfaces.

Bibliography

[1] K. Lamotke: The topology of complex projective varieties after S. Lefschetz, Topology, 20(1981), 15-51.
[2] A.Hatcher: Algebraic Topology, electronic manuscript available at http://www.math. cornell.edu/~hatcher/
[3] R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer Verlag, 1977.
[4] J.Milnor: Morse Theory, Princeton University press, 1963.
[5] Igor R. Shafarevich: Basic Algebraic Geometry 1, Springer Verlag.
[6] Harris J: Algebraic geometry, A first course, Springer-Verlag, 1992.
[7] J.Milnor: Singular Points Of Complex Hypersurfaces. Princeton University Press and the University of Tokyo Press 1968.
[8] Generalized Poincaré's Conjecture In Dimension Greater Than Four, by Stephen Smale, Annals of Mathematics Vol 74, No. 21961.

